|
''' |
|
MobileNetV3 in PyTorch. |
|
|
|
论文: "Searching for MobileNetV3" |
|
参考: https://arxiv.org/abs/1905.02244 |
|
|
|
主要特点: |
|
1. 引入基于NAS的网络架构搜索 |
|
2. 使用改进的SE注意力机块 |
|
3. 使用h-swish激活函数 |
|
4. 重新设计了网络的最后几层 |
|
5. 提供了Large和Small两个版本 |
|
''' |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
def get_activation(name): |
|
'''获取激活函数 |
|
|
|
Args: |
|
name: 激活函数名称 ('relu' 或 'hardswish') |
|
''' |
|
if name == 'relu': |
|
return nn.ReLU(inplace=True) |
|
elif name == 'hardswish': |
|
return nn.Hardswish(inplace=True) |
|
else: |
|
raise NotImplementedError |
|
|
|
|
|
class SEModule(nn.Module): |
|
'''Squeeze-and-Excitation模块 |
|
|
|
通过全局平均池化和两层全连接网络学习通道注意力权重 |
|
|
|
Args: |
|
channel: 输入通道数 |
|
reduction: 降维比例 |
|
''' |
|
def __init__(self, channel, reduction=4): |
|
super(SEModule, self).__init__() |
|
self.avg_pool = nn.AdaptiveAvgPool2d(1) |
|
self.fc = nn.Sequential( |
|
nn.Linear(channel, channel // reduction, bias=False), |
|
nn.ReLU(inplace=True), |
|
nn.Linear(channel // reduction, channel, bias=False), |
|
nn.Hardsigmoid(inplace=True) |
|
) |
|
|
|
def forward(self, x): |
|
b, c, _, _ = x.size() |
|
y = self.avg_pool(x).view(b, c) |
|
y = self.fc(y).view(b, c, 1, 1) |
|
return x * y.expand_as(x) |
|
|
|
|
|
class Bottleneck(nn.Module): |
|
'''MobileNetV3 Bottleneck |
|
|
|
包含: |
|
1. Expansion layer (1x1 conv) |
|
2. Depthwise layer (3x3 or 5x5 depthwise conv) |
|
3. SE module (optional) |
|
4. Projection layer (1x1 conv) |
|
|
|
Args: |
|
in_channels: 输入通道数 |
|
exp_channels: 扩展层通道数 |
|
out_channels: 输出通道数 |
|
kernel_size: 深度卷积核大小 |
|
stride: 步长 |
|
use_SE: 是否使用SE模块 |
|
activation: 激活函数类型 |
|
use_residual: 是否使用残差连接 |
|
''' |
|
def __init__(self, in_channels, exp_channels, out_channels, kernel_size, |
|
stride, use_SE, activation, use_residual=True): |
|
super(Bottleneck, self).__init__() |
|
self.use_residual = use_residual and stride == 1 and in_channels == out_channels |
|
padding = (kernel_size - 1) // 2 |
|
|
|
layers = [] |
|
|
|
if exp_channels != in_channels: |
|
layers.extend([ |
|
nn.Conv2d(in_channels, exp_channels, 1, bias=False), |
|
nn.BatchNorm2d(exp_channels), |
|
get_activation(activation) |
|
]) |
|
|
|
|
|
layers.extend([ |
|
nn.Conv2d( |
|
exp_channels, exp_channels, kernel_size, |
|
stride, padding, groups=exp_channels, bias=False |
|
), |
|
nn.BatchNorm2d(exp_channels), |
|
get_activation(activation) |
|
]) |
|
|
|
|
|
if use_SE: |
|
layers.append(SEModule(exp_channels)) |
|
|
|
|
|
layers.extend([ |
|
nn.Conv2d(exp_channels, out_channels, 1, bias=False), |
|
nn.BatchNorm2d(out_channels) |
|
]) |
|
|
|
self.conv = nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
if self.use_residual: |
|
return x + self.conv(x) |
|
else: |
|
return self.conv(x) |
|
|
|
|
|
class MobileNetV3(nn.Module): |
|
'''MobileNetV3网络 |
|
|
|
Args: |
|
num_classes: 分类数量 |
|
mode: 'large' 或 'small',选择网络版本 |
|
''' |
|
def __init__(self, num_classes=10, mode='small'): |
|
super(MobileNetV3, self).__init__() |
|
|
|
if mode == 'large': |
|
|
|
self.config = [ |
|
|
|
[3, 16, 16, False, 'relu', 1], |
|
[3, 64, 24, False, 'relu', 2], |
|
[3, 72, 24, False, 'relu', 1], |
|
[5, 72, 40, True, 'relu', 2], |
|
[5, 120, 40, True, 'relu', 1], |
|
[5, 120, 40, True, 'relu', 1], |
|
[3, 240, 80, False, 'hardswish', 2], |
|
[3, 200, 80, False, 'hardswish', 1], |
|
[3, 184, 80, False, 'hardswish', 1], |
|
[3, 184, 80, False, 'hardswish', 1], |
|
[3, 480, 112, True, 'hardswish', 1], |
|
[3, 672, 112, True, 'hardswish', 1], |
|
[5, 672, 160, True, 'hardswish', 2], |
|
[5, 960, 160, True, 'hardswish', 1], |
|
[5, 960, 160, True, 'hardswish', 1], |
|
] |
|
init_conv_out = 16 |
|
final_conv_out = 960 |
|
else: |
|
|
|
self.config = [ |
|
|
|
[3, 16, 16, True, 'relu', 2], |
|
[3, 72, 24, False, 'relu', 2], |
|
[3, 88, 24, False, 'relu', 1], |
|
[5, 96, 40, True, 'hardswish', 2], |
|
[5, 240, 40, True, 'hardswish', 1], |
|
[5, 240, 40, True, 'hardswish', 1], |
|
[5, 120, 48, True, 'hardswish', 1], |
|
[5, 144, 48, True, 'hardswish', 1], |
|
[5, 288, 96, True, 'hardswish', 2], |
|
[5, 576, 96, True, 'hardswish', 1], |
|
[5, 576, 96, True, 'hardswish', 1], |
|
] |
|
init_conv_out = 16 |
|
final_conv_out = 576 |
|
|
|
|
|
self.conv_stem = nn.Sequential( |
|
nn.Conv2d(3, init_conv_out, 3, 2, 1, bias=False), |
|
nn.BatchNorm2d(init_conv_out), |
|
get_activation('hardswish') |
|
) |
|
|
|
|
|
features = [] |
|
in_channels = init_conv_out |
|
for k, exp, out, se, activation, stride in self.config: |
|
features.append( |
|
Bottleneck(in_channels, exp, out, k, stride, se, activation) |
|
) |
|
in_channels = out |
|
self.features = nn.Sequential(*features) |
|
|
|
|
|
self.conv_head = nn.Sequential( |
|
nn.Conv2d(in_channels, final_conv_out, 1, bias=False), |
|
nn.BatchNorm2d(final_conv_out), |
|
get_activation('hardswish') |
|
) |
|
|
|
|
|
self.avgpool = nn.AdaptiveAvgPool2d(1) |
|
self.classifier = nn.Sequential( |
|
nn.Linear(final_conv_out, num_classes) |
|
) |
|
|
|
|
|
self._initialize_weights() |
|
|
|
def _initialize_weights(self): |
|
'''初始化模型权重''' |
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.kaiming_normal_(m.weight, mode='fan_out') |
|
if m.bias is not None: |
|
nn.init.zeros_(m.bias) |
|
elif isinstance(m, nn.BatchNorm2d): |
|
nn.init.ones_(m.weight) |
|
nn.init.zeros_(m.bias) |
|
elif isinstance(m, nn.Linear): |
|
nn.init.normal_(m.weight, 0, 0.01) |
|
if m.bias is not None: |
|
nn.init.zeros_(m.bias) |
|
|
|
def forward(self, x): |
|
x = self.conv_stem(x) |
|
x = self.features(x) |
|
x = self.conv_head(x) |
|
x = self.avgpool(x) |
|
x = x.view(x.size(0), -1) |
|
x = self.classifier(x) |
|
return x |
|
|
|
|
|
def test(): |
|
"""测试函数""" |
|
|
|
net_large = MobileNetV3(mode='large') |
|
x = torch.randn(2, 3, 32, 32) |
|
y = net_large(x) |
|
print('Large output size:', y.size()) |
|
|
|
|
|
net_small = MobileNetV3(mode='small') |
|
y = net_small(x) |
|
print('Small output size:', y.size()) |
|
|
|
|
|
from torchinfo import summary |
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
net_small = net_small.to(device) |
|
summary(net_small, (2, 3, 32, 32)) |
|
|
|
if __name__ == '__main__': |
|
test() |
|
|