metadata
license: mit
模型训练过程汇总(持续更新中)
本仓库按照模型类别和名称进行组织,具体结构如下:
- 一级目录:代表不同的模型类别。
- 二级目录:在每个模型类别下,进一步细分为具体的模型名称。
- 三级目录:在每个模型名称下,包含以下三个部分:
code
:存放与模型相关的代码和训练脚本。model
:收集的模型训练过程中的文件,包括每个epoch的.pth
模型权重文件、.npy
训练中收集的embedding,以及index.json
文件,后者包含了embedding对应的数据集中数据点的索引列表。dataset
:提供模型训练使用的数据集,可以是解压后的文件夹形式,或者压缩包形式dataset.zip
。
下表汇总了所有收集的模型训练过程信息:
模型名称 | 模型简介 | 模型类型 | Epoch数量 | 数据集信息 |
---|---|---|---|---|
Clone-detection-BigCloneBench | 基于大规模代码克隆基准数据集的代码克隆检测模型,任务是进行二元分类(0/1),其中1代表语义等价,0代表其他情况。 | 代码克隆检测 | 待上传 | BigCloneBench数据集 |
Clone-detection-POJ-104 | 基于POJ-104数据集的代码克隆检测模型,任务是识别不同编程题目中相似的代码实现,给定一段代码和一组候选代码,任务是返回具有相同语义的Top K个代码 | 代码克隆检测 | 待上传 | POJ-104编程题目数据集 |
CodeCompletion-token | 基于token级别的代码自动补全模型 | 代码补全 | 待上传 | Java代码token序列数据集 |
Defect-detection | 代码缺陷检测模型,通过分析代码来识别潜在的缺陷和错误(进行二元分类(0/1)) | 代码缺陷检测 | 待上传 | 包含缺陷标注的C语言代码数据集 |
code-refinement | 代码优化模型 | 代码优化/重构 | 待上传 | 代码优化前后对数据集(C语言) |
code-to-text | 代码到自然语言的转换模型 | 代码注释生成 | 待上传 | 多语言代码-文本对数据集 |
NL-code-search-Adv | 高级自然语言代码搜索模型,通过计算自然语言查询与代码片段之间的相似性来实现代码搜索, | 代码搜索 | 待上传 | 自然语言-(python)代码对数据集 |
NL-code-search-WebQuery | 基于Web查询的代码搜索模型,该模型通过编码器处理代码和自然语言输入,并利用多层感知器(MLP)来计算相似性得分 | 代码搜索 | 待上传 | Web查询-代码对数据集(CodeSearchNet数据集和CoSQA数据集(python)) |
text-to-code | 自然语言到代码的生成模型 | 代码生成 | 待上传 | 文本描述-代码(c语言)对数据集 |
GraphMAE_QM9 | 在QM9数据集上训练的图掩码自编码器,通过对分子图中的原子的坐标以及类型进行预测实现自监督训练 | 图自编码器 | 待上传 | 分子属性预测数据集 |
AlexNet | 2012年获得ImageNet冠军的经典模型,首次证明了深度学习在图像识别上的强大能力。 | 图像分类 | 待补充 | CIFAR-10数据集 |
DenseNet | 每一层都直接与其他所有层相连,像搭积木一样层层堆叠,可以更好地学习图像特征。 | 图像分类 | 待补充 | CIFAR-10数据集 |
EfficientNet | 通过平衡网络的深度、宽度和图像分辨率,用更少的计算量达到更好的效果。 | 图像分类 | 待补充 | CIFAR-10数据集 |
GoogLeNet | 谷歌开发的模型,像多个眼睛同时看图片的不同部分,既省资源又准确。 | 图像分类 | 待补充 | CIFAR-10数据集 |
LeNet5 | 深度学习领域的开山之作,虽然简单但奠定了现代CNN的基础架构。 | 图像分类 | 待补充 | CIFAR-10数据集 |
MobileNetv1 | 专门为手机设计的轻量级模型,用特殊的卷积方式减少计算量。 | 图像分类 | 待补充 | CIFAR-10数据集 |
MobileNetv2 | MobileNet的升级版,增加了特征复用机制,性能更好。 | 图像分类 | 待补充 | CIFAR-10数据集 |
MobileNetv3 | 结合自动搜索技术的新版本,自动找到最适合手机的网络结构。 | 图像分类 | 待补充 | CIFAR-10数据集 |
ResNet | 通过特殊的"快捷连接"解决深层网络训练难的问题,可以训练超级深的网络。 | 图像分类 | 待补充 | CIFAR-10数据集 |
SENet | 为网络添加了"注意力机制",让模型能够关注图片中重要的部分。 | 图像分类 | 待补充 | CIFAR-10数据集 |
ShuffleNet | 通过巧妙地打乱和分组计算,实现了手机上的高效运行。 | 图像分类 | 待补充 | CIFAR-10数据集 |
ShuffleNetv2 | 在原版基础上优化设计,速度更快,效果更好。 | 图像分类 | 待补充 | CIFAR-10数据集 |
SwinTransformer | 把自然语言处理的先进技术用于图像,通过逐步关注图片不同区域来理解图像。 | 图像分类 | 待补充 | CIFAR-10数据集 |
VGG | 用统一的小型卷积核堆叠成深层网络,结构简单但效果好。 | 图像分类 | 待补充 | CIFAR-10数据集 |
ViT | 把图片切成小块后像读文章一样处理,是一种全新的图像处理方式。 | 图像分类 | 待补充 | CIFAR-10数据集 |
ZFNet | 通过可视化研究改进的AlexNet,帮助人们理解网络是如何"看"图片的。 | 图像分类 | 待补充 | CIFAR-10数据集 |