text
stringlengths 2
5
|
---|
6454 |
723 |
13031 |
1298 |
8141 |
3215 |
13022 |
2500 |
1915 |
2515 |
2501 |
3238 |
2518 |
12990 |
11048 |
107 |
6966 |
13021 |
12913 |
2508 |
12929 |
1918 |
2489 |
12906 |
10275 |
2093 |
7239 |
12947 |
7236 |
12972 |
12898 |
2525 |
8142 |
1618 |
248 |
1614 |
12928 |
12918 |
12963 |
2526 |
11049 |
12980 |
4018 |
128 |
1301 |
8143 |
12927 |
7232 |
12950 |
12983 |
1304 |
12926 |
8160 |
13009 |
13243 |
12993 |
688 |
249 |
12904 |
1594 |
12986 |
13003 |
13019 |
8151 |
12944 |
1324 |
12945 |
1296 |
2493 |
2495 |
1905 |
8152 |
10271 |
12949 |
1607 |
250 |
3204 |
1593 |
10279 |
3221 |
12924 |
12998 |
10276 |
252 |
8163 |
1649 |
12897 |
1603 |
12933 |
12905 |
13005 |
8158 |
2522 |
10270 |
13034 |
12955 |
2494 |
12912 |
3241 |
1916 |
End of preview. Expand
in Dataset Viewer.
The WhisperSpeech Dataset
This dataset contains data to train SPEAR TTS-like text-to-speech models that utilized semantic tokens derived from the OpenAI Whisper speech recognition model.
We currently provide semantic and acoustic tokens for the LibriLight and LibriTTS datasets (English only).
Acoustic tokens:
- 24kHz EnCodec 6kbps (8 quantizers)
Semantic tokens:
- Whisper tiny VQ bottleneck trained on a subset of LibriLight
Available LibriLight subsets:
small
/medium
/large
(following the original dataset division but withlarge
excluding the speaker6454
)- a separate β1300hr single-speaker subset based on the
6454
speaker from thelarge
subset for training single-speaker TTS models
We plan to add more acoustic tokens from other codecs in the future.
- Downloads last month
- 372