The dataset is currently empty. Upload or create new data files. Then, you will be able to explore them in the Dataset Viewer.

Document OCR using GLM-OCR

This dataset contains OCR results from images in biglam/rubenstein-manuscript-catalog using GLM-OCR, a compact 0.9B OCR model achieving SOTA performance.

Processing Details

Configuration

  • Image Column: image
  • Output Column: markdown
  • Dataset Split: train
  • Batch Size: 16
  • Max Model Length: 8,192 tokens
  • Max Output Tokens: 8,192
  • Temperature: 0.01
  • Top P: 1e-05
  • GPU Memory Utilization: 80.0%

Model Information

GLM-OCR is a compact, high-performance OCR model:

  • 0.9B parameters
  • 94.62% on OmniDocBench V1.5
  • CogViT visual encoder + GLM-0.5B language decoder
  • Multi-Token Prediction (MTP) loss for efficiency
  • Multilingual: zh, en, fr, es, ru, de, ja, ko
  • MIT licensed

Dataset Structure

The dataset contains all original columns plus:

  • markdown: The extracted text in markdown format
  • inference_info: JSON list tracking all OCR models applied to this dataset

Reproduction

uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/glm-ocr.py \
    biglam/rubenstein-manuscript-catalog \
    <output-dataset> \
    --image-column image \
    --batch-size 16 \
    --task ocr

Generated with UV Scripts

Downloads last month
27