RRFRRF
add some cv models and update readme.md
bdbd148
raw
history blame
4.98 kB
'''
MobileNetv1 in PyTorch.
论文: "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications"
参考: https://arxiv.org/abs/1704.04861
主要特点:
1. 使用深度可分离卷积(Depthwise Separable Convolution)减少参数量和计算量
2. 引入宽度乘子(Width Multiplier)和分辨率乘子(Resolution Multiplier)进一步压缩模型
3. 适用于移动设备和嵌入式设备的轻量级CNN架构
'''
import torch
import torch.nn as nn
class Block(nn.Module):
'''深度可分离卷积块 (Depthwise Separable Convolution Block)
包含:
1. 深度卷积(Depthwise Conv): 对每个通道单独进行空间卷积
2. 逐点卷积(Pointwise Conv): 1x1卷积实现通道混合
Args:
in_channels: 输入通道数
out_channels: 输出通道数
stride: 卷积步长
'''
def __init__(self, in_channels, out_channels, stride=1):
super(Block, self).__init__()
# 深度卷积 - 每个通道单独进行3x3卷积
self.conv1 = nn.Conv2d(
in_channels=in_channels,
out_channels=in_channels,
kernel_size=3,
stride=stride,
padding=1,
groups=in_channels, # groups=in_channels 即为深度可分离卷积
bias=False
)
self.bn1 = nn.BatchNorm2d(in_channels)
self.relu1 = nn.ReLU(inplace=True)
# 逐点卷积 - 1x1卷积用于通道混合
self.conv2 = nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=1,
stride=1,
padding=0,
bias=False
)
self.bn2 = nn.BatchNorm2d(out_channels)
self.relu2 = nn.ReLU(inplace=True)
def forward(self, x):
# 深度卷积
x = self.conv1(x)
x = self.bn1(x)
x = self.relu1(x)
# 逐点卷积
x = self.conv2(x)
x = self.bn2(x)
x = self.relu2(x)
return x
class MobileNet(nn.Module):
'''MobileNet v1网络
Args:
num_classes: 分类数量
alpha: 宽度乘子,用于控制网络宽度(默认1.0)
beta: 分辨率乘子,用于控制输入分辨率(默认1.0)
init_weights: 是否初始化权重
'''
# 网络配置: (输出通道数, 步长),步长默认为1
cfg = [64, (128,2), 128, (256,2), 256, (512,2),
512, 512, 512, 512, 512, (1024,2), 1024]
def __init__(self, num_classes=10, alpha=1.0, beta=1.0, init_weights=True):
super(MobileNet, self).__init__()
# 第一层标准卷积
self.conv1 = nn.Sequential(
nn.Conv2d(3, 32, kernel_size=3, stride=1, bias=False),
nn.BatchNorm2d(32),
nn.ReLU(inplace=True)
)
# 深度可分离卷积层
self.layers = self._make_layers(in_channels=32)
# 全局平均池化和分类器
self.avg = nn.AdaptiveAvgPool2d(1) # 自适应平均池化,输出大小为1x1
self.linear = nn.Linear(1024, num_classes)
# 初始化权重
if init_weights:
self._initialize_weights()
def _make_layers(self, in_channels):
'''构建深度可分离卷积层
Args:
in_channels: 输入通道数
'''
layers = []
for x in self.cfg:
out_channels = x if isinstance(x, int) else x[0]
stride = 1 if isinstance(x, int) else x[1]
layers.append(Block(in_channels, out_channels, stride))
in_channels = out_channels
return nn.Sequential(*layers)
def forward(self, x):
# 标准卷积
x = self.conv1(x)
# 深度可分离卷积层
x = self.layers(x)
# 全局平均池化和分类器
x = self.avg(x)
x = x.view(x.size(0), -1)
x = self.linear(x)
return x
def _initialize_weights(self):
'''初始化模型权重'''
for m in self.modules():
if isinstance(m, nn.Conv2d):
# 使用kaiming初始化卷积层
nn.init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.BatchNorm2d):
# 初始化BN层
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Linear):
# 初始化全连接层
nn.init.normal_(m.weight, 0, 0.01)
nn.init.zeros_(m.bias)
def test():
"""测试函数"""
net = MobileNet()
x = torch.randn(2, 3, 32, 32)
y = net(x)
print(y.size())
# 打印模型结构
from torchinfo import summary
device = 'cuda' if torch.cuda.is_available() else 'cpu'
net = net.to(device)
summary(net, (2, 3, 32, 32))
if __name__ == '__main__':
test()