token_dtype
stringclasses
1 value
s
int64
16
16
h
int64
16
16
w
int64
16
16
vocab_size
int64
262k
262k
hz
int64
30
30
tokenizer_ckpt
stringclasses
1 value
num_images
int64
7.64k
504k
num_episodes
int64
30
1.22k
task
stringclasses
1 value
uint32
16
16
16
262,144
30
data/magvit2.ckpt
451,010
761
fold_towels
uint32
16
16
16
262,144
30
data/magvit2.ckpt
142,409
228
fold_towels
uint32
16
16
16
262,144
30
data/magvit2.ckpt
504,486
1,039
fold_towels
uint32
16
16
16
262,144
30
data/magvit2.ckpt
502,831
1,224
fold_towels
uint32
16
16
16
262,144
30
data/magvit2.ckpt
462,158
1,181
fold_towels
uint32
16
16
16
262,144
30
data/magvit2.ckpt
406,734
1,214
fold_towels
uint32
16
16
16
262,144
30
data/magvit2.ckpt
7,638
30
fold_towels
uint32
16
16
16
262,144
30
data/magvit2.ckpt
171,681
480
fold_towels
uint32
16
16
16
262,144
30
data/magvit2.ckpt
302,218
770
fold_towels

CyberOrigin Dataset

Our data includes information from home services, the logistics industry, and laboratory scenarios. For more details, please refer to our Offical Data Website

contents of dataset:

cyber_fold_towels # dataset root path
  └── data/
      ├── metadata_ID1_240808.json
      ├── segment_ids_ID1_240808.bin # for each frame segment_ids uniquely points to the segment index that frame i came from. You may want to use this to separate non-contiguous frames from different videos (transitions).
      ├── videos_ID1_240808.bin # 16x16 image patches at 30hz, each patch is vector-quantized into 2^18 possible integer values. These can be decoded into 256x256 RGB images using the provided magvit2.ckpt weights.
      ├── ...
  └── ...
{
    "task": "Fold Towels",
    "total_episodes": 6927,
    "total_frames": 9938323,
    "token_dtype": "uint32",
    "vocab_size": 262144,
    "fps": 30,
    "manipulation_type": "Bi-Manual",
    "language_annotation": "None",
    "scene_type": "Table Top",
    "data_collect_method": "Directly Collection on Human"
}
Downloads last month
21
Edit dataset card