id
int64 2
155k
| CLAP-log-likelihood
float64 -16.12
-0.01
|
---|---|
142,090 | -0.012294 |
98,597 | -0.015572 |
124,735 | -0.015678 |
125,656 | -0.015715 |
98,588 | -0.016477 |
98,599 | -0.017891 |
149,133 | -0.018413 |
131,785 | -0.018823 |
18,087 | -0.019531 |
98,583 | -0.019657 |
18,089 | -0.019767 |
125,107 | -0.019818 |
50,466 | -0.019871 |
139,318 | -0.019993 |
79,616 | -0.020024 |
98,581 | -0.020372 |
98,600 | -0.020399 |
98,589 | -0.020706 |
124,743 | -0.020736 |
74,865 | -0.020793 |
98,573 | -0.02082 |
98,596 | -0.020874 |
141,370 | -0.020897 |
47,170 | -0.021313 |
98,591 | -0.021381 |
131,429 | -0.021614 |
97,037 | -0.021646 |
82,993 | -0.022055 |
83,011 | -0.022055 |
74,851 | -0.022211 |
124,736 | -0.022234 |
149,137 | -0.022236 |
58,209 | -0.022347 |
125,650 | -0.022387 |
98,575 | -0.022394 |
73,424 | -0.022397 |
149,131 | -0.02246 |
15,871 | -0.022796 |
50,388 | -0.023197 |
98,574 | -0.023314 |
125,652 | -0.023367 |
124,738 | -0.023509 |
11,869 | -0.023642 |
50,461 | -0.02365 |
47,167 | -0.023825 |
109,665 | -0.023871 |
125,655 | -0.023926 |
47,173 | -0.024104 |
134,033 | -0.024134 |
135,993 | -0.02423 |
15,867 | -0.024306 |
98,579 | -0.024547 |
18,086 | -0.024637 |
9,998 | -0.024728 |
142,088 | -0.024855 |
111,934 | -0.024973 |
142,092 | -0.025335 |
47,172 | -0.025436 |
38,777 | -0.025495 |
102,182 | -0.025597 |
149,119 | -0.02566 |
11,837 | -0.025673 |
124,744 | -0.025687 |
131,432 | -0.025706 |
153,772 | -0.025747 |
125,649 | -0.025793 |
18,099 | -0.025854 |
47,171 | -0.026029 |
127,493 | -0.026196 |
44,277 | -0.026332 |
151,358 | -0.026401 |
153,909 | -0.026422 |
50,389 | -0.026434 |
150,164 | -0.026559 |
60,352 | -0.026561 |
108,498 | -0.026565 |
137,285 | -0.026597 |
11,831 | -0.026667 |
149,124 | -0.026766 |
97,445 | -0.026783 |
149,121 | -0.02681 |
134,771 | -0.026821 |
151,359 | -0.026829 |
86,511 | -0.026867 |
20,999 | -0.026883 |
95,780 | -0.027158 |
15,869 | -0.027199 |
96,093 | -0.027211 |
52,667 | -0.027301 |
107,104 | -0.027397 |
18,202 | -0.02747 |
98,576 | -0.027506 |
151,690 | -0.027538 |
35,888 | -0.027583 |
91,360 | -0.027664 |
15,864 | -0.027668 |
141,909 | -0.027806 |
142,093 | -0.027806 |
46,594 | -0.02781 |
107,105 | -0.027821 |
What is FMA-rank?
FMA is a music dataset from the Free Music Archive, containing over 8000 hours of Creative Commons-licensed music from 107k tracks across 16k artists and 15k albums. It was created in 2017 by Defferrard et al. in collaboration with Free Music Archive.
FMA contains a lot of good music, and a lot of bad music, so the question is: can we rank the samples in FMA?
FMA-rank is a CLAP-based statistical ranking of each sample in FMA. We calculate the log-likelihood of each sample in FMA belonging to an estimated gaussian in the CLAP latent space, using these values we can rank and filter FMA. In log-likelihood, higher values are better.
Quickstart
Download any FMA split from the official github https://github.com/mdeff/fma. Extract the FMA folder from the downloaded zip and set the path to the folder in fma_root_dir
.
Run the following code snippet to load and filter the FMA samples according to the given percentages. The code snippet will return a HF audio dataset.
from datasets import load_dataset, Dataset, Audio
import os
# provide location of fma folder
fma_root_dir = "/path/to/fma/folder"
# provide percentage of fma dataset to use
# for whole dataset, use start_percentage=0 and end_percentage=100
# for worst 20% of dataset, use start_percentage=0 and end_percentage=20
# for best 20% of dataset, use the following values:
start_percentage = 80
end_percentage = 100
# load fma_rank.csv from huggingface and sort from lowest to highest
csv_loaded = load_dataset("disco-eth/FMA-rank")
fma_item_list = csv_loaded["train"]
fma_sorted_list = sorted(fma_item_list, key=lambda d: d['CLAP-log-likelihood'])
def parse_fma_audio_folder(fma_root_dir):
valid_fma_ids = []
subfolders = os.listdir(fma_root_dir)
for subfolder in subfolders:
subfolder_path = os.path.join(fma_root_dir, subfolder)
if os.path.isdir(subfolder_path):
music_files = os.listdir(subfolder_path)
for music_file in music_files:
if ".mp3" not in music_file:
continue
else:
fma_id = music_file.split('.')[0]
valid_fma_ids.append(fma_id)
return valid_fma_ids
# select the existing files according to the provided fma folder
valid_fma_ids = parse_fma_audio_folder(fma_root_dir)
df_dict = {"id":[], "score": [], "audio": []}
for fma_item in fma_sorted_list:
this_id = f"{fma_item['id']:06d}"
if this_id in valid_fma_ids:
df_dict["id"].append(this_id)
df_dict["score"].append(fma_item["CLAP-log-likelihood"])
df_dict["audio"].append(os.path.join(fma_root_dir, this_id[:3] , this_id+".mp3"))
# filter the fma dataset according to the percentage defined above
i_start = int(start_percentage * len(df_dict["id"]) / 100)
i_end = int(end_percentage * len(df_dict["id"]) / 100)
df_dict_filtered = {
"id": df_dict["id"][i_start:i_end],
"score": df_dict["score"][i_start:i_end],
"audio": df_dict["audio"][i_start:i_end],
}
# get final dataset
audio_dataset = Dataset.from_dict(df_dict_filtered).cast_column("audio", Audio())
"""
Dataset({
features: ['id', 'score', 'audio'],
num_rows: 1599
})
"""
- Downloads last month
- 40