HUANGYIFEI's picture
add lib
0a705c2 verified
raw
history blame
14.2 kB
import os
import numpy as np
import torch
import torch.utils.data
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_squared_error
import sys
project_path = "/content/gdrive//My Drive/CS5248_project"
sys.path.append(project_path + '/lib')
from metrics import masked_mape_np
from scipy.sparse.linalg import eigs
from metrics import masked_mape_np, masked_mae,masked_mse,masked_rmse,masked_mae_test,masked_rmse_test
def re_normalization(x, mean, std):
x = x * std + mean
return x
def max_min_normalization(x, _max, _min):
x = 1. * (x - _min)/(_max - _min)
x = x * 2. - 1.
return x
def re_max_min_normalization(x, _max, _min):
x = (x + 1.) / 2.
x = 1. * x * (_max - _min) + _min
return x
def get_adjacency_matrix(distance_df_filename, num_of_vertices, id_filename=None):
'''
Parameters
----------
distance_df_filename: str, path of the csv file contains edges information
num_of_vertices: int, the number of vertices
Returns
----------
A: np.ndarray, adjacency matrix
'''
if 'npy' in distance_df_filename:
adj_mx = np.load(distance_df_filename)
return adj_mx, None
else:
import csv
A = np.zeros((int(num_of_vertices), int(num_of_vertices)),
dtype=np.float32)
distaneA = np.zeros((int(num_of_vertices), int(num_of_vertices)),
dtype=np.float32)
if id_filename:
with open(id_filename, 'r') as f:
id_dict = {int(i): idx for idx, i in enumerate(f.read().strip().split('\n'))} # 把节点id(idx)映射成从0开始的索引
with open(distance_df_filename, 'r') as f:
f.readline()
reader = csv.reader(f)
for row in reader:
if len(row) != 3:
continue
i, j, distance = int(row[0]), int(row[1]), float(row[2])
A[id_dict[i], id_dict[j]] = 1
distaneA[id_dict[i], id_dict[j]] = distance
return A, distaneA
else:
with open(distance_df_filename, 'r') as f:
f.readline()
reader = csv.reader(f)
for row in reader:
if len(row) != 3:
continue
i, j, distance = int(row[0]), int(row[1]), float(row[2])
A[i, j] = 1
distaneA[i, j] = distance
return A, distaneA
def scaled_Laplacian(W):
'''
compute \tilde{L}
Parameters
----------
W: np.ndarray, shape is (N, N), N is the num of vertices
Returns
----------
scaled_Laplacian: np.ndarray, shape (N, N)
'''
assert W.shape[0] == W.shape[1]
D = np.diag(np.sum(W, axis=1))
L = D - W
lambda_max = eigs(L, k=1, which='LR')[0].real
return (2 * L) / lambda_max - np.identity(W.shape[0])
def cheb_polynomial(L_tilde, K):
'''
compute a list of chebyshev polynomials from T_0 to T_{K-1}
Parameters
----------
L_tilde: scaled Laplacian, np.ndarray, shape (N, N)
K: the maximum order of chebyshev polynomials
Returns
----------
cheb_polynomials: list(np.ndarray), length: K, from T_0 to T_{K-1}
'''
N = L_tilde.shape[0]
cheb_polynomials = [np.identity(N), L_tilde.copy()]
for i in range(2, K):
cheb_polynomials.append(2 * L_tilde * cheb_polynomials[i - 1] - cheb_polynomials[i - 2])
return cheb_polynomials
def load_graphdata_channel1(graph_signal_matrix_filename, num_of_indices, DEVICE, batch_size, shuffle=True):
'''
这个是为PEMS的数据准备的函数
将x,y都处理成归一化到[-1,1]之前的数据;
每个样本同时包含所有监测点的数据,所以本函数构造的数据输入时空序列预测模型;
该函数会把hour, day, week的时间串起来;
注: 从文件读入的数据,x是最大最小归一化的,但是y是真实值
这个函数转为mstgcn,astgcn设计,返回的数据x都是通过减均值除方差进行归一化的,y都是真实值
:param graph_signal_matrix_filename: str
:param num_of_hours: int
:param num_of_days: int
:param num_of_weeks: int
:param DEVICE:
:param batch_size: int
:return:
three DataLoaders, each dataloader contains:
test_x_tensor: (B, N_nodes, in_feature, T_input)
test_decoder_input_tensor: (B, N_nodes, T_output)
test_target_tensor: (B, N_nodes, T_output)
'''
file = os.path.basename(graph_signal_matrix_filename).split('.')[0]
dirpath = os.path.dirname(graph_signal_matrix_filename)
filename = os.path.join(dirpath,
file) +'_astcgn'
print('load file:', filename)
file_data = np.load(filename + '.npz')
train_x = file_data['train_x'] # (10181, 307, 3, 12)
train_x = train_x[:, :, 0:5, :]
train_target = file_data['train_target'] # (10181, 307, 12)
val_x = file_data['val_x']
val_x = val_x[:, :, 0:5, :]
val_target = file_data['val_target']
test_x = file_data['test_x']
test_x = test_x[:, :, 0:5, :]
test_target = file_data['test_target']
mean = file_data['mean'][:, :, 0:5, :] # (1, 1, 3, 1)
std = file_data['std'][:, :, 0:5, :] # (1, 1, 3, 1)
# ------- train_loader -------
train_x_tensor = torch.from_numpy(train_x).type(torch.FloatTensor).to(DEVICE) # (B, N, F, T)
train_target_tensor = torch.from_numpy(train_target).type(torch.FloatTensor).to(DEVICE) # (B, N, T)
train_dataset = torch.utils.data.TensorDataset(train_x_tensor, train_target_tensor)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=shuffle)
# ------- val_loader -------
val_x_tensor = torch.from_numpy(val_x).type(torch.FloatTensor).to(DEVICE) # (B, N, F, T)
val_target_tensor = torch.from_numpy(val_target).type(torch.FloatTensor).to(DEVICE) # (B, N, T)
val_dataset = torch.utils.data.TensorDataset(val_x_tensor, val_target_tensor)
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
# ------- test_loader -------
test_x_tensor = torch.from_numpy(test_x).type(torch.FloatTensor).to(DEVICE) # (B, N, F, T)
test_target_tensor = torch.from_numpy(test_target).type(torch.FloatTensor).to(DEVICE) # (B, N, T)
test_dataset = torch.utils.data.TensorDataset(test_x_tensor, test_target_tensor)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
# print
print('train:', train_x_tensor.size(), train_target_tensor.size())
print('val:', val_x_tensor.size(), val_target_tensor.size())
print('test:', test_x_tensor.size(), test_target_tensor.size())
return train_loader, train_target_tensor, val_loader, val_target_tensor, test_loader, test_target_tensor, mean, std
def compute_val_loss_mstgcn(net, val_loader, criterion, masked_flag,missing_value,sw, epoch, limit=None):
'''
for rnn, compute mean loss on validation set
:param net: model
:param val_loader: torch.utils.data.utils.DataLoader
:param criterion: torch.nn.MSELoss
:param sw: tensorboardX.SummaryWriter
:param global_step: int, current global_step
:param limit: int,
:return: val_loss
'''
net.train(False) # ensure dropout layers are in evaluation mode
with torch.no_grad():
val_loader_length = len(val_loader) # nb of batch
tmp = [] # 记录了所有batch的loss
for batch_index, batch_data in enumerate(val_loader):
encoder_inputs, labels = batch_data
outputs = net(encoder_inputs)
if masked_flag:
loss = criterion(outputs, labels, missing_value)
else:
loss = criterion(outputs, labels)
tmp.append(loss.item())
if batch_index % 100 == 0:
print('validation batch %s / %s, loss: %.2f' % (batch_index + 1, val_loader_length, loss.item()))
if (limit is not None) and batch_index >= limit:
break
validation_loss = sum(tmp) / len(tmp)
sw.add_scalar('validation_loss', validation_loss, epoch)
return validation_loss
# def evaluate_on_test_mstgcn(net, test_loader, test_target_tensor, sw, epoch, _mean, _std):
# '''
# for rnn, compute MAE, RMSE, MAPE scores of the prediction for every time step on testing set.
#
# :param net: model
# :param test_loader: torch.utils.data.utils.DataLoader
# :param test_target_tensor: torch.tensor (B, N_nodes, T_output, out_feature)=(B, N_nodes, T_output, 1)
# :param sw:
# :param epoch: int, current epoch
# :param _mean: (1, 1, 3(features), 1)
# :param _std: (1, 1, 3(features), 1)
# '''
#
# net.train(False) # ensure dropout layers are in test mode
#
# with torch.no_grad():
#
# test_loader_length = len(test_loader)
#
# test_target_tensor = test_target_tensor.cpu().numpy()
#
# prediction = [] # 存储所有batch的output
#
# for batch_index, batch_data in enumerate(test_loader):
#
# encoder_inputs, labels = batch_data
#
# outputs = net(encoder_inputs)
#
# prediction.append(outputs.detach().cpu().numpy())
#
# if batch_index % 100 == 0:
# print('predicting testing set batch %s / %s' % (batch_index + 1, test_loader_length))
#
# prediction = np.concatenate(prediction, 0) # (batch, T', 1)
# prediction_length = prediction.shape[2]
#
# for i in range(prediction_length):
# assert test_target_tensor.shape[0] == prediction.shape[0]
# print('current epoch: %s, predict %s points' % (epoch, i))
# mae = mean_absolute_error(test_target_tensor[:, :, i], prediction[:, :, i])
# rmse = mean_squared_error(test_target_tensor[:, :, i], prediction[:, :, i]) ** 0.5
# mape = masked_mape_np(test_target_tensor[:, :, i], prediction[:, :, i], 0)
# print('MAE: %.2f' % (mae))
# print('RMSE: %.2f' % (rmse))
# print('MAPE: %.2f' % (mape))
# print()
# if sw:
# sw.add_scalar('MAE_%s_points' % (i), mae, epoch)
# sw.add_scalar('RMSE_%s_points' % (i), rmse, epoch)
# sw.add_scalar('MAPE_%s_points' % (i), mape, epoch)
def predict_and_save_results_mstgcn(net, data_loader, data_target_tensor, global_step, metric_method,_mean, _std, params_path, type):
'''
:param net: nn.Module
:param data_loader: torch.utils.data.utils.DataLoader
:param data_target_tensor: tensor
:param epoch: int
:param _mean: (1, 1, 3, 1)
:param _std: (1, 1, 3, 1)
:param params_path: the path for saving the results
:return:
'''
net.train(False) # ensure dropout layers are in test mode
with torch.no_grad():
data_target_tensor = data_target_tensor.cpu().numpy()
loader_length = len(data_loader) # nb of batch
prediction = [] # 存储所有batch的output
input = [] # 存储所有batch的input
for batch_index, batch_data in enumerate(data_loader):
encoder_inputs, labels = batch_data
input.append(encoder_inputs[:, :, 0:1].cpu().numpy()) # (batch, T', 1)
outputs = net(encoder_inputs)
prediction.append(outputs.detach().cpu().numpy())
if batch_index % 100 == 0:
print('predicting data set batch %s / %s' % (batch_index + 1, loader_length))
input = np.concatenate(input, 0)
input = re_normalization(input, _mean, _std)
prediction = np.concatenate(prediction, 0) # (batch, T', 1)
print('input:', input.shape)
print('prediction:', prediction.shape)
print('data_target_tensor:', data_target_tensor.shape)
output_filename = os.path.join(params_path, 'output_epoch_%s_%s' % (global_step, type))
np.savez(output_filename, input=input, prediction=prediction, data_target_tensor=data_target_tensor)
# 计算误差
excel_list = []
prediction_length = prediction.shape[2]
for i in range(prediction_length):
assert data_target_tensor.shape[0] == prediction.shape[0]
print('current epoch: %s, predict %s points' % (global_step, i))
if metric_method == 'mask':
mae = masked_mae_test(data_target_tensor[:, :, i], prediction[:, :, i],0.0)
rmse = masked_rmse_test(data_target_tensor[:, :, i], prediction[:, :, i],0.0)
mape = masked_mape_np(data_target_tensor[:, :, i], prediction[:, :, i], 0)
else :
mae = mean_absolute_error(data_target_tensor[:, :, i], prediction[:, :, i])
rmse = mean_squared_error(data_target_tensor[:, :, i], prediction[:, :, i]) ** 0.5
mape = masked_mape_np(data_target_tensor[:, :, i], prediction[:, :, i], 0)
print('MAE: %.2f' % (mae))
print('RMSE: %.2f' % (rmse))
print('MAPE: %.2f' % (mape))
excel_list.extend([mae, rmse, mape])
# print overall results
if metric_method == 'mask':
mae = masked_mae_test(data_target_tensor.reshape(-1, 1), prediction.reshape(-1, 1), 0.0)
rmse = masked_rmse_test(data_target_tensor.reshape(-1, 1), prediction.reshape(-1, 1), 0.0)
mape = masked_mape_np(data_target_tensor.reshape(-1, 1), prediction.reshape(-1, 1), 0)
else :
mae = mean_absolute_error(data_target_tensor.reshape(-1, 1), prediction.reshape(-1, 1))
rmse = mean_squared_error(data_target_tensor.reshape(-1, 1), prediction.reshape(-1, 1)) ** 0.5
mape = masked_mape_np(data_target_tensor.reshape(-1, 1), prediction.reshape(-1, 1), 0)
print('all MAE: %.2f' % (mae))
print('all RMSE: %.2f' % (rmse))
print('all MAPE: %.2f' % (mape))
excel_list.extend([mae, rmse, mape])
print(excel_list)