|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa). |
|
GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned |
|
using a masked language modeling (MLM) loss. |
|
""" |
|
|
|
from __future__ import absolute_import |
|
import os |
|
import sys |
|
import bleu |
|
import pickle |
|
import torch |
|
import json |
|
import random |
|
import logging |
|
import argparse |
|
import numpy as np |
|
from io import open |
|
from itertools import cycle |
|
import torch.nn as nn |
|
from model import Seq2Seq |
|
from tqdm import tqdm, trange |
|
from torch.utils.data import DataLoader, Dataset, SequentialSampler, RandomSampler,TensorDataset |
|
from torch.utils.data.distributed import DistributedSampler |
|
from transformers import (WEIGHTS_NAME, AdamW, get_linear_schedule_with_warmup, |
|
RobertaConfig, RobertaModel, RobertaTokenizer) |
|
MODEL_CLASSES = {'roberta': (RobertaConfig, RobertaModel, RobertaTokenizer)} |
|
|
|
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', |
|
datefmt = '%m/%d/%Y %H:%M:%S', |
|
level = logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
|
|
class Example(object): |
|
"""A single training/test example.""" |
|
def __init__(self, |
|
idx, |
|
source, |
|
target, |
|
): |
|
self.idx = idx |
|
self.source = source |
|
self.target = target |
|
|
|
def read_examples(filename): |
|
"""Read examples from filename.""" |
|
examples=[] |
|
with open(filename,encoding="utf-8") as f: |
|
for idx, line in enumerate(f): |
|
line=line.strip() |
|
js=json.loads(line) |
|
if 'idx' not in js: |
|
js['idx']=idx |
|
code=' '.join(js['code_tokens']).replace('\n',' ') |
|
code=' '.join(code.strip().split()) |
|
nl=' '.join(js['docstring_tokens']).replace('\n','') |
|
nl=' '.join(nl.strip().split()) |
|
examples.append( |
|
Example( |
|
idx = idx, |
|
source=code, |
|
target = nl, |
|
) |
|
) |
|
return examples |
|
|
|
|
|
class InputFeatures(object): |
|
"""A single training/test features for a example.""" |
|
def __init__(self, |
|
example_id, |
|
source_ids, |
|
target_ids, |
|
source_mask, |
|
target_mask, |
|
|
|
): |
|
self.example_id = example_id |
|
self.source_ids = source_ids |
|
self.target_ids = target_ids |
|
self.source_mask = source_mask |
|
self.target_mask = target_mask |
|
|
|
|
|
|
|
def convert_examples_to_features(examples, tokenizer, args,stage=None): |
|
features = [] |
|
for example_index, example in enumerate(examples): |
|
|
|
source_tokens = tokenizer.tokenize(example.source)[:args.max_source_length-2] |
|
source_tokens =[tokenizer.cls_token]+source_tokens+[tokenizer.sep_token] |
|
source_ids = tokenizer.convert_tokens_to_ids(source_tokens) |
|
source_mask = [1] * (len(source_tokens)) |
|
padding_length = args.max_source_length - len(source_ids) |
|
source_ids+=[tokenizer.pad_token_id]*padding_length |
|
source_mask+=[0]*padding_length |
|
|
|
|
|
if stage=="test": |
|
target_tokens = tokenizer.tokenize("None") |
|
else: |
|
target_tokens = tokenizer.tokenize(example.target)[:args.max_target_length-2] |
|
target_tokens = [tokenizer.cls_token]+target_tokens+[tokenizer.sep_token] |
|
target_ids = tokenizer.convert_tokens_to_ids(target_tokens) |
|
target_mask = [1] *len(target_ids) |
|
padding_length = args.max_target_length - len(target_ids) |
|
target_ids+=[tokenizer.pad_token_id]*padding_length |
|
target_mask+=[0]*padding_length |
|
|
|
if example_index < 5: |
|
if stage=='train': |
|
logger.info("*** Example ***") |
|
logger.info("idx: {}".format(example.idx)) |
|
|
|
logger.info("source_tokens: {}".format([x.replace('\u0120','_') for x in source_tokens])) |
|
logger.info("source_ids: {}".format(' '.join(map(str, source_ids)))) |
|
logger.info("source_mask: {}".format(' '.join(map(str, source_mask)))) |
|
|
|
logger.info("target_tokens: {}".format([x.replace('\u0120','_') for x in target_tokens])) |
|
logger.info("target_ids: {}".format(' '.join(map(str, target_ids)))) |
|
logger.info("target_mask: {}".format(' '.join(map(str, target_mask)))) |
|
|
|
features.append( |
|
InputFeatures( |
|
example_index, |
|
source_ids, |
|
target_ids, |
|
source_mask, |
|
target_mask, |
|
) |
|
) |
|
return features |
|
|
|
|
|
|
|
def set_seed(seed=42): |
|
random.seed(seed) |
|
os.environ['PYHTONHASHSEED'] = str(seed) |
|
np.random.seed(seed) |
|
torch.manual_seed(seed) |
|
torch.cuda.manual_seed(seed) |
|
torch.backends.cudnn.deterministic = True |
|
|
|
def main(): |
|
parser = argparse.ArgumentParser() |
|
|
|
|
|
parser.add_argument("--model_type", default=None, type=str, required=True, |
|
help="Model type: e.g. roberta") |
|
parser.add_argument("--model_name_or_path", default=None, type=str, required=True, |
|
help="Path to pre-trained model: e.g. roberta-base" ) |
|
parser.add_argument("--output_dir", default=None, type=str, required=True, |
|
help="The output directory where the model predictions and checkpoints will be written.") |
|
parser.add_argument("--load_model_path", default=None, type=str, |
|
help="Path to trained model: Should contain the .bin files" ) |
|
|
|
parser.add_argument("--train_filename", default=None, type=str, |
|
help="The train filename. Should contain the .jsonl files for this task.") |
|
parser.add_argument("--dev_filename", default=None, type=str, |
|
help="The dev filename. Should contain the .jsonl files for this task.") |
|
parser.add_argument("--test_filename", default=None, type=str, |
|
help="The test filename. Should contain the .jsonl files for this task.") |
|
|
|
parser.add_argument("--config_name", default="", type=str, |
|
help="Pretrained config name or path if not the same as model_name") |
|
parser.add_argument("--tokenizer_name", default="", type=str, |
|
help="Pretrained tokenizer name or path if not the same as model_name") |
|
parser.add_argument("--max_source_length", default=64, type=int, |
|
help="The maximum total source sequence length after tokenization. Sequences longer " |
|
"than this will be truncated, sequences shorter will be padded.") |
|
parser.add_argument("--max_target_length", default=32, type=int, |
|
help="The maximum total target sequence length after tokenization. Sequences longer " |
|
"than this will be truncated, sequences shorter will be padded.") |
|
|
|
parser.add_argument("--do_train", action='store_true', |
|
help="Whether to run training.") |
|
parser.add_argument("--do_eval", action='store_true', |
|
help="Whether to run eval on the dev set.") |
|
parser.add_argument("--do_test", action='store_true', |
|
help="Whether to run eval on the dev set.") |
|
parser.add_argument("--do_lower_case", action='store_true', |
|
help="Set this flag if you are using an uncased model.") |
|
parser.add_argument("--no_cuda", action='store_true', |
|
help="Avoid using CUDA when available") |
|
|
|
parser.add_argument("--train_batch_size", default=8, type=int, |
|
help="Batch size per GPU/CPU for training.") |
|
parser.add_argument("--eval_batch_size", default=8, type=int, |
|
help="Batch size per GPU/CPU for evaluation.") |
|
parser.add_argument('--gradient_accumulation_steps', type=int, default=1, |
|
help="Number of updates steps to accumulate before performing a backward/update pass.") |
|
parser.add_argument("--learning_rate", default=5e-5, type=float, |
|
help="The initial learning rate for Adam.") |
|
parser.add_argument("--beam_size", default=10, type=int, |
|
help="beam size for beam search") |
|
parser.add_argument("--weight_decay", default=0.0, type=float, |
|
help="Weight deay if we apply some.") |
|
parser.add_argument("--adam_epsilon", default=1e-8, type=float, |
|
help="Epsilon for Adam optimizer.") |
|
parser.add_argument("--max_grad_norm", default=1.0, type=float, |
|
help="Max gradient norm.") |
|
parser.add_argument("--num_train_epochs", default=3, type=int, |
|
help="Total number of training epochs to perform.") |
|
parser.add_argument("--max_steps", default=-1, type=int, |
|
help="If > 0: set total number of training steps to perform. Override num_train_epochs.") |
|
parser.add_argument("--eval_steps", default=-1, type=int, |
|
help="") |
|
parser.add_argument("--train_steps", default=-1, type=int, |
|
help="") |
|
parser.add_argument("--warmup_steps", default=0, type=int, |
|
help="Linear warmup over warmup_steps.") |
|
parser.add_argument("--local_rank", type=int, default=-1, |
|
help="For distributed training: local_rank") |
|
parser.add_argument('--seed', type=int, default=42, |
|
help="random seed for initialization") |
|
|
|
args = parser.parse_args() |
|
logger.info(args) |
|
|
|
|
|
if args.local_rank == -1 or args.no_cuda: |
|
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") |
|
args.n_gpu = torch.cuda.device_count() |
|
else: |
|
torch.cuda.set_device(args.local_rank) |
|
device = torch.device("cuda", args.local_rank) |
|
torch.distributed.init_process_group(backend='nccl') |
|
args.n_gpu = 1 |
|
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s", |
|
args.local_rank, device, args.n_gpu, bool(args.local_rank != -1)) |
|
args.device = device |
|
|
|
set_seed(args.seed) |
|
|
|
if os.path.exists(args.output_dir) is False: |
|
os.makedirs(args.output_dir) |
|
|
|
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] |
|
config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path) |
|
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,do_lower_case=args.do_lower_case) |
|
|
|
|
|
encoder = model_class.from_pretrained(args.model_name_or_path,config=config) |
|
decoder_layer = nn.TransformerDecoderLayer(d_model=config.hidden_size, nhead=config.num_attention_heads) |
|
decoder = nn.TransformerDecoder(decoder_layer, num_layers=6) |
|
model=Seq2Seq(encoder=encoder,decoder=decoder,config=config, |
|
beam_size=args.beam_size,max_length=args.max_target_length, |
|
sos_id=tokenizer.cls_token_id,eos_id=tokenizer.sep_token_id) |
|
if args.load_model_path is not None: |
|
logger.info("reload model from {}".format(args.load_model_path)) |
|
model.load_state_dict(torch.load(args.load_model_path)) |
|
|
|
model.to(device) |
|
if args.local_rank != -1: |
|
|
|
try: |
|
from apex.parallel import DistributedDataParallel as DDP |
|
except ImportError: |
|
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.") |
|
|
|
model = DDP(model) |
|
elif args.n_gpu > 1: |
|
|
|
model = torch.nn.DataParallel(model) |
|
|
|
if args.do_train: |
|
|
|
train_examples = read_examples(args.train_filename) |
|
train_features = convert_examples_to_features(train_examples, tokenizer,args,stage='train') |
|
all_source_ids = torch.tensor([f.source_ids for f in train_features], dtype=torch.long) |
|
all_source_mask = torch.tensor([f.source_mask for f in train_features], dtype=torch.long) |
|
all_target_ids = torch.tensor([f.target_ids for f in train_features], dtype=torch.long) |
|
all_target_mask = torch.tensor([f.target_mask for f in train_features], dtype=torch.long) |
|
train_data = TensorDataset(all_source_ids,all_source_mask,all_target_ids,all_target_mask) |
|
|
|
if args.local_rank == -1: |
|
train_sampler = RandomSampler(train_data) |
|
else: |
|
train_sampler = DistributedSampler(train_data) |
|
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size//args.gradient_accumulation_steps) |
|
|
|
num_train_optimization_steps = args.train_steps |
|
|
|
|
|
no_decay = ['bias', 'LayerNorm.weight'] |
|
optimizer_grouped_parameters = [ |
|
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], |
|
'weight_decay': args.weight_decay}, |
|
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} |
|
] |
|
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs |
|
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) |
|
scheduler = get_linear_schedule_with_warmup(optimizer, |
|
num_warmup_steps=int(t_total*0.1), |
|
num_training_steps=t_total) |
|
|
|
|
|
logger.info("***** Running training *****") |
|
logger.info(" Num examples = %d", len(train_examples)) |
|
logger.info(" Batch size = %d", args.train_batch_size) |
|
logger.info(" Num epoch = %d", args.num_train_epochs) |
|
|
|
|
|
model.train() |
|
dev_dataset={} |
|
nb_tr_examples, nb_tr_steps,tr_loss,global_step,best_bleu,best_loss = 0, 0,0,0,0,1e6 |
|
for epoch in range(args.num_train_epochs): |
|
bar = tqdm(train_dataloader,total=len(train_dataloader)) |
|
for batch in bar: |
|
batch = tuple(t.to(device) for t in batch) |
|
source_ids,source_mask,target_ids,target_mask = batch |
|
loss,_,_ = model(source_ids=source_ids,source_mask=source_mask,target_ids=target_ids,target_mask=target_mask) |
|
|
|
if args.n_gpu > 1: |
|
loss = loss.mean() |
|
if args.gradient_accumulation_steps > 1: |
|
loss = loss / args.gradient_accumulation_steps |
|
tr_loss += loss.item() |
|
train_loss=round(tr_loss*args.gradient_accumulation_steps/(nb_tr_steps+1),4) |
|
bar.set_description("epoch {} loss {}".format(epoch,train_loss)) |
|
nb_tr_examples += source_ids.size(0) |
|
nb_tr_steps += 1 |
|
loss.backward() |
|
|
|
if (nb_tr_steps + 1) % args.gradient_accumulation_steps == 0: |
|
|
|
optimizer.step() |
|
optimizer.zero_grad() |
|
scheduler.step() |
|
global_step += 1 |
|
|
|
if args.do_eval: |
|
|
|
tr_loss = 0 |
|
nb_tr_examples, nb_tr_steps = 0, 0 |
|
eval_flag=False |
|
if 'dev_loss' in dev_dataset: |
|
eval_examples,eval_data=dev_dataset['dev_loss'] |
|
else: |
|
eval_examples = read_examples(args.dev_filename) |
|
eval_features = convert_examples_to_features(eval_examples, tokenizer, args,stage='dev') |
|
all_source_ids = torch.tensor([f.source_ids for f in eval_features], dtype=torch.long) |
|
all_source_mask = torch.tensor([f.source_mask for f in eval_features], dtype=torch.long) |
|
all_target_ids = torch.tensor([f.target_ids for f in eval_features], dtype=torch.long) |
|
all_target_mask = torch.tensor([f.target_mask for f in eval_features], dtype=torch.long) |
|
eval_data = TensorDataset(all_source_ids,all_source_mask,all_target_ids,all_target_mask) |
|
dev_dataset['dev_loss']=eval_examples,eval_data |
|
eval_sampler = SequentialSampler(eval_data) |
|
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size) |
|
|
|
logger.info("\n***** Running evaluation *****") |
|
logger.info(" Num examples = %d", len(eval_examples)) |
|
logger.info(" Batch size = %d", args.eval_batch_size) |
|
|
|
|
|
model.eval() |
|
eval_loss,tokens_num = 0,0 |
|
for batch in eval_dataloader: |
|
batch = tuple(t.to(device) for t in batch) |
|
source_ids,source_mask,target_ids,target_mask = batch |
|
|
|
with torch.no_grad(): |
|
_,loss,num = model(source_ids=source_ids,source_mask=source_mask, |
|
target_ids=target_ids,target_mask=target_mask) |
|
eval_loss += loss.sum().item() |
|
tokens_num += num.sum().item() |
|
|
|
model.train() |
|
eval_loss = eval_loss / tokens_num |
|
result = {'eval_ppl': round(np.exp(eval_loss),5), |
|
'global_step': global_step+1, |
|
'train_loss': round(train_loss,5)} |
|
for key in sorted(result.keys()): |
|
logger.info(" %s = %s", key, str(result[key])) |
|
logger.info(" "+"*"*20) |
|
|
|
|
|
last_output_dir = os.path.join(args.output_dir, 'checkpoint-last') |
|
if not os.path.exists(last_output_dir): |
|
os.makedirs(last_output_dir) |
|
model_to_save = model.module if hasattr(model, 'module') else model |
|
output_model_file = os.path.join(last_output_dir, "pytorch_model.bin") |
|
torch.save(model_to_save.state_dict(), output_model_file) |
|
if eval_loss<best_loss: |
|
logger.info(" Best ppl:%s",round(np.exp(eval_loss),5)) |
|
logger.info(" "+"*"*20) |
|
best_loss=eval_loss |
|
|
|
output_dir = os.path.join(args.output_dir, 'checkpoint-best-ppl') |
|
if not os.path.exists(output_dir): |
|
os.makedirs(output_dir) |
|
model_to_save = model.module if hasattr(model, 'module') else model |
|
output_model_file = os.path.join(output_dir, "pytorch_model.bin") |
|
torch.save(model_to_save.state_dict(), output_model_file) |
|
|
|
|
|
|
|
if 'dev_bleu' in dev_dataset: |
|
eval_examples,eval_data=dev_dataset['dev_bleu'] |
|
else: |
|
eval_examples = read_examples(args.dev_filename) |
|
eval_examples = random.sample(eval_examples,min(1000,len(eval_examples))) |
|
eval_features = convert_examples_to_features(eval_examples, tokenizer, args,stage='test') |
|
all_source_ids = torch.tensor([f.source_ids for f in eval_features], dtype=torch.long) |
|
all_source_mask = torch.tensor([f.source_mask for f in eval_features], dtype=torch.long) |
|
eval_data = TensorDataset(all_source_ids,all_source_mask) |
|
dev_dataset['dev_bleu']=eval_examples,eval_data |
|
|
|
|
|
|
|
eval_sampler = SequentialSampler(eval_data) |
|
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size) |
|
|
|
model.eval() |
|
p=[] |
|
for batch in eval_dataloader: |
|
batch = tuple(t.to(device) for t in batch) |
|
source_ids,source_mask= batch |
|
with torch.no_grad(): |
|
preds = model(source_ids=source_ids,source_mask=source_mask) |
|
for pred in preds: |
|
t=pred[0].cpu().numpy() |
|
t=list(t) |
|
if 0 in t: |
|
t=t[:t.index(0)] |
|
text = tokenizer.decode(t,clean_up_tokenization_spaces=False) |
|
p.append(text) |
|
model.train() |
|
predictions=[] |
|
with open(os.path.join(args.output_dir,"dev.output"),'w') as f, open(os.path.join(args.output_dir,"dev.gold"),'w') as f1: |
|
for ref,gold in zip(p,eval_examples): |
|
predictions.append(str(gold.idx)+'\t'+ref) |
|
f.write(str(gold.idx)+'\t'+ref+'\n') |
|
f1.write(str(gold.idx)+'\t'+gold.target+'\n') |
|
|
|
(goldMap, predictionMap) = bleu.computeMaps(predictions, os.path.join(args.output_dir, "dev.gold")) |
|
dev_bleu=round(bleu.bleuFromMaps(goldMap, predictionMap)[0],2) |
|
logger.info(" %s = %s "%("bleu-4",str(dev_bleu))) |
|
logger.info(" "+"*"*20) |
|
if dev_bleu>best_bleu: |
|
logger.info(" Best bleu:%s",dev_bleu) |
|
logger.info(" "+"*"*20) |
|
best_bleu=dev_bleu |
|
|
|
output_dir = os.path.join(args.output_dir, 'checkpoint-best-bleu') |
|
if not os.path.exists(output_dir): |
|
os.makedirs(output_dir) |
|
model_to_save = model.module if hasattr(model, 'module') else model |
|
output_model_file = os.path.join(output_dir, "pytorch_model.bin") |
|
torch.save(model_to_save.state_dict(), output_model_file) |
|
|
|
|
|
output_dir = os.path.join(args.output_dir, 'epoch_{}'.format(epoch + 1)) |
|
if not os.path.exists(output_dir): |
|
os.makedirs(output_dir) |
|
model_to_save = model.module if hasattr(model, 'module') else model |
|
ckpt_output_path = os.path.join(output_dir, 'subject_model.pth') |
|
logger.info("Saving model checkpoint to %s", ckpt_output_path) |
|
torch.save(model_to_save.state_dict(), ckpt_output_path) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if args.do_test: |
|
files=[] |
|
if args.dev_filename is not None: |
|
files.append(args.dev_filename) |
|
if args.test_filename is not None: |
|
files.append(args.test_filename) |
|
for idx,file in enumerate(files): |
|
logger.info("Test file: {}".format(file)) |
|
eval_examples = read_examples(file) |
|
eval_features = convert_examples_to_features(eval_examples, tokenizer, args,stage='test') |
|
all_source_ids = torch.tensor([f.source_ids for f in eval_features], dtype=torch.long) |
|
all_source_mask = torch.tensor([f.source_mask for f in eval_features], dtype=torch.long) |
|
eval_data = TensorDataset(all_source_ids,all_source_mask) |
|
|
|
|
|
eval_sampler = SequentialSampler(eval_data) |
|
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size) |
|
|
|
model.eval() |
|
p=[] |
|
for batch in tqdm(eval_dataloader,total=len(eval_dataloader)): |
|
batch = tuple(t.to(device) for t in batch) |
|
source_ids,source_mask= batch |
|
with torch.no_grad(): |
|
preds = model(source_ids=source_ids,source_mask=source_mask) |
|
for pred in preds: |
|
t=pred[0].cpu().numpy() |
|
t=list(t) |
|
if 0 in t: |
|
t=t[:t.index(0)] |
|
text = tokenizer.decode(t,clean_up_tokenization_spaces=False) |
|
p.append(text) |
|
model.train() |
|
predictions=[] |
|
with open(os.path.join(args.output_dir,"test_{}.output".format(str(idx))),'w') as f, open(os.path.join(args.output_dir,"test_{}.gold".format(str(idx))),'w') as f1: |
|
for ref,gold in zip(p,eval_examples): |
|
predictions.append(str(gold.idx)+'\t'+ref) |
|
f.write(str(gold.idx)+'\t'+ref+'\n') |
|
f1.write(str(gold.idx)+'\t'+gold.target+'\n') |
|
|
|
(goldMap, predictionMap) = bleu.computeMaps(predictions, os.path.join(args.output_dir, "test_{}.gold".format(idx))) |
|
dev_bleu=round(bleu.bleuFromMaps(goldMap, predictionMap)[0],2) |
|
logger.info(" %s = %s "%("bleu-4",str(dev_bleu))) |
|
logger.info(" "+"*"*20) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|
|
|
|
|