Datasets:

Modalities:
Tabular
Formats:
csv
ArXiv:
Libraries:
Datasets
pandas
License:
Search is not available for this dataset
click
int64
0
1
protected_attribute
int64
0
1
senior
int64
0
1
displayrandom
int64
0
1
rank
int64
1
40
user_id
int64
0
31.9k
impression_id
int64
0
246k
product_id
int64
0
62.2k
cat0
int64
0
8
cat1
int64
0
8
cat2
int64
0
1.03k
cat3
int64
0
97
cat4
int64
0
121
cat5
int64
0
1.35k
cat6
int64
0
2.58k
cat7
int64
0
3.32k
cat8
int64
0
3.66k
cat9
int64
0
3.01k
cat10
int64
0
2.42k
cat11
int64
0
1.49k
cat12
int64
0
963
num16
float64
-0.11
214
num17
float64
-0.19
35.1
num18
float64
-0.13
103
num19
float64
-0.49
18.5
num20
float64
-0.67
12.5
num21
float64
-0.63
6.49
num22
float64
-0.44
36.7
num23
float64
-0.6
23.1
num24
float64
-0.52
10.6
num25
float64
-0.54
17.9
num26
float64
-0.33
23
num27
float64
-0.3
21.1
num28
float64
-0.35
19
num29
float64
-0.65
9.17
num30
float64
-0.77
19.9
num31
float64
-0.46
94.4
num32
float64
-0.31
56.8
num33
float64
-0.39
20
num34
float64
-0.31
54.5
num35
float64
-1.03
2.36
num36
float64
-0.4
19.5
num37
float64
-0.32
42.8
num38
float64
-0.29
31.3
num39
float64
-0.31
51.6
num40
float64
-0.29
55.2
num41
float64
-0.33
40.4
num42
float64
-0.54
12.3
num43
float64
-0.39
19.8
num44
float64
-0.99
14.3
num45
float64
-0.52
32.7
num46
float64
-0.78
20.5
num47
float64
-0.35
22.3
num48
float64
-0.58
18.6
num49
float64
-0.26
23.7
num50
float64
-1
14.8
0
0
1
1
1
31,020
175,316
45,953
6
6
334
27
54
1,243
2,452
216
90
1,321
550
0
0
-0.107876
-0.188743
-0.134196
-0.494034
-0.484806
0.816642
0.736697
-0.465276
-0.519546
-0.544478
-0.237494
-0.29582
-0.08792
-0.65406
-0.628194
-0.457957
0.039573
0.09566
0.019546
0.666572
0.073763
-0.315648
-0.293501
-0.314052
0.044876
-0.333033
-0.542801
0.074884
-0.751637
-0.299223
-0.647541
-0.252768
-0.577173
-0.264359
-0.737299
0
0
1
0
3
515
129,699
10,569
8
8
284
97
43
1,243
92
438
101
673
0
0
0
-0.107876
-0.188743
-0.134196
-0.494034
-0.672406
-0.633121
-0.444979
-0.560759
-0.519546
-0.544478
0.985738
0.08229
-0.262097
-0.556501
1.189479
-0.174453
-0.003383
-0.245326
-0.023179
-1.026151
-0.262562
-0.315648
-0.293501
-0.314052
0.001611
-0.333033
-0.542801
-0.258659
0.503731
-0.523668
1.088225
0.935563
-0.577173
0.50779
0.610287
0
1
1
0
1
12,859
134,573
51,550
6
6
31
38
114
1,243
905
0
1,699
673
0
0
0
-0.107876
-0.188743
-0.134196
-0.494034
-0.117404
-0.288595
0.191308
0.339534
-0.519546
-0.544478
-0.142058
-0.105075
-0.175008
-0.65406
0.491978
-0.457957
0.090199
-0.225462
0.068164
0.666572
-0.239925
-0.315648
-0.293501
-0.314052
0.094109
-0.333033
-0.542801
-0.236209
-0.11151
0.084159
0.422154
-0.160055
-0.577173
-0.264359
-0.063506
0
1
1
0
1
18,781
84,169
17,843
3
3
113
38
49
1,243
234
1,401
1,900
1,321
550
0
0
-0.107876
-0.188743
-0.134196
-0.494034
-0.672406
-0.633121
-0.444979
-0.59591
-0.519546
-0.544478
-0.332929
-0.29582
-0.349185
-0.65406
-0.765833
-0.143804
0.136224
-0.387679
0.112362
-1.026151
-0.398386
-0.315648
-0.293501
-0.314052
0.138866
-0.333033
-0.542801
-0.393358
-0.987701
-0.523668
-0.778977
-0.34548
-0.577173
4.368537
-0.99645
0
0
1
0
9
19,283
76,506
11,354
8
8
721
73
37
1,243
107
2,879
846
0
0
0
0
-0.107876
-0.188743
-0.134196
0.083041
-0.354079
-0.321731
1.500242
-0.59591
-0.519546
-0.544478
-0.332929
-0.29582
0.521699
0.028849
-0.641276
2.453711
0.29424
1.621821
0.264109
0.666572
1.564591
-0.315648
-0.293501
-0.314052
0.292533
-0.333033
-0.542801
1.553377
-0.636441
-0.523668
-0.541088
-0.34548
-0.577173
-0.264359
-0.581808
0
0
1
1
4
10,388
112,957
55,540
8
8
209
92
41
0
697
223
24
934
543
1,086
401
0.20142
0.150931
0.445232
-0.205496
-0.513242
-0.440984
-0.354081
-0.394932
-0.519546
-0.087779
-0.237494
-0.02737
-0.349185
-0.361385
-0.201581
-0.120817
-0.115375
-0.228773
-0.14546
2.359296
-0.256094
-0.315648
-0.19434
-0.223318
-0.122218
-0.333033
-0.542801
-0.252244
-0.534058
-0.267055
-0.240152
-0.252768
-0.153896
-0.264359
-0.322657
1
0
0
1
2
17,098
58,005
52,106
3
3
292
26
84
655
492
180
1,595
63
1,491
0
0
-0.107876
-0.188743
-0.134196
-0.494034
-0.672406
-0.633121
-0.444979
0.690896
-0.519546
-0.544478
-0.332929
-0.29582
-0.349185
-0.65406
0.526077
-0.174453
1.179436
-0.387679
1.114186
0.666572
-0.398386
-0.315648
-0.293501
-0.314052
1.153364
-0.333033
-0.542801
-0.393358
-0.937521
-0.314541
0.505693
-0.34548
-0.577173
-0.264359
-0.892789
0
1
0
0
6
11,721
134,329
19,484
6
6
603
73
102
655
2,343
3,204
127
840
577
373
0
-0.107876
-0.188743
-0.134196
6.142326
2.988352
0.218918
0.391284
0.384086
-0.519546
-0.544478
-0.332929
-0.29582
-0.349185
4.028742
0.106068
-0.090168
-0.046339
-0.387679
-0.062957
-1.026151
-0.398386
-0.315648
-0.293501
-0.314052
-0.038671
-0.333033
-0.542801
-0.393358
1.471117
0.753036
0.053634
-0.34548
-0.577173
-0.264359
1.595062
0
1
1
0
4
20,033
100,155
52,556
8
8
548
73
35
0
133
2,879
846
0
0
0
0
-0.107876
-0.188743
-0.134196
-0.349765
-0.592824
0.198303
-0.263183
1.119082
-0.519546
0.356278
-0.332929
-0.29582
-0.349185
-0.458943
1.138114
-0.335361
0.004288
-0.387679
-0.014339
-1.026151
-0.398386
-0.315648
-0.097924
-0.135096
0.010562
-0.333033
-0.542801
-0.393358
-0.887341
0.259764
1.039174
-0.34548
0.257664
-0.264359
-0.840959
0
1
0
0
17
18,002
113,770
5,667
8
8
923
92
55
489
750
2,879
846
0
0
0
0
-0.107876
-0.175292
-0.032568
-0.494034
-0.672406
-0.633121
-0.444979
-0.57937
0.763446
-0.544478
1.862085
3.033327
-0.305641
-0.361385
-0.076834
-0.182115
-0.251913
-0.2685
-0.260375
0.666572
-0.281966
0.655508
-0.293501
-0.314052
-0.238586
0.582689
0.646535
-0.277901
0.955322
-0.500162
-0.121026
1.786906
-0.577173
-0.264359
1.024929
0
1
1
1
7
30,151
180,607
44,066
8
8
643
36
37
1,243
100
223
89
1,321
550
0
0
-0.107876
-0.188743
-0.134196
1.525728
3.667803
3.658752
0.427643
1.217218
0.991845
1.257033
0.191498
0.24108
-0.305641
1.199549
0.814383
0.00178
-0.182877
-0.182425
-0.194078
0.666572
-0.197884
0.542383
2.053421
1.833424
-0.171451
0.476022
0.858261
-0.194516
2.430885
1.288277
0.730032
0.349409
1.092501
-0.264359
2.579836
0
0
1
0
6
28,622
210,537
60,982
1
1
127
56
75
1,243
75
2,879
846
0
0
0
0
-0.107876
-0.188743
-0.134196
-0.349765
-0.513242
-0.598187
-0.40862
-0.453085
-0.519546
-0.544478
-0.332929
-0.29582
-0.349185
-0.458943
-0.641356
-0.419646
-0.307142
-0.387679
-0.313413
0.666572
-0.398386
-0.315648
-0.293501
-0.314052
-0.292295
-0.333033
-0.542801
-0.393358
-0.686846
-0.378588
-0.660109
-0.34548
-0.577173
-0.264359
-0.685468
0
1
1
0
5
15,458
71,027
7,875
8
8
115
46
72
977
518
0
1,699
673
0
0
0
2.366492
1.269749
0.379588
-0.494034
-0.672406
-0.633121
-0.444979
-0.507041
4.343476
1.137433
0.144248
0.975128
-0.305641
-0.65406
-0.68838
-0.457957
-0.301005
-0.371126
-0.308993
-1.026151
-0.38545
1.073485
0.267261
0.199056
-0.287819
0.976809
3.965229
-0.38053
-0.769279
-0.397367
-0.705015
0.118082
0.981653
-0.264359
-0.685468
0
0
1
0
1
14,923
78,826
18,387
6
6
488
70
37
1,243
92
166
3,631
1,321
550
0
0
-0.107876
-0.148391
-0.12855
0.083041
0.52132
-0.371116
-0.208644
-0.391744
-0.519546
0.356278
-0.332929
-0.29582
-0.349185
0.07481
0.088274
-0.251076
-0.233503
-0.387679
-0.242696
0.666572
-0.398386
-0.315648
-0.097924
-0.135096
-0.220684
-0.333033
-0.542801
-0.393358
0.567878
-0.349572
0.682341
-0.34548
0.257664
-0.264359
0.662117
0
1
1
0
5
29,385
43,638
10,847
0
0
437
70
6
1,243
109
2,879
846
0
0
0
0
-0.107876
-0.188743
-0.134196
-0.494034
-0.672406
-0.633121
-0.444979
-0.53466
-0.519546
-0.544478
-0.332929
-0.29582
-0.349185
-0.361385
-0.712451
-0.396659
-0.307142
-0.387679
-0.313413
0.666572
-0.398386
-0.315648
-0.293501
-0.314052
-0.292295
-0.333033
-0.542801
-0.393358
-0.837161
-0.43662
-0.728001
-0.34548
-0.577173
-0.264359
-0.789129
0
0
1
0
3
19,561
245,652
7,135
8
8
696
73
44
1,243
150
1,172
1,208
673
0
0
0
-0.107876
-0.188743
-0.134196
0.371578
-0.194915
-0.339593
-0.026847
-0.350911
-0.519546
-0.544478
-0.142058
-0.29582
0.108029
0.223966
-0.552306
0.063078
-0.307142
-0.387679
-0.15872
2.359296
-0.13644
-0.315648
-0.293501
-0.314052
-0.135645
-0.333033
-0.542801
-0.13358
-0.536081
-0.262524
-0.575073
-0.160055
-0.577173
-0.264359
-0.99645
0
1
1
0
5
24,058
29,237
7,875
8
8
115
46
72
977
518
0
1,699
673
0
0
0
0.820012
1.15312
0.210208
-0.349765
-0.354079
-0.411578
-0.4268
-0.555077
1.064214
-0.544478
-0.06722
-0.29582
-0.109692
-0.458943
-0.625783
-0.442633
-0.304073
0.042692
-0.310466
0.666572
0.022021
-0.015943
-0.293501
-0.314052
-0.289311
-0.050435
0.925347
0.02357
-0.59275
-0.494652
-0.645238
-0.087353
-0.577173
-0.264359
-0.581808
1
1
1
0
1
9,657
169,094
5,913
5
5
562
54
13
0
75
156
1,303
56
153
676
219
-0.107876
-0.175292
-0.12855
-0.494034
-0.672406
-0.633121
-0.444979
-0.440799
-0.519546
-0.544478
-0.046623
-0.29582
-0.175008
-0.556501
-0.630647
-0.335361
-0.236571
-0.3314
-0.247116
0.666572
-0.346643
-0.315648
-0.293501
-0.314052
-0.225159
-0.333033
-0.542801
-0.342044
-0.937521
-0.419288
-0.649883
-0.067343
-0.577173
-0.264359
-0.840959
0
0
1
1
11
26,270
77,358
54,564
0
3
14
65
22
1,243
100
223
89
1,321
550
0
0
-0.107876
-0.188743
-0.134196
0.515847
0.183735
-0.633121
-0.444979
10.223204
-0.519546
-0.544478
-0.332929
-0.29582
-0.349185
0.028849
8.930501
-0.136141
-0.307142
-0.387679
-0.313413
0.666572
-0.398386
-0.315648
-0.293501
-0.314052
-0.237095
-0.302431
-0.38382
-0.393358
-0.447864
4.76853
8.718313
-0.34548
-0.577173
-0.264359
-0.426317
0
0
0
0
13
27,770
26,366
2,960
7
7
967
54
72
688
94
117
346
938
550
0
0
-0.107876
-0.188743
-0.134196
1.958534
0.680483
-0.336182
0.536721
0.445335
-0.519546
-0.544478
-0.137943
-0.29582
0.020941
0.809316
0.141656
-0.051856
0.281966
-0.192357
0.23317
-1.026151
-0.226989
-0.315648
-0.293501
-0.314052
0.261203
-0.333033
-0.542801
-0.22338
-0.235002
0.72402
0.087618
-0.156057
-0.577173
-0.264359
0.143815
0
0
1
0
2
15,807
79,325
17,843
6
6
113
38
49
1,243
234
1,401
1,900
1,321
550
0
0
-0.107876
-0.118878
0.022631
-0.494034
-0.672406
-0.633121
-0.444979
-0.555077
-0.519546
-0.544478
-0.332929
-0.29582
-0.349185
-0.65406
-0.721722
-0.457957
1.030625
-0.387679
0.971279
-1.026151
-0.398386
-0.315648
-0.293501
-0.314052
1.008649
-0.333033
-0.542801
-0.393358
-0.987701
-0.509769
-0.736854
-0.34548
-0.577173
-0.264359
-0.99645
0
1
1
0
5
24,888
204,784
11,167
3
3
606
8
89
0
35
1,412
846
0
0
0
0
-0.107876
-0.188743
-0.134196
-0.349765
-0.592824
-0.615654
-0.354081
0.057421
-0.519546
-0.544478
-0.332929
-0.29582
-0.349185
-0.458943
-0.125253
-0.320036
-0.190547
-0.387679
-0.201444
-1.026151
-0.398386
-0.315648
-0.293501
-0.314052
-0.17891
-0.333033
-0.542801
-0.393358
-0.636441
0.520908
-0.167263
-0.34548
-0.577173
-0.264359
-0.581808
0
1
0
0
3
14,848
114,749
26,718
8
8
666
65
25
455
75
528
160
1,321
550
0
0
-0.107876
-0.188743
-0.134196
-0.494034
-0.43366
-0.42104
-0.045027
-0.53466
-0.519546
-0.544478
-0.187299
-0.29582
0.129801
-0.65406
-0.65907
-0.457957
-0.19515
-0.08973
-0.205864
0.666572
-0.107335
-0.315648
-0.293501
-0.314052
-0.183386
-0.333033
-0.542801
-0.104716
-0.686621
-0.523668
-0.677025
-0.204006
-0.577173
-0.264359
-0.633638
0
1
1
0
1
18,442
80,974
38,418
8
8
0
65
45
1,243
2,397
2,879
846
0
0
0
0
-0.107876
-0.188743
-0.134196
-0.494034
-0.672406
-0.633121
-0.444979
-0.135682
-0.519546
-0.544478
-0.11898
-0.29582
-0.153236
-0.65406
-0.085393
-0.457957
0.486006
-0.069867
0.448268
0.666572
-0.087932
-0.315648
-0.293501
-0.314052
0.479021
-0.333033
-0.542801
-0.085473
0.711123
-0.130737
-0.129199
-0.137636
-0.577173
-0.264359
0.765778
0
1
0
0
1
10,126
25,650
24,453
8
8
797
91
72
402
2,356
98
1,699
842
0
0
0
-0.107876
-0.036416
0.064647
-0.494034
-0.672406
-0.552781
-0.317722
-0.59591
-0.519546
-0.251786
-0.142058
-0.208592
-0.175008
-0.65406
-0.765833
-0.082505
-0.219696
-0.222152
-0.229437
0.666572
-0.236691
-0.315648
-0.22995
-0.255902
-0.207256
-0.333033
-0.542801
-0.370908
-0.937521
-0.523668
-0.761985
0.118082
-0.305901
-0.264359
-0.99645
0
0
1
0
3
18,930
139,898
16,977
7
7
195
92
50
0
2,342
96
1,894
48
74
751
219
-0.107876
-0.188743
-0.134196
-0.349765
-0.592824
-0.615654
-0.4268
-0.432577
2.647973
1.257033
-0.332929
-0.29582
-0.349185
0.126407
-0.605688
-0.396659
-0.294869
-0.387679
-0.301627
0.666572
-0.398386
1.482583
0.097653
0.043861
-0.286328
1.362556
2.393495
-0.393358
-0.536081
-0.43662
-0.626049
-0.34548
1.092501
-0.264359
-0.478148
0
1
1
0
5
14,168
94,654
21,595
7
8
450
73
92
1,144
2,519
1,304
1,208
673
0
0
0
-0.107876
-0.188743
-0.134196
-0.349765
-0.592824
1.356416
-0.4268
-0.575493
1.064214
1.257033
-0.332929
-0.29582
-0.349185
-0.556501
-0.748039
-0.450295
-0.305608
-0.387679
-0.31194
0.666572
-0.398386
-0.015943
0.097653
0.043861
-0.290803
-0.050435
0.925347
-0.393358
-0.937521
-0.494652
-0.728001
-0.34548
1.092501
-0.264359
-0.892789
0
0
0
0
1
6,951
210,166
5,229
2
2
285
4
72
577
2,297
461
1,203
1,383
1,549
676
219
-0.107876
-0.175292
-0.12855
-0.494034
-0.672406
-0.633121
-0.444979
0.099368
-0.519546
-0.544478
-0.332929
-0.29582
1.109546
0.321524
-0.159869
2.568645
-0.307142
0.221461
-0.313413
0.666572
0.196652
-0.315648
-0.293501
-0.314052
-0.292295
-0.333033
-0.542801
0.196756
-0.454811
0.323479
-0.200319
-0.34548
-0.577173
-0.264359
-0.426317
0
0
1
0
2
17,463
168,029
34,528
8
8
171
66
46
1,243
100
223
89
934
1,334
676
219
-0.107876
-0.188743
-0.134196
-0.205496
2.235708
1.627261
0.282206
0.809839
-0.519546
0.356278
1.003166
0.233714
-0.218553
-0.361385
0.562681
-0.044194
0.196055
-0.195668
0.16982
0.666572
-0.21082
-0.315648
-0.097924
-0.135096
0.197051
-0.333033
-0.542801
-0.207344
1.481048
0.582386
0.489672
0.952494
0.257664
-0.264359
1.595062
0
1
0
0
1
19,393
141,414
31,445
8
8
207
5
20
1,188
349
360
1,208
673
0
0
0
-0.107876
-0.188743
-0.134196
-0.494034
3.566351
3.567083
0.809416
0.495997
-0.519546
0.356278
-0.237494
-0.02737
-0.240325
-0.556501
0.203603
0.086065
-0.196684
0.327398
-0.207338
-1.026151
0.300136
-0.315648
2.053421
1.833424
-0.184878
-0.333033
-0.542801
0.299384
1.695992
-0.391263
0.146774
-0.252768
0.257664
-0.264359
1.802382
0
1
0
0
13
17,364
14,136
8,121
0
6
939
75
21
566
1,209
217
1,699
934
1,494
320
379
-0.107876
-0.188743
-0.134196
-0.349765
-0.43366
-0.545786
-0.444979
-0.452994
-0.519546
-0.544478
-0.332929
-0.29582
-0.349185
-0.65406
-0.641276
-0.373672
-0.307142
-0.387679
-0.313413
0.666572
-0.398386
-0.315648
-0.293501
-0.135096
-0.292295
-0.333033
-0.542801
-0.393358
-0.636441
-0.465636
-0.660033
-0.34548
0.257664
-0.264359
-0.581808
0
0
0
0
29
27,365
86,652
40,999
8
8
450
24
61
334
105
1,401
2,220
1,394
0
676
219
-0.107876
-0.188743
-0.134196
-0.494034
-0.672406
-0.633121
-0.444979
0.384086
1.064214
-0.544478
2.515373
2.454346
-0.327413
-0.65406
2.327792
-0.457957
-0.305608
-0.384369
-0.31194
0.666572
-0.395152
0.883173
-0.293501
-0.314052
-0.290803
0.797359
0.925347
-0.390151
-0.385541
0.07732
3.344892
2.421556
-0.577173
-0.264359
-0.322657
0
1
1
1
14
27,365
164,374
32,806
8
8
109
4
16
0
75
109
1,208
492
331
359
0
-0.107876
-0.141922
-0.131388
-0.494034
-0.672406
-0.633121
-0.444979
0.321276
1.064214
1.247204
6.012742
11.988365
-0.327413
-0.65406
0.033533
-0.457957
-0.281061
-0.367816
-0.288367
0.666572
-0.378982
0.283762
0.288961
0.218911
-0.266933
0.232163
0.925347
-0.374116
0.066078
0.779836
0.428876
5.81914
1.083391
-0.264359
0.143815
0
0
1
0
9
20,203
71,812
7,503
0
8
479
58
96
0
98
117
1,849
2,790
192
252
401
-0.107876
-0.188743
-0.134196
-0.494034
-0.648152
-0.633121
-0.444979
0.782315
-0.519546
-0.544478
-0.332929
-0.29582
-0.349185
-0.65406
0.462462
-0.457957
-0.307142
-0.387679
-0.313413
0.666572
-0.398386
-0.315648
-0.293501
-0.314052
-0.292295
-0.333033
-0.542801
-0.393358
-0.821868
1.049834
0.393969
-0.34548
-0.577173
-0.264359
-0.789129
0
0
0
0
7
19,091
165,587
18,921
8
8
295
65
22
112
2,416
908
0
0
0
0
0
-0.107876
-0.188743
-0.134196
-0.494034
-0.239216
-0.224177
-0.4268
-0.49951
5.37468
4.860055
-0.332929
-0.29582
6.313081
-0.65406
-0.340337
-0.457957
-0.302539
4.750284
-0.308993
0.666572
4.620627
9.173017
1.662268
1.475512
-0.287819
8.614023
4.921157
4.584125
0.169031
-0.465636
-0.372654
-0.34548
4.43185
1.279939
0.247476
0
1
1
1
8
26,796
56,333
43,084
8
8
672
73
116
1,343
2,337
543
1,699
707
0
0
0
-0.107876
-0.188743
-0.134196
-0.494034
-0.592824
3.89945
-0.4268
3.138004
-0.519546
2.411376
0.095831
-0.220395
-0.175008
-0.65406
2.577397
-0.457957
-0.011053
0.658453
-0.049698
0.666572
0.623526
-0.024726
1.521751
1.346936
-0.025244
-0.058717
-0.542801
0.620098
-0.887341
-0.494652
2.464578
0.071046
2.162368
-0.264359
-0.840959
0
1
0
0
2
353
186,189
8,537
8
8
501
75
75
611
75
1,954
1,699
673
0
0
0
-0.107876
-0.188743
-0.134196
-0.494034
-0.672406
-0.633121
-0.444979
-0.207995
-0.519546
0.356278
-0.332929
-0.29582
-0.349185
1.199549
-0.336737
-0.2664
-0.264186
-0.387679
-0.276581
-1.026151
-0.398386
-0.315648
0.87996
0.759686
-0.254997
-0.333033
-0.542801
-0.393358
0.222379
0.056652
-0.369217
-0.34548
0.257664
-0.264359
0.454797
0
0
0
0
14
16,827
39,781
49,581
8
8
896
73
35
400
607
1,401
809
1,321
550
0
0
-0.107876
-0.188743
-0.134196
-0.494034
-0.418426
0.252122
-0.444979
-0.220595
-0.519546
-0.544478
6.566844
2.702823
-0.327413
-0.65406
-0.43873
-0.457957
-0.276459
-0.387679
-0.283948
0.666572
-0.398386
-0.315648
-0.293501
-0.314052
-0.292295
-0.333033
-0.542801
-0.393358
-0.466689
-0.344017
-0.466614
6.357432
-0.577173
-0.264359
-0.426317
0
1
1
1
1
15,954
52,992
37,720
6
8
261
52
114
644
318
2,879
846
0
0
0
0
-0.107876
0.298025
0.034424
-0.494034
-0.672406
-0.633121
-0.444979
-0.546198
-0.519546
-0.544478
0.71686
-0.034596
-0.175008
-0.556501
0.097046
-0.120817
0.983066
0.327398
0.924134
0.666572
0.296903
-0.315648
-0.293501
0.043861
-0.292295
-0.333033
-0.542801
0.296177
1.445673
-0.453018
0.045018
0.674357
1.092501
-0.264359
1.595062
0
1
1
0
3
8,321
216,908
27,512
3
3
825
88
34
1,243
168
1,412
846
0
0
0
0
-0.107876
-0.159604
-0.134196
-0.494034
-0.672406
-0.633121
-0.444979
-0.59591
-0.519546
-0.544478
-0.332929
-0.29582
-0.349185
-0.65406
-0.712451
-0.312374
-0.196684
-0.387679
-0.207338
-1.026151
-0.398386
-0.315648
-0.293501
-0.314052
-0.184878
-0.333033
-0.542801
-0.393358
-0.987701
-0.43662
-0.728001
-0.34548
-0.577173
-0.264359
-0.99645
0
0
1
0
4
1,492
236,097
22,496
8
8
237
38
37
1,243
2,571
3,195
418
192
1,307
676
219
-0.107876
-0.12149
-0.134196
-0.494034
-0.672406
-0.633121
-0.444979
-0.412161
-0.519546
-0.544478
-0.332929
-0.29582
-0.349185
-0.06871
0.408564
0.859956
-0.307142
-0.387679
0.523405
0.666572
-0.398386
-0.315648
-0.293501
-0.314052
0.555109
-0.333033
-0.542801
4.532811
-0.536081
-0.29154
0.342499
-0.34548
-0.577173
-0.264359
-0.99645
0
1
1
1
1
25,885
236,159
55,907
8
8
560
73
88
658
662
688
1,160
914
1,031
359
0
-0.107876
-0.188743
-0.134196
-0.494034
-0.672406
-0.633121
-0.444979
-0.289661
1.064214
0.356278
-0.332929
-0.29582
4.092325
0.809316
-0.498925
-0.343023
-0.307142
-0.387679
-0.291314
-1.026151
2.017337
2.081993
0.488807
0.401773
-0.269917
1.927752
0.925347
2.002376
-0.235002
-0.088428
-0.524096
-0.34548
0.257664
0.50779
-0.99645
0
1
0
0
1
3,972
85,495
40,648
7
7
868
73
64
679
681
32
1,993
1,031
1,667
676
219
-0.107876
-0.188743
-0.134196
-0.494034
-0.354079
-0.503365
-0.299542
-0.412161
-0.519546
-0.158356
-0.332929
-0.29582
-0.349185
-0.556501
-0.605688
-0.327699
-0.268788
-0.387679
-0.279528
0.666572
-0.398386
-0.315648
-0.209664
-0.23734
-0.257981
-0.333033
-0.542801
-0.393358
-0.636441
-0.29154
-0.626049
-0.34548
-0.219308
-0.264359
-0.529978
0
1
0
0
3
13,209
170,716
5,821
8
8
897
59
63
1
117
3,250
64
1,321
983
42
594
-0.107876
-0.188743
-0.134196
-0.494034
-0.672406
-0.633121
-0.444979
-0.59591
-0.519546
0.661057
-0.046623
0.063457
-0.240325
0.028849
-0.034405
0.591776
-0.095431
0.065865
-0.110102
-1.026151
0.044658
-0.315648
0.946136
0.820238
-0.086412
-0.333033
-0.542801
0.04602
1.074974
-0.523668
-0.080509
-0.067343
0.540139
-0.264359
1.18042
0
0
1
0
4
19,247
88,639
55,325
8
8
686
77
118
0
1,209
223
89
934
616
0
401
-0.107876
-0.183809
-0.13109
-0.494034
1.822591
2.159514
-0.444979
1.180885
1.064214
1.257033
0.751865
1.511812
-0.327413
-0.65406
0.925069
-0.457957
-0.235037
-0.33471
-0.244169
2.359296
-0.346643
-0.015943
0.488807
0.401773
-0.222175
-0.050435
0.925347
-0.342044
1.552492
0.142133
0.83573
0.708363
1.092501
-0.264359
1.646892
0
1
1
0
1
30,805
119,664
61,875
7
7
55
70
42
0
169
120
846
0
0
0
0
-0.107876
-0.188743
-0.134196
1.092922
1.697802
0.411484
0.482182
0.117801
-0.519546
-0.544478
-0.332929
-0.29582
-0.349185
0.525313
0.087137
0.139701
-0.182877
-0.387679
-0.194078
0.666572
-0.398386
-0.315648
-0.293501
-0.314052
-0.171451
-0.333033
-0.542801
-0.393358
1.317371
0.440819
0.035556
-0.34548
-0.577173
-0.264359
1.387741
0
0
1
0
3
8,776
167,366
10,948
5
8
691
85
25
1,243
2,397
2,879
846
0
0
0
0
-0.107876
-0.188743
-0.134196
-0.205496
-0.513242
-0.540857
-0.335901
-0.514244
-0.519546
-0.544478
-0.332929
-0.29582
5.420424
-0.263826
-0.694657
-0.350685
-0.285664
0.145318
-0.292787
2.359296
0.122272
-0.315648
-0.293501
-0.314052
-0.284836
-0.333033
-0.542801
0.122991
-0.786981
-0.407604
-0.711009
-0.34548
-0.577173
-0.264359
-0.737299
0
0
1
0
7
16,436
87,188
17,227
6
6
823
91
88
0
166
624
1,208
673
0
0
0
-0.107876
-0.188743
-0.134196
0.22731
0.441738
-0.284285
-0.4268
0.865834
0.744235
0.33028
-0.142058
0.24108
-0.327413
0.906874
0.589917
-0.450295
-0.189013
-0.384369
-0.199971
0.666572
-0.395152
0.162659
-0.103569
-0.140261
-0.177418
0.117973
0.628727
-0.390151
0.798501
1.269462
0.51568
-0.160055
0.233569
-0.264359
0.869438
0
1
1
0
2
28,551
88,300
60,933
7
8
770
17
37
1,243
168
1,401
1,779
1,744
1,555
676
219
-0.107876
-0.188743
-0.134196
-0.061228
1.317137
1.497857
0.773057
0.608668
-0.519546
0.356278
0.525989
0.509531
-0.262097
-0.361385
0.764442
0.369569
-0.023327
-0.023519
-0.040858
0.666572
-0.042657
-0.315648
-0.097924
0.043861
-0.237095
-0.333033
-0.542801
-0.309973
1.772196
-0.320556
0.886246
0.859782
1.092501
-0.264359
1.28408
0
0
1
0
4
12,359
45,769
45,446
8
8
488
70
37
1,243
92
166
3,631
1,321
550
0
0
-0.107876
-0.188743
-0.134196
0.804384
0.04383
-0.423517
-0.39044
0.077734
4.231733
1.257033
0.144248
1.046431
-0.327413
1.199549
-0.080426
-0.404321
-0.281061
-0.308226
-0.3031
-1.026151
-0.353111
1.482583
3.813613
3.444032
-0.281852
1.362556
3.861643
-0.348458
0.730591
-0.29154
-0.124456
0.118082
1.092501
-0.264359
1.28408
0
0
1
0
3
16,589
48,689
38,418
8
8
0
65
45
1,243
2,397
2,879
846
0
0
0
0
-0.107876
-0.188743
-0.134196
0.804384
0.04383
2.074269
1.482062
-0.412161
-0.519546
1.257033
-0.332929
-0.29582
-0.349185
0.223966
-0.605688
0.484504
-0.070885
-0.387679
-0.086529
0.666572
-0.398386
-0.315648
1.662268
1.475512
-0.062541
-0.333033
-0.542801
-0.393358
-0.536081
-0.262524
-0.06531
-0.34548
1.092501
-0.264359
-0.478148
0
0
1
0
6
23,529
174,075
36,860
5
5
643
65
6
0
2,572
2,006
1,699
673
0
0
0
-0.107876
-0.188743
-0.134196
-0.494034
-0.672406
-0.528319
-0.40862
-0.432577
-0.519546
-0.544478
-0.332929
-0.29582
-0.349185
-0.166268
-0.160841
-0.36601
-0.236571
-0.387679
-0.245643
-1.026151
-0.398386
-0.315648
-0.293501
-0.314052
-0.223667
-0.333033
-0.542801
-0.393358
-0.736801
-0.29154
-0.201247
-0.34548
-0.577173
-0.264359
-0.685468
0
0
1
0
12
4,998
163,913
42,464
8
8
972
73
91
0
2,511
52
1,699
673
0
0
0
-0.107876
-0.188743
-0.134196
-0.349765
-0.274497
-0.208044
0.427643
-0.228411
-0.519546
-0.544478
-0.332929
-0.29582
-0.349185
-0.556501
-0.392161
0.507491
0.177645
-0.387679
0.15214
-1.026151
-0.398386
-0.315648
-0.293501
-0.314052
0.179148
-0.333033
-0.542801
-0.393358
-0.636441
-0.233508
-0.422144
-0.34548
-0.577173
-0.264359
-0.581808
0
1
0
0
5
5,403
152,835
58,649
8
8
187
4
64
1
280
173
113
934
1,670
676
219
-0.107876
-0.188743
-0.134196
-0.494034
-0.672406
-0.545786
-0.444979
-0.59591
1.011495
0.356278
-0.332929
-0.29582
-0.349185
-0.65406
-0.765833
-0.457957
-0.307142
-0.387679
-0.313413
-1.026151
-0.398386
-0.025919
3.813613
3.444032
-0.292295
-0.059842
0.876477
-0.393358
-0.987701
-0.523668
-0.778977
-0.34548
0.257664
0.50779
-0.94462
0
1
1
0
7
26,796
109,957
43,698
8
8
0
93
44
1,243
2,452
147
1,096
1,321
550
0
0
-0.107876
-0.188743
-0.134196
-0.494034
0.193804
2.432365
-0.226823
6.611899
0.214996
-0.544478
0.335119
0.028763
-0.305641
-0.65406
5.657657
-0.457957
0.283501
-0.347953
0.253796
-1.026151
-0.359579
-0.176646
-0.293501
-0.314052
0.282089
-0.201965
0.138121
-0.354873
-0.371695
2.422961
5.355059
0.303507
-0.577173
-0.264359
-0.322657
0
1
0
0
1
5,334
156,372
55,120
6
6
389
60
31
112
105
0
1,699
673
0
0
0
-0.107876
-0.188743
-0.134196
0.083041
-0.354079
-0.127543
-0.39044
0.384086
-0.519546
-0.544478
-0.332929
-0.29582
-0.349185
1.980016
0.230625
-0.327699
0.108609
-0.387679
0.085843
0.666572
-0.398386
-0.315648
-0.293501
-0.314052
0.112012
-0.333033
-0.542801
-0.393358
0.417338
1.101229
0.172579
-0.34548
-0.577173
-0.264359
0.506627
0
0
1
0
10
29,909
74,809
41,092
4
4
918
31
42
0
2,571
429
1,208
673
0
0
0
-0.107876
-0.175292
-0.12855
-0.061228
-0.43366
-0.58072
-0.39044
-0.371327
1.064214
-0.544478
-0.332929
-0.29582
-0.349185
0.028849
-0.320986
-0.396659
-0.279527
-0.387679
-0.286894
0.666572
-0.398386
-0.015943
-0.293501
-0.314052
-0.265441
-0.050435
0.925347
-0.393358
-0.586261
-0.349572
-0.235231
-0.34548
-0.577173
-0.264359
-0.529978
0
1
1
1
2
3,180
85,147
14,828
8
8
1,001
73
71
1,243
100
223
89
1,321
550
0
0
-0.107876
-0.188743
-0.134196
-0.494034
2.033372
4.666659
-0.026847
1.122512
1.064214
0.356278
0.370667
-0.02737
-0.327413
-0.65406
0.749637
-0.457957
-0.245776
-0.301605
-0.254482
0.666572
-0.314305
-0.015943
-0.097924
-0.135096
-0.232619
-0.050435
0.925347
-0.332423
1.170037
0.280602
0.668203
0.338041
0.257664
1.279939
1.28408
0
0
0
0
3
5,761
202,663
30,563
6
6
791
75
35
455
171
202
101
673
0
0
0
-0.107876
-0.067688
-0.134196
-0.494034
-0.672406
-0.633121
-0.444979
-0.59591
1.064214
0.356278
-0.332929
-0.29582
-0.349185
-0.65406
-0.634108
-0.457957
-0.296403
-0.387679
-0.3031
0.666572
-0.398386
0.583468
-0.097924
-0.135096
-0.281852
0.514761
0.925347
-0.393358
-0.987701
-0.523668
-0.653188
-0.34548
0.257664
-0.264359
-0.94462
0
1
1
0
3
12,773
41,100
16,722
8
8
711
24
88
0
35
173
3,443
1,321
550
0
0
-0.107876
-0.188743
-0.134196
3.112683
1.571179
1.724928
-0.335901
0.162702
1.064214
2.157789
0.144248
0.24108
-0.305641
2.760483
-0.029126
-0.404321
-0.296403
-0.258568
-0.3031
0.666572
-0.272264
0.283762
0.29323
0.222817
-0.281852
0.232163
0.925347
-0.26828
1.065217
-0.378588
-0.075468
0.118082
1.927338
-0.264359
1.128589
0
1
0
0
5
22,283
108,394
39,987
7
7
225
82
121
514
765
1,506
512
1,954
437
52
293
-0.107876
0.039917
0.131165
-0.349765
-0.274497
-0.528319
-0.354081
-0.59591
-0.519546
1.257033
-0.332929
-0.29582
-0.349185
1.492224
0.088274
-0.251076
-0.233503
-0.387679
-0.242696
0.666572
-0.398386
-0.315648
0.29323
0.222817
-0.220684
-0.333033
-0.542801
-0.309973
0.367158
-0.523668
0.257539
-0.252768
1.092501
-0.264359
0.454797
0
1
1
0
3
21,512
173,950
29,899
8
8
501
38
108
1,243
100
223
89
1,321
742
445
26
-0.107876
-0.188743
-0.134196
-0.494034
-0.233159
0.017382
-0.444979
-0.488127
2.922199
1.847231
-0.332929
-0.29582
0.826509
-0.65406
-0.387194
-0.457957
-0.307142
2.661331
-0.313413
0.666572
2.580036
1.038853
0.2258
0.161117
-0.292295
0.944153
2.647702
2.560419
0.080087
-0.455587
-0.4174
-0.34548
1.639507
5.140686
0.143815
0
1
1
0
2
11,480
196,412
34,668
6
6
797
4
72
0
159
2,879
846
0
0
0
0
-0.107876
-0.188743
-0.134196
-0.205496
1.252532
0.383567
-0.045027
-0.371327
1.064214
-0.544478
-0.332929
-0.29582
-0.349185
0.028849
0.129443
-0.212764
-0.241174
-0.387679
-0.250062
-1.026151
-0.398386
-0.015943
-0.293501
-0.314052
-0.228143
-0.050435
0.925347
-0.393358
0.727861
-0.407604
0.075956
-0.34548
-0.577173
-0.264359
0.817608
0
1
1
0
3
23,925
152,103
55,131
8
8
19
4
37
1,243
100
223
89
1,773
594
676
219
-0.107876
-0.188743
-0.134196
0.22731
2.405387
3.01444
1.991092
2.114194
-0.519546
-0.544478
0.621425
0.230207
-0.240325
0.321524
1.596135
0.982552
0.663966
0.234703
0.619167
-1.026151
0.209587
-0.315648
-0.293501
-0.314052
0.652083
-0.333033
-0.542801
0.209584
1.779138
0.099123
1.476556
0.581644
-0.577173
-0.264359
1.906043
0
0
1
0
17
3,340
15,357
9,135
6
6
735
73
108
1,243
106
2,879
846
0
0
0
0
-0.107876
-0.188743
-0.134196
0.948653
0.123411
-0.452546
-0.263183
0.159503
-0.519546
-0.544478
-0.332929
-0.29582
-0.349185
1.492224
0.017098
-0.258738
-0.233503
-0.387679
-0.242696
-1.026151
-0.398386
-0.315648
-0.293501
-0.314052
-0.220684
-0.333033
-0.542801
-0.393358
0.316978
0.404844
-0.031326
-0.34548
-0.577173
-0.264359
0.402966
0
1
1
0
12
5,276
226,694
2,202
6
6
171
31
89
877
269
3,258
1,160
2,454
639
502
0
-0.107876
-0.188743
-0.134196
-0.205496
-0.513242
-0.598187
-0.40862
-0.493827
1.064214
-0.544478
-0.332929
-0.29582
-0.349185
-0.458943
-0.617613
-0.442633
-0.299471
-0.387679
-0.306047
-1.026151
-0.398386
-0.015943
-0.293501
-0.314052
-0.284836
-0.050435
0.925347
-0.393358
-0.887341
-0.407604
-0.637437
-0.34548
-0.577173
-0.264359
-0.840959
0
1
1
0
1
22,716
148,991
43,739
8
8
295
65
16
433
2,452
216
1,699
673
0
0
0
-0.107876
-0.188743
-0.134196
-0.494034
-0.672406
-0.633121
-0.444979
0.656052
1.064214
2.157789
-0.237494
-0.02737
-0.262097
2.662925
0.343097
-0.19744
-0.253447
-0.003656
-0.261849
0.666572
-0.023254
2.981109
0.684383
0.58073
-0.2729
2.775546
0.925347
-0.02133
0.999049
0.797274
0.279983
-0.252768
1.927338
-0.264359
1.076759
0
0
1
0
13
8,594
180,482
20,865
6
6
22
73
112
0
697
3,250
1,699
518
0
0
0
-0.107876
-0.188743
-0.134196
-0.494034
0.441738
-0.388583
-0.335901
-0.187578
1.064214
-0.544478
-0.332929
-0.29582
-0.349185
-0.65406
-0.303192
-0.411984
-0.297937
-0.387679
-0.304573
-1.026151
-0.398386
0.283762
-0.293501
-0.314052
-0.283344
0.232163
0.925347
-0.393358
-0.285181
-0.00138
-0.337184
-0.34548
-0.577173
-0.264359
-0.218996
0
1
1
0
2
3,006
31,274
56,825
8
8
712
7
88
1,243
170
404
1,780
1,321
1,397
0
0
-0.107876
-0.188743
-0.134196
-0.494034
-0.672406
-0.633121
-0.444979
0.108295
-0.519546
-0.544478
-0.177874
-0.29582
-0.000832
-0.65406
0.354016
-0.457957
0.780561
0.893501
0.731136
0.666572
0.853133
-0.315648
-0.293501
-0.314052
0.765468
-0.333033
-0.542801
0.847805
1.016207
0.245019
0.290409
-0.19485
-0.577173
-0.264359
1.076759
0
1
1
0
2
18,097
174,305
26,763
8
8
995
73
106
433
92
166
3,484
119
638
0
34
-0.107876
-0.188743
-0.134196
-0.349765
0.22882
0.27495
3.245487
0.306341
-0.519546
-0.544478
-0.056397
-0.29582
0.042713
-0.361385
1.822535
2.001636
1.73019
1.43643
1.64309
-1.026151
1.383493
-0.315648
-0.293501
-0.314052
1.688959
-0.333033
-0.542801
1.373777
0.445592
0.514569
1.692755
-0.076838
-0.577173
-0.264359
0.506627
0
1
1
0
2
3,291
172,489
50,509
1
1
237
97
114
1,243
109
1,401
1,699
934
1,729
359
0
-0.107876
0.456884
0.159212
-0.494034
-0.513242
-0.598187
-0.40862
-0.371327
-0.519546
-0.544478
-0.332929
-0.29582
-0.349185
-0.556501
-0.422621
-0.358348
-0.307142
-0.387679
-0.313413
0.666572
-0.398386
-0.315648
-0.293501
-0.314052
-0.292295
-0.333033
-0.542801
-0.393358
-0.586261
-0.204492
-0.415615
-0.34548
-0.577173
-0.264359
-0.581808
0
0
0
0
12
4,955
140,378
37,005
6
6
940
73
45
1,021
2,384
384
1,699
673
0
0
0
-0.107876
-0.188743
-0.134196
0.660116
-0.035752
-0.391767
-0.172285
-0.391744
-0.519546
-0.544478
-0.332929
-0.29582
-0.349185
0.321524
-0.5701
0.024767
-0.307142
-0.387679
-0.313413
-1.026151
-0.398386
-0.315648
-0.293501
-0.314052
-0.292295
-0.333033
-0.542801
-0.393358
-0.435721
-0.233508
-0.592065
-0.34548
-0.577173
-0.264359
-0.374487
0
0
1
0
7
9,149
82,397
51,250
8
8
770
91
37
1,243
75
2,879
846
0
0
0
0
-0.107876
12.09736
2.317581
-0.494034
-0.672406
-0.633121
-0.444979
-0.536484
-0.519546
-0.544478
0.532197
0.544452
-0.240325
-0.65406
-0.714041
-0.457957
-0.184411
-0.248636
-0.195551
0.666572
-0.262562
-0.315648
-0.293501
-0.314052
-0.172943
-0.333033
-0.542801
-0.258659
-0.987701
-0.439212
-0.729519
0.494962
-0.577173
-0.264359
-0.99645
0
0
1
0
5
30,116
48,377
29,688
8
8
770
73
80
0
2,452
147
1,096
934
1,031
359
0
-0.107876
-0.188743
-0.134196
0.22731
-0.194915
-0.212528
-0.172285
-0.248828
-0.519546
-0.544478
-0.237494
-0.29582
0.129801
0.614199
-0.463337
-0.105492
-0.235037
0.330709
-0.244169
-1.026151
0.30337
-0.315648
-0.293501
-0.314052
-0.222175
-0.333033
-0.542801
0.302591
-0.184822
-0.14646
-0.490112
-0.252768
-0.577173
-0.264359
-0.115336
0
0
1
1
11
24,028
129,122
8,933
6
6
886
26
15
0
406
1,376
1,699
673
0
0
0
-0.107876
-0.188743
-0.134196
-0.349765
-0.592824
-0.301248
-0.4268
-0.246333
1.064214
-0.544478
-0.332929
-0.29582
-0.349185
-0.263826
-0.39311
-0.442633
-0.304073
-0.387679
-0.310466
-1.026151
-0.398386
-0.015943
-0.293501
-0.314052
-0.289311
-0.050435
0.925347
-0.393358
-0.69543
-0.523668
-0.42305
-0.34548
-0.577173
-0.264359
-0.685468
0
1
0
1
18
26,240
126,294
18,530
7
7
282
94
110
633
131
1,228
1,699
673
0
0
0
-0.107876
-0.188743
-0.134196
3.112683
1.931861
0.450469
0.009512
-0.350911
1.064214
-0.544478
-0.237494
-0.02737
-0.305641
3.345833
0.181343
-0.143804
-0.244242
-0.189046
-0.253009
0.666572
-0.204352
2.981109
-0.293501
-0.314052
-0.231127
2.775546
0.925347
-0.20093
1.683396
-0.29154
0.125517
0.488932
-0.577173
2.824238
1.802382
0
1
1
0
1
17,823
100,593
60,272
7
7
868
92
57
1,243
2,452
435
101
673
0
0
0
-0.107876
-0.188743
-0.134196
-0.494034
-0.672406
-0.266335
-0.4268
-0.59591
-0.519546
1.106723
-0.237494
-0.02737
-0.283869
-0.65406
-0.765833
-0.457957
-0.301005
-0.374437
-0.308993
-1.026151
-0.388684
-0.315648
0.260593
0.192954
-0.287819
-0.333033
-0.542801
-0.383737
-0.987701
-0.523668
-0.778977
-0.252768
0.95319
-0.264359
-0.892789
0
1
0
0
2
10,580
154,813
8,399
8
8
492
73
55
489
750
292
1,208
673
0
0
0
-0.107876
-0.188743
-0.134196
0.22731
-0.274497
-0.066792
1.772937
0.384086
-0.519546
-0.544478
-0.332929
-0.29582
-0.349185
1.297108
0.123862
4.216037
1.044432
-0.387679
0.984538
-1.026151
-0.398386
-0.315648
-0.293501
-0.314052
1.022076
-0.333033
-0.542801
-0.393358
1.119857
0.201732
0.070626
-0.34548
-0.577173
-0.264359
1.23225
0
1
1
0
9
25,328
116,784
41,920
8
8
688
76
99
1,243
131
1,390
78
1,411
74
359
0
-0.107876
-0.188743
-0.134196
0.371578
-0.194915
0.729307
0.754877
-0.493827
-0.519546
0.356278
0.257904
-0.29582
-0.022604
1.199549
0.253208
1.059175
0.091734
1.088823
0.069637
0.666572
1.043933
-0.315648
1.662268
1.475512
0.095601
-0.333033
-0.542801
1.037027
1.835883
-0.494652
0.194144
0.692058
0.257664
-0.264359
1.957873
0
1
0
0
11
7,307
63,735
40,168
5
5
9
65
0
455
1,535
1,412
846
0
0
0
0
-0.107876
-0.188743
-0.134196
0.660116
-0.035752
-0.458451
-0.263183
-0.330494
-0.519546
-0.544478
-0.332929
-0.29582
-0.349185
0.614199
-0.381996
0.093727
-0.179808
-0.387679
-0.191132
2.359296
-0.398386
-0.315648
-0.293501
-0.314052
-0.168467
-0.333033
-0.542801
-0.393358
-0.24934
-0.14646
-0.412436
-0.34548
-0.577173
-0.264359
-0.218996
0
0
0
0
8
860
214,199
17,440
8
8
266
92
29
511
187
2,879
846
0
0
0
0
-0.107876
-0.188743
-0.134196
2.247071
3.749374
2.175988
-0.245003
2.83194
1.064214
0.684922
1.131165
1.144375
-0.327413
1.101991
2.257269
-0.381335
-0.2918
-0.354574
-0.29868
-1.026151
-0.366047
0.583468
0.16901
0.109154
-0.277376
0.514761
0.925347
-0.361287
1.805854
2.046481
2.107898
1.076841
0.562258
-0.264359
1.906043
0
0
1
0
15
30,668
194,749
55,552
0
6
981
4
67
1,243
2,452
435
1,699
673
0
0
0
-0.107876
0.053367
-0.111612
-0.494034
-0.035752
1.00878
-0.444979
0.993723
-0.519546
-0.544478
-0.332929
-0.29582
-0.349185
-0.65406
0.619598
0.262297
-0.307142
-0.387679
-0.313413
0.666572
-0.398386
-0.315648
-0.293501
-0.135096
-0.292295
-0.333033
-0.542801
-0.393358
-0.586261
1.735516
0.544024
-0.34548
0.257664
-0.264359
-0.529978
0
0
1
0
5
5,650
152,879
48,061
8
8
34
27
63
644
318
2,879
1,320
1,493
550
0
0
-0.107876
-0.188743
-0.134196
-0.494034
1.555882
0.385387
-0.045027
0.723393
1.064214
-0.544478
-0.332929
-0.29582
0.782964
-0.65406
0.596166
-0.457957
-0.273391
1.360288
-0.281001
-1.026151
1.309113
-0.015943
-0.293501
-0.314052
-0.259473
-0.050435
0.925347
1.300012
1.015675
-0.43662
0.521648
-0.34548
-0.577173
-0.264359
1.076759
0
1
1
0
5
9,969
154,008
53,351
5
5
331
65
44
1,243
92
2,741
1,208
673
0
0
0
-0.107876
-0.188743
-0.134196
-0.494034
-0.672406
-0.184947
-0.444979
-0.59591
0.529181
-0.544478
0.239683
0.508993
-0.305641
-0.65406
-0.517438
-0.442633
-0.2918
-0.374437
-0.301627
-1.026151
-0.388684
1.073555
-0.293501
-0.314052
-0.28036
0.976875
0.429371
-0.383737
-0.754429
-0.523668
-0.541775
0.210794
-0.577173
2.052089
-0.685468
0
1
1
0
5
26,796
107,732
6,592
8
8
472
75
22
0
150
1,172
1,699
673
0
0
0
-0.107876
-0.188743
-0.134196
-0.494034
1.519981
2.843358
-0.40862
3.812806
1.064214
-0.544478
0.335119
0.19242
-0.327413
-0.65406
3.343454
-0.457957
-0.304073
-0.381058
-0.310466
-1.026151
-0.391918
-0.015943
-0.293501
-0.314052
-0.289311
-0.050435
0.925347
-0.386944
0.581933
0.716549
3.145138
0.303507
-0.577173
-0.264359
0.662117
0
0
1
0
2
10,227
150,138
30,383
6
7
548
97
56
1,243
109
2,314
1,699
673
0
0
0
-0.107876
-0.188743
-0.134196
-0.205496
1.869183
0.275164
0.391284
0.154535
0.129649
-0.544478
-0.332929
-0.29582
-0.349185
-0.458943
-0.111789
-0.067181
-0.225832
-0.387679
-0.238276
0.666572
-0.398386
-0.192797
-0.293501
-0.135096
-0.292295
-0.217194
0.059004
-0.393358
0.856747
0.23127
-0.154405
-0.34548
0.257664
-0.264359
1.024929
0
0
1
0
5
30,692
180,813
31,134
6
6
958
65
118
0
150
1,172
1,699
673
0
0
0
-0.107876
-0.188743
-0.134196
-0.494034
-0.592824
0.565413
-0.444979
-0.412161
-0.519546
0.356278
-0.332929
-0.29582
-0.349185
-0.166268
-0.605688
-0.411984
-0.007985
-0.387679
-0.026125
0.666572
-0.398386
-0.315648
-0.097924
-0.135096
-0.001373
-0.333033
-0.542801
-0.393358
-0.536081
-0.262524
-0.626049
-0.34548
0.257664
-0.264359
-0.478148
0
1
1
1
6
22,672
135,800
36,900
8
8
969
59
63
0
250
223
1,198
52
746
359
0
-0.107876
-0.188743
-0.134196
0.083041
-0.086928
-0.093036
-0.372261
-0.015801
0.543772
-0.544478
1.73943
0.509531
-0.305641
0.711757
-0.260244
-0.327699
-0.281061
-0.3314
-0.288367
-1.026151
-0.34341
0.288008
-0.293501
-0.314052
-0.266933
0.236167
0.442897
-0.338837
0.438093
-0.212793
-0.296171
1.667751
-0.577173
-0.264359
0.506627
0
0
1
0
26
535
120,741
44,369
8
8
557
8
54
0
2,571
223
136
896
746
359
0
-0.107876
-0.188743
-0.134196
-0.494034
-0.513242
-0.4797
-0.281362
-0.59591
-0.519546
-0.544478
-0.332929
-0.29582
-0.349185
-0.65406
-0.730245
-0.373672
-0.288732
-0.387679
-0.295734
-1.026151
-0.398386
-0.315648
-0.293501
-0.314052
-0.274392
-0.333033
-0.542801
-0.393358
-0.887341
-0.523668
-0.744993
-0.34548
-0.577173
-0.264359
-0.840959
0
0
1
0
7
25,328
85,143
31,448
8
8
665
92
64
1,243
106
2,879
846
0
0
0
0
-0.107876
-0.188743
-0.134196
-0.494034
-0.672406
-0.633121
-0.444979
1.568247
-0.519546
-0.544478
0.656977
-0.29582
-0.153236
-0.65406
1.12032
-0.457957
0.611806
0.565757
0.569076
0.666572
0.532977
-0.315648
-0.293501
0.040315
-0.274392
-0.050435
0.925347
-0.354873
1.571476
-0.465636
1.888778
1.670556
0.666812
-0.264359
-0.94462
0
0
1
0
1
375
145,542
34,896
0
6
398
73
106
1,243
109
3,238
794
159
227
500
401
-0.107876
-0.099666
-0.125035
-0.494034
-0.592824
-0.615654
-0.444979
-0.59591
-0.519546
-0.544478
-0.273521
-0.29582
0.282206
-0.65406
-0.730245
2.599294
-0.307142
-0.314847
-0.313413
0.666572
-0.32724
-0.315648
-0.293501
-0.314052
0.277614
-0.333033
-0.542801
-0.322801
-0.887341
-0.523668
-0.543048
-0.287768
-0.577173
-0.264359
-0.840959
0
1
0
1
3
343
37,217
8,818
8
8
923
73
50
1,033
1,375
1,513
1,208
673
0
0
0
-0.107876
-0.188743
-0.134196
-0.494034
-0.672406
-0.615654
-0.444979
-0.207995
3.85999
1.998906
0.048813
0.462177
-0.327413
0.028849
-0.240369
-0.396659
-0.270322
-0.361195
-0.278055
2.359296
-0.372515
1.412236
0.258732
0.191251
-0.256489
1.296224
3.517036
-0.367701
-0.308738
-0.465636
0.052761
0.396219
1.780082
-0.264359
-0.270827
0
0
0
0
8
15,644
207,944
26,812
6
6
549
92
55
413
1,702
737
1,699
673
0
0
0
-0.107876
-0.148391
-0.117258
-0.494034
-0.672406
-0.633121
-0.444979
2.074918
-0.519546
-0.544478
-0.332929
-0.29582
-0.349185
-0.556501
1.561905
0.331258
2.484985
-0.387679
2.36794
0.666572
-0.398386
-0.315648
-0.293501
-0.314052
2.422977
-0.333033
-0.542801
-0.393358
-0.66627
2.359395
1.443869
-0.34548
-0.577173
-0.264359
-0.633638
0
1
1
0
7
6,303
147,930
22,692
7
7
237
97
37
1,243
98
2,879
1,203
1,072
742
414
219
-0.107876
-0.188743
-0.134196
-0.349765
-0.592824
0.652577
-0.444979
-0.555077
1.064214
0.356278
-0.332929
-0.29582
-0.349185
-0.263826
-0.65907
-0.457957
-0.307142
-0.387679
-0.313413
-1.026151
-0.398386
0.583468
-0.097924
-0.135096
-0.292295
0.514761
0.925347
-0.393358
-0.736801
-0.494652
-0.677025
-0.34548
0.257664
-0.264359
-0.685468
0
1
1
1
4
12,493
119,667
28,603
0
8
32
92
116
0
697
2,879
846
0
0
0
0
-0.107876
-0.188743
-0.134196
-0.494034
-0.672406
-0.633121
-0.444979
-0.174481
-0.519546
-0.544478
-0.332929
-0.29582
-0.349185
-0.65406
-0.283216
-0.457957
-0.307142
-0.387679
-0.313413
0.666572
-0.398386
-0.315648
-0.293501
-0.314052
-0.098347
-0.333033
-0.542801
2.233291
-0.987701
-0.320556
-0.318108
-0.34548
-0.577173
-0.264359
-0.99645
0
0
0
0
9
3,753
209,942
19,986
6
6
237
94
112
1,288
124
1,401
1,699
673
0
0
0
-0.107876
-0.113383
0.140316
-0.494034
-0.672406
-0.633121
-0.444979
-0.53466
-0.519546
-0.544478
-0.332929
-0.29582
-0.349185
-0.458943
-0.676864
-0.258738
-0.205889
-0.387679
-0.216177
-1.026151
-0.398386
-0.315648
-0.293501
-0.314052
-0.193829
-0.333033
-0.542801
-0.393358
-0.887341
-0.43662
-0.694017
-0.34548
-0.577173
-0.264359
-0.840959
0
0
0
0
11
30,745
158,050
8,339
6
6
204
4
2
578
1,622
1,412
846
0
0
0
0
-0.107876
-0.188743
-0.134196
0.660116
-0.035752
-0.475918
-0.281362
-0.146745
-0.519546
-0.544478
-0.332929
-0.29582
-0.349185
0.223966
-0.374367
-0.312374
-0.204355
-0.387679
-0.214704
0.666572
-0.398386
-0.315648
-0.293501
-0.314052
-0.292295
0.177371
2.108838
-0.393358
-0.385541
-0.175476
-0.405152
-0.34548
-0.577173
5.140686
-0.322657
0
1
1
0
11
15,105
204,623
12,996
8
8
109
73
15
0
166
624
1,203
216
785
676
219
-0.107876
-0.188743
-0.134196
-0.494034
-0.672406
-0.58072
1.663859
-0.59591
-0.519546
-0.544478
-0.332929
-0.29582
-0.349185
-0.65406
-0.748039
1.948
0.504416
-0.387679
0.461527
-1.026151
-0.398386
-0.315648
-0.293501
-0.314052
0.492448
-0.333033
-0.542801
-0.393358
-0.937521
-0.523668
-0.761985
-0.34548
-0.577173
-0.264359
-0.737299
0
0
1
0
1
20,568
118,825
30,641
0
0
926
46
81
1,243
2,397
343
1,125
1,321
550
0
0
0.510716
0.335829
1.085334
-0.494034
-0.672406
-0.633121
-0.444979
-0.493827
-0.519546
-0.544478
-0.332929
-0.29582
-0.349185
-0.361385
-0.676864
-0.350685
-0.307142
-0.387679
-0.313413
0.666572
-0.398386
-0.315648
-0.293501
-0.314052
-0.292295
-0.333033
-0.542801
-0.393358
-0.736801
-0.494652
-0.694017
-0.34548
-0.577173
-0.264359
-0.685468
0
0
1
0
9
27,122
94,191
21,923
8
8
237
73
41
1,243
2,440
1,427
1,699
673
0
0
0
-0.107876
-0.188743
-0.134196
0.083041
-0.354079
0.891902
-0.39044
0.136974
1.064214
4.126434
-0.332929
-0.29582
0.848281
-0.166268
-0.05776
-0.442633
-0.302539
5.458741
-0.308993
0.666572
5.312681
0.583468
1.50298
1.32976
-0.292295
0.514761
0.925347
5.270454
-0.641633
-0.320556
-0.102811
-0.34548
3.751916
-0.264359
-0.633638

FairJob: A Real-World Dataset for Fairness in Online Systems

Summary

This dataset is released by Criteo to foster research and innovation on Fairness in Advertising and AI systems in general. See also Criteo pledge for Fairness in Advertising.

The dataset is intended to learn click predictions models and evaluate by how much their predictions are biased between different gender groups. The associated paper is available at Vladimirova et al. 2024.

License

The data is released under the CC-BY-NC-SA 4.0 license. You are free to Share and Adapt this data provided that you respect the Attribution, NonCommercial and ShareAlike conditions. Please read carefully the full license before using.

Data description

The dataset contains pseudononymized users' context and publisher features that was collected from a job targeting campaign ran for 5 months by Criteo AdTech company. Each line represents a product that was shown to a user. Each user has an impression session where they can see several products at the same time. Each product can be clicked or not clicked by the user. The dataset consists of 1072226 rows and 55 columns.

  • features
    • user_id is a unique identifier assigned to each user. This identifier has been anonymized and does not contain any information related to the real users.
    • product_id is a unique identifier assigned to each product, i.e. job offer.
    • impression_id is a unique identifier assigned to each impression, i.e. online session that can have several products at the same time.
    • cat0 to cat5 are anonymized categorical user features.
    • cat6 to cat12 are anonymized categorical product features.
    • num13 to num47 are anonymized numerical user features.
  • labels
    • protected_attribute is a binary feature that describes user gender proxy, i.e. female is 0, male is 1. The detailed description on the meaning can be found below.
    • senior is a binary feature that describes the seniority of the job position, i.e. an assistant role is 0, a managerial role is 1. This feature was created during data processing step from the product title feature: if the product title contains words describing managerial role (e.g. 'president', 'ceo', and others), it is assigned to 1, otherwise to 0.
    • rank is a numerical feature that corresponds to the positional rank of the product on the display for given impression_id. Usually, the position on the display creates the bias with respect to the click: lower rank means higher position of the product on the display.
    • displayrandom is a binary feature that equals 1 if the display position on the banner of the products associated with the same impression_id was randomized. The click-rank metric should be computed on displayrandom = 1 to avoid positional bias.
    • click is a binary feature that equals 1 if the product product_id in the impression impression_id was clicked by the user user_id.

Data statistics

dimension average
click 0.077
protected attribute 0.500
senior 0.704

Protected attribute

As Criteo does not have access to user demographics we report a proxy of gender as protected attribute. This proxy is reported as binary for simplicity yet we acknowledge gender is not necessarily binary.

The value of the proxy is computed as the majority of gender attributes of products seen in the user timeline. Product having a gender attribute are typically fashion and clothing. We acknowledge that this proxy does not necessarily represent how users relate to a given gender yet we believe it to be a realistic approximation for research purposes.

We encourage research in Fairness defined with respect to other attributes as well.

Limitations and interpretations

We remark that the proposed gender proxy does not give a definition of the gender. Since we do not have access to the sensitive information, this is the best solution we have identified at this stage to idenitify bias on pseudonymised data, and we encourage any discussion on better approximations. This proxy is reported as binary for simplicity yet we acknowledge gender is not necessarily binary. Although our research focuses on gender, this should not diminish the importance of investigating other types of algorithmic discrimination. While this dataset provides important application of fairness-aware algorithms in a high-risk domain, there are several fundamental limitation that can not be addressed easily through data collection or curation processes. These limitations include historical bias that affect a positive outcome for a given user, as well as the impossibility to verify how close the gender-proxy is to the real gender value. Additionally, there might be bias due to the market unfairness. Such limitations and possible ethical concerns about the task should be taken into account while drawing conclusions from the research using this dataset. Readers should not interpret summary statistics of this dataset as ground truth but rather as characteristics of the dataset only.

Challenges

The first challenge comes from handling the different types of data that are common in tables, the mixed-type columns: there are both numerical and categorical features that have to be embedded. In addition, some of the features have long-tail phenomenon and products have popularity bias. Our datasets contains more than 1,000,000 lines, while current high-performing models are under-explored in scale. Additional challenge comes from strongly imbalanced data: the positive class proportion in our data is less than 0.007 that leads to challenges in training robust and fair machine learning models. In our dataset there is no significant imbalances in demographic groups users regarding the protected attribute (both genders are sub-sampled with 0.5 proportion, female profile users were shown less job ad with 0.4 proportion and slightly less senior position jobs with 0.48 proportion), however, there could be a hidden effect of a selection bias. This poses a problem in accurately assessing model performance. More detailed statistics and exploratory analysis are referred to the supplemental material of the associated paper linked below.

Metrics

We strongly recommend to measure prediction quality using Negative Log-likelihood (lower is better).

We recommend to measure Fairness of ads by Demographic Parity conditioned on Senior job offers:

E[f(x)∣protected_attribute=1,senior=1]−E[f(x)∣protected_attribute=0,senior=1] E[f(x) | protected\_attribute=1, senior=1] - E[f(x) | protected\_attribute=0, senior=1]

This corresponds to the average difference in predictions for senior job opportunities between the two gender groups (lower is better). Intuitively, when this metric is low it means we are not biased towards presenting more senior job opportunities (e.g. Director of XXX) to one gender vs the other.

Example

You can start by running the example in example.py (requires numpy + torch). This implements

  • a dummy classifier (totally fair yet not very useful)
  • a logistic regression with embeddings for categorical features (largely unfair and useful)
  • a "fair" logistic regression (relatively fair and useful)

The "fair" logistic regression is based on the method proposed by Bechavod et al. 2017.

Citation

If you use the dataset in your research please cite it using the following Bibtex excerpt:

@misc{vladimirova2024fairjob,
      title={FairJob: A Real-World Dataset for Fairness in Online Systems}, 
      author={Mariia Vladimirova and Federico Pavone and Eustache Diemert},
      year={2024},
      eprint={2407.03059},
      archivePrefix={arXiv},
      url={https://arxiv.org/abs/2407.03059},
}
Downloads last month
42