boris's picture
doc: add README
99a5cca
|
raw
history blame
1.16 kB

YFCC100M subset from OpenAI

Subset of YFCC100M used by OpenAI for CLIP, filtered to contain only the images that we were able to retrieve.

Split train validation
Number of samples 14,808,859 16,374
Size 1.9 TB 2.1 GB

Features:

  • from the original dataset: title, description, photoid, uid, unickname, datetaken, dateuploaded, capturedevice, usertags, machinetags, longitude, latitude, accuracy, pageurl, downloadurl, licensename, licenseurl, serverid, farmid, secret, secretoriginal, ext, marker, key
  • img: image content, can be loaded with PIL.Image.open(io.BytesIO(item['img']))
  • title_clean and description_clean: derived from title and description using clean_text function detailed below
def clean_text(text):
    # decode url
    text = urllib.parse.unquote_plus(text)
    # remove html tags
    text = re.sub('<[^<]+?>', '', text)
    # remove multiple spaces + "\r" + "\n" + "\t"
    text = " ".join(text.split())
    return text