|
|
import io |
|
|
import warnings |
|
|
import zipfile |
|
|
|
|
|
import httpx |
|
|
import polars as pl |
|
|
|
|
|
from datadex import materialize |
|
|
|
|
|
|
|
|
def fetch_bytes( |
|
|
url: str, |
|
|
*, |
|
|
timeout: float | httpx.Timeout = 120.0, |
|
|
follow_redirects: bool = True, |
|
|
) -> bytes: |
|
|
"""Download the content at ``url`` and return the raw bytes. |
|
|
|
|
|
The request is attempted with standard TLS verification. If that fails due to |
|
|
certificate validation errors (common behind corporate proxies), a single |
|
|
retry is performed with verification disabled while emitting a warning. |
|
|
""" |
|
|
|
|
|
headers = {"User-Agent": "datadex/0.1"} |
|
|
|
|
|
try: |
|
|
response = httpx.get( |
|
|
url, |
|
|
follow_redirects=follow_redirects, |
|
|
timeout=timeout, |
|
|
headers=headers, |
|
|
) |
|
|
except httpx.HTTPError as exc: |
|
|
if "CERTIFICATE_VERIFY_FAILED" not in repr(exc): |
|
|
raise |
|
|
|
|
|
warnings.warn( |
|
|
f"Falling back to insecure TLS download for {url}", |
|
|
RuntimeWarning, |
|
|
stacklevel=2, |
|
|
) |
|
|
else: |
|
|
response.raise_for_status() |
|
|
return response.content |
|
|
|
|
|
response = httpx.get( |
|
|
url, |
|
|
follow_redirects=follow_redirects, |
|
|
timeout=timeout, |
|
|
headers=headers, |
|
|
verify=False, |
|
|
) |
|
|
response.raise_for_status() |
|
|
return response.content |
|
|
|
|
|
|
|
|
def world_development_indicators() -> pl.DataFrame: |
|
|
""" |
|
|
World Development Indicators (WDI) is the World Bank's premier compilation of cross-country comparable data on development. |
|
|
|
|
|
Bulk data download is available at https://datatopics.worldbank.org/world-development-indicators/ |
|
|
""" |
|
|
|
|
|
url = "https://databank.worldbank.org/data/download/WDI_CSV.zip" |
|
|
|
|
|
archive_bytes = fetch_bytes(url, timeout=300.0) |
|
|
|
|
|
with zipfile.ZipFile(io.BytesIO(archive_bytes)) as archive: |
|
|
with archive.open("WDICSV.csv") as csv_file: |
|
|
df = pl.read_csv(csv_file) |
|
|
|
|
|
|
|
|
df = df.unpivot( |
|
|
index=["Country Name", "Country Code", "Indicator Name", "Indicator Code"], |
|
|
value_name="Indicator Value", |
|
|
variable_name="Year", |
|
|
) |
|
|
|
|
|
df = df.with_columns(pl.col("Year").cast(pl.Int32)) |
|
|
|
|
|
df = df.rename({ |
|
|
"Country Name": "country_name", |
|
|
"Country Code": "country_code", |
|
|
"Indicator Name": "indicator_name", |
|
|
"Indicator Code": "indicator_code", |
|
|
"Year": "year", |
|
|
"Indicator Value": "indicator_value", |
|
|
}) |
|
|
|
|
|
df = df.drop_nulls(subset=["indicator_value"]) |
|
|
|
|
|
return df.sort(["country_code", "year", "indicator_code"]) |
|
|
|
|
|
|
|
|
def main() -> None: |
|
|
materialize(world_development_indicators) |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
main() |
|
|
|