task_id
int64 19.3k
41.9M
| prompt
stringlengths 17
68
| suffix
stringclasses 37
values | canonical_solution
stringlengths 6
153
| test_start
stringlengths 22
198
| test
sequencelengths 1
7
| entry_point
stringlengths 7
10
| intent
stringlengths 19
200
| library
sequencelengths 0
3
| docs
listlengths 0
3
|
---|---|---|---|---|---|---|---|---|---|
2,011,048 | def f_2011048(filepath):
return | os.stat(filepath).st_size |
import os
def check(candidate): | [
"\n with open(\"tmp.txt\", 'w') as fw: fw.write(\"hello world!\")\n assert candidate(\"tmp.txt\") == 12\n",
"\n with open(\"tmp.txt\", 'w') as fw: fw.write(\"\")\n assert candidate(\"tmp.txt\") == 0\n",
"\n with open(\"tmp.txt\", 'w') as fw: fw.write('\\n')\n assert candidate(\"tmp.txt\") == 1\n",
"\n filename = 'o.txt'\n with open (filename, 'w') as f:\n f.write('a')\n assert candidate(filename) == 1\n"
] | f_2011048 | Get the characters count in a file `filepath` | [
"os"
] | [
{
"function": "os.stat",
"text": "os.stat(path, *, dir_fd=None, follow_symlinks=True) \nGet the status of a file or a file descriptor. Perform the equivalent of a stat() system call on the given path. path may be specified as either a string or bytes – directly or indirectly through the PathLike interface – or as an open file descriptor. Return a stat_result object. This function normally follows symlinks; to stat a symlink add the argument follow_symlinks=False, or use lstat(). This function can support specifying a file descriptor and not following symlinks. On Windows, passing follow_symlinks=False will disable following all name-surrogate reparse points, which includes symlinks and directory junctions. Other types of reparse points that do not resemble links or that the operating system is unable to follow will be opened directly. When following a chain of multiple links, this may result in the original link being returned instead of the non-link that prevented full traversal. To obtain stat results for the final path in this case, use the os.path.realpath() function to resolve the path name as far as possible and call lstat() on the result. This does not apply to dangling symlinks or junction points, which will raise the usual exceptions. Example: >>> import os",
"title": "python.library.os#os.stat"
}
] |
|
2,600,191 | def f_2600191(l):
return | l.count('a') |
def check(candidate): | [
"\n assert candidate(\"123456asf\") == 1\n",
"\n assert candidate(\"123456gyjnccfgsf\") == 0\n",
"\n assert candidate(\"aA\"*10) == 10\n"
] | f_2600191 | count the occurrences of item "a" in list `l` | [] | [] |
|
2,600,191 | def f_2600191(l):
return | Counter(l) |
from collections import Counter
def check(candidate): | [
"\n assert dict(candidate(\"123456asf\")) == {'1': 1, '2': 1, '3': 1, '4': 1, '5': 1, '6': 1, 'a': 1, 's': 1, 'f': 1}\n",
"\n assert candidate(\"123456gyjnccfgsf\") == {'1': 1,'2': 1,'3': 1,'4': 1,'5': 1,'6': 1,'g': 2,'y': 1,'j': 1,'n': 1,'c': 2,'f': 2,'s': 1}\n",
"\n assert candidate(\"aA\"*10) == {'a': 10, 'A': 10}\n",
"\n y = candidate([1, 6])\n assert y[1] == 1\n assert y[6] == 1\n"
] | f_2600191 | count the occurrences of items in list `l` | [
"collections"
] | [
{
"function": "Counter",
"text": "class collections.Counter([iterable-or-mapping]) \nA Counter is a dict subclass for counting hashable objects. It is a collection where elements are stored as dictionary keys and their counts are stored as dictionary values. Counts are allowed to be any integer value including zero or negative counts. The Counter class is similar to bags or multisets in other languages. Elements are counted from an iterable or initialized from another mapping (or counter): >>> c = Counter() # a new, empty counter",
"title": "python.library.collections#collections.Counter"
}
] |
|
2,600,191 | def f_2600191(l):
return | [[x, l.count(x)] for x in set(l)] |
from collections import Counter
def check(candidate): | [
"\n assert sorted(candidate(\"123456asf\")) == [['1', 1],['2', 1],['3', 1],['4', 1],['5', 1],['6', 1],['a', 1],['f', 1],['s', 1]]\n",
"\n assert sorted(candidate(\"aA\"*10)) == [['A', 10], ['a', 10]]\n"
] | f_2600191 | count the occurrences of items in list `l` | [
"collections"
] | [
{
"function": "l.count",
"text": "count(x) \nCount the number of deque elements equal to x. New in version 3.2.",
"title": "python.library.collections#collections.deque.count"
}
] |
|
2,600,191 | def f_2600191(l):
return | dict(((x, l.count(x)) for x in set(l))) |
from collections import Counter
def check(candidate): | [
"\n assert candidate(\"123456asf\") == {'4': 1, 'a': 1, '1': 1, 's': 1, '6': 1, 'f': 1, '3': 1, '5': 1, '2': 1}\n",
"\n assert candidate(\"aA\"*10) == {'A': 10, 'a': 10}\n",
"\n assert candidate([1, 6]) == {1: 1, 6: 1}\n"
] | f_2600191 | count the occurrences of items in list `l` | [
"collections"
] | [] |
|
2,600,191 | def f_2600191(l):
return | l.count('b') |
def check(candidate): | [
"\n assert candidate(\"123456abbbsf\") == 3\n",
"\n assert candidate(\"123456gyjnccfgsf\") == 0\n",
"\n assert candidate(\"Ab\"*10) == 10\n"
] | f_2600191 | count the occurrences of item "b" in list `l` | [] | [] |
|
12,842,997 | def f_12842997(srcfile, dstdir):
|
return | shutil.copy(srcfile, dstdir) |
import shutil
from unittest.mock import Mock
def check(candidate): | [
"\n shutil.copy = Mock()\n try:\n candidate('opera.txt', '/')\n except:\n return False \n"
] | f_12842997 | copy file `srcfile` to directory `dstdir` | [
"shutil"
] | [
{
"function": "shutil.copy",
"text": "shutil.copy(src, dst, *, follow_symlinks=True) \nCopies the file src to the file or directory dst. src and dst should be path-like objects or strings. If dst specifies a directory, the file will be copied into dst using the base filename from src. Returns the path to the newly created file. If follow_symlinks is false, and src is a symbolic link, dst will be created as a symbolic link. If follow_symlinks is true and src is a symbolic link, dst will be a copy of the file src refers to. copy() copies the file data and the file’s permission mode (see os.chmod()). Other metadata, like the file’s creation and modification times, is not preserved. To preserve all file metadata from the original, use copy2() instead. Raises an auditing event shutil.copyfile with arguments src, dst. Raises an auditing event shutil.copymode with arguments src, dst. Changed in version 3.3: Added follow_symlinks argument. Now returns path to the newly created file. Changed in version 3.8: Platform-specific fast-copy syscalls may be used internally in order to copy the file more efficiently. See Platform-dependent efficient copy operations section.",
"title": "python.library.shutil#shutil.copy"
}
] |
1,555,968 | def f_1555968(x):
return | max(k for k, v in x.items() if v != 0) |
def check(candidate): | [
"\n assert candidate({'a': 1, 'b': 2, 'c': 2000}) == 'c'\n",
"\n assert candidate({'a': 0., 'b': 0, 'c': 200.02}) == 'c'\n",
"\n assert candidate({'key1': -100, 'key2': 0.}) == 'key1'\n",
"\n x = {1:\"g\", 2:\"a\", 5:\"er\", -4:\"dr\"}\n assert candidate(x) == 5\n"
] | f_1555968 | find the key associated with the largest value in dictionary `x` whilst key is non-zero value | [] | [] |
|
17,021,863 | def f_17021863(file):
|
return | file.seek(0) |
def check(candidate): | [
"\n with open ('a.txt', 'w') as f:\n f.write('kangaroo\\nkoala\\noxford\\n')\n f = open('a.txt', 'r')\n f.read()\n candidate(f)\n assert f.readline() == 'kangaroo\\n'\n"
] | f_17021863 | Put the curser at beginning of the file | [] | [] |
38,152,389 | def f_38152389(df):
|
return df | df['c'] = np.where(df['a'].isnull, df['b'], df['a']) |
import numpy as np
import pandas as pd
def check(candidate): | [
"\n df = pd.DataFrame({'a': [1,2,3], 'b': [0,0,0]})\n assert np.allclose(candidate(df), pd.DataFrame({'a': [1,2,3], 'b': [0,0,0], 'c': [0,0,0]}))\n",
"\n df = pd.DataFrame({'a': [0,2,3], 'b': [4,5,6]})\n assert np.allclose(candidate(df), pd.DataFrame({'a': [0,2,3], 'b': [4,5,6], 'c': [4,5,6]}))\n"
] | f_38152389 | combine values from column 'b' and column 'a' of dataframe `df` into column 'c' of datafram `df` | [
"numpy",
"pandas"
] | [
{
"function": "numpy.where",
"text": "numpy.where numpy.where(condition, [x, y, ]/)\n \nReturn elements chosen from x or y depending on condition. Note When only condition is provided, this function is a shorthand for np.asarray(condition).nonzero(). Using nonzero directly should be preferred, as it behaves correctly for subclasses. The rest of this documentation covers only the case where all three arguments are provided. Parameters ",
"title": "numpy.reference.generated.numpy.where"
},
{
"function": "pandas.dataframe.isnull",
"text": "pandas.DataFrame.isnull DataFrame.isnull()[source]\n \nDataFrame.isnull is an alias for DataFrame.isna. Detect missing values. Return a boolean same-sized object indicating if the values are NA. NA values, such as None or numpy.NaN, gets mapped to True values. Everything else gets mapped to False values. Characters such as empty strings '' or numpy.inf are not considered NA values (unless you set pandas.options.mode.use_inf_as_na = True). Returns ",
"title": "pandas.reference.api.pandas.dataframe.isnull"
}
] |
4,175,686 | def f_4175686(d):
|
return d | del d['ele'] |
def check(candidate): | [
"\n assert candidate({\"ale\":1, \"ele\": 2}) == {\"ale\": 1}\n"
] | f_4175686 | remove key 'ele' from dictionary `d` | [] | [] |
11,574,195 | def f_11574195():
return | ['it'] + ['was'] + ['annoying'] |
def check(candidate): | [
"\n assert candidate() == ['it', 'was', 'annoying']\n"
] | f_11574195 | merge list `['it']` and list `['was']` and list `['annoying']` into one list | [] | [] |
|
587,647 | def f_587647(x):
return | str(int(x) + 1).zfill(len(x)) |
def check(candidate): | [
"\n assert candidate(\"001\") == \"002\"\n",
"\n assert candidate(\"100\") == \"101\"\n"
] | f_587647 | increment a value with leading zeroes in a number `x` | [] | [] |
|
17,315,881 | def f_17315881(df):
return | all(df.index[:-1] <= df.index[1:]) |
import pandas as pd
def check(candidate): | [
"\n df1 = pd.DataFrame({'a': [1,2], 'bb': [0,2]})\n assert candidate(df1) == True\n",
"\n df2 = pd.DataFrame({'a': [1,2,3,4,5], 'bb': [0,3,5,7,9]})\n shuffled = df2.sample(frac=3, replace=True)\n assert candidate(shuffled) == False\n",
"\n df = pd.DataFrame([[1, 2], [5, 4]], columns=['a', 'b'])\n assert candidate(df)\n"
] | f_17315881 | check if a pandas dataframe `df`'s index is sorted | [
"pandas"
] | [
{
"function": "pandas.dataframe.index",
"text": "pandas.DataFrame.index DataFrame.index\n \nThe index (row labels) of the DataFrame.",
"title": "pandas.reference.api.pandas.dataframe.index"
}
] |
|
16,296,643 | def f_16296643(t):
return | list(t) |
def check(candidate): | [
"\n assert candidate((0, 1, 2)) == [0,1,2]\n",
"\n assert candidate(('a', [], 100)) == ['a', [], 100]\n"
] | f_16296643 | Convert tuple `t` to list | [] | [] |
|
16,296,643 | def f_16296643(t):
return | tuple(t) |
def check(candidate): | [
"\n assert candidate([0,1,2]) == (0, 1, 2)\n",
"\n assert candidate(['a', [], 100]) == ('a', [], 100)\n"
] | f_16296643 | Convert list `t` to tuple | [] | [] |
|
16,296,643 | def f_16296643(level1):
|
return level1 | level1 = map(list, level1) |
def check(candidate): | [
"\n t = ((1, 2), (3, 4))\n t = candidate(t)\n assert list(t) == [[1, 2], [3, 4]]\n"
] | f_16296643 | Convert tuple `level1` to list | [] | [] |
3,880,399 | def f_3880399(dataobject, logFile):
return | pprint.pprint(dataobject, logFile) |
import pprint
def check(candidate): | [
"\n f = open('kkk.txt', 'w')\n candidate('hello', f)\n f.close()\n with open('kkk.txt', 'r') as f:\n assert 'hello' in f.readline()\n"
] | f_3880399 | send the output of pprint object `dataobject` to file `logFile` | [
"pprint"
] | [
{
"function": "pprint.pprint",
"text": "pprint.pprint(object, stream=None, indent=1, width=80, depth=None, *, compact=False, sort_dicts=True) \nPrints the formatted representation of object on stream, followed by a newline. If stream is None, sys.stdout is used. This may be used in the interactive interpreter instead of the print() function for inspecting values (you can even reassign print = pprint.pprint for use within a scope). indent, width, depth, compact and sort_dicts will be passed to the PrettyPrinter constructor as formatting parameters. Changed in version 3.4: Added the compact parameter. Changed in version 3.8: Added the sort_dicts parameter. >>> import pprint",
"title": "python.library.pprint#pprint.pprint"
}
] |
|
21,800,169 | def f_21800169(df):
return | df.loc[df['BoolCol']] |
import pandas as pd
def check(candidate): | [
"\n df = pd.DataFrame([[True, 2, 3], [False, 5, 6]], columns = ['BoolCol', 'a', 'b'])\n y = candidate(df)\n assert y['a'][0] == 2\n assert y['b'][0] == 3\n"
] | f_21800169 | get index of rows in column 'BoolCol' | [
"pandas"
] | [
{
"function": "pandas.dataframe.loc",
"text": "pandas.DataFrame.loc propertyDataFrame.loc\n \nAccess a group of rows and columns by label(s) or a boolean array. .loc[] is primarily label based, but may also be used with a boolean array. Allowed inputs are: A single label, e.g. 5 or 'a', (note that 5 is interpreted as a label of the index, and never as an integer position along the index). A list or array of labels, e.g. ['a', 'b', 'c']. ",
"title": "pandas.reference.api.pandas.dataframe.loc"
}
] |
|
21,800,169 | def f_21800169(df):
return | df.iloc[np.flatnonzero(df['BoolCol'])] |
import numpy as np
import pandas as pd
def check(candidate): | [
"\n df = pd.DataFrame([[True, 2, 3], [False, 5, 6]], columns = ['BoolCol', 'a', 'b'])\n y = candidate(df)\n assert y['a'][0] == 2\n assert y['b'][0] == 3\n"
] | f_21800169 | Create a list containing the indexes of rows where the value of column 'BoolCol' in dataframe `df` are equal to True | [
"numpy",
"pandas"
] | [
{
"function": "numpy.flatnonzero",
"text": "numpy.flatnonzero numpy.flatnonzero(a)[source]\n \nReturn indices that are non-zero in the flattened version of a. This is equivalent to np.nonzero(np.ravel(a))[0]. Parameters ",
"title": "numpy.reference.generated.numpy.flatnonzero"
},
{
"function": "pandas.dataframe.loc",
"text": "pandas.DataFrame.iloc propertyDataFrame.iloc\n \nPurely integer-location based indexing for selection by position. .iloc[] is primarily integer position based (from 0 to length-1 of the axis), but may also be used with a boolean array. Allowed inputs are: An integer, e.g. 5. A list or array of integers, e.g. [4, 3, 0]. A slice object with ints, e.g. 1:7. A boolean array. A callable function with one argument (the calling Series or DataFrame) and that returns valid output for indexing (one of the above). This is useful in method chains, when you don’t have a reference to the calling object, but would like to base your selection on some value. .iloc will raise IndexError if a requested indexer is out-of-bounds, except slice indexers which allow out-of-bounds indexing (this conforms with python/numpy slice semantics). See more at Selection by Position. See also DataFrame.iat\n\nFast integer location scalar accessor. DataFrame.loc\n\nPurely label-location based indexer for selection by label. Series.iloc\n\nPurely integer-location based indexing for selection by position. Examples ",
"title": "pandas.reference.api.pandas.dataframe.iloc"
}
] |
|
21,800,169 | def f_21800169(df):
return | df[df['BoolCol'] == True].index.tolist() |
import pandas as pd
def check(candidate): | [
"\n df = pd.DataFrame([[True, 2, 3], [False, 5, 6]], columns = ['BoolCol', 'a', 'b'])\n y = candidate(df)\n assert y == [0]\n"
] | f_21800169 | from dataframe `df` get list of indexes of rows where column 'BoolCol' values match True | [
"pandas"
] | [
{
"function": "pandas.dataframe.index",
"text": "pandas.DataFrame.index DataFrame.index\n \nThe index (row labels) of the DataFrame.",
"title": "pandas.reference.api.pandas.dataframe.index"
},
{
"function": "pandas.index.tolist()",
"text": "pandas.Index.tolist Index.tolist()[source]\n \nReturn a list of the values. These are each a scalar type, which is a Python scalar (for str, int, float) or a pandas scalar (for Timestamp/Timedelta/Interval/Period) Returns \n list\n See also numpy.ndarray.tolist\n\nReturn the array as an a.ndim-levels deep nested list of Python scalars.",
"title": "pandas.reference.api.pandas.index.tolist"
}
] |
|
21,800,169 | def f_21800169(df):
return | df[df['BoolCol']].index.tolist() |
import pandas as pd
def check(candidate): | [
"\n df = pd.DataFrame([[True, 2, 3], [False, 5, 6]], columns = ['BoolCol', 'a', 'b'])\n y = candidate(df)\n assert y == [0]\n"
] | f_21800169 | get index of rows in dataframe `df` which column 'BoolCol' matches value True | [
"pandas"
] | [
{
"function": "pandas.index.tolist",
"text": "pandas.Index.tolist Index.tolist()[source]\n \nReturn a list of the values. These are each a scalar type, which is a Python scalar (for str, int, float) or a pandas scalar (for Timestamp/Timedelta/Interval/Period) Returns \n list\n See also numpy.ndarray.tolist\n\nReturn the array as an a.ndim-levels deep nested list of Python scalars.",
"title": "pandas.reference.api.pandas.index.tolist"
},
{
"function": "pandas.dataframe.index",
"text": "pandas.DataFrame.index DataFrame.index\n \nThe index (row labels) of the DataFrame.",
"title": "pandas.reference.api.pandas.dataframe.index"
}
] |
|
299,446 | def f_299446(owd):
|
return | os.chdir(owd) |
import os
from unittest.mock import Mock
def check(candidate): | [
"\n os.chdir = Mock()\n try:\n candidate('/')\n except:\n assert False\n"
] | f_299446 | change working directory to the directory `owd` | [
"os"
] | [
{
"function": "os.chdir",
"text": "os.chdir(path) \nChange the current working directory to path. This function can support specifying a file descriptor. The descriptor must refer to an opened directory, not an open file. This function can raise OSError and subclasses such as FileNotFoundError, PermissionError, and NotADirectoryError. Raises an auditing event os.chdir with argument path. New in version 3.3: Added support for specifying path as a file descriptor on some platforms. Changed in version 3.6: Accepts a path-like object.",
"title": "python.library.os#os.chdir"
}
] |
14,695,134 | def f_14695134(c, testfield):
|
return | c.execute("INSERT INTO test VALUES (?, 'bar')", (testfield,)) |
import sqlite3
def check(candidate): | [
"\n conn = sqlite3.connect('dev.db')\n cur = conn.cursor()\n cur.execute(\"CREATE TABLE test (x VARCHAR(10), y VARCHAR(10))\")\n candidate(cur, 'kang')\n cur.execute(\"SELECT * FROM test\")\n rows = cur.fetchall()\n assert len(rows) == 1\n"
] | f_14695134 | insert data from a string `testfield` to sqlite db `c` | [
"sqlite3"
] | [
{
"function": "c.execute",
"text": "execute(sql[, parameters]) \nExecutes an SQL statement. Values may be bound to the statement using placeholders. execute() will only execute a single SQL statement. If you try to execute more than one statement with it, it will raise a Warning. Use executescript() if you want to execute multiple SQL statements with one call.",
"title": "python.library.sqlite3#sqlite3.Cursor.execute"
}
] |
24,242,433 | def f_24242433():
return | b'\\x89\\n'.decode('unicode_escape') |
import sqlite3
def check(candidate): | [
"\n assert candidate() == '\\x89\\n'\n"
] | f_24242433 | decode string "\\x89\\n" into a normal string | [
"sqlite3"
] | [] |
|
24,242,433 | def f_24242433(raw_string):
return | raw_string.decode('unicode_escape') |
def check(candidate): | [
"\n assert candidate(b\"Hello\") == \"Hello\"\n",
"\n assert candidate(b\"hello world!\") == \"hello world!\"\n",
"\n assert candidate(b\". ?? !!x\") == \". ?? !!x\"\n"
] | f_24242433 | convert a raw string `raw_string` into a normal string | [] | [] |
|
24,242,433 | def f_24242433(raw_byte_string):
return | raw_byte_string.decode('unicode_escape') |
def check(candidate): | [
"\n assert candidate(b\"Hello\") == \"Hello\"\n",
"\n assert candidate(b\"hello world!\") == \"hello world!\"\n",
"\n assert candidate(b\". ?? !!x\") == \". ?? !!x\"\n"
] | f_24242433 | convert a raw string `raw_byte_string` into a normal string | [] | [] |
|
22,882,922 | def f_22882922(s):
return | [m.group(0) for m in re.finditer('(\\d)\\1*', s)] |
import re
def check(candidate): | [
"\n assert candidate('111234') == ['111', '2', '3', '4']\n"
] | f_22882922 | split a string `s` with into all strings of repeated characters | [
"re"
] | [
{
"function": "re.finditer",
"text": "re.finditer(pattern, string, flags=0) \nReturn an iterator yielding match objects over all non-overlapping matches for the RE pattern in string. The string is scanned left-to-right, and matches are returned in the order found. Empty matches are included in the result. Changed in version 3.7: Non-empty matches can now start just after a previous empty match.",
"title": "python.library.re#re.finditer"
}
] |
|
4,143,502 | def f_4143502():
return | plt.scatter(np.random.randn(100), np.random.randn(100), facecolors='none') |
import numpy as np
import matplotlib.pyplot as plt
def check(candidate): | [
"\n assert 'matplotlib' in str(type(candidate()))\n"
] | f_4143502 | scatter a plot with x, y position of `np.random.randn(100)` and face color equal to none | [
"matplotlib",
"numpy"
] | [
{
"function": "plt.scatter",
"text": "matplotlib.pyplot.scatter matplotlib.pyplot.scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, *, edgecolors=None, plotnonfinite=False, data=None, **kwargs)[source]\n \nA scatter plot of y vs. x with varying marker size and/or color. Parameters ",
"title": "matplotlib._as_gen.matplotlib.pyplot.scatter"
},
{
"function": "numpy.random.randn",
"text": "numpy.random.randn random.randn(d0, d1, ..., dn)\n \nReturn a sample (or samples) from the “standard normal” distribution. Note This is a convenience function for users porting code from Matlab, and wraps standard_normal. That function takes a tuple to specify the size of the output, which is consistent with other NumPy functions like numpy.zeros and numpy.ones. Note New code should use the standard_normal method of a default_rng() instance instead; please see the Quick Start. If positive int_like arguments are provided, randn generates an array of shape (d0, d1, ..., dn), filled with random floats sampled from a univariate “normal” (Gaussian) distribution of mean 0 and variance 1. A single float randomly sampled from the distribution is returned if no argument is provided. Parameters ",
"title": "numpy.reference.random.generated.numpy.random.randn"
}
] |
|
4,143,502 | def f_4143502():
return | plt.plot(np.random.randn(100), np.random.randn(100), 'o', mfc='none') |
import numpy as np
import matplotlib.pyplot as plt
def check(candidate): | [
"\n assert 'matplotlib' in str(type(candidate()[0]))\n"
] | f_4143502 | do a scatter plot with empty circles | [
"matplotlib",
"numpy"
] | [
{
"function": "plt.plot",
"text": "matplotlib.pyplot.plot matplotlib.pyplot.plot(*args, scalex=True, scaley=True, data=None, **kwargs)[source]\n \nPlot y versus x as lines and/or markers. Call signatures: plot([x], y, [fmt], *, data=None, **kwargs)\nplot([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)\n The coordinates of the points or line nodes are given by x, y. The optional parameter fmt is a convenient way for defining basic formatting like color, marker and linestyle. It's a shortcut string notation described in the Notes section below. >>> plot(x, y) # plot x and y using default line style and color",
"title": "matplotlib._as_gen.matplotlib.pyplot.plot"
},
{
"function": "numpy.random.randn",
"text": "numpy.random.randn random.randn(d0, d1, ..., dn)\n \nReturn a sample (or samples) from the “standard normal” distribution. Note This is a convenience function for users porting code from Matlab, and wraps standard_normal. That function takes a tuple to specify the size of the output, which is consistent with other NumPy functions like numpy.zeros and numpy.ones. Note New code should use the standard_normal method of a default_rng() instance instead; please see the Quick Start. If positive int_like arguments are provided, randn generates an array of shape (d0, d1, ..., dn), filled with random floats sampled from a univariate “normal” (Gaussian) distribution of mean 0 and variance 1. A single float randomly sampled from the distribution is returned if no argument is provided. Parameters ",
"title": "numpy.reference.random.generated.numpy.random.randn"
}
] |
|
32,063,985 | def f_32063985(soup):
return | soup.find('div', id='main-content').decompose() |
from bs4 import BeautifulSoup
def check(candidate): | [
"\n markup = \"<a>This is not div <div>This is div 1</div><div id='main-content'>This is div 2</div></a>\"\n soup = BeautifulSoup(markup,\"html.parser\")\n candidate(soup)\n assert str(soup) == '<a>This is not div <div>This is div 1</div></a>'\n"
] | f_32063985 | remove a div from `soup` with a id `main-content` using beautifulsoup | [
"bs4"
] | [] |
|
27,975,069 | def f_27975069(df):
return | df[df['ids'].str.contains('ball')] |
import pandas as pd
def check(candidate): | [
"\n f = pd.DataFrame([[\"ball1\", 1, 2], [\"hall\", 5, 4]], columns = ['ids', 'x', 'y'])\n f1 = candidate(f)\n assert f1['x'][0] == 1\n assert f1['y'][0] == 2\n"
] | f_27975069 | filter rows of datafram `df` containing key word `ball` in column `ids` | [
"pandas"
] | [
{
"function": "pandas.series.str.contains",
"text": "pandas.Series.str.contains Series.str.contains(pat, case=True, flags=0, na=None, regex=True)[source]\n \nTest if pattern or regex is contained within a string of a Series or Index. Return boolean Series or Index based on whether a given pattern or regex is contained within a string of a Series or Index. Parameters ",
"title": "pandas.reference.api.pandas.series.str.contains"
}
] |
|
20,461,165 | def f_20461165(df):
return | df.reset_index(level=0, inplace=True) |
import pandas as pd
def check(candidate): | [
"\n df = pd.DataFrame([[384, 593], [781, 123]], columns = ['gi', 'ptt_loc'])\n candidate(df)\n assert df['index'][0] == 0\n assert df['index'][1] == 1\n"
] | f_20461165 | convert index at level 0 into a column in dataframe `df` | [
"pandas"
] | [
{
"function": "df.reset_index",
"text": "pandas.DataFrame.reset_index DataFrame.reset_index(level=None, drop=False, inplace=False, col_level=0, col_fill='')[source]\n \nReset the index, or a level of it. Reset the index of the DataFrame, and use the default one instead. If the DataFrame has a MultiIndex, this method can remove one or more levels. Parameters ",
"title": "pandas.reference.api.pandas.dataframe.reset_index"
}
] |
|
20,461,165 | def f_20461165(df):
|
return | df['index1'] = df.index |
import pandas as pd
def check(candidate): | [
"\n df = pd.DataFrame([[384, 593], [781, 123]], columns = ['gi', 'ptt_loc'])\n candidate(df)\n assert df['index1'][0] == 0\n assert df['index1'][1] == 1\n"
] | f_20461165 | Add indexes in a data frame `df` to a column `index1` | [
"pandas"
] | [
{
"function": "pandas.dataframe.index",
"text": "pandas.DataFrame.index DataFrame.index\n \nThe index (row labels) of the DataFrame.",
"title": "pandas.reference.api.pandas.dataframe.index"
}
] |
20,461,165 | def f_20461165(df):
return | df.reset_index(level=['tick', 'obs']) |
import pandas as pd
def check(candidate): | [
"\n df = pd.DataFrame([['2016-09-13', 'C', 2, 0.0139], ['2016-07-17', 'A', 2, 0.5577]], columns = ['tick', 'tag', 'obs', 'val'])\n df = df.set_index(['tick', 'tag', 'obs'])\n df = candidate(df)\n assert df['tick']['C'] == '2016-09-13'\n"
] | f_20461165 | convert pandas index in a dataframe `df` to columns | [
"pandas"
] | [
{
"function": "df.reset_index",
"text": "pandas.DataFrame.reset_index DataFrame.reset_index(level=None, drop=False, inplace=False, col_level=0, col_fill='')[source]\n \nReset the index, or a level of it. Reset the index of the DataFrame, and use the default one instead. If the DataFrame has a MultiIndex, this method can remove one or more levels. Parameters ",
"title": "pandas.reference.api.pandas.dataframe.reset_index"
}
] |
|
4,685,571 | def f_4685571(b):
return | [x[::-1] for x in b] |
def check(candidate): | [
"\n b = [('spam',0), ('eggs',1)]\n b1 = candidate(b)\n assert b1 == [(0, 'spam'), (1, 'eggs')]\n"
] | f_4685571 | Get reverse of list items from list 'b' using extended slicing | [] | [] |
|
17,960,441 | def f_17960441(a, b):
return | np.array([zip(x, y) for x, y in zip(a, b)]) |
import numpy as np
def check(candidate): | [
"\n a = np.array([[9, 8], [7, 6]])\n b = np.array([[7, 1], [5, 2]])\n c = candidate(a, b)\n expected = [(9, 7), (8, 1)]\n ctr = 0\n for i in c[0]:\n assert i == expected[ctr]\n ctr += 1\n"
] | f_17960441 | join each element in array `a` with element at the same index in array `b` as a tuple | [
"numpy"
] | [
{
"function": "numpy.array",
"text": "numpy.array numpy.array(object, dtype=None, *, copy=True, order='K', subok=False, ndmin=0, like=None)\n \nCreate an array. Parameters ",
"title": "numpy.reference.generated.numpy.array"
}
] |
|
17,960,441 | def f_17960441(a, b):
return | np.array(list(zip(a.ravel(),b.ravel())), dtype=('i4,i4')).reshape(a.shape) |
import numpy as np
def check(candidate): | [
"\n a = np.array([[9, 8], [7, 6]])\n b = np.array([[7, 1], [5, 2]])\n c = candidate(a, b)\n e = np.array([[(9, 7), (8, 1)], [(7, 5), (6, 2)]], dtype=[('f0', '<i4'), ('f1', '<i4')])\n assert np.array_equal(c, e)\n"
] | f_17960441 | zip two 2-d arrays `a` and `b` | [
"numpy"
] | [
{
"function": "numpy.ndarray.reshape",
"text": "numpy.ndarray.reshape method ndarray.reshape(shape, order='C')\n \nReturns an array containing the same data with a new shape. Refer to numpy.reshape for full documentation. See also numpy.reshape\n\nequivalent function Notes Unlike the free function numpy.reshape, this method on ndarray allows the elements of the shape parameter to be passed in as separate arguments. For example, a.reshape(10, 11) is equivalent to a.reshape((10, 11)).",
"title": "numpy.reference.generated.numpy.ndarray.reshape"
}
] |
|
438,684 | def f_438684(list_of_ints):
return | """,""".join([str(i) for i in list_of_ints]) |
def check(candidate): | [
"\n list_of_ints = [8, 7, 6]\n assert candidate(list_of_ints) == '8,7,6'\n",
"\n list_of_ints = [0, 1, 6]\n assert candidate(list_of_ints) == '0,1,6'\n"
] | f_438684 | convert list `list_of_ints` into a comma separated string | [] | [] |
|
8,519,922 | def f_8519922(url, DATA, HEADERS_DICT, username, password):
return | requests.post(url, data=DATA, headers=HEADERS_DICT, auth=(username, password)) |
import requests
from unittest.mock import Mock
def check(candidate): | [
"\n url='https://www.google.com'\n HEADERS_DICT = {'Accept':'text/json'}\n requests.post = Mock()\n try:\n candidate(url, \"{'name': 'abc'}\", HEADERS_DICT, 'admin', 'admin123')\n except:\n assert False\n"
] | f_8519922 | Send a post request with raw data `DATA` and basic authentication with `username` and `password` | [
"requests"
] | [] |
|
26,443,308 | def f_26443308():
return | 'abcd}def}'.rfind('}') |
def check(candidate): | [
"\n assert candidate() == 8\n"
] | f_26443308 | Find last occurrence of character '}' in string "abcd}def}" | [] | [] |
|
22,365,172 | def f_22365172():
return | [item for item in [1, 2, 3]] |
def check(candidate): | [
"\n assert candidate() == [1,2,3]\n"
] | f_22365172 | Iterate ove list `[1, 2, 3]` using list comprehension | [] | [] |
|
12,300,912 | def f_12300912(d):
return | [(x['x'], x['y']) for x in d] |
def check(candidate): | [
"\n data = [{'x': 1, 'y': 10}, {'x': 3, 'y': 15}, {'x': 2, 'y': 1}]\n res = candidate(data)\n assert res == [(1, 10), (3, 15), (2, 1)]\n"
] | f_12300912 | extract all the values with keys 'x' and 'y' from a list of dictionaries `d` to list of tuples | [] | [] |
|
678,236 | def f_678236():
return | os.path.splitext(os.path.basename('hemanth.txt'))[0] |
import os
def check(candidate): | [
"\n assert candidate() == \"hemanth\"\n"
] | f_678236 | get the filename without the extension from file 'hemanth.txt' | [
"os"
] | [
{
"function": "os.splitext",
"text": "os.path.splitext(path) \nSplit the pathname path into a pair (root, ext) such that root + ext ==\npath, and ext is empty or begins with a period and contains at most one period. Leading periods on the basename are ignored; splitext('.cshrc') returns ('.cshrc', ''). Changed in version 3.6: Accepts a path-like object.",
"title": "python.library.os.path#os.path.splitext"
}
] |
|
7,895,449 | def f_7895449():
return | sum([['A', 'B', 'C'], ['D', 'E', 'F'], ['G', 'H', 'I']], []) |
def check(candidate): | [
"\n assert candidate() == ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I']\n"
] | f_7895449 | create a list containing flattened list `[['A', 'B', 'C'], ['D', 'E', 'F'], ['G', 'H', 'I']]` | [] | [] |
|
31,617,845 | def f_31617845(df):
|
return df | df = df[(df['closing_price'] >= 99) & (df['closing_price'] <= 101)] |
import pandas as pd
def check(candidate): | [
"\n df = pd.DataFrame([67, 68, 69, 70, 99, 100, 101, 102], columns = ['closing_price'])\n assert candidate(df).shape[0] == 3\n"
] | f_31617845 | select rows in a dataframe `df` column 'closing_price' between two values 99 and 101 | [
"pandas"
] | [] |
25,698,710 | def f_25698710(df):
return | df.replace({'\n': '<br>'}, regex=True) |
import pandas as pd
def check(candidate): | [
"\n df = pd.DataFrame(['klm\\npqr', 'wxy\\njkl'], columns = ['val'])\n expected = pd.DataFrame(['klm<br>pqr', 'wxy<br>jkl'], columns = ['val'])\n assert pd.DataFrame.equals(candidate(df), expected)\n"
] | f_25698710 | replace all occurences of newlines `\n` with `<br>` in dataframe `df` | [
"pandas"
] | [
{
"function": "df.replace",
"text": "pandas.DataFrame.replace DataFrame.replace(to_replace=None, value=NoDefault.no_default, inplace=False, limit=None, regex=False, method=NoDefault.no_default)[source]\n \nReplace values given in to_replace with value. Values of the DataFrame are replaced with other values dynamically. This differs from updating with .loc or .iloc, which require you to specify a location to update with some value. Parameters ",
"title": "pandas.reference.api.pandas.dataframe.replace"
}
] |
|
25,698,710 | def f_25698710(df):
return | df.replace({'\n': '<br>'}, regex=True) |
import pandas as pd
def check(candidate): | [
"\n df = pd.DataFrame(['klm\\npqr', 'wxy\\njkl'], columns = ['val'])\n expected = pd.DataFrame(['klm<br>pqr', 'wxy<br>jkl'], columns = ['val'])\n assert pd.DataFrame.equals(candidate(df), expected)\n"
] | f_25698710 | replace all occurrences of a string `\n` by string `<br>` in a pandas data frame `df` | [
"pandas"
] | [
{
"function": "df.replace",
"text": "pandas.DataFrame.replace DataFrame.replace(to_replace=None, value=NoDefault.no_default, inplace=False, limit=None, regex=False, method=NoDefault.no_default)[source]\n \nReplace values given in to_replace with value. Values of the DataFrame are replaced with other values dynamically. This differs from updating with .loc or .iloc, which require you to specify a location to update with some value. Parameters ",
"title": "pandas.reference.api.pandas.dataframe.replace"
}
] |
|
41,923,858 | def f_41923858(word):
return | [(x + y) for x, y in zip(word, word[1:])] |
def check(candidate): | [
"\n assert candidate('abcdef') == ['ab', 'bc', 'cd', 'de', 'ef']\n",
"\n assert candidate([\"hello\", \"world\", \"!\"]) == [\"helloworld\", \"world!\"]\n"
] | f_41923858 | create a list containing each two adjacent letters in string `word` as its elements | [] | [] |
|
41,923,858 | def f_41923858(word):
return | list(map(lambda x, y: x + y, word[:-1], word[1:])) |
def check(candidate): | [
"\n assert candidate('abcdef') == ['ab', 'bc', 'cd', 'de', 'ef']\n"
] | f_41923858 | Get a list of pairs from a string `word` using lambda function | [] | [] |
|
9,760,588 | def f_9760588(myString):
return | re.findall('(https?://[^\\s]+)', myString) |
import re
def check(candidate): | [
"\n assert candidate(\"This is a link http://www.google.com\") == [\"http://www.google.com\"]\n",
"\n assert candidate(\"Please refer to the website: http://www.google.com\") == [\"http://www.google.com\"]\n"
] | f_9760588 | extract a url from a string `myString` | [
"re"
] | [
{
"function": "re.findall",
"text": "re.findall(pattern, string, flags=0) \nReturn all non-overlapping matches of pattern in string, as a list of strings. The string is scanned left-to-right, and matches are returned in the order found. If one or more groups are present in the pattern, return a list of groups; this will be a list of tuples if the pattern has more than one group. Empty matches are included in the result. Changed in version 3.7: Non-empty matches can now start just after a previous empty match.",
"title": "python.library.re#re.findall"
}
] |
|
9,760,588 | def f_9760588(myString):
return | re.search('(?P<url>https?://[^\\s]+)', myString).group('url') |
import re
def check(candidate): | [
"\n assert candidate(\"This is a link http://www.google.com\") == \"http://www.google.com\"\n",
"\n assert candidate(\"Please refer to the website: http://www.google.com\") == \"http://www.google.com\"\n"
] | f_9760588 | extract a url from a string `myString` | [
"re"
] | [
{
"function": "re.search",
"text": "re.search(pattern, string, flags=0) \nScan through string looking for the first location where the regular expression pattern produces a match, and return a corresponding match object. Return None if no position in the string matches the pattern; note that this is different from finding a zero-length match at some point in the string.",
"title": "python.library.re#re.search"
},
{
"function": "re.Match.group",
"text": "Match.group([group1, ...]) \nReturns one or more subgroups of the match. If there is a single argument, the result is a single string; if there are multiple arguments, the result is a tuple with one item per argument. Without arguments, group1 defaults to zero (the whole match is returned). If a groupN argument is zero, the corresponding return value is the entire matching string; if it is in the inclusive range [1..99], it is the string matching the corresponding parenthesized group. If a group number is negative or larger than the number of groups defined in the pattern, an IndexError exception is raised. If a group is contained in a part of the pattern that did not match, the corresponding result is None. If a group is contained in a part of the pattern that matched multiple times, the last match is returned. >>> m = re.match(r\"(\\w+) (\\w+)\", \"Isaac Newton, physicist\")",
"title": "python.library.re#re.Match.group"
}
] |
|
5,843,518 | def f_5843518(mystring):
return | re.sub('[^A-Za-z0-9]+', '', mystring) |
import re
def check(candidate): | [
"\n assert candidate('Special $#! characters spaces 888323') == 'Specialcharactersspaces888323'\n"
] | f_5843518 | remove all special characters, punctuation and spaces from a string `mystring` using regex | [
"re"
] | [
{
"function": "re.sub",
"text": "re.sub(pattern, repl, string, count=0, flags=0) \nReturn the string obtained by replacing the leftmost non-overlapping occurrences of pattern in string by the replacement repl. If the pattern isn’t found, string is returned unchanged. repl can be a string or a function; if it is a string, any backslash escapes in it are processed. That is, \\n is converted to a single newline character, \\r is converted to a carriage return, and so forth. Unknown escapes of ASCII letters are reserved for future use and treated as errors. Other unknown escapes such as \\& are left alone. Backreferences, such as \\6, are replaced with the substring matched by group 6 in the pattern. For example: >>> re.sub(r'def\\s+([a-zA-Z_][a-zA-Z_0-9]*)\\s*\\(\\s*\\):',\n... r'static PyObject*\\npy_\\1(void)\\n{',\n... 'def myfunc():')\n'static PyObject*\\npy_myfunc(void)\\n{'\n If repl is a function, it is called for every non-overlapping occurrence of pattern. The function takes a single match object argument, and returns the replacement string. For example: >>> def dashrepl(matchobj):\n... if matchobj.group(0) == '-': return ' '\n... else: return '-'",
"title": "python.library.re#re.sub"
}
] |
|
36,674,519 | def f_36674519():
return | pd.date_range('2016-01-01', freq='WOM-2FRI', periods=13) |
import pandas as pd
import datetime
def check(candidate): | [
"\n actual = candidate() \n expected = [[2016, 1, 8], [2016, 2, 12],\n [2016, 3, 11], [2016, 4, 8],\n [2016, 5, 13], [2016, 6, 10],\n [2016, 7, 8], [2016, 8, 12],\n [2016, 9, 9], [2016, 10, 14],\n [2016, 11, 11], [2016, 12, 9],\n [2017, 1, 13]]\n for i in range(0, len(expected)):\n d = datetime.date(expected[i][0], expected[i][1], expected[i][2])\n assert d == actual[i].date()\n"
] | f_36674519 | create a DatetimeIndex containing 13 periods of the second friday of each month starting from date '2016-01-01' | [
"datetime",
"pandas"
] | [
{
"function": "pandas.date_range",
"text": "pandas.date_range pandas.date_range(start=None, end=None, periods=None, freq=None, tz=None, normalize=False, name=None, closed=NoDefault.no_default, inclusive=None, **kwargs)[source]\n \nReturn a fixed frequency DatetimeIndex. Returns the range of equally spaced time points (where the difference between any two adjacent points is specified by the given frequency) such that they all satisfy start <[=] x <[=] end, where the first one and the last one are, resp., the first and last time points in that range that fall on the boundary of freq (if given as a frequency string) or that are valid for freq (if given as a pandas.tseries.offsets.DateOffset). (If exactly one of start, end, or freq is not specified, this missing parameter can be computed given periods, the number of timesteps in the range. See the note below.) Parameters ",
"title": "pandas.reference.api.pandas.date_range"
}
] |
|
508,657 | def f_508657():
|
return matrix | matrix = [['a', 'b'], ['c', 'd'], ['e', 'f']] |
def check(candidate): | [
"\n matrix = candidate()\n assert len(matrix) == 3\n assert all([len(row)==2 for row in matrix])\n"
] | f_508657 | Create multidimensional array `matrix` with 3 rows and 2 columns in python | [] | [] |
1,007,481 | def f_1007481(mystring):
return | mystring.replace(' ', '_') |
def check(candidate): | [
"\n assert candidate(' ') == '_'\n",
"\n assert candidate(' _ ') == '___'\n",
"\n assert candidate('') == ''\n",
"\n assert candidate('123123') == '123123'\n",
"\n assert candidate('\\_ ') == '\\__'\n"
] | f_1007481 | replace spaces with underscore in string `mystring` | [] | [] |
|
1,249,786 | def f_1249786(my_string):
return | """ """.join(my_string.split()) |
def check(candidate): | [
"\n assert candidate('hello world ') == 'hello world'\n",
"\n assert candidate('') == ''\n",
"\n assert candidate(' ') == ''\n",
"\n assert candidate(' hello') == 'hello'\n",
"\n assert candidate(' h e l l o ') == 'h e l l o'\n"
] | f_1249786 | split string `my_string` on white spaces | [] | [] |
|
4,444,923 | def f_4444923(filename):
return | os.path.splitext(filename)[0] |
import os
def check(candidate): | [
"\n assert candidate('/Users/test/hello.txt') == '/Users/test/hello'\n",
"\n assert candidate('hello.txt') == 'hello'\n",
"\n assert candidate('hello') == 'hello'\n",
"\n assert candidate('.gitignore') == '.gitignore'\n"
] | f_4444923 | get filename without extension from file `filename` | [
"os"
] | [
{
"function": "os.splitext",
"text": "os.path.splitext(path) \nSplit the pathname path into a pair (root, ext) such that root + ext ==\npath, and ext is empty or begins with a period and contains at most one period. Leading periods on the basename are ignored; splitext('.cshrc') returns ('.cshrc', ''). Changed in version 3.6: Accepts a path-like object.",
"title": "python.library.os.path#os.path.splitext"
}
] |
|
13,728,486 | def f_13728486(l):
return | [sum(l[:i]) for i, _ in enumerate(l)] |
def check(candidate): | [
"\n assert candidate([1,2,3]) == [0,1,3]\n",
"\n assert candidate([]) == []\n",
"\n assert candidate([1]) == [0]\n"
] | f_13728486 | get a list containing the sum of each element `i` in list `l` plus the previous elements | [] | [] |
|
9,743,134 | def f_9743134():
return | """Docs/src/Scripts/temp""".replace('/', '/\x00/').split('\x00') |
def check(candidate): | [
"\n assert candidate() == ['Docs/', '/src/', '/Scripts/', '/temp']\n",
"\n assert candidate() != ['Docs', 'src', 'Scripts', 'temp']\n"
] | f_9743134 | split a string `Docs/src/Scripts/temp` by `/` keeping `/` in the result | [] | [] |
|
20,546,419 | def f_20546419(r):
return | np.random.shuffle(np.transpose(r)) |
import numpy as np
def check(candidate): | [
"\n a1 = np.array([[ 1, 20], [ 2, 30]])\n candidate(a1)\n assert np.array_equal(a1, np.array([[ 1, 20],[ 2, 30]])) or np.array_equal(a1, np.array([[ 20, 1], [ 30, 2]]))\n",
"\n a2 = np.array([[ 1], [ 2]])\n candidate(a2) \n assert np.array_equal(a2,np.array([[ 1], [ 2]]) )\n",
"\n a3 = np.array([[ 1,2,3]])\n candidate(a3)\n assert np.array_equal(a3,np.array([[ 1,2,3]])) or np.array_equal(a3,np.array([[ 2,1,3]])) or np.array_equal(a3,np.array([[ 1,3,2]])) or np.array_equal(a3,np.array([[3,2,1]])) or np.array_equal(a3,np.array([[3,1,2]])) or np.array_equal(a3,np.array([[2,3,1]])) \n",
"\n a4 = np.zeros(shape=(5,2))\n candidate(a4)\n assert np.array_equal(a4, np.zeros(shape=(5,2)))\n"
] | f_20546419 | shuffle columns of an numpy array 'r' | [
"numpy"
] | [
{
"function": "numpy.shuffle",
"text": "numpy.random.shuffle random.shuffle(x)\n \nModify a sequence in-place by shuffling its contents. This function only shuffles the array along the first axis of a multi-dimensional array. The order of sub-arrays is changed but their contents remains the same. Note New code should use the shuffle method of a default_rng() instance instead; please see the Quick Start. Parameters ",
"title": "numpy.reference.random.generated.numpy.random.shuffle"
}
] |
|
32,675,861 | def f_32675861(df):
|
return df | df['D'] = df['B'] |
import pandas as pd
def check(candidate): | [
"\n df_1 = pd.DataFrame({'A': [1,2,3], 'B': ['a', 'b', 'c']})\n candidate(df_1)\n assert (df_1['D'] == df_1['B']).all()\n",
"\n df_2 = pd.DataFrame({'A': [1,2,3], 'B': [1, 'A', 'B']})\n candidate(df_2)\n assert (df_2['D'] == df_2['B']).all()\n",
"\n df_3 = pd.DataFrame({'B': [1]})\n candidate(df_3)\n assert df_3['D'][0] == 1\n",
"\n df_4 = pd.DataFrame({'B': []})\n candidate(df_4)\n assert len(df_4['D']) == 0\n"
] | f_32675861 | copy all values in a column 'B' to a new column 'D' in a pandas data frame 'df' | [
"pandas"
] | [] |
14,227,561 | def f_14227561(data):
return | list(data['A']['B'].values())[0]['maindata'][0]['Info'] |
import json
def check(candidate): | [
"\n s1 = '{\"A\":{\"B\":{\"unknown\":{\"1\":\"F\",\"maindata\":[{\"Info\":\"TEXT\"}]}}}}'\n data = json.loads(s1)\n assert candidate(data) == 'TEXT'\n",
"\n s2 = '{\"A\":{\"B\":{\"sample1\":{\"1\":\"F\",\"maindata\":[{\"Info\":\"TEXT!\"}]}}}}'\n data = json.loads(s2)\n assert candidate(data) == 'TEXT!'\n",
"\n s3 = '{\"A\":{\"B\":{\"sample_weird_un\":{\"1\":\"F\",\"maindata\":[{\"Info\":\"!\"}]}}}}'\n data = json.loads(s3)\n assert candidate(data) == '!'\n",
"\n s4 = '{\"A\":{\"B\":{\"sample_weird_un\":{\"1\":\"F\",\"maindata\":[{\"Info\":\"\"}]}}}}'\n data = json.loads(s4)\n assert candidate(data) == ''\n"
] | f_14227561 | find a value within nested json 'data' where the key inside another key 'B' is unknown. | [
"json"
] | [] |
|
14,858,916 | def f_14858916(string, predicate):
return | all(predicate(x) for x in string) |
def check(candidate): | [
"\n def predicate(x):\n if x == 'a':\n return True\n else:\n return False\n assert candidate('aab', predicate) == False\n",
"\n def predicate(x):\n if x == 'a':\n return True\n else:\n return False\n assert candidate('aa', predicate) == True\n",
"\n def predicate(x):\n if x == 'a':\n return True\n else:\n return False\n assert candidate('', predicate) == True\n",
"\n def predicate(x):\n if x.islower():\n return True\n else:\n return False\n assert candidate('abc', predicate) == True\n",
"\n def predicate(x):\n if x.islower():\n return True\n else:\n return False\n assert candidate('Ab', predicate) == False\n",
"\n def predicate(x):\n if x.islower():\n return True\n else:\n return False\n assert candidate('ABCD', predicate) == False\n"
] | f_14858916 | check characters of string `string` are true predication of function `predicate` | [] | [] |
|
574,236 | def f_574236():
return | os.statvfs('/').f_files - os.statvfs('/').f_ffree |
import os
def check(candidate): | [
"\n assert candidate() == (os.statvfs('/').f_files - os.statvfs('/').f_ffree)\n"
] | f_574236 | determine number of files on a drive with python | [
"os"
] | [
{
"function": "os.statvfs",
"text": "os.statvfs(path) \nPerform a statvfs() system call on the given path. The return value is an object whose attributes describe the filesystem on the given path, and correspond to the members of the statvfs structure, namely: f_bsize, f_frsize, f_blocks, f_bfree, f_bavail, f_files, f_ffree, f_favail, f_flag, f_namemax, f_fsid. Two module-level constants are defined for the f_flag attribute’s bit-flags: if ST_RDONLY is set, the filesystem is mounted read-only, and if ST_NOSUID is set, the semantics of setuid/setgid bits are disabled or not supported. Additional module-level constants are defined for GNU/glibc based systems. These are ST_NODEV (disallow access to device special files), ST_NOEXEC (disallow program execution), ST_SYNCHRONOUS (writes are synced at once), ST_MANDLOCK (allow mandatory locks on an FS), ST_WRITE (write on file/directory/symlink), ST_APPEND (append-only file), ST_IMMUTABLE (immutable file), ST_NOATIME (do not update access times), ST_NODIRATIME (do not update directory access times), ST_RELATIME (update atime relative to mtime/ctime). This function can support specifying a file descriptor. Availability: Unix. Changed in version 3.2: The ST_RDONLY and ST_NOSUID constants were added. New in version 3.3: Added support for specifying path as an open file descriptor. Changed in version 3.4: The ST_NODEV, ST_NOEXEC, ST_SYNCHRONOUS, ST_MANDLOCK, ST_WRITE, ST_APPEND, ST_IMMUTABLE, ST_NOATIME, ST_NODIRATIME, and ST_RELATIME constants were added. Changed in version 3.6: Accepts a path-like object. New in version 3.7: Added f_fsid.",
"title": "python.library.os#os.statvfs"
}
] |
|
7,011,291 | def f_7011291(cursor):
return | cursor.fetchone()[0] |
import sqlite3
def check(candidate): | [
"\n conn = sqlite3.connect('main')\n cursor = conn.cursor()\n cursor.execute(\"CREATE TABLE student (name VARCHAR(10))\")\n cursor.execute(\"INSERT INTO student VALUES('abc')\")\n cursor.execute(\"SELECT * FROM student\")\n assert candidate(cursor) == 'abc'\n"
] | f_7011291 | how to get a single result from a SQLite query from `cursor` | [
"sqlite3"
] | [
{
"function": "cursor.fetchone",
"text": "fetchone() \nFetches the next row of a query result set, returning a single sequence, or None when no more data is available.",
"title": "python.library.sqlite3#sqlite3.Cursor.fetchone"
}
] |
|
6,378,889 | def f_6378889(user_input):
|
return user_list | user_list = [int(number) for number in user_input.split(',')] |
def check(candidate): | [
"\n assert candidate('0') == [0]\n",
"\n assert candidate('12') == [12]\n",
"\n assert candidate('12,33,223') == [12, 33, 223]\n"
] | f_6378889 | convert string `user_input` into a list of integers `user_list` | [] | [] |
6,378,889 | def f_6378889(user):
return | [int(s) for s in user.split(',')] |
def check(candidate): | [
"\n assert candidate('0') == [0]\n",
"\n assert candidate('12') == [12]\n",
"\n assert candidate('12,33,223') == [12, 33, 223]\n"
] | f_6378889 | Get a list of integers by splitting a string `user` with comma | [] | [] |
|
5,212,870 | def f_5212870(list):
return | sorted(list, key=lambda x: (x[0], -x[1])) |
def check(candidate): | [
"\n list = [(9, 0), (9, 1), (9, -1), (8, 5), (4, 5)]\n assert candidate(list) == [(4, 5), (8, 5), (9, 1), (9, 0), (9, -1)]\n"
] | f_5212870 | Sorting a Python list `list` by the first item ascending and last item descending | [] | [] |
|
403,421 | def f_403421(ut, cmpfun):
|
return ut | ut.sort(key=cmpfun, reverse=True) |
def check(candidate): | [
"\n assert candidate([], lambda x: x) == []\n",
"\n assert candidate(['a', 'b', 'c'], lambda x: x) == ['c', 'b', 'a']\n",
"\n assert candidate([2, 1, 3], lambda x: -x) == [1, 2, 3]\n"
] | f_403421 | sort a list of objects `ut`, based on a function `cmpfun` in descending order | [] | [] |
403,421 | def f_403421(ut):
|
return ut | ut.sort(key=lambda x: x.count, reverse=True) |
class Tag:
def __init__(self, name, count):
self.name = name
self.count = count
def __str__(self):
return f"[{self.name}]-[{self.count}]"
def check(candidate): | [
"\n result = candidate([Tag(\"red\", 1), Tag(\"blue\", 22), Tag(\"black\", 0)])\n assert (result[0].name == \"blue\") and (result[0].count == 22)\n assert (result[1].name == \"red\") and (result[1].count == 1)\n assert (result[2].name == \"black\") and (result[2].count == 0)\n"
] | f_403421 | reverse list `ut` based on the `count` attribute of each object | [] | [] |
3,944,876 | def f_3944876(i):
return | 'ME' + str(i) |
def check(candidate): | [
"\n assert candidate(100) == \"ME100\"\n",
"\n assert candidate(0.22) == \"ME0.22\"\n",
"\n assert candidate(\"text\") == \"MEtext\"\n"
] | f_3944876 | cast an int `i` to a string and concat to string 'ME' | [] | [] |
|
40,903,174 | def f_40903174(df):
return | df.sort_values(['System_num', 'Dis']) |
import pandas as pd
def check(candidate): | [
"\n df1 = pd.DataFrame([[6, 1, 1], [5, 1, 1], [4, 1, 1], [3, 2, 1], [2, 2, 1], [1, 2, 1]], columns = ['Dis', 'System_num', 'Energy'])\n df_ans1 = pd.DataFrame([[4, 1, 1], [5, 1, 1], [6, 1, 1], [1, 2, 1], [2, 2, 1], [3, 2, 1]], columns = ['Dis', 'System_num', 'Energy'])\n assert (df_ans1.equals(candidate(df1).reset_index(drop = True))) == True\n",
"\n df2 = pd.DataFrame([[6, 3, 1], [5, 2, 1], [4, 1, 1]], columns = ['Dis', 'System_num', 'Energy'])\n df_ans2 = pd.DataFrame([[4, 1, 1], [5, 2, 1], [6, 3, 1]], columns = ['Dis', 'System_num', 'Energy'])\n assert (df_ans2.equals(candidate(df2).reset_index(drop = True))) == True\n",
"\n df3 = pd.DataFrame([[1, 3, 1], [3, 3, 1], [2, 3, 1], [6, 1, 1], [4, 1, 1], [5, 2, 1], [3, 2, 1]], columns = ['Dis', 'System_num', 'Energy'])\n df_ans3 = pd.DataFrame([[4, 1,1], [6, 1, 1], [3, 2, 1], [5, 2, 1], [1, 3, 1], [2, 3, 1], [3, 3, 1]], columns = ['Dis', 'System_num', 'Energy'])\n assert (df_ans3.equals(candidate(df3).reset_index(drop = True))) == True \n",
"\n df4 = pd.DataFrame([[1, 2, 3], [1, 2, 3], [4, 1, 3]], columns = ['Dis', 'System_num', 'Energy'])\n df_ans4 = pd.DataFrame([[1, 2, 3], [1, 2, 3], [4, 1, 3]])\n assert (df_ans4.equals(candidate(df4).reset_index(drop = True))) == False\n"
] | f_40903174 | Sorting data in Pandas DataFrame `df` with columns 'System_num' and 'Dis' | [
"pandas"
] | [
{
"function": "df.sort_values",
"text": "pandas.DataFrame.sort_values DataFrame.sort_values(by, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last', ignore_index=False, key=None)[source]\n \nSort by the values along either axis. Parameters ",
"title": "pandas.reference.api.pandas.dataframe.sort_values"
}
] |
|
4,454,298 | def f_4454298(infile, outfile):
|
return | open(outfile, 'w').write('#test firstline\n' + open(infile).read()) |
import filecmp
def check(candidate): | [
"\n open('test1.txt', 'w').write('test1')\n candidate('test1.txt', 'test1_out.txt')\n open('test1_ans.txt', 'w').write('#test firstline\\ntest1')\n assert filecmp.cmp('test1_out.txt', 'test1_ans.txt') == True\n",
"\n open('test2.txt', 'w').write('\\ntest2\\n')\n candidate('test2.txt', 'test2_out.txt')\n open('test2_ans.txt', 'w').write('#test firstline\\n\\ntest2\\n')\n assert filecmp.cmp('test2_out.txt', 'test2_ans.txt') == True\n",
"\n open('test3.txt', 'w').write(' \\n \\n')\n candidate('test3.txt', 'test3_out.txt')\n open('test3_ans.txt', 'w').write('#test firstline\\n \\n \\n')\n assert filecmp.cmp('test3_out.txt', 'test3_ans.txt') == True\n",
"\n open('test4.txt', 'w').write('hello')\n candidate('test4.txt', 'test4_out.txt')\n open('test4_ans.txt', 'w').write('hello')\n assert filecmp.cmp('test4_out.txt', 'test4_ans.txt') == False\n"
] | f_4454298 | prepend the line '#test firstline\n' to the contents of file 'infile' and save as the file 'outfile' | [
"filecmp"
] | [] |
19,729,928 | def f_19729928(l):
|
return l | l.sort(key=lambda t: len(t[1]), reverse=True) |
def check(candidate): | [
"\n assert candidate([(\"a\", [1]), (\"b\", [1,2]), (\"c\", [1,2,3])]) == [(\"c\", [1,2,3]), (\"b\", [1,2]), (\"a\", [1])]\n",
"\n assert candidate([(\"a\", [1]), (\"b\", [2]), (\"c\", [1,2,3])]) == [(\"c\", [1,2,3]), (\"a\", [1]), (\"b\", [2])]\n",
"\n assert candidate([(\"a\", [1]), (\"b\", [2]), (\"c\", [3])]) == [(\"a\", [1]), (\"b\", [2]), (\"c\", [3])]\n"
] | f_19729928 | sort a list `l` by length of value in tuple | [] | [] |
31,371,879 | def f_31371879(s):
return | re.findall('\\b(\\w+)d\\b', s) |
import re
def check(candidate): | [
"\n assert candidate(\"this is good\") == [\"goo\"]\n",
"\n assert candidate(\"this is interesting\") == []\n",
"\n assert candidate(\"good bad dd\") == [\"goo\", \"ba\", \"d\"]\n"
] | f_31371879 | split string `s` by words that ends with 'd' | [
"re"
] | [
{
"function": "re.findall",
"text": "Pattern.findall(string[, pos[, endpos]]) \nSimilar to the findall() function, using the compiled pattern, but also accepts optional pos and endpos parameters that limit the search region like for search().",
"title": "python.library.re#re.Pattern.findall"
}
] |
|
9,012,008 | def f_9012008():
return | bool(re.search('ba[rzd]', 'foobarrrr')) |
import re
def check(candidate): | [
"\n assert candidate() == True\n"
] | f_9012008 | return `True` if string `foobarrrr` contains regex `ba[rzd]` | [
"re"
] | [
{
"function": "re.search",
"text": "re.search(pattern, string, flags=0) \nScan through string looking for the first location where the regular expression pattern produces a match, and return a corresponding match object. Return None if no position in the string matches the pattern; note that this is different from finding a zero-length match at some point in the string.",
"title": "python.library.re#re.search"
}
] |
|
7,961,363 | def f_7961363(t):
return | list(set(t)) |
def check(candidate): | [
"\n assert candidate([1,2,3]) == [1,2,3]\n",
"\n assert candidate([1,1,1,1,1,1,1,1,1,1]) == [1] \n",
"\n assert candidate([1,2,2,2,2,2,3,3,3,3,3]) == [1,2,3]\n",
"\n assert (candidate([1, '1']) == [1, '1']) or (candidate([1, '1']) == ['1', 1])\n",
"\n assert candidate([1.0, 1]) == [1.0] \n",
"\n assert candidate([]) == [] \n",
"\n assert candidate([None]) == [None] \n"
] | f_7961363 | Removing duplicates in list `t` | [] | [] |
|
7,961,363 | def f_7961363(source_list):
return | list(set(source_list)) |
def check(candidate): | [
"\n assert candidate([1,2,3]) == [1,2,3]\n",
"\n assert candidate([1,1,1,1,1,1,1,1,1,1]) == [1] \n",
"\n assert candidate([1,2,2,2,2,2,3,3,3,3,3]) == [1,2,3]\n",
"\n assert (candidate([1, '1']) == [1, '1']) or (candidate([1, '1']) == ['1', 1])\n",
"\n assert candidate([1.0, 1]) == [1.0] \n",
"\n assert candidate([]) == [] \n",
"\n assert candidate([None]) == [None] \n"
] | f_7961363 | Removing duplicates in list `source_list` | [] | [] |
|
7,961,363 | def f_7961363():
return | list(OrderedDict.fromkeys('abracadabra')) |
from collections import OrderedDict
def check(candidate): | [
"\n assert candidate() == ['a', 'b', 'r', 'c', 'd']\n"
] | f_7961363 | Removing duplicates in list `abracadabra` | [
"collections"
] | [
{
"function": "collections.OrderedDict",
"text": "class collections.OrderedDict([items]) \nReturn an instance of a dict subclass that has methods specialized for rearranging dictionary order. New in version 3.1. \npopitem(last=True) \nThe popitem() method for ordered dictionaries returns and removes a (key, value) pair. The pairs are returned in LIFO order if last is true or FIFO order if false. \n \nmove_to_end(key, last=True) \nMove an existing key to either end of an ordered dictionary. The item is moved to the right end if last is true (the default) or to the beginning if last is false. Raises KeyError if the key does not exist: >>> d = OrderedDict.fromkeys('abcde')",
"title": "python.library.collections#collections.OrderedDict"
}
] |
|
5,183,533 | def f_5183533(a):
return | numpy.array(a).reshape(-1).tolist() |
import numpy
def check(candidate): | [
"\n assert candidate([[1,2,3],[4,5,6]]) == [1,2,3,4,5,6]\n",
"\n assert candidate(['a', 'aa', 'abc']) == ['a', 'aa', 'abc']\n"
] | f_5183533 | Convert array `a` into a list | [
"numpy"
] | [
{
"function": "numpy.ndarray.reshape",
"text": "numpy.ndarray.reshape method ndarray.reshape(shape, order='C')\n \nReturns an array containing the same data with a new shape. Refer to numpy.reshape for full documentation. See also numpy.reshape\n\nequivalent function Notes Unlike the free function numpy.reshape, this method on ndarray allows the elements of the shape parameter to be passed in as separate arguments. For example, a.reshape(10, 11) is equivalent to a.reshape((10, 11)).",
"title": "numpy.reference.generated.numpy.ndarray.reshape"
},
{
"function": "numpy.ndarray.tolist",
"text": "numpy.ndarray.tolist method ndarray.tolist()\n \nReturn the array as an a.ndim-levels deep nested list of Python scalars. Return a copy of the array data as a (nested) Python list. Data items are converted to the nearest compatible builtin Python type, via the item function. If a.ndim is 0, then since the depth of the nested list is 0, it will not be a list at all, but a simple Python scalar. Parameters \n none\n Returns \n \nyobject, or list of object, or list of list of object, or …\n\n\nThe possibly nested list of array elements. Notes The array may be recreated via a = np.array(a.tolist()), although this may sometimes lose precision. Examples For a 1D array, a.tolist() is almost the same as list(a), except that tolist changes numpy scalars to Python scalars: >>> a = np.uint32([1, 2])",
"title": "numpy.reference.generated.numpy.ndarray.tolist"
}
] |
|
5,183,533 | def f_5183533(a):
return | numpy.array(a)[0].tolist() |
import numpy
def check(candidate): | [
"\n assert candidate([[1,2,3],[4,5,6]]) == [1,2,3]\n",
"\n assert candidate(['a', 'aa', 'abc']) == 'a'\n"
] | f_5183533 | Convert the first row of numpy matrix `a` to a list | [
"numpy"
] | [
{
"function": "numpy.ndarray.tolist",
"text": "numpy.ndarray.tolist method ndarray.tolist()\n \nReturn the array as an a.ndim-levels deep nested list of Python scalars. Return a copy of the array data as a (nested) Python list. Data items are converted to the nearest compatible builtin Python type, via the item function. If a.ndim is 0, then since the depth of the nested list is 0, it will not be a list at all, but a simple Python scalar. Parameters \n none\n Returns \n \nyobject, or list of object, or list of list of object, or …\n\n\nThe possibly nested list of array elements. Notes The array may be recreated via a = np.array(a.tolist()), although this may sometimes lose precision. Examples For a 1D array, a.tolist() is almost the same as list(a), except that tolist changes numpy scalars to Python scalars: >>> a = np.uint32([1, 2])",
"title": "numpy.reference.generated.numpy.ndarray.tolist"
}
] |
|
5,999,747 | def f_5999747(soup):
return | soup.find(text='Address:').findNext('td').contents[0] |
from bs4 import BeautifulSoup
def check(candidate): | [
"\n assert candidate(BeautifulSoup(\"<td><b>Address:</b></td><td>My home address</td>\")) == \"My home address\"\n",
"\n assert candidate(BeautifulSoup(\"<td><b>Address:</b></td><td>This is my home address</td><td>Not my home address</td>\")) == \"This is my home address\"\n",
"\n assert candidate(BeautifulSoup(\"<td><b>Address:</b></td><td>My home address<li>My home address in a list</li></td>\")) == \"My home address\"\n"
] | f_5999747 | In `soup`, get the content of the sibling of the `td` tag with text content `Address:` | [
"bs4"
] | [] |
|
4,284,648 | def f_4284648(l):
return | """ """.join([('%d@%d' % t) for t in l]) |
def check(candidate): | [
"\n assert candidate([(1, 2), (3, 4)]) == \"1@2 3@4\"\n",
"\n assert candidate([(10, 11), (12, 13)]) == \"10@11 12@13\"\n",
"\n assert candidate([(10.2, 11.4), (12.14, 13.13)]) == \"10@11 12@13\"\n"
] | f_4284648 | convert elements of each tuple in list `l` into a string separated by character `@` | [] | [] |
|
4,284,648 | def f_4284648(l):
return | """ """.join([('%d@%d' % (t[0], t[1])) for t in l]) |
def check(candidate): | [
"\n assert candidate([(1, 2), (3, 4)]) == \"1@2 3@4\"\n",
"\n assert candidate([(10, 11), (12, 13)]) == \"10@11 12@13\"\n",
"\n assert candidate([(10.2, 11.4), (12.14, 13.13)]) == \"10@11 12@13\"\n"
] | f_4284648 | convert each tuple in list `l` to a string with '@' separating the tuples' elements | [] | [] |
|
29,696,641 | def f_29696641(teststr):
return | [i for i in teststr if re.search('\\d+[xX]', i)] |
import re
def check(candidate): | [
"\n assert candidate(['1 FirstString', '2x Sec String', '3rd String', 'x forString', '5X fifth']) == ['2x Sec String', '5X fifth']\n",
"\n assert candidate(['1x', '2', '3X', '4x random', '5X random']) == ['1x', '3X', '4x random', '5X random']\n",
"\n assert candidate(['1x', '2', '3X', '4xrandom', '5Xrandom']) == ['1x', '3X', '4xrandom', '5Xrandom']\n"
] | f_29696641 | Get all matches with regex pattern `\\d+[xX]` in list of string `teststr` | [
"re"
] | [
{
"function": "re.search",
"text": "re.search(pattern, string, flags=0) \nScan through string looking for the first location where the regular expression pattern produces a match, and return a corresponding match object. Return None if no position in the string matches the pattern; note that this is different from finding a zero-length match at some point in the string.",
"title": "python.library.re#re.search"
}
] |
|
15,315,452 | def f_15315452(df):
return | df['A'][(df['B'] > 50) & (df['C'] == 900)] |
import pandas as pd
def check(candidate): | [
"\n df = pd.DataFrame({'A': [7, 7, 4, 4, 7, 7, 3, 9, 6, 3], 'B': [20, 80, 90, 30, 80, 60, 80, 40, 40 ,10], 'C': [300, 700, 100, 900, 200, 800, 900, 100, 100, 600]})\n assert candidate(df).to_dict() == {6: 3}\n",
"\n df1 = pd.DataFrame({'A': [9, 9, 5, 8, 7, 9, 2, 2, 5, 7], 'B': [40, 70, 70, 80, 50, 30, 80, 80, 80, 70], 'C': [300, 700, 900, 900, 200, 900, 700, 400, 300, 800]})\n assert candidate(df1).to_dict() == {2: 5, 3: 8}\n",
"\n df2 = pd.DataFrame({'A': [3, 4, 5, 6], 'B': [-10, 50, 20, 10], 'C': [900, 800, 900, 900]})\n assert candidate(df2).to_dict() == {}\n"
] | f_15315452 | select values from column 'A' for which corresponding values in column 'B' will be greater than 50, and in column 'C' - equal 900 in dataframe `df` | [
"pandas"
] | [] |
|
4,642,501 | def f_4642501(o):
return | sorted(o.items()) |
import pandas as pd
def check(candidate): | [
"\n assert candidate({1:\"abc\", 5:\"klm\", 2:\"pqr\"}) == [(1, \"abc\"), (2, \"pqr\"), (5, \"klm\")]\n",
"\n assert candidate({4.221:\"uwv\", -1.009:\"pow\"}) == [(-1.009, 'pow'), (4.221, 'uwv')]\n",
"\n assert candidate({\"as2q\":\"piqr\", \"#wwq\":\"say\", \"Rwc\":\"koala\", \"35\":\"kangaroo\"}) == [('#wwq', 'say'), ('35', 'kangaroo'), ('Rwc', 'koala'), ('as2q', 'piqr')]\n"
] | f_4642501 | Sort dictionary `o` in ascending order based on its keys and items | [
"pandas"
] | [] |
|
4,642,501 | def f_4642501(d):
return | sorted(d) |
def check(candidate): | [
"\n assert candidate({1:\"abc\", 5:\"klm\", 2:\"pqr\"}) == [1, 2, 5]\n",
"\n assert candidate({4.221:\"uwv\", -1.009:\"pow\"}) == [-1.009, 4.221]\n",
"\n assert candidate({\"as2q\":\"piqr\", \"#wwq\":\"say\", \"Rwc\":\"koala\", \"35\":\"kangaroo\"}) == ['#wwq', '35', 'Rwc', 'as2q']\n"
] | f_4642501 | get sorted list of keys of dict `d` | [] | [] |
|
4,642,501 | def f_4642501(d):
return | sorted(d.items()) |
def check(candidate): | [
"\n d = {'a': [1, 2, 3], 'c': ['one', 'two'], 'b': ['blah', 'bhasdf', 'asdf'], 'd': ['asdf', 'wer', 'asdf', 'zxcv']}\n assert candidate(d) == [('a', [1, 2, 3]), ('b', ['blah', 'bhasdf', 'asdf']), ('c', ['one', 'two']), ('d', ['asdf', 'wer', 'asdf', 'zxcv'])]\n"
] | f_4642501 | sort dictionaries `d` by keys | [] | [] |
|
642,154 | def f_642154():
return | int('1') |
def check(candidate): | [
"\n assert candidate() == 1\n",
"\n assert candidate() + 1 == 2\n"
] | f_642154 | convert string "1" into integer | [] | [] |
|
642,154 | def f_642154(T1):
return | [list(map(int, x)) for x in T1] |
def check(candidate): | [
"\n T1 = (('13', '17', '18', '21', '32'), ('07', '11', '13', '14', '28'), ('01', '05', '06', '08', '15', '16'))\n assert candidate(T1) == [[13, 17, 18, 21, 32], [7, 11, 13, 14, 28], [1, 5, 6, 8, 15, 16]]\n"
] | f_642154 | convert items in `T1` to integers | [] | [] |
|
3,777,301 | def f_3777301():
|
return | subprocess.call(['./test.sh']) |
import subprocess
from unittest.mock import Mock
def check(candidate): | [
"\n subprocess.call = Mock()\n try:\n candidate()\n except:\n assert False\n"
] | f_3777301 | call a shell script `./test.sh` using subprocess | [
"subprocess"
] | [
{
"function": "subprocess.call",
"text": "subprocess.call(args, *, stdin=None, stdout=None, stderr=None, shell=False, cwd=None, timeout=None, **other_popen_kwargs) \nRun the command described by args. Wait for command to complete, then return the returncode attribute. Code needing to capture stdout or stderr should use run() instead: run(...).returncode\n To suppress stdout or stderr, supply a value of DEVNULL. The arguments shown above are merely some common ones. The full function signature is the same as that of the Popen constructor - this function passes all supplied arguments other than timeout directly through to that interface. Note Do not use stdout=PIPE or stderr=PIPE with this function. The child process will block if it generates enough output to a pipe to fill up the OS pipe buffer as the pipes are not being read from. Changed in version 3.3: timeout was added.",
"title": "python.library.subprocess#subprocess.call"
}
] |
3,777,301 | def f_3777301():
|
return | subprocess.call(['notepad']) |
import subprocess
from unittest.mock import Mock
def check(candidate): | [
"\n subprocess.call = Mock()\n try:\n candidate()\n except:\n assert False\n"
] | f_3777301 | call a shell script `notepad` using subprocess | [
"subprocess"
] | [
{
"function": "subprocess.call",
"text": "subprocess.call(args, *, stdin=None, stdout=None, stderr=None, shell=False, cwd=None, timeout=None, **other_popen_kwargs) \nRun the command described by args. Wait for command to complete, then return the returncode attribute. Code needing to capture stdout or stderr should use run() instead: run(...).returncode\n To suppress stdout or stderr, supply a value of DEVNULL. The arguments shown above are merely some common ones. The full function signature is the same as that of the Popen constructor - this function passes all supplied arguments other than timeout directly through to that interface. Note Do not use stdout=PIPE or stderr=PIPE with this function. The child process will block if it generates enough output to a pipe to fill up the OS pipe buffer as the pipes are not being read from. Changed in version 3.3: timeout was added.",
"title": "python.library.subprocess#subprocess.call"
}
] |
7,946,798 | def f_7946798(l1, l2):
return | [val for pair in zip(l1, l2) for val in pair] |
def check(candidate): | [
"\n assert candidate([1,2,3], [10,20,30]) == [1,10,2,20,3,30]\n",
"\n assert candidate([1,2,3], ['c','b','a']) == [1,'c',2,'b',3,'a']\n",
"\n assert candidate([1,2,3], ['c','b']) == [1,'c',2,'b']\n"
] | f_7946798 | combine lists `l1` and `l2` by alternating their elements | [] | [] |
|
8,908,287 | def f_8908287():
return | base64.b64encode(b'data to be encoded') |
import base64
def check(candidate): | [
"\n assert candidate() == b'ZGF0YSB0byBiZSBlbmNvZGVk'\n"
] | f_8908287 | encode string 'data to be encoded' | [
"base64"
] | [
{
"function": "base64.b64encode",
"text": "base64.b64encode(s, altchars=None) \nEncode the bytes-like object s using Base64 and return the encoded bytes. Optional altchars must be a bytes-like object of at least length 2 (additional characters are ignored) which specifies an alternative alphabet for the + and / characters. This allows an application to e.g. generate URL or filesystem safe Base64 strings. The default is None, for which the standard Base64 alphabet is used.",
"title": "python.library.base64#base64.b64encode"
}
] |
|
8,908,287 | def f_8908287():
return | 'data to be encoded'.encode('ascii') |
def check(candidate): | [
"\n assert candidate() == b'data to be encoded'\n"
] | f_8908287 | encode a string `data to be encoded` to `ascii` encoding | [] | [] |
|
7,856,296 | def f_7856296():
return | list(csv.reader(open('text.txt', 'r'), delimiter='\t')) |
import csv
def check(candidate): | [
"\n with open('text.txt', 'w', newline='') as csvfile:\n spamwriter = csv.writer(csvfile, delimiter='\t')\n spamwriter.writerow(['Spam', 'Lovely Spam', 'Wonderful Spam'])\n spamwriter.writerow(['hello', 'world', '!'])\n\n assert candidate() == [['Spam', 'Lovely Spam', 'Wonderful Spam'], ['hello', 'world', '!']]\n"
] | f_7856296 | parse tab-delimited CSV file 'text.txt' into a list | [
"csv"
] | [
{
"function": "csv.reader",
"text": "csv.reader(csvfile, dialect='excel', **fmtparams) \nReturn a reader object which will iterate over lines in the given csvfile. csvfile can be any object which supports the iterator protocol and returns a string each time its __next__() method is called — file objects and list objects are both suitable. If csvfile is a file object, it should be opened with newline=''. 1 An optional dialect parameter can be given which is used to define a set of parameters specific to a particular CSV dialect. It may be an instance of a subclass of the Dialect class or one of the strings returned by the list_dialects() function. The other optional fmtparams keyword arguments can be given to override individual formatting parameters in the current dialect. For full details about the dialect and formatting parameters, see section Dialects and Formatting Parameters. Each row read from the csv file is returned as a list of strings. No automatic data type conversion is performed unless the QUOTE_NONNUMERIC format option is specified (in which case unquoted fields are transformed into floats). A short usage example: >>> import csv",
"title": "python.library.csv#csv.reader"
}
] |
|
9,035,479 | def f_9035479(my_object, my_str):
return | getattr(my_object, my_str) |
def check(candidate): | [
"\n class Student:\n id = 9\n name = \"abc\"\n grade = 97.08\n\n s = Student()\n \n assert candidate(s, \"name\") == \"abc\"\n",
"\n class Student:\n id = 9\n name = \"abc\"\n grade = 97.08\n\n s = Student()\n \n assert (candidate(s, \"grade\") - 97.08) < 1e-6\n",
"\n class Student:\n id = 9\n name = \"abc\"\n grade = 97.08\n\n s = Student()\n \n assert (candidate(s, \"grade\") - 97.07) > 1e-6\n",
"\n class Student:\n id = 9\n name = \"abc\"\n grade = 97.08\n\n s = Student()\n \n assert candidate(s, \"id\") == 9\n"
] | f_9035479 | Get attribute `my_str` of object `my_object` | [] | [] |
|
5,558,418 | def f_5558418(LD):
return | dict(zip(LD[0], zip(*[list(d.values()) for d in LD]))) |
import collections
def check(candidate): | [
"\n employees = [{'name' : 'apple', 'id': 60}, {'name' : 'orange', 'id': 65}]\n exp_result = {'name': ('apple', 'orange'), 'id': (60, 65)}\n actual_result = candidate(employees)\n for key in actual_result:\n assert collections.Counter(list(exp_result[key])) == collections.Counter(list(actual_result[key]))\n"
] | f_5558418 | group a list of dicts `LD` into one dict by key | [
"collections"
] | [] |