|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Mathematics database.""" |
|
|
|
from __future__ import absolute_import, division, print_function |
|
|
|
import os |
|
|
|
import datasets |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """ |
|
@article{2019arXiv, |
|
author = {Saxton, Grefenstette, Hill, Kohli}, |
|
title = {Analysing Mathematical Reasoning Abilities of Neural Models}, |
|
year = {2019}, |
|
journal = {arXiv:1904.01557} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """ |
|
Mathematics database. |
|
|
|
This dataset code generates mathematical question and answer pairs, |
|
from a range of question types at roughly school-level difficulty. |
|
This is designed to test the mathematical learning and algebraic |
|
reasoning skills of learning models. |
|
|
|
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models |
|
(Saxton, Grefenstette, Hill, Kohli). |
|
|
|
Example usage: |
|
train_examples, val_examples = datasets.load_dataset( |
|
'math_dataset/arithmetic__mul', |
|
split=['train', 'test'], |
|
as_supervised=True) |
|
""" |
|
|
|
_DATA_URL = "https://storage.googleapis.com/mathematics-dataset/mathematics_dataset-v1.0.tar.gz" |
|
|
|
_TRAIN_CATEGORY = [ |
|
"train-easy", |
|
"train-medium", |
|
"train-hard", |
|
] |
|
|
|
_INTERPOLATE_CATEGORY = [ |
|
"interpolate", |
|
] |
|
|
|
_MODULES = [ |
|
|
|
"measurement__conversion", |
|
|
|
"algebra__linear_1d", |
|
"algebra__linear_1d_composed", |
|
"algebra__linear_2d", |
|
"algebra__linear_2d_composed", |
|
"algebra__polynomial_roots", |
|
"algebra__polynomial_roots_composed", |
|
"algebra__sequence_next_term", |
|
"algebra__sequence_nth_term", |
|
"arithmetic__add_or_sub", |
|
"arithmetic__add_or_sub_in_base", |
|
"arithmetic__add_sub_multiple", |
|
"arithmetic__div", |
|
"arithmetic__mixed", |
|
"arithmetic__mul", |
|
"arithmetic__mul_div_multiple", |
|
"arithmetic__nearest_integer_root", |
|
"arithmetic__simplify_surd", |
|
"calculus__differentiate", |
|
"calculus__differentiate_composed", |
|
"comparison__closest", |
|
"comparison__closest_composed", |
|
"comparison__kth_biggest", |
|
"comparison__kth_biggest_composed", |
|
"comparison__pair", |
|
"comparison__pair_composed", |
|
"comparison__sort", |
|
"comparison__sort_composed", |
|
"measurement__conversion", |
|
"measurement__time", |
|
"numbers__base_conversion", |
|
"numbers__div_remainder", |
|
"numbers__div_remainder_composed", |
|
"numbers__gcd", |
|
"numbers__gcd_composed", |
|
"numbers__is_factor", |
|
"numbers__is_factor_composed", |
|
"numbers__is_prime", |
|
"numbers__is_prime_composed", |
|
"numbers__lcm", |
|
"numbers__lcm_composed", |
|
"numbers__list_prime_factors", |
|
"numbers__list_prime_factors_composed", |
|
"numbers__place_value", |
|
"numbers__place_value_composed", |
|
"numbers__round_number", |
|
"numbers__round_number_composed", |
|
"polynomials__add", |
|
"polynomials__coefficient_named", |
|
"polynomials__collect", |
|
"polynomials__compose", |
|
"polynomials__evaluate", |
|
"polynomials__evaluate_composed", |
|
"polynomials__expand", |
|
"polynomials__simplify_power", |
|
"probability__swr_p_level_set", |
|
"probability__swr_p_sequence", |
|
|
|
"algebra__linear_1d", |
|
"algebra__linear_1d_composed", |
|
"algebra__linear_2d", |
|
"algebra__linear_2d_composed", |
|
"algebra__polynomial_roots", |
|
"algebra__polynomial_roots_composed", |
|
"algebra__sequence_next_term", |
|
"algebra__sequence_nth_term", |
|
"arithmetic__add_or_sub", |
|
"arithmetic__add_or_sub_in_base", |
|
"arithmetic__add_sub_multiple", |
|
"arithmetic__div", |
|
"arithmetic__mixed", |
|
"arithmetic__mul", |
|
"arithmetic__mul_div_multiple", |
|
"arithmetic__nearest_integer_root", |
|
"arithmetic__simplify_surd", |
|
"calculus__differentiate", |
|
"calculus__differentiate_composed", |
|
"comparison__closest", |
|
"comparison__closest_composed", |
|
"comparison__kth_biggest", |
|
"comparison__kth_biggest_composed", |
|
"comparison__pair", |
|
"comparison__pair_composed", |
|
"comparison__sort", |
|
"comparison__sort_composed", |
|
"measurement__conversion", |
|
"measurement__time", |
|
"numbers__base_conversion", |
|
"numbers__div_remainder", |
|
"numbers__div_remainder_composed", |
|
"numbers__gcd", |
|
"numbers__gcd_composed", |
|
"numbers__is_factor", |
|
"numbers__is_factor_composed", |
|
"numbers__is_prime", |
|
"numbers__is_prime_composed", |
|
"numbers__lcm", |
|
"numbers__lcm_composed", |
|
"numbers__list_prime_factors", |
|
"numbers__list_prime_factors_composed", |
|
"numbers__place_value", |
|
"numbers__place_value_composed", |
|
"numbers__round_number", |
|
"numbers__round_number_composed", |
|
"polynomials__add", |
|
"polynomials__coefficient_named", |
|
"polynomials__collect", |
|
"polynomials__compose", |
|
"polynomials__evaluate", |
|
"polynomials__evaluate_composed", |
|
"polynomials__expand", |
|
"polynomials__simplify_power", |
|
"probability__swr_p_level_set", |
|
"probability__swr_p_sequence", |
|
] |
|
|
|
_QUESTION = "question" |
|
_ANSWER = "answer" |
|
|
|
_DATASET_VERSION = "mathematics_dataset-v1.0" |
|
|
|
|
|
def _generate_builder_configs(): |
|
"""Generate configs with different subsets of mathematics dataset.""" |
|
configs = [] |
|
for module in sorted(set(_MODULES)): |
|
configs.append( |
|
datasets.BuilderConfig( |
|
name=module, |
|
version=datasets.Version("1.0.0"), |
|
description=_DESCRIPTION, |
|
) |
|
) |
|
|
|
return configs |
|
|
|
|
|
class MathDataset(datasets.GeneratorBasedBuilder): |
|
"""Math Dataset.""" |
|
|
|
BUILDER_CONFIGS = _generate_builder_configs() |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
_QUESTION: datasets.Value("string"), |
|
_ANSWER: datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=(_QUESTION, _ANSWER), |
|
homepage="https://github.com/deepmind/mathematics_dataset", |
|
citation=_CITATION, |
|
) |
|
|
|
def _read_data_from_all_categories(self, directory, config, categories): |
|
lines = [] |
|
for category in categories: |
|
data_file = os.path.join(directory, _DATASET_VERSION, category, config) |
|
if os.path.exists(data_file): |
|
with open(data_file, encoding="utf-8") as f: |
|
ls = f.read().split("\n") |
|
|
|
for line in ls[::-1]: |
|
if not line: |
|
ls.remove(line) |
|
|
|
lines.extend(ls) |
|
|
|
return lines |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
|
|
directory = dl_manager.download_and_extract(_DATA_URL) |
|
config = self.config.name + ".txt" |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"directory": directory, |
|
"config": config, |
|
"categories": _TRAIN_CATEGORY, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"directory": directory, |
|
"config": config, |
|
"categories": _INTERPOLATE_CATEGORY, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, directory, config, categories): |
|
"""Yields examples based on directory, module file..""" |
|
|
|
lines = self._read_data_from_all_categories(directory, config, categories) |
|
logger.info("%s: %s contains total: %d", categories, config, len(lines)) |
|
questions = lines[::2] |
|
answers = lines[1::2] |
|
|
|
assert len(answers) == len(questions), "answers: %d do not match questions: %d" % ( |
|
len(answers), |
|
len(questions), |
|
) |
|
|
|
for idx, (q, a) in enumerate(zip(questions, answers)): |
|
result = {_QUESTION: q, _ANSWER: a} |
|
if all(result.values()): |
|
yield idx, result |
|
|