ioad minist
Browse files- Image/utils/dataset_utils.py +55 -0
Image/utils/dataset_utils.py
CHANGED
@@ -53,3 +53,58 @@ def get_cifar10_dataloaders(batch_size=128, num_workers=2, local_dataset_path=No
|
|
53 |
testset, batch_size=100, shuffle=False, num_workers=num_workers)
|
54 |
|
55 |
return trainloader, testloader
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
testset, batch_size=100, shuffle=False, num_workers=num_workers)
|
54 |
|
55 |
return trainloader, testloader
|
56 |
+
|
57 |
+
def get_mnist_dataloaders(batch_size=128, num_workers=2, local_dataset_path=None):
|
58 |
+
"""获取MNIST数据集的数据加载器
|
59 |
+
|
60 |
+
Args:
|
61 |
+
batch_size: 批次大小
|
62 |
+
num_workers: 数据加载的工作进程数
|
63 |
+
local_dataset_path: 本地数据集路径,如果提供则使用本地数据集,否则下载
|
64 |
+
|
65 |
+
Returns:
|
66 |
+
trainloader: 训练数据加载器
|
67 |
+
testloader: 测试数据加载器
|
68 |
+
"""
|
69 |
+
# 数据预处理
|
70 |
+
transform_train = transforms.Compose([
|
71 |
+
transforms.RandomRotation(10), # 随机旋转±10度
|
72 |
+
transforms.RandomAffine( # 随机仿射变换
|
73 |
+
degrees=0, # 不进行旋转
|
74 |
+
translate=(0.1, 0.1), # 平移范围
|
75 |
+
scale=(0.9, 1.1) # 缩放范围
|
76 |
+
),
|
77 |
+
transforms.ToTensor(),
|
78 |
+
transforms.Normalize((0.1307,), (0.3081,)) # MNIST数据集的均值和标准差
|
79 |
+
])
|
80 |
+
|
81 |
+
transform_test = transforms.Compose([
|
82 |
+
transforms.ToTensor(),
|
83 |
+
transforms.Normalize((0.1307,), (0.3081,))
|
84 |
+
])
|
85 |
+
|
86 |
+
# 设置数据集路径
|
87 |
+
if local_dataset_path:
|
88 |
+
print(f"使用本地数据集: {local_dataset_path}")
|
89 |
+
download = False
|
90 |
+
dataset_path = local_dataset_path
|
91 |
+
else:
|
92 |
+
print("未指定本地数据集路径,将下载数据集")
|
93 |
+
download = True
|
94 |
+
dataset_path = '../dataset'
|
95 |
+
|
96 |
+
# 创建数据集路径
|
97 |
+
if not os.path.exists(dataset_path):
|
98 |
+
os.makedirs(dataset_path)
|
99 |
+
|
100 |
+
trainset = torchvision.datasets.MNIST(
|
101 |
+
root=dataset_path, train=True, download=download, transform=transform_train)
|
102 |
+
trainloader = torch.utils.data.DataLoader(
|
103 |
+
trainset, batch_size=batch_size, shuffle=True, num_workers=num_workers)
|
104 |
+
|
105 |
+
testset = torchvision.datasets.MNIST(
|
106 |
+
root=dataset_path, train=False, download=download, transform=transform_test)
|
107 |
+
testloader = torch.utils.data.DataLoader(
|
108 |
+
testset, batch_size=100, shuffle=False, num_workers=num_workers)
|
109 |
+
|
110 |
+
return trainloader, testloader
|