ttvnet / code /prepare_QM9_dataset.py
HUANGYIFEI's picture
Add files using upload-large-folder tool
e3d777b verified
raw
history blame
1.74 kB
import argparse
import os
import time
from dgl.data import QM9Dataset
from dgl.dataloading import GraphDataLoader
from rdkit import Chem
from rdkit import RDLogger;
from torch.utils.data import Dataset
import torch.nn.functional as F
from tqdm import tqdm
import ast
from QM9_dataset_class import PreprocessedQM9Dataset
RDLogger.DisableLog('rdApp.*')
import torch
import torch.nn as nn
import torch.optim as optim
QM9_label_keys = ['mu','alpha','homo','lumo','gap','r2','zpve','U0','U','H','G','Cv']
def prepare_main(label_keys=None, cutoff=5.0,save_path="dataset"):
assert save_path !="","save_path shouldn't be empty"
if label_keys is None:
raise ValueError('label_keys cannot be None')
for label_key in label_keys:
if label_key not in QM9_label_keys:
raise ValueError('label_key must be in QM9_label_keys,refer:https://docs.dgl.ai/en/0.8.x/generated/dgl.data.QM9Dataset.html')
dataset = QM9Dataset(label_keys=label_keys, cutoff=5.0)
dataset_processed = PreprocessedQM9Dataset(dataset)
print("Store processed QM9 dataset:",save_path)
dataset_processed.save_dataset("dataset")
return dataset_processed
def main():
parser = argparse.ArgumentParser(description="Prepare QM9 dataset")
parser.add_argument('--label_keys', nargs='+', help="label keys in QM9 dataset,like 'mu' 'gap'....")
parser.add_argument('--cutoff', type=float, default=5.0, help="cutoff for atom number")
parser.add_argument('--save_path', type=str, default="dataset", help="processed_dataset save path")
args = parser.parse_args()
prepare_main(label_keys=args.label_keys, cutoff=args.cutoff)
if __name__ == '__main__':
main()