RRFRRF
init commit without .pth
dee113c
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa).
GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned
using a masked language modeling (MLM) loss.
"""
from __future__ import absolute_import
import os
import sys
import pickle
import torch
import json
import random
import logging
import argparse
import numpy as np
from io import open
from itertools import cycle
import torch.nn as nn
from model import Seq2Seq
from tqdm import tqdm, trange
from bleu import _bleu
from torch.utils.data import DataLoader, Dataset, SequentialSampler, RandomSampler,TensorDataset
from torch.utils.data.distributed import DistributedSampler
from transformers import (WEIGHTS_NAME, AdamW, get_linear_schedule_with_warmup,
RobertaConfig, RobertaModel, RobertaTokenizer)
MODEL_CLASSES = {'roberta': (RobertaConfig, RobertaModel, RobertaTokenizer)}
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logger = logging.getLogger(__name__)
class Example(object):
"""A single training/test example."""
def __init__(self,
idx,
source,
target,
):
self.idx = idx
self.source = source
self.target = target
# def read_examples(filename):
# """Read examples from filename."""
# examples=[]
# with open(filename,encoding="utf-8") as f:
# for idx,js in enumerate(json.load(f)):
# source=' '.join(js['old_comment_tokens'])
# target=' '.join(js['new_comment_tokens'])
# examples.append(
# Example(
# idx = idx,
# source=source,
# target=target,
# )
# )
# return examples
def read_examples(filename):
"""Read examples from filename."""
examples=[]
assert len(filename.split(','))==2
src_filename = filename.split(',')[0]
trg_filename = filename.split(',')[1]
idx = 0
with open(src_filename) as f1,open(trg_filename) as f2:
for line1,line2 in zip(f1,f2):
examples.append(
Example(
idx = idx,
source=line1.strip(),
target=line2.strip(),
)
)
idx+=1
return examples
class InputFeatures(object):
"""A single training/test features for a example."""
def __init__(self,
example_id,
source_ids,
target_ids,
source_mask,
target_mask,
):
self.example_id = example_id
self.source_ids = source_ids
self.target_ids = target_ids
self.source_mask = source_mask
self.target_mask = target_mask
def convert_examples_to_features(examples, tokenizer, args,stage=None):
features = []
for example_index, example in enumerate(examples):
#source
source_tokens = tokenizer.tokenize(example.source)[:args.max_source_length-2]
source_tokens =[tokenizer.cls_token]+source_tokens+[tokenizer.sep_token]
source_ids = tokenizer.convert_tokens_to_ids(source_tokens)
source_mask = [1] * (len(source_tokens))
padding_length = args.max_source_length - len(source_ids)
source_ids+=[tokenizer.pad_token_id]*padding_length
source_mask+=[0]*padding_length
#target
if stage=="test":
target_tokens = tokenizer.tokenize("None")
else:
target_tokens = tokenizer.tokenize(example.target)[:args.max_target_length-2]
target_tokens = [tokenizer.cls_token]+target_tokens+[tokenizer.sep_token]
target_ids = tokenizer.convert_tokens_to_ids(target_tokens)
target_mask = [1] *len(target_ids)
padding_length = args.max_target_length - len(target_ids)
target_ids+=[tokenizer.pad_token_id]*padding_length
target_mask+=[0]*padding_length
if example_index < 5:
if stage=='train':
logger.info("*** Example ***")
logger.info("idx: {}".format(example.idx))
logger.info("source_tokens: {}".format([x.replace('\u0120','_') for x in source_tokens]))
logger.info("source_ids: {}".format(' '.join(map(str, source_ids))))
logger.info("source_mask: {}".format(' '.join(map(str, source_mask))))
logger.info("target_tokens: {}".format([x.replace('\u0120','_') for x in target_tokens]))
logger.info("target_ids: {}".format(' '.join(map(str, target_ids))))
logger.info("target_mask: {}".format(' '.join(map(str, target_mask))))
features.append(
InputFeatures(
example_index,
source_ids,
target_ids,
source_mask,
target_mask,
)
)
return features
def _truncate_seq_pair(tokens_a, tokens_b,tokens_c, max_length):
"""Truncates a sequence pair in place to the maximum length."""
# This is a simple heuristic which will always truncate the longer sequence
# one token at a time. This makes more sense than truncating an equal percent
# of tokens from each, since if one sequence is very short then each token
# that's truncated likely contains more information than a longer sequence.
while True:
total_length = len(tokens_a) + len(tokens_b)+len(tokens_c)
if total_length <= max_length:
break
if len(tokens_a) >= len(tokens_b) and len(tokens_a)>=len(tokens_c):
tokens_a.pop()
elif len(tokens_b) >= len(tokens_a) and len(tokens_b)>=len(tokens_c):
tokens_b.pop()
else:
tokens_c.pop()
def set_seed(args):
"""set random seed."""
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def main():
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--model_type", default=None, type=str, required=True,
help="Model type: e.g. roberta")
parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
help="Path to pre-trained model: e.g. roberta-base" )
parser.add_argument("--tokenizer_name", default="", required=True,
help="Pretrained tokenizer name or path if not the same as model_name")
parser.add_argument("--output_dir", default=None, type=str, required=True,
help="The output directory where the model predictions and checkpoints will be written.")
parser.add_argument("--load_model_path", default=None, type=str,
help="Path to trained model: Should contain the .bin files" )
## Other parameters
parser.add_argument("--train_filename", default=None, type=str,
help="The train filenames (source and target files).")
parser.add_argument("--dev_filename", default=None, type=str,
help="The dev filename. (source and target files).")
parser.add_argument("--test_filename", default=None, type=str,
help="The test filename. (source and target files).")
parser.add_argument("--config_name", default="", type=str,
help="Pretrained config name or path if not the same as model_name")
parser.add_argument("--max_source_length", default=64, type=int,
help="The maximum total source sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.")
parser.add_argument("--max_target_length", default=32, type=int,
help="The maximum total target sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.")
parser.add_argument("--do_train", action='store_true',
help="Whether to run training.")
parser.add_argument("--do_eval", action='store_true',
help="Whether to run eval on the dev set.")
parser.add_argument("--do_test", action='store_true',
help="Whether to run eval on the dev set.")
parser.add_argument("--do_lower_case", action='store_true',
help="Set this flag if you are using an uncased model.")
parser.add_argument("--no_cuda", action='store_true',
help="Avoid using CUDA when available")
parser.add_argument("--train_batch_size", default=8, type=int,
help="Batch size per GPU/CPU for training.")
parser.add_argument("--eval_batch_size", default=8, type=int,
help="Batch size per GPU/CPU for evaluation.")
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--learning_rate", default=5e-5, type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--beam_size", default=10, type=int,
help="beam size for beam search")
parser.add_argument("--weight_decay", default=0.0, type=float,
help="Weight deay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float,
help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float,
help="Max gradient norm.")
parser.add_argument("--num_train_epochs", default=3.0, type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--max_steps", default=-1, type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
parser.add_argument("--eval_steps", default=-1, type=int,
help="")
parser.add_argument("--train_steps", default=-1, type=int,
help="")
parser.add_argument("--warmup_steps", default=0, type=int,
help="Linear warmup over warmup_steps.")
parser.add_argument("--local_rank", type=int, default=-1,
help="For distributed training: local_rank")
parser.add_argument('--seed', type=int, default=42,
help="random seed for initialization")
# print arguments
args = parser.parse_args()
logger.info(args)
# Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend='nccl')
args.n_gpu = 1
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s",
args.local_rank, device, args.n_gpu, bool(args.local_rank != -1))
args.device = device
# Set seed
set_seed(args)
# make dir if output_dir not exist
if os.path.exists(args.output_dir) is False:
os.makedirs(args.output_dir)
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path)
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name,do_lower_case=args.do_lower_case)
#budild model
encoder = model_class.from_pretrained(args.model_name_or_path,config=config)
decoder_layer = nn.TransformerDecoderLayer(d_model=config.hidden_size, nhead=config.num_attention_heads)
decoder = nn.TransformerDecoder(decoder_layer, num_layers=6)
model=Seq2Seq(encoder=encoder,decoder=decoder,config=config,
beam_size=args.beam_size,max_length=args.max_target_length,
sos_id=tokenizer.cls_token_id,eos_id=tokenizer.sep_token_id)
if args.load_model_path is not None:
logger.info("reload model from {}".format(args.load_model_path))
model.load_state_dict(torch.load(args.load_model_path))
model.to(device)
if args.local_rank != -1:
# Distributed training
try:
from apex.parallel import DistributedDataParallel as DDP
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
model = DDP(model)
elif args.n_gpu > 1:
# multi-gpu training
model = torch.nn.DataParallel(model)
if args.do_train:
# Prepare training data loader
train_examples = read_examples(args.train_filename)
train_features = convert_examples_to_features(train_examples, tokenizer,args,stage='train')
all_source_ids = torch.tensor([f.source_ids for f in train_features], dtype=torch.long)
all_source_mask = torch.tensor([f.source_mask for f in train_features], dtype=torch.long)
all_target_ids = torch.tensor([f.target_ids for f in train_features], dtype=torch.long)
all_target_mask = torch.tensor([f.target_mask for f in train_features], dtype=torch.long)
train_data = TensorDataset(all_source_ids,all_source_mask,all_target_ids,all_target_mask)
if args.local_rank == -1:
train_sampler = RandomSampler(train_data)
else:
train_sampler = DistributedSampler(train_data)
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size//args.gradient_accumulation_steps)
num_train_optimization_steps = args.train_steps
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps,
num_training_steps=num_train_optimization_steps)
#Start training
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_examples))
logger.info(" Batch size = %d", args.train_batch_size)
logger.info(" Num epoch = %d", num_train_optimization_steps*args.train_batch_size//len(train_examples))
model.train()
dev_dataset={}
nb_tr_examples, nb_tr_steps,tr_loss,global_step,best_bleu,best_loss = 0, 0,0,0,0,1e6
bar = range(num_train_optimization_steps)
train_dataloader=cycle(train_dataloader)
eval_flag = True
idx=0
for step in bar:
batch = next(train_dataloader)
batch = tuple(t.to(device) for t in batch)
source_ids,source_mask,target_ids,target_mask = batch
loss,_,_ = model(source_ids=source_ids,source_mask=source_mask,target_ids=target_ids,target_mask=target_mask)
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
tr_loss += loss.item()
train_loss=round(tr_loss*args.gradient_accumulation_steps/(nb_tr_steps+1),4)
if (global_step + 1)%100==0:
logger.info(" step {} loss {} batch-{}".format(global_step + 1,train_loss, ((global_step+1)*args.train_batch_size) / len(train_examples)))
nb_tr_examples += source_ids.size(0)
nb_tr_steps += 1
loss.backward()
if (nb_tr_steps + 1) % args.gradient_accumulation_steps == 0:
#Update parameters
optimizer.step()
optimizer.zero_grad()
scheduler.step()
global_step += 1
eval_flag = True
if args.do_eval and ((global_step + 1) %args.eval_steps == 0) and eval_flag:
#Eval model with dev dataset
tr_loss = 0
nb_tr_examples, nb_tr_steps = 0, 0
eval_flag=False
if 'dev_loss' in dev_dataset:
eval_examples,eval_data=dev_dataset['dev_loss']
else:
eval_examples = read_examples(args.dev_filename)
eval_features = convert_examples_to_features(eval_examples, tokenizer, args,stage='dev')
all_source_ids = torch.tensor([f.source_ids for f in eval_features], dtype=torch.long)
all_source_mask = torch.tensor([f.source_mask for f in eval_features], dtype=torch.long)
all_target_ids = torch.tensor([f.target_ids for f in eval_features], dtype=torch.long)
all_target_mask = torch.tensor([f.target_mask for f in eval_features], dtype=torch.long)
eval_data = TensorDataset(all_source_ids,all_source_mask,all_target_ids,all_target_mask)
dev_dataset['dev_loss']=eval_examples,eval_data
eval_sampler = SequentialSampler(eval_data)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
logger.info("\n***** Running evaluation *****")
logger.info(" Num examples = %d", len(eval_examples))
logger.info(" Batch size = %d", args.eval_batch_size)
#Start Evaling model
model.eval()
eval_loss,tokens_num = 0,0
for batch in eval_dataloader:
batch = tuple(t.to(device) for t in batch)
source_ids,source_mask,target_ids,target_mask = batch
with torch.no_grad():
_,loss,num = model(source_ids=source_ids,source_mask=source_mask,
target_ids=target_ids,target_mask=target_mask)
eval_loss += loss.sum().item()
tokens_num += num.sum().item()
#Pring loss of dev dataset
model.train()
eval_loss = eval_loss / tokens_num
result = {'eval_ppl': round(np.exp(eval_loss),5),
'global_step': global_step+1,
'train_loss': round(train_loss,5)}
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
logger.info(" "+"*"*20)
#save last checkpoint
last_output_dir = os.path.join(args.output_dir, 'checkpoint-last')
if not os.path.exists(last_output_dir):
os.makedirs(last_output_dir)
model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self
output_model_file = os.path.join(last_output_dir, "pytorch_model.bin")
torch.save(model_to_save.state_dict(), output_model_file)
if eval_loss<best_loss:
logger.info(" Best ppl:%s",round(np.exp(eval_loss),5))
logger.info(" "+"*"*20)
best_loss=eval_loss
# Save best checkpoint for best ppl
output_dir = os.path.join(args.output_dir, 'checkpoint-best-ppl')
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self
output_model_file = os.path.join(output_dir, "pytorch_model.bin")
torch.save(model_to_save.state_dict(), output_model_file)
#Calculate bleu
if 'dev_bleu' in dev_dataset:
eval_examples,eval_data=dev_dataset['dev_bleu']
else:
eval_examples = read_examples(args.dev_filename)
eval_examples = random.sample(eval_examples,min(1000,len(eval_examples)))
eval_features = convert_examples_to_features(eval_examples, tokenizer, args,stage='test')
all_source_ids = torch.tensor([f.source_ids for f in eval_features], dtype=torch.long)
all_source_mask = torch.tensor([f.source_mask for f in eval_features], dtype=torch.long)
eval_data = TensorDataset(all_source_ids,all_source_mask)
dev_dataset['dev_bleu']=eval_examples,eval_data
eval_sampler = SequentialSampler(eval_data)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
model.eval()
p=[]
for batch in eval_dataloader:
batch = tuple(t.to(device) for t in batch)
source_ids,source_mask= batch
with torch.no_grad():
preds = model(source_ids=source_ids,source_mask=source_mask)
for pred in preds:
t=pred[0].cpu().numpy()
t=list(t)
if 0 in t:
t=t[:t.index(0)]
text = tokenizer.decode(t,clean_up_tokenization_spaces=False)
p.append(text)
model.train()
predictions=[]
accs=[]
with open(os.path.join(args.output_dir,"dev.output"),'w') as f, open(os.path.join(args.output_dir,"dev.gold"),'w') as f1:
for ref,gold in zip(p,eval_examples):
predictions.append(str(gold.idx)+'\t'+ref)
f.write(ref+'\n')
f1.write(gold.target+'\n')
accs.append(ref==gold.target)
dev_bleu=round(_bleu(os.path.join(args.output_dir, "dev.gold"), os.path.join(args.output_dir, "dev.output")),2)
logger.info(" %s = %s "%("bleu-4",str(dev_bleu)))
logger.info(" %s = %s "%("xMatch",str(round(np.mean(accs)*100,4))))
logger.info(" "+"*"*20)
if dev_bleu>best_bleu:
logger.info(" Best bleu:%s",dev_bleu)
logger.info(" "+"*"*20)
best_bleu=dev_bleu
# Save best checkpoint for best bleu
output_dir = os.path.join(args.output_dir, 'checkpoint-best-bleu')
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self
output_model_file = os.path.join(output_dir, "pytorch_model.bin")
torch.save(model_to_save.state_dict(), output_model_file)
# 每一轮记录checkpoint
if int((global_step+1)*args.train_batch_size / len(train_examples)) == idx+1:
logger.info(" batch:%s",idx)
output_dir = os.path.join(args.output_dir, 'epoch_{}'.format(idx+1))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = model.module if hasattr(model, 'module') else model
ckpt_output_path = os.path.join(output_dir, 'subject_model.pth')
logger.info("Saving model checkpoint to %s", ckpt_output_path)
torch.save(model_to_save.state_dict(), ckpt_output_path)
idx = idx+1
if args.do_test:
files=[]
if args.dev_filename is not None:
files.append(args.dev_filename)
if args.test_filename is not None:
files.append(args.test_filename)
for idx,file in enumerate(files):
logger.info("Test file: {}".format(file))
eval_examples = read_examples(file)
eval_features = convert_examples_to_features(eval_examples, tokenizer, args,stage='test')
all_source_ids = torch.tensor([f.source_ids for f in eval_features], dtype=torch.long)
all_source_mask = torch.tensor([f.source_mask for f in eval_features], dtype=torch.long)
eval_data = TensorDataset(all_source_ids,all_source_mask)
# Calculate bleu
eval_sampler = SequentialSampler(eval_data)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
model.eval()
p=[]
for batch in tqdm(eval_dataloader,total=len(eval_dataloader)):
batch = tuple(t.to(device) for t in batch)
source_ids,source_mask= batch
with torch.no_grad():
preds = model(source_ids=source_ids,source_mask=source_mask)
for pred in preds:
t=pred[0].cpu().numpy()
t=list(t)
if 0 in t:
t=t[:t.index(0)]
text = tokenizer.decode(t,clean_up_tokenization_spaces=False)
p.append(text)
model.train()
predictions=[]
accs=[]
with open(os.path.join(args.output_dir,"test_{}.output".format(str(idx))),'w') as f, open(os.path.join(args.output_dir,"test_{}.gold".format(str(idx))),'w') as f1:
for ref,gold in zip(p,eval_examples):
predictions.append(str(gold.idx)+'\t'+ref)
f.write(ref+'\n')
f1.write(gold.target+'\n')
accs.append(ref==gold.target)
dev_bleu=round(_bleu(os.path.join(args.output_dir, "test_{}.gold".format(str(idx))).format(file),
os.path.join(args.output_dir, "test_{}.output".format(str(idx))).format(file)),2)
logger.info(" %s = %s "%("bleu-4",str(dev_bleu)))
logger.info(" %s = %s "%("xMatch",str(round(np.mean(accs)*100,4))))
logger.info(" "+"*"*20)
if __name__ == "__main__":
main()