|
|
|
|
|
import logging |
|
import sys,json |
|
import numpy as np |
|
|
|
def read_answers(filename): |
|
answers={} |
|
with open(filename) as f: |
|
for line in f: |
|
line=line.strip() |
|
js=json.loads(line) |
|
answers[js['url']]=js['idx'] |
|
return answers |
|
|
|
def read_predictions(filename): |
|
predictions={} |
|
with open(filename) as f: |
|
for line in f: |
|
line=line.strip() |
|
js=json.loads(line) |
|
predictions[js['url']]=js['answers'] |
|
return predictions |
|
|
|
def calculate_scores(answers,predictions): |
|
scores=[] |
|
for key in answers: |
|
if key not in predictions: |
|
logging.error("Missing prediction for url {}.".format(key)) |
|
sys.exit() |
|
flag=False |
|
for rank,idx in enumerate(predictions[key]): |
|
if idx==answers[key]: |
|
scores.append(1/(rank+1)) |
|
flag=True |
|
break |
|
if flag is False: |
|
scores.append(0) |
|
result={} |
|
result['MRR']=round(np.mean(scores),4) |
|
return result |
|
|
|
def main(): |
|
import argparse |
|
parser = argparse.ArgumentParser(description='Evaluate leaderboard predictions for NL-code-search-Adv dataset.') |
|
parser.add_argument('--answers', '-a',help="filename of the labels, in txt format.") |
|
parser.add_argument('--predictions', '-p',help="filename of the leaderboard predictions, in txt format.") |
|
|
|
|
|
args = parser.parse_args() |
|
answers=read_answers(args.answers) |
|
predictions=read_predictions(args.predictions) |
|
scores=calculate_scores(answers,predictions) |
|
print(scores) |
|
|
|
if __name__ == '__main__': |
|
main() |
|
|