|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
class PatchEmbed(nn.Module): |
|
""" 将图像分成patch并进行embedding """ |
|
def __init__(self, img_size=32, patch_size=4, in_chans=3, embed_dim=96): |
|
super().__init__() |
|
self.img_size = img_size |
|
self.patch_size = patch_size |
|
self.n_patches = (img_size // patch_size) ** 2 |
|
|
|
self.proj = nn.Conv2d( |
|
in_chans, embed_dim, |
|
kernel_size=patch_size, stride=patch_size |
|
) |
|
|
|
def forward(self, x): |
|
x = self.proj(x) |
|
x = x.flatten(2) |
|
x = x.transpose(1, 2) |
|
return x |
|
|
|
class Attention(nn.Module): |
|
""" 多头自注意力机制 """ |
|
def __init__(self, dim, n_heads=8, qkv_bias=True, attn_p=0., proj_p=0.): |
|
super().__init__() |
|
self.n_heads = n_heads |
|
self.dim = dim |
|
self.head_dim = dim // n_heads |
|
self.scale = self.head_dim ** -0.5 |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.attn_drop = nn.Dropout(attn_p) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_p) |
|
|
|
def forward(self, x): |
|
n_samples, n_tokens, dim = x.shape |
|
|
|
if dim != self.dim: |
|
raise ValueError |
|
|
|
qkv = self.qkv(x) |
|
qkv = qkv.reshape( |
|
n_samples, n_tokens, 3, self.n_heads, self.head_dim |
|
) |
|
qkv = qkv.permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv[0], qkv[1], qkv[2] |
|
|
|
k_t = k.transpose(-2, -1) |
|
dp = (q @ k_t) * self.scale |
|
attn = dp.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
|
|
weighted_avg = attn @ v |
|
weighted_avg = weighted_avg.transpose(1, 2) |
|
weighted_avg = weighted_avg.flatten(2) |
|
|
|
x = self.proj(weighted_avg) |
|
x = self.proj_drop(x) |
|
|
|
return x |
|
|
|
class MLP(nn.Module): |
|
""" 多层感知机 """ |
|
def __init__(self, in_features, hidden_features, out_features, p=0.): |
|
super().__init__() |
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
self.act = nn.GELU() |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
self.drop = nn.Dropout(p) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.drop(x) |
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
|
|
return x |
|
|
|
class Block(nn.Module): |
|
""" Transformer编码器块 """ |
|
def __init__(self, dim, n_heads, mlp_ratio=4.0, qkv_bias=True, |
|
p=0., attn_p=0.): |
|
super().__init__() |
|
self.norm1 = nn.LayerNorm(dim, eps=1e-6) |
|
self.attn = Attention( |
|
dim, |
|
n_heads=n_heads, |
|
qkv_bias=qkv_bias, |
|
attn_p=attn_p, |
|
proj_p=p |
|
) |
|
self.norm2 = nn.LayerNorm(dim, eps=1e-6) |
|
hidden_features = int(dim * mlp_ratio) |
|
self.mlp = MLP( |
|
in_features=dim, |
|
hidden_features=hidden_features, |
|
out_features=dim, |
|
) |
|
|
|
def forward(self, x): |
|
x = x + self.attn(self.norm1(x)) |
|
x = x + self.mlp(self.norm2(x)) |
|
return x |
|
|
|
class ViT(nn.Module): |
|
""" Vision Transformer """ |
|
def __init__( |
|
self, |
|
img_size=32, |
|
patch_size=4, |
|
in_chans=3, |
|
n_classes=10, |
|
embed_dim=96, |
|
depth=12, |
|
n_heads=8, |
|
mlp_ratio=4., |
|
qkv_bias=True, |
|
p=0., |
|
attn_p=0., |
|
): |
|
super().__init__() |
|
|
|
self.patch_embed = PatchEmbed( |
|
img_size=img_size, |
|
patch_size=patch_size, |
|
in_chans=in_chans, |
|
embed_dim=embed_dim, |
|
) |
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) |
|
self.pos_embed = nn.Parameter( |
|
torch.zeros(1, 1 + self.patch_embed.n_patches, embed_dim) |
|
) |
|
self.pos_drop = nn.Dropout(p=p) |
|
|
|
self.blocks = nn.ModuleList([ |
|
Block( |
|
dim=embed_dim, |
|
n_heads=n_heads, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
p=p, |
|
attn_p=attn_p, |
|
) |
|
for _ in range(depth) |
|
]) |
|
|
|
self.norm = nn.LayerNorm(embed_dim, eps=1e-6) |
|
self.head = nn.Linear(embed_dim, n_classes) |
|
|
|
def forward(self, x): |
|
n_samples = x.shape[0] |
|
x = self.patch_embed(x) |
|
|
|
cls_token = self.cls_token.expand(n_samples, -1, -1) |
|
x = torch.cat((cls_token, x), dim=1) |
|
x = x + self.pos_embed |
|
x = self.pos_drop(x) |
|
|
|
for block in self.blocks: |
|
x = block(x) |
|
|
|
x = self.norm(x) |
|
|
|
cls_token_final = x[:, 0] |
|
x = self.head(cls_token_final) |
|
|
|
return x |
|
|