|
import sys |
|
from collections import OrderedDict |
|
from rich.progress import Progress, TextColumn, BarColumn, TaskProgressColumn, TimeRemainingColumn |
|
|
|
import data |
|
from options.train_options import TrainOptions |
|
from util.iter_counter import IterationCounter |
|
from util.visualizer import Visualizer |
|
from trainers.pix2pix_trainer import Pix2PixTrainer |
|
from util.logging_wandb import init_project,stop |
|
import torch |
|
from torch.distributions import Beta |
|
|
|
|
|
opt = TrainOptions().parse() |
|
|
|
print(' '.join(sys.argv)) |
|
|
|
|
|
dataloader = data.create_dataloader(opt) |
|
|
|
|
|
trainer = Pix2PixTrainer(opt) |
|
print(trainer) |
|
|
|
|
|
iter_counter = IterationCounter(opt, len(dataloader)) |
|
|
|
|
|
visualizer = Visualizer(opt) |
|
T = len(dataloader) |
|
b = torch.tensor([1], dtype=torch.float32) |
|
|
|
|
|
progress = Progress( |
|
TextColumn("[bold blue]{task.description}"), |
|
BarColumn(), |
|
TaskProgressColumn(), |
|
TimeRemainingColumn(), |
|
) |
|
|
|
|
|
init_project("results") |
|
|
|
epoch = 0 |
|
with progress: |
|
epoch_task = progress.add_task(f"[deep_pink4]Total Epochs[{epoch + 1}|{max(iter_counter.training_epochs())}]", |
|
total=len(iter_counter.training_epochs())) |
|
for epoch in iter_counter.training_epochs(): |
|
iter_counter.record_epoch_start(epoch) |
|
progress.update(epoch_task, advance=1) |
|
img_index = 0 |
|
iter_task = progress.add_task(f"[cyan]Images Index [{img_index}]", total=len(dataloader)) |
|
|
|
iteration = 0 |
|
while iteration < len(dataloader): |
|
for i,data_i in enumerate(dataloader,start=iter_counter.epoch_iter): |
|
iter_counter.record_one_iteration() |
|
progress.update(iter_task, advance=1) |
|
|
|
t = iteration + 1 |
|
a = torch.tensor(((t - (0.5 * T)) / (0.25 * T)), dtype=torch.float32).exp() |
|
m = Beta(a, b) |
|
opt.alpha = m.sample().cuda() |
|
|
|
|
|
|
|
if iteration % opt.D_steps_per_G == 0: |
|
trainer.run_generator_one_step(data_i, iteration, progress=progress, epoch=epoch, |
|
images_iter=img_index) |
|
img_index += 1 |
|
progress.update(iter_task, |
|
description=f"[cyan]Images Index [{img_index}|{len(dataloader)}]") |
|
|
|
|
|
trainer.run_discriminator_one_step(data_i, iteration) |
|
|
|
|
|
if iter_counter.needs_printing(): |
|
losses = trainer.get_latest_losses() |
|
visualizer.print_current_errors(epoch, iter_counter.epoch_iter, |
|
losses, iter_counter.time_per_iter) |
|
visualizer.plot_current_errors(losses, iter_counter.total_steps_so_far) |
|
|
|
if iter_counter.needs_displaying(): |
|
if opt.task == 'SIS': |
|
visuals = OrderedDict([('input_label', data_i['label'][0]), |
|
('synthesized_image', trainer.get_latest_generated()[0]), |
|
('real_image', data_i['image'][0])]) |
|
else: |
|
visuals = OrderedDict([('content', data_i['label'][0]), |
|
('synthesized_image', trainer.get_latest_generated()[0]), |
|
('style', data_i['image'][0])]) |
|
visualizer.display_current_results(visuals, epoch, iter_counter.total_steps_so_far) |
|
|
|
if iter_counter.needs_saving(): |
|
print('saving the latest model (epoch %d, total_steps %d)' % |
|
(epoch, iter_counter.total_steps_so_far)) |
|
trainer.save('latest') |
|
iter_counter.record_current_iter() |
|
|
|
|
|
|
|
iteration += 1 |
|
if iteration >= opt.max_iterations_per_epoch: |
|
break |
|
|
|
trainer.update_learning_rate(epoch) |
|
iter_counter.record_epoch_end() |
|
progress.update(epoch_task, |
|
description=f"[deep_pink4]Total Epochs[{epoch + 1}|{max(iter_counter.training_epochs())}]") |
|
|
|
if epoch % opt.save_epoch_freq == 0 or epoch == iter_counter.total_epochs: |
|
print('saving the model at the end of epoch %d, iters %d' % |
|
(epoch, iter_counter.total_steps_so_far)) |
|
trainer.save('latest') |
|
trainer.save(epoch) |
|
stop() |
|
|
|
print('Training was successfully finished.') |
|
|
|
|