RRFRRF
init commit without .pth
dee113c
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" BERT classification fine-tuning: utilities to work with GLUE tasks """
from __future__ import absolute_import, division, print_function
import csv
import json
import logging
import os
import sys
from io import open
from sklearn.metrics import f1_score, precision_score, recall_score
from torch.utils.data import Dataset
import torch
csv.field_size_limit(sys.maxsize)
logger = logging.getLogger(__name__)
class InputFeatures(object):
"""A single training/test features for a example."""
def __init__(self, code_tokens, code_ids, nl_tokens, nl_ids, label, idx):
self.code_tokens = code_tokens
self.code_ids = code_ids
self.nl_tokens = nl_tokens
self.nl_ids = nl_ids
self.label = label
self.idx = idx
class InputFeaturesTriplet(InputFeatures):
"""A single training/test features for a example. Add docstring seperately. """
def __init__(self, code_tokens, code_ids, nl_tokens, nl_ids, ds_tokens, ds_ids, label, idx):
super(InputFeaturesTriplet, self).__init__(code_tokens, code_ids, nl_tokens, nl_ids, label, idx)
self.ds_tokens = ds_tokens
self.ds_ids = ds_ids
def convert_examples_to_features(js, tokenizer, args):
# label
label = js['label']
# code
code = js['code']
code_tokens = tokenizer.tokenize(code)[:args.max_seq_length-2]
code_tokens = [tokenizer.cls_token]+code_tokens+[tokenizer.sep_token]
code_ids = tokenizer.convert_tokens_to_ids(code_tokens)
padding_length = args.max_seq_length - len(code_ids)
code_ids += [tokenizer.pad_token_id]*padding_length
nl = js['doc'] # query
nl_tokens = tokenizer.tokenize(nl)[:args.max_seq_length-2]
nl_tokens = [tokenizer.cls_token]+nl_tokens+[tokenizer.sep_token]
nl_ids = tokenizer.convert_tokens_to_ids(nl_tokens)
padding_length = args.max_seq_length - len(nl_ids)
nl_ids += [tokenizer.pad_token_id]*padding_length
return InputFeatures(code_tokens, code_ids, nl_tokens, nl_ids, label, js['idx'])
class TextDataset(Dataset):
def __init__(self, tokenizer, args, file_path=None, type=None):
# json file: dict: idx, query, doc, code
self.examples = []
self.type = type
data=[]
with open(file_path, 'r') as f:
data = json.load(f)
# data = data[:114560]
if self.type == 'test':
for js in data:
js['label'] = 0
for js in data:
self.examples.append(convert_examples_to_features(js, tokenizer, args))
if 'train' in file_path:
for idx, example in enumerate(self.examples[:3]):
logger.info("*** Example ***")
logger.info("idx: {}".format(idx))
logger.info("code_tokens: {}".format([x.replace('\u0120','_') for x in example.code_tokens]))
logger.info("code_ids: {}".format(' '.join(map(str, example.code_ids))))
logger.info("nl_tokens: {}".format([x.replace('\u0120','_') for x in example.nl_tokens]))
logger.info("nl_ids: {}".format(' '.join(map(str, example.nl_ids))))
def __len__(self):
return len(self.examples)
def __getitem__(self, i):
""" return both tokenized code ids and nl ids and label"""
return torch.tensor(self.examples[i].code_ids), \
torch.tensor(self.examples[i].nl_ids),\
torch.tensor(self.examples[i].label)
def simple_accuracy(preds, labels):
return (preds == labels).mean()
def acc_and_f1(preds, labels):
acc = simple_accuracy(preds, labels)
f1 = f1_score(y_true=labels, y_pred=preds)
prec = precision_score(y_true=labels, y_pred=preds)
reca = recall_score(y_true=labels, y_pred=preds)
return {
"acc": acc,
"precision": prec,
"recall": reca,
"f1": f1,
"acc_and_f1": (acc + f1) / 2,
}
def compute_metrics(task_name, preds, labels):
assert len(preds) == len(labels)
if task_name == "webquery":
return acc_and_f1(preds, labels)
if task_name == "staqc":
return acc_and_f1(preds, labels)
else:
raise KeyError(task_name)