HUANGYIFEI
commited on
add run.py
Browse files- Graph/GraphMAE_MQ9/run.py +94 -0
Graph/GraphMAE_MQ9/run.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
|
4 |
+
import dgl
|
5 |
+
import torch.utils.data
|
6 |
+
from dgl.dataloading import GraphDataLoader
|
7 |
+
from torch import optim
|
8 |
+
from tqdm import tqdm
|
9 |
+
from QM9_dataset_class import PreprocessedQM9Dataset
|
10 |
+
from model import SimpleGnn, GMae
|
11 |
+
import torch.nn as nn
|
12 |
+
|
13 |
+
def train_epoch(epoch, graphLoader: torch.utils.data.DataLoader,
|
14 |
+
model: nn.Module,device, optimizer:torch.optim.Optimizer,
|
15 |
+
save_dir:str
|
16 |
+
):
|
17 |
+
print(f"epoch {epoch} started!")
|
18 |
+
model.train()
|
19 |
+
model.encoder.train()
|
20 |
+
model.decoder.train()
|
21 |
+
model.to(device)
|
22 |
+
loss_epoch = 0
|
23 |
+
for batch in tqdm(graphLoader):
|
24 |
+
optimizer.zero_grad()
|
25 |
+
batch_g, _ = batch
|
26 |
+
R = batch_g.ndata["R"].to(device)
|
27 |
+
# Z_index = batch_g.ndata["Z_index"].to(device)
|
28 |
+
Z_index = batch_g.ndata["Z_index"].to(device)
|
29 |
+
Z_emb = model.encode_atom_index(Z_index)
|
30 |
+
feat = torch.cat([R, Z_emb], dim=1)
|
31 |
+
batch_g = batch_g.to(device)
|
32 |
+
loss = model.mask_attr_prediction(batch_g, feat)
|
33 |
+
loss.backward()
|
34 |
+
optimizer.step()
|
35 |
+
loss_epoch += loss.item()
|
36 |
+
return loss_epoch
|
37 |
+
|
38 |
+
|
39 |
+
def train_loop(dataset_path, epochs, batch_size,device,save_dir):
|
40 |
+
device = torch.device(device)
|
41 |
+
dataset = PreprocessedQM9Dataset(None)
|
42 |
+
dataset.load_dataset(dataset_path)
|
43 |
+
print("Dataset loaded:", dataset_path, "Total samples:", len(dataset))
|
44 |
+
print("Initializing dataloader")
|
45 |
+
myGLoader = GraphDataLoader(dataset, batch_size=batch_size, pin_memory=True,shuffle=False)
|
46 |
+
sage_enc = SimpleGnn(in_feats=7, hid_feats=4, out_feats=4) # 7 = R_dim(3)+Z_embedding_dim(4)
|
47 |
+
sage_dec = SimpleGnn(in_feats=4, hid_feats=4, out_feats=7)
|
48 |
+
gmae = GMae(sage_enc, sage_dec, 7, 4, 7, replace_rate=0)
|
49 |
+
optimizer = optim.Adam(gmae.parameters(), lr=1e-3)
|
50 |
+
print("Start training", "epochs:", epochs, "batch_size:", batch_size)
|
51 |
+
for epoch in range(epochs):
|
52 |
+
loss_epoch = train_epoch(epoch, myGLoader,gmae,device,optimizer,save_dir)
|
53 |
+
formatted_loss_epoch = f"{loss_epoch:.3f}"
|
54 |
+
save_path = os.path.join(save_dir,f"epoch_{epoch}",f"gmae_{formatted_loss_epoch}.pt")
|
55 |
+
save_subdir = os.path.dirname(save_path)
|
56 |
+
if not os.path.exists(save_subdir):
|
57 |
+
os.makedirs(save_subdir, exist_ok=True)
|
58 |
+
torch.save(gmae.state_dict(), save_path)
|
59 |
+
print(f"Epoch:{epoch},loss:{loss_epoch},Model saved:{save_path}")
|
60 |
+
with torch.no_grad():
|
61 |
+
embedded_graphs = []
|
62 |
+
print(f"Epoch:{epoch},start embedding")
|
63 |
+
gmae.eval()
|
64 |
+
gmae.encoder.eval()
|
65 |
+
for batch in tqdm(myGLoader):
|
66 |
+
batch_g, _ = batch
|
67 |
+
R = batch_g.ndata["R"].to(device)
|
68 |
+
Z_index = batch_g.ndata["Z_index"].to(device)
|
69 |
+
Z_emb = gmae.encode_atom_index(Z_index)
|
70 |
+
feat = torch.cat([R, Z_emb], dim=1)
|
71 |
+
batch_g = batch_g.to(device)
|
72 |
+
batch_g.ndata["embedding"] = gmae.embed(batch_g,feat)
|
73 |
+
unbatched_graphs = dgl.unbatch(batch_g)
|
74 |
+
embedded_graphs.extend(unbatched_graphs)
|
75 |
+
for idx,embedded_graph in enumerate(embedded_graphs):
|
76 |
+
embeddings_save_path = os.path.join(save_dir, f"epoch_{epoch}", f"embedding_{idx}.dgl")
|
77 |
+
dgl.save_graphs(embeddings_save_path, [embedded_graph])
|
78 |
+
print(f"epoch:{epoch},embedding saved:{embeddings_save_path},total_graphs:{len(embedded_graphs)}")
|
79 |
+
|
80 |
+
|
81 |
+
|
82 |
+
def main():
|
83 |
+
parser = argparse.ArgumentParser(description="Prepare QM9 dataset")
|
84 |
+
parser.add_argument('--dataset_path', type=str, default='dataset/QM9_dataset_processed.pt')
|
85 |
+
parser.add_argument('--batch_size', type=int, default=4)
|
86 |
+
parser.add_argument('--epochs', type=int, default=10, help='number of epochs')
|
87 |
+
parser.add_argument("--device", type=str, default='cuda:0')
|
88 |
+
parser.add_argument("--save_dir", type=str, default='./model')
|
89 |
+
args = parser.parse_args()
|
90 |
+
train_loop(args.dataset_path, args.epochs, args.batch_size,args.device,args.save_dir)
|
91 |
+
|
92 |
+
|
93 |
+
if __name__ == '__main__':
|
94 |
+
main()
|