HUANGYIFEI commited on
Commit
0ff7d47
1 Parent(s): addb4f7

Delete code

Browse files
code/QM9_dataset_class.py DELETED
@@ -1,51 +0,0 @@
1
- import os
2
-
3
- from tqdm import tqdm
4
- import networkx as nx
5
- import torch
6
- from torch.utils.data import Dataset
7
-
8
- atom_number_index_dict = {
9
- 1: 0, # H
10
- 6: 1, # C
11
- 7: 2, # N
12
- 8: 3, # O
13
- 9: 4 # F
14
- }
15
- atom_index_number_dict = {v: k for k, v in atom_number_index_dict.items()}
16
- max_atom_number = max(atom_number_index_dict.keys())
17
-
18
-
19
- def atom_number2index(atom_number):
20
- return atom_number_index_dict[atom_number]
21
-
22
-
23
- def atom_index2number(atom_index):
24
- return atom_index_number_dict[atom_index]
25
-
26
-
27
- class PreprocessedQM9Dataset(Dataset):
28
- def __init__(self, dataset):
29
- self.dataset = dataset
30
- self.processed_data = []
31
- if dataset is not None:
32
- self._preprocess()
33
- def _preprocess(self):
34
- i = 0
35
- for g, label in tqdm(self.dataset):
36
- g.ndata["Z_index"] = torch.tensor([atom_number2index(z.item()) for z in g.ndata["Z"]])
37
- g.ndata["sample_idx"] = i
38
- self.processed_data.append((g, label))
39
-
40
- def __len__(self):
41
- return len(self.processed_data)
42
-
43
- def __getitem__(self, idx):
44
- return self.processed_data[idx]
45
-
46
- def save_dataset(self, save_dir):
47
- if not os.path.exists(save_dir):
48
- os.makedirs(save_dir)
49
- torch.save(self.processed_data, os.path.join(save_dir,"QM9_dataset_processed.pt"))
50
- def load_dataset(self, dataset_path):
51
- self.processed_data = torch.load(dataset_path)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
code/lib/__pycache__/metrics.cpython-38.pyc DELETED
Binary file (2.42 kB)
 
code/lib/metrics.py DELETED
@@ -1,95 +0,0 @@
1
- # -*- coding:utf-8 -*-
2
-
3
- import numpy as np
4
- import torch
5
- import torch.nn.functional as F
6
-
7
-
8
- def masked_mape_np(y_true, y_pred, null_val=np.nan):
9
- with np.errstate(divide='ignore', invalid='ignore'):
10
- if np.isnan(null_val):
11
- mask = ~np.isnan(y_true)
12
- else:
13
- mask = np.not_equal(y_true, null_val)
14
- mask = mask.astype('float32')
15
- mask /= np.mean(mask)
16
- mape = np.abs(np.divide(np.subtract(y_pred, y_true).astype('float32'),
17
- y_true))
18
- mape = np.nan_to_num(mask * mape)
19
- return np.mean(mape)
20
-
21
-
22
- def masked_mse(preds, labels, null_val=np.nan):
23
- if np.isnan(null_val):
24
- mask = ~torch.isnan(labels)
25
- else:
26
- mask = (labels != null_val)
27
- mask = mask.float()
28
- # print(mask.sum())
29
- # print(mask.shape[0]*mask.shape[1]*mask.shape[2])
30
- mask /= torch.mean((mask))
31
- mask = torch.where(torch.isnan(mask), torch.zeros_like(mask), mask)
32
- loss = (preds - labels) ** 2
33
- loss = loss * mask
34
- loss = torch.where(torch.isnan(loss), torch.zeros_like(loss), loss)
35
- return torch.mean(loss)
36
-
37
-
38
- def masked_rmse(preds, labels, null_val=np.nan):
39
- return torch.sqrt(masked_mse(preds=preds, labels=labels,
40
- null_val=null_val))
41
-
42
-
43
- def masked_mae(preds, labels, null_val=np.nan):
44
- if np.isnan(null_val):
45
- mask = ~torch.isnan(labels)
46
- else:
47
- mask = (labels != null_val)
48
- mask = mask.float()
49
- mask /= torch.mean((mask))
50
- mask = torch.where(torch.isnan(mask), torch.zeros_like(mask), mask)
51
- loss = torch.abs(preds - labels)
52
- loss = loss * mask
53
- loss = torch.where(torch.isnan(loss), torch.zeros_like(loss), loss)
54
- return torch.mean(loss)
55
-
56
-
57
- def masked_mae_test(y_true, y_pred, null_val=np.nan):
58
- with np.errstate(divide='ignore', invalid='ignore'):
59
- if np.isnan(null_val):
60
- mask = ~np.isnan(y_true)
61
- else:
62
- mask = np.not_equal(y_true, null_val)
63
- mask = mask.astype('float32')
64
- mask /= np.mean(mask)
65
- mae = np.abs(np.subtract(y_pred, y_true).astype('float32'),
66
- )
67
- mae = np.nan_to_num(mask * mae)
68
- return np.mean(mae)
69
-
70
-
71
- def masked_rmse_test(y_true, y_pred, null_val=np.nan):
72
- with np.errstate(divide='ignore', invalid='ignore'):
73
- if np.isnan(null_val):
74
- mask = ~np.isnan(y_true)
75
- else:
76
- # null_val=null_val
77
- mask = np.not_equal(y_true, null_val)
78
- mask = mask.astype('float32')
79
- mask /= np.mean(mask)
80
- mse = ((y_pred - y_true) ** 2)
81
- mse = np.nan_to_num(mask * mse)
82
- return np.sqrt(np.mean(mse))
83
-
84
-
85
- def sce_loss(x, y, alpha=3):
86
- x = F.normalize(x, p=2, dim=-1)
87
- y = F.normalize(y, p=2, dim=-1)
88
-
89
- # loss = - (x * y).sum(dim=-1)
90
- # loss = (x_h - y_h).norm(dim=1).pow(alpha)
91
-
92
- loss = (1 - (x * y).sum(dim=-1)).pow_(alpha)
93
-
94
- loss = loss.mean()
95
- return loss
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
code/lib/utils.py DELETED
@@ -1,397 +0,0 @@
1
- import os
2
- import numpy as np
3
- import torch
4
- import torch.utils.data
5
- from sklearn.metrics import mean_absolute_error
6
- from sklearn.metrics import mean_squared_error
7
- import sys
8
- project_path = "/content/gdrive//My Drive/CS5248_project"
9
- sys.path.append(project_path + '/lib')
10
- from metrics import masked_mape_np
11
- from scipy.sparse.linalg import eigs
12
- from metrics import masked_mape_np, masked_mae,masked_mse,masked_rmse,masked_mae_test,masked_rmse_test
13
-
14
-
15
- def re_normalization(x, mean, std):
16
- x = x * std + mean
17
- return x
18
-
19
-
20
- def max_min_normalization(x, _max, _min):
21
- x = 1. * (x - _min)/(_max - _min)
22
- x = x * 2. - 1.
23
- return x
24
-
25
-
26
- def re_max_min_normalization(x, _max, _min):
27
- x = (x + 1.) / 2.
28
- x = 1. * x * (_max - _min) + _min
29
- return x
30
-
31
-
32
- def get_adjacency_matrix(distance_df_filename, num_of_vertices, id_filename=None):
33
- '''
34
- Parameters
35
- ----------
36
- distance_df_filename: str, path of the csv file contains edges information
37
-
38
- num_of_vertices: int, the number of vertices
39
-
40
- Returns
41
- ----------
42
- A: np.ndarray, adjacency matrix
43
-
44
- '''
45
- if 'npy' in distance_df_filename:
46
-
47
- adj_mx = np.load(distance_df_filename)
48
-
49
- return adj_mx, None
50
-
51
- else:
52
-
53
- import csv
54
-
55
- A = np.zeros((int(num_of_vertices), int(num_of_vertices)),
56
- dtype=np.float32)
57
-
58
- distaneA = np.zeros((int(num_of_vertices), int(num_of_vertices)),
59
- dtype=np.float32)
60
-
61
- if id_filename:
62
-
63
- with open(id_filename, 'r') as f:
64
- id_dict = {int(i): idx for idx, i in enumerate(f.read().strip().split('\n'))} # 把节点id(idx)映射成从0开始的索引
65
-
66
- with open(distance_df_filename, 'r') as f:
67
- f.readline()
68
- reader = csv.reader(f)
69
- for row in reader:
70
- if len(row) != 3:
71
- continue
72
- i, j, distance = int(row[0]), int(row[1]), float(row[2])
73
- A[id_dict[i], id_dict[j]] = 1
74
- distaneA[id_dict[i], id_dict[j]] = distance
75
- return A, distaneA
76
-
77
- else:
78
-
79
- with open(distance_df_filename, 'r') as f:
80
- f.readline()
81
- reader = csv.reader(f)
82
- for row in reader:
83
- if len(row) != 3:
84
- continue
85
- i, j, distance = int(row[0]), int(row[1]), float(row[2])
86
- A[i, j] = 1
87
- distaneA[i, j] = distance
88
- return A, distaneA
89
-
90
-
91
- def scaled_Laplacian(W):
92
- '''
93
- compute \tilde{L}
94
-
95
- Parameters
96
- ----------
97
- W: np.ndarray, shape is (N, N), N is the num of vertices
98
-
99
- Returns
100
- ----------
101
- scaled_Laplacian: np.ndarray, shape (N, N)
102
-
103
- '''
104
-
105
- assert W.shape[0] == W.shape[1]
106
-
107
- D = np.diag(np.sum(W, axis=1))
108
-
109
- L = D - W
110
-
111
- lambda_max = eigs(L, k=1, which='LR')[0].real
112
-
113
- return (2 * L) / lambda_max - np.identity(W.shape[0])
114
-
115
-
116
- def cheb_polynomial(L_tilde, K):
117
- '''
118
- compute a list of chebyshev polynomials from T_0 to T_{K-1}
119
-
120
- Parameters
121
- ----------
122
- L_tilde: scaled Laplacian, np.ndarray, shape (N, N)
123
-
124
- K: the maximum order of chebyshev polynomials
125
-
126
- Returns
127
- ----------
128
- cheb_polynomials: list(np.ndarray), length: K, from T_0 to T_{K-1}
129
-
130
- '''
131
-
132
- N = L_tilde.shape[0]
133
-
134
- cheb_polynomials = [np.identity(N), L_tilde.copy()]
135
-
136
- for i in range(2, K):
137
- cheb_polynomials.append(2 * L_tilde * cheb_polynomials[i - 1] - cheb_polynomials[i - 2])
138
-
139
- return cheb_polynomials
140
-
141
-
142
- def load_graphdata_channel1(graph_signal_matrix_filename, num_of_indices, DEVICE, batch_size, shuffle=True):
143
- '''
144
- 这个是为PEMS的数据准备的函数
145
- 将x,y都处理成归一化到[-1,1]之前的数据;
146
- 每个样本同时包含所有监测点的数据,所以本函数构造的数据输入时空序列预测模型;
147
- 该函数会把hour, day, week的时间串起来;
148
- 注: 从文件读入的数据,x是最大最小归一化的,但是y是真实值
149
- 这个函数转为mstgcn,astgcn设计,返回的数据x都是通过减均值除方差进行归一化的,y都是真实值
150
- :param graph_signal_matrix_filename: str
151
- :param num_of_hours: int
152
- :param num_of_days: int
153
- :param num_of_weeks: int
154
- :param DEVICE:
155
- :param batch_size: int
156
- :return:
157
- three DataLoaders, each dataloader contains:
158
- test_x_tensor: (B, N_nodes, in_feature, T_input)
159
- test_decoder_input_tensor: (B, N_nodes, T_output)
160
- test_target_tensor: (B, N_nodes, T_output)
161
-
162
- '''
163
-
164
- file = os.path.basename(graph_signal_matrix_filename).split('.')[0]
165
-
166
- dirpath = os.path.dirname(graph_signal_matrix_filename)
167
-
168
- filename = os.path.join(dirpath,
169
- file) +'_astcgn'
170
-
171
- print('load file:', filename)
172
-
173
- file_data = np.load(filename + '.npz')
174
- train_x = file_data['train_x'] # (10181, 307, 3, 12)
175
- train_x = train_x[:, :, 0:5, :]
176
- train_target = file_data['train_target'] # (10181, 307, 12)
177
-
178
- val_x = file_data['val_x']
179
- val_x = val_x[:, :, 0:5, :]
180
- val_target = file_data['val_target']
181
-
182
- test_x = file_data['test_x']
183
- test_x = test_x[:, :, 0:5, :]
184
- test_target = file_data['test_target']
185
-
186
- mean = file_data['mean'][:, :, 0:5, :] # (1, 1, 3, 1)
187
- std = file_data['std'][:, :, 0:5, :] # (1, 1, 3, 1)
188
-
189
- # ------- train_loader -------
190
- train_x_tensor = torch.from_numpy(train_x).type(torch.FloatTensor).to(DEVICE) # (B, N, F, T)
191
- train_target_tensor = torch.from_numpy(train_target).type(torch.FloatTensor).to(DEVICE) # (B, N, T)
192
-
193
- train_dataset = torch.utils.data.TensorDataset(train_x_tensor, train_target_tensor)
194
-
195
- train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=shuffle)
196
-
197
- # ------- val_loader -------
198
- val_x_tensor = torch.from_numpy(val_x).type(torch.FloatTensor).to(DEVICE) # (B, N, F, T)
199
- val_target_tensor = torch.from_numpy(val_target).type(torch.FloatTensor).to(DEVICE) # (B, N, T)
200
-
201
- val_dataset = torch.utils.data.TensorDataset(val_x_tensor, val_target_tensor)
202
-
203
- val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
204
-
205
- # ------- test_loader -------
206
- test_x_tensor = torch.from_numpy(test_x).type(torch.FloatTensor).to(DEVICE) # (B, N, F, T)
207
- test_target_tensor = torch.from_numpy(test_target).type(torch.FloatTensor).to(DEVICE) # (B, N, T)
208
-
209
- test_dataset = torch.utils.data.TensorDataset(test_x_tensor, test_target_tensor)
210
-
211
- test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
212
-
213
- # print
214
- print('train:', train_x_tensor.size(), train_target_tensor.size())
215
- print('val:', val_x_tensor.size(), val_target_tensor.size())
216
- print('test:', test_x_tensor.size(), test_target_tensor.size())
217
-
218
- return train_loader, train_target_tensor, val_loader, val_target_tensor, test_loader, test_target_tensor, mean, std
219
-
220
-
221
- def compute_val_loss_mstgcn(net, val_loader, criterion, masked_flag,missing_value,sw, epoch, limit=None):
222
- '''
223
- for rnn, compute mean loss on validation set
224
- :param net: model
225
- :param val_loader: torch.utils.data.utils.DataLoader
226
- :param criterion: torch.nn.MSELoss
227
- :param sw: tensorboardX.SummaryWriter
228
- :param global_step: int, current global_step
229
- :param limit: int,
230
- :return: val_loss
231
- '''
232
-
233
- net.train(False) # ensure dropout layers are in evaluation mode
234
-
235
- with torch.no_grad():
236
-
237
- val_loader_length = len(val_loader) # nb of batch
238
-
239
- tmp = [] # 记录了所有batch的loss
240
-
241
- for batch_index, batch_data in enumerate(val_loader):
242
- encoder_inputs, labels = batch_data
243
- outputs = net(encoder_inputs)
244
- if masked_flag:
245
- loss = criterion(outputs, labels, missing_value)
246
- else:
247
- loss = criterion(outputs, labels)
248
-
249
- tmp.append(loss.item())
250
- if batch_index % 100 == 0:
251
- print('validation batch %s / %s, loss: %.2f' % (batch_index + 1, val_loader_length, loss.item()))
252
- if (limit is not None) and batch_index >= limit:
253
- break
254
-
255
- validation_loss = sum(tmp) / len(tmp)
256
- sw.add_scalar('validation_loss', validation_loss, epoch)
257
- return validation_loss
258
-
259
-
260
- # def evaluate_on_test_mstgcn(net, test_loader, test_target_tensor, sw, epoch, _mean, _std):
261
- # '''
262
- # for rnn, compute MAE, RMSE, MAPE scores of the prediction for every time step on testing set.
263
- #
264
- # :param net: model
265
- # :param test_loader: torch.utils.data.utils.DataLoader
266
- # :param test_target_tensor: torch.tensor (B, N_nodes, T_output, out_feature)=(B, N_nodes, T_output, 1)
267
- # :param sw:
268
- # :param epoch: int, current epoch
269
- # :param _mean: (1, 1, 3(features), 1)
270
- # :param _std: (1, 1, 3(features), 1)
271
- # '''
272
- #
273
- # net.train(False) # ensure dropout layers are in test mode
274
- #
275
- # with torch.no_grad():
276
- #
277
- # test_loader_length = len(test_loader)
278
- #
279
- # test_target_tensor = test_target_tensor.cpu().numpy()
280
- #
281
- # prediction = [] # 存储所有batch的output
282
- #
283
- # for batch_index, batch_data in enumerate(test_loader):
284
- #
285
- # encoder_inputs, labels = batch_data
286
- #
287
- # outputs = net(encoder_inputs)
288
- #
289
- # prediction.append(outputs.detach().cpu().numpy())
290
- #
291
- # if batch_index % 100 == 0:
292
- # print('predicting testing set batch %s / %s' % (batch_index + 1, test_loader_length))
293
- #
294
- # prediction = np.concatenate(prediction, 0) # (batch, T', 1)
295
- # prediction_length = prediction.shape[2]
296
- #
297
- # for i in range(prediction_length):
298
- # assert test_target_tensor.shape[0] == prediction.shape[0]
299
- # print('current epoch: %s, predict %s points' % (epoch, i))
300
- # mae = mean_absolute_error(test_target_tensor[:, :, i], prediction[:, :, i])
301
- # rmse = mean_squared_error(test_target_tensor[:, :, i], prediction[:, :, i]) ** 0.5
302
- # mape = masked_mape_np(test_target_tensor[:, :, i], prediction[:, :, i], 0)
303
- # print('MAE: %.2f' % (mae))
304
- # print('RMSE: %.2f' % (rmse))
305
- # print('MAPE: %.2f' % (mape))
306
- # print()
307
- # if sw:
308
- # sw.add_scalar('MAE_%s_points' % (i), mae, epoch)
309
- # sw.add_scalar('RMSE_%s_points' % (i), rmse, epoch)
310
- # sw.add_scalar('MAPE_%s_points' % (i), mape, epoch)
311
-
312
-
313
- def predict_and_save_results_mstgcn(net, data_loader, data_target_tensor, global_step, metric_method,_mean, _std, params_path, type):
314
- '''
315
-
316
- :param net: nn.Module
317
- :param data_loader: torch.utils.data.utils.DataLoader
318
- :param data_target_tensor: tensor
319
- :param epoch: int
320
- :param _mean: (1, 1, 3, 1)
321
- :param _std: (1, 1, 3, 1)
322
- :param params_path: the path for saving the results
323
- :return:
324
- '''
325
- net.train(False) # ensure dropout layers are in test mode
326
-
327
- with torch.no_grad():
328
-
329
- data_target_tensor = data_target_tensor.cpu().numpy()
330
-
331
- loader_length = len(data_loader) # nb of batch
332
-
333
- prediction = [] # 存储所有batch的output
334
-
335
- input = [] # 存储所有batch的input
336
-
337
- for batch_index, batch_data in enumerate(data_loader):
338
-
339
- encoder_inputs, labels = batch_data
340
-
341
- input.append(encoder_inputs[:, :, 0:1].cpu().numpy()) # (batch, T', 1)
342
-
343
- outputs = net(encoder_inputs)
344
-
345
- prediction.append(outputs.detach().cpu().numpy())
346
-
347
- if batch_index % 100 == 0:
348
- print('predicting data set batch %s / %s' % (batch_index + 1, loader_length))
349
-
350
- input = np.concatenate(input, 0)
351
-
352
- input = re_normalization(input, _mean, _std)
353
-
354
- prediction = np.concatenate(prediction, 0) # (batch, T', 1)
355
-
356
- print('input:', input.shape)
357
- print('prediction:', prediction.shape)
358
- print('data_target_tensor:', data_target_tensor.shape)
359
- output_filename = os.path.join(params_path, 'output_epoch_%s_%s' % (global_step, type))
360
- np.savez(output_filename, input=input, prediction=prediction, data_target_tensor=data_target_tensor)
361
-
362
- # 计算误差
363
- excel_list = []
364
- prediction_length = prediction.shape[2]
365
-
366
- for i in range(prediction_length):
367
- assert data_target_tensor.shape[0] == prediction.shape[0]
368
- print('current epoch: %s, predict %s points' % (global_step, i))
369
- if metric_method == 'mask':
370
- mae = masked_mae_test(data_target_tensor[:, :, i], prediction[:, :, i],0.0)
371
- rmse = masked_rmse_test(data_target_tensor[:, :, i], prediction[:, :, i],0.0)
372
- mape = masked_mape_np(data_target_tensor[:, :, i], prediction[:, :, i], 0)
373
- else :
374
- mae = mean_absolute_error(data_target_tensor[:, :, i], prediction[:, :, i])
375
- rmse = mean_squared_error(data_target_tensor[:, :, i], prediction[:, :, i]) ** 0.5
376
- mape = masked_mape_np(data_target_tensor[:, :, i], prediction[:, :, i], 0)
377
- print('MAE: %.2f' % (mae))
378
- print('RMSE: %.2f' % (rmse))
379
- print('MAPE: %.2f' % (mape))
380
- excel_list.extend([mae, rmse, mape])
381
-
382
- # print overall results
383
- if metric_method == 'mask':
384
- mae = masked_mae_test(data_target_tensor.reshape(-1, 1), prediction.reshape(-1, 1), 0.0)
385
- rmse = masked_rmse_test(data_target_tensor.reshape(-1, 1), prediction.reshape(-1, 1), 0.0)
386
- mape = masked_mape_np(data_target_tensor.reshape(-1, 1), prediction.reshape(-1, 1), 0)
387
- else :
388
- mae = mean_absolute_error(data_target_tensor.reshape(-1, 1), prediction.reshape(-1, 1))
389
- rmse = mean_squared_error(data_target_tensor.reshape(-1, 1), prediction.reshape(-1, 1)) ** 0.5
390
- mape = masked_mape_np(data_target_tensor.reshape(-1, 1), prediction.reshape(-1, 1), 0)
391
- print('all MAE: %.2f' % (mae))
392
- print('all RMSE: %.2f' % (rmse))
393
- print('all MAPE: %.2f' % (mape))
394
- excel_list.extend([mae, rmse, mape])
395
- print(excel_list)
396
-
397
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
code/model.py DELETED
@@ -1,90 +0,0 @@
1
- from functools import partial
2
- import sys
3
-
4
- sys.path.append("lib")
5
- from lib.metrics import sce_loss
6
- import torch
7
- import torch.nn as nn
8
- import torch.nn.functional as F
9
- import dgl.nn as dglnn
10
-
11
-
12
- class GMae(nn.Module):
13
- def __init__(self, encoder, decoder,
14
- in_dim, hidden_dim, out_dim, mask_rate=0.3, replace_rate=0.1, alpha_l=2,
15
- embedding_layer_classes=5, embedding_layer_dim=4):
16
- super(GMae, self).__init__()
17
- self.Z_embedding = nn.Embedding(embedding_layer_classes, embedding_layer_dim)
18
- self.encoder = encoder
19
- self.decoder = decoder
20
- self.mask_rate = mask_rate
21
- self.replace_rate = replace_rate
22
- self.alpha_l = alpha_l
23
- self.in_dim = in_dim
24
- self.hidden_dim = hidden_dim
25
- self.out_dim = out_dim
26
- self.embedding_layer_classes = embedding_layer_classes
27
- self.embedding_layer_dim = embedding_layer_dim
28
- self.enc_mask_token = nn.Parameter(torch.zeros(1, in_dim))
29
- self.criterion = partial(sce_loss, alpha=alpha_l)
30
- self.encoder_to_decoder = nn.Linear(hidden_dim, hidden_dim, bias=False)
31
-
32
- def encode_atom_index(self, Z_index):
33
- return self.Z_embedding(Z_index)
34
-
35
- def encoding_mask_noise(self, g, x, mask_rate=0.3):
36
- num_nodes = g.num_nodes()
37
- perm = torch.randperm(num_nodes, device=x.device)
38
- # random masking
39
- num_mask_nodes = int(mask_rate * num_nodes)
40
- mask_nodes = perm[: num_mask_nodes]
41
- keep_nodes = perm[num_mask_nodes:]
42
-
43
- if self.replace_rate > 0:
44
- num_noise_nodes = int(self.replace_rate * num_mask_nodes)
45
- perm_mask = torch.randperm(num_mask_nodes, device=x.device)
46
- token_nodes = mask_nodes[perm_mask[: int((1 - self.replace_rate) * num_mask_nodes)]]
47
- noise_nodes = mask_nodes[perm_mask[-int(self.replace_rate * num_mask_nodes):]]
48
- noise_to_be_chosen = torch.randperm(num_nodes, device=x.device)[:num_noise_nodes]
49
- out_x = x.clone()
50
- out_x[token_nodes] = 0.0
51
- out_x[noise_nodes] = x[noise_to_be_chosen]
52
- else:
53
- out_x = x.clone()
54
- token_nodes = mask_nodes
55
- out_x[mask_nodes] = 0.0
56
-
57
- out_x[token_nodes] += self.enc_mask_token
58
- use_g = g.clone()
59
-
60
- return use_g, out_x, (mask_nodes, keep_nodes)
61
-
62
- def mask_attr_prediction(self, g, x):
63
- use_g, use_x, (mask_nodes, keep_nodes) = self.encoding_mask_noise(g, x, self.mask_rate)
64
- enc_rep = self.encoder(use_g, use_x)
65
- # ---- attribute reconstruction ----
66
- rep = self.encoder_to_decoder(enc_rep)
67
- recon = self.decoder(use_g, rep)
68
- x_init = x[mask_nodes]
69
- x_rec = recon[mask_nodes]
70
- loss = self.criterion(x_rec, x_init)
71
- return loss
72
-
73
- def embed(self, g, x):
74
- rep = self.encoder(g, x)
75
- return rep
76
-
77
-
78
- class SimpleGnn(nn.Module):
79
- def __init__(self, in_feats, hid_feats, out_feats):
80
- super().__init__()
81
- self.conv1 = dglnn.SAGEConv(
82
- in_feats=in_feats, out_feats=hid_feats, aggregator_type="mean")
83
- self.conv2 = dglnn.SAGEConv(
84
- in_feats=hid_feats, out_feats=out_feats, aggregator_type="mean")
85
-
86
- def forward(self, graph, inputs):
87
- h = self.conv1(graph, inputs)
88
- h = F.relu(h)
89
- h = self.conv2(graph, h)
90
- return h
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
code/prepare_QM9_dataset.py DELETED
@@ -1,48 +0,0 @@
1
- import argparse
2
- import os
3
- import time
4
-
5
- from dgl.data import QM9Dataset
6
- from dgl.dataloading import GraphDataLoader
7
- from rdkit import Chem
8
- from rdkit import RDLogger;
9
- from torch.utils.data import Dataset
10
- import torch.nn.functional as F
11
- from tqdm import tqdm
12
- import ast
13
-
14
- from QM9_dataset_class import PreprocessedQM9Dataset
15
-
16
- RDLogger.DisableLog('rdApp.*')
17
- import torch
18
- import torch.nn as nn
19
- import torch.optim as optim
20
-
21
-
22
- QM9_label_keys = ['mu','alpha','homo','lumo','gap','r2','zpve','U0','U','H','G','Cv']
23
-
24
-
25
-
26
- def prepare_main(label_keys=None, cutoff=5.0,save_path="dataset"):
27
- assert save_path !="","save_path shouldn't be empty"
28
- if label_keys is None:
29
- raise ValueError('label_keys cannot be None')
30
- for label_key in label_keys:
31
- if label_key not in QM9_label_keys:
32
- raise ValueError('label_key must be in QM9_label_keys,refer:https://docs.dgl.ai/en/0.8.x/generated/dgl.data.QM9Dataset.html')
33
- dataset = QM9Dataset(label_keys=label_keys, cutoff=5.0)
34
- dataset_processed = PreprocessedQM9Dataset(dataset)
35
- print("Store processed QM9 dataset:",save_path)
36
- dataset_processed.save_dataset("dataset")
37
- return dataset_processed
38
-
39
- def main():
40
- parser = argparse.ArgumentParser(description="Prepare QM9 dataset")
41
- parser.add_argument('--label_keys', nargs='+', help="label keys in QM9 dataset,like 'mu' 'gap'....")
42
- parser.add_argument('--cutoff', type=float, default=5.0, help="cutoff for atom number")
43
- parser.add_argument('--save_path', type=str, default="dataset", help="processed_dataset save path")
44
- args = parser.parse_args()
45
- prepare_main(label_keys=args.label_keys, cutoff=args.cutoff)
46
-
47
- if __name__ == '__main__':
48
- main()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
code/run.py DELETED
@@ -1,94 +0,0 @@
1
- import argparse
2
- import os
3
-
4
- import dgl
5
- import torch.utils.data
6
- from dgl.dataloading import GraphDataLoader
7
- from torch import optim
8
- from tqdm import tqdm
9
- from QM9_dataset_class import PreprocessedQM9Dataset
10
- from model import SimpleGnn, GMae
11
- import torch.nn as nn
12
-
13
- def train_epoch(epoch, graphLoader: torch.utils.data.DataLoader,
14
- model: nn.Module,device, optimizer:torch.optim.Optimizer,
15
- save_dir:str
16
- ):
17
- print(f"epoch {epoch} started!")
18
- model.train()
19
- model.encoder.train()
20
- model.decoder.train()
21
- model.to(device)
22
- loss_epoch = 0
23
- for batch in tqdm(graphLoader):
24
- optimizer.zero_grad()
25
- batch_g, _ = batch
26
- R = batch_g.ndata["R"].to(device)
27
- # Z_index = batch_g.ndata["Z_index"].to(device)
28
- Z_index = batch_g.ndata["Z_index"].to(device)
29
- Z_emb = model.encode_atom_index(Z_index)
30
- feat = torch.cat([R, Z_emb], dim=1)
31
- batch_g = batch_g.to(device)
32
- loss = model.mask_attr_prediction(batch_g, feat)
33
- loss.backward()
34
- optimizer.step()
35
- loss_epoch += loss.item()
36
- return loss_epoch
37
-
38
-
39
- def train_loop(dataset_path, epochs, batch_size,device,save_dir):
40
- device = torch.device(device)
41
- dataset = PreprocessedQM9Dataset(None)
42
- dataset.load_dataset(dataset_path)
43
- print("Dataset loaded:", dataset_path, "Total samples:", len(dataset))
44
- print("Initializing dataloader")
45
- myGLoader = GraphDataLoader(dataset, batch_size=batch_size, pin_memory=True,shuffle=False)
46
- sage_enc = SimpleGnn(in_feats=7, hid_feats=4, out_feats=4) # 7 = R_dim(3)+Z_embedding_dim(4)
47
- sage_dec = SimpleGnn(in_feats=4, hid_feats=4, out_feats=7)
48
- gmae = GMae(sage_enc, sage_dec, 7, 4, 7, replace_rate=0)
49
- optimizer = optim.Adam(gmae.parameters(), lr=1e-3)
50
- print("Start training", "epochs:", epochs, "batch_size:", batch_size)
51
- for epoch in range(epochs):
52
- loss_epoch = train_epoch(epoch, myGLoader,gmae,device,optimizer,save_dir)
53
- formatted_loss_epoch = f"{loss_epoch:.3f}"
54
- save_path = os.path.join(save_dir,f"epoch_{epoch}",f"gmae_{formatted_loss_epoch}.pt")
55
- save_subdir = os.path.dirname(save_path)
56
- if not os.path.exists(save_subdir):
57
- os.makedirs(save_subdir, exist_ok=True)
58
- torch.save(gmae.state_dict(), save_path)
59
- print(f"Epoch:{epoch},loss:{loss_epoch},Model saved:{save_path}")
60
- with torch.no_grad():
61
- embedded_graphs = []
62
- print(f"Epoch:{epoch},start embedding")
63
- gmae.eval()
64
- gmae.encoder.eval()
65
- for batch in tqdm(myGLoader):
66
- batch_g, _ = batch
67
- R = batch_g.ndata["R"].to(device)
68
- Z_index = batch_g.ndata["Z_index"].to(device)
69
- Z_emb = gmae.encode_atom_index(Z_index)
70
- feat = torch.cat([R, Z_emb], dim=1)
71
- batch_g = batch_g.to(device)
72
- batch_g.ndata["embedding"] = gmae.embed(batch_g,feat)
73
- unbatched_graphs = dgl.unbatch(batch_g)
74
- embedded_graphs.extend(unbatched_graphs)
75
- for idx,embedded_graph in enumerate(embedded_graphs):
76
- embeddings_save_path = os.path.join(save_dir, f"epoch_{epoch}", f"embedding_{idx}.dgl")
77
- dgl.save_graphs(embeddings_save_path, [embedded_graph])
78
- print(f"epoch:{epoch},embedding saved:{embeddings_save_path},total_graphs:{len(embedded_graphs)}")
79
-
80
-
81
-
82
- def main():
83
- parser = argparse.ArgumentParser(description="Prepare QM9 dataset")
84
- parser.add_argument('--dataset_path', type=str, default='dataset/QM9_dataset_processed.pt')
85
- parser.add_argument('--batch_size', type=int, default=4)
86
- parser.add_argument('--epochs', type=int, default=10, help='number of epochs')
87
- parser.add_argument("--device", type=str, default='cuda:0')
88
- parser.add_argument("--save_dir", type=str, default='./model')
89
- args = parser.parse_args()
90
- train_loop(args.dataset_path, args.epochs, args.batch_size,args.device,args.save_dir)
91
-
92
-
93
- if __name__ == '__main__':
94
- main()