RRFRRF
init commit without .pth
dee113c
raw
history blame
9.17 kB
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
import torch
import torch.nn as nn
import torch
from torch.autograd import Variable
import copy
class Seq2Seq(nn.Module):
"""
Build Seqence-to-Sequence.
Parameters:
* `encoder`- encoder of seq2seq model. e.g. roberta
* `decoder`- decoder of seq2seq model. e.g. transformer
* `config`- configuration of encoder model.
* `beam_size`- beam size for beam search.
* `max_length`- max length of target for beam search.
* `sos_id`- start of symbol ids in target for beam search.
* `eos_id`- end of symbol ids in target for beam search.
"""
def __init__(self, encoder,decoder,config,beam_size=None,max_length=None,sos_id=None,eos_id=None):
super(Seq2Seq, self).__init__()
self.encoder = encoder
self.decoder=decoder
self.config=config
self.register_buffer("bias", torch.tril(torch.ones(2048, 2048)))
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.lsm = nn.LogSoftmax(dim=-1)
self.tie_weights()
self.beam_size=beam_size
self.max_length=max_length
self.sos_id=sos_id
self.eos_id=eos_id
def _tie_or_clone_weights(self, first_module, second_module):
""" Tie or clone module weights depending of weither we are using TorchScript or not
"""
if self.config.torchscript:
first_module.weight = nn.Parameter(second_module.weight.clone())
else:
first_module.weight = second_module.weight
def tie_weights(self):
""" Make sure we are sharing the input and output embeddings.
Export to TorchScript can't handle parameter sharing so we are cloning them instead.
"""
self._tie_or_clone_weights(self.lm_head,
self.encoder.embeddings.word_embeddings)
def forward(self, source_ids=None,source_mask=None,target_ids=None,target_mask=None,args=None):
outputs = self.encoder(source_ids, attention_mask=source_mask)
encoder_output = outputs[0].permute([1,0,2]).contiguous()
if target_ids is not None:
attn_mask=-1e4 *(1-self.bias[:target_ids.shape[1],:target_ids.shape[1]])
tgt_embeddings = self.encoder.embeddings(target_ids).permute([1,0,2]).contiguous()
out = self.decoder(tgt_embeddings,encoder_output,tgt_mask=attn_mask,memory_key_padding_mask=(1-source_mask).bool())
hidden_states = torch.tanh(self.dense(out)).permute([1,0,2]).contiguous()
lm_logits = self.lm_head(hidden_states)
# Shift so that tokens < n predict n
active_loss = target_mask[..., 1:].ne(0).view(-1) == 1
shift_logits = lm_logits[..., :-1, :].contiguous()
shift_labels = target_ids[..., 1:].contiguous()
# Flatten the tokens
loss_fct = nn.CrossEntropyLoss(ignore_index=-1)
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1))[active_loss],
shift_labels.view(-1)[active_loss])
outputs = loss,loss*active_loss.sum(),active_loss.sum()
return outputs
else:
#Predict
preds=[]
zero=torch.cuda.LongTensor(1).fill_(0)
for i in range(source_ids.shape[0]):
context=encoder_output[:,i:i+1]
context_mask=source_mask[i:i+1,:]
beam = Beam(self.beam_size,self.sos_id,self.eos_id)
input_ids=beam.getCurrentState()
context=context.repeat(1, self.beam_size,1)
context_mask=context_mask.repeat(self.beam_size,1)
for _ in range(self.max_length):
if beam.done():
break
attn_mask=-1e4 *(1-self.bias[:input_ids.shape[1],:input_ids.shape[1]])
tgt_embeddings = self.encoder.embeddings(input_ids).permute([1,0,2]).contiguous()
out = self.decoder(tgt_embeddings,context,tgt_mask=attn_mask,memory_key_padding_mask=(1-context_mask).bool())
out = torch.tanh(self.dense(out))
hidden_states=out.permute([1,0,2]).contiguous()[:,-1,:]
out = self.lsm(self.lm_head(hidden_states)).data
beam.advance(out)
input_ids.data.copy_(input_ids.data.index_select(0, beam.getCurrentOrigin()))
input_ids=torch.cat((input_ids,beam.getCurrentState()),-1)
hyp= beam.getHyp(beam.getFinal())
pred=beam.buildTargetTokens(hyp)[:self.beam_size]
pred=[torch.cat([x.view(-1) for x in p]+[zero]*(self.max_length-len(p))).view(1,-1) for p in pred]
preds.append(torch.cat(pred,0).unsqueeze(0))
preds=torch.cat(preds,0)
return preds
def feature(self, source_ids,source_mask):
outputs = self.encoder(source_ids, attention_mask=source_mask)
return outputs.pooler_output
class Beam(object):
def __init__(self, size,sos,eos):
self.size = size
self.tt = torch.cuda
# The score for each translation on the beam.
self.scores = self.tt.FloatTensor(size).zero_()
# The backpointers at each time-step.
self.prevKs = []
# The outputs at each time-step.
self.nextYs = [self.tt.LongTensor(size)
.fill_(0)]
self.nextYs[0][0] = sos
# Has EOS topped the beam yet.
self._eos = eos
self.eosTop = False
# Time and k pair for finished.
self.finished = []
def getCurrentState(self):
"Get the outputs for the current timestep."
batch = self.tt.LongTensor(self.nextYs[-1]).view(-1, 1)
return batch
def getCurrentOrigin(self):
"Get the backpointers for the current timestep."
return self.prevKs[-1]
def advance(self, wordLk):
"""
Given prob over words for every last beam `wordLk` and attention
`attnOut`: Compute and update the beam search.
Parameters:
* `wordLk`- probs of advancing from the last step (K x words)
* `attnOut`- attention at the last step
Returns: True if beam search is complete.
"""
numWords = wordLk.size(1)
# Sum the previous scores.
if len(self.prevKs) > 0:
beamLk = wordLk + self.scores.unsqueeze(1).expand_as(wordLk)
# Don't let EOS have children.
for i in range(self.nextYs[-1].size(0)):
if self.nextYs[-1][i] == self._eos:
beamLk[i] = -1e20
else:
beamLk = wordLk[0]
flatBeamLk = beamLk.view(-1)
bestScores, bestScoresId = flatBeamLk.topk(self.size, 0, True, True)
self.scores = bestScores
# bestScoresId is flattened beam x word array, so calculate which
# word and beam each score came from
prevK = bestScoresId // numWords
self.prevKs.append(prevK)
self.nextYs.append((bestScoresId - prevK * numWords))
for i in range(self.nextYs[-1].size(0)):
if self.nextYs[-1][i] == self._eos:
s = self.scores[i]
self.finished.append((s, len(self.nextYs) - 1, i))
# End condition is when top-of-beam is EOS and no global score.
if self.nextYs[-1][0] == self._eos:
self.eosTop = True
def done(self):
return self.eosTop and len(self.finished) >=self.size
def getFinal(self):
if len(self.finished) == 0:
self.finished.append((self.scores[0], len(self.nextYs) - 1, 0))
self.finished.sort(key=lambda a: -a[0])
if len(self.finished) != self.size:
unfinished=[]
for i in range(self.nextYs[-1].size(0)):
if self.nextYs[-1][i] != self._eos:
s = self.scores[i]
unfinished.append((s, len(self.nextYs) - 1, i))
unfinished.sort(key=lambda a: -a[0])
self.finished+=unfinished[:self.size-len(self.finished)]
return self.finished[:self.size]
def getHyp(self, beam_res):
"""
Walk back to construct the full hypothesis.
"""
hyps=[]
for _,timestep, k in beam_res:
hyp = []
for j in range(len(self.prevKs[:timestep]) - 1, -1, -1):
hyp.append(self.nextYs[j+1][k])
k = self.prevKs[j][k]
hyps.append(hyp[::-1])
return hyps
def buildTargetTokens(self, preds):
sentence=[]
for pred in preds:
tokens = []
for tok in pred:
if tok==self._eos:
break
tokens.append(tok)
sentence.append(tokens)
return sentence