id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-20,377 | \frac{20 + l\cdot 4}{25 + l\cdot 5} = \frac{l + 5}{l + 5}\cdot \frac45 |
4,308 | \binom{k}{2} = \dfrac{1}{2! \cdot (k + 2 \cdot (-1))!} \cdot k! = \frac{k}{2} \cdot (k + \left(-1\right)) |
34,798 | \binom{m + 1}{b + 1} = \binom{m}{b + 1} + \binom{m}{b} |
-10,651 | \frac{36}{12\cdot \epsilon^2} = \dfrac{4}{4}\cdot \frac{9}{\epsilon \cdot \epsilon\cdot 3} |
-11,557 | i \cdot 18 - 5 + 8 \cdot (-1) = -13 + 18 \cdot i |
27,550 | V_{x \cdot l} \cdot \beta_l \cdot V_{q \cdot x} = V_{q \cdot x} \cdot V_{l \cdot x} \cdot \beta_l |
31,819 | e^q = 1 + q + \frac{1}{2!} \cdot q^2 + \dotsm \gt q^2/2 |
5,145 | 3^{f + (-1)} = \dfrac133^f = 3^f/3 = \frac{1}{3}3^f |
18,669 | (y + 3 \cdot (-1)) \cdot (y + 5) - (y + 4) \cdot (y + 5 \cdot (-1)) = y^2 + 2 \cdot y + 15 \cdot \left(-1\right) - y^2 - y + 20 \cdot (-1) = 3 \cdot y + 5 |
37,118 | {3 \choose 1} = \dfrac{3!}{1! \cdot 2!} = 3 |
15,665 | \cos^2(w)\cdot 2 + (-1) = \cos(2w) |
9,476 | 2^{\frac{1}{8}\cdot (m + 1)} = 2^{\dfrac18}\cdot 2^{\frac{m}{8}} > 2^{1/8}\cdot m |
13,760 | 3^3 + 2 (-1) = 25 = 5 5 |
-15,721 | \frac{x}{\left(k^3\cdot x^5\right)^2} = \frac{x}{k^6\cdot x^{10}} |
31,938 | 2*B = B + B |
-13,919 | \frac{2}{4 + 3 \cdot (-1)} = \frac{1}{1} \cdot 2 = \dfrac{2}{1} = 2 |
14,093 | 7 + 1/8 = \frac{57}{8} |
8,272 | \frac{1}{1 + y^2 \times n \times n} \times n = \frac{\partial}{\partial y} \tan^{-1}(y \times n) |
25,848 | \mathbb{E}(Y)\cdot \mathbb{E}(X) = \mathbb{E}(Y\cdot \mathbb{E}(X)) |
-25,830 | \frac{1}{x + 3\cdot (-1)}\cdot (x \cdot x^2 - x\cdot 4 + 15\cdot (-1)) = x^2 + 3\cdot x + 5 |
-24,466 | 6 + \frac14 \cdot 36 = 6 + 9 = 6 + 9 = 15 |
8,617 | 2 \cdot (f^2 + b^2 + x^2 + (-1)) = 2 \cdot (f \cdot f + b^2 + x^2 - f \cdot b - b \cdot x - f \cdot x) = (f - b)^2 + (b - x)^2 + (x - f)^2 |
155 | \frac{1}{b}\left((-1) a\right) = -a/b = a/((-1) b) |
13,404 | z^3 - 2z + (-1) = ((-1) + z^2 - z) \left(z + 1\right) |
6,364 | -1 \times 1 + 2^2 = 3 |
2,564 | (k\cdot 2)^2 + (2\cdot h) \cdot (2\cdot h) = 10 \cdot 10 rightarrow 5^2 = k^2 + h^2 |
29,983 | 11=0\times25+11 |
-9,317 | 5a * a - a*35 = -5*7 a + 5a a |
4,802 | 4/100\cdot z = 0.04\cdot z |
31,348 | \dfrac{1}{10000}\cdot 9360 = 0.936 = 117/125 |
6,870 | \frac{1}{((-1) + M)!}(U - M + M + (-1))! = \frac{((-1) + U)!}{\left((-1) + M\right)!} |
24,258 | \int z \times z^2\times \sqrt{-z^2 + 4}\,\text{d}z = \int \sqrt{4 - z^2}\times z \times z\times z\,\text{d}z |
11,792 | \sqrt{7} - \sqrt{6} - \sqrt{6} - \sqrt{5} = -\sqrt{6}\cdot 2 + \sqrt{5} + \sqrt{7} |
34,081 | \cos{2*z} = \cos^2{z} - \sin^2{z} = 2*\cos^2{z} + \left(-1\right) |
3,840 | 1 - a \cdot y \cdot y = \frac{1}{1/a} \cdot (\frac{1}{a} - y^2) |
5,202 | \cos(\arcsin{x}) = (1 - x^2)^{\frac{1}{2}} |
-30,924 | 24 = -3\cdot 8 + 48 |
10,186 | (-10 z + 7x) (7x + z*10) = 49 x^2 - z^2*100 |
-2,734 | 6^{1/2} \cdot (5 + 2 \cdot (-1)) = 6^{1/2} \cdot 3 |
10,399 | f*D^n = D^0*D^n*f |
13,280 | \frac{1}{3} + 1/4 + 1/5 = 47/60 |
28,842 | 19 = 26 - (-1) + 2^2 2 |
24,873 | \dfrac{1}{16}(1 - x) + x = 1/16 + x\cdot 15/16 |
18,621 | \frac13 = \dfrac{1}{3}*2/2 |
-20,029 | \frac{-q*9 + 2}{5*(-1) + q*10}*\frac{1}{7}*7 = \frac{14 - q*63}{70*q + 35*(-1)} |
16,491 | -\frac{20}{3}\cdot y^2 + 6 + -\frac{1}{3}\cdot y\cdot (3\cdot y^2 - 17\cdot y + 24\cdot (-1)) = -y^3 - y \cdot y + 8\cdot y + 6 |
-19,014 | 2/15 = \frac{D_s}{36\cdot π}\cdot 36\cdot π = D_s |
-3,567 | r^5/r\cdot \dfrac{96}{64} = 96\cdot r^5/(64\cdot r) |
5,109 | 7 = 7 + 0 \cdot 3 |
52,852 | 0.35*0.28 = 0.098 = 0.98 |
-7,010 | \frac{6}{14}*2/13 = \tfrac{6}{91} |
10,002 | n^{n + (-1)} + (-1) = ((-1) + n) (n^{2(-1) + n} + n^{n + 3(-1)} + ... + n + 1) |
13,918 | 8 + y^3 = (y + 2)\cdot (4 + y \cdot y - y\cdot 2) |
15,344 | x - \sqrt{26} \leq 0 \Rightarrow \sqrt{26} \geq x |
16,590 | ((-1) + y)*((-1) + x) + (-1) = y*x - x - y |
17,712 | l^2 - l - l + (-1) = l^2 - 2l + 1 = (l + (-1)) \cdot (l + (-1)) |
4,410 | 0 = l \Rightarrow 0 \gt \left(-1\right) + 4 l |
2,376 | (d + d + d)*\left(b + b + b\right) = 3*d*3*b = 3*3*d*b = 9*d*b |
25,310 | y = \sqrt{y}\cdot \sqrt{y} = \left(\sqrt{y}\right)^2 = y |
26,424 | 2 + 8 + 24 + 64 + \cdots + 2^m*m = 2*((m + (-1))*2^m + 1) |
-20,004 | 8/8 \frac{9z}{-7z + 5\left(-1\right)} = \frac{z\cdot 72}{40 \left(-1\right) - z\cdot 56} |
16,996 | 2^{546}+1=(2^{182}+1)(2^{364}-2^{182}+1) |
12,200 | \frac{1}{2(x + 1)} + \tfrac{1}{2 \cdot \left(1 - x\right)} = \dfrac{1}{1 - x^2} |
-6,482 | \frac{1}{8}\cdot 8\cdot \frac{2}{(t + 4)\cdot (8 + t)} = \tfrac{16}{8\cdot (t + 4)\cdot (t + 8)} |
641 | a + a*2 + 3*a + 10 = 250 \Rightarrow a = 40 |
18,961 | (f + 11)\cdot (u + 11) - f\cdot u = f\cdot u + 11\cdot f + 11\cdot u + 11\cdot 11 - f\cdot u = 11\cdot f + 11\cdot u + 121 |
25,585 | w + m + x = m + x + w |
-5,622 | \tfrac{4}{\left(9\cdot (-1) + q\right)\cdot 3} = \frac{4}{27\cdot (-1) + q\cdot 3} |
-3,659 | \dfrac{5}{6\cdot q} = \frac{5}{q}\cdot 1/6 |
4,734 | 2/1 \cdot \dfrac{1}{-4} \cdot \frac{2}{1} = \tfrac{4}{-4} = -1 |
7,582 | \sin^2(x) = \sin^2\left(x\right) = \sin(\sin(x)) |
16,934 | 1 + z\cdot y = z\cdot y + 1 |
21,474 | \mathbb{E}[-2\cdot Z_2\cdot Z_1 + Z_1^2 + Z_2^2] = \mathbb{E}[(-Z_1 + Z_2)^2] |
19,832 | \frac{h*x}{d} = x*\frac{h}{d} |
24,116 | -e^{x + \left(-1\right)}/2 = \frac{1}{2\cdot (\left(-1\right) + x)}\cdot e^{x + (-1)}\cdot (1 - x) |
-20,520 | \tfrac{1}{10} 10 \left(-\dfrac{6}{5}\right) = -\frac{1}{50} 60 |
3,607 | \dfrac{y^n}{7 + y^n} = \frac{1}{1 + \dfrac{1}{y^n}\cdot 7} |
-27,398 | 4 \left(-1\right) + 154 = 150 |
7,212 | e^{1 + |x - z|} = e^1 e^{|x - z|} |
-8,996 | 13.3\% = \frac{1}{100}13.3 |
10,293 | 1587/12167 = \frac{1}{x\cdot y\cdot z}\cdot \left(x\cdot y + y\cdot z + x\cdot z\right) = \frac1x + 1/y + 1/z |
23,388 | \frac{1}{\frac23\cdot 3} = 1/2\cdot 3/3 |
-1,333 | (\left(-2\right)*1/9)/(3*1/2) = \tfrac{2}{3}*\left(-\frac{2}{9}\right) |
27,481 | p^3 - p^2 + p^2 - p + p + \left(-1\right) + 1 = p^3 |
19,829 | y * y + 5*y + 1 = y^2 - 6*y + 9 + 8*(-1) = (y + 3*\left(-1\right))^2 + 8*(-1) |
20,553 | \left(-2\right)\cdot (-1) = 2 \implies (-2)\cdot \left(-2\right) = 4 |
13,554 | 12 = -84\cdot 2 + 3\cdot \left(-84 + 144\right) |
16,859 | (3 + 2*l)*l + 1 = 1 + 2*l * l + l*3 |
17,861 | \frac{1}{0\cdot (-1) + 2} = 1/2 |
12,409 | {52 \choose 13} = \dfrac{1}{13} 52 {51 \choose 12} = 4 {51 \choose 12} |
29,176 | \frac{1}{14} = \frac{216}{3024} |
14,186 | 2 \times a + c - a = c + a |
32,637 | 0 = a^7 + 1 = \left(a + 1\right)*(a^6 - a^5 + a^4 - a^3 + a^2 - a + 1) |
4,544 | X \cdot n \cdot z_2 + X \cdot n \cdot z_1 \cdot a = \left(z_1 \cdot n \cdot a + z_2 \cdot n\right) \cdot X |
16,565 | 5/2*\dfrac{2}{3} = \dfrac{1}{3}*5 |
-6,111 | \dfrac{5}{3(q + 8)} \times \dfrac{q + 10}{q + 10} = \dfrac{5(q + 10)}{3(q + 8)(q + 10)} |
-3,722 | \tfrac{q^3}{q^2} = q\cdot q\cdot q/(q\cdot q) = q |
22,778 | \dfrac13\cdot 2 = \frac{1}{45}\cdot 30 |
17,349 | 4^{k + 1} + 4^2\cdot ((-1) + 4^{k + (-1)})/3 = 4 \cdot 4\cdot ((-1) + 4^k)/3 |
25,070 | \left(l + \left(-1\right)\right)\cdot \left(l + \left(-1\right)\right) = l^2 - 2\cdot l + 1 > l |