|
import torch |
|
|
|
import models.networks as networks |
|
import util.util as util |
|
import util.logging_wandb as wblogging |
|
import os |
|
import numpy as np |
|
import torch.nn.functional as F |
|
from tqdm import tqdm |
|
from torchvision.utils import save_image |
|
import torch.nn as nn |
|
import torchvision.transforms as transforms |
|
import torch.utils.data as data_torch |
|
from torch.utils.data import Dataset |
|
from .sampler import InfiniteSamplerWrapper,save_checkpoint |
|
from .networks.generator_module.schedule import CosineAnnealingWarmUpLR |
|
import torch.utils.data as data |
|
from rich.progress import Progress, TimeRemainingColumn, BarColumn, TextColumn |
|
import datetime |
|
|
|
class Pix2PixModel(torch.nn.Module): |
|
@staticmethod |
|
def modify_commandline_options(parser, is_train): |
|
networks.modify_commandline_options(parser, is_train) |
|
parser.add_argument('--lrG_decay', type=float, default=1e-4, help='learning rate decay') |
|
parser.add_argument('--lrG', type=float, default=12e-4, help='initial learning rate for adam') |
|
parser.add_argument('--save_dir', default=r'/home/share/VAL_ImgTranslations/experiments', |
|
help='Directory to save the model') |
|
parser.add_argument('--content_weight', type=float, default=2.0, help='weight for content reconstruction loss') |
|
parser.add_argument('--save_model_interval', type=int, default=300) |
|
parser.add_argument('--style_weight', type=float, default=3.0, help='weight for style reconstruction loss') |
|
parser.add_argument('--max_iter', type=int, default=700) |
|
parser.add_argument('--n_threads', type=int, default=1) |
|
parser.add_argument('--batch_size', type=int, default=1) |
|
parser.add_argument('--id1_weight', type=float, default=50) |
|
parser.add_argument('--id2_weight', type=float, default=1) |
|
parser.add_argument('--loss_count_interval', type=int, default=200) |
|
return parser |
|
|
|
def __init__(self, opt): |
|
super().__init__() |
|
self.opt = opt |
|
self.loss=0 |
|
self.out=None |
|
self.content_weight=opt.content_weight |
|
self.style_weight=opt.style_weight |
|
self.lrG_decay=opt.lrG_decay |
|
self.lrG=opt.lrG |
|
self.loss_count_interval=opt.loss_count_interval |
|
self.save_model_interval=opt.save_model_interval |
|
self.n_threads=opt.n_threads |
|
self.save_dir=opt.save_dir |
|
self.id1_weight=opt.id1_weight |
|
self.id2_weight=opt.id2_weight |
|
self.max_iter=opt.max_iter |
|
self.epoch=0 |
|
self.batch_size=opt.batch_size |
|
self.FloatTensor = torch.cuda.FloatTensor if self.use_gpu() \ |
|
else torch.FloatTensor |
|
self.ByteTensor = torch.cuda.ByteTensor if self.use_gpu() \ |
|
else torch.ByteTensor |
|
|
|
self.netG, self.netD,self.netD2, self.netE = self.initialize_networks(opt) |
|
self.device="cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
if opt.isTrain: |
|
self.criterionGAN = networks.GANLoss( |
|
opt.gan_mode, tensor=self.FloatTensor, opt=self.opt) |
|
self.criterionFeat = torch.nn.L1Loss() |
|
if not opt.no_vgg_loss: |
|
self.criterionVGG = networks.VGGLoss(self.opt.gpu_ids) |
|
if opt.use_vae: |
|
self.KLDLoss = networks.KLDLoss() |
|
|
|
|
|
|
|
|
|
|
|
def forward(self, data, mode,iters,progress,epochs,images_iters): |
|
input_semantics, real_image = self.preprocess_input(data) |
|
|
|
|
|
if mode == 'generator': |
|
g_loss, generated = self.compute_generator_loss(input_semantics, real_image,iters=iters,progress=progress,epoch_model=epochs,images_iter=images_iters) |
|
return g_loss, generated |
|
elif mode == 'discriminator': |
|
d_loss, d2_loss = self.compute_discriminator_loss(input_semantics, real_image,iters=iters) |
|
return d_loss, d2_loss |
|
elif mode == 'encode_only': |
|
z, mu, logvar = self.encode_z(real_image) |
|
return mu, logvar |
|
elif mode == 'inference': |
|
contents = F.interpolate(real_image, size=(224, 224), mode='bilinear', align_corners=False) |
|
styles = F.interpolate(input_semantics, size=(224, 224), mode='bilinear', align_corners=False) |
|
model = self.generate_fake(contents, styles, iters, mode="gen",progress=None) |
|
with torch.no_grad(): |
|
self.opt.alpha = self.opt.alpha.to(self.device) |
|
_, _, _, _, output = model(contents, styles) |
|
print("OUTPUT",output.shape) |
|
upsample_layer = nn.Sequential(nn.Upsample(scale_factor=8 / 7, mode='bilinear', align_corners=False)) |
|
fake_image = upsample_layer(output) |
|
return fake_image |
|
else: |
|
raise ValueError("|mode| is invalid") |
|
|
|
def create_optimizers(self, opt): |
|
G_params = list(self.netG.parameters()) |
|
if opt.use_vae: |
|
G_params += list(self.netE.parameters()) |
|
if opt.isTrain: |
|
D_params = list(self.netD.parameters()) |
|
D2_params = list(self.netD2.parameters()) |
|
|
|
if opt.no_TTUR: |
|
beta1, beta2 = opt.beta1, opt.beta2 |
|
G_lr, D_lr = opt.lr, opt.lr |
|
else: |
|
beta1, beta2 = 0, 0.9 |
|
G_lr, D_lr = opt.lr / 2, opt.lr * 2 |
|
|
|
optimizer_G = torch.optim.Adam(G_params, lr=G_lr, betas=(beta1, beta2)) |
|
optimizer_D = torch.optim.Adam(D_params, lr=D_lr, betas=(beta1, beta2)) |
|
optimizer_D2 = torch.optim.Adam(D2_params, lr=D_lr, betas=(beta1, beta2)) |
|
|
|
return optimizer_G, optimizer_D, optimizer_D2 |
|
|
|
def save(self, epoch): |
|
util.save_network(self.netG, 'G', epoch, self.opt) |
|
util.save_network(self.netD, 'D', epoch, self.opt) |
|
util.save_network(self.netD2, 'D2', epoch, self.opt) |
|
if self.opt.use_vae: |
|
util.save_network(self.netE, 'E', epoch, self.opt) |
|
|
|
|
|
|
|
|
|
|
|
def initialize_networks(self, opt): |
|
netG = networks.define_G(opt) |
|
netD = networks.define_D(opt) if opt.isTrain else None |
|
netD2 = networks.define_D(opt) if opt.isTrain else None |
|
netE = networks.define_E(opt) if opt.use_vae else None |
|
|
|
if not opt.isTrain or opt.continue_train: |
|
netG = util.load_network(netG, 'G', opt.which_epoch, opt) |
|
if opt.isTrain: |
|
netD = util.load_network(netD, 'D', opt.which_epoch, opt) |
|
netD2 = util.load_network(netD2, 'D2', opt.which_epoch, opt) |
|
if opt.use_vae: |
|
netE = util.load_network(netE, 'E', opt.which_epoch, opt) |
|
|
|
return netG, netD, netD2, netE |
|
|
|
|
|
|
|
|
|
def preprocess_input(self, data): |
|
|
|
if self.opt.task == 'SIS': |
|
data['label'] = data['label'].long() |
|
if self.use_gpu(): |
|
data['label'] = data['label'].cuda() |
|
if 'instance' in data: |
|
try: |
|
data['instance'] = data['instance'].cuda() |
|
except: |
|
data['instance'] = data['instance'] |
|
else: |
|
data['instance'] = None |
|
|
|
data['image'] = data['image'].cuda() |
|
|
|
|
|
if self.opt.task == 'SIS': |
|
label_map = data['label'] |
|
bs, _, h, w = label_map.size() |
|
nc = self.opt.label_nc + 1 if self.opt.contain_dontcare_label \ |
|
else self.opt.label_nc |
|
input_label = self.FloatTensor(bs, nc, h, w).zero_() |
|
input_semantics = input_label.scatter_(1, label_map, 1.0) |
|
|
|
|
|
if not self.opt.no_instance: |
|
inst_map = data['instance'] |
|
instance_edge_map = self.get_edges(inst_map) |
|
input_semantics = torch.cat((input_semantics, instance_edge_map), dim=1) |
|
else: |
|
input_semantics = data['label'] |
|
|
|
return input_semantics, data['image'] |
|
|
|
def compute_generator_loss(self, content, style,iters,progress,epoch_model,images_iter): |
|
G_losses = {} |
|
|
|
fake_image, loss_StyTr2 = self.generate_fake(content, style,iters=iters,progress=progress,epochs=epoch_model,image_iters=images_iter) |
|
pred_fake, pred_real_c = self.discriminate(fake_image, content) |
|
|
|
|
|
G_losses['GAN'] = self.criterionGAN(pred_fake, True, for_discriminator=False) * (1 - self.opt.alpha) |
|
|
|
|
|
pred_fake, pred_real = self.discriminate(fake_image, style, type='D2') |
|
G_losses['GAN'] = self.criterionGAN(pred_fake, True, for_discriminator=False) * self.opt.alpha |
|
|
|
if self.opt.task == 'SIS': |
|
pred_fake, pred_real = self.discriminate(fake_image, style, content) |
|
else: |
|
pred_fake, pred_real = self.discriminate(fake_image, style) |
|
|
|
G_losses['GAN'] = self.criterionGAN(pred_fake, True,for_discriminator=False) |
|
gan_loss_value = G_losses['GAN'].item() |
|
new_GAN_loss = gan_loss_value + loss_StyTr2 |
|
G_losses['GAN'] = torch.tensor([new_GAN_loss], device=self.device) |
|
|
|
if not self.opt.no_ganFeat_loss: |
|
num_D = len(pred_fake) |
|
GAN_Feat_loss = torch.tensor(0.0, dtype=torch.float32, device=self.device) |
|
for i in range(num_D): |
|
|
|
num_intermediate_outputs = len(pred_fake[i]) - 1 |
|
for j in range(num_intermediate_outputs): |
|
unweighted_loss = self.criterionFeat( |
|
pred_fake[i][j], pred_real[i][j].detach()) |
|
GAN_Feat_loss += unweighted_loss * self.opt.lambda_feat / num_D |
|
G_losses['GAN_Feat'] = GAN_Feat_loss |
|
|
|
if not self.opt.no_vgg_loss: |
|
target = style if self.opt.task == 'SIS' else content |
|
G_losses['VGG'] = self.criterionVGG(fake_image, target) * self.opt.lambda_vgg |
|
|
|
return G_losses, fake_image |
|
|
|
def compute_discriminator_loss(self, content, style,iters): |
|
D_losses = {} |
|
D2_losses = {} |
|
contents = F.interpolate(content, size=(224, 224), mode='bilinear', align_corners=False) |
|
styles = F.interpolate(style, size=(224, 224), mode='bilinear', align_corners=False) |
|
model=self.generate_fake(contents,styles,iters,mode="gen",progress=None) |
|
with torch.no_grad(): |
|
_, _, _, _, output=model(contents,styles) |
|
upsample_layer = nn.Sequential(nn.Upsample(scale_factor=8 / 7, mode='bilinear', align_corners=False)) |
|
fake_image = upsample_layer(output) |
|
|
|
|
|
pred_fake, pred_real = self.discriminate(fake_image, content) |
|
D_losses['D_Fake'] = self.criterionGAN(pred_fake, False, for_discriminator=True) * (1 - self.opt.alpha) |
|
D_losses['D_real'] = self.criterionGAN(pred_real, True, for_discriminator=True) |
|
|
|
pred_fake, pred_real = self.discriminate(fake_image, style, type='D2') |
|
D2_losses['D_Fake'] = self.criterionGAN(pred_fake, False, for_discriminator=True) * self.opt.alpha |
|
D2_losses['D_real'] = self.criterionGAN(pred_real, True, for_discriminator=True) |
|
|
|
return D_losses, D2_losses |
|
|
|
def encode_z(self, real_image): |
|
mu, logvar = self.netE(real_image) |
|
z = self.reparameterize(mu, logvar) |
|
return z, mu, logvar |
|
|
|
def custom_epoch(self, curr_index_image): |
|
if curr_index_image <= 5: |
|
return self.max_iter |
|
elif 5 < curr_index_image < 15: |
|
return int(self.max_iter * 0.6) |
|
elif 15 <= curr_index_image < 25: |
|
return int(self.max_iter * 0.55) |
|
elif 25 <= curr_index_image < 40: |
|
return int(self.max_iter * 0.5) |
|
elif 40 <= curr_index_image < 60: |
|
return int(self.max_iter * 0.375) |
|
elif 60 <= curr_index_image < 80: |
|
return int(self.max_iter * 0.25) |
|
elif 80 <= curr_index_image < 120: |
|
return int(self.max_iter * 0.1) |
|
else: |
|
return int(self.max_iter * 0.05) |
|
|
|
def save_generator_weights_by_iters(self,net, label, epoch,iters): |
|
util.save_generator_by_iter(net,label,epoch,iters,self.opt) |
|
def generate_fake(self, input_semantics, real_image, iters,mode="train",progress=None,epochs=None,image_iters=None): |
|
|
|
if mode == "train": |
|
models_Generator = self.netG() |
|
optimizer = torch.optim.Adam([ |
|
{'params': models_Generator.SEencoder.parameters()}, |
|
{'params': models_Generator.decoder.parameters()}, |
|
{'params': models_Generator.transModule.parameters()}, |
|
], lr=self.lrG_decay) |
|
scheduler = CosineAnnealingWarmUpLR(optimizer, warmup_step=self.max_iter // 4, max_step=self.max_iter, |
|
min_lr=0) |
|
|
|
contents = real_image.to(self.device) |
|
style = input_semantics.to(self.device) |
|
|
|
content_images = F.interpolate(contents, size=(224, 224), mode='bilinear', align_corners=False) |
|
style_images = F.interpolate(style, size=(224, 224), mode='bilinear', align_corners=False) |
|
total_loss = 0 |
|
|
|
|
|
|
|
log_file = open("train_log.txt", "a") |
|
|
|
with progress: |
|
task = progress.add_task( |
|
f"[green]Iters on one Images [{iters}|{self.custom_epoch(iters)}]- Total_Loss: {total_loss}", |
|
total=self.custom_epoch(iters) |
|
) |
|
total_i = 0 |
|
step_wb=0 |
|
|
|
for i in range(self.custom_epoch(curr_index_image=iters)): |
|
|
|
if (i-self.custom_epoch(curr_index_image=iters)): |
|
total_i=i |
|
step_wb+=1 |
|
if (step_wb>=1): |
|
total_i=total_i+1 |
|
|
|
|
|
loss_c, loss_s, loss_id_1, loss_id_2, out = models_Generator(content_images, style_images) |
|
self.out = out |
|
loss_all = (self.content_weight * loss_c + self.style_weight * loss_s + |
|
self.id1_weight * loss_id_1 + self.id2_weight * loss_id_2) |
|
|
|
|
|
total_loss = round(float(loss_all.sum().cpu().detach().numpy()), 3) |
|
print("Loss_model", loss_all.sum().cpu().detach().numpy(), "==>Content_Loss", |
|
loss_c.sum().cpu().detach().numpy(), |
|
"==>Style_Loss", loss_s.sum().cpu().detach().numpy(), "==>ID_1_Loss", |
|
loss_id_1.sum().cpu().detach().numpy(), |
|
"==>ID_2_Loss", loss_id_2.sum().cpu().detach().numpy()) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
current_lr = optimizer.param_groups[0]['lr'] |
|
wblogging.upload_lr(current_lr, epoch=epochs) |
|
|
|
|
|
|
|
|
|
current_time = datetime.datetime.now().strftime("[%S-%M-%H-%d-%m-%Y]") |
|
|
|
|
|
log_file.write( |
|
f"{current_time} Iter: {i}, Total Loss: {total_loss}, Content Loss: {loss_c.sum().cpu().detach().numpy()}, " |
|
f"Style Loss: {loss_s.sum().cpu().detach().numpy()}, ID1 Loss: {loss_id_1.sum().cpu().detach().numpy()}, " |
|
f"ID2 Loss: {loss_id_2.sum().cpu().detach().numpy()}\n") |
|
|
|
|
|
progress.update(task, advance=1, |
|
description=f"[green]Iters on one Images [{i + 1}|{self.custom_epoch(iters)}]- Total_Loss: {total_loss}") |
|
|
|
|
|
optimizer.zero_grad() |
|
loss_all.backward() |
|
optimizer.step() |
|
scheduler.step() |
|
|
|
|
|
if ((i + 1) - (self.custom_epoch(curr_index_image=iters))) == 0: |
|
self.save_generator_weights_by_iters(self.netG, 'G', epoch=self.epoch, iters=i + 1) |
|
|
|
if i % 100 == 0: |
|
output_name = f'{self.save_dir}/test/{str(i)}.jpg' |
|
out = torch.cat((content_images, out), 0) |
|
out = torch.cat((style_images, out), 0) |
|
save_image(out, output_name) |
|
|
|
|
|
log_file.close() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
upsample_layer = nn.Sequential(nn.Upsample(scale_factor=8 / 7, mode='bilinear', align_corners=False)) |
|
out = upsample_layer(self.out) |
|
|
|
return out, self.loss |
|
|
|
|
|
if(mode=="gen"): |
|
models_Generator = self.netG() |
|
models_Generator.eval() |
|
models_Generator.to(self.device) |
|
return models_Generator |
|
|
|
|
|
|
|
|
|
def discriminate(self, fake_image, real_image, condition=None,type='D1'): |
|
if self.opt.task == 'SIS': |
|
assert condition is not None |
|
fake_concat = torch.cat([condition, fake_image], dim=1) |
|
real_concat = torch.cat([condition, real_image], dim=1) |
|
else: |
|
assert condition is None |
|
fake_concat = fake_image |
|
real_concat = real_image |
|
|
|
|
|
|
|
|
|
|
|
fake_and_real = torch.cat([fake_concat, real_concat], dim=0) |
|
|
|
if type == 'D1': |
|
discriminator_out = self.netD(fake_and_real) |
|
else: |
|
discriminator_out = self.netD2(fake_and_real) |
|
|
|
pred_fake, pred_real = self.divide_pred(discriminator_out) |
|
|
|
return pred_fake, pred_real |
|
|
|
|
|
def divide_pred(self, pred): |
|
|
|
|
|
if type(pred) == list: |
|
fake = [] |
|
real = [] |
|
for p in pred: |
|
fake.append([tensor[:tensor.size(0) // 2] for tensor in p]) |
|
real.append([tensor[tensor.size(0) // 2:] for tensor in p]) |
|
else: |
|
fake = pred[:pred.size(0) // 2] |
|
real = pred[pred.size(0) // 2:] |
|
|
|
return fake, real |
|
|
|
def get_edges(self, t): |
|
edge = self.ByteTensor(t.size()).zero_() |
|
edge[:, :, :, 1:] = edge[:, :, :, 1:] | (t[:, :, :, 1:] != t[:, :, :, :-1]) |
|
edge[:, :, :, :-1] = edge[:, :, :, :-1] | (t[:, :, :, 1:] != t[:, :, :, :-1]) |
|
edge[:, :, 1:, :] = edge[:, :, 1:, :] | (t[:, :, 1:, :] != t[:, :, :-1, :]) |
|
edge[:, :, :-1, :] = edge[:, :, :-1, :] | (t[:, :, 1:, :] != t[:, :, :-1, :]) |
|
return edge.float() |
|
|
|
def reparameterize(self, mu, logvar): |
|
std = torch.exp(0.5 * logvar) |
|
eps = torch.randn_like(std) |
|
return eps.mul(std) + mu |
|
|
|
def use_gpu(self): |
|
return len(self.opt.gpu_ids) > 0 |
|
|