|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa). |
|
GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned |
|
using a masked language modeling (MLM) loss. |
|
""" |
|
|
|
from __future__ import absolute_import, division, print_function |
|
|
|
import argparse |
|
import glob |
|
import logging |
|
import os |
|
import pickle |
|
import random |
|
import re |
|
import shutil |
|
|
|
import numpy as np |
|
import torch |
|
from torch.utils.data import DataLoader, Dataset, SequentialSampler, RandomSampler, TensorDataset |
|
from torch.utils.data.distributed import DistributedSampler |
|
import json |
|
|
|
try: |
|
from torch.utils.tensorboard import SummaryWriter |
|
except: |
|
from tensorboardX import SummaryWriter |
|
|
|
from tqdm import tqdm, trange |
|
import multiprocessing |
|
from model import Model |
|
|
|
cpu_cont = multiprocessing.cpu_count() |
|
from transformers import (WEIGHTS_NAME, AdamW, get_linear_schedule_with_warmup, |
|
BertConfig, BertForMaskedLM, BertTokenizer, |
|
GPT2Config, GPT2LMHeadModel, GPT2Tokenizer, |
|
OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer, |
|
RobertaConfig, RobertaModel, RobertaTokenizer, |
|
DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer) |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
MODEL_CLASSES = { |
|
'gpt2': (GPT2Config, GPT2LMHeadModel, GPT2Tokenizer), |
|
'openai-gpt': (OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer), |
|
'bert': (BertConfig, BertForMaskedLM, BertTokenizer), |
|
'roberta': (RobertaConfig, RobertaModel, RobertaTokenizer), |
|
'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer) |
|
} |
|
|
|
|
|
class InputFeatures(object): |
|
"""A single training/test features for a example.""" |
|
|
|
def __init__(self, |
|
code_tokens, |
|
code_ids, |
|
nl_tokens, |
|
nl_ids, |
|
url, |
|
idx, |
|
|
|
): |
|
self.code_tokens = code_tokens |
|
self.code_ids = code_ids |
|
self.nl_tokens = nl_tokens |
|
self.nl_ids = nl_ids |
|
self.url = url |
|
self.idx = idx |
|
|
|
|
|
def convert_examples_to_features(js, tokenizer, args): |
|
|
|
if 'code_tokens' in js: |
|
code = ' '.join(js['code_tokens']) |
|
else: |
|
code = ' '.join(js['function_tokens']) |
|
code_tokens = tokenizer.tokenize(code)[:args.block_size - 2] |
|
code_tokens = [tokenizer.cls_token] + code_tokens + [tokenizer.sep_token] |
|
code_ids = tokenizer.convert_tokens_to_ids(code_tokens) |
|
padding_length = args.block_size - len(code_ids) |
|
code_ids += [tokenizer.pad_token_id] * padding_length |
|
|
|
nl = ' '.join(js['docstring_tokens']) |
|
nl_tokens = tokenizer.tokenize(nl)[:args.block_size - 2] |
|
nl_tokens = [tokenizer.cls_token] + nl_tokens + [tokenizer.sep_token] |
|
nl_ids = tokenizer.convert_tokens_to_ids(nl_tokens) |
|
padding_length = args.block_size - len(nl_ids) |
|
nl_ids += [tokenizer.pad_token_id] * padding_length |
|
|
|
return InputFeatures(code_tokens, code_ids, nl_tokens, nl_ids, js['url'], js['idx']) |
|
|
|
|
|
class TextDataset(Dataset): |
|
def __init__(self, tokenizer, args, file_path=None): |
|
self.examples = [] |
|
data = [] |
|
with open(file_path) as f: |
|
for i, line in enumerate(f): |
|
|
|
|
|
line = line.strip() |
|
js = json.loads(line) |
|
data.append(js) |
|
for js in data: |
|
self.examples.append(convert_examples_to_features(js, tokenizer, args)) |
|
if 'train' in file_path: |
|
for idx, example in enumerate(self.examples[:1]): |
|
logger.info("*** Example ***") |
|
logger.info("idx: {}".format(idx)) |
|
logger.info("code_tokens: {}".format([x.replace('\u0120', '_') for x in example.code_tokens])) |
|
logger.info("code_ids: {}".format(' '.join(map(str, example.code_ids)))) |
|
logger.info("nl_tokens: {}".format([x.replace('\u0120', '_') for x in example.nl_tokens])) |
|
logger.info("nl_ids: {}".format(' '.join(map(str, example.nl_ids)))) |
|
|
|
def __len__(self): |
|
return len(self.examples) |
|
|
|
def __getitem__(self, i): |
|
return (torch.tensor(self.examples[i].code_ids), torch.tensor(self.examples[i].nl_ids)) |
|
|
|
|
|
def set_seed(seed=42): |
|
random.seed(seed) |
|
os.environ['PYHTONHASHSEED'] = str(seed) |
|
np.random.seed(seed) |
|
torch.manual_seed(seed) |
|
torch.cuda.manual_seed(seed) |
|
torch.backends.cudnn.deterministic = True |
|
|
|
|
|
def train(args, train_dataset, model, tokenizer): |
|
""" Train the model """ |
|
|
|
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) |
|
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) |
|
|
|
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, |
|
batch_size=args.train_batch_size, num_workers=4, pin_memory=True) |
|
args.max_steps = args.epoch * len(train_dataloader) |
|
args.save_steps = len(train_dataloader) // 10 |
|
args.warmup_steps = len(train_dataloader) |
|
args.logging_steps = len(train_dataloader) |
|
args.num_train_epochs = args.epoch |
|
model.to(args.device) |
|
|
|
no_decay = ['bias', 'LayerNorm.weight'] |
|
optimizer_grouped_parameters = [ |
|
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], |
|
'weight_decay': args.weight_decay}, |
|
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} |
|
] |
|
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) |
|
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.max_steps * 0.1, |
|
num_training_steps=args.max_steps) |
|
if args.fp16: |
|
try: |
|
from apex import amp |
|
except ImportError: |
|
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") |
|
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) |
|
|
|
|
|
if args.n_gpu > 1: |
|
model = torch.nn.DataParallel(model) |
|
|
|
|
|
if args.local_rank != -1: |
|
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], |
|
output_device=args.local_rank, |
|
find_unused_parameters=True) |
|
|
|
checkpoint_last = os.path.join(args.output_dir, 'checkpoint-last') |
|
scheduler_last = os.path.join(checkpoint_last, 'scheduler.pt') |
|
optimizer_last = os.path.join(checkpoint_last, 'optimizer.pt') |
|
if os.path.exists(scheduler_last): |
|
scheduler.load_state_dict(torch.load(scheduler_last)) |
|
if os.path.exists(optimizer_last): |
|
optimizer.load_state_dict(torch.load(optimizer_last)) |
|
|
|
|
|
logger.info("***** Running training *****") |
|
logger.info(" Num examples = %d", len(train_dataset)) |
|
logger.info(" Num Epochs = %d", args.num_train_epochs) |
|
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) |
|
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d", |
|
args.train_batch_size * args.gradient_accumulation_steps * ( |
|
torch.distributed.get_world_size() if args.local_rank != -1 else 1)) |
|
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) |
|
logger.info(" Total optimization steps = %d", args.max_steps) |
|
|
|
global_step = args.start_step |
|
tr_loss, logging_loss, avg_loss, tr_nb, tr_num, train_loss = 0.0, 0.0, 0.0, 0, 0, 0 |
|
best_mrr = 0.0 |
|
best_acc = 0.0 |
|
|
|
model.zero_grad() |
|
|
|
for idx in range(args.start_epoch, int(args.num_train_epochs)): |
|
bar = train_dataloader |
|
tr_num = 0 |
|
train_loss = 0 |
|
for step, batch in enumerate(tqdm(bar)): |
|
code_inputs = batch[0].to(args.device) |
|
nl_inputs = batch[1].to(args.device) |
|
|
|
model.train() |
|
loss, code_vec, nl_vec = model(code_inputs, nl_inputs) |
|
|
|
if args.n_gpu > 1: |
|
loss = loss.mean() |
|
if args.gradient_accumulation_steps > 1: |
|
loss = loss / args.gradient_accumulation_steps |
|
|
|
if args.fp16: |
|
with amp.scale_loss(loss, optimizer) as scaled_loss: |
|
scaled_loss.backward() |
|
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) |
|
else: |
|
loss.backward() |
|
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) |
|
|
|
tr_loss += loss.item() |
|
tr_num += 1 |
|
train_loss += loss.item() |
|
if avg_loss == 0: |
|
avg_loss = tr_loss |
|
avg_loss = round(train_loss / tr_num, 5) |
|
if (step + 1) % 100 == 0: |
|
logger.info("epoch {} step {} loss {}".format(idx, step + 1, avg_loss)) |
|
|
|
|
|
if (step + 1) % args.gradient_accumulation_steps == 0: |
|
optimizer.step() |
|
optimizer.zero_grad() |
|
scheduler.step() |
|
global_step += 1 |
|
output_flag = True |
|
avg_loss = round(np.exp((tr_loss - logging_loss) / (global_step - tr_nb)), 4) |
|
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: |
|
logging_loss = tr_loss |
|
tr_nb = global_step |
|
|
|
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0: |
|
|
|
if args.local_rank == -1 and args.evaluate_during_training: |
|
results = evaluate(args, model, tokenizer, eval_when_training=True) |
|
for key, value in results.items(): |
|
logger.info(" %s = %s", key, round(value, 4)) |
|
|
|
tr_num = 0 |
|
train_loss = 0 |
|
|
|
if results['eval_mrr'] > best_acc: |
|
best_acc = results['eval_mrr'] |
|
logger.info(" " + "*" * 20) |
|
logger.info(" Best mrr:%s", round(best_acc, 4)) |
|
logger.info(" " + "*" * 20) |
|
|
|
checkpoint_prefix = 'checkpoint-best-mrr' |
|
output_dir = os.path.join(args.output_dir, '{}'.format(checkpoint_prefix)) |
|
if not os.path.exists(output_dir): |
|
os.makedirs(output_dir) |
|
model_to_save = model.module if hasattr(model, 'module') else model |
|
output_dir = os.path.join(output_dir, '{}'.format('model.bin')) |
|
torch.save(model_to_save.state_dict(), output_dir) |
|
logger.info("Saving model checkpoint to %s", output_dir) |
|
|
|
|
|
output_dir = os.path.join(args.output_dir, 'epoch_{}'.format(idx+1)) |
|
if not os.path.exists(output_dir): |
|
os.makedirs(output_dir) |
|
model_to_save = model.module if hasattr(model, 'module') else model |
|
ckpt_output_path = os.path.join(output_dir, 'subject_model.pth') |
|
logger.info("Saving model checkpoint to %s", ckpt_output_path) |
|
torch.save(model_to_save.state_dict(), ckpt_output_path) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
eval_dataset = None |
|
def evaluate(args, model, tokenizer, eval_when_training=False): |
|
|
|
eval_output_dir = args.output_dir |
|
global eval_dataset |
|
if eval_dataset is None: |
|
eval_dataset = TextDataset(tokenizer, args, args.eval_data_file) |
|
|
|
if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]: |
|
os.makedirs(eval_output_dir) |
|
|
|
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) |
|
|
|
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset) |
|
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size, num_workers=4, |
|
pin_memory=True) |
|
|
|
|
|
if args.n_gpu > 1 and eval_when_training is False: |
|
model = torch.nn.DataParallel(model) |
|
|
|
|
|
logger.info("***** Running evaluation *****") |
|
logger.info(" Num examples = %d", len(eval_dataset)) |
|
logger.info(" Batch size = %d", args.eval_batch_size) |
|
eval_loss = 0.0 |
|
nb_eval_steps = 0 |
|
model.eval() |
|
code_vecs = [] |
|
nl_vecs = [] |
|
for batch in eval_dataloader: |
|
code_inputs = batch[0].to(args.device) |
|
nl_inputs = batch[1].to(args.device) |
|
with torch.no_grad(): |
|
lm_loss, code_vec, nl_vec = model(code_inputs, nl_inputs) |
|
eval_loss += lm_loss.mean().item() |
|
code_vecs.append(code_vec.cpu().numpy()) |
|
nl_vecs.append(nl_vec.cpu().numpy()) |
|
nb_eval_steps += 1 |
|
code_vecs = np.concatenate(code_vecs, 0) |
|
nl_vecs = np.concatenate(nl_vecs, 0) |
|
eval_loss = eval_loss / nb_eval_steps |
|
perplexity = torch.tensor(eval_loss) |
|
|
|
scores = np.matmul(nl_vecs, code_vecs.T) |
|
ranks = [] |
|
for i in range(len(scores)): |
|
score = scores[i, i] |
|
rank = 1 |
|
for j in range(len(scores)): |
|
if i != j and scores[i, j] >= score: |
|
rank += 1 |
|
ranks.append(1 / rank) |
|
|
|
result = { |
|
"eval_loss": float(perplexity), |
|
"eval_mrr": float(np.mean(ranks)) |
|
} |
|
|
|
return result |
|
|
|
|
|
def test(args, model, tokenizer): |
|
|
|
eval_dataset = TextDataset(tokenizer, args, args.test_data_file) |
|
|
|
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) |
|
|
|
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset) |
|
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) |
|
|
|
|
|
if args.n_gpu > 1: |
|
model = torch.nn.DataParallel(model) |
|
|
|
|
|
logger.info("***** Running Test *****") |
|
logger.info(" Num examples = %d", len(eval_dataset)) |
|
logger.info(" Batch size = %d", args.eval_batch_size) |
|
eval_loss = 0.0 |
|
nb_eval_steps = 0 |
|
code_vecs = [] |
|
nl_vecs = [] |
|
for batch in eval_dataloader: |
|
code_inputs = batch[0].to(args.device) |
|
nl_inputs = batch[1].to(args.device) |
|
with torch.no_grad(): |
|
lm_loss, code_vec, nl_vec = model(code_inputs, nl_inputs) |
|
eval_loss += lm_loss.mean().item() |
|
code_vecs.append(code_vec.cpu().numpy()) |
|
nl_vecs.append(nl_vec.cpu().numpy()) |
|
nb_eval_steps += 1 |
|
code_vecs = np.concatenate(code_vecs, 0) |
|
nl_vecs = np.concatenate(nl_vecs, 0) |
|
eval_loss = eval_loss / nb_eval_steps |
|
perplexity = torch.tensor(eval_loss) |
|
|
|
scores = np.matmul(nl_vecs, code_vecs.T) |
|
|
|
sort_ids = np.argsort(scores, axis=-1, kind='quicksort', order=None)[:, ::-1] |
|
indexs = [] |
|
urls = [] |
|
for example in eval_dataset.examples: |
|
indexs.append(example.idx) |
|
urls.append(example.url) |
|
with open(os.path.join(args.output_dir, "predictions.jsonl"), 'w') as f: |
|
for index, url, sort_id in zip(indexs, urls, sort_ids): |
|
js = {} |
|
js['url'] = url |
|
js['answers'] = [] |
|
for idx in sort_id[:100]: |
|
js['answers'].append(indexs[int(idx)]) |
|
f.write(json.dumps(js) + '\n') |
|
|
|
|
|
def main(): |
|
parser = argparse.ArgumentParser() |
|
|
|
|
|
parser.add_argument("--output_dir", default=None, type=str, required=True, |
|
help="The output directory where the model predictions and checkpoints will be written.") |
|
|
|
|
|
parser.add_argument("--train_data_file", default=None, type=str, |
|
help="The input training data file (a text file).") |
|
parser.add_argument("--eval_data_file", default=None, type=str, |
|
help="An optional input evaluation data file to evaluate the perplexity on (a text file).") |
|
parser.add_argument("--test_data_file", default=None, type=str, |
|
help="An optional input evaluation data file to evaluate the perplexity on (a text file).") |
|
|
|
parser.add_argument("--model_type", default="bert", type=str, |
|
help="The model architecture to be fine-tuned.") |
|
parser.add_argument("--model_name_or_path", default=None, type=str, |
|
help="The model checkpoint for weights initialization.") |
|
|
|
parser.add_argument("--mlm", action='store_true', |
|
help="Train with masked-language modeling loss instead of language modeling.") |
|
parser.add_argument("--mlm_probability", type=float, default=0.15, |
|
help="Ratio of tokens to mask for masked language modeling loss") |
|
|
|
parser.add_argument("--config_name", default="", type=str, |
|
help="Optional pretrained config name or path if not the same as model_name_or_path") |
|
parser.add_argument("--tokenizer_name", default="", type=str, |
|
help="Optional pretrained tokenizer name or path if not the same as model_name_or_path") |
|
parser.add_argument("--cache_dir", default="", type=str, |
|
help="Optional directory to store the pre-trained models downloaded from s3 (instread of the default one)") |
|
parser.add_argument("--block_size", default=-1, type=int, |
|
help="Optional input sequence length after tokenization." |
|
"The training dataset will be truncated in block of this size for training." |
|
"Default to the model max input length for single sentence inputs (take into account special tokens).") |
|
parser.add_argument("--do_train", action='store_true', |
|
help="Whether to run training.") |
|
parser.add_argument("--do_eval", action='store_true', |
|
help="Whether to run eval on the dev set.") |
|
parser.add_argument("--do_test", action='store_true', |
|
help="Whether to run eval on the dev set.") |
|
parser.add_argument("--evaluate_during_training", action='store_true', |
|
help="Run evaluation during training at each logging step.") |
|
parser.add_argument("--do_lower_case", action='store_true', |
|
help="Set this flag if you are using an uncased model.") |
|
|
|
parser.add_argument("--train_batch_size", default=4, type=int, |
|
help="Batch size per GPU/CPU for training.") |
|
parser.add_argument("--eval_batch_size", default=4, type=int, |
|
help="Batch size per GPU/CPU for evaluation.") |
|
parser.add_argument('--gradient_accumulation_steps', type=int, default=1, |
|
help="Number of updates steps to accumulate before performing a backward/update pass.") |
|
parser.add_argument("--learning_rate", default=5e-5, type=float, |
|
help="The initial learning rate for Adam.") |
|
parser.add_argument("--weight_decay", default=0.0, type=float, |
|
help="Weight deay if we apply some.") |
|
parser.add_argument("--adam_epsilon", default=1e-8, type=float, |
|
help="Epsilon for Adam optimizer.") |
|
parser.add_argument("--max_grad_norm", default=1.0, type=float, |
|
help="Max gradient norm.") |
|
parser.add_argument("--num_train_epochs", default=1.0, type=float, |
|
help="Total number of training epochs to perform.") |
|
parser.add_argument("--max_steps", default=-1, type=int, |
|
help="If > 0: set total number of training steps to perform. Override num_train_epochs.") |
|
parser.add_argument("--warmup_steps", default=0, type=int, |
|
help="Linear warmup over warmup_steps.") |
|
|
|
parser.add_argument('--logging_steps', type=int, default=50, |
|
help="Log every X updates steps.") |
|
parser.add_argument('--save_steps', type=int, default=50, |
|
help="Save checkpoint every X updates steps.") |
|
parser.add_argument('--save_total_limit', type=int, default=None, |
|
help='Limit the total amount of checkpoints, delete the older checkpoints in the output_dir, does not delete by default') |
|
parser.add_argument("--eval_all_checkpoints", action='store_true', |
|
help="Evaluate all checkpoints starting with the same prefix as model_name_or_path ending and ending with step number") |
|
parser.add_argument("--no_cuda", action='store_true', |
|
help="Avoid using CUDA when available") |
|
parser.add_argument('--overwrite_output_dir', action='store_true', |
|
help="Overwrite the content of the output directory") |
|
parser.add_argument('--overwrite_cache', action='store_true', |
|
help="Overwrite the cached training and evaluation sets") |
|
parser.add_argument('--seed', type=int, default=42, |
|
help="random seed for initialization") |
|
parser.add_argument('--epoch', type=int, default=42, |
|
help="random seed for initialization") |
|
parser.add_argument('--fp16', action='store_true', |
|
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit") |
|
parser.add_argument('--fp16_opt_level', type=str, default='O1', |
|
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." |
|
"See details at https://nvidia.github.io/apex/amp.html") |
|
parser.add_argument("--local_rank", type=int, default=-1, |
|
help="For distributed training: local_rank") |
|
parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.") |
|
parser.add_argument('--server_port', type=str, default='', help="For distant debugging.") |
|
|
|
args = parser.parse_args() |
|
|
|
|
|
if args.server_ip and args.server_port: |
|
|
|
import ptvsd |
|
print("Waiting for debugger attach") |
|
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) |
|
ptvsd.wait_for_attach() |
|
|
|
|
|
if args.local_rank == -1 or args.no_cuda: |
|
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") |
|
args.n_gpu = torch.cuda.device_count() |
|
else: |
|
torch.cuda.set_device(args.local_rank) |
|
device = torch.device("cuda", args.local_rank) |
|
torch.distributed.init_process_group(backend='nccl') |
|
args.n_gpu = 1 |
|
args.device = device |
|
args.per_gpu_train_batch_size = args.train_batch_size |
|
args.per_gpu_eval_batch_size = args.eval_batch_size |
|
|
|
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', |
|
datefmt='%m/%d/%Y %H:%M:%S', |
|
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN) |
|
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", |
|
args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16) |
|
|
|
|
|
set_seed(args.seed) |
|
|
|
|
|
if args.local_rank not in [-1, 0]: |
|
torch.distributed.barrier() |
|
|
|
args.start_epoch = 0 |
|
args.start_step = 0 |
|
checkpoint_last = os.path.join(args.output_dir, 'checkpoint-last') |
|
if os.path.exists(checkpoint_last) and os.listdir(checkpoint_last): |
|
args.model_name_or_path = os.path.join(checkpoint_last, 'pytorch_model.bin') |
|
args.config_name = os.path.join(checkpoint_last, 'config.json') |
|
idx_file = os.path.join(checkpoint_last, 'idx_file.txt') |
|
with open(idx_file, encoding='utf-8') as idxf: |
|
args.start_epoch = int(idxf.readlines()[0].strip()) + 1 |
|
|
|
step_file = os.path.join(checkpoint_last, 'step_file.txt') |
|
if os.path.exists(step_file): |
|
with open(step_file, encoding='utf-8') as stepf: |
|
args.start_step = int(stepf.readlines()[0].strip()) |
|
|
|
logger.info("reload model from {}, resume from {} epoch".format(checkpoint_last, args.start_epoch)) |
|
|
|
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] |
|
config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path, |
|
cache_dir=args.cache_dir if args.cache_dir else None) |
|
config.num_labels = 1 |
|
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name, |
|
do_lower_case=args.do_lower_case, |
|
cache_dir=args.cache_dir if args.cache_dir else None) |
|
if args.block_size <= 0: |
|
args.block_size = tokenizer.max_len_single_sentence |
|
args.block_size = min(args.block_size, tokenizer.max_len_single_sentence) |
|
if args.model_name_or_path: |
|
model = model_class.from_pretrained(args.model_name_or_path, |
|
config=config, |
|
cache_dir=args.cache_dir if args.cache_dir else None) |
|
else: |
|
model = model_class(config) |
|
|
|
model = Model(model, config, tokenizer, args) |
|
if args.local_rank == 0: |
|
torch.distributed.barrier() |
|
|
|
logger.info("Training/evaluation parameters %s", args) |
|
|
|
|
|
if args.do_train: |
|
if args.local_rank not in [-1, 0]: |
|
torch.distributed.barrier() |
|
|
|
train_dataset = TextDataset(tokenizer, args, args.train_data_file) |
|
|
|
if args.local_rank == 0: |
|
torch.distributed.barrier() |
|
|
|
train(args, train_dataset, model, tokenizer) |
|
|
|
|
|
results = {} |
|
if args.do_eval and args.local_rank in [-1, 0]: |
|
checkpoint_prefix = 'epoch_2/subject_model.pth' |
|
output_dir = os.path.join(args.output_dir, '{}'.format(checkpoint_prefix)) |
|
model.load_state_dict(torch.load(output_dir)) |
|
model.to(args.device) |
|
result = evaluate(args, model, tokenizer) |
|
logger.info("***** Eval results *****") |
|
for key in sorted(result.keys()): |
|
logger.info(" %s = %s", key, str(round(result[key], 4))) |
|
|
|
if args.do_test and args.local_rank in [-1, 0]: |
|
checkpoint_prefix = 'epoch_2/subject_model.pth' |
|
output_dir = os.path.join(args.output_dir, '{}'.format(checkpoint_prefix)) |
|
model.load_state_dict(torch.load(output_dir)) |
|
model.to(args.device) |
|
test(args, model, tokenizer) |
|
|
|
return results |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|
|
|
|
|