|
''' |
|
EfficientNet in PyTorch. |
|
|
|
Paper: "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks" |
|
Reference: https://github.com/keras-team/keras-applications/blob/master/keras_applications/efficientnet.py |
|
|
|
主要特点: |
|
1. 使用MBConv作为基本模块,包含SE注意力机制 |
|
2. 通过复合缩放方法(compound scaling)同时调整网络的宽度、深度和分辨率 |
|
3. 使用Swish激活函数和DropConnect正则化 |
|
''' |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import math |
|
|
|
def swish(x): |
|
"""Swish激活函数: x * sigmoid(x)""" |
|
return x * x.sigmoid() |
|
|
|
def drop_connect(x, drop_ratio): |
|
"""DropConnect正则化 |
|
|
|
Args: |
|
x: 输入tensor |
|
drop_ratio: 丢弃率 |
|
|
|
Returns: |
|
经过DropConnect处理的tensor |
|
""" |
|
keep_ratio = 1.0 - drop_ratio |
|
mask = torch.empty([x.shape[0], 1, 1, 1], dtype=x.dtype, device=x.device) |
|
mask.bernoulli_(keep_ratio) |
|
x.div_(keep_ratio) |
|
x.mul_(mask) |
|
return x |
|
|
|
class SE(nn.Module): |
|
'''Squeeze-and-Excitation注意力模块 |
|
|
|
Args: |
|
in_channels: 输入通道数 |
|
se_channels: SE模块中间层的通道数 |
|
''' |
|
def __init__(self, in_channels, se_channels): |
|
super(SE, self).__init__() |
|
self.se1 = nn.Conv2d(in_channels, se_channels, kernel_size=1, bias=True) |
|
self.se2 = nn.Conv2d(se_channels, in_channels, kernel_size=1, bias=True) |
|
|
|
def forward(self, x): |
|
out = F.adaptive_avg_pool2d(x, (1, 1)) |
|
out = swish(self.se1(out)) |
|
out = self.se2(out).sigmoid() |
|
return x * out |
|
|
|
class MBConv(nn.Module): |
|
'''MBConv模块: Mobile Inverted Bottleneck Convolution |
|
|
|
Args: |
|
in_channels: 输入通道数 |
|
out_channels: 输出通道数 |
|
kernel_size: 卷积核大小 |
|
stride: 步长 |
|
expand_ratio: 扩展比率 |
|
se_ratio: SE模块的压缩比率 |
|
drop_rate: DropConnect的丢弃率 |
|
''' |
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride, |
|
expand_ratio=1, |
|
se_ratio=0.25, |
|
drop_rate=0.): |
|
super(MBConv, self).__init__() |
|
self.stride = stride |
|
self.drop_rate = drop_rate |
|
self.expand_ratio = expand_ratio |
|
|
|
|
|
channels = expand_ratio * in_channels |
|
self.conv1 = nn.Conv2d(in_channels, channels, kernel_size=1, stride=1, padding=0, bias=False) |
|
self.bn1 = nn.BatchNorm2d(channels) |
|
|
|
|
|
self.conv2 = nn.Conv2d(channels, channels, kernel_size=kernel_size, stride=stride, |
|
padding=(1 if kernel_size == 3 else 2), groups=channels, bias=False) |
|
self.bn2 = nn.BatchNorm2d(channels) |
|
|
|
|
|
se_channels = int(in_channels * se_ratio) |
|
self.se = SE(channels, se_channels) |
|
|
|
|
|
self.conv3 = nn.Conv2d(channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False) |
|
self.bn3 = nn.BatchNorm2d(out_channels) |
|
|
|
|
|
self.has_skip = (stride == 1) and (in_channels == out_channels) |
|
|
|
def forward(self, x): |
|
|
|
out = x if self.expand_ratio == 1 else swish(self.bn1(self.conv1(x))) |
|
|
|
out = swish(self.bn2(self.conv2(out))) |
|
|
|
out = self.se(out) |
|
|
|
out = self.bn3(self.conv3(out)) |
|
|
|
if self.has_skip: |
|
if self.training and self.drop_rate > 0: |
|
out = drop_connect(out, self.drop_rate) |
|
out = out + x |
|
return out |
|
|
|
class EfficientNet(nn.Module): |
|
'''EfficientNet模型 |
|
|
|
Args: |
|
width_coefficient: 宽度系数 |
|
depth_coefficient: 深度系数 |
|
dropout_rate: 分类层的dropout率 |
|
num_classes: 分类数量 |
|
''' |
|
def __init__(self, |
|
width_coefficient=1.0, |
|
depth_coefficient=1.0, |
|
dropout_rate=0.2, |
|
num_classes=10): |
|
super(EfficientNet, self).__init__() |
|
|
|
|
|
cfg = { |
|
'num_blocks': [1, 2, 2, 3, 3, 4, 1], |
|
'expansion': [1, 6, 6, 6, 6, 6, 6], |
|
'out_channels': [16, 24, 40, 80, 112, 192, 320], |
|
'kernel_size': [3, 3, 5, 3, 5, 5, 3], |
|
'stride': [1, 2, 2, 2, 1, 2, 1], |
|
'dropout_rate': dropout_rate, |
|
'drop_connect_rate': 0.2, |
|
} |
|
|
|
self.cfg = cfg |
|
self.width_coefficient = width_coefficient |
|
self.depth_coefficient = depth_coefficient |
|
|
|
|
|
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(32) |
|
|
|
|
|
self.layers = self._make_layers(in_channels=32) |
|
|
|
|
|
final_channels = cfg['out_channels'][-1] * int(width_coefficient) |
|
self.linear = nn.Linear(final_channels, num_classes) |
|
|
|
def _make_layers(self, in_channels): |
|
layers = [] |
|
cfg = [self.cfg[k] for k in ['expansion', 'out_channels', 'num_blocks', 'kernel_size', 'stride']] |
|
blocks = sum(self.cfg['num_blocks']) |
|
b = 0 |
|
|
|
for expansion, out_channels, num_blocks, kernel_size, stride in zip(*cfg): |
|
out_channels = int(out_channels * self.width_coefficient) |
|
num_blocks = int(math.ceil(num_blocks * self.depth_coefficient)) |
|
|
|
for i in range(num_blocks): |
|
stride_i = stride if i == 0 else 1 |
|
drop_rate = self.cfg['drop_connect_rate'] * b / blocks |
|
layers.append( |
|
MBConv(in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride_i, |
|
expansion, |
|
se_ratio=0.25, |
|
drop_rate=drop_rate)) |
|
in_channels = out_channels |
|
b += 1 |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
|
|
out = swish(self.bn1(self.conv1(x))) |
|
|
|
out = self.layers(out) |
|
|
|
out = F.adaptive_avg_pool2d(out, 1) |
|
out = out.view(out.size(0), -1) |
|
if self.training and self.cfg['dropout_rate'] > 0: |
|
out = F.dropout(out, p=self.cfg['dropout_rate']) |
|
out = self.linear(out) |
|
return out |
|
|
|
def EfficientNetB0(num_classes=10): |
|
"""EfficientNet-B0""" |
|
return EfficientNet(width_coefficient=1.0, |
|
depth_coefficient=1.0, |
|
dropout_rate=0.2, |
|
num_classes=num_classes) |
|
|
|
def EfficientNetB1(num_classes=10): |
|
"""EfficientNet-B1""" |
|
return EfficientNet(width_coefficient=1.0, |
|
depth_coefficient=1.1, |
|
dropout_rate=0.2, |
|
num_classes=num_classes) |
|
|
|
def EfficientNetB2(num_classes=10): |
|
"""EfficientNet-B2""" |
|
return EfficientNet(width_coefficient=1.1, |
|
depth_coefficient=1.2, |
|
dropout_rate=0.3, |
|
num_classes=num_classes) |
|
|
|
def EfficientNetB3(num_classes=10): |
|
"""EfficientNet-B3""" |
|
return EfficientNet(width_coefficient=1.2, |
|
depth_coefficient=1.4, |
|
dropout_rate=0.3, |
|
num_classes=num_classes) |
|
|
|
def EfficientNetB4(num_classes=10): |
|
"""EfficientNet-B4""" |
|
return EfficientNet(width_coefficient=1.4, |
|
depth_coefficient=1.8, |
|
dropout_rate=0.4, |
|
num_classes=num_classes) |
|
|
|
def EfficientNetB5(num_classes=10): |
|
"""EfficientNet-B5""" |
|
return EfficientNet(width_coefficient=1.6, |
|
depth_coefficient=2.2, |
|
dropout_rate=0.4, |
|
num_classes=num_classes) |
|
|
|
def EfficientNetB6(num_classes=10): |
|
"""EfficientNet-B6""" |
|
return EfficientNet(width_coefficient=1.8, |
|
depth_coefficient=2.6, |
|
dropout_rate=0.5, |
|
num_classes=num_classes) |
|
|
|
def EfficientNetB7(num_classes=10): |
|
"""EfficientNet-B7""" |
|
return EfficientNet(width_coefficient=2.0, |
|
depth_coefficient=3.1, |
|
dropout_rate=0.5, |
|
num_classes=num_classes) |
|
|
|
def test(): |
|
"""测试函数""" |
|
net = EfficientNetB0() |
|
x = torch.randn(1, 3, 32, 32) |
|
y = net(x) |
|
print(y.size()) |
|
from torchinfo import summary |
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
net = net.to(device) |
|
summary(net, (1, 3, 32, 32)) |
|
|
|
if __name__ == '__main__': |
|
test() |