HUANGYIFEI
commited on
Commit
•
0ff7d47
1
Parent(s):
addb4f7
Delete code
Browse files- code/QM9_dataset_class.py +0 -51
- code/lib/__pycache__/metrics.cpython-38.pyc +0 -0
- code/lib/metrics.py +0 -95
- code/lib/utils.py +0 -397
- code/model.py +0 -90
- code/prepare_QM9_dataset.py +0 -48
- code/run.py +0 -94
code/QM9_dataset_class.py
DELETED
@@ -1,51 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
|
3 |
-
from tqdm import tqdm
|
4 |
-
import networkx as nx
|
5 |
-
import torch
|
6 |
-
from torch.utils.data import Dataset
|
7 |
-
|
8 |
-
atom_number_index_dict = {
|
9 |
-
1: 0, # H
|
10 |
-
6: 1, # C
|
11 |
-
7: 2, # N
|
12 |
-
8: 3, # O
|
13 |
-
9: 4 # F
|
14 |
-
}
|
15 |
-
atom_index_number_dict = {v: k for k, v in atom_number_index_dict.items()}
|
16 |
-
max_atom_number = max(atom_number_index_dict.keys())
|
17 |
-
|
18 |
-
|
19 |
-
def atom_number2index(atom_number):
|
20 |
-
return atom_number_index_dict[atom_number]
|
21 |
-
|
22 |
-
|
23 |
-
def atom_index2number(atom_index):
|
24 |
-
return atom_index_number_dict[atom_index]
|
25 |
-
|
26 |
-
|
27 |
-
class PreprocessedQM9Dataset(Dataset):
|
28 |
-
def __init__(self, dataset):
|
29 |
-
self.dataset = dataset
|
30 |
-
self.processed_data = []
|
31 |
-
if dataset is not None:
|
32 |
-
self._preprocess()
|
33 |
-
def _preprocess(self):
|
34 |
-
i = 0
|
35 |
-
for g, label in tqdm(self.dataset):
|
36 |
-
g.ndata["Z_index"] = torch.tensor([atom_number2index(z.item()) for z in g.ndata["Z"]])
|
37 |
-
g.ndata["sample_idx"] = i
|
38 |
-
self.processed_data.append((g, label))
|
39 |
-
|
40 |
-
def __len__(self):
|
41 |
-
return len(self.processed_data)
|
42 |
-
|
43 |
-
def __getitem__(self, idx):
|
44 |
-
return self.processed_data[idx]
|
45 |
-
|
46 |
-
def save_dataset(self, save_dir):
|
47 |
-
if not os.path.exists(save_dir):
|
48 |
-
os.makedirs(save_dir)
|
49 |
-
torch.save(self.processed_data, os.path.join(save_dir,"QM9_dataset_processed.pt"))
|
50 |
-
def load_dataset(self, dataset_path):
|
51 |
-
self.processed_data = torch.load(dataset_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
code/lib/__pycache__/metrics.cpython-38.pyc
DELETED
Binary file (2.42 kB)
|
|
code/lib/metrics.py
DELETED
@@ -1,95 +0,0 @@
|
|
1 |
-
# -*- coding:utf-8 -*-
|
2 |
-
|
3 |
-
import numpy as np
|
4 |
-
import torch
|
5 |
-
import torch.nn.functional as F
|
6 |
-
|
7 |
-
|
8 |
-
def masked_mape_np(y_true, y_pred, null_val=np.nan):
|
9 |
-
with np.errstate(divide='ignore', invalid='ignore'):
|
10 |
-
if np.isnan(null_val):
|
11 |
-
mask = ~np.isnan(y_true)
|
12 |
-
else:
|
13 |
-
mask = np.not_equal(y_true, null_val)
|
14 |
-
mask = mask.astype('float32')
|
15 |
-
mask /= np.mean(mask)
|
16 |
-
mape = np.abs(np.divide(np.subtract(y_pred, y_true).astype('float32'),
|
17 |
-
y_true))
|
18 |
-
mape = np.nan_to_num(mask * mape)
|
19 |
-
return np.mean(mape)
|
20 |
-
|
21 |
-
|
22 |
-
def masked_mse(preds, labels, null_val=np.nan):
|
23 |
-
if np.isnan(null_val):
|
24 |
-
mask = ~torch.isnan(labels)
|
25 |
-
else:
|
26 |
-
mask = (labels != null_val)
|
27 |
-
mask = mask.float()
|
28 |
-
# print(mask.sum())
|
29 |
-
# print(mask.shape[0]*mask.shape[1]*mask.shape[2])
|
30 |
-
mask /= torch.mean((mask))
|
31 |
-
mask = torch.where(torch.isnan(mask), torch.zeros_like(mask), mask)
|
32 |
-
loss = (preds - labels) ** 2
|
33 |
-
loss = loss * mask
|
34 |
-
loss = torch.where(torch.isnan(loss), torch.zeros_like(loss), loss)
|
35 |
-
return torch.mean(loss)
|
36 |
-
|
37 |
-
|
38 |
-
def masked_rmse(preds, labels, null_val=np.nan):
|
39 |
-
return torch.sqrt(masked_mse(preds=preds, labels=labels,
|
40 |
-
null_val=null_val))
|
41 |
-
|
42 |
-
|
43 |
-
def masked_mae(preds, labels, null_val=np.nan):
|
44 |
-
if np.isnan(null_val):
|
45 |
-
mask = ~torch.isnan(labels)
|
46 |
-
else:
|
47 |
-
mask = (labels != null_val)
|
48 |
-
mask = mask.float()
|
49 |
-
mask /= torch.mean((mask))
|
50 |
-
mask = torch.where(torch.isnan(mask), torch.zeros_like(mask), mask)
|
51 |
-
loss = torch.abs(preds - labels)
|
52 |
-
loss = loss * mask
|
53 |
-
loss = torch.where(torch.isnan(loss), torch.zeros_like(loss), loss)
|
54 |
-
return torch.mean(loss)
|
55 |
-
|
56 |
-
|
57 |
-
def masked_mae_test(y_true, y_pred, null_val=np.nan):
|
58 |
-
with np.errstate(divide='ignore', invalid='ignore'):
|
59 |
-
if np.isnan(null_val):
|
60 |
-
mask = ~np.isnan(y_true)
|
61 |
-
else:
|
62 |
-
mask = np.not_equal(y_true, null_val)
|
63 |
-
mask = mask.astype('float32')
|
64 |
-
mask /= np.mean(mask)
|
65 |
-
mae = np.abs(np.subtract(y_pred, y_true).astype('float32'),
|
66 |
-
)
|
67 |
-
mae = np.nan_to_num(mask * mae)
|
68 |
-
return np.mean(mae)
|
69 |
-
|
70 |
-
|
71 |
-
def masked_rmse_test(y_true, y_pred, null_val=np.nan):
|
72 |
-
with np.errstate(divide='ignore', invalid='ignore'):
|
73 |
-
if np.isnan(null_val):
|
74 |
-
mask = ~np.isnan(y_true)
|
75 |
-
else:
|
76 |
-
# null_val=null_val
|
77 |
-
mask = np.not_equal(y_true, null_val)
|
78 |
-
mask = mask.astype('float32')
|
79 |
-
mask /= np.mean(mask)
|
80 |
-
mse = ((y_pred - y_true) ** 2)
|
81 |
-
mse = np.nan_to_num(mask * mse)
|
82 |
-
return np.sqrt(np.mean(mse))
|
83 |
-
|
84 |
-
|
85 |
-
def sce_loss(x, y, alpha=3):
|
86 |
-
x = F.normalize(x, p=2, dim=-1)
|
87 |
-
y = F.normalize(y, p=2, dim=-1)
|
88 |
-
|
89 |
-
# loss = - (x * y).sum(dim=-1)
|
90 |
-
# loss = (x_h - y_h).norm(dim=1).pow(alpha)
|
91 |
-
|
92 |
-
loss = (1 - (x * y).sum(dim=-1)).pow_(alpha)
|
93 |
-
|
94 |
-
loss = loss.mean()
|
95 |
-
return loss
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
code/lib/utils.py
DELETED
@@ -1,397 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import numpy as np
|
3 |
-
import torch
|
4 |
-
import torch.utils.data
|
5 |
-
from sklearn.metrics import mean_absolute_error
|
6 |
-
from sklearn.metrics import mean_squared_error
|
7 |
-
import sys
|
8 |
-
project_path = "/content/gdrive//My Drive/CS5248_project"
|
9 |
-
sys.path.append(project_path + '/lib')
|
10 |
-
from metrics import masked_mape_np
|
11 |
-
from scipy.sparse.linalg import eigs
|
12 |
-
from metrics import masked_mape_np, masked_mae,masked_mse,masked_rmse,masked_mae_test,masked_rmse_test
|
13 |
-
|
14 |
-
|
15 |
-
def re_normalization(x, mean, std):
|
16 |
-
x = x * std + mean
|
17 |
-
return x
|
18 |
-
|
19 |
-
|
20 |
-
def max_min_normalization(x, _max, _min):
|
21 |
-
x = 1. * (x - _min)/(_max - _min)
|
22 |
-
x = x * 2. - 1.
|
23 |
-
return x
|
24 |
-
|
25 |
-
|
26 |
-
def re_max_min_normalization(x, _max, _min):
|
27 |
-
x = (x + 1.) / 2.
|
28 |
-
x = 1. * x * (_max - _min) + _min
|
29 |
-
return x
|
30 |
-
|
31 |
-
|
32 |
-
def get_adjacency_matrix(distance_df_filename, num_of_vertices, id_filename=None):
|
33 |
-
'''
|
34 |
-
Parameters
|
35 |
-
----------
|
36 |
-
distance_df_filename: str, path of the csv file contains edges information
|
37 |
-
|
38 |
-
num_of_vertices: int, the number of vertices
|
39 |
-
|
40 |
-
Returns
|
41 |
-
----------
|
42 |
-
A: np.ndarray, adjacency matrix
|
43 |
-
|
44 |
-
'''
|
45 |
-
if 'npy' in distance_df_filename:
|
46 |
-
|
47 |
-
adj_mx = np.load(distance_df_filename)
|
48 |
-
|
49 |
-
return adj_mx, None
|
50 |
-
|
51 |
-
else:
|
52 |
-
|
53 |
-
import csv
|
54 |
-
|
55 |
-
A = np.zeros((int(num_of_vertices), int(num_of_vertices)),
|
56 |
-
dtype=np.float32)
|
57 |
-
|
58 |
-
distaneA = np.zeros((int(num_of_vertices), int(num_of_vertices)),
|
59 |
-
dtype=np.float32)
|
60 |
-
|
61 |
-
if id_filename:
|
62 |
-
|
63 |
-
with open(id_filename, 'r') as f:
|
64 |
-
id_dict = {int(i): idx for idx, i in enumerate(f.read().strip().split('\n'))} # 把节点id(idx)映射成从0开始的索引
|
65 |
-
|
66 |
-
with open(distance_df_filename, 'r') as f:
|
67 |
-
f.readline()
|
68 |
-
reader = csv.reader(f)
|
69 |
-
for row in reader:
|
70 |
-
if len(row) != 3:
|
71 |
-
continue
|
72 |
-
i, j, distance = int(row[0]), int(row[1]), float(row[2])
|
73 |
-
A[id_dict[i], id_dict[j]] = 1
|
74 |
-
distaneA[id_dict[i], id_dict[j]] = distance
|
75 |
-
return A, distaneA
|
76 |
-
|
77 |
-
else:
|
78 |
-
|
79 |
-
with open(distance_df_filename, 'r') as f:
|
80 |
-
f.readline()
|
81 |
-
reader = csv.reader(f)
|
82 |
-
for row in reader:
|
83 |
-
if len(row) != 3:
|
84 |
-
continue
|
85 |
-
i, j, distance = int(row[0]), int(row[1]), float(row[2])
|
86 |
-
A[i, j] = 1
|
87 |
-
distaneA[i, j] = distance
|
88 |
-
return A, distaneA
|
89 |
-
|
90 |
-
|
91 |
-
def scaled_Laplacian(W):
|
92 |
-
'''
|
93 |
-
compute \tilde{L}
|
94 |
-
|
95 |
-
Parameters
|
96 |
-
----------
|
97 |
-
W: np.ndarray, shape is (N, N), N is the num of vertices
|
98 |
-
|
99 |
-
Returns
|
100 |
-
----------
|
101 |
-
scaled_Laplacian: np.ndarray, shape (N, N)
|
102 |
-
|
103 |
-
'''
|
104 |
-
|
105 |
-
assert W.shape[0] == W.shape[1]
|
106 |
-
|
107 |
-
D = np.diag(np.sum(W, axis=1))
|
108 |
-
|
109 |
-
L = D - W
|
110 |
-
|
111 |
-
lambda_max = eigs(L, k=1, which='LR')[0].real
|
112 |
-
|
113 |
-
return (2 * L) / lambda_max - np.identity(W.shape[0])
|
114 |
-
|
115 |
-
|
116 |
-
def cheb_polynomial(L_tilde, K):
|
117 |
-
'''
|
118 |
-
compute a list of chebyshev polynomials from T_0 to T_{K-1}
|
119 |
-
|
120 |
-
Parameters
|
121 |
-
----------
|
122 |
-
L_tilde: scaled Laplacian, np.ndarray, shape (N, N)
|
123 |
-
|
124 |
-
K: the maximum order of chebyshev polynomials
|
125 |
-
|
126 |
-
Returns
|
127 |
-
----------
|
128 |
-
cheb_polynomials: list(np.ndarray), length: K, from T_0 to T_{K-1}
|
129 |
-
|
130 |
-
'''
|
131 |
-
|
132 |
-
N = L_tilde.shape[0]
|
133 |
-
|
134 |
-
cheb_polynomials = [np.identity(N), L_tilde.copy()]
|
135 |
-
|
136 |
-
for i in range(2, K):
|
137 |
-
cheb_polynomials.append(2 * L_tilde * cheb_polynomials[i - 1] - cheb_polynomials[i - 2])
|
138 |
-
|
139 |
-
return cheb_polynomials
|
140 |
-
|
141 |
-
|
142 |
-
def load_graphdata_channel1(graph_signal_matrix_filename, num_of_indices, DEVICE, batch_size, shuffle=True):
|
143 |
-
'''
|
144 |
-
这个是为PEMS的数据准备的函数
|
145 |
-
将x,y都处理成归一化到[-1,1]之前的数据;
|
146 |
-
每个样本同时包含所有监测点的数据,所以本函数构造的数据输入时空序列预测模型;
|
147 |
-
该函数会把hour, day, week的时间串起来;
|
148 |
-
注: 从文件读入的数据,x是最大最小归一化的,但是y是真实值
|
149 |
-
这个函数转为mstgcn,astgcn设计,返回的数据x都是通过减均值除方差进行归一化的,y都是真实值
|
150 |
-
:param graph_signal_matrix_filename: str
|
151 |
-
:param num_of_hours: int
|
152 |
-
:param num_of_days: int
|
153 |
-
:param num_of_weeks: int
|
154 |
-
:param DEVICE:
|
155 |
-
:param batch_size: int
|
156 |
-
:return:
|
157 |
-
three DataLoaders, each dataloader contains:
|
158 |
-
test_x_tensor: (B, N_nodes, in_feature, T_input)
|
159 |
-
test_decoder_input_tensor: (B, N_nodes, T_output)
|
160 |
-
test_target_tensor: (B, N_nodes, T_output)
|
161 |
-
|
162 |
-
'''
|
163 |
-
|
164 |
-
file = os.path.basename(graph_signal_matrix_filename).split('.')[0]
|
165 |
-
|
166 |
-
dirpath = os.path.dirname(graph_signal_matrix_filename)
|
167 |
-
|
168 |
-
filename = os.path.join(dirpath,
|
169 |
-
file) +'_astcgn'
|
170 |
-
|
171 |
-
print('load file:', filename)
|
172 |
-
|
173 |
-
file_data = np.load(filename + '.npz')
|
174 |
-
train_x = file_data['train_x'] # (10181, 307, 3, 12)
|
175 |
-
train_x = train_x[:, :, 0:5, :]
|
176 |
-
train_target = file_data['train_target'] # (10181, 307, 12)
|
177 |
-
|
178 |
-
val_x = file_data['val_x']
|
179 |
-
val_x = val_x[:, :, 0:5, :]
|
180 |
-
val_target = file_data['val_target']
|
181 |
-
|
182 |
-
test_x = file_data['test_x']
|
183 |
-
test_x = test_x[:, :, 0:5, :]
|
184 |
-
test_target = file_data['test_target']
|
185 |
-
|
186 |
-
mean = file_data['mean'][:, :, 0:5, :] # (1, 1, 3, 1)
|
187 |
-
std = file_data['std'][:, :, 0:5, :] # (1, 1, 3, 1)
|
188 |
-
|
189 |
-
# ------- train_loader -------
|
190 |
-
train_x_tensor = torch.from_numpy(train_x).type(torch.FloatTensor).to(DEVICE) # (B, N, F, T)
|
191 |
-
train_target_tensor = torch.from_numpy(train_target).type(torch.FloatTensor).to(DEVICE) # (B, N, T)
|
192 |
-
|
193 |
-
train_dataset = torch.utils.data.TensorDataset(train_x_tensor, train_target_tensor)
|
194 |
-
|
195 |
-
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=shuffle)
|
196 |
-
|
197 |
-
# ------- val_loader -------
|
198 |
-
val_x_tensor = torch.from_numpy(val_x).type(torch.FloatTensor).to(DEVICE) # (B, N, F, T)
|
199 |
-
val_target_tensor = torch.from_numpy(val_target).type(torch.FloatTensor).to(DEVICE) # (B, N, T)
|
200 |
-
|
201 |
-
val_dataset = torch.utils.data.TensorDataset(val_x_tensor, val_target_tensor)
|
202 |
-
|
203 |
-
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
|
204 |
-
|
205 |
-
# ------- test_loader -------
|
206 |
-
test_x_tensor = torch.from_numpy(test_x).type(torch.FloatTensor).to(DEVICE) # (B, N, F, T)
|
207 |
-
test_target_tensor = torch.from_numpy(test_target).type(torch.FloatTensor).to(DEVICE) # (B, N, T)
|
208 |
-
|
209 |
-
test_dataset = torch.utils.data.TensorDataset(test_x_tensor, test_target_tensor)
|
210 |
-
|
211 |
-
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
|
212 |
-
|
213 |
-
# print
|
214 |
-
print('train:', train_x_tensor.size(), train_target_tensor.size())
|
215 |
-
print('val:', val_x_tensor.size(), val_target_tensor.size())
|
216 |
-
print('test:', test_x_tensor.size(), test_target_tensor.size())
|
217 |
-
|
218 |
-
return train_loader, train_target_tensor, val_loader, val_target_tensor, test_loader, test_target_tensor, mean, std
|
219 |
-
|
220 |
-
|
221 |
-
def compute_val_loss_mstgcn(net, val_loader, criterion, masked_flag,missing_value,sw, epoch, limit=None):
|
222 |
-
'''
|
223 |
-
for rnn, compute mean loss on validation set
|
224 |
-
:param net: model
|
225 |
-
:param val_loader: torch.utils.data.utils.DataLoader
|
226 |
-
:param criterion: torch.nn.MSELoss
|
227 |
-
:param sw: tensorboardX.SummaryWriter
|
228 |
-
:param global_step: int, current global_step
|
229 |
-
:param limit: int,
|
230 |
-
:return: val_loss
|
231 |
-
'''
|
232 |
-
|
233 |
-
net.train(False) # ensure dropout layers are in evaluation mode
|
234 |
-
|
235 |
-
with torch.no_grad():
|
236 |
-
|
237 |
-
val_loader_length = len(val_loader) # nb of batch
|
238 |
-
|
239 |
-
tmp = [] # 记录了所有batch的loss
|
240 |
-
|
241 |
-
for batch_index, batch_data in enumerate(val_loader):
|
242 |
-
encoder_inputs, labels = batch_data
|
243 |
-
outputs = net(encoder_inputs)
|
244 |
-
if masked_flag:
|
245 |
-
loss = criterion(outputs, labels, missing_value)
|
246 |
-
else:
|
247 |
-
loss = criterion(outputs, labels)
|
248 |
-
|
249 |
-
tmp.append(loss.item())
|
250 |
-
if batch_index % 100 == 0:
|
251 |
-
print('validation batch %s / %s, loss: %.2f' % (batch_index + 1, val_loader_length, loss.item()))
|
252 |
-
if (limit is not None) and batch_index >= limit:
|
253 |
-
break
|
254 |
-
|
255 |
-
validation_loss = sum(tmp) / len(tmp)
|
256 |
-
sw.add_scalar('validation_loss', validation_loss, epoch)
|
257 |
-
return validation_loss
|
258 |
-
|
259 |
-
|
260 |
-
# def evaluate_on_test_mstgcn(net, test_loader, test_target_tensor, sw, epoch, _mean, _std):
|
261 |
-
# '''
|
262 |
-
# for rnn, compute MAE, RMSE, MAPE scores of the prediction for every time step on testing set.
|
263 |
-
#
|
264 |
-
# :param net: model
|
265 |
-
# :param test_loader: torch.utils.data.utils.DataLoader
|
266 |
-
# :param test_target_tensor: torch.tensor (B, N_nodes, T_output, out_feature)=(B, N_nodes, T_output, 1)
|
267 |
-
# :param sw:
|
268 |
-
# :param epoch: int, current epoch
|
269 |
-
# :param _mean: (1, 1, 3(features), 1)
|
270 |
-
# :param _std: (1, 1, 3(features), 1)
|
271 |
-
# '''
|
272 |
-
#
|
273 |
-
# net.train(False) # ensure dropout layers are in test mode
|
274 |
-
#
|
275 |
-
# with torch.no_grad():
|
276 |
-
#
|
277 |
-
# test_loader_length = len(test_loader)
|
278 |
-
#
|
279 |
-
# test_target_tensor = test_target_tensor.cpu().numpy()
|
280 |
-
#
|
281 |
-
# prediction = [] # 存储所有batch的output
|
282 |
-
#
|
283 |
-
# for batch_index, batch_data in enumerate(test_loader):
|
284 |
-
#
|
285 |
-
# encoder_inputs, labels = batch_data
|
286 |
-
#
|
287 |
-
# outputs = net(encoder_inputs)
|
288 |
-
#
|
289 |
-
# prediction.append(outputs.detach().cpu().numpy())
|
290 |
-
#
|
291 |
-
# if batch_index % 100 == 0:
|
292 |
-
# print('predicting testing set batch %s / %s' % (batch_index + 1, test_loader_length))
|
293 |
-
#
|
294 |
-
# prediction = np.concatenate(prediction, 0) # (batch, T', 1)
|
295 |
-
# prediction_length = prediction.shape[2]
|
296 |
-
#
|
297 |
-
# for i in range(prediction_length):
|
298 |
-
# assert test_target_tensor.shape[0] == prediction.shape[0]
|
299 |
-
# print('current epoch: %s, predict %s points' % (epoch, i))
|
300 |
-
# mae = mean_absolute_error(test_target_tensor[:, :, i], prediction[:, :, i])
|
301 |
-
# rmse = mean_squared_error(test_target_tensor[:, :, i], prediction[:, :, i]) ** 0.5
|
302 |
-
# mape = masked_mape_np(test_target_tensor[:, :, i], prediction[:, :, i], 0)
|
303 |
-
# print('MAE: %.2f' % (mae))
|
304 |
-
# print('RMSE: %.2f' % (rmse))
|
305 |
-
# print('MAPE: %.2f' % (mape))
|
306 |
-
# print()
|
307 |
-
# if sw:
|
308 |
-
# sw.add_scalar('MAE_%s_points' % (i), mae, epoch)
|
309 |
-
# sw.add_scalar('RMSE_%s_points' % (i), rmse, epoch)
|
310 |
-
# sw.add_scalar('MAPE_%s_points' % (i), mape, epoch)
|
311 |
-
|
312 |
-
|
313 |
-
def predict_and_save_results_mstgcn(net, data_loader, data_target_tensor, global_step, metric_method,_mean, _std, params_path, type):
|
314 |
-
'''
|
315 |
-
|
316 |
-
:param net: nn.Module
|
317 |
-
:param data_loader: torch.utils.data.utils.DataLoader
|
318 |
-
:param data_target_tensor: tensor
|
319 |
-
:param epoch: int
|
320 |
-
:param _mean: (1, 1, 3, 1)
|
321 |
-
:param _std: (1, 1, 3, 1)
|
322 |
-
:param params_path: the path for saving the results
|
323 |
-
:return:
|
324 |
-
'''
|
325 |
-
net.train(False) # ensure dropout layers are in test mode
|
326 |
-
|
327 |
-
with torch.no_grad():
|
328 |
-
|
329 |
-
data_target_tensor = data_target_tensor.cpu().numpy()
|
330 |
-
|
331 |
-
loader_length = len(data_loader) # nb of batch
|
332 |
-
|
333 |
-
prediction = [] # 存储所有batch的output
|
334 |
-
|
335 |
-
input = [] # 存储所有batch的input
|
336 |
-
|
337 |
-
for batch_index, batch_data in enumerate(data_loader):
|
338 |
-
|
339 |
-
encoder_inputs, labels = batch_data
|
340 |
-
|
341 |
-
input.append(encoder_inputs[:, :, 0:1].cpu().numpy()) # (batch, T', 1)
|
342 |
-
|
343 |
-
outputs = net(encoder_inputs)
|
344 |
-
|
345 |
-
prediction.append(outputs.detach().cpu().numpy())
|
346 |
-
|
347 |
-
if batch_index % 100 == 0:
|
348 |
-
print('predicting data set batch %s / %s' % (batch_index + 1, loader_length))
|
349 |
-
|
350 |
-
input = np.concatenate(input, 0)
|
351 |
-
|
352 |
-
input = re_normalization(input, _mean, _std)
|
353 |
-
|
354 |
-
prediction = np.concatenate(prediction, 0) # (batch, T', 1)
|
355 |
-
|
356 |
-
print('input:', input.shape)
|
357 |
-
print('prediction:', prediction.shape)
|
358 |
-
print('data_target_tensor:', data_target_tensor.shape)
|
359 |
-
output_filename = os.path.join(params_path, 'output_epoch_%s_%s' % (global_step, type))
|
360 |
-
np.savez(output_filename, input=input, prediction=prediction, data_target_tensor=data_target_tensor)
|
361 |
-
|
362 |
-
# 计算误差
|
363 |
-
excel_list = []
|
364 |
-
prediction_length = prediction.shape[2]
|
365 |
-
|
366 |
-
for i in range(prediction_length):
|
367 |
-
assert data_target_tensor.shape[0] == prediction.shape[0]
|
368 |
-
print('current epoch: %s, predict %s points' % (global_step, i))
|
369 |
-
if metric_method == 'mask':
|
370 |
-
mae = masked_mae_test(data_target_tensor[:, :, i], prediction[:, :, i],0.0)
|
371 |
-
rmse = masked_rmse_test(data_target_tensor[:, :, i], prediction[:, :, i],0.0)
|
372 |
-
mape = masked_mape_np(data_target_tensor[:, :, i], prediction[:, :, i], 0)
|
373 |
-
else :
|
374 |
-
mae = mean_absolute_error(data_target_tensor[:, :, i], prediction[:, :, i])
|
375 |
-
rmse = mean_squared_error(data_target_tensor[:, :, i], prediction[:, :, i]) ** 0.5
|
376 |
-
mape = masked_mape_np(data_target_tensor[:, :, i], prediction[:, :, i], 0)
|
377 |
-
print('MAE: %.2f' % (mae))
|
378 |
-
print('RMSE: %.2f' % (rmse))
|
379 |
-
print('MAPE: %.2f' % (mape))
|
380 |
-
excel_list.extend([mae, rmse, mape])
|
381 |
-
|
382 |
-
# print overall results
|
383 |
-
if metric_method == 'mask':
|
384 |
-
mae = masked_mae_test(data_target_tensor.reshape(-1, 1), prediction.reshape(-1, 1), 0.0)
|
385 |
-
rmse = masked_rmse_test(data_target_tensor.reshape(-1, 1), prediction.reshape(-1, 1), 0.0)
|
386 |
-
mape = masked_mape_np(data_target_tensor.reshape(-1, 1), prediction.reshape(-1, 1), 0)
|
387 |
-
else :
|
388 |
-
mae = mean_absolute_error(data_target_tensor.reshape(-1, 1), prediction.reshape(-1, 1))
|
389 |
-
rmse = mean_squared_error(data_target_tensor.reshape(-1, 1), prediction.reshape(-1, 1)) ** 0.5
|
390 |
-
mape = masked_mape_np(data_target_tensor.reshape(-1, 1), prediction.reshape(-1, 1), 0)
|
391 |
-
print('all MAE: %.2f' % (mae))
|
392 |
-
print('all RMSE: %.2f' % (rmse))
|
393 |
-
print('all MAPE: %.2f' % (mape))
|
394 |
-
excel_list.extend([mae, rmse, mape])
|
395 |
-
print(excel_list)
|
396 |
-
|
397 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
code/model.py
DELETED
@@ -1,90 +0,0 @@
|
|
1 |
-
from functools import partial
|
2 |
-
import sys
|
3 |
-
|
4 |
-
sys.path.append("lib")
|
5 |
-
from lib.metrics import sce_loss
|
6 |
-
import torch
|
7 |
-
import torch.nn as nn
|
8 |
-
import torch.nn.functional as F
|
9 |
-
import dgl.nn as dglnn
|
10 |
-
|
11 |
-
|
12 |
-
class GMae(nn.Module):
|
13 |
-
def __init__(self, encoder, decoder,
|
14 |
-
in_dim, hidden_dim, out_dim, mask_rate=0.3, replace_rate=0.1, alpha_l=2,
|
15 |
-
embedding_layer_classes=5, embedding_layer_dim=4):
|
16 |
-
super(GMae, self).__init__()
|
17 |
-
self.Z_embedding = nn.Embedding(embedding_layer_classes, embedding_layer_dim)
|
18 |
-
self.encoder = encoder
|
19 |
-
self.decoder = decoder
|
20 |
-
self.mask_rate = mask_rate
|
21 |
-
self.replace_rate = replace_rate
|
22 |
-
self.alpha_l = alpha_l
|
23 |
-
self.in_dim = in_dim
|
24 |
-
self.hidden_dim = hidden_dim
|
25 |
-
self.out_dim = out_dim
|
26 |
-
self.embedding_layer_classes = embedding_layer_classes
|
27 |
-
self.embedding_layer_dim = embedding_layer_dim
|
28 |
-
self.enc_mask_token = nn.Parameter(torch.zeros(1, in_dim))
|
29 |
-
self.criterion = partial(sce_loss, alpha=alpha_l)
|
30 |
-
self.encoder_to_decoder = nn.Linear(hidden_dim, hidden_dim, bias=False)
|
31 |
-
|
32 |
-
def encode_atom_index(self, Z_index):
|
33 |
-
return self.Z_embedding(Z_index)
|
34 |
-
|
35 |
-
def encoding_mask_noise(self, g, x, mask_rate=0.3):
|
36 |
-
num_nodes = g.num_nodes()
|
37 |
-
perm = torch.randperm(num_nodes, device=x.device)
|
38 |
-
# random masking
|
39 |
-
num_mask_nodes = int(mask_rate * num_nodes)
|
40 |
-
mask_nodes = perm[: num_mask_nodes]
|
41 |
-
keep_nodes = perm[num_mask_nodes:]
|
42 |
-
|
43 |
-
if self.replace_rate > 0:
|
44 |
-
num_noise_nodes = int(self.replace_rate * num_mask_nodes)
|
45 |
-
perm_mask = torch.randperm(num_mask_nodes, device=x.device)
|
46 |
-
token_nodes = mask_nodes[perm_mask[: int((1 - self.replace_rate) * num_mask_nodes)]]
|
47 |
-
noise_nodes = mask_nodes[perm_mask[-int(self.replace_rate * num_mask_nodes):]]
|
48 |
-
noise_to_be_chosen = torch.randperm(num_nodes, device=x.device)[:num_noise_nodes]
|
49 |
-
out_x = x.clone()
|
50 |
-
out_x[token_nodes] = 0.0
|
51 |
-
out_x[noise_nodes] = x[noise_to_be_chosen]
|
52 |
-
else:
|
53 |
-
out_x = x.clone()
|
54 |
-
token_nodes = mask_nodes
|
55 |
-
out_x[mask_nodes] = 0.0
|
56 |
-
|
57 |
-
out_x[token_nodes] += self.enc_mask_token
|
58 |
-
use_g = g.clone()
|
59 |
-
|
60 |
-
return use_g, out_x, (mask_nodes, keep_nodes)
|
61 |
-
|
62 |
-
def mask_attr_prediction(self, g, x):
|
63 |
-
use_g, use_x, (mask_nodes, keep_nodes) = self.encoding_mask_noise(g, x, self.mask_rate)
|
64 |
-
enc_rep = self.encoder(use_g, use_x)
|
65 |
-
# ---- attribute reconstruction ----
|
66 |
-
rep = self.encoder_to_decoder(enc_rep)
|
67 |
-
recon = self.decoder(use_g, rep)
|
68 |
-
x_init = x[mask_nodes]
|
69 |
-
x_rec = recon[mask_nodes]
|
70 |
-
loss = self.criterion(x_rec, x_init)
|
71 |
-
return loss
|
72 |
-
|
73 |
-
def embed(self, g, x):
|
74 |
-
rep = self.encoder(g, x)
|
75 |
-
return rep
|
76 |
-
|
77 |
-
|
78 |
-
class SimpleGnn(nn.Module):
|
79 |
-
def __init__(self, in_feats, hid_feats, out_feats):
|
80 |
-
super().__init__()
|
81 |
-
self.conv1 = dglnn.SAGEConv(
|
82 |
-
in_feats=in_feats, out_feats=hid_feats, aggregator_type="mean")
|
83 |
-
self.conv2 = dglnn.SAGEConv(
|
84 |
-
in_feats=hid_feats, out_feats=out_feats, aggregator_type="mean")
|
85 |
-
|
86 |
-
def forward(self, graph, inputs):
|
87 |
-
h = self.conv1(graph, inputs)
|
88 |
-
h = F.relu(h)
|
89 |
-
h = self.conv2(graph, h)
|
90 |
-
return h
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
code/prepare_QM9_dataset.py
DELETED
@@ -1,48 +0,0 @@
|
|
1 |
-
import argparse
|
2 |
-
import os
|
3 |
-
import time
|
4 |
-
|
5 |
-
from dgl.data import QM9Dataset
|
6 |
-
from dgl.dataloading import GraphDataLoader
|
7 |
-
from rdkit import Chem
|
8 |
-
from rdkit import RDLogger;
|
9 |
-
from torch.utils.data import Dataset
|
10 |
-
import torch.nn.functional as F
|
11 |
-
from tqdm import tqdm
|
12 |
-
import ast
|
13 |
-
|
14 |
-
from QM9_dataset_class import PreprocessedQM9Dataset
|
15 |
-
|
16 |
-
RDLogger.DisableLog('rdApp.*')
|
17 |
-
import torch
|
18 |
-
import torch.nn as nn
|
19 |
-
import torch.optim as optim
|
20 |
-
|
21 |
-
|
22 |
-
QM9_label_keys = ['mu','alpha','homo','lumo','gap','r2','zpve','U0','U','H','G','Cv']
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
def prepare_main(label_keys=None, cutoff=5.0,save_path="dataset"):
|
27 |
-
assert save_path !="","save_path shouldn't be empty"
|
28 |
-
if label_keys is None:
|
29 |
-
raise ValueError('label_keys cannot be None')
|
30 |
-
for label_key in label_keys:
|
31 |
-
if label_key not in QM9_label_keys:
|
32 |
-
raise ValueError('label_key must be in QM9_label_keys,refer:https://docs.dgl.ai/en/0.8.x/generated/dgl.data.QM9Dataset.html')
|
33 |
-
dataset = QM9Dataset(label_keys=label_keys, cutoff=5.0)
|
34 |
-
dataset_processed = PreprocessedQM9Dataset(dataset)
|
35 |
-
print("Store processed QM9 dataset:",save_path)
|
36 |
-
dataset_processed.save_dataset("dataset")
|
37 |
-
return dataset_processed
|
38 |
-
|
39 |
-
def main():
|
40 |
-
parser = argparse.ArgumentParser(description="Prepare QM9 dataset")
|
41 |
-
parser.add_argument('--label_keys', nargs='+', help="label keys in QM9 dataset,like 'mu' 'gap'....")
|
42 |
-
parser.add_argument('--cutoff', type=float, default=5.0, help="cutoff for atom number")
|
43 |
-
parser.add_argument('--save_path', type=str, default="dataset", help="processed_dataset save path")
|
44 |
-
args = parser.parse_args()
|
45 |
-
prepare_main(label_keys=args.label_keys, cutoff=args.cutoff)
|
46 |
-
|
47 |
-
if __name__ == '__main__':
|
48 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
code/run.py
DELETED
@@ -1,94 +0,0 @@
|
|
1 |
-
import argparse
|
2 |
-
import os
|
3 |
-
|
4 |
-
import dgl
|
5 |
-
import torch.utils.data
|
6 |
-
from dgl.dataloading import GraphDataLoader
|
7 |
-
from torch import optim
|
8 |
-
from tqdm import tqdm
|
9 |
-
from QM9_dataset_class import PreprocessedQM9Dataset
|
10 |
-
from model import SimpleGnn, GMae
|
11 |
-
import torch.nn as nn
|
12 |
-
|
13 |
-
def train_epoch(epoch, graphLoader: torch.utils.data.DataLoader,
|
14 |
-
model: nn.Module,device, optimizer:torch.optim.Optimizer,
|
15 |
-
save_dir:str
|
16 |
-
):
|
17 |
-
print(f"epoch {epoch} started!")
|
18 |
-
model.train()
|
19 |
-
model.encoder.train()
|
20 |
-
model.decoder.train()
|
21 |
-
model.to(device)
|
22 |
-
loss_epoch = 0
|
23 |
-
for batch in tqdm(graphLoader):
|
24 |
-
optimizer.zero_grad()
|
25 |
-
batch_g, _ = batch
|
26 |
-
R = batch_g.ndata["R"].to(device)
|
27 |
-
# Z_index = batch_g.ndata["Z_index"].to(device)
|
28 |
-
Z_index = batch_g.ndata["Z_index"].to(device)
|
29 |
-
Z_emb = model.encode_atom_index(Z_index)
|
30 |
-
feat = torch.cat([R, Z_emb], dim=1)
|
31 |
-
batch_g = batch_g.to(device)
|
32 |
-
loss = model.mask_attr_prediction(batch_g, feat)
|
33 |
-
loss.backward()
|
34 |
-
optimizer.step()
|
35 |
-
loss_epoch += loss.item()
|
36 |
-
return loss_epoch
|
37 |
-
|
38 |
-
|
39 |
-
def train_loop(dataset_path, epochs, batch_size,device,save_dir):
|
40 |
-
device = torch.device(device)
|
41 |
-
dataset = PreprocessedQM9Dataset(None)
|
42 |
-
dataset.load_dataset(dataset_path)
|
43 |
-
print("Dataset loaded:", dataset_path, "Total samples:", len(dataset))
|
44 |
-
print("Initializing dataloader")
|
45 |
-
myGLoader = GraphDataLoader(dataset, batch_size=batch_size, pin_memory=True,shuffle=False)
|
46 |
-
sage_enc = SimpleGnn(in_feats=7, hid_feats=4, out_feats=4) # 7 = R_dim(3)+Z_embedding_dim(4)
|
47 |
-
sage_dec = SimpleGnn(in_feats=4, hid_feats=4, out_feats=7)
|
48 |
-
gmae = GMae(sage_enc, sage_dec, 7, 4, 7, replace_rate=0)
|
49 |
-
optimizer = optim.Adam(gmae.parameters(), lr=1e-3)
|
50 |
-
print("Start training", "epochs:", epochs, "batch_size:", batch_size)
|
51 |
-
for epoch in range(epochs):
|
52 |
-
loss_epoch = train_epoch(epoch, myGLoader,gmae,device,optimizer,save_dir)
|
53 |
-
formatted_loss_epoch = f"{loss_epoch:.3f}"
|
54 |
-
save_path = os.path.join(save_dir,f"epoch_{epoch}",f"gmae_{formatted_loss_epoch}.pt")
|
55 |
-
save_subdir = os.path.dirname(save_path)
|
56 |
-
if not os.path.exists(save_subdir):
|
57 |
-
os.makedirs(save_subdir, exist_ok=True)
|
58 |
-
torch.save(gmae.state_dict(), save_path)
|
59 |
-
print(f"Epoch:{epoch},loss:{loss_epoch},Model saved:{save_path}")
|
60 |
-
with torch.no_grad():
|
61 |
-
embedded_graphs = []
|
62 |
-
print(f"Epoch:{epoch},start embedding")
|
63 |
-
gmae.eval()
|
64 |
-
gmae.encoder.eval()
|
65 |
-
for batch in tqdm(myGLoader):
|
66 |
-
batch_g, _ = batch
|
67 |
-
R = batch_g.ndata["R"].to(device)
|
68 |
-
Z_index = batch_g.ndata["Z_index"].to(device)
|
69 |
-
Z_emb = gmae.encode_atom_index(Z_index)
|
70 |
-
feat = torch.cat([R, Z_emb], dim=1)
|
71 |
-
batch_g = batch_g.to(device)
|
72 |
-
batch_g.ndata["embedding"] = gmae.embed(batch_g,feat)
|
73 |
-
unbatched_graphs = dgl.unbatch(batch_g)
|
74 |
-
embedded_graphs.extend(unbatched_graphs)
|
75 |
-
for idx,embedded_graph in enumerate(embedded_graphs):
|
76 |
-
embeddings_save_path = os.path.join(save_dir, f"epoch_{epoch}", f"embedding_{idx}.dgl")
|
77 |
-
dgl.save_graphs(embeddings_save_path, [embedded_graph])
|
78 |
-
print(f"epoch:{epoch},embedding saved:{embeddings_save_path},total_graphs:{len(embedded_graphs)}")
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
def main():
|
83 |
-
parser = argparse.ArgumentParser(description="Prepare QM9 dataset")
|
84 |
-
parser.add_argument('--dataset_path', type=str, default='dataset/QM9_dataset_processed.pt')
|
85 |
-
parser.add_argument('--batch_size', type=int, default=4)
|
86 |
-
parser.add_argument('--epochs', type=int, default=10, help='number of epochs')
|
87 |
-
parser.add_argument("--device", type=str, default='cuda:0')
|
88 |
-
parser.add_argument("--save_dir", type=str, default='./model')
|
89 |
-
args = parser.parse_args()
|
90 |
-
train_loop(args.dataset_path, args.epochs, args.batch_size,args.device,args.save_dir)
|
91 |
-
|
92 |
-
|
93 |
-
if __name__ == '__main__':
|
94 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|