url
stringlengths
60
61
repository_url
stringclasses
1 value
labels_url
stringlengths
74
75
comments_url
stringlengths
69
70
events_url
stringlengths
67
68
html_url
stringlengths
49
51
id
int64
620M
2.29B
node_id
stringlengths
18
32
number
int64
153
6.9k
title
stringlengths
9
244
user
dict
labels
listlengths
0
3
state
stringclasses
1 value
locked
bool
1 class
assignee
dict
assignees
listlengths
0
3
milestone
dict
comments
sequencelengths
0
30
created_at
timestamp[s]
updated_at
timestamp[s]
closed_at
null
author_association
stringclasses
4 values
active_lock_reason
null
draft
bool
2 classes
pull_request
dict
body
stringlengths
10
33.9k
reactions
dict
timeline_url
stringlengths
69
70
performed_via_github_app
null
state_reason
stringclasses
1 value
is_pull_request
bool
2 classes
https://api.github.com/repos/huggingface/datasets/issues/6898
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6898/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6898/comments
https://api.github.com/repos/huggingface/datasets/issues/6898/events
https://github.com/huggingface/datasets/pull/6898
2,294,432,108
PR_kwDODunzps5vWJ9v
6,898
Fix YAML error in README files appearing on GitHub
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6898). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "After this PR, the README file looks like:\r\n\r\n![Screenshot from 2024-05-14 14-19-29](https://github.com/huggingface/datasets/assets/8515462/1f665a06-98be-4dd7-ba7e-7cc025489503)\r\n" ]
2024-05-14T05:21:57
2024-05-14T12:21:02
null
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6898", "html_url": "https://github.com/huggingface/datasets/pull/6898", "diff_url": "https://github.com/huggingface/datasets/pull/6898.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6898.patch", "merged_at": null }
Fix YAML error in README files appearing on GitHub. See error message: ![Screenshot from 2024-05-14 06-58-02](https://github.com/huggingface/datasets/assets/8515462/7984cc4e-96ee-4e83-99a4-4c0c5791fa05) Fix #6897.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6898/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6898/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6897
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6897/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6897/comments
https://api.github.com/repos/huggingface/datasets/issues/6897/events
https://github.com/huggingface/datasets/issues/6897
2,293,428,243
I_kwDODunzps6IsvAT
6,897
datasets template guide :: issue in documentation YAML
{ "login": "bghira", "id": 59658056, "node_id": "MDQ6VXNlcjU5NjU4MDU2", "avatar_url": "https://avatars.githubusercontent.com/u/59658056?v=4", "gravatar_id": "", "url": "https://api.github.com/users/bghira", "html_url": "https://github.com/bghira", "followers_url": "https://api.github.com/users/bghira/followers", "following_url": "https://api.github.com/users/bghira/following{/other_user}", "gists_url": "https://api.github.com/users/bghira/gists{/gist_id}", "starred_url": "https://api.github.com/users/bghira/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/bghira/subscriptions", "organizations_url": "https://api.github.com/users/bghira/orgs", "repos_url": "https://api.github.com/users/bghira/repos", "events_url": "https://api.github.com/users/bghira/events{/privacy}", "received_events_url": "https://api.github.com/users/bghira/received_events", "type": "User", "site_admin": false }
[]
open
false
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false } ]
null
[ "Hello, @bghira.\r\n\r\nThanks for reporting. Please note that the text originating the error is not supposed to be valid YAML: it contains the instructions to generate the actual YAML content, that should replace the instructions comment.\r\n\r\nOn the other hand, I agree that it is not nice to have that YAML error message at the top of the page: \r\n![Screenshot from 2024-05-14 06-58-02](https://github.com/huggingface/datasets/assets/8515462/28409eb4-99e7-4b24-8eaa-21a65a8f23b2)\r\n\r\nI am proposing a change to make the YAML error disappear.", "thanks albert! i looked at it for a while to figure it out. i think the `raw` view option is the correct way to look at it?" ]
2024-05-13T17:33:59
2024-05-14T12:08:50
null
NONE
null
null
null
### Describe the bug There is a YAML error at the top of the page, and I don't think it's supposed to be there ### Steps to reproduce the bug 1. Browse to [this tutorial document](https://github.com/huggingface/datasets/blob/main/templates/README_guide.md) 2. Observe a big red error at the top 3. The rest of the document remains functional ### Expected behavior I think the YAML block should be displayed or ignored. ### Environment info N/A
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6897/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6897/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6896
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6896/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6896/comments
https://api.github.com/repos/huggingface/datasets/issues/6896/events
https://github.com/huggingface/datasets/issues/6896
2,293,176,061
I_kwDODunzps6Irxb9
6,896
Regression bug: `NonMatchingSplitsSizesError` for (possibly) overwritten dataset
{ "login": "finiteautomata", "id": 167943, "node_id": "MDQ6VXNlcjE2Nzk0Mw==", "avatar_url": "https://avatars.githubusercontent.com/u/167943?v=4", "gravatar_id": "", "url": "https://api.github.com/users/finiteautomata", "html_url": "https://github.com/finiteautomata", "followers_url": "https://api.github.com/users/finiteautomata/followers", "following_url": "https://api.github.com/users/finiteautomata/following{/other_user}", "gists_url": "https://api.github.com/users/finiteautomata/gists{/gist_id}", "starred_url": "https://api.github.com/users/finiteautomata/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/finiteautomata/subscriptions", "organizations_url": "https://api.github.com/users/finiteautomata/orgs", "repos_url": "https://api.github.com/users/finiteautomata/repos", "events_url": "https://api.github.com/users/finiteautomata/events{/privacy}", "received_events_url": "https://api.github.com/users/finiteautomata/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[]
2024-05-13T15:41:57
2024-05-13T15:44:48
null
NONE
null
null
null
### Describe the bug While trying to load the dataset `https://huggingface.co/datasets/pysentimiento/spanish-tweets-small`, I get this error: ```python --------------------------------------------------------------------------- NonMatchingSplitsSizesError Traceback (most recent call last) [<ipython-input-1-d6a3c721d3b8>](https://localhost:8080/#) in <cell line: 3>() 1 from datasets import load_dataset 2 ----> 3 ds = load_dataset("pysentimiento/spanish-tweets-small") 3 frames [/usr/local/lib/python3.10/dist-packages/datasets/load.py](https://localhost:8080/#) in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, token, use_auth_token, task, streaming, num_proc, storage_options, **config_kwargs) 2150 2151 # Download and prepare data -> 2152 builder_instance.download_and_prepare( 2153 download_config=download_config, 2154 download_mode=download_mode, [/usr/local/lib/python3.10/dist-packages/datasets/builder.py](https://localhost:8080/#) in download_and_prepare(self, output_dir, download_config, download_mode, verification_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, file_format, max_shard_size, num_proc, storage_options, **download_and_prepare_kwargs) 946 if num_proc is not None: 947 prepare_split_kwargs["num_proc"] = num_proc --> 948 self._download_and_prepare( 949 dl_manager=dl_manager, 950 verification_mode=verification_mode, [/usr/local/lib/python3.10/dist-packages/datasets/builder.py](https://localhost:8080/#) in _download_and_prepare(self, dl_manager, verification_mode, **prepare_split_kwargs) 1059 1060 if verification_mode == VerificationMode.BASIC_CHECKS or verification_mode == VerificationMode.ALL_CHECKS: -> 1061 verify_splits(self.info.splits, split_dict) 1062 1063 # Update the info object with the splits. [/usr/local/lib/python3.10/dist-packages/datasets/utils/info_utils.py](https://localhost:8080/#) in verify_splits(expected_splits, recorded_splits) 98 ] 99 if len(bad_splits) > 0: --> 100 raise NonMatchingSplitsSizesError(str(bad_splits)) 101 logger.info("All the splits matched successfully.") 102 NonMatchingSplitsSizesError: [{'expected': SplitInfo(name='train', num_bytes=82649695458, num_examples=597433111, shard_lengths=None, dataset_name=None), 'recorded': SplitInfo(name='train', num_bytes=3358310095, num_examples=24898932, shard_lengths=[3626991, 3716991, 4036990, 3506990, 3676990, 3716990, 2616990], dataset_name='spanish-tweets-small')}] ``` I think I had this dataset updated, might be related to #6271 It is working fine as late in `2.10.0` , but not in `2.13.0` onwards. ### Steps to reproduce the bug ```python from datasets import load_dataset ds = load_dataset("pysentimiento/spanish-tweets-small") ``` You can run it in [this notebook](https://colab.research.google.com/drive/1FdhqLiVimHIlkn7B54DbhizeQ4U3vGVl#scrollTo=YgA50cBSibUg) ### Expected behavior Load the dataset without any error ### Environment info - `datasets` version: 2.13.0 - Platform: Linux-6.1.58+-x86_64-with-glibc2.35 - Python version: 3.10.12 - Huggingface_hub version: 0.20.3 - PyArrow version: 14.0.2 - Pandas version: 2.0.3
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6896/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6896/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6895
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6895/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6895/comments
https://api.github.com/repos/huggingface/datasets/issues/6895/events
https://github.com/huggingface/datasets/pull/6895
2,292,993,156
PR_kwDODunzps5vRK8P
6,895
Document that to_json defaults to JSON Lines
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6895). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
2024-05-13T14:22:34
2024-05-13T14:25:08
null
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6895", "html_url": "https://github.com/huggingface/datasets/pull/6895", "diff_url": "https://github.com/huggingface/datasets/pull/6895.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6895.patch", "merged_at": null }
Document that `Dataset.to_json` defaults to JSON Lines, by adding explanation in the corresponding docstring. Fix #6894.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6895/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6895/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6894
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6894/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6894/comments
https://api.github.com/repos/huggingface/datasets/issues/6894/events
https://github.com/huggingface/datasets/issues/6894
2,292,840,226
I_kwDODunzps6Iqfci
6,894
Better document defaults of to_json
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892861, "node_id": "MDU6TGFiZWwxOTM1ODkyODYx", "url": "https://api.github.com/repos/huggingface/datasets/labels/documentation", "name": "documentation", "color": "0075ca", "default": true, "description": "Improvements or additions to documentation" } ]
open
false
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false } ]
null
[]
2024-05-13T13:30:54
2024-05-13T13:30:55
null
MEMBER
null
null
null
Better document defaults of `to_json`: the default format is [JSON-Lines](https://jsonlines.org/). Related to: - #6891
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6894/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6894/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6892
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6892/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6892/comments
https://api.github.com/repos/huggingface/datasets/issues/6892/events
https://github.com/huggingface/datasets/pull/6892
2,291,201,347
PR_kwDODunzps5vLIlp
6,892
Add support for categorical/dictionary types
{ "login": "EthanSteinberg", "id": 342233, "node_id": "MDQ6VXNlcjM0MjIzMw==", "avatar_url": "https://avatars.githubusercontent.com/u/342233?v=4", "gravatar_id": "", "url": "https://api.github.com/users/EthanSteinberg", "html_url": "https://github.com/EthanSteinberg", "followers_url": "https://api.github.com/users/EthanSteinberg/followers", "following_url": "https://api.github.com/users/EthanSteinberg/following{/other_user}", "gists_url": "https://api.github.com/users/EthanSteinberg/gists{/gist_id}", "starred_url": "https://api.github.com/users/EthanSteinberg/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/EthanSteinberg/subscriptions", "organizations_url": "https://api.github.com/users/EthanSteinberg/orgs", "repos_url": "https://api.github.com/users/EthanSteinberg/repos", "events_url": "https://api.github.com/users/EthanSteinberg/events{/privacy}", "received_events_url": "https://api.github.com/users/EthanSteinberg/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[]
2024-05-12T07:15:08
2024-05-12T07:15:37
null
NONE
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6892", "html_url": "https://github.com/huggingface/datasets/pull/6892", "diff_url": "https://github.com/huggingface/datasets/pull/6892.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6892.patch", "merged_at": null }
Arrow has a very useful dictionary/categorical type (https://arrow.apache.org/docs/python/generated/pyarrow.dictionary.html). This data type has significant speed, memory and disk benefits over pa.string() when there are only a few unique text strings in a column. Unfortunately, huggingface datasets currently does not support this type. So huggingface datasets cannot natively read many parquet files that use this datatype .This PR adds support for Huggingface Datasets to read categorical/dictionary data. Note: This PR functions by simply converting those dictionary/categorical types to strings. This means that huggingface datasets cannot take advantage of the compute benefits of categoricals, but it significantly simplifies logic. At this time, I do not think it makes sense to optimize categorical support within huggingface datasets and that we should only try to optimize later, if necessary. Closes #5706
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6892/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6892/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6890
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6890/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6890/comments
https://api.github.com/repos/huggingface/datasets/issues/6890/events
https://github.com/huggingface/datasets/issues/6890
2,288,699,041
I_kwDODunzps6Iasah
6,890
add `with_transform` and/or `set_transform` to IterableDataset
{ "login": "not-lain", "id": 70411813, "node_id": "MDQ6VXNlcjcwNDExODEz", "avatar_url": "https://avatars.githubusercontent.com/u/70411813?v=4", "gravatar_id": "", "url": "https://api.github.com/users/not-lain", "html_url": "https://github.com/not-lain", "followers_url": "https://api.github.com/users/not-lain/followers", "following_url": "https://api.github.com/users/not-lain/following{/other_user}", "gists_url": "https://api.github.com/users/not-lain/gists{/gist_id}", "starred_url": "https://api.github.com/users/not-lain/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/not-lain/subscriptions", "organizations_url": "https://api.github.com/users/not-lain/orgs", "repos_url": "https://api.github.com/users/not-lain/repos", "events_url": "https://api.github.com/users/not-lain/events{/privacy}", "received_events_url": "https://api.github.com/users/not-lain/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
open
false
null
[]
null
[]
2024-05-10T01:00:12
2024-05-10T01:00:46
null
NONE
null
null
null
### Feature request when working with a really large dataset it would save us a lot of time (and compute resources) to use either with_transform or the set_transform from the Dataset class instead of waiting for the entire dataset to map ### Motivation don't want to wait for a really long dataset to map, this would give IterableDataset an extra advantage over the Dataset class. reducing time and resources ### Your contribution I am a little busy with my job search lately, but would post about this feature in my social media. Apologies again (dad going to kick me out soon), if I ever have some free time I will contribute to making this a reality, but that's going to be hard     / (┬┬﹏┬┬)\
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6890/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6890/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6887
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6887/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6887/comments
https://api.github.com/repos/huggingface/datasets/issues/6887/events
https://github.com/huggingface/datasets/issues/6887
2,286,786,396
I_kwDODunzps6ITZdc
6,887
FAISS load to None
{ "login": "brainer3220", "id": 40418544, "node_id": "MDQ6VXNlcjQwNDE4NTQ0", "avatar_url": "https://avatars.githubusercontent.com/u/40418544?v=4", "gravatar_id": "", "url": "https://api.github.com/users/brainer3220", "html_url": "https://github.com/brainer3220", "followers_url": "https://api.github.com/users/brainer3220/followers", "following_url": "https://api.github.com/users/brainer3220/following{/other_user}", "gists_url": "https://api.github.com/users/brainer3220/gists{/gist_id}", "starred_url": "https://api.github.com/users/brainer3220/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/brainer3220/subscriptions", "organizations_url": "https://api.github.com/users/brainer3220/orgs", "repos_url": "https://api.github.com/users/brainer3220/repos", "events_url": "https://api.github.com/users/brainer3220/events{/privacy}", "received_events_url": "https://api.github.com/users/brainer3220/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[]
2024-05-09T02:43:50
2024-05-09T02:43:50
null
NONE
null
null
null
### Describe the bug I've use FAISS with Datasets and save to FAISS. Then load to save FAISS then no error, then ds to None ```python ds.load_faiss_index('embeddings', 'my_index.faiss') ``` ### Steps to reproduce the bug # 1. ```python ds_with_embeddings = ds.map(lambda example: {'embeddings': model(transforms(example['image']).unsqueeze(0)).squeeze()}, batch_size=64) ds_with_embeddings.add_faiss_index(column='embeddings') ds_with_embeddings.save_faiss_index('embeddings', 'index.faiss') ``` # 2. ```python ds.load_faiss_index('embeddings', 'my_index.faiss') ``` ### Expected behavior Add column in Datasets. ### Environment info Google Colab, SageMaker Notebook
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6887/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6887/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6886
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6886/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6886/comments
https://api.github.com/repos/huggingface/datasets/issues/6886/events
https://github.com/huggingface/datasets/issues/6886
2,286,328,984
I_kwDODunzps6IRpyY
6,886
load_dataset with data_dir and cache_dir set fail with not supported
{ "login": "fah", "id": 322496, "node_id": "MDQ6VXNlcjMyMjQ5Ng==", "avatar_url": "https://avatars.githubusercontent.com/u/322496?v=4", "gravatar_id": "", "url": "https://api.github.com/users/fah", "html_url": "https://github.com/fah", "followers_url": "https://api.github.com/users/fah/followers", "following_url": "https://api.github.com/users/fah/following{/other_user}", "gists_url": "https://api.github.com/users/fah/gists{/gist_id}", "starred_url": "https://api.github.com/users/fah/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/fah/subscriptions", "organizations_url": "https://api.github.com/users/fah/orgs", "repos_url": "https://api.github.com/users/fah/repos", "events_url": "https://api.github.com/users/fah/events{/privacy}", "received_events_url": "https://api.github.com/users/fah/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[]
2024-05-08T19:52:35
2024-05-08T19:58:11
null
NONE
null
null
null
### Describe the bug with python 3.11 I execute: ```py from transformers import Wav2Vec2Processor, Data2VecAudioModel import torch from torch import nn from datasets import load_dataset, concatenate_datasets # load demo audio and set processor dataset_clean = load_dataset("librispeech_asr", "clean", split="validation", data_dir="data", cache_dir="cache") ``` This fails in the last line with ```log Found cached dataset librispeech_asr (file:///Users/as/Documents/Project/git/audio2vec/cache/librispeech_asr/clean-data_dir=data/2.1.0/cff5df6e7955c80a67f80e27e7e655de71c689e2d2364bece785b972acb37fe7) Traceback (most recent call last): File "/Users/as/Documents/Project/git/audio2vec/src/music2vec-v1.py", line 7, in <module> dataset_clean = load_dataset("librispeech_asr", "clean", split="validation", data_dir="data", cache_dir="cache") ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/as/anaconda3/lib/python3.11/site-packages/datasets/load.py", line 1810, in load_dataset ds = builder_instance.as_dataset(split=split, verification_mode=verification_mode, in_memory=keep_in_memory) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/as/anaconda3/lib/python3.11/site-packages/datasets/builder.py", line 1113, in as_dataset raise NotImplementedError(f"Loading a dataset cached in a {type(self._fs).__name__} is not supported.") NotImplementedError: Loading a dataset cached in a LocalFileSystem is not supported. ``` ### Steps to reproduce the bug I setup an venv with requirements.txt ```txt transformers==4.40.2 torch==2.2.2 datasets==2.16.0 fsspec==2023.9.2 ``` pip freeze is: ``` aiohttp==3.9.5 aiosignal==1.3.1 attrs==23.2.0 certifi==2024.2.2 charset-normalizer==3.3.2 datasets==2.16.0 dill==0.3.7 filelock==3.14.0 frozenlist==1.4.1 fsspec==2023.9.2 huggingface-hub==0.23.0 idna==3.7 Jinja2==3.1.4 MarkupSafe==2.1.5 mpmath==1.3.0 multidict==6.0.5 multiprocess==0.70.15 networkx==3.3 numpy==1.26.4 packaging==24.0 pandas==2.2.2 pyarrow==16.0.0 pyarrow-hotfix==0.6 python-dateutil==2.9.0.post0 pytz==2024.1 PyYAML==6.0.1 regex==2024.4.28 requests==2.31.0 safetensors==0.4.3 six==1.16.0 sympy==1.12 tokenizers==0.19.1 torch==2.2.2 tqdm==4.66.4 transformers==4.40.2 typing_extensions==4.11.0 tzdata==2024.1 urllib3==2.2.1 xxhash==3.4.1 yarl==1.9.4 ``` I execute this on a M1 Mac. ### Expected behavior I don't understand the error message. Why is "local" caching not supported. Would it possible to give some additional hint with the error message how to solve this issue? ### Environment info source .... python -u example.py
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6886/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6886/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6883
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6883/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6883/comments
https://api.github.com/repos/huggingface/datasets/issues/6883/events
https://github.com/huggingface/datasets/pull/6883
2,284,808,399
PR_kwDODunzps5u1sL1
6,883
Require Pillow >= 9.4.0 to avoid AttributeError when loading image dataset
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6883). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
2024-05-08T06:43:29
2024-05-08T09:38:27
null
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6883", "html_url": "https://github.com/huggingface/datasets/pull/6883", "diff_url": "https://github.com/huggingface/datasets/pull/6883.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6883.patch", "merged_at": null }
Require Pillow >= 9.4.0 to avoid AttributeError when loading image dataset. The `PIL.Image.ExifTags` that we use in our code was implemented in Pillow-9.4.0: https://github.com/python-pillow/Pillow/commit/24a5405a9f7ea22f28f9c98b3e407292ea5ee1d3 The bug #6881 was introduced in datasets-2.19.0 by this PR: - #6739 Fix #6881.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6883/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6883/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6882
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6882/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6882/comments
https://api.github.com/repos/huggingface/datasets/issues/6882/events
https://github.com/huggingface/datasets/issues/6882
2,284,803,158
I_kwDODunzps6IL1RW
6,882
Connection Error When Using By-pass Proxies
{ "login": "MRNOBODY-ZST", "id": 78351684, "node_id": "MDQ6VXNlcjc4MzUxNjg0", "avatar_url": "https://avatars.githubusercontent.com/u/78351684?v=4", "gravatar_id": "", "url": "https://api.github.com/users/MRNOBODY-ZST", "html_url": "https://github.com/MRNOBODY-ZST", "followers_url": "https://api.github.com/users/MRNOBODY-ZST/followers", "following_url": "https://api.github.com/users/MRNOBODY-ZST/following{/other_user}", "gists_url": "https://api.github.com/users/MRNOBODY-ZST/gists{/gist_id}", "starred_url": "https://api.github.com/users/MRNOBODY-ZST/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/MRNOBODY-ZST/subscriptions", "organizations_url": "https://api.github.com/users/MRNOBODY-ZST/orgs", "repos_url": "https://api.github.com/users/MRNOBODY-ZST/repos", "events_url": "https://api.github.com/users/MRNOBODY-ZST/events{/privacy}", "received_events_url": "https://api.github.com/users/MRNOBODY-ZST/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[]
2024-05-08T06:40:14
2024-05-08T06:40:14
null
NONE
null
null
null
### Describe the bug I'm currently using Clash for Windows as my proxy tunnel, after exporting HTTP_PROXY and HTTPS_PROXY to the port that clash provides🤔, it runs into a connection error saying "Couldn't reach https://raw.githubusercontent.com/huggingface/datasets/2.19.1/metrics/seqeval/seqeval.py (ConnectionError(MaxRetryError("HTTPSConnectionPool(host='raw.githubusercontent.com', port=443): Max retries exceeded with url: /huggingface/datasets/2.19.1/metrics/seqeval/seqeval.py (Caused by NewConnectionError('<urllib3.connection.HTTPSConnection object at 0x7f969d391870>: Failed to establish a new connection: [Errno 111] Connection refused'))")))" I have already read the documentation provided on the hugginface, but I think I didn't see the detailed instruction on how to set up proxies for this library. ### Steps to reproduce the bug 1. Turn on any proxy software like Clash / ShadosocksR etc. 2. export system varibles to the port provided by your proxy software in wsl (It's ok for other applications to use proxy expect dataset-library) 3. load any dataset from hugginface online ### Expected behavior --------------------------------------------------------------------------- ConnectionError Traceback (most recent call last) Cell In[33], [line 3](vscode-notebook-cell:?execution_count=33&line=3) [1](vscode-notebook-cell:?execution_count=33&line=1) from datasets import load_metric ----> [3](vscode-notebook-cell:?execution_count=33&line=3) metric = load_metric("seqeval") File ~/.local/lib/python3.10/site-packages/datasets/utils/deprecation_utils.py:46, in deprecated.<locals>.decorator.<locals>.wrapper(*args, **kwargs) [44](https://vscode-remote+wsl-002bubuntu-002d22-002e04.vscode-resource.vscode-cdn.net/home/noodle/Transformers-Tutorials/LayoutLMv3/~/.local/lib/python3.10/site-packages/datasets/utils/deprecation_utils.py:44) warnings.warn(warning_msg, category=FutureWarning, stacklevel=2) [45](https://vscode-remote+wsl-002bubuntu-002d22-002e04.vscode-resource.vscode-cdn.net/home/noodle/Transformers-Tutorials/LayoutLMv3/~/.local/lib/python3.10/site-packages/datasets/utils/deprecation_utils.py:45) _emitted_deprecation_warnings.add(func_hash) ---> [46](https://vscode-remote+wsl-002bubuntu-002d22-002e04.vscode-resource.vscode-cdn.net/home/noodle/Transformers-Tutorials/LayoutLMv3/~/.local/lib/python3.10/site-packages/datasets/utils/deprecation_utils.py:46) return deprecated_function(*args, **kwargs) File ~/.local/lib/python3.10/site-packages/datasets/load.py:2104, in load_metric(path, config_name, process_id, num_process, cache_dir, experiment_id, keep_in_memory, download_config, download_mode, revision, trust_remote_code, **metric_init_kwargs) [2101](https://vscode-remote+wsl-002bubuntu-002d22-002e04.vscode-resource.vscode-cdn.net/home/noodle/Transformers-Tutorials/LayoutLMv3/~/.local/lib/python3.10/site-packages/datasets/load.py:2101) warnings.filterwarnings("ignore", message=".*https://huggingface.co/docs/evaluate$", category=FutureWarning) [2103](https://vscode-remote+wsl-002bubuntu-002d22-002e04.vscode-resource.vscode-cdn.net/home/noodle/Transformers-Tutorials/LayoutLMv3/~/.local/lib/python3.10/site-packages/datasets/load.py:2103) download_mode = DownloadMode(download_mode or DownloadMode.REUSE_DATASET_IF_EXISTS) -> [2104](https://vscode-remote+wsl-002bubuntu-002d22-002e04.vscode-resource.vscode-cdn.net/home/noodle/Transformers-Tutorials/LayoutLMv3/~/.local/lib/python3.10/site-packages/datasets/load.py:2104) metric_module = metric_module_factory( [2105](https://vscode-remote+wsl-002bubuntu-002d22-002e04.vscode-resource.vscode-cdn.net/home/noodle/Transformers-Tutorials/LayoutLMv3/~/.local/lib/python3.10/site-packages/datasets/load.py:2105) path, [2106](https://vscode-remote+wsl-002bubuntu-002d22-002e04.vscode-resource.vscode-cdn.net/home/noodle/Transformers-Tutorials/LayoutLMv3/~/.local/lib/python3.10/site-packages/datasets/load.py:2106) revision=revision, [2107](https://vscode-remote+wsl-002bubuntu-002d22-002e04.vscode-resource.vscode-cdn.net/home/noodle/Transformers-Tutorials/LayoutLMv3/~/.local/lib/python3.10/site-packages/datasets/load.py:2107) download_config=download_config, [2108](https://vscode-remote+wsl-002bubuntu-002d22-002e04.vscode-resource.vscode-cdn.net/home/noodle/Transformers-Tutorials/LayoutLMv3/~/.local/lib/python3.10/site-packages/datasets/load.py:2108) download_mode=download_mode, [2109](https://vscode-remote+wsl-002bubuntu-002d22-002e04.vscode-resource.vscode-cdn.net/home/noodle/Transformers-Tutorials/LayoutLMv3/~/.local/lib/python3.10/site-packages/datasets/load.py:2109) trust_remote_code=trust_remote_code, [2110](https://vscode-remote+wsl-002bubuntu-002d22-002e04.vscode-resource.vscode-cdn.net/home/noodle/Transformers-Tutorials/LayoutLMv3/~/.local/lib/python3.10/site-packages/datasets/load.py:2110) ).module_path [2111](https://vscode-remote+wsl-002bubuntu-002d22-002e04.vscode-resource.vscode-cdn.net/home/noodle/Transformers-Tutorials/LayoutLMv3/~/.local/lib/python3.10/site-packages/datasets/load.py:2111) metric_cls = import_main_class(metric_module, dataset=False) [2112](https://vscode-remote+wsl-002bubuntu-002d22-002e04.vscode-resource.vscode-cdn.net/home/noodle/Transformers-Tutorials/LayoutLMv3/~/.local/lib/python3.10/site-packages/datasets/load.py:2112) metric = metric_cls( [2113](https://vscode-remote+wsl-002bubuntu-002d22-002e04.vscode-resource.vscode-cdn.net/home/noodle/Transformers-Tutorials/LayoutLMv3/~/.local/lib/python3.10/site-packages/datasets/load.py:2113) config_name=config_name, [2114](https://vscode-remote+wsl-002bubuntu-002d22-002e04.vscode-resource.vscode-cdn.net/home/noodle/Transformers-Tutorials/LayoutLMv3/~/.local/lib/python3.10/site-packages/datasets/load.py:2114) process_id=process_id, ... --> [633](https://vscode-remote+wsl-002bubuntu-002d22-002e04.vscode-resource.vscode-cdn.net/home/noodle/Transformers-Tutorials/LayoutLMv3/~/.local/lib/python3.10/site-packages/datasets/utils/file_utils.py:633) raise ConnectionError(f"Couldn't reach {url} ({repr(head_error)})") [634](https://vscode-remote+wsl-002bubuntu-002d22-002e04.vscode-resource.vscode-cdn.net/home/noodle/Transformers-Tutorials/LayoutLMv3/~/.local/lib/python3.10/site-packages/datasets/utils/file_utils.py:634) elif response is not None: [635](https://vscode-remote+wsl-002bubuntu-002d22-002e04.vscode-resource.vscode-cdn.net/home/noodle/Transformers-Tutorials/LayoutLMv3/~/.local/lib/python3.10/site-packages/datasets/utils/file_utils.py:635) raise ConnectionError(f"Couldn't reach {url} (error {response.status_code})") ConnectionError: Couldn't reach https://raw.githubusercontent.com/huggingface/datasets/2.19.1/metrics/seqeval/seqeval.py (SSLError(MaxRetryError("HTTPSConnectionPool(host='raw.githubusercontent.com', port=443): Max retries exceeded with url: /huggingface/datasets/2.19.1/metrics/seqeval/seqeval.py (Caused by SSLError(SSLEOFError(8, '[SSL: UNEXPECTED_EOF_WHILE_READING] EOF occurred in violation of protocol (_ssl.c:1007)')))"))) ### Environment info - `datasets` version: 2.19.1 - Platform: Linux-5.10.102.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 - Python version: 3.10.12 - `huggingface_hub` version: 0.23.0 - PyArrow version: 16.0.0 - Pandas version: 2.2.2 - `fsspec` version: 2024.2.0
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6882/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6882/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6881
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6881/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6881/comments
https://api.github.com/repos/huggingface/datasets/issues/6881/events
https://github.com/huggingface/datasets/issues/6881
2,284,794,009
I_kwDODunzps6ILzCZ
6,881
AttributeError: module 'PIL.Image' has no attribute 'ExifTags'
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892857, "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug", "name": "bug", "color": "d73a4a", "default": true, "description": "Something isn't working" } ]
open
false
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false } ]
null
[]
2024-05-08T06:33:57
2024-05-08T06:33:58
null
MEMBER
null
null
null
When trying to load an image dataset in an old Python environment (with Pillow-8.4.0), an error is raised: ```Python traceback AttributeError: module 'PIL.Image' has no attribute 'ExifTags' ``` The error traceback: ```Python traceback ~/huggingface/datasets/src/datasets/iterable_dataset.py in __iter__(self) 1391 # `IterableDataset` automatically fills missing columns with None. 1392 # This is done with `_apply_feature_types_on_example`. -> 1393 example = _apply_feature_types_on_example( 1394 example, self.features, token_per_repo_id=self._token_per_repo_id 1395 ) ~/huggingface/datasets/src/datasets/iterable_dataset.py in _apply_feature_types_on_example(example, features, token_per_repo_id) 1080 encoded_example = features.encode_example(example) 1081 # Decode example for Audio feature, e.g. -> 1082 decoded_example = features.decode_example(encoded_example, token_per_repo_id=token_per_repo_id) 1083 return decoded_example 1084 ~/huggingface/datasets/src/datasets/features/features.py in decode_example(self, example, token_per_repo_id) 1974 -> 1975 return { 1976 column_name: decode_nested_example(feature, value, token_per_repo_id=token_per_repo_id) 1977 if self._column_requires_decoding[column_name] ~/huggingface/datasets/src/datasets/features/features.py in <dictcomp>(.0) 1974 1975 return { -> 1976 column_name: decode_nested_example(feature, value, token_per_repo_id=token_per_repo_id) 1977 if self._column_requires_decoding[column_name] 1978 else value ~/huggingface/datasets/src/datasets/features/features.py in decode_nested_example(schema, obj, token_per_repo_id) 1339 # we pass the token to read and decode files from private repositories in streaming mode 1340 if obj is not None and schema.decode: -> 1341 return schema.decode_example(obj, token_per_repo_id=token_per_repo_id) 1342 return obj 1343 ~/huggingface/datasets/src/datasets/features/image.py in decode_example(self, value, token_per_repo_id) 187 image = PIL.Image.open(BytesIO(bytes_)) 188 image.load() # to avoid "Too many open files" errors --> 189 if image.getexif().get(PIL.Image.ExifTags.Base.Orientation) is not None: 190 image = PIL.ImageOps.exif_transpose(image) 191 if self.mode and self.mode != image.mode: ~/huggingface/datasets/venv/lib/python3.9/site-packages/PIL/Image.py in __getattr__(name) 75 ) 76 return categories[name] ---> 77 raise AttributeError(f"module '{__name__}' has no attribute '{name}'") 78 79 AttributeError: module 'PIL.Image' has no attribute 'ExifTags' ``` ### Environment info Since datasets 2.19.0
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6881/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6881/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6880
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6880/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6880/comments
https://api.github.com/repos/huggingface/datasets/issues/6880/events
https://github.com/huggingface/datasets/issues/6880
2,283,278,337
I_kwDODunzps6IGBAB
6,880
Webdataset: KeyError: 'png' on some datasets when streaming
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
open
false
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false } ]
null
[ "The error is caused by malformed basenames of the files within the TARs:\r\n- `15_Cohen_1-s2.0-S0929664620300449-gr3_lrg-b.png` becomes `15_Cohen_1-s2` as the grouping `__key__`, and `0-S0929664620300449-gr3_lrg-b.png` as the additional key to be added to the example\r\n- whereas the intended behavior was to use `15_Cohen_1-s2.0-S0929664620300449-gr3_lrg-b` as the grouping `__key__`, and `png` as the additional key to be added to the example\r\n\r\nTo get the expected behavior, the basenames of the files within the TARs should be fixed so that they only contain a single dot, the one separating the file extension.", "I reopen it because I think we should try to give a clearer error message with a specific error code.\r\n\r\nFor now, it's hard for the user to understand where the error comes from (not everybody knows the subtleties of the webdataset filename structure).\r\n\r\n(we can transfer it to https://github.com/huggingface/dataset-viewer if it fits better there)", "same with .jpg -> https://huggingface.co/datasets/ProGamerGov/synthetic-dataset-1m-dalle3-high-quality-captions\r\n\r\n```\r\nError code: DatasetGenerationError\r\nException: DatasetGenerationError\r\nMessage: An error occurred while generating the dataset\r\nTraceback: Traceback (most recent call last):\r\n File \"/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py\", line 1748, in _prepare_split_single\r\n for key, record in generator:\r\n File \"/src/services/worker/src/worker/job_runners/config/parquet_and_info.py\", line 818, in wrapped\r\n for item in generator(*args, **kwargs):\r\n File \"/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/webdataset/webdataset.py\", line 109, in _generate_examples\r\n example[field_name] = {\"path\": example[\"__key__\"] + \".\" + field_name, \"bytes\": example[field_name]}\r\n KeyError: 'jpg'\r\n \r\n The above exception was the direct cause of the following exception:\r\n \r\n Traceback (most recent call last):\r\n File \"/src/services/worker/src/worker/job_runners/config/parquet_and_info.py\", line 1316, in compute_config_parquet_and_info_response\r\n parquet_operations, partial = stream_convert_to_parquet(\r\n File \"/src/services/worker/src/worker/job_runners/config/parquet_and_info.py\", line 909, in stream_convert_to_parquet\r\n builder._prepare_split(\r\n File \"/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py\", line 1627, in _prepare_split\r\n for job_id, done, content in self._prepare_split_single(\r\n File \"/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py\", line 1784, in _prepare_split_single\r\n raise DatasetGenerationError(\"An error occurred while generating the dataset\") from e\r\n datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset\r\n```\r\n", "More details in the spec (https://docs.google.com/document/d/18OdLjruFNX74ILmgrdiCI9J1fQZuhzzRBCHV9URWto0/edit#heading=h.hkptaq2kct2s)\r\n\r\n> The prefix of a file is all directory components of the file plus the file name component up to the first “.” in the file name.\r\n> The last extension (i.e., the portion after the last “.”) in a file name determines the file type.\r\n\r\n> Example:\r\n\timages17/image194.left.jpg\r\n\timages17/image194.right.jpg\r\n\timages17/image194.json\r\n\timages17/image12.left.jpg\r\n\timages17/image12.json\r\n\timages17/image12.right.jpg\r\n\timages3/image1459.left.jpg\r\n> \t…\r\n> When reading this with a WebDataset library, you would get the following two dictionaries back in sequence:\r\n\r\n { “__key__”: “images17/image194”, “left.jpg”: b”...”, “right.jpg”: b”...”, “json”: b”...”}\r\n { “__key__”: “images17/image12”, “left.jpg”: b”...”, “right.jpg”: b”...”, “json”: b”...”}\r\n", "OK, the issue is different in the latter case: some files are suffixed as `.jpeg`, and others as `.jpg` :)\r\n\r\nIs it a limitation of the webdataset format, or of the datasets library @lhoestq? And could we be able to give a clearer error?" ]
2024-05-07T13:09:02
2024-05-14T20:34:05
null
MEMBER
null
null
null
reported at https://huggingface.co/datasets/tbone5563/tar_images/discussions/1 ```python >>> from datasets import load_dataset >>> ds = load_dataset("tbone5563/tar_images") Downloading data: 100%  1.41G/1.41G [00:48<00:00, 17.2MB/s] Downloading data: 100%  619M/619M [00:11<00:00, 57.4MB/s] Generating train split:   970/0 [00:02<00:00, 534.94 examples/s] --------------------------------------------------------------------------- KeyError Traceback (most recent call last) [/usr/local/lib/python3.10/dist-packages/datasets/builder.py](https://localhost:8080/#) in _prepare_split_single(self, gen_kwargs, fpath, file_format, max_shard_size, split_info, check_duplicate_keys, job_id) 1747 _time = time.time() -> 1748 for key, record in generator: 1749 if max_shard_size is not None and writer._num_bytes > max_shard_size: 7 frames [/usr/local/lib/python3.10/dist-packages/datasets/packaged_modules/webdataset/webdataset.py](https://localhost:8080/#) in _generate_examples(self, tar_paths, tar_iterators) 108 for field_name in image_field_names + audio_field_names: --> 109 example[field_name] = {"path": example["__key__"] + "." + field_name, "bytes": example[field_name]} 110 yield f"{tar_idx}_{example_idx}", example KeyError: 'png' The above exception was the direct cause of the following exception: DatasetGenerationError Traceback (most recent call last) [<ipython-input-2-8e0fbb7badc9>](https://localhost:8080/#) in <cell line: 3>() 1 from datasets import load_dataset 2 ----> 3 ds = load_dataset("tbone5563/tar_images") [/usr/local/lib/python3.10/dist-packages/datasets/load.py](https://localhost:8080/#) in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, token, use_auth_token, task, streaming, num_proc, storage_options, trust_remote_code, **config_kwargs) 2607 2608 # Download and prepare data -> 2609 builder_instance.download_and_prepare( 2610 download_config=download_config, 2611 download_mode=download_mode, [/usr/local/lib/python3.10/dist-packages/datasets/builder.py](https://localhost:8080/#) in download_and_prepare(self, output_dir, download_config, download_mode, verification_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, file_format, max_shard_size, num_proc, storage_options, **download_and_prepare_kwargs) 1025 if num_proc is not None: 1026 prepare_split_kwargs["num_proc"] = num_proc -> 1027 self._download_and_prepare( 1028 dl_manager=dl_manager, 1029 verification_mode=verification_mode, [/usr/local/lib/python3.10/dist-packages/datasets/builder.py](https://localhost:8080/#) in _download_and_prepare(self, dl_manager, verification_mode, **prepare_splits_kwargs) 1787 1788 def _download_and_prepare(self, dl_manager, verification_mode, **prepare_splits_kwargs): -> 1789 super()._download_and_prepare( 1790 dl_manager, 1791 verification_mode, [/usr/local/lib/python3.10/dist-packages/datasets/builder.py](https://localhost:8080/#) in _download_and_prepare(self, dl_manager, verification_mode, **prepare_split_kwargs) 1120 try: 1121 # Prepare split will record examples associated to the split -> 1122 self._prepare_split(split_generator, **prepare_split_kwargs) 1123 except OSError as e: 1124 raise OSError( [/usr/local/lib/python3.10/dist-packages/datasets/builder.py](https://localhost:8080/#) in _prepare_split(self, split_generator, check_duplicate_keys, file_format, num_proc, max_shard_size) 1625 job_id = 0 1626 with pbar: -> 1627 for job_id, done, content in self._prepare_split_single( 1628 gen_kwargs=gen_kwargs, job_id=job_id, **_prepare_split_args 1629 ): [/usr/local/lib/python3.10/dist-packages/datasets/builder.py](https://localhost:8080/#) in _prepare_split_single(self, gen_kwargs, fpath, file_format, max_shard_size, split_info, check_duplicate_keys, job_id) 1782 if isinstance(e, SchemaInferenceError) and e.__context__ is not None: 1783 e = e.__context__ -> 1784 raise DatasetGenerationError("An error occurred while generating the dataset") from e 1785 1786 yield job_id, True, (total_num_examples, total_num_bytes, writer._features, num_shards, shard_lengths) DatasetGenerationError: An error occurred while generating the dataset ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6880/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6880/timeline
null
reopened
false
https://api.github.com/repos/huggingface/datasets/issues/6879
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6879/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6879/comments
https://api.github.com/repos/huggingface/datasets/issues/6879/events
https://github.com/huggingface/datasets/issues/6879
2,282,968,259
I_kwDODunzps6IE1TD
6,879
Batched mapping does not raise an error if values for an existing column are empty
{ "login": "felix-schneider", "id": 208336, "node_id": "MDQ6VXNlcjIwODMzNg==", "avatar_url": "https://avatars.githubusercontent.com/u/208336?v=4", "gravatar_id": "", "url": "https://api.github.com/users/felix-schneider", "html_url": "https://github.com/felix-schneider", "followers_url": "https://api.github.com/users/felix-schneider/followers", "following_url": "https://api.github.com/users/felix-schneider/following{/other_user}", "gists_url": "https://api.github.com/users/felix-schneider/gists{/gist_id}", "starred_url": "https://api.github.com/users/felix-schneider/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/felix-schneider/subscriptions", "organizations_url": "https://api.github.com/users/felix-schneider/orgs", "repos_url": "https://api.github.com/users/felix-schneider/repos", "events_url": "https://api.github.com/users/felix-schneider/events{/privacy}", "received_events_url": "https://api.github.com/users/felix-schneider/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[]
2024-05-07T11:02:40
2024-05-07T11:02:40
null
NONE
null
null
null
### Describe the bug Using `Dataset.map(fn, batched=True)` allows resizing the dataset by returning a dict of lists, all of which must be the same size. If they are not the same size, an error like `pyarrow.lib.ArrowInvalid: Column 1 named x expected length 1 but got length 0` is raised. This is not the case if the function returns an empty list for an existing column in the dataset. In that case, the dataset is silently resized to 0 rows. ### Steps to reproduce the bug MWE: ``` import datasets data = datasets.Dataset.from_dict({"test": [1]}) def mapping_fn(examples): return {"test": [], "y": [1]} data = data.map(mapping_fn, batched=True) print(len(data)) ``` Note that when returning `"x": []`, the error is raised correctly, also when returning `"test": [1,2]`. ### Expected behavior Expected an exception: `pyarrow.lib.ArrowInvalid: Column 1 named test expected length 1 but got length 0` or `pyarrow.lib.ArrowInvalid: Column 2 named y expected length 0 but got length 1`. Any exception would be acceptable. ### Environment info - `datasets` version: 2.19.1 - Platform: Linux-5.4.0-153-generic-x86_64-with-glibc2.31 - Python version: 3.11.8 - `huggingface_hub` version: 0.22.2 - PyArrow version: 15.0.2 - Pandas version: 2.2.1 - `fsspec` version: 2024.2.0
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6879/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6879/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6878
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6878/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6878/comments
https://api.github.com/repos/huggingface/datasets/issues/6878/events
https://github.com/huggingface/datasets/pull/6878
2,282,879,491
PR_kwDODunzps5uviBh
6,878
Create function to convert to parquet
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6878). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
2024-05-07T10:27:07
2024-05-07T10:30:01
null
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6878", "html_url": "https://github.com/huggingface/datasets/pull/6878", "diff_url": "https://github.com/huggingface/datasets/pull/6878.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6878.patch", "merged_at": null }
Analogously with `delete_from_hub`, this PR: - creates the Python function `convert_to_parquet` - makes the corresponding CLI command use that function. This way, the functionality can be used both from a terminal and from a Python console.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6878/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6878/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6876
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6876/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6876/comments
https://api.github.com/repos/huggingface/datasets/issues/6876/events
https://github.com/huggingface/datasets/pull/6876
2,281,450,743
PR_kwDODunzps5uqs46
6,876
Unpin hfh
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6876). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "transformers 4.40.2 was release yesterday but not sure if it contains the fix", "@lhoestq yes I knew transformers 4.40.2 was released yesterday, but I had checked that it does not contain the fix: only 2 bug fixes. That is why our CI continues failing in this PR. We will have to wait until the next minor version.", "> If we urgently need some dev feature for dataset-viewer, I would suggest pushing the feature (cherry-picked) to a dedicated branch with 2.19.1 as its starting point (without opening a PR), and install datasets from that branch.\r\n\r\nI have done so:\r\n- Created a branch from 2.19.1: https://github.com/huggingface/datasets/tree/datasets-2.19.1-hotfix\r\n- Cherry-picked the commit in this PR: https://github.com/huggingface/datasets/commit/3638183e2f7e0dce8924e46e7cc21bf6d5d7adfb\r\n- Opened a PR in dataset-viewer to update datasets to this revision: https://github.com/huggingface/dataset-viewer/pull/2783" ]
2024-05-06T18:10:49
2024-05-07T13:24:08
null
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6876", "html_url": "https://github.com/huggingface/datasets/pull/6876", "diff_url": "https://github.com/huggingface/datasets/pull/6876.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6876.patch", "merged_at": null }
Needed to use those in dataset-viewer: - dev version of hfh https://github.com/huggingface/dataset-viewer/pull/2781: don't span the hub with /paths-info requests - dev version of datasets at https://github.com/huggingface/datasets/pull/6875: don't write too big logs in the viewer close https://github.com/huggingface/datasets/issues/6863
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6876/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6876/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6874
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6874/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6874/comments
https://api.github.com/repos/huggingface/datasets/issues/6874/events
https://github.com/huggingface/datasets/pull/6874
2,280,717,233
PR_kwDODunzps5uoOk-
6,874
Use pandas ujson in JSON loader to improve performance
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6874). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "Before pandas-2.2.0, the function `ujson_loads` was named `loads`: https://github.com/pandas-dev/pandas/blob/v2.1.0/pandas/io/json/__init__.py#L5\r\n```python\r\nimport ujson_loads as loads\r\n```" ]
2024-05-06T12:01:27
2024-05-06T13:05:17
null
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6874", "html_url": "https://github.com/huggingface/datasets/pull/6874", "diff_url": "https://github.com/huggingface/datasets/pull/6874.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6874.patch", "merged_at": null }
Use pandas ujson in JSON loader to improve performance. Note that `datasets` has `pandas` as required dependency. And `pandas` includes `ujson` in `pd.io.json.ujson_loads`. Fix #6867. CC: @natolambert
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6874/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6874/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6867
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6867/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6867/comments
https://api.github.com/repos/huggingface/datasets/issues/6867/events
https://github.com/huggingface/datasets/issues/6867
2,279,059,787
I_kwDODunzps6H17FL
6,867
Improve performance of JSON loader
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
open
false
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false } ]
null
[ "Thanks! Feel free to ping me for examples. May not respond immediately because we're all busy but would like to help.", "Hi @natolambert, could you please give some examples of JSON files to benchmark?\r\n\r\nPlease note that this JSON file (https://huggingface.co/datasets/allenai/reward-bench-results/blob/main/eval-set-scores/Ray2333/reward-model-Mistral-7B-instruct-Unified-Feedback.json) is not in \"records\" orient; instead it has the following structure:\r\n```json\r\n{\r\n \"chat_template\": \"tulu\",\r\n \"id\": [30, 34, 35,...],\r\n \"model\": \"Ray2333/reward-model-Mistral-7B-instruct-Unified-Feedback\",\r\n \"model_type\": \"Seq. Classifier\",\r\n \"results\": [1, 1, 1, ...],\r\n \"scores_chosen\": [4.421875, 1.8916015625, 3.8515625,...],\r\n \"scores_rejected\": [-2.416015625, -1.47265625, -0.9912109375,...],\r\n \"subset\": [\"alpacaeval-easy\", \"alpacaeval-easy\", \"alpacaeval-easy\",...]\r\n \"text_chosen\": [\"<s>[INST] How do I detail a...\",...],\r\n \"text_rejected\": [\"<s>[INST] How do I detail a...\",...]\r\n}\r\n```\r\n\r\nNote that \"records\" orient should be a list (not a dict) with each row as one item of the list:\r\n```json\r\n[\r\n {\"chat_template\": \"tulu\", \"id\": 30,... },\r\n {\"chat_template\": \"tulu\", \"id\": 34,... },\r\n ...\r\n]\r\n```", "We use a mix (which is a mess), here's an example with the records orient\r\nhttps://huggingface.co/datasets/allenai/reward-bench-results/blob/main/best-of-n/alpaca_eval/tulu-13b/OpenAssistant/oasst-rm-2.1-pythia-1.4b-epoch-2.5.json\r\n\r\nThere are more in that folder, ~40mb maybe?", "@albertvillanova here's a snippet so you don't need to click\r\n```\r\n{\r\n \"config\": \"top_p=0.9;temp=1.0\",\r\n \"dataset_details\": \"helpful_base\",\r\n \"id\": [\r\n 0,\r\n 0\r\n ],\r\n \"model\": \"allenai/tulu-2-dpo-13b\",\r\n \"scores\": 3.076171875\r\n}\r\n{\r\n \"config\": \"top_p=0.9;temp=1.0\",\r\n \"dataset_details\": \"helpful_base\",\r\n \"id\": [\r\n 0,\r\n 1\r\n ],\r\n \"model\": \"allenai/tulu-2-dpo-13b\",\r\n \"scores\": 3.87890625\r\n}\r\n{\r\n \"config\": \"top_p=0.9;temp=1.0\",\r\n \"dataset_details\": \"helpful_base\",\r\n \"id\": [\r\n 0,\r\n 2\r\n ],\r\n \"model\": \"allenai/tulu-2-dpo-13b\",\r\n \"scores\": 3.287109375\r\n}\r\n{\r\n \"config\": \"top_p=0.9;temp=1.0\",\r\n \"dataset_details\": \"helpful_base\",\r\n \"id\": [\r\n 0,\r\n 3\r\n ],\r\n \"model\": \"allenai/tulu-2-dpo-13b\",\r\n \"scores\": 1.6337890625\r\n}\r\n{\r\n \"config\": \"top_p=0.9;temp=1.0\",\r\n \"dataset_details\": \"helpful_base\",\r\n \"id\": [\r\n 0,\r\n 4\r\n ],\r\n \"model\": \"allenai/tulu-2-dpo-13b\",\r\n \"scores\": 5.27734375\r\n}\r\n{\r\n \"config\": \"top_p=0.9;temp=1.0\",\r\n \"dataset_details\": \"helpful_base\",\r\n \"id\": [\r\n 0,\r\n 5\r\n ],\r\n \"model\": \"allenai/tulu-2-dpo-13b\",\r\n \"scores\": 3.0625\r\n}\r\n{\r\n \"config\": \"top_p=0.9;temp=1.0\",\r\n \"dataset_details\": \"helpful_base\",\r\n \"id\": [\r\n 0,\r\n 6\r\n ],\r\n \"model\": \"allenai/tulu-2-dpo-13b\",\r\n \"scores\": 2.29296875\r\n}\r\n{\r\n \"config\": \"top_p=0.9;temp=1.0\",\r\n \"dataset_details\": \"helpful_base\",\r\n \"id\": [\r\n 0,\r\n 7\r\n ],\r\n \"model\": \"allenai/tulu-2-dpo-13b\",\r\n \"scores\": 6.77734375\r\n}\r\n{\r\n \"config\": \"top_p=0.9;temp=1.0\",\r\n \"dataset_details\": \"helpful_base\",\r\n \"id\": [\r\n 0,\r\n 8\r\n ],\r\n \"model\": \"allenai/tulu-2-dpo-13b\",\r\n \"scores\": 3.853515625\r\n}\r\n{\r\n \"config\": \"top_p=0.9;temp=1.0\",\r\n \"dataset_details\": \"helpful_base\",\r\n \"id\": [\r\n 0,\r\n 9\r\n ],\r\n \"model\": \"allenai/tulu-2-dpo-13b\",\r\n \"scores\": 4.86328125\r\n}\r\n{\r\n \"config\": \"top_p=0.9;temp=1.0\",\r\n \"dataset_details\": \"helpful_base\",\r\n \"id\": [\r\n 0,\r\n 10\r\n ],\r\n \"model\": \"allenai/tulu-2-dpo-13b\",\r\n \"scores\": 2.890625\r\n}\r\n{\r\n \"config\": \"top_p=0.9;temp=1.0\",\r\n \"dataset_details\": \"helpful_base\",\r\n \"id\": [\r\n 0,\r\n 11\r\n ],\r\n \"model\": \"allenai/tulu-2-dpo-13b\",\r\n \"scores\": 4.70703125\r\n}\r\n{\r\n \"config\": \"top_p=0.9;temp=1.0\",\r\n \"dataset_details\": \"helpful_base\",\r\n \"id\": [\r\n 0,\r\n 12\r\n ],\r\n \"model\": \"allenai/tulu-2-dpo-13b\",\r\n \"scores\": 4.45703125\r\n}\r\n```", "Thanks again for your feedback, @natolambert.\r\n\r\nHowever, strictly speaking, the last file is not in JSON format but in kind of JSON-Lines like format (although not properly either because there are multiple newline characters within each object). Not even pandas can read that file format.\r\n\r\nAnyway, for JSON-Lines, I would expect that `datasets` and `pandas` have the same performance for JSON Lines files, as both use `pyarrow` under the hood...\r\n\r\nA proper JSON file in records orient should be a list (a JSON array): the first character should be `[`.\r\n\r\nAnyway, I am generating a JSON file from your JSON-Lines file to test performance." ]
2024-05-04T15:04:16
2024-05-14T07:34:58
null
MEMBER
null
null
null
As reported by @natolambert, loading regular JSON files with `datasets` shows poor performance. The cause is that we use the `json` Python standard library instead of other faster libraries. See my old comment: https://github.com/huggingface/datasets/pull/2638#pullrequestreview-706983714 > There are benchmarks that compare different JSON packages, with the Standard Library one among the worst performant: > - https://github.com/ultrajson/ultrajson#benchmarks > - https://github.com/ijl/orjson#performance I remember having a discussion about this and it was decided that it was better not to include an additional dependency on a 3rd-party library. However: - We already depend on `pandas` and `pandas` depends on `ujson`: so we have an indirect dependency on `ujson` - Even if the above were not the case, we always could include `ujson` as an optional extra dependency, and check at runtime if it is installed to decide which library to use, either json or ujson
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6867/reactions", "total_count": 3, "+1": 3, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6867/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6865
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6865/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6865/comments
https://api.github.com/repos/huggingface/datasets/issues/6865/events
https://github.com/huggingface/datasets/issues/6865
2,277,304,832
I_kwDODunzps6HvOoA
6,865
Example on Semantic segmentation contains bug
{ "login": "ducha-aiki", "id": 4803565, "node_id": "MDQ6VXNlcjQ4MDM1NjU=", "avatar_url": "https://avatars.githubusercontent.com/u/4803565?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ducha-aiki", "html_url": "https://github.com/ducha-aiki", "followers_url": "https://api.github.com/users/ducha-aiki/followers", "following_url": "https://api.github.com/users/ducha-aiki/following{/other_user}", "gists_url": "https://api.github.com/users/ducha-aiki/gists{/gist_id}", "starred_url": "https://api.github.com/users/ducha-aiki/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ducha-aiki/subscriptions", "organizations_url": "https://api.github.com/users/ducha-aiki/orgs", "repos_url": "https://api.github.com/users/ducha-aiki/repos", "events_url": "https://api.github.com/users/ducha-aiki/events{/privacy}", "received_events_url": "https://api.github.com/users/ducha-aiki/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[]
2024-05-03T09:40:12
2024-05-03T09:40:12
null
NONE
null
null
null
### Describe the bug https://huggingface.co/docs/datasets/en/semantic_segmentation shows wrong example with torchvision transforms. Specifically, as one can see in screenshot below, the object boundaries have weird colors. <img width="689" alt="image" src="https://github.com/huggingface/datasets/assets/4803565/59aa0e2c-2e3e-415b-9d42-2314044c5aee"> Original example with `albumentations` is correct <img width="705" alt="image" src="https://github.com/huggingface/datasets/assets/4803565/27dbd725-cea5-4e48-ba59-7050c3ce17b3"> That is because `torch vision.transforms.Resize` interpolates with bilinear everything which is wrong when used for segmentation labels - you just cannot mix them. Overall, `torchvision.transforms` is designed for classification only and cannot be used to images and masks together, unless you write two separate branches of augmentations. The correct way would be to use `v2` version of transforms and convert the segmentation labels to https://pytorch.org/vision/main/generated/torchvision.tv_tensors.Mask.html#torchvision.tv_tensors.Mask object ### Steps to reproduce the bug Go to the website. <img width="689" alt="image" src="https://github.com/huggingface/datasets/assets/4803565/ea1276d0-d69a-48cf-b9c2-cd61217815ef"> https://huggingface.co/docs/datasets/en/semantic_segmentation ### Expected behavior Results, similar to `albumentation`. Or remove the torch vision part altogether. Or use `kornia` instead. ### Environment info Irrelevant
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6865/reactions", "total_count": 2, "+1": 2, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6865/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6863
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6863/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6863/comments
https://api.github.com/repos/huggingface/datasets/issues/6863/events
https://github.com/huggingface/datasets/issues/6863
2,276,977,534
I_kwDODunzps6Ht-t-
6,863
Revert temporary pin huggingface-hub < 0.23.0
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
open
false
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false } ]
null
[]
2024-05-03T05:53:55
2024-05-03T05:53:55
null
MEMBER
null
null
null
Revert temporary pin huggingface-hub < 0.23.0 introduced by - #6861 once the following issue is fixed and released: - huggingface/transformers#30618
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6863/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6863/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6862
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6862/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6862/comments
https://api.github.com/repos/huggingface/datasets/issues/6862/events
https://github.com/huggingface/datasets/pull/6862
2,276,763,745
PR_kwDODunzps5ubOoL
6,862
Issue 6598: load_dataset broken for data_files on s3
{ "login": "matstrand", "id": 544843, "node_id": "MDQ6VXNlcjU0NDg0Mw==", "avatar_url": "https://avatars.githubusercontent.com/u/544843?v=4", "gravatar_id": "", "url": "https://api.github.com/users/matstrand", "html_url": "https://github.com/matstrand", "followers_url": "https://api.github.com/users/matstrand/followers", "following_url": "https://api.github.com/users/matstrand/following{/other_user}", "gists_url": "https://api.github.com/users/matstrand/gists{/gist_id}", "starred_url": "https://api.github.com/users/matstrand/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/matstrand/subscriptions", "organizations_url": "https://api.github.com/users/matstrand/orgs", "repos_url": "https://api.github.com/users/matstrand/repos", "events_url": "https://api.github.com/users/matstrand/events{/privacy}", "received_events_url": "https://api.github.com/users/matstrand/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[]
2024-05-03T01:43:47
2024-05-03T09:04:55
null
NONE
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6862", "html_url": "https://github.com/huggingface/datasets/pull/6862", "diff_url": "https://github.com/huggingface/datasets/pull/6862.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6862.patch", "merged_at": null }
Fixes huggingface/datasets/issues/6598 I've added a new test case and a solution. Before applying the solution the test case was failing with the same error described in the linked issue. I encountered this issue while following the Hugging Face documentation, trying to perform GPT-2 fine-tuning using `run_clm.py` on SageMaker with a data file stored on S3. MRE: ``` pip install "datasets[s3]" python -c "from datasets import load_dataset; load_dataset('csv', data_files={'train': 's3://noaa-gsod-pds/2024/A5125600451.csv'})" ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6862/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6862/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6859
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6859/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6859/comments
https://api.github.com/repos/huggingface/datasets/issues/6859/events
https://github.com/huggingface/datasets/pull/6859
2,274,996,774
PR_kwDODunzps5uVIoZ
6,859
Support folder-based datasets with large metadata.jsonl
{ "login": "gbenson", "id": 580564, "node_id": "MDQ6VXNlcjU4MDU2NA==", "avatar_url": "https://avatars.githubusercontent.com/u/580564?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbenson", "html_url": "https://github.com/gbenson", "followers_url": "https://api.github.com/users/gbenson/followers", "following_url": "https://api.github.com/users/gbenson/following{/other_user}", "gists_url": "https://api.github.com/users/gbenson/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbenson/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbenson/subscriptions", "organizations_url": "https://api.github.com/users/gbenson/orgs", "repos_url": "https://api.github.com/users/gbenson/repos", "events_url": "https://api.github.com/users/gbenson/events{/privacy}", "received_events_url": "https://api.github.com/users/gbenson/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[]
2024-05-02T09:07:26
2024-05-02T09:07:26
null
NONE
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6859", "html_url": "https://github.com/huggingface/datasets/pull/6859", "diff_url": "https://github.com/huggingface/datasets/pull/6859.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6859.patch", "merged_at": null }
I tried creating an `imagefolder` dataset with a 714MB `metadata.jsonl` but got the error below. This pull request fixes the problem by increasing the block size like the message suggests. ``` >>> from datasets import load_dataset >>> dataset = load_dataset("imagefolder", data_dir="data-for-upload") Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/path/to/datasets/load.py", line 2609, in load_dataset builder_instance.download_and_prepare( ... File "/path/to/datasets/packaged_modules/folder_based_builder/folder_based_builder.py", line 245, in _read_metadata return paj.read_json(f) File "pyarrow/_json.pyx", line 308, in pyarrow._json.read_json File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: straddling object straddles two block boundaries (try to increase block size?) ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6859/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6859/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6853
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6853/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6853/comments
https://api.github.com/repos/huggingface/datasets/issues/6853/events
https://github.com/huggingface/datasets/issues/6853
2,272,570,000
I_kwDODunzps6HdKqQ
6,853
Support soft links for load_datasets imagefolder
{ "login": "billytcl", "id": 10386511, "node_id": "MDQ6VXNlcjEwMzg2NTEx", "avatar_url": "https://avatars.githubusercontent.com/u/10386511?v=4", "gravatar_id": "", "url": "https://api.github.com/users/billytcl", "html_url": "https://github.com/billytcl", "followers_url": "https://api.github.com/users/billytcl/followers", "following_url": "https://api.github.com/users/billytcl/following{/other_user}", "gists_url": "https://api.github.com/users/billytcl/gists{/gist_id}", "starred_url": "https://api.github.com/users/billytcl/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/billytcl/subscriptions", "organizations_url": "https://api.github.com/users/billytcl/orgs", "repos_url": "https://api.github.com/users/billytcl/repos", "events_url": "https://api.github.com/users/billytcl/events{/privacy}", "received_events_url": "https://api.github.com/users/billytcl/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
open
false
null
[]
null
[]
2024-04-30T22:14:29
2024-04-30T22:14:29
null
NONE
null
null
null
### Feature request Load_dataset from a folder of images doesn't seem to support soft links. It would be nice if it did, especially during methods development where image folders are being curated. ### Motivation Images are coming from a complex variety of sources and we'd like to be able to soft link directly from the originating folders as opposed to copying. Having a copy of the file ensures that there may be issues with image versioning as well as having double the amount of required disk space. ### Your contribution N/A
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6853/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6853/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6851
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6851/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6851/comments
https://api.github.com/repos/huggingface/datasets/issues/6851/events
https://github.com/huggingface/datasets/issues/6851
2,270,965,503
I_kwDODunzps6HXC7_
6,851
load_dataset('emotion') UnicodeDecodeError
{ "login": "L-Block-C", "id": 32314558, "node_id": "MDQ6VXNlcjMyMzE0NTU4", "avatar_url": "https://avatars.githubusercontent.com/u/32314558?v=4", "gravatar_id": "", "url": "https://api.github.com/users/L-Block-C", "html_url": "https://github.com/L-Block-C", "followers_url": "https://api.github.com/users/L-Block-C/followers", "following_url": "https://api.github.com/users/L-Block-C/following{/other_user}", "gists_url": "https://api.github.com/users/L-Block-C/gists{/gist_id}", "starred_url": "https://api.github.com/users/L-Block-C/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/L-Block-C/subscriptions", "organizations_url": "https://api.github.com/users/L-Block-C/orgs", "repos_url": "https://api.github.com/users/L-Block-C/repos", "events_url": "https://api.github.com/users/L-Block-C/events{/privacy}", "received_events_url": "https://api.github.com/users/L-Block-C/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[]
2024-04-30T09:25:01
2024-04-30T09:25:01
null
NONE
null
null
null
### Describe the bug **emotions = load_dataset('emotion')** _UnicodeDecodeError: 'utf-8' codec can't decode byte 0x8b in position 1: invalid start byte_ ### Steps to reproduce the bug load_dataset('emotion') ### Expected behavior succese ### Environment info py3.10 transformers 4.41.0.dev0 datasets 2.19.0
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6851/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6851/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6849
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6849/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6849/comments
https://api.github.com/repos/huggingface/datasets/issues/6849/events
https://github.com/huggingface/datasets/pull/6849
2,268,718,355
PR_kwDODunzps5t_wnu
6,849
fix webdataset filename split
{ "login": "Bowser1704", "id": 43539191, "node_id": "MDQ6VXNlcjQzNTM5MTkx", "avatar_url": "https://avatars.githubusercontent.com/u/43539191?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Bowser1704", "html_url": "https://github.com/Bowser1704", "followers_url": "https://api.github.com/users/Bowser1704/followers", "following_url": "https://api.github.com/users/Bowser1704/following{/other_user}", "gists_url": "https://api.github.com/users/Bowser1704/gists{/gist_id}", "starred_url": "https://api.github.com/users/Bowser1704/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Bowser1704/subscriptions", "organizations_url": "https://api.github.com/users/Bowser1704/orgs", "repos_url": "https://api.github.com/users/Bowser1704/repos", "events_url": "https://api.github.com/users/Bowser1704/events{/privacy}", "received_events_url": "https://api.github.com/users/Bowser1704/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[]
2024-04-29T10:57:18
2024-04-29T11:14:41
null
NONE
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6849", "html_url": "https://github.com/huggingface/datasets/pull/6849", "diff_url": "https://github.com/huggingface/datasets/pull/6849.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6849.patch", "merged_at": null }
use `os.path.splitext` to parse field_name. fix filename which has dot. like: ``` a.b.jpeg a.b.txt ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6849/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6849/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6848
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6848/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6848/comments
https://api.github.com/repos/huggingface/datasets/issues/6848/events
https://github.com/huggingface/datasets/issues/6848
2,268,622,609
I_kwDODunzps6HOG8R
6,848
Cant Downlaod Common Voice 17.0 hy-AM
{ "login": "mheryerznkanyan", "id": 31586104, "node_id": "MDQ6VXNlcjMxNTg2MTA0", "avatar_url": "https://avatars.githubusercontent.com/u/31586104?v=4", "gravatar_id": "", "url": "https://api.github.com/users/mheryerznkanyan", "html_url": "https://github.com/mheryerznkanyan", "followers_url": "https://api.github.com/users/mheryerznkanyan/followers", "following_url": "https://api.github.com/users/mheryerznkanyan/following{/other_user}", "gists_url": "https://api.github.com/users/mheryerznkanyan/gists{/gist_id}", "starred_url": "https://api.github.com/users/mheryerznkanyan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mheryerznkanyan/subscriptions", "organizations_url": "https://api.github.com/users/mheryerznkanyan/orgs", "repos_url": "https://api.github.com/users/mheryerznkanyan/repos", "events_url": "https://api.github.com/users/mheryerznkanyan/events{/privacy}", "received_events_url": "https://api.github.com/users/mheryerznkanyan/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "Same issue here." ]
2024-04-29T10:06:02
2024-05-13T06:09:30
null
NONE
null
null
null
### Describe the bug I want to download Common Voice 17.0 hy-AM but it returns an error. ``` The version_base parameter is not specified. Please specify a compatability version level, or None. Will assume defaults for version 1.1 @hydra.main(config_name='hfds_config', config_path=None) /usr/local/lib/python3.10/dist-packages/hydra/_internal/hydra.py:119: UserWarning: Future Hydra versions will no longer change working directory at job runtime by default. See https://hydra.cc/docs/1.2/upgrades/1.1_to_1.2/changes_to_job_working_dir/ for more information. ret = run_job( /usr/local/lib/python3.10/dist-packages/datasets/load.py:1429: FutureWarning: The repository for mozilla-foundation/common_voice_17_0 contains custom code which must be executed to correctly load the dataset. You can inspect the repository content at https://hf.co/datasets/mozilla-foundation/common_voice_17_0 You can avoid this message in future by passing the argument `trust_remote_code=True`. Passing `trust_remote_code=True` will be mandatory to load this dataset from the next major release of `datasets`. warnings.warn( Reading metadata...: 6180it [00:00, 133224.37it/s]les/s] Generating train split: 0 examples [00:00, ? examples/s] HuggingFace datasets failed due to some reason (stack trace below). For certain datasets (eg: MCV), it may be necessary to login to the huggingface-cli (via `huggingface-cli login`). Once logged in, you need to set `use_auth_token=True` when calling this script. Traceback error for reference : Traceback (most recent call last): File "/usr/local/lib/python3.10/dist-packages/datasets/builder.py", line 1743, in _prepare_split_single example = self.info.features.encode_example(record) if self.info.features is not None else record File "/usr/local/lib/python3.10/dist-packages/datasets/features/features.py", line 1878, in encode_example return encode_nested_example(self, example) File "/usr/local/lib/python3.10/dist-packages/datasets/features/features.py", line 1243, in encode_nested_example { File "/usr/local/lib/python3.10/dist-packages/datasets/features/features.py", line 1243, in <dictcomp> { File "/usr/local/lib/python3.10/dist-packages/datasets/utils/py_utils.py", line 326, in zip_dict yield key, tuple(d[key] for d in dicts) File "/usr/local/lib/python3.10/dist-packages/datasets/utils/py_utils.py", line 326, in <genexpr> yield key, tuple(d[key] for d in dicts) KeyError: 'sentence_id' The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/workspace/nemo/scripts/speech_recognition/convert_hf_dataset_to_nemo.py", line 358, in main dataset = load_dataset( File "/usr/local/lib/python3.10/dist-packages/datasets/load.py", line 2549, in load_dataset builder_instance.download_and_prepare( File "/usr/local/lib/python3.10/dist-packages/datasets/builder.py", line 1005, in download_and_prepare self._download_and_prepare( File "/usr/local/lib/python3.10/dist-packages/datasets/builder.py", line 1767, in _download_and_prepare super()._download_and_prepare( File "/usr/local/lib/python3.10/dist-packages/datasets/builder.py", line 1100, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/usr/local/lib/python3.10/dist-packages/datasets/builder.py", line 1605, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/usr/local/lib/python3.10/dist-packages/datasets/builder.py", line 1762, in _prepare_split_single raise DatasetGenerationError("An error occurred while generating the dataset") from e datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset ``` ### Steps to reproduce the bug ``` from datasets import load_dataset cv_17 = load_dataset("mozilla-foundation/common_voice_17_0", "hy-AM") ``` ### Expected behavior It works fine with common_voice_16_1 ### Environment info - `datasets` version: 2.18.0 - Platform: Linux-5.15.0-1042-nvidia-x86_64-with-glibc2.35 - Python version: 3.11.6 - `huggingface_hub` version: 0.22.2 - PyArrow version: 15.0.2 - Pandas version: 2.2.2 - `fsspec` version: 2024.2.0
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6848/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6848/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6847
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6847/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6847/comments
https://api.github.com/repos/huggingface/datasets/issues/6847/events
https://github.com/huggingface/datasets/issues/6847
2,268,589,177
I_kwDODunzps6HN-x5
6,847
[Streaming] Only load requested splits without resolving files for the other splits
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
open
false
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[ { "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false } ]
null
[ "This should help fixing this issue: https://github.com/huggingface/datasets/pull/6832", "I'm having a similar issue when using splices:\r\n<img width=\"947\" alt=\"image\" src=\"https://github.com/huggingface/datasets/assets/28941213/2153faac-e1fe-4b6d-a79b-30b2699407e8\">\r\n<img width=\"823\" alt=\"image\" src=\"https://github.com/huggingface/datasets/assets/28941213/80919eca-eb6c-407d-8070-52642fdcee54\">\r\n<img width=\"914\" alt=\"image\" src=\"https://github.com/huggingface/datasets/assets/28941213/5219c201-e22e-4536-acc3-a922677785ff\">\r\n\r\n\r\nIt seems to be downloading, loading, and generating splits using the entire dataset." ]
2024-04-29T09:49:32
2024-05-07T04:43:59
null
MEMBER
null
null
null
e.g. [thangvip](https://huggingface.co/thangvip)/[cosmopedia_vi_math](https://huggingface.co/datasets/thangvip/cosmopedia_vi_math) has 300 splits and it takes a very long time to load only one split. This is due to `load_dataset()` resolving the files of all the splits even if only one is needed. In `dataset-viewer` the splits are loaded in different jobs so it results in 300 jobs that resolve 300 splits -> 90k calls to `/paths-info`
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6847/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6847/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6845
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6845/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6845/comments
https://api.github.com/repos/huggingface/datasets/issues/6845/events
https://github.com/huggingface/datasets/issues/6845
2,265,876,551
I_kwDODunzps6HDohH
6,845
load_dataset doesn't support list column
{ "login": "arthasking123", "id": 16257131, "node_id": "MDQ6VXNlcjE2MjU3MTMx", "avatar_url": "https://avatars.githubusercontent.com/u/16257131?v=4", "gravatar_id": "", "url": "https://api.github.com/users/arthasking123", "html_url": "https://github.com/arthasking123", "followers_url": "https://api.github.com/users/arthasking123/followers", "following_url": "https://api.github.com/users/arthasking123/following{/other_user}", "gists_url": "https://api.github.com/users/arthasking123/gists{/gist_id}", "starred_url": "https://api.github.com/users/arthasking123/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/arthasking123/subscriptions", "organizations_url": "https://api.github.com/users/arthasking123/orgs", "repos_url": "https://api.github.com/users/arthasking123/repos", "events_url": "https://api.github.com/users/arthasking123/events{/privacy}", "received_events_url": "https://api.github.com/users/arthasking123/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[]
2024-04-26T14:11:44
2024-04-26T14:11:44
null
NONE
null
null
null
### Describe the bug dataset = load_dataset("Doraemon-AI/text-to-neo4j-cypher-chinese") got exception: Generating train split: 1834 examples [00:00, 5227.98 examples/s] Traceback (most recent call last): File "/usr/local/lib/python3.11/dist-packages/datasets/builder.py", line 2011, in _prepare_split_single writer.write_table(table) File "/usr/local/lib/python3.11/dist-packages/datasets/arrow_writer.py", line 585, in write_table pa_table = table_cast(pa_table, self._schema) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/datasets/table.py", line 2295, in table_cast return cast_table_to_schema(table, schema) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/datasets/table.py", line 2254, in cast_table_to_schema arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/datasets/table.py", line 2254, in <listcomp> arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/datasets/table.py", line 1802, in wrapper return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/datasets/table.py", line 1802, in <listcomp> return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/datasets/table.py", line 2018, in cast_array_to_feature casted_array_values = _c(array.values, feature[0]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/datasets/table.py", line 1804, in wrapper return func(array, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/datasets/table.py", line 2115, in cast_array_to_feature raise TypeError(f"Couldn't cast array of type\n{array.type}\nto\n{feature}") TypeError: Couldn't cast array of type struct<m.name: string, x.name: string, p.name: string, n.name: string, h.name: string, name: string, c: int64, collect(r.name): list<item: string>, q.name: string, rel.name: string, count(p): int64, 1: int64, p.location: string, max(n.name): null, mn.name: string, p.time: int64, min(q.name): string> to {'q.name': Value(dtype='string', id=None), 'mn.name': Value(dtype='string', id=None), 'x.name': Value(dtype='string', id=None), 'p.name': Value(dtype='string', id=None), 'n.name': Value(dtype='string', id=None), 'name': Value(dtype='string', id=None), 'm.name': Value(dtype='string', id=None), 'h.name': Value(dtype='string', id=None), 'count(p)': Value(dtype='int64', id=None), 'rel.name': Value(dtype='string', id=None), 'c': Value(dtype='int64', id=None), 'collect(r.name)': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), '1': Value(dtype='int64', id=None), 'p.location': Value(dtype='string', id=None), 'substring(h.name,0,5)': Value(dtype='string', id=None), 'p.time': Value(dtype='int64', id=None)} The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/home/ubuntu/llm/train-2.py", line 150, in <module> dataset = load_dataset("Doraemon-AI/text-to-neo4j-cypher-chinese") ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/datasets/load.py", line 2609, in load_dataset builder_instance.download_and_prepare( File "/usr/local/lib/python3.11/dist-packages/datasets/builder.py", line 1027, in download_and_prepare self._download_and_prepare( File "/usr/local/lib/python3.11/dist-packages/datasets/builder.py", line 1122, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/usr/local/lib/python3.11/dist-packages/datasets/builder.py", line 1882, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/usr/local/lib/python3.11/dist-packages/datasets/builder.py", line 2038, in _prepare_split_single raise DatasetGenerationError("An error occurred while generating the dataset") from e datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset ### Steps to reproduce the bug dataset = load_dataset("Doraemon-AI/text-to-neo4j-cypher-chinese") ### Expected behavior no exception ### Environment info python 3.11 datasets 2.19.0
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6845/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6845/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6843
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6843/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6843/comments
https://api.github.com/repos/huggingface/datasets/issues/6843/events
https://github.com/huggingface/datasets/issues/6843
2,265,432,897
I_kwDODunzps6HB8NB
6,843
IterableDataset raises exception instead of retrying
{ "login": "bauwenst", "id": 145220868, "node_id": "U_kgDOCKflBA", "avatar_url": "https://avatars.githubusercontent.com/u/145220868?v=4", "gravatar_id": "", "url": "https://api.github.com/users/bauwenst", "html_url": "https://github.com/bauwenst", "followers_url": "https://api.github.com/users/bauwenst/followers", "following_url": "https://api.github.com/users/bauwenst/following{/other_user}", "gists_url": "https://api.github.com/users/bauwenst/gists{/gist_id}", "starred_url": "https://api.github.com/users/bauwenst/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/bauwenst/subscriptions", "organizations_url": "https://api.github.com/users/bauwenst/orgs", "repos_url": "https://api.github.com/users/bauwenst/repos", "events_url": "https://api.github.com/users/bauwenst/events{/privacy}", "received_events_url": "https://api.github.com/users/bauwenst/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "Thanks for reporting! I've opened a PR with a fix.", "Thanks, @mariosasko! Related question (although I guess this is a feature request): could we have some kind of exponential back-off for these retries? Here's my reasoning:\r\n- If a one-time accidental error happens, you should retry immediately and will succeed immediately.\r\n- If the Hub has a small outage on the order of minutes, you don't want to retry on the order of hours. \r\n- If the Hub has a prologned outage of several hours, we don't want to keep retrying on the order of minutes.\r\n\r\nThere actually already exists an implementation for (clipped) exponential backoff in the HuggingFace suite ([here](https://github.com/huggingface/huggingface_hub/blob/61b156a4f2e5fe1a492ed8712b26803e2122bde0/src/huggingface_hub/utils/_http.py#L306)), but I don't think it is used here.\r\n\r\nThe requirements are basically that you have an initial minimum waiting time and a maximum waiting time, and with each retry, the waiting time is doubled. We don't want to overload your servers with needless retries, especially when they're down :sweat_smile:", "Oh, I've just remembered that we added retries to the `HfFileSystem` in `huggingface_hub` 0.21.0 (see [this](https://github.com/huggingface/huggingface_hub/blob/61b156a4f2e5fe1a492ed8712b26803e2122bde0/src/huggingface_hub/hf_file_system.py#L703)), so I'll close the linked PR as we don't want to retry the retries :).\r\n\r\nI agree with the exponential backoff suggestion, so I'll open another PR.", "@mariosasko The call you linked indeed points to the implementation I linked in my previous comment, yes, but it has no configurability. Arguably, you want to have this hidden backoff under the hood that catches small network disturbances on the time scale of seconds -- perhaps even with hardcoded limits as is the case currently -- but you also still want to have a separate backoff on top of that with the configurability as suggested by @lhoestq in [the comment I linked](https://github.com/huggingface/datasets/issues/6172#issuecomment-1794876229).\r\n\r\nMy particular use-case is that I'm streaming a dataset while training on a university cluster with a very long scheduling queue. This means that when the backoff runs out of retries (which happens in under 30 seconds with the call you linked), I lose my spot on the cluster and have to queue for a whole day or more. Ideally, I should be able to specify that I want to retry for 2 to 3 hours but with more and more time between requests, so that I can smooth over hours-long outages without a setback of days.", "I also have my runs crash a surprising amount due to the dataloader crashing because of the hub, some way to address this would be nice." ]
2024-04-26T10:00:43
2024-04-30T13:14:13
null
NONE
null
null
null
### Describe the bug In light of the recent server outages, I decided to look into whether I could somehow wrap my IterableDataset streams to retry rather than error out immediately. To my surprise, `datasets` [already supports retries](https://github.com/huggingface/datasets/issues/6172#issuecomment-1794876229). Since a commit by @lhoestq [last week](https://github.com/huggingface/datasets/commit/a188022dc43a76a119d90c03832d51d6e4a94d91), that code lives here: https://github.com/huggingface/datasets/blob/fe2bea6a4b09b180bd23b88fe96dfd1a11191a4f/src/datasets/utils/file_utils.py#L1097C1-L1111C19 If GitHub code snippets still aren't working, here's a copy: ```python def read_with_retries(*args, **kwargs): disconnect_err = None for retry in range(1, max_retries + 1): try: out = read(*args, **kwargs) break except (ClientError, TimeoutError) as err: disconnect_err = err logger.warning( f"Got disconnected from remote data host. Retrying in {config.STREAMING_READ_RETRY_INTERVAL}sec [{retry}/{max_retries}]" ) time.sleep(config.STREAMING_READ_RETRY_INTERVAL) else: raise ConnectionError("Server Disconnected") from disconnect_err return out ``` With the latest outage, the end of my stack trace looked like this: ``` ... File "/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/download/streaming_download_manager.py", line 342, in read_with_retries out = read(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "/miniconda3/envs/draft/lib/python3.11/gzip.py", line 301, in read return self._buffer.read(size) ^^^^^^^^^^^^^^^^^^^^^^^ File "/miniconda3/envs/draft/lib/python3.11/_compression.py", line 68, in readinto data = self.read(len(byte_view)) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/miniconda3/envs/draft/lib/python3.11/gzip.py", line 505, in read buf = self._fp.read(io.DEFAULT_BUFFER_SIZE) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/miniconda3/envs/draft/lib/python3.11/gzip.py", line 88, in read return self.file.read(size) ^^^^^^^^^^^^^^^^^^^^ File "/miniconda3/envs/draft/lib/python3.11/site-packages/fsspec/spec.py", line 1856, in read out = self.cache._fetch(self.loc, self.loc + length) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/miniconda3/envs/draft/lib/python3.11/site-packages/fsspec/caching.py", line 189, in _fetch self.cache = self.fetcher(start, end) # new block replaces old ^^^^^^^^^^^^^^^^^^^^^^^^ File "/miniconda3/envs/draft/lib/python3.11/site-packages/huggingface_hub/hf_file_system.py", line 626, in _fetch_range hf_raise_for_status(r) File "/miniconda3/envs/draft/lib/python3.11/site-packages/huggingface_hub/utils/_errors.py", line 333, in hf_raise_for_status raise HfHubHTTPError(str(e), response=response) from e huggingface_hub.utils._errors.HfHubHTTPError: 504 Server Error: Gateway Time-out for url: https://huggingface.co/datasets/allenai/c4/resolve/1588ec454efa1a09f29cd18ddd04fe05fc8653a2/en/c4-train.00346-of-01024.json.gz ``` Indeed, the code for retries only catches `ClientError`s and `TimeoutError`s, and all other exceptions, *including HuggingFace's own custom HTTP error class*, **are not caught. Nothing is retried,** and instead the exception is propagated upwards immediately. ### Steps to reproduce the bug Not sure how you reproduce this. Maybe unplug your Ethernet cable while streaming a dataset; the issue is pretty clear from the stack trace. ### Expected behavior All HTTP errors while iterating a streamable dataset should cause retries. ### Environment info Output from `datasets-cli env`: - `datasets` version: 2.18.0 - Platform: Linux-4.18.0-513.24.1.el8_9.x86_64-x86_64-with-glibc2.28 - Python version: 3.11.7 - `huggingface_hub` version: 0.20.3 - PyArrow version: 15.0.0 - Pandas version: 2.2.0 - `fsspec` version: 2023.10.0
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6843/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6843/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6842
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6842/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6842/comments
https://api.github.com/repos/huggingface/datasets/issues/6842/events
https://github.com/huggingface/datasets/issues/6842
2,264,692,159
I_kwDODunzps6G_HW_
6,842
Datasets with files with colon : in filenames cannot be used on Windows
{ "login": "jacobjennings", "id": 1038927, "node_id": "MDQ6VXNlcjEwMzg5Mjc=", "avatar_url": "https://avatars.githubusercontent.com/u/1038927?v=4", "gravatar_id": "", "url": "https://api.github.com/users/jacobjennings", "html_url": "https://github.com/jacobjennings", "followers_url": "https://api.github.com/users/jacobjennings/followers", "following_url": "https://api.github.com/users/jacobjennings/following{/other_user}", "gists_url": "https://api.github.com/users/jacobjennings/gists{/gist_id}", "starred_url": "https://api.github.com/users/jacobjennings/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jacobjennings/subscriptions", "organizations_url": "https://api.github.com/users/jacobjennings/orgs", "repos_url": "https://api.github.com/users/jacobjennings/repos", "events_url": "https://api.github.com/users/jacobjennings/events{/privacy}", "received_events_url": "https://api.github.com/users/jacobjennings/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[]
2024-04-26T00:14:16
2024-04-26T00:14:16
null
NONE
null
null
null
### Describe the bug Datasets (such as https://huggingface.co/datasets/MLCommons/peoples_speech) cannot be used on Windows due to the fact that windows does not allow colons ":" in filenames. These should be converted into alternative strings. ### Steps to reproduce the bug 1. Attempt to run load_dataset on MLCommons/peoples_speech ### Expected behavior Does not crash during extraction ### Environment info Windows 11, NTFS filesystem, Python 3.12
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6842/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6842/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6840
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6840/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6840/comments
https://api.github.com/repos/huggingface/datasets/issues/6840/events
https://github.com/huggingface/datasets/issues/6840
2,264,604,766
I_kwDODunzps6G-yBe
6,840
Delete uploaded files from the UI
{ "login": "saicharan2804", "id": 62512681, "node_id": "MDQ6VXNlcjYyNTEyNjgx", "avatar_url": "https://avatars.githubusercontent.com/u/62512681?v=4", "gravatar_id": "", "url": "https://api.github.com/users/saicharan2804", "html_url": "https://github.com/saicharan2804", "followers_url": "https://api.github.com/users/saicharan2804/followers", "following_url": "https://api.github.com/users/saicharan2804/following{/other_user}", "gists_url": "https://api.github.com/users/saicharan2804/gists{/gist_id}", "starred_url": "https://api.github.com/users/saicharan2804/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/saicharan2804/subscriptions", "organizations_url": "https://api.github.com/users/saicharan2804/orgs", "repos_url": "https://api.github.com/users/saicharan2804/repos", "events_url": "https://api.github.com/users/saicharan2804/events{/privacy}", "received_events_url": "https://api.github.com/users/saicharan2804/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
open
false
null
[]
null
[]
2024-04-25T22:33:57
2024-04-25T22:33:57
null
NONE
null
null
null
### Feature request Once a file is uploaded and the commit is made, I am unable to delete individual files without completely deleting the whole dataset via the website UI. ### Motivation Would be a useful addition ### Your contribution Would love to help out with some guidance
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6840/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6840/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6837
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6837/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6837/comments
https://api.github.com/repos/huggingface/datasets/issues/6837/events
https://github.com/huggingface/datasets/issues/6837
2,263,273,983
I_kwDODunzps6G5tH_
6,837
Cannot use cached dataset without Internet connection (or when servers are down)
{ "login": "DionisMuzenitov", "id": 112088378, "node_id": "U_kgDOBq5VOg", "avatar_url": "https://avatars.githubusercontent.com/u/112088378?v=4", "gravatar_id": "", "url": "https://api.github.com/users/DionisMuzenitov", "html_url": "https://github.com/DionisMuzenitov", "followers_url": "https://api.github.com/users/DionisMuzenitov/followers", "following_url": "https://api.github.com/users/DionisMuzenitov/following{/other_user}", "gists_url": "https://api.github.com/users/DionisMuzenitov/gists{/gist_id}", "starred_url": "https://api.github.com/users/DionisMuzenitov/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/DionisMuzenitov/subscriptions", "organizations_url": "https://api.github.com/users/DionisMuzenitov/orgs", "repos_url": "https://api.github.com/users/DionisMuzenitov/repos", "events_url": "https://api.github.com/users/DionisMuzenitov/events{/privacy}", "received_events_url": "https://api.github.com/users/DionisMuzenitov/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "There are 2 workarounds, tho:\r\n1. Download datasets from web and just load them locally\r\n2. Use metadata directly (temporal solution, since metadata can change)\r\n```\r\nimport datasets\r\nfrom datasets.data_files import DataFilesDict, DataFilesList\r\n\r\ndata_files_list = DataFilesList(\r\n [\r\n \"hf://datasets/allenai/c4@1588ec454efa1a09f29cd18ddd04fe05fc8653a2/en/c4-train.00000-of-01024.json.gz\"\r\n ],\r\n [(\"allenai/c4\", \"1588ec454efa1a09f29cd18ddd04fe05fc8653a2\")],\r\n)\r\ndata_files = DataFilesDict({\"train\": data_files_list})\r\nc4_dataset = datasets.load_dataset(\r\n path=\"allenai/c4\",\r\n data_files=data_files,\r\n split=\"train\",\r\n cache_dir=\"/datesets/cache\",\r\n download_mode=\"reuse_cache_if_exists\",\r\n token=False,\r\n)\r\n```\r\nSecond solution also shows where to find the bug. I suggest that the hashing functions should always use only original parameter `data_files`, and not the one they get after connecting to the server and creating `DataFilesDict`", "Hi! You need to set the `HF_DATASETS_OFFLINE` env variable to `1` to load cached datasets offline, as explained in the docs [here](https://huggingface.co/docs/datasets/v2.19.0/en/loading#offline).", "Just tested. It doesn't work, because of the exact problem I described above: hash of dataset config is different.\r\nThe only error difference is the reason why it cannot connect to HuggingFace (now it's 'offline mode is enabled')\r\n![image](https://github.com/huggingface/datasets/assets/112088378/1a7e1720-d711-46e3-9c90-53d52c441e68)\r\n" ]
2024-04-25T10:48:20
2024-04-26T14:27:15
null
NONE
null
null
null
### Describe the bug I want to be able to use cached dataset from HuggingFace even when I have no Internet connection (or when HuggingFace servers are down, or my company has network issues). The problem why I can't use it: `data_files` argument from `datasets.load_dataset()` function get it updates from the server before calculating hash for caching. As a result, when I run the same code with and without Internet I get different dataset configuration directory name. ### Steps to reproduce the bug ``` import datasets c4_dataset = datasets.load_dataset( path="allenai/c4", data_files={"train": "en/c4-train.00000-of-01024.json.gz"}, split="train", cache_dir="/datesets/cache", download_mode="reuse_cache_if_exists", token=False, ) ``` 1. Run this code with the Internet. 2. Run the same code without the Internet. ### Expected behavior When running without the Internet connection, the loader should be able to get dataset from cache ### Environment info - `datasets` version: 2.19.0 - Platform: Windows-10-10.0.19044-SP0 - Python version: 3.10.13 - `huggingface_hub` version: 0.22.2 - PyArrow version: 16.0.0 - Pandas version: 1.5.3 - `fsspec` version: 2023.12.2
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6837/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6837/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6836
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6836/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6836/comments
https://api.github.com/repos/huggingface/datasets/issues/6836/events
https://github.com/huggingface/datasets/issues/6836
2,262,249,919
I_kwDODunzps6G1zG_
6,836
ExpectedMoreSplits error on load_dataset when upgrading to 2.19.0
{ "login": "ebsmothers", "id": 24319399, "node_id": "MDQ6VXNlcjI0MzE5Mzk5", "avatar_url": "https://avatars.githubusercontent.com/u/24319399?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ebsmothers", "html_url": "https://github.com/ebsmothers", "followers_url": "https://api.github.com/users/ebsmothers/followers", "following_url": "https://api.github.com/users/ebsmothers/following{/other_user}", "gists_url": "https://api.github.com/users/ebsmothers/gists{/gist_id}", "starred_url": "https://api.github.com/users/ebsmothers/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ebsmothers/subscriptions", "organizations_url": "https://api.github.com/users/ebsmothers/orgs", "repos_url": "https://api.github.com/users/ebsmothers/repos", "events_url": "https://api.github.com/users/ebsmothers/events{/privacy}", "received_events_url": "https://api.github.com/users/ebsmothers/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "Get same error on same datasets too.", "+1", "same error" ]
2024-04-24T21:52:35
2024-05-14T04:08:19
null
NONE
null
null
null
### Describe the bug Hi there, thanks for the great library! We have been using it a lot in torchtune and it's been a huge help for us. Regarding the bug: the same call to `load_dataset` errors with `ExpectedMoreSplits` in 2.19.0 after working fine in 2.18.0. Full details given in the repro below. ### Steps to reproduce the bug On 2.18.0, things work fine: ``` # First clear the locally cached dataset rm -r ~/.cache/huggingface/datasets/lvwerra___stack-exchange-paired pip install "datasets==2.18.0" python3 >>> from datasets import load_dataset >>> dataset = load_dataset('lvwerra/stack-exchange-paired', split='train', data_dir='data/rl') ``` On 2.19.0, they do not: ``` # First clear the locally cached dataset rm -r ~/.cache/huggingface/datasets/lvwerra___stack-exchange-paired pip install "datasets==2.19.0" python3 >>> from datasets import load_dataset >>> dataset = load_dataset('lvwerra/stack-exchange-paired', split='train', data_dir='data/rl') ``` The stack trace I see from the 2.19.0 version of load_dataset can be seen [here](https://gist.github.com/ebsmothers/f9b1f1949bee7030a8d7bb8a491550d2). (Maybe unsurprising but) notably if I do not delete the cache first I am able to load the dataset successfully. So based on this I suspect the cause is somewhere in the download logic. ### Expected behavior Download the dataset successfully :) ### Environment info - `datasets` version: 2.19.0 - Platform: Linux-5.12.0-0_fbk16_zion_7661_geb00762ce6d2-x86_64-with-glibc2.34 - Python version: 3.11.9 - `huggingface_hub` version: 0.22.2 - PyArrow version: 16.0.0 - Pandas version: 2.2.2 - `fsspec` version: 2024.3.1
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6836/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6836/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6835
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6835/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6835/comments
https://api.github.com/repos/huggingface/datasets/issues/6835/events
https://github.com/huggingface/datasets/pull/6835
2,261,079,263
PR_kwDODunzps5tl2fc
6,835
LargeListType support #6834
{ "login": "Modexus", "id": 37351874, "node_id": "MDQ6VXNlcjM3MzUxODc0", "avatar_url": "https://avatars.githubusercontent.com/u/37351874?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Modexus", "html_url": "https://github.com/Modexus", "followers_url": "https://api.github.com/users/Modexus/followers", "following_url": "https://api.github.com/users/Modexus/following{/other_user}", "gists_url": "https://api.github.com/users/Modexus/gists{/gist_id}", "starred_url": "https://api.github.com/users/Modexus/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Modexus/subscriptions", "organizations_url": "https://api.github.com/users/Modexus/orgs", "repos_url": "https://api.github.com/users/Modexus/repos", "events_url": "https://api.github.com/users/Modexus/events{/privacy}", "received_events_url": "https://api.github.com/users/Modexus/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6835). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "Fixed the conversion from `pyarrow` to `python` `Sequence` features. \r\n\r\nThere is still an issue that if `features` are passed the `Sequence` always forces conversion to `ListArray`.\r\nThis probably causes issues if the `LargeListArray` is actually needed.\r\n\r\nThere doesn't seem to be a great solution since this list is created solely on the `schema` for `Sequence`.\r\nOne solution would be to always use `LargeListArray` instead.\r\n" ]
2024-04-24T11:34:24
2024-04-30T13:16:14
null
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6835", "html_url": "https://github.com/huggingface/datasets/pull/6835", "diff_url": "https://github.com/huggingface/datasets/pull/6835.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6835.patch", "merged_at": null }
Fixes #6834
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6835/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6835/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6834
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6834/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6834/comments
https://api.github.com/repos/huggingface/datasets/issues/6834/events
https://github.com/huggingface/datasets/issues/6834
2,261,078,104
I_kwDODunzps6GxVBY
6,834
largelisttype not supported (.from_polars())
{ "login": "Modexus", "id": 37351874, "node_id": "MDQ6VXNlcjM3MzUxODc0", "avatar_url": "https://avatars.githubusercontent.com/u/37351874?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Modexus", "html_url": "https://github.com/Modexus", "followers_url": "https://api.github.com/users/Modexus/followers", "following_url": "https://api.github.com/users/Modexus/following{/other_user}", "gists_url": "https://api.github.com/users/Modexus/gists{/gist_id}", "starred_url": "https://api.github.com/users/Modexus/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Modexus/subscriptions", "organizations_url": "https://api.github.com/users/Modexus/orgs", "repos_url": "https://api.github.com/users/Modexus/repos", "events_url": "https://api.github.com/users/Modexus/events{/privacy}", "received_events_url": "https://api.github.com/users/Modexus/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[]
2024-04-24T11:33:43
2024-04-24T12:06:37
null
CONTRIBUTOR
null
null
null
### Describe the bug The following code fails because LargeListType is not supported. This is especially a problem for .from_polars since polars uses LargeListType. ### Steps to reproduce the bug ```python import datasets import polars as pl df = pl.DataFrame({"list": [[]]}) datasets.Dataset.from_polars(df) ``` ### Expected behavior Convert LargeListType to list. ### Environment info - `datasets` version: 2.19.1.dev0 - Platform: Linux-6.8.7-200.fc39.x86_64-x86_64-with-glibc2.38 - Python version: 3.12.2 - `huggingface_hub` version: 0.22.2 - PyArrow version: 16.0.0 - Pandas version: 2.1.4 - `fsspec` version: 2024.3.1
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6834/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6834/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6833
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6833/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6833/comments
https://api.github.com/repos/huggingface/datasets/issues/6833/events
https://github.com/huggingface/datasets/issues/6833
2,259,731,274
I_kwDODunzps6GsMNK
6,833
Super slow iteration with trivial custom transform
{ "login": "xslittlegrass", "id": 2780075, "node_id": "MDQ6VXNlcjI3ODAwNzU=", "avatar_url": "https://avatars.githubusercontent.com/u/2780075?v=4", "gravatar_id": "", "url": "https://api.github.com/users/xslittlegrass", "html_url": "https://github.com/xslittlegrass", "followers_url": "https://api.github.com/users/xslittlegrass/followers", "following_url": "https://api.github.com/users/xslittlegrass/following{/other_user}", "gists_url": "https://api.github.com/users/xslittlegrass/gists{/gist_id}", "starred_url": "https://api.github.com/users/xslittlegrass/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/xslittlegrass/subscriptions", "organizations_url": "https://api.github.com/users/xslittlegrass/orgs", "repos_url": "https://api.github.com/users/xslittlegrass/repos", "events_url": "https://api.github.com/users/xslittlegrass/events{/privacy}", "received_events_url": "https://api.github.com/users/xslittlegrass/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "Similar issue in text process \r\n\r\n```python\r\n\r\ntokenizer=AutoTokenizer.from_pretrained(model_dir[args.model])\r\ntrain_dataset=datasets.load_from_disk(dataset_dir[args.dataset],keep_in_memory=True)['train']\r\ntrain_dataset=train_dataset.map(partial(dname2func[args.dataset],tokenizer=tokenizer),batched=True,num_proc =50,remove_columns=train_dataset.features.keys(),desc='tokenize',keep_in_memory=True)\r\n\r\n```\r\nAfter this train_dataset will be like\r\n```python\r\nDataset({\r\n features: ['input_ids', 'labels'],\r\n num_rows: 51760\r\n})\r\n```\r\nIn which input_ids and labels are both List[int]\r\nHowever, per iter on dataset cost 7.412479639053345s ……?\r\n```python\r\nfor j in tqdm(range(len(train_dataset)),desc='first stage'):\r\n input_id,label=train_dataset['input_ids'][j],train_dataset['labels'][j]\r\n\r\n``` ", "The transform currently replaces the numpy formatting.\r\n\r\nSo you're back to copying data to long python lists which is super slow.\r\n\r\nIt would be cool for the transform to not remove the formatting in this case, but this requires a few changes in the lib" ]
2024-04-23T20:40:59
2024-05-04T11:24:37
null
NONE
null
null
null
### Describe the bug Dataset is 10X slower when applying trivial transforms: ``` import time import numpy as np from datasets import Dataset, Features, Array2D a = np.zeros((800, 800)) a = np.stack([a] * 1000) features = Features({"a": Array2D(shape=(800, 800), dtype="uint8")}) ds1 = Dataset.from_dict({"a": a}, features=features).with_format('numpy') def transform(batch): return batch ds2 = ds1.with_transform(transform) %time sum(1 for _ in ds1) %time sum(1 for _ in ds2) ``` ``` CPU times: user 472 ms, sys: 319 ms, total: 791 ms Wall time: 794 ms CPU times: user 9.32 s, sys: 443 ms, total: 9.76 s Wall time: 9.78 s ``` In my real code I'm using set_transform to apply some post-processing on-the-fly for the 2d array, but it significantly slows down the dataset even if the transform itself is trivial. Related issue: https://github.com/huggingface/datasets/issues/5841 ### Steps to reproduce the bug Use code in the description to reproduce. ### Expected behavior Trivial custom transform in the example should not slowdown the dataset iteration. ### Environment info - `datasets` version: 2.18.0 - Platform: Linux-5.15.0-79-generic-x86_64-with-glibc2.35 - Python version: 3.11.4 - `huggingface_hub` version: 0.20.2 - PyArrow version: 15.0.0 - Pandas version: 1.5.3 - `fsspec` version: 2023.12.2
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6833/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6833/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6832
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6832/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6832/comments
https://api.github.com/repos/huggingface/datasets/issues/6832/events
https://github.com/huggingface/datasets/pull/6832
2,258,761,447
PR_kwDODunzps5teFoJ
6,832
Support downloading specific splits in `load_dataset`
{ "login": "mariosasko", "id": 47462742, "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "gravatar_id": "", "url": "https://api.github.com/users/mariosasko", "html_url": "https://github.com/mariosasko", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "repos_url": "https://api.github.com/users/mariosasko/repos", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6832). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
2024-04-23T12:32:27
2024-04-30T08:55:28
null
COLLABORATOR
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6832", "html_url": "https://github.com/huggingface/datasets/pull/6832", "diff_url": "https://github.com/huggingface/datasets/pull/6832.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6832.patch", "merged_at": null }
This PR builds on https://github.com/huggingface/datasets/pull/6639 to support downloading only the specified splits in `load_dataset`. For this to work, a builder's `_split_generators` need to be able to accept the requested splits (as a list) via a `splits` argument to avoid processing the non-requested ones. Also, the builder has to define a `_available_splits` method that lists all the possible `splits` values. Close https://github.com/huggingface/datasets/issues/4101, close https://github.com/huggingface/datasets/issues/2538 (I'm probably missing some) Should also make it possible to address https://github.com/huggingface/datasets/issues/6793
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6832/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6832/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6829
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6829/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6829/comments
https://api.github.com/repos/huggingface/datasets/issues/6829/events
https://github.com/huggingface/datasets/issues/6829
2,258,424,577
I_kwDODunzps6GnNMB
6,829
Load and save from/to disk no longer accept pathlib.Path
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892857, "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug", "name": "bug", "color": "d73a4a", "default": true, "description": "Something isn't working" } ]
open
false
null
[]
null
[]
2024-04-23T09:44:45
2024-04-23T09:44:46
null
MEMBER
null
null
null
Reported by @vttrifonov at https://github.com/huggingface/datasets/pull/6704#issuecomment-2071168296: > This change is breaking in > https://github.com/huggingface/datasets/blob/f96e74d5c633cd5435dd526adb4a74631eb05c43/src/datasets/arrow_dataset.py#L1515 > when the input is `pathlib.Path`. The issue is that `url_to_fs` expects a `str` and cannot deal with `Path`. `get_fs_token_paths` converts to `str` so it is not a problem This change was introduced in: - #6704
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6829/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6829/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6828
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6828/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6828/comments
https://api.github.com/repos/huggingface/datasets/issues/6828/events
https://github.com/huggingface/datasets/pull/6828
2,258,420,421
PR_kwDODunzps5tc55y
6,828
Support PathLike input in save_to_disk / load_from_disk
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6828). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
2024-04-23T09:42:38
2024-04-23T11:05:52
null
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6828", "html_url": "https://github.com/huggingface/datasets/pull/6828", "diff_url": "https://github.com/huggingface/datasets/pull/6828.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6828.patch", "merged_at": null }
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6828/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6828/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6827
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6827/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6827/comments
https://api.github.com/repos/huggingface/datasets/issues/6827/events
https://github.com/huggingface/datasets/issues/6827
2,254,011,833
I_kwDODunzps6GWX25
6,827
Loading a remote dataset fails in the last release (v2.19.0)
{ "login": "zrthxn", "id": 35369637, "node_id": "MDQ6VXNlcjM1MzY5NjM3", "avatar_url": "https://avatars.githubusercontent.com/u/35369637?v=4", "gravatar_id": "", "url": "https://api.github.com/users/zrthxn", "html_url": "https://github.com/zrthxn", "followers_url": "https://api.github.com/users/zrthxn/followers", "following_url": "https://api.github.com/users/zrthxn/following{/other_user}", "gists_url": "https://api.github.com/users/zrthxn/gists{/gist_id}", "starred_url": "https://api.github.com/users/zrthxn/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/zrthxn/subscriptions", "organizations_url": "https://api.github.com/users/zrthxn/orgs", "repos_url": "https://api.github.com/users/zrthxn/repos", "events_url": "https://api.github.com/users/zrthxn/events{/privacy}", "received_events_url": "https://api.github.com/users/zrthxn/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[]
2024-04-19T21:11:58
2024-04-19T21:13:42
null
NONE
null
null
null
While loading a dataset with multiple splits I get an error saying `Couldn't find file at <URL>` I am loading the dataset like so, nothing out of the ordinary. This dataset needs a token to access it. ``` token="hf_myhftoken-sdhbdsjgkhbd" load_dataset("speechcolab/gigaspeech", "test", cache_dir=f"gigaspeech/test", token=token) ``` I get the following error ![Screenshot 2024-04-19 at 11 03 07 PM](https://github.com/huggingface/datasets/assets/35369637/8dce757f-08ff-45dd-85b5-890fced7c5bc) Now you can see that the URL that it is trying to reach has the JSON object of the dataset split appended to the base URL. I think this may be due to a newly introduced issue. I did not have this issue with the previous version of the datasets. Everything was fine for me yesterday and after the release 12 hours ago, this seems to have broken. Also, the dataset in question runs custom code and I checked and there have been no commits to the dataset on Huggingface in 6 months. ### Steps to reproduce the bug Since this happened with one particular dataset for me, I am listing steps to use that dataset. 1. Open https://huggingface.co/datasets/speechcolab/gigaspeech and fill the form to get access. 2. Create a token on your huggingface account with read access. 3. Run the following line, substituing `<your_token_here>` with your token. ``` load_dataset("speechcolab/gigaspeech", "test", cache_dir=f"gigaspeech/test", token="<your_token_here>") ``` ### Expected behavior Be able to load the dataset in question. ### Environment info datasets == 2.19.0 python == 3.10 kernel == Linux 6.1.58+
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6827/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6827/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6823
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6823/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6823/comments
https://api.github.com/repos/huggingface/datasets/issues/6823/events
https://github.com/huggingface/datasets/issues/6823
2,250,775,569
I_kwDODunzps6GKBwR
6,823
Loading problems of Datasets with a single shard
{ "login": "andjoer", "id": 60151338, "node_id": "MDQ6VXNlcjYwMTUxMzM4", "avatar_url": "https://avatars.githubusercontent.com/u/60151338?v=4", "gravatar_id": "", "url": "https://api.github.com/users/andjoer", "html_url": "https://github.com/andjoer", "followers_url": "https://api.github.com/users/andjoer/followers", "following_url": "https://api.github.com/users/andjoer/following{/other_user}", "gists_url": "https://api.github.com/users/andjoer/gists{/gist_id}", "starred_url": "https://api.github.com/users/andjoer/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/andjoer/subscriptions", "organizations_url": "https://api.github.com/users/andjoer/orgs", "repos_url": "https://api.github.com/users/andjoer/repos", "events_url": "https://api.github.com/users/andjoer/events{/privacy}", "received_events_url": "https://api.github.com/users/andjoer/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[]
2024-04-18T13:59:00
2024-04-18T17:51:08
null
NONE
null
null
null
### Describe the bug When saving a dataset on disk and it has a single shard it is not loaded as when it is saved in multiple shards. I installed the latest version of datasets via pip. ### Steps to reproduce the bug The code below reproduces the behavior. All works well when the range of the loop is 10000 but it fails when it is 1000. ``` from PIL import Image import numpy as np from datasets import Dataset, DatasetDict, load_dataset def load_image(): # Generate random noise image noise = np.random.randint(0, 256, (256, 256, 3), dtype=np.uint8) return Image.fromarray(noise) def create_dataset(): input_images = [] output_images = [] text_prompts = [] for _ in range(10000): # this is the problematic parameter input_images.append(load_image()) output_images.append(load_image()) text_prompts.append('test prompt') data = {'input_image': input_images, 'output_image': output_images, 'text_prompt': text_prompts} dataset = Dataset.from_dict(data) return DatasetDict({'train': dataset}) dataset = create_dataset() print('dataset before saving') print(dataset) print(dataset['train'].column_names) dataset.save_to_disk('test_ds') print('dataset after loading') dataset_loaded = load_dataset('test_ds') print(dataset_loaded) print(dataset_loaded['train'].column_names) ``` The output for 1000 iterations is: ``` dataset before saving DatasetDict({ train: Dataset({ features: ['input_image', 'output_image', 'text_prompt'], num_rows: 1000 }) }) ['input_image', 'output_image', 'text_prompt'] Saving the dataset (1/1 shards): 100%|█| 1000/1000 [00:00<00:00, 5156.00 example dataset after loading Generating train split: 1 examples [00:00, 230.52 examples/s] DatasetDict({ train: Dataset({ features: ['_data_files', '_fingerprint', '_format_columns', '_format_kwargs', '_format_type', '_output_all_columns', '_split'], num_rows: 1 }) }) ['_data_files', '_fingerprint', '_format_columns', '_format_kwargs', '_format_type', '_output_all_columns', '_split'] ``` For 10000 iteration (8 shards) it is correct: ``` dataset before saving DatasetDict({ train: Dataset({ features: ['input_image', 'output_image', 'text_prompt'], num_rows: 10000 }) }) ['input_image', 'output_image', 'text_prompt'] Saving the dataset (8/8 shards): 100%|█| 10000/10000 [00:01<00:00, 6237.68 examp dataset after loading Generating train split: 10000 examples [00:00, 10773.16 examples/s] DatasetDict({ train: Dataset({ features: ['input_image', 'output_image', 'text_prompt'], num_rows: 10000 }) }) ['input_image', 'output_image', 'text_prompt'] ``` ### Expected behavior The procedure should work for a dataset with one shrad the same as for one with multiple shards ### Environment info - `datasets` version: 2.18.0 - Platform: macOS-14.1-arm64-arm-64bit - Python version: 3.11.8 - `huggingface_hub` version: 0.22.2 - PyArrow version: 15.0.2 - Pandas version: 2.2.2 - `fsspec` version: 2024.2.0 Edit: I looked in the source code of load.py in datasets. I should have used "load_from_disk" and it indeed works that way. But ideally load_dataset would have raisen an error the same way as if I call a path: ``` if Path(path, config.DATASET_STATE_JSON_FILENAME).exists(): raise ValueError( "You are trying to load a dataset that was saved using `save_to_disk`. " "Please use `load_from_disk` instead." ) ``` nevertheless I find it interesting that it works just well and without a warning if there are multiple shards.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6823/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6823/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6819
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6819/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6819/comments
https://api.github.com/repos/huggingface/datasets/issues/6819/events
https://github.com/huggingface/datasets/issues/6819
2,248,043,797
I_kwDODunzps6F_m0V
6,819
Give more details in `DataFilesNotFoundError` when getting the config names
{ "login": "severo", "id": 1676121, "node_id": "MDQ6VXNlcjE2NzYxMjE=", "avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4", "gravatar_id": "", "url": "https://api.github.com/users/severo", "html_url": "https://github.com/severo", "followers_url": "https://api.github.com/users/severo/followers", "following_url": "https://api.github.com/users/severo/following{/other_user}", "gists_url": "https://api.github.com/users/severo/gists{/gist_id}", "starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/severo/subscriptions", "organizations_url": "https://api.github.com/users/severo/orgs", "repos_url": "https://api.github.com/users/severo/repos", "events_url": "https://api.github.com/users/severo/events{/privacy}", "received_events_url": "https://api.github.com/users/severo/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
open
false
null
[]
null
[]
2024-04-17T11:19:47
2024-04-17T11:19:47
null
CONTRIBUTOR
null
null
null
### Feature request After https://huggingface.co/datasets/cis-lmu/Glot500/commit/39060e01272ff228cc0ce1d31ae53789cacae8c3, the dataset viewer gives the following error: ``` { "error": "Cannot get the config names for the dataset.", "cause_exception": "DataFilesNotFoundError", "cause_message": "No (supported) data files found in cis-lmu/Glot500", "cause_traceback": [ "Traceback (most recent call last):\n", " File \"/src/services/worker/src/worker/job_runners/dataset/config_names.py\", line 73, in compute_config_names_response\n config_names = get_dataset_config_names(\n", " File \"/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py\", line 347, in get_dataset_config_names\n dataset_module = dataset_module_factory(\n", " File \"/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py\", line 1873, in dataset_module_factory\n raise e1 from None\n", " File \"/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py\", line 1854, in dataset_module_factory\n return HubDatasetModuleFactoryWithoutScript(\n", " File \"/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py\", line 1245, in get_module\n module_name, default_builder_kwargs = infer_module_for_data_files(\n", " File \"/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py\", line 595, in infer_module_for_data_files\n raise DataFilesNotFoundError(\"No (supported) data files found\" + (f\" in {path}\" if path else \"\"))\n", "datasets.exceptions.DataFilesNotFoundError: No (supported) data files found in cis-lmu/Glot500\n" ] } ``` because the deleted files were still listed in the README, see https://huggingface.co/datasets/cis-lmu/Glot500/discussions/4 Ideally, the error message would include the name of the first configuration with missing files, to help the user understand how to fix it. Here, it would tell that configuration `aze_Ethi` has no supported data files, instead of telling that the `cis-lmu/Glot500` *dataset* has no supported data files (which is not true). ### Motivation Giving more detail in the error would help the Datasets Hub users to debug why the dataset viewer does not work. ### Your contribution Not sure how to best fix this, as there are a lot of loops on the dataset configs in the traceback methods. "maybe" it would be easier to handle if the code was completely isolating each config.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6819/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6819/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6814
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6814/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6814/comments
https://api.github.com/repos/huggingface/datasets/issues/6814/events
https://github.com/huggingface/datasets/issues/6814
2,245,857,902
I_kwDODunzps6F3RJu
6,814
`map` with `num_proc` > 1 leads to OOM
{ "login": "bhavitvyamalik", "id": 19718818, "node_id": "MDQ6VXNlcjE5NzE4ODE4", "avatar_url": "https://avatars.githubusercontent.com/u/19718818?v=4", "gravatar_id": "", "url": "https://api.github.com/users/bhavitvyamalik", "html_url": "https://github.com/bhavitvyamalik", "followers_url": "https://api.github.com/users/bhavitvyamalik/followers", "following_url": "https://api.github.com/users/bhavitvyamalik/following{/other_user}", "gists_url": "https://api.github.com/users/bhavitvyamalik/gists{/gist_id}", "starred_url": "https://api.github.com/users/bhavitvyamalik/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/bhavitvyamalik/subscriptions", "organizations_url": "https://api.github.com/users/bhavitvyamalik/orgs", "repos_url": "https://api.github.com/users/bhavitvyamalik/repos", "events_url": "https://api.github.com/users/bhavitvyamalik/events{/privacy}", "received_events_url": "https://api.github.com/users/bhavitvyamalik/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "Hi ! You can try to reduce `writer_batch_size`. It corresponds to the number of samples that stay in RAM before being flushed to disk" ]
2024-04-16T11:56:03
2024-04-19T11:53:41
null
CONTRIBUTOR
null
null
null
### Describe the bug When running `map` on parquet dataset loaded from local machine, the RAM usage increases linearly eventually leading to OOM. I was wondering if I should I save the `cache_file` after every n steps in order to prevent this? ### Steps to reproduce the bug ``` ds = load_dataset("parquet", data_files=dataset_path, split="train") ds = ds.shard(num_shards=4, index=0) ds = ds.cast_column("audio", datasets.features.Audio(sampling_rate=16_000)) ds = ds.map(prepare_dataset, num_proc=32, writer_batch_size=1000, keep_in_memory=False, desc="preprocess dataset") ``` ``` def prepare_dataset(batch): # load audio sample = batch["audio"] inputs = feature_extractor(sample["array"], sampling_rate=16000) batch["input_values"] = inputs.input_values[0] batch["input_length"] = len(sample["array"].squeeze()) return batch ``` ### Expected behavior It shouldn't run into OOM problem. ### Environment info - `datasets` version: 2.18.0 - Platform: Linux-5.4.0-91-generic-x86_64-with-glibc2.17 - Python version: 3.8.19 - `huggingface_hub` version: 0.22.2 - PyArrow version: 15.0.2 - Pandas version: 2.0.3 - `fsspec` version: 2024.2.0
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6814/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6814/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6805
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6805/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6805/comments
https://api.github.com/repos/huggingface/datasets/issues/6805/events
https://github.com/huggingface/datasets/issues/6805
2,239,034,951
I_kwDODunzps6FdPZH
6,805
Batched mapping of existing string column casts boolean to string
{ "login": "starmpcc", "id": 46891489, "node_id": "MDQ6VXNlcjQ2ODkxNDg5", "avatar_url": "https://avatars.githubusercontent.com/u/46891489?v=4", "gravatar_id": "", "url": "https://api.github.com/users/starmpcc", "html_url": "https://github.com/starmpcc", "followers_url": "https://api.github.com/users/starmpcc/followers", "following_url": "https://api.github.com/users/starmpcc/following{/other_user}", "gists_url": "https://api.github.com/users/starmpcc/gists{/gist_id}", "starred_url": "https://api.github.com/users/starmpcc/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/starmpcc/subscriptions", "organizations_url": "https://api.github.com/users/starmpcc/orgs", "repos_url": "https://api.github.com/users/starmpcc/repos", "events_url": "https://api.github.com/users/starmpcc/events{/privacy}", "received_events_url": "https://api.github.com/users/starmpcc/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "This seems to be hardcoded behavior in table.py `array_cast`.\r\n```python\r\nif (\r\n not allow_number_to_str\r\n and pa.types.is_string(pa_type)\r\n and (pa.types.is_floating(array.type) or pa.types.is_integer(array.type))\r\n ):\r\n raise TypeError(\r\n f\"Couldn't cast array of type {array.type} to {pa_type} since allow_number_to_str is set to {allow_number_to_str}\"\r\n )\r\n if pa.types.is_null(pa_type) and not pa.types.is_null(array.type):\r\n raise TypeError(f\"Couldn't cast array of type {array.type} to {pa_type}\")\r\n return array.cast(pa_type)\r\n```\r\nwhere floats and integers are not cast to string but booleans are.\r\nMaybe this should be extended to booleans?", "Thanks for reporting! @Modexus Do you want to open a PR with the suggested fix?", "I'll gladly create a PR but not sure what the behavior should be.\r\n\r\nShould a value returned from map be cast to the current feature?\r\nAt the moment this seems very inconsistent since `datetime `is also cast (this would only fix `boolean`) but nested structures are not.\r\n\r\n```python\r\ndset = Dataset.from_dict({\"a\": [\"Hello world!\"]})\r\ndset = dset.map(lambda x: {\"a\": date(2021, 1, 1)})\r\n# dset[0][\"a\"] == '2021-01-01'\r\n```\r\n```python\r\ndset = Dataset.from_dict({\"a\": [\"Hello world!\"]})\r\ndset = dset.map(lambda x: {\"a\": [True]})\r\n# dset[0][\"a\"] == [True]\r\n```\r\n\r\nIs there are reason to cast the value if the user doesn't specify it explicitly?\r\nSeems tricky that some things are cast and some are not.", "Indeed, it also makes sense to raise a `TypeError` for temporal and decimal types.\r\n\r\n> Is there are reason to cast the value if the user doesn't specify it explicitly?\r\n\r\nThis is how PyArrow's built-in `cast` behaves - it allows casting from primitive types to strings. Hence, we need `allow_number_to_str` to disallow such casts (e.g., in the [scenario](https://github.com/huggingface/datasets/blob/a3bc89d8bfd47c2a175c3ce16d92b7307cdeafd6/src/datasets/arrow_writer.py#L208) when we are \"trying a type\" to preserve the original type if there is a column in the output dataset with the same name as in the input one).\r\n\r\nPS: In the PR, we can introduce `allow_numeric_to_str` (for floats, integers, decimals, booleans) and `allow_temporal_to_str` (for dates, timestamps, ...) and deprecate `allow_number_to_str` to make it clear what each parameter does.", "Would just `allow_primitive_to_str` work?\r\nThis should include all `numeric`, `boolean `and `temporal`formats.\r\n\r\nNote that at least in the [ C++ implementation](https://arrow.apache.org/docs/cpp/api/utilities.html#_CPPv410is_numericRK8DataType) `numeric `seems to exclude `boolean`.\r\n[](https://arrow.apache.org/docs/cpp/api/utilities.html#_CPPv410is_numericRK8DataType)", "Indeed, `allow_primitive_to_str` sounds better.\r\n\r\nPS: PyArrow's `pa.types.is_primitive` returns `False` for decimal types, but I think is okay for us to treat decimals as primitive types (or we can have `allow_decimal_to_str` to be fully consistent with PyArrow)" ]
2024-04-12T04:21:41
2024-04-15T12:55:19
null
NONE
null
null
null
### Describe the bug Let the dataset contain a column named 'a', which is of the string type. If 'a' is converted to a boolean using batched mapping, the mapper automatically casts the boolean to a string (e.g., True -> 'true'). It only happens when the original column and the mapped column name are identical. Thank you! ### Steps to reproduce the bug ```python from datasets import Dataset dset = Dataset.from_dict({'a': ['11', '22']}) dset = dset.map(lambda x: {'a': [True for _ in x['a']]}, batched=True) print(dset['a']) ``` ``` > ['true', 'true'] ``` ### Expected behavior [True, True] ### Environment info - `datasets` version: 2.18.0 - Platform: Linux-5.4.0-148-generic-x86_64-with-glibc2.31 - Python version: 3.10.13 - `huggingface_hub` version: 0.21.4 - PyArrow version: 15.0.2 - Pandas version: 2.2.1 - `fsspec` version: 2023.12.2
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6805/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6805/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6800
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6800/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6800/comments
https://api.github.com/repos/huggingface/datasets/issues/6800/events
https://github.com/huggingface/datasets/issues/6800
2,236,431,288
I_kwDODunzps6FTTu4
6,800
High overhead when loading lots of subsets from the same dataset
{ "login": "loicmagne", "id": 53355258, "node_id": "MDQ6VXNlcjUzMzU1MjU4", "avatar_url": "https://avatars.githubusercontent.com/u/53355258?v=4", "gravatar_id": "", "url": "https://api.github.com/users/loicmagne", "html_url": "https://github.com/loicmagne", "followers_url": "https://api.github.com/users/loicmagne/followers", "following_url": "https://api.github.com/users/loicmagne/following{/other_user}", "gists_url": "https://api.github.com/users/loicmagne/gists{/gist_id}", "starred_url": "https://api.github.com/users/loicmagne/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/loicmagne/subscriptions", "organizations_url": "https://api.github.com/users/loicmagne/orgs", "repos_url": "https://api.github.com/users/loicmagne/repos", "events_url": "https://api.github.com/users/loicmagne/events{/privacy}", "received_events_url": "https://api.github.com/users/loicmagne/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "Hi !\r\n\r\nIt's possible to multiple files at once:\r\n\r\n```python\r\ndata_files = \"data/*.jsonl\"\r\n# Or pass a list of files\r\nlangs = ['ka-ml', 'br-sr', 'ka-pt', 'id-ko', ..., 'fi-ze_zh', 'he-kk', 'ka-tr']\r\ndata_files = [f\"data/{lang}.jsonl\" for lang in langs]\r\nds = load_dataset(\"loicmagne/open-subtitles-250-bitext-mining\", data_files=data_files, split=\"train\")\r\n```\r\n\r\nAlso maybe you can add a subset called \"all\" for people that want to load all the data without having to list all the languages ?\r\n\r\n```yaml\r\n - config_name: all\r\n data_files: data/*.jsonl\r\n```\r\n", "Thanks for your reply, it is indeed much faster, however the result is a dataset where all the subsets are \"merged\" together, the language pair is lost:\r\n```\r\nDatasetDict({\r\n train: Dataset({\r\n features: ['sentence1', 'sentence2'],\r\n num_rows: 247809\r\n })\r\n})\r\n```\r\nI guess I could add a 'lang' feature for each row in the dataset, is there a better way to do it ?", "Hi @lhoestq over at https://github.com/embeddings-benchmark/mteb/issues/530 we have started examining these issues and would love to make a PR for datasets if we believe there is a way to improve the speed. As I assume you have a better overview than me @lhoestq, would you be interested in a PR, and might you have an idea about where we would start working on it?\r\n\r\nWe see a speed comparison of \r\n1. 15 minutes (for ~20% of the languages) when loaded using a for loop\r\n2. 17 minutes using the your suggestion\r\n3. ~30 seconds when using @loicmagne \"merged\" method.\r\n\r\nWorth mentioning is that solution 2 looses the language information.", "Can you retry using `datasets` 2.19 ? We improved a lot the speed of downloading datasets with tons of small files.\r\n\r\n```\r\npip install -U datasets\r\n```\r\n\r\nNow this takes 17sec on my side instead of the 17min minutes @loicmagne mentioned :)\r\n\r\n```python\r\n>>> %time ds = load_dataset(\"loicmagne/open-subtitles-250-bitext-mining\", data_files=\"data/*.jsonl\")\r\nDownloading readme: 100%|█████████████████████████████████| 13.7k/13.7k [00:00<00:00, 5.47MB/s]\r\nResolving data files: 100%|█████████████████████████████████| 250/250 [00:00<00:00, 612.51it/s]\r\nDownloading data: 100%|██████████████████████████████████| 250/250 [00:12<00:00, 19.68files/s]\r\nGenerating train split: 247809 examples [00:00, 1057071.08 examples/s]\r\nCPU times: user 4.95 s, sys: 3.1 s, total: 8.05 s\r\nWall time: 17.4 s\r\n```", "> Can you retry using `datasets` 2.19 ? We improved a lot the speed of downloading datasets with tons of small files.\r\n> \r\n> ```\r\n> pip install -U datasets\r\n> ```\r\n> \r\n> Now this takes 17sec on my side instead of the 17min minutes @loicmagne mentioned :)\r\n> \r\n> ```python\r\n> >>> %time ds = load_dataset(\"loicmagne/open-subtitles-250-bitext-mining\", data_files=\"data/*.jsonl\")\r\n> Downloading readme: 100%|█████████████████████████████████| 13.7k/13.7k [00:00<00:00, 5.47MB/s]\r\n> Resolving data files: 100%|█████████████████████████████████| 250/250 [00:00<00:00, 612.51it/s]\r\n> Downloading data: 100%|██████████████████████████████████| 250/250 [00:12<00:00, 19.68files/s]\r\n> Generating train split: 247809 examples [00:00, 1057071.08 examples/s]\r\n> CPU times: user 4.95 s, sys: 3.1 s, total: 8.05 s\r\n> Wall time: 17.4 s\r\n> ```\r\n\r\nI was actually just noticing that, I bumped from 2.18 to 2.19 and got a massive speedup, amazing!\r\n\r\nAbout the fact that subset names are lost when loading all files at once, currently my solution is to add a 'lang' feature to each rows, convert to polars and use:\r\n\r\n```python\r\nds_split = ds.to_polars().group_by('lang')\r\n```\r\n\r\nIt's fast so I think it's an acceptable solution, but is there a better way to do it ?", "It's the fastest way I think :)\r\n\r\nAlternatively you can download the dataset repository locally using [huggingface_hub](https://huggingface.co/docs/huggingface_hub/guides/download) (either via CLI or in python) and load the subsets one by one locally using a for loop as you were doing before (just pass the directory path to load_dataset instead of the dataset_id). " ]
2024-04-10T21:08:57
2024-04-24T13:48:05
null
NONE
null
null
null
### Describe the bug I have a multilingual dataset that contains a lot of subsets. Each subset corresponds to a pair of languages, you can see here an example with 250 subsets: [https://hf.co/datasets/loicmagne/open-subtitles-250-bitext-mining](). As part of the MTEB benchmark, we may need to load all the subsets of the dataset. The dataset is relatively small and contains only ~45MB of data, but when I try to load every subset, it takes 15 minutes from the HF hub and 13 minutes from the cache This issue https://github.com/huggingface/datasets/issues/5499 also referenced this overhead, but I'm wondering if there is anything I can do to speedup loading different subsets of the same dataset, both when loading from disk and from the HF hub? Currently each subset is stored in a jsonl file ### Steps to reproduce the bug ``` from datasets import load_dataset for subset in ['ka-ml', 'br-sr', 'bg-br', 'kk-lv', 'br-sk', 'br-fi', 'eu-ze_zh', 'kk-nl', 'kk-vi', 'ja-kk', 'br-sv', 'kk-zh_cn', 'kk-ms', 'br-et', 'br-hu', 'eo-kk', 'br-tr', 'ko-tl', 'te-zh_tw', 'br-hr', 'br-nl', 'ka-si', 'br-cs', 'br-is', 'br-ro', 'br-de', 'et-kk', 'fr-hy', 'br-no', 'is-ko', 'br-da', 'br-en', 'eo-lt', 'is-ze_zh', 'eu-ko', 'br-it', 'br-id', 'eu-zh_cn', 'is-ja', 'br-sl', 'br-gl', 'br-pt_br', 'br-es', 'br-pt', 'is-th', 'fa-is', 'br-ca', 'eu-ka', 'is-zh_cn', 'eu-ur', 'id-kk', 'br-sq', 'eu-ja', 'uk-ur', 'is-zh_tw', 'ka-ko', 'eu-zh_tw', 'eu-th', 'eu-is', 'is-tl', 'br-eo', 'eo-ze_zh', 'eu-te', 'ar-kk', 'eo-lv', 'ko-ze_zh', 'ml-ze_zh', 'is-lt', 'br-fr', 'ko-te', 'kk-sl', 'eu-fa', 'eo-ko', 'ka-ze_en', 'eo-eu', 'ta-zh_tw', 'eu-lv', 'ko-lv', 'lt-tl', 'eu-si', 'hy-ru', 'ar-is', 'eu-lt', 'eu-tl', 'eu-uk', 'ka-ze_zh', 'si-ze_zh', 'el-is', 'bn-is', 'ko-ze_en', 'eo-si', 'cs-kk', 'is-uk', 'eu-ze_en', 'ta-ze_zh', 'is-pl', 'is-mk', 'eu-ta', 'ko-lt', 'is-lv', 'fa-ko', 'bn-ko', 'hi-is', 'bn-ze_zh', 'bn-eu', 'bn-ja', 'is-ml', 'eu-ru', 'ko-ta', 'is-vi', 'ja-tl', 'eu-mk', 'eu-he', 'ka-zh_tw', 'ka-zh_cn', 'si-tl', 'is-kk', 'eu-fi', 'fi-ko', 'is-ur', 'ka-th', 'ko-ur', 'eo-ja', 'he-is', 'is-tr', 'ka-ur', 'et-ko', 'eu-vi', 'is-sk', 'gl-is', 'fr-is', 'is-sq', 'hu-is', 'fr-kk', 'eu-sq', 'is-ru', 'ja-ka', 'fi-tl', 'ka-lv', 'fi-is', 'is-si', 'ar-ko', 'ko-sl', 'ar-eu', 'ko-si', 'bg-is', 'eu-hu', 'ko-sv', 'bn-hu', 'kk-ro', 'eu-hi', 'ka-ms', 'ko-th', 'ko-sr', 'ko-mk', 'fi-kk', 'ka-vi', 'eu-ml', 'ko-ml', 'de-ko', 'fa-ze_zh', 'eu-sk', 'is-sl', 'et-is', 'eo-is', 'is-sr', 'is-ze_en', 'kk-pt_br', 'hr-hy', 'kk-pl', 'ja-ta', 'is-ms', 'hi-ze_en', 'is-ro', 'ko-zh_cn', 'el-eu', 'ka-pl', 'ka-sq', 'eu-sl', 'fa-ka', 'ko-no', 'si-ze_en', 'ko-uk', 'ja-ze_zh', 'hu-ko', 'kk-no', 'eu-pl', 'is-pt_br', 'bn-lv', 'tl-zh_cn', 'is-nl', 'he-ko', 'ko-sq', 'ta-th', 'lt-ta', 'da-ko', 'ca-is', 'is-ta', 'bn-fi', 'ja-ml', 'lv-si', 'eu-sv', 'ja-te', 'bn-ur', 'bn-ca', 'bs-ko', 'bs-is', 'eu-sr', 'ko-vi', 'ko-zh_tw', 'et-tl', 'kk-tr', 'eo-vi', 'is-it', 'ja-ko', 'eo-et', 'id-is', 'bn-et', 'bs-eu', 'bn-lt', 'tl-uk', 'bn-zh_tw', 'da-eu', 'el-ko', 'no-tl', 'ko-sk', 'is-pt', 'hu-kk', 'si-zh_tw', 'si-te', 'ka-ru', 'lt-ml', 'af-ja', 'bg-eu', 'eo-th', 'cs-is', 'pl-ze_zh', 'el-kk', 'kk-sv', 'ka-nl', 'ko-pl', 'bg-ko', 'ka-pt_br', 'et-eu', 'tl-zh_tw', 'ka-pt', 'id-ko', 'fi-ze_zh', 'he-kk', 'ka-tr']: load_dataset('loicmagne/open-subtitles-250-bitext-mining', subset) ``` ### Expected behavior Faster loading? ### Environment info Copy-and-paste the text below in your GitHub issue. - `datasets` version: 2.18.0 - Platform: Linux-6.5.0-27-generic-x86_64-with-glibc2.35 - Python version: 3.10.12 - `huggingface_hub` version: 0.22.2 - PyArrow version: 15.0.2 - Pandas version: 2.2.2 - `fsspec` version: 2023.5.0
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6800/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6800/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6793
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6793/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6793/comments
https://api.github.com/repos/huggingface/datasets/issues/6793/events
https://github.com/huggingface/datasets/issues/6793
2,231,400,200
I_kwDODunzps6FAHcI
6,793
Loading just one particular split is not possible for imagenet-1k
{ "login": "PaulPSta", "id": 165930106, "node_id": "U_kgDOCePkeg", "avatar_url": "https://avatars.githubusercontent.com/u/165930106?v=4", "gravatar_id": "", "url": "https://api.github.com/users/PaulPSta", "html_url": "https://github.com/PaulPSta", "followers_url": "https://api.github.com/users/PaulPSta/followers", "following_url": "https://api.github.com/users/PaulPSta/following{/other_user}", "gists_url": "https://api.github.com/users/PaulPSta/gists{/gist_id}", "starred_url": "https://api.github.com/users/PaulPSta/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/PaulPSta/subscriptions", "organizations_url": "https://api.github.com/users/PaulPSta/orgs", "repos_url": "https://api.github.com/users/PaulPSta/repos", "events_url": "https://api.github.com/users/PaulPSta/events{/privacy}", "received_events_url": "https://api.github.com/users/PaulPSta/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[]
2024-04-08T14:39:14
2024-04-08T14:39:14
null
NONE
null
null
null
### Describe the bug I'd expect the following code to download just the validation split but instead I get all data on my disk (train, test and validation splits) ` from datasets import load_dataset dataset = load_dataset("imagenet-1k", split="validation", trust_remote_code=True) ` Is it expected to work like that? ### Steps to reproduce the bug 1. Install the required libraries (python, datasets, huggingface_hub) 2. Login using huggingface cli 2. Run the code in the description ### Expected behavior Just a single (validation) split should be downloaded. ### Environment info python: 3.12.2 datasets: 2.18.0 huggingface_hub: 0.22.2
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6793/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6793/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6790
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6790/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6790/comments
https://api.github.com/repos/huggingface/datasets/issues/6790/events
https://github.com/huggingface/datasets/issues/6790
2,229,915,236
I_kwDODunzps6E6c5k
6,790
PyArrow 'Memory mapping file failed: Cannot allocate memory' bug
{ "login": "lasuomela", "id": 25725697, "node_id": "MDQ6VXNlcjI1NzI1Njk3", "avatar_url": "https://avatars.githubusercontent.com/u/25725697?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lasuomela", "html_url": "https://github.com/lasuomela", "followers_url": "https://api.github.com/users/lasuomela/followers", "following_url": "https://api.github.com/users/lasuomela/following{/other_user}", "gists_url": "https://api.github.com/users/lasuomela/gists{/gist_id}", "starred_url": "https://api.github.com/users/lasuomela/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lasuomela/subscriptions", "organizations_url": "https://api.github.com/users/lasuomela/orgs", "repos_url": "https://api.github.com/users/lasuomela/repos", "events_url": "https://api.github.com/users/lasuomela/events{/privacy}", "received_events_url": "https://api.github.com/users/lasuomela/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[]
2024-04-07T19:25:39
2024-04-07T20:00:54
null
NONE
null
null
null
### Describe the bug Hello, I've been struggling with a problem using Huggingface datasets caused by PyArrow memory allocation. I finally managed to solve it, and thought to document it since similar issues have been raised here before (https://github.com/huggingface/datasets/issues/5710, https://github.com/huggingface/datasets/issues/6176). In my case, I was trying to load ~70k dataset files from disk using `datasets.load_from_disk(data_path)` (meaning 70k repeated calls to load_from_disk). This triggered an (uninformative) exception around 64k loaded files: ``` File "pyarrow/io.pxi", line 1053, in pyarrow.lib.memory_map File "pyarrow/io.pxi", line 1000, in pyarrow.lib.MemoryMappedFile._open File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status OSError: Memory mapping file failed: Cannot allocate memory ``` Despite system RAM usage being very low. After a lot of digging around, I discovered that my Ubuntu machine had a limit on the maximum number of memory mapped files in `/proc/sys/vm/max_map_count` set to 65530, which was causing my data loader to crash. Increasing the limit in the file (`echo <new_mmap_size> | sudo tee /proc/sys/vm/max_map_count`) made the issue go away. While this isn't a bug as such in either Datasets or PyArrow, this behavior can be very confusing to users. Maybe this should be mentioned in documentation? I suspect the other issues raised here about memory mapping OOM errors could actually be consequence of system configuration. Br, Lauri ### Steps to reproduce the bug ``` import numpy as np import pyarrow as pa import tqdm # Write some data to disk arr = pa.array(np.arange(100)) schema = pa.schema([ pa.field('nums', arr.type) ]) with pa.OSFile('arraydata.arrow', 'wb') as sink: with pa.ipc.new_file(sink, schema=schema) as writer: batch = pa.record_batch([arr], schema=schema) writer.write(batch) # Number of times to open the memory map nums = 70000 # Read the data back arrays = [pa.memory_map('arraydata.arrow', 'r') for _ in tqdm.tqdm(range(nums))] ``` ### Expected behavior No errors. ### Environment info datasets: 2.18.0 pyarrow: 15.0.0
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6790/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6790/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6789
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6789/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6789/comments
https://api.github.com/repos/huggingface/datasets/issues/6789/events
https://github.com/huggingface/datasets/issues/6789
2,229,527,001
I_kwDODunzps6E4-HZ
6,789
Issue with map
{ "login": "Nsohko", "id": 102672238, "node_id": "U_kgDOBh6nbg", "avatar_url": "https://avatars.githubusercontent.com/u/102672238?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Nsohko", "html_url": "https://github.com/Nsohko", "followers_url": "https://api.github.com/users/Nsohko/followers", "following_url": "https://api.github.com/users/Nsohko/following{/other_user}", "gists_url": "https://api.github.com/users/Nsohko/gists{/gist_id}", "starred_url": "https://api.github.com/users/Nsohko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Nsohko/subscriptions", "organizations_url": "https://api.github.com/users/Nsohko/orgs", "repos_url": "https://api.github.com/users/Nsohko/repos", "events_url": "https://api.github.com/users/Nsohko/events{/privacy}", "received_events_url": "https://api.github.com/users/Nsohko/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "Default `writer_batch_size `is set to 1000 (see [map](https://huggingface.co/docs/datasets/v2.16.1/en/package_reference/main_classes#datasets.Dataset.map)).\r\nThe \"tmp1335llua\" is probably the temp file it creates while writing to disk.\r\nMaybe try lowering the `writer_batch_size`.\r\n\r\nFor multi-processing you should probably pass the `processor `as an argument (with e.g. partial) to the function or create it inside so that the sub-processes have access to it and maybe add `if __name__ == \"__main__\"` (not sure that's necessary?).\r\n", "Hi @Modexus,\r\n\r\nThank you very much for the help! Yep after playing around with map, I managed to get the parallel processing to work by implementing it like you suggested.\r\n\r\nRegarding the temp files, it seems like the temp files just keep growing in size as the map continues. Eventually, once map finishes, the temp files are deleted, but they are instead saved as cache .arrow files. These cache files are absolutely gigantic (~ 30-50x the size of the initial dataset!).\r\n\r\nAfter playing around with the `prepare_dataset()` function above, it seems this issue is caused by the following line in the function, where the log-Mel spectrogram of the audio is calculated:\r\n\r\n`# compute log-Mel input features from input audio array\r\n batch[\"input_features\"] = processor.feature_extractor(audio[\"array\"], \r\n sampling_rate=audio[\"sampling_rate\"]).input_features[0]\r\n`\r\n\r\nWhen I remove this line, the final cache files are approximately the same size as the initial dataset.\r\n\r\nCan I check whether this is expected behavior with the whisper feature extractor? I cant imagine the spectrograms are that large!\r\n\r\nThank you so much for the help!", "I'm having a similar issue with the spectrographs taking up an incredibly large amount of space. (i.e. 100GB for 3GB of audio). Is this really normal behavior?", "Upon taking a look at the hex contents of the mapped dataset files I found that the overwhelming majority of the data contained within them was duplicated junk similar to this. I'm not very familiar with the inner workings of AI but I have to assume this is an inefficient way of storing data at best and a bug at worst.\r\n![image](https://github.com/huggingface/datasets/assets/157770431/70bcbf59-d9ac-4fbf-9b8c-c9e3acc1b539)\r\n" ]
2024-04-07T02:52:06
2024-04-15T16:43:48
null
NONE
null
null
null
### Describe the bug Map has been taking extremely long to preprocess my data. It seems to process 1000 examples (which it does really fast in about 10 seconds), then it hangs for a good 1-2 minutes, before it moves on to the next batch of 1000 examples. It also keeps eating up my hard drive space for some reason by creating a file named tmp1335llua that is over 300GB. Trying to set num_proc to be >1 also gives me the following error: NameError: name 'processor' is not defined Please advise on how I could optimise this? ### Steps to reproduce the bug In general, I have been using map as per normal. Here is a snippet of my code: ```` ########################### DATASET LOADING AND PREP ######################### def load_custom_dataset(split): ds = [] if split == 'train': for dset in args.train_datasets: ds.append(load_from_disk(dset)) if split == 'test': for dset in args.test_datasets: ds.append(load_from_disk(dset)) ds_to_return = concatenate_datasets(ds) ds_to_return = ds_to_return.shuffle(seed=22) return ds_to_return def prepare_dataset(batch): # load and (possibly) resample audio data to 16kHz audio = batch["audio"] # compute log-Mel input features from input audio array batch["input_features"] = processor.feature_extractor(audio["array"], sampling_rate=audio["sampling_rate"]).input_features[0] # compute input length of audio sample in seconds batch["input_length"] = len(audio["array"]) / audio["sampling_rate"] # optional pre-processing steps transcription = batch["sentence"] if do_lower_case: transcription = transcription.lower() if do_remove_punctuation: transcription = normalizer(transcription).strip() # encode target text to label ids batch["labels"] = processor.tokenizer(transcription).input_ids return batch print('DATASET PREPARATION IN PROGRESS...') # case 3: combine_and_shuffle is true, only train provided # load train datasets train_set = load_custom_dataset('train') # split dataset raw_dataset = DatasetDict() raw_dataset = train_set.train_test_split(test_size = args.test_size, shuffle=True, seed=42) raw_dataset = raw_dataset.cast_column("audio", Audio(sampling_rate=args.sampling_rate)) print("Before Map:") print(raw_dataset) raw_dataset = raw_dataset.map(prepare_dataset, num_proc=1) print("After Map:") print(raw_dataset) ```` ### Expected behavior Based on the speed at which map is processing examples, I would expect a 5-6 hours completion for all mapping However, because it hangs every 1000 examples, I instead roughly estimate it would take about 40 hours! Moreover, i cant even finish the map because it keeps exponentially eating up my hard drive space ### Environment info - `datasets` version: 2.18.0 - Platform: Windows-10-10.0.22631-SP0 - Python version: 3.10.14 - `huggingface_hub` version: 0.22.2 - PyArrow version: 15.0.2 - Pandas version: 2.2.1 - `fsspec` version: 2024.2.0
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6789/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6789/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6787
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6787/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6787/comments
https://api.github.com/repos/huggingface/datasets/issues/6787/events
https://github.com/huggingface/datasets/issues/6787
2,229,103,264
I_kwDODunzps6E3Wqg
6,787
TimeoutError in map
{ "login": "Jiaxin-Wen", "id": 48146603, "node_id": "MDQ6VXNlcjQ4MTQ2NjAz", "avatar_url": "https://avatars.githubusercontent.com/u/48146603?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Jiaxin-Wen", "html_url": "https://github.com/Jiaxin-Wen", "followers_url": "https://api.github.com/users/Jiaxin-Wen/followers", "following_url": "https://api.github.com/users/Jiaxin-Wen/following{/other_user}", "gists_url": "https://api.github.com/users/Jiaxin-Wen/gists{/gist_id}", "starred_url": "https://api.github.com/users/Jiaxin-Wen/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Jiaxin-Wen/subscriptions", "organizations_url": "https://api.github.com/users/Jiaxin-Wen/orgs", "repos_url": "https://api.github.com/users/Jiaxin-Wen/repos", "events_url": "https://api.github.com/users/Jiaxin-Wen/events{/privacy}", "received_events_url": "https://api.github.com/users/Jiaxin-Wen/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "From my current understanding, this timeout is only used when we need to get the results.\r\n\r\nOne of:\r\n1. All tasks are done\r\n2. One worker died\r\n\r\nYour function should work fine and it's definitely a bug if it doesn't.", "When one of the `map`'s worker processes crashes, the linked code re-raises an error from the crash and returns it to the caller.\r\n\r\nIf your question is how to limit the time of long-running tasks/worker processes, such functionality doesn't exist in `datasets` (yet), which means you need to implement it yourself.\r\n\r\nE.g., you can implement it using the built-in `signal` module like this:\r\n```python\r\nimport time\r\nimport signal\r\nfrom contextlib import contextmanager\r\n\r\nfrom datasets import Dataset\r\n\r\n\r\n@contextmanager\r\ndef max_exec_time(t):\r\n def raise_timeout_handler(signum, frame):\r\n raise TimeoutError\r\n \r\n orig_handler = signal.getsignal(signal.SIGALRM)\r\n signal.signal(signal.SIGALRM, raise_timeout_handler)\r\n try:\r\n signal.alarm(t)\r\n yield\r\n finally:\r\n signal.alarm(0)\r\n signal.signal(signal.SIGALRM, orig_handler)\r\n\r\n\r\ndef worker(example, rank):\r\n try:\r\n with max_exec_time(20): # 20 sec execution limit\r\n if rank % 2 == 0:\r\n time.sleep(50) # simulate a long-running task\r\n example[\"a\"] = 100\r\n except TimeoutError:\r\n example[\"a\"] = None # Or return empty batches here in the \"batched\" mode\r\n return example\r\n\r\ndata = Dataset.from_list([{\"a\": 1}, {\"a\": 2}])\r\ndata = data.map(worker, num_proc=2, with_rank=True)\r\nprint(data[0])\r\n```", "> From my current understanding, this timeout is only used when we need to get the results.\r\n> \r\n> One of:\r\n> \r\n> 1. All tasks are done\r\n> 2. One worker died\r\n> \r\n> Your function should work fine and it's definitely a bug if it doesn't.\r\n\r\nthanks for responding! can you reproduce the stuck with the above example code?", "> When one of the `map`'s worker processes crashes, the linked code re-raises an error from the crash and returns it to the caller.\r\n> \r\n> If your question is how to limit the time of long-running tasks/worker processes, such functionality doesn't exist in `datasets` (yet), which means you need to implement it yourself.\r\n> \r\n> E.g., you can implement it using the built-in `signal` module like this:\r\n> \r\n> ```python\r\n> import time\r\n> import signal\r\n> from contextlib import contextmanager\r\n> \r\n> from datasets import Dataset\r\n> \r\n> \r\n> @contextmanager\r\n> def max_exec_time(t):\r\n> def raise_timeout_handler(signum, frame):\r\n> raise TimeoutError\r\n> \r\n> orig_handler = signal.getsignal(signal.SIGALRM)\r\n> signal.signal(signal.SIGALRM, raise_timeout_handler)\r\n> try:\r\n> signal.alarm(t)\r\n> yield\r\n> finally:\r\n> signal.alarm(0)\r\n> signal.signal(signal.SIGALRM, orig_handler)\r\n> \r\n> \r\n> def worker(example, rank):\r\n> try:\r\n> with max_exec_time(20): # 20 sec execution limit\r\n> if rank % 2 == 0:\r\n> time.sleep(50) # simulate a long-running task\r\n> example[\"a\"] = 100\r\n> except TimeoutError:\r\n> example[\"a\"] = None # Or return empty batches here in the \"batched\" mode\r\n> return example\r\n> \r\n> data = Dataset.from_list([{\"a\": 1}, {\"a\": 2}])\r\n> data = data.map(worker, num_proc=2, with_rank=True)\r\n> print(data[0])\r\n> ```\r\n\r\nthanks for responding! However, I don't think we should use `signal` in the context of multiprocessing since sometimes it will crash one process and raise the following error\r\nhttps://github.com/huggingface/datasets/blob/c3ddb1ef00334a6f973679a51e783905fbc9ef0b/src/datasets/utils/py_utils.py#L664", "> thanks for responding! However, I don't think we should use signal in the context of multiprocessing since sometimes it will crash one process and raise the following error\r\n\r\nThe above code has `try/except` to catch the error from the handler. Or do you get an error other than `TimeoutError`?", "> > thanks for responding! However, I don't think we should use signal in the context of multiprocessing since sometimes it will crash one process and raise the following error\r\n> \r\n> The above code has `try/except` to catch the error from the handler. Or do you get an error other than `TimeoutError`?\r\n\r\nyup, it will raise the RuntimeError: https://github.com/huggingface/datasets/blob/c3ddb1ef00334a6f973679a51e783905fbc9ef0b/src/datasets/utils/py_utils.py#L667C19-L670C22\r\n\r\n```\r\n raise RuntimeError(\r\n \"One of the subprocesses has abruptly died during map operation.\"\r\n \"To debug the error, disable multiprocessing.\"\r\n )\r\n```" ]
2024-04-06T06:25:39
2024-04-13T06:34:59
null
CONTRIBUTOR
null
null
null
### Describe the bug ```python from datasets import Dataset def worker(example): while True: continue example['a'] = 100 return example data = Dataset.from_list([{"a": 1}, {"a": 2}]) data = data.map(worker) print(data[0]) ``` I'm implementing a worker function whose runtime will depend on specific examples (e.g., while most examples take 0.01s in worker, several examples may take 50s). Therefore, I would like to know how the current implementation will handle those subprocesses that require a long (e.g., >= 5min) or even infinite time. I notice that the current implementation set a timeout of 0.05 second https://github.com/huggingface/datasets/blob/c3ddb1ef00334a6f973679a51e783905fbc9ef0b/src/datasets/utils/py_utils.py#L674 However, this example code still gets stuck. ### Steps to reproduce the bug run the example above ### Expected behavior I want to set a default worker to handle these timeout cases, instead of getting stuck ### Environment info main branch version
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6787/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6787/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6786
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6786/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6786/comments
https://api.github.com/repos/huggingface/datasets/issues/6786/events
https://github.com/huggingface/datasets/pull/6786
2,228,463,776
PR_kwDODunzps5r3kWg
6,786
Make Image cast storage faster
{ "login": "Modexus", "id": 37351874, "node_id": "MDQ6VXNlcjM3MzUxODc0", "avatar_url": "https://avatars.githubusercontent.com/u/37351874?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Modexus", "html_url": "https://github.com/Modexus", "followers_url": "https://api.github.com/users/Modexus/followers", "following_url": "https://api.github.com/users/Modexus/following{/other_user}", "gists_url": "https://api.github.com/users/Modexus/gists{/gist_id}", "starred_url": "https://api.github.com/users/Modexus/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Modexus/subscriptions", "organizations_url": "https://api.github.com/users/Modexus/orgs", "repos_url": "https://api.github.com/users/Modexus/repos", "events_url": "https://api.github.com/users/Modexus/events{/privacy}", "received_events_url": "https://api.github.com/users/Modexus/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6786). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
2024-04-05T17:00:46
2024-04-23T07:02:00
null
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6786", "html_url": "https://github.com/huggingface/datasets/pull/6786", "diff_url": "https://github.com/huggingface/datasets/pull/6786.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6786.patch", "merged_at": null }
PR for issue #6782. Makes `cast_storage` of the `Image` class faster by removing the slow call to `.pylist`. Instead directly convert each `ListArray` item to either `Array2DExtensionType` or `Array3DExtensionType`. This also preserves the `dtype` removing the warning if the array is already `uint8`.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6786/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6786/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6782
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6782/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6782/comments
https://api.github.com/repos/huggingface/datasets/issues/6782/events
https://github.com/huggingface/datasets/issues/6782
2,228,081,955
I_kwDODunzps6EzdUj
6,782
Image cast_storage very slow for arrays (e.g. numpy, tensors)
{ "login": "Modexus", "id": 37351874, "node_id": "MDQ6VXNlcjM3MzUxODc0", "avatar_url": "https://avatars.githubusercontent.com/u/37351874?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Modexus", "html_url": "https://github.com/Modexus", "followers_url": "https://api.github.com/users/Modexus/followers", "following_url": "https://api.github.com/users/Modexus/following{/other_user}", "gists_url": "https://api.github.com/users/Modexus/gists{/gist_id}", "starred_url": "https://api.github.com/users/Modexus/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Modexus/subscriptions", "organizations_url": "https://api.github.com/users/Modexus/orgs", "repos_url": "https://api.github.com/users/Modexus/repos", "events_url": "https://api.github.com/users/Modexus/events{/privacy}", "received_events_url": "https://api.github.com/users/Modexus/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "This may be a solution that only changes `cast_storage` of `Image`.\r\nHowever, I'm not totally sure that the assumptions hold that are made about the `ListArray`.\r\n\r\n```python\r\nelif pa.types.is_list(storage.type):\r\n from .features import Array3DExtensionType\r\n\r\n def get_shapes(arr):\r\n shape = ()\r\n while isinstance(arr, pa.ListArray):\r\n len_curr = len(arr)\r\n arr = arr.flatten()\r\n len_new = len(arr)\r\n shape = shape + (len_new // len_curr,)\r\n return shape\r\n\r\n def get_dtypes(arr):\r\n dtype = storage.type\r\n while hasattr(dtype, \"value_type\"):\r\n dtype = dtype.value_type\r\n return dtype\r\n\r\n arrays = []\r\n for i, is_null in enumerate(storage.is_null()):\r\n if not is_null.as_py():\r\n storage_part = storage.take([i])\r\n shape = get_shapes(storage_part)\r\n dtype = get_dtypes(storage_part)\r\n\r\n extension_type = Array3DExtensionType(shape=shape, dtype=str(dtype))\r\n array = pa.ExtensionArray.from_storage(extension_type, storage_part)\r\n arrays.append(array.to_numpy().squeeze(0))\r\n else:\r\n arrays.append(None)\r\n\r\n bytes_array = pa.array(\r\n [encode_np_array(arr)[\"bytes\"] if arr is not None else None for arr in arrays],\r\n type=pa.binary(),\r\n )\r\n path_array = pa.array([None] * len(storage), type=pa.string())\r\n storage = pa.StructArray.from_arrays(\r\n [bytes_array, path_array], [\"bytes\", \"path\"], mask=bytes_array.is_null()\r\n )\r\n```\r\n(Edited): to handle nulls\r\n\r\nNotably this doesn't change anything about the passing through of data or other things, just in the `Image` class.\r\nSeems quite fast:\r\n```bash\r\nFri Apr 5 17:55:51 2024 restats\r\n\r\n 63818 function calls (61995 primitive calls) in 0.812 seconds\r\n\r\n Ordered by: cumulative time\r\n List reduced from 1051 to 20 due to restriction <20>\r\n\r\n ncalls tottime percall cumtime percall filename:lineno(function)\r\n 47/1 0.000 0.000 0.810 0.810 {built-in method builtins.exec}\r\n 2/1 0.000 0.000 0.810 0.810 <string>:1(<module>)\r\n 2/1 0.000 0.000 0.809 0.809 arrow_dataset.py:594(wrapper)\r\n 2/1 0.000 0.000 0.809 0.809 arrow_dataset.py:551(wrapper)\r\n 2/1 0.000 0.000 0.809 0.809 arrow_dataset.py:2916(map)\r\n 3 0.000 0.000 0.807 0.269 arrow_dataset.py:3277(_map_single)\r\n 1 0.000 0.000 0.760 0.760 arrow_writer.py:589(finalize)\r\n 1 0.000 0.000 0.760 0.760 arrow_writer.py:423(write_examples_on_file)\r\n 1 0.000 0.000 0.759 0.759 arrow_writer.py:527(write_batch)\r\n 1 0.001 0.001 0.754 0.754 arrow_writer.py:161(__arrow_array__)\r\n 2/1 0.000 0.000 0.719 0.719 table.py:1800(wrapper)\r\n 1 0.000 0.000 0.719 0.719 table.py:1950(cast_array_to_feature)\r\n 1 0.006 0.006 0.718 0.718 image.py:209(cast_storage)\r\n 1 0.000 0.000 0.451 0.451 image.py:361(encode_np_array)\r\n 1 0.000 0.000 0.444 0.444 image.py:343(image_to_bytes)\r\n 1 0.000 0.000 0.413 0.413 Image.py:2376(save)\r\n 1 0.000 0.000 0.413 0.413 PngImagePlugin.py:1233(_save)\r\n 1 0.000 0.000 0.413 0.413 ImageFile.py:517(_save)\r\n 1 0.000 0.000 0.413 0.413 ImageFile.py:545(_encode_tile)\r\n 397 0.409 0.001 0.409 0.001 {method 'encode' of 'ImagingEncoder' objects}\r\n```", "Also encounter this problem. Has been strugging with it for a long time...", "This actually applies to all arrays (numpy or tensors like in torch), not only from external files.\r\n```python\r\nimport numpy as np\r\nimport datasets\r\n\r\nds = datasets.Dataset.from_dict(\r\n {\"image\": [np.random.randint(0, 255, (2048, 2048, 3), dtype=np.uint8)]},\r\n features=datasets.Features({\"image\": datasets.Image(decode=True)}),\r\n)\r\nds.set_format(\"numpy\")\r\n\r\nds = ds.map(load_from_cache_file=False)\r\n```" ]
2024-04-05T13:46:54
2024-04-10T14:36:13
null
CONTRIBUTOR
null
null
null
Update: see comments below ### Describe the bug Operations that save an image from a path are very slow. I believe the reason for this is that the image data (`numpy`) is converted into `pyarrow` format but then back to python using `.pylist()` before being converted to a numpy array again. `pylist` is already slow but used on a multi-dimensional numpy array such as an image it takes a very long time. From the trace below we can see that `__arrow_array__` takes a long time. It is currently also called in `get_inferred_type`, this should be removable #6781 but doesn't change the underyling issue. The conversion to `pyarrow` and back also leads to the `numpy` array having type `int64` which causes a warning message because the image type excepts `uint8`. However, originally the `numpy` image array was in `uint8`. ### Steps to reproduce the bug ```python from PIL import Image import numpy as np import datasets import cProfile image = Image.fromarray(np.random.randint(0, 255, (2048, 2048, 3), dtype=np.uint8)) image.save("test_image.jpg") ds = datasets.Dataset.from_dict( {"image": ["test_image.jpg"]}, features=datasets.Features({"image": datasets.Image(decode=True)}), ) # load as numpy array, e.g. for further processing with map # same result as map returning numpy arrays ds.set_format("numpy") cProfile.run("ds.map(writer_batch_size=1, load_from_cache_file=False)", "restats") ``` ```bash Fri Apr 5 14:56:17 2024 restats 66817 function calls (64992 primitive calls) in 33.382 seconds Ordered by: cumulative time List reduced from 1073 to 20 due to restriction <20> ncalls tottime percall cumtime percall filename:lineno(function) 46/1 0.000 0.000 33.382 33.382 {built-in method builtins.exec} 1 0.000 0.000 33.382 33.382 <string>:1(<module>) 1 0.000 0.000 33.382 33.382 arrow_dataset.py:594(wrapper) 1 0.000 0.000 33.382 33.382 arrow_dataset.py:551(wrapper) 1 0.000 0.000 33.379 33.379 arrow_dataset.py:2916(map) 4 0.000 0.000 33.327 8.332 arrow_dataset.py:3277(_map_single) 1 0.000 0.000 33.311 33.311 arrow_writer.py:465(write) 2 0.000 0.000 33.311 16.656 arrow_writer.py:423(write_examples_on_file) 1 0.000 0.000 33.311 33.311 arrow_writer.py:527(write_batch) 2 14.484 7.242 33.260 16.630 arrow_writer.py:161(__arrow_array__) 1 0.001 0.001 16.438 16.438 arrow_writer.py:121(get_inferred_type) 1 0.000 0.000 14.398 14.398 threading.py:637(wait) 1 0.000 0.000 14.398 14.398 threading.py:323(wait) 8 14.398 1.800 14.398 1.800 {method 'acquire' of '_thread.lock' objects} 4/2 0.000 0.000 4.337 2.169 table.py:1800(wrapper) 2 0.000 0.000 4.337 2.169 table.py:1950(cast_array_to_feature) 2 0.475 0.238 4.337 2.169 image.py:209(cast_storage) 9 2.583 0.287 2.583 0.287 {built-in method numpy.array} 2 0.000 0.000 1.284 0.642 image.py:319(encode_np_array) 2 0.000 0.000 1.246 0.623 image.py:301(image_to_bytes) ``` ### Expected behavior The `numpy` image data should be passed through as it will be directly consumed by `pillow` to convert it to bytes. As an example one can replace `list_of_np_array_to_pyarrow_listarray(data)` in `__arrow_array__` with just `out = data` as a test. We have to change `cast_storage` of the `Image` feature so it handles the passed through data (& if to handle type before) ```python bytes_array = pa.array( [encode_np_array(arr)["bytes"] if arr is not None else None for arr in storage], type=pa.binary(), ) ``` Leading to the following: ```bash Fri Apr 5 15:44:27 2024 restats 66419 function calls (64595 primitive calls) in 0.937 seconds Ordered by: cumulative time List reduced from 1023 to 20 due to restriction <20> ncalls tottime percall cumtime percall filename:lineno(function) 47/1 0.000 0.000 0.935 0.935 {built-in method builtins.exec} 2/1 0.000 0.000 0.935 0.935 <string>:1(<module>) 2/1 0.000 0.000 0.934 0.934 arrow_dataset.py:594(wrapper) 2/1 0.000 0.000 0.934 0.934 arrow_dataset.py:551(wrapper) 2/1 0.000 0.000 0.934 0.934 arrow_dataset.py:2916(map) 4 0.000 0.000 0.933 0.233 arrow_dataset.py:3277(_map_single) 1 0.000 0.000 0.883 0.883 arrow_writer.py:466(write) 2 0.000 0.000 0.883 0.441 arrow_writer.py:424(write_examples_on_file) 1 0.000 0.000 0.882 0.882 arrow_writer.py:528(write_batch) 2 0.000 0.000 0.877 0.439 arrow_writer.py:161(__arrow_array__) 4/2 0.000 0.000 0.877 0.439 table.py:1800(wrapper) 2 0.000 0.000 0.877 0.439 table.py:1950(cast_array_to_feature) 2 0.009 0.005 0.877 0.439 image.py:209(cast_storage) 2 0.000 0.000 0.868 0.434 image.py:335(encode_np_array) 2 0.000 0.000 0.856 0.428 image.py:317(image_to_bytes) 2 0.000 0.000 0.822 0.411 Image.py:2376(save) 2 0.000 0.000 0.822 0.411 PngImagePlugin.py:1233(_save) 2 0.000 0.000 0.822 0.411 ImageFile.py:517(_save) 2 0.000 0.000 0.821 0.411 ImageFile.py:545(_encode_tile) 589 0.803 0.001 0.803 0.001 {method 'encode' of 'ImagingEncoder' objects} ``` This is of course only a test as it passes through all `numpy` arrays irrespective of if they should be an image. Also I guess `cast_storage` is meant for casting `pyarrow` storage exclusively. Converting to `pyarrow` array seems like a good solution as it also handles `pytorch` tensors etc., maybe there is a more efficient way to create a PIL image from a `pyarrow` array? Not sure how this should be handled but I would be happy to help if there is a good solution. ### Environment info - `datasets` version: 2.18.1.dev0 - Platform: Linux-6.7.11-200.fc39.x86_64-x86_64-with-glibc2.38 - Python version: 3.12.2 - `huggingface_hub` version: 0.22.2 - PyArrow version: 15.0.2 - Pandas version: 2.2.1 - `fsspec` version: 2024.3.1
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6782/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6782/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6778
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6778/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6778/comments
https://api.github.com/repos/huggingface/datasets/issues/6778/events
https://github.com/huggingface/datasets/issues/6778
2,226,040,636
I_kwDODunzps6Erq88
6,778
Dataset.to_csv() missing commas in columns with lists
{ "login": "mpickard-dataprof", "id": 100041276, "node_id": "U_kgDOBfaCPA", "avatar_url": "https://avatars.githubusercontent.com/u/100041276?v=4", "gravatar_id": "", "url": "https://api.github.com/users/mpickard-dataprof", "html_url": "https://github.com/mpickard-dataprof", "followers_url": "https://api.github.com/users/mpickard-dataprof/followers", "following_url": "https://api.github.com/users/mpickard-dataprof/following{/other_user}", "gists_url": "https://api.github.com/users/mpickard-dataprof/gists{/gist_id}", "starred_url": "https://api.github.com/users/mpickard-dataprof/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mpickard-dataprof/subscriptions", "organizations_url": "https://api.github.com/users/mpickard-dataprof/orgs", "repos_url": "https://api.github.com/users/mpickard-dataprof/repos", "events_url": "https://api.github.com/users/mpickard-dataprof/events{/privacy}", "received_events_url": "https://api.github.com/users/mpickard-dataprof/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "Hello!\r\n\r\nThis is due to how pandas write numpy arrays to csv. [Source](https://stackoverflow.com/questions/54753179/to-csv-saves-np-array-as-string-instead-of-as-a-list)\r\nTo fix this, you can convert them to list yourselves.\r\n\r\n```python\r\ndf = ds.to_pandas()\r\ndf['int'] = df['int'].apply(lambda arr: list(arr))\r\ndf.to_csv(index=False, '../output/temp.csv')\r\n```\r\n\r\nI think it would be good if `datasets` would do the conversion itself, but it's a breaking change and I would wait for the greenlight from someone from HF." ]
2024-04-04T16:46:13
2024-04-08T15:24:41
null
NONE
null
null
null
### Describe the bug The `to_csv()` method does not output commas in lists. So when the Dataset is loaded back in the data structure of the column with a list is not correct. Here's an example: Obviously, it's not as trivial as inserting commas in the list, since its a comma-separated file. But hopefully there's a way to export the list in a way that it'll be imported by `load_dataset()` correctly. ### Steps to reproduce the bug Here's some code to reproduce the bug: ```python from datasets import Dataset ds = Dataset.from_dict( { "pokemon": ["bulbasaur", "squirtle"], "type": ["grass", "water"] } ) def ascii_to_hex(text): return [ord(c) for c in text] ds = ds.map(lambda x: {"int": ascii_to_hex(x['pokemon'])}) ds.to_csv('../output/temp.csv') ``` temp.csv then contains: ``` ### Expected behavior ACTUAL OUTPUT: ``` pokemon,type,int bulbasaur,grass,[ 98 117 108 98 97 115 97 117 114] squirtle,water,[115 113 117 105 114 116 108 101] ``` EXPECTED OUTPUT: ``` pokemon,type,int bulbasaur,grass,[98, 117, 108, 98, 97, 115, 97, 117, 114] squirtle,water,[115, 113, 117, 105, 114, 116, 108, 101] ``` or probably something more like this since it's a CSV file: ``` pokemon,type,int bulbasaur,grass,"[98, 117, 108, 98, 97, 115, 97, 117, 114]" squirtle,water,"[115, 113, 117, 105, 114, 116, 108, 101]" ``` ### Environment info ### Package Version Name: datasets Version: 2.16.1 ### Python version: 3.10.12 ### OS Info PRETTY_NAME="Ubuntu 22.04.4 LTS" NAME="Ubuntu" VERSION_ID="22.04" VERSION="22.04.4 LTS (Jammy Jellyfish)" VERSION_CODENAME=jammy ID=ubuntu ID_LIKE=debian ... UBUNTU_CODENAME=jammy
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6778/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6778/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6777
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6777/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6777/comments
https://api.github.com/repos/huggingface/datasets/issues/6777/events
https://github.com/huggingface/datasets/issues/6777
2,224,611,247
I_kwDODunzps6EmN-v
6,777
.Jsonl metadata not detected
{ "login": "nighting0le01", "id": 81643693, "node_id": "MDQ6VXNlcjgxNjQzNjkz", "avatar_url": "https://avatars.githubusercontent.com/u/81643693?v=4", "gravatar_id": "", "url": "https://api.github.com/users/nighting0le01", "html_url": "https://github.com/nighting0le01", "followers_url": "https://api.github.com/users/nighting0le01/followers", "following_url": "https://api.github.com/users/nighting0le01/following{/other_user}", "gists_url": "https://api.github.com/users/nighting0le01/gists{/gist_id}", "starred_url": "https://api.github.com/users/nighting0le01/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/nighting0le01/subscriptions", "organizations_url": "https://api.github.com/users/nighting0le01/orgs", "repos_url": "https://api.github.com/users/nighting0le01/repos", "events_url": "https://api.github.com/users/nighting0le01/events{/privacy}", "received_events_url": "https://api.github.com/users/nighting0le01/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "Hi! `metadata.jsonl` (or `metadata.csv`) is the only allowed name for the `imagefolder`'s metadata files.", "@mariosasko hey i tried with metadata.jsonl also and it still doesn't get the right columns", "@mariosasko it says metadata.csv not found\r\n<img width=\"1150\" alt=\"image\" src=\"https://github.com/huggingface/datasets/assets/81643693/3754980c-6185-4413-88fa-b499bcdd4195\">\r\n\r\ndataset = load_dataset('/dataset',metadata.csv) \r\n\r\n| workspace\r\n|| source code\r\n| dataset\r\n| |-- images\r\n| |-- metadata.csv\r\n| |-- metadata.jsonl\r\n| |-- padded_images\r\n\r\nExample of metadata.jsonl file\r\n{\"caption\": \"a drawing depicts a full shot of a black t-shirt with a triangular pattern on the front there is a white label on the left side of the triangle\", \"image\": \"images/212734.png\", \"gaussian_padded_image\": \"padded_images/p_212734.png\"}\r\n{\"caption\": \"an eye-level full shot of a large elephant and a baby elephant standing in a watering hole on the left side is a small elephant with its head turned to the right of dry land, trees, and bushes\", \"image\": \"images/212735.png\", \"gaussian_padded_image\": \"padded_images/p_212735.png\"}\r\n", "Loading more than one image per row with `imagefolder` is not supported currently. You can subscribe to https://github.com/huggingface/datasets/issues/5760 to see when it will be.\r\n\r\nInstead, you can load the dataset with `Dataset.from_generator`:\r\n```python\r\nimport json\r\nfrom datasets import Dataset, Value, Image, Features\r\n\r\ndef gen():\r\n with open(\"./dataset/metadata.jsonl\") as f:\r\n for line in f:\r\n line = json.loads(line)\r\n yield {\"caption\": line[\"caption\"], \"image\": os.path.join(\"./dataset\", line[\"image\"], \"gaussian_padded_image\": os.path.join(\"./dataset\", line[\"gaussian_padded_image\"]))}\r\n\r\nfeatures = Features({\"caption\": Value(\"string\"), \"image\": Image(), \"gaussian_padded_image\": Image()})\r\ndataset = Dataset.from_generator(gen, features=features)\r\n```\r\n(E.g., if you want to share this dataset on the Hub, you can call `dataset.push_to_hub(...)` afterward)", "hi Thanks for sharing this, Actually I was trying with a webdataset format of the data as well and it did'nt work. Could you share how i can create Dataset object from webdataset format of this data?" ]
2024-04-04T06:31:53
2024-04-05T21:14:48
null
NONE
null
null
null
### Describe the bug Hi I have the following directory structure: |--dataset | |-- images | |-- metadata1000.csv | |-- metadata1000.jsonl | |-- padded_images Example of metadata1000.jsonl file {"caption": "a drawing depicts a full shot of a black t-shirt with a triangular pattern on the front there is a white label on the left side of the triangle", "image": "images/212734.png", "gaussian_padded_image": "padded_images/p_212734.png"} {"caption": "an eye-level full shot of a large elephant and a baby elephant standing in a watering hole on the left side is a small elephant with its head turned to the right of dry land, trees, and bushes", "image": "images/212735.png", "gaussian_padded_image": "padded_images/p_212735.png"} . . . I'm trying to use dataset = load_dataset("imagefolder", data_dir='/dataset/', split='train') to load the the dataset, however it is not able to load according to the fields in the metadata1000.jsonl . please assist to load the data properly also getting ``` File "/workspace/train_trans_vae.py", line 1089, in <module> print(get_metadata_patterns('/dataset/')) File "/opt/conda/lib/python3.10/site-packages/datasets/data_files.py", line 499, in get_metadata_patterns raise FileNotFoundError(f"The directory at {base_path} doesn't contain any metadata file") from None FileNotFoundError: The directory at /dataset/ doesn't contain any metadata file ``` when trying ``` from datasets.data_files import get_metadata_patterns print(get_metadata_patterns('/dataset/')) ``` ### Steps to reproduce the bug dataset Version: 2.18.0 make a similar jsonl and similar directory format ### Expected behavior creates a dataset object with the column names, caption,image,gaussian_padded_image ### Environment info dataset Version: 2.18.0
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6777/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6777/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6775
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6775/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6775/comments
https://api.github.com/repos/huggingface/datasets/issues/6775/events
https://github.com/huggingface/datasets/issues/6775
2,223,457,792
I_kwDODunzps6Eh0YA
6,775
IndexError: Invalid key: 0 is out of bounds for size 0
{ "login": "kk2491", "id": 38481564, "node_id": "MDQ6VXNlcjM4NDgxNTY0", "avatar_url": "https://avatars.githubusercontent.com/u/38481564?v=4", "gravatar_id": "", "url": "https://api.github.com/users/kk2491", "html_url": "https://github.com/kk2491", "followers_url": "https://api.github.com/users/kk2491/followers", "following_url": "https://api.github.com/users/kk2491/following{/other_user}", "gists_url": "https://api.github.com/users/kk2491/gists{/gist_id}", "starred_url": "https://api.github.com/users/kk2491/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/kk2491/subscriptions", "organizations_url": "https://api.github.com/users/kk2491/orgs", "repos_url": "https://api.github.com/users/kk2491/repos", "events_url": "https://api.github.com/users/kk2491/events{/privacy}", "received_events_url": "https://api.github.com/users/kk2491/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "Same problem.", "Hi! You should be able to fix this by passing `remove_unused_columns=False` to the `transformers` `TrainingArguments` as explained in https://github.com/huggingface/peft/issues/1299.\r\n\r\n(I'm not familiar with Vertex AI, but I'd assume `remove_unused_columns` can be passed as a flag to the docker container) ", "I had the same problem, but I spent a whole day trying different combination with my own dataset with the example data set and found the reason: the example data is multi-turn conversation between human and assistant, so # Humman or # Assistant appear at least twice. If your own custom data only has single turn conversation, it might end up with the same error. What you can do is repeat your single turn conversation twice in your training data (keep the key 'text' the same) and maybe it works. I guess the reason is the specific way processing the data requires and counts multi-turn only (single turn will be discarded so it ends up with no training data), but since I am using Google Vertex AI, I don't have direct access to the underlying code so that was just my guess. ", "> Hi! You should be able to fix this by passing `remove_unused_columns=False` to the `transformers` `TrainingArguments` as explained in [huggingface/peft#1299](https://github.com/huggingface/peft/issues/1299).\r\n> \r\n> (I'm not familiar with Vertex AI, but I'd assume `remove_unused_columns` can be passed as a flag to the docker container)\r\n\r\n@mariosasko Thanks for the response and suggestion. \r\nWhen I set `remove_unused_columns` as `False` , I end up getting different error (will post the error soon). \r\nEither the Vertex-AI does not support `remove_unused_columns` or my dataset is completely wrong. \r\n\r\nThank you, \r\nKK", "> I had the same problem, but I spent a whole day trying different combination with my own dataset with the example data set and found the reason: the example data is multi-turn conversation between human and assistant, so # Humman or # Assistant appear at least twice. If your own custom data only has single turn conversation, it might end up with the same error. What you can do is repeat your single turn conversation twice in your training data (keep the key 'text' the same) and maybe it works. I guess the reason is the specific way processing the data requires and counts multi-turn only (single turn will be discarded so it ends up with no training data), but since I am using Google Vertex AI, I don't have direct access to the underlying code so that was just my guess.\r\n\r\n@cyberyu Thanks for your suggestions. \r\nI have tried the approach you suggested, copied the same conversation in each jsonl element so every jsonl item has 2 `HUMAN` and `ASSISTANT`. \r\nHowever in my case, the issue persists. I am gonna give few more tries, and post the results here. \r\nYou can find my dataset [here](https://huggingface.co/datasets/kk2491/test/tree/main) \r\n\r\nThank you, \r\nKK ", "> > I had the same problem, but I spent a whole day trying different combination with my own dataset with the example data set and found the reason: the example data is multi-turn conversation between human and assistant, so # Humman or # Assistant appear at least twice. If your own custom data only has single turn conversation, it might end up with the same error. What you can do is repeat your single turn conversation twice in your training data (keep the key 'text' the same) and maybe it works. I guess the reason is the specific way processing the data requires and counts multi-turn only (single turn will be discarded so it ends up with no training data), but since I am using Google Vertex AI, I don't have direct access to the underlying code so that was just my guess.\r\n> \r\n> @cyberyu Thanks for your suggestions. I have tried the approach you suggested, copied the same conversation in each jsonl element so every jsonl item has 2 `HUMAN` and `ASSISTANT`. However in my case, the issue persists. I am gonna give few more tries, and post the results here. You can find my dataset [here](https://huggingface.co/datasets/kk2491/test/tree/main)\r\n> \r\n> Thank you, KK\r\n\r\nI think another reason is your training sample length is too short. I saw a relevant report (https://discuss.huggingface.co/t/indexerror-invalid-key-16-is-out-of-bounds-for-size-0/14298/16) stating that the processing code might have a bug discarding sequence length short than max_seq_length, which is 512. Not sure the Vertex AI backend code has fixed that bug or not. So I tried to add some garbage content in your data, and extended the length longer than 512 for a single turn, and repeated twice. You can copy the following line as 5 repeated lines as your training data jsonl file of five samples (no eval or test needed, for speed up, set evaluation step to 5 and training step to 10,), and it will pass.\r\n\r\n{\"text\":\"### Human: You are a helpful AI Assistant familiar with customer service. You are a helpful AI Assistant familiar with customer service. You are a helpful AI Assistant familiar with customer service. You are a helpful AI Assistant familiar with customer service. You are a helpful AI Assistant familiar with customer service. You are a helpful AI Assistant familiar with customer service. You are a helpful AI Assistant familiar with customer service. You are a helpful AI Assistant familiar with customer service. You are a helpful AI Assistant familiar with customer service. You are a helpful AI Assistant familiar with customer service. You are a helpful AI Assistant familiar with customer service. You are a helpful AI Assistant familiar with customer service. You are a helpful AI Assistant familiar with customer service. You will handle customers queries and provide effective help message. Please provide response to 'Can Interplai software optimize routes for minimizing package handling and transfer times in distribution centers'? ### Assistant: Yes, Interplai software can optimize routes for distribution centers by streamlining package handling processes, minimizing transfer times between loading docks and storage areas, and optimizing warehouse layouts for efficient order fulfillment. ### Human: You are a helpful AI Assistant familiar with customer service. You are a helpful AI Assistant familiar with customer service. You are a helpful AI Assistant familiar with customer service. You are a helpful AI Assistant familiar with customer service. You are a helpful AI Assistant familiar with customer service. You are a helpful AI Assistant familiar with customer service. You are a helpful AI Assistant familiar with customer service. You are a helpful AI Assistant familiar with customer service. You are a helpful AI Assistant familiar with customer service. You are a helpful AI Assistant familiar with customer service. You are a helpful AI Assistant familiar with customer service. You are a helpful AI Assistant familiar with customer service. You are a helpful AI Assistant familiar with customer service. You will handle customers queries and provide effective help message. Please provide response to 'Can Interplai software optimize routes for minimizing package handling and transfer times in distribution centers'? ### Assistant: Yes, Interplai software can optimize routes for distribution centers by streamlining package handling processes, minimizing transfer times between loading docks and storage areas, and optimizing warehouse layouts for efficient order fulfillment.\"}\r\n", "@cyberyu **Thank you so much, You saved my day (+ so many days)**. \r\nI tried the example you provided above, and the training is successfully completed in Vertex-AI (through GUI). \r\nI never thought there would be constraints on the length of the samples and also on the number of turns. \r\nI will update my complete dataset and see update here once the training is completed. \r\n\r\nThank you, \r\nKK " ]
2024-04-03T17:06:30
2024-04-08T01:24:35
null
NONE
null
null
null
### Describe the bug I am trying to fine-tune llama2-7b model in GCP. The notebook I am using for this can be found [here](https://github.com/GoogleCloudPlatform/vertex-ai-samples/blob/main/notebooks/community/model_garden/model_garden_pytorch_llama2_peft_finetuning.ipynb). When I use the dataset given in the example, the training gets successfully completed (example dataset can be found [here](https://huggingface.co/datasets/timdettmers/openassistant-guanaco)). However when I use my own dataset which is in the same format as the example dataset, I get the below error (my dataset can be found [here](https://huggingface.co/datasets/kk2491/finetune_dataset_002)). ![image](https://github.com/huggingface/datasets/assets/38481564/47fa2de3-95e0-478b-a35f-58cbaf90427a) I see the files are being read correctly from the logs: ![image](https://github.com/huggingface/datasets/assets/38481564/b0b6316c-2cc7-476c-9674-ca2222c8f4e3) ### Steps to reproduce the bug 1. Clone the [vertex-ai-samples](https://github.com/GoogleCloudPlatform/vertex-ai-samples) repository. 2. Run the [llama2-7b peft fine-tuning](https://github.com/GoogleCloudPlatform/vertex-ai-samples/blob/main/notebooks/community/model_garden/model_garden_pytorch_llama2_peft_finetuning.ipynb). 3. Change the dataset `kk2491/finetune_dataset_002` ### Expected behavior The training should complete successfully, and model gets deployed to an endpoint. ### Environment info Python version : Python 3.10.12 Dataset : https://huggingface.co/datasets/kk2491/finetune_dataset_002
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6775/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6775/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6774
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6774/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6774/comments
https://api.github.com/repos/huggingface/datasets/issues/6774/events
https://github.com/huggingface/datasets/issues/6774
2,222,164,316
I_kwDODunzps6Ec4lc
6,774
Generating split is very slow when Image format is PNG
{ "login": "Tramac", "id": 22740819, "node_id": "MDQ6VXNlcjIyNzQwODE5", "avatar_url": "https://avatars.githubusercontent.com/u/22740819?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Tramac", "html_url": "https://github.com/Tramac", "followers_url": "https://api.github.com/users/Tramac/followers", "following_url": "https://api.github.com/users/Tramac/following{/other_user}", "gists_url": "https://api.github.com/users/Tramac/gists{/gist_id}", "starred_url": "https://api.github.com/users/Tramac/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Tramac/subscriptions", "organizations_url": "https://api.github.com/users/Tramac/orgs", "repos_url": "https://api.github.com/users/Tramac/repos", "events_url": "https://api.github.com/users/Tramac/events{/privacy}", "received_events_url": "https://api.github.com/users/Tramac/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "I think this is due to the speed of reading a `png` image using pillow compared to a `jpg` image.\r\nNotably the same is true with `tiff`, it is even faster than `jpg` in my case." ]
2024-04-03T07:47:31
2024-04-10T17:28:17
null
NONE
null
null
null
### Describe the bug When I create a dataset, it gets stuck while generating cached data. The image format is PNG, and it will not get stuck when the image format is jpeg. ![image](https://github.com/huggingface/datasets/assets/22740819/3b888fd8-e6d6-488f-b828-95a8f206a152) After debugging, I know that it is because of the `pa.array` operation in [arrow_writer](https://github.com/huggingface/datasets/blob/2.13.0/src/datasets/arrow_writer.py#L553), but i don't why. ### Steps to reproduce the bug ``` from datasets import Dataset def generator(lines): for line in lines: img = Image.open(open(line["url"], "rb")) # print(img.format) # "PNG" yield { "image": img, } lines = open(dataset_path, "r") dataset = Dataset.from_generator( generator, gen_kwargs={"lines": lines} ) ``` ### Expected behavior Generating split done. ### Environment info datasets 2.13.0
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6774/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6774/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6769
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6769/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6769/comments
https://api.github.com/repos/huggingface/datasets/issues/6769/events
https://github.com/huggingface/datasets/issues/6769
2,218,242,015
I_kwDODunzps6EN6_f
6,769
(Willing to PR) Datasets with custom python objects
{ "login": "fzyzcjy", "id": 5236035, "node_id": "MDQ6VXNlcjUyMzYwMzU=", "avatar_url": "https://avatars.githubusercontent.com/u/5236035?v=4", "gravatar_id": "", "url": "https://api.github.com/users/fzyzcjy", "html_url": "https://github.com/fzyzcjy", "followers_url": "https://api.github.com/users/fzyzcjy/followers", "following_url": "https://api.github.com/users/fzyzcjy/following{/other_user}", "gists_url": "https://api.github.com/users/fzyzcjy/gists{/gist_id}", "starred_url": "https://api.github.com/users/fzyzcjy/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/fzyzcjy/subscriptions", "organizations_url": "https://api.github.com/users/fzyzcjy/orgs", "repos_url": "https://api.github.com/users/fzyzcjy/repos", "events_url": "https://api.github.com/users/fzyzcjy/events{/privacy}", "received_events_url": "https://api.github.com/users/fzyzcjy/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
open
false
null
[]
null
[]
2024-04-01T13:18:47
2024-04-01T13:36:58
null
NONE
null
null
null
### Feature request Hi thanks for the library! I would like to have a huggingface Dataset, and one of its column is custom (non-serializable) Python objects. For example, a minimal code: ``` class MyClass: pass dataset = datasets.Dataset.from_list([ dict(a=MyClass(), b='hello'), ]) ``` It gives error: ``` ArrowInvalid: Could not convert <__main__.MyClass object at 0x7a852830d050> with type MyClass: did not recognize Python value type when inferring an Arrow data type ``` I guess it is because Dataset forces to convert everything into arrow format. However, is there any ways to make the scenario work? Thanks! ### Motivation (see above) ### Your contribution Yes, I am happy to PR! Cross-posted: https://discuss.huggingface.co/t/datasets-with-custom-python-objects/79050?u=fzyzcjy EDIT: possibly related https://github.com/huggingface/datasets/issues/5766
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6769/reactions", "total_count": 1, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 1 }
https://api.github.com/repos/huggingface/datasets/issues/6769/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6764
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6764/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6764/comments
https://api.github.com/repos/huggingface/datasets/issues/6764/events
https://github.com/huggingface/datasets/issues/6764
2,215,767,119
I_kwDODunzps6EEexP
6,764
load_dataset can't work with symbolic links
{ "login": "VladimirVincan", "id": 13640533, "node_id": "MDQ6VXNlcjEzNjQwNTMz", "avatar_url": "https://avatars.githubusercontent.com/u/13640533?v=4", "gravatar_id": "", "url": "https://api.github.com/users/VladimirVincan", "html_url": "https://github.com/VladimirVincan", "followers_url": "https://api.github.com/users/VladimirVincan/followers", "following_url": "https://api.github.com/users/VladimirVincan/following{/other_user}", "gists_url": "https://api.github.com/users/VladimirVincan/gists{/gist_id}", "starred_url": "https://api.github.com/users/VladimirVincan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/VladimirVincan/subscriptions", "organizations_url": "https://api.github.com/users/VladimirVincan/orgs", "repos_url": "https://api.github.com/users/VladimirVincan/repos", "events_url": "https://api.github.com/users/VladimirVincan/events{/privacy}", "received_events_url": "https://api.github.com/users/VladimirVincan/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
open
false
null
[]
null
[]
2024-03-29T17:49:28
2024-03-29T17:52:27
null
NONE
null
null
null
### Feature request Enable the `load_dataset` function to load local datasets with symbolic links. E.g, this dataset can be loaded: ├── example_dataset/ │ ├── data/ │ │ ├── train/ │ │ │ ├── file0 │ │ │ ├── file1 │ │ ├── dev/ │ │ │ ├── file2 │ │ │ ├── file3 │ ├── metadata.csv while this dataset can't: ├── example_dataset_symlink/ │ ├── data/ │ │ ├── train/ │ │ │ ├── sym0 -> file0 │ │ │ ├── sym1 -> file1 │ │ ├── dev/ │ │ │ ├── sym2 -> file2 │ │ │ ├── sym3 -> file3 │ ├── metadata.csv I have created an example dataset in order to reproduce the problem: 1. Unzip `example_dataset.zip`. 2. Run `no_symlink.sh`. Training should start without issues. 3. Run `symlink.sh`. You will see that all four examples will be in train split, instead of having two examples in train and two examples in dev. The script won't load the correct audio files. [example_dataset.zip](https://github.com/huggingface/datasets/files/14807053/example_dataset.zip) ### Motivation I have a very large dataset locally. Instead of initiating training on the entire dataset, I need to start training on smaller subsets of the data. Due to the purpose of the experiments I am running, I will need to create many smaller datasets with overlapping data. Instead of copying the all the files for each subset, I would prefer copying symbolic links of the data. This way, the memory usage would not significantly increase beyond the initial dataset size. Advantages of this approach: - It would leave a smaller memory footprint on the hard drive - Creating smaller datasets would be much faster ### Your contribution I would gladly contribute, if this is something useful to the community. It seems like a simple change of code, something like `file_path = os.path.realpath(file_path)` should be added before loading the files. If anyone has insights on how to incorporate this functionality, I would greatly appreciate your knowledge and input.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6764/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6764/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6763
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6763/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6763/comments
https://api.github.com/repos/huggingface/datasets/issues/6763/events
https://github.com/huggingface/datasets/pull/6763
2,213,440,804
PR_kwDODunzps5rENat
6,763
Fix issue with case sensitivity when loading dataset from local cache
{ "login": "Sumsky21", "id": 58537872, "node_id": "MDQ6VXNlcjU4NTM3ODcy", "avatar_url": "https://avatars.githubusercontent.com/u/58537872?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Sumsky21", "html_url": "https://github.com/Sumsky21", "followers_url": "https://api.github.com/users/Sumsky21/followers", "following_url": "https://api.github.com/users/Sumsky21/following{/other_user}", "gists_url": "https://api.github.com/users/Sumsky21/gists{/gist_id}", "starred_url": "https://api.github.com/users/Sumsky21/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Sumsky21/subscriptions", "organizations_url": "https://api.github.com/users/Sumsky21/orgs", "repos_url": "https://api.github.com/users/Sumsky21/repos", "events_url": "https://api.github.com/users/Sumsky21/events{/privacy}", "received_events_url": "https://api.github.com/users/Sumsky21/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "I also need this feature for [\"Cnam-LMSSC/vibravox \"](https://huggingface.co/datasets/Cnam-LMSSC/vibravox)\r\n\r\n\r\nEDIT: Upgrading to `2.19.0` fixed my problem thanks to [this PR](https://github.com/huggingface/datasets/pull/6754)" ]
2024-03-28T14:52:35
2024-04-20T12:16:45
null
NONE
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6763", "html_url": "https://github.com/huggingface/datasets/pull/6763", "diff_url": "https://github.com/huggingface/datasets/pull/6763.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6763.patch", "merged_at": null }
When a dataset with upper-cases in its name is first loaded using `load_dataset()`, the local cache directory is created with all lowercase letters. However, upon subsequent loads, the current version attempts to locate the cache directory using the dataset's original name, which includes uppercase letters. This discrepancy can lead to confusion and, particularly in offline mode, results in errors. ### Reproduce ```bash ~$ python Python 3.9.19 (main, Mar 21 2024, 17:11:28) [GCC 11.2.0] :: Anaconda, Inc. on linux Type "help", "copyright", "credits" or "license" for more information. >>> from datasets import load_dataset >>> dataset = load_dataset("locuslab/TOFU", "full") >>> quit() ~$ export HF_DATASETS_OFFLINE=1 ~$ python Python 3.9.19 (main, Mar 21 2024, 17:11:28) [GCC 11.2.0] :: Anaconda, Inc. on linux Type "help", "copyright", "credits" or "license" for more information. >>> from datasets import load_dataset >>> dataset = load_dataset("locuslab/TOFU", "full") Traceback (most recent call last): File "<stdin>", line 1, in <module> File "xxxxxx/anaconda3/envs/llm/lib/python3.9/site-packages/datasets/load.py", line 2556, in load_dataset builder_instance = load_dataset_builder( File "xxxxxx/anaconda3/envs/llm/lib/python3.9/site-packages/datasets/load.py", line 2228, in load_dataset_builder dataset_module = dataset_module_factory( File "xxxxxx/anaconda3/envs/llm/lib/python3.9/site-packages/datasets/load.py", line 1871, in dataset_module_factory raise ConnectionError(f"Couldn't reach the Hugging Face Hub for dataset '{path}': {e1}") from None ConnectionError: Couldn't reach the Hugging Face Hub for dataset 'locuslab/TOFU': Offline mode is enabled. >>> ``` I fix this issue by lowering the dataset name (`.lower()`) when generating cache_dir.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6763/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6763/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6762
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6762/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6762/comments
https://api.github.com/repos/huggingface/datasets/issues/6762/events
https://github.com/huggingface/datasets/pull/6762
2,213,275,468
PR_kwDODunzps5rDpBe
6,762
Allow polars as valid output type
{ "login": "psmyth94", "id": 11325244, "node_id": "MDQ6VXNlcjExMzI1MjQ0", "avatar_url": "https://avatars.githubusercontent.com/u/11325244?v=4", "gravatar_id": "", "url": "https://api.github.com/users/psmyth94", "html_url": "https://github.com/psmyth94", "followers_url": "https://api.github.com/users/psmyth94/followers", "following_url": "https://api.github.com/users/psmyth94/following{/other_user}", "gists_url": "https://api.github.com/users/psmyth94/gists{/gist_id}", "starred_url": "https://api.github.com/users/psmyth94/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/psmyth94/subscriptions", "organizations_url": "https://api.github.com/users/psmyth94/orgs", "repos_url": "https://api.github.com/users/psmyth94/repos", "events_url": "https://api.github.com/users/psmyth94/events{/privacy}", "received_events_url": "https://api.github.com/users/psmyth94/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6762). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
2024-03-28T13:40:28
2024-04-25T16:33:03
null
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6762", "html_url": "https://github.com/huggingface/datasets/pull/6762", "diff_url": "https://github.com/huggingface/datasets/pull/6762.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6762.patch", "merged_at": null }
I was trying out polars as an output for a map function and found that it wasn't a valid return type in `validate_function_output`. Thought that we should accommodate this by creating and adding it to the `allowed_processed_input_types` variable.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6762/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6762/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6760
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6760/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6760/comments
https://api.github.com/repos/huggingface/datasets/issues/6760/events
https://github.com/huggingface/datasets/issues/6760
2,212,288,122
I_kwDODunzps6D3NZ6
6,760
Load codeparrot/apps raising UnicodeDecodeError in datasets-2.18.0
{ "login": "yucc-leon", "id": 17897916, "node_id": "MDQ6VXNlcjE3ODk3OTE2", "avatar_url": "https://avatars.githubusercontent.com/u/17897916?v=4", "gravatar_id": "", "url": "https://api.github.com/users/yucc-leon", "html_url": "https://github.com/yucc-leon", "followers_url": "https://api.github.com/users/yucc-leon/followers", "following_url": "https://api.github.com/users/yucc-leon/following{/other_user}", "gists_url": "https://api.github.com/users/yucc-leon/gists{/gist_id}", "starred_url": "https://api.github.com/users/yucc-leon/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/yucc-leon/subscriptions", "organizations_url": "https://api.github.com/users/yucc-leon/orgs", "repos_url": "https://api.github.com/users/yucc-leon/repos", "events_url": "https://api.github.com/users/yucc-leon/events{/privacy}", "received_events_url": "https://api.github.com/users/yucc-leon/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "The same error with mteb datasets.", "Unfortunately, I'm unable to reproduce this error locally or on Colab.", "Here is the requirements.txt from a clean virtual environment (managed by conda) where I only install `datasets` by \r\n`pip install datasets`. \r\nThe pip list:\r\n```\r\naiohttp==3.9.3\r\naiosignal==1.3.1\r\nattrs==23.2.0\r\ncertifi==2024.2.2\r\ncharset-normalizer==3.3.2\r\ndatasets==2.18.0\r\ndill==0.3.8\r\nfilelock==3.13.3\r\nfrozenlist==1.4.1\r\nfsspec==2024.2.0\r\nhuggingface-hub==0.22.2\r\nidna==3.6\r\nmultidict==6.0.5\r\nmultiprocess==0.70.16\r\nnumpy==1.26.4\r\npackaging==24.0\r\npandas==2.2.1\r\npyarrow==15.0.2\r\npyarrow-hotfix==0.6\r\npython-dateutil==2.9.0.post0\r\npytz==2024.1\r\nPyYAML==6.0.1\r\nrequests==2.31.0\r\nsix==1.16.0\r\ntqdm==4.66.2\r\ntyping_extensions==4.11.0\r\ntzdata==2024.1\r\nurllib3==2.2.1\r\nxxhash==3.4.1\r\nyarl==1.9.4\r\n```\r\nAnd the error can be reproduced.\r\n\r\nDowngrading to datasets==2.14.6 changes some packages' versions:\r\n\r\n```\r\nSuccessfully installed datasets-2.14.6 dill-0.3.7 fsspec-2023.10.0 multiprocess-0.70.15\r\n```\r\nand the dataset can be downloaded and loaded. \r\n\r\nThen I upgrade the version to 2.18.0 again; now the dataset can be loaded with such a line:\r\n```Using the latest cached version of the module from /home/xxx/.cache/huggingface/modules/datasets_modules/datasets/codeparrot--apps/04ac807715d07d6e5cc580f59cdc8213cd7dc4529d0bb819cca72c9f8e8c1aa5 (last modified on Sun Apr 7 09:06:43 2024) since it couldn't be found locally at codeparrot/apps, or remotely on the Hugging Face Hub. ```\r\n\r\nSo the latest version works wrong when requesting the dataset info. \r\n\r\n**But if you cannot reproduce this, I may ignore some detailed information: I use `HF_ENDPOINT=https://hf-mirror.com` for some reason (if not use this I cannot connect to huggingface resources) and the error occurs when requesting the dataset's info card.** \r\nMaybe the error is caused by this environment variable.\r\nI'll open an issue in the author's repo now." ]
2024-03-28T03:44:26
2024-04-07T09:40:40
null
NONE
null
null
null
### Describe the bug This happens with datasets-2.18.0; I downgraded the version to 2.14.6 fixing this temporarily. ``` Traceback (most recent call last): File "/home/xxx/miniconda3/envs/py310/lib/python3.10/site-packages/datasets/load.py", line 2556, in load_dataset builder_instance = load_dataset_builder( File "/home/xxx/miniconda3/envs/py310/lib/python3.10/site-packages/datasets/load.py", line 2228, in load_dataset_builder dataset_module = dataset_module_factory( File "/home/xxx/miniconda3/envs/py310/lib/python3.10/site-packages/datasets/load.py", line 1879, in dataset_module_factory raise e1 from None File "/home/xxx/miniconda3/envs/py310/lib/python3.10/site-packages/datasets/load.py", line 1831, in dataset_module_factory can_load_config_from_parquet_export = "DEFAULT_CONFIG_NAME" not in f.read() File "/home/xxx/miniconda3/envs/py310/lib/python3.10/codecs.py", line 322, in decode (result, consumed) = self._buffer_decode(data, self.errors, final) UnicodeDecodeError: 'utf-8' codec can't decode byte 0x8b in position 1: invalid start byte ``` ### Steps to reproduce the bug 1. Using Python3.10/3.11 2. Install datasets-2.18.0 3. test with ``` from datasets import load_dataset dataset = load_dataset("codeparrot/apps") ``` ### Expected behavior Normally it should manage to download and load the dataset without such error. ### Environment info Ubuntu, Python3.10/3.11
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6760/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6760/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6759
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6759/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6759/comments
https://api.github.com/repos/huggingface/datasets/issues/6759/events
https://github.com/huggingface/datasets/issues/6759
2,208,892,891
I_kwDODunzps6DqQfb
6,759
Persistent multi-process Pool
{ "login": "fostiropoulos", "id": 4337024, "node_id": "MDQ6VXNlcjQzMzcwMjQ=", "avatar_url": "https://avatars.githubusercontent.com/u/4337024?v=4", "gravatar_id": "", "url": "https://api.github.com/users/fostiropoulos", "html_url": "https://github.com/fostiropoulos", "followers_url": "https://api.github.com/users/fostiropoulos/followers", "following_url": "https://api.github.com/users/fostiropoulos/following{/other_user}", "gists_url": "https://api.github.com/users/fostiropoulos/gists{/gist_id}", "starred_url": "https://api.github.com/users/fostiropoulos/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/fostiropoulos/subscriptions", "organizations_url": "https://api.github.com/users/fostiropoulos/orgs", "repos_url": "https://api.github.com/users/fostiropoulos/repos", "events_url": "https://api.github.com/users/fostiropoulos/events{/privacy}", "received_events_url": "https://api.github.com/users/fostiropoulos/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
open
false
null
[]
null
[]
2024-03-26T17:35:25
2024-03-26T17:35:25
null
NONE
null
null
null
### Feature request Running .map and filter functions with `num_procs` consecutively instantiates several multiprocessing pools iteratively. As instantiating a Pool is very resource intensive it can be a bottleneck to performing iteratively filtering. My ideas: 1. There should be an option to declare `persistent_workers` similar to pytorch DataLoader. Downside would be that would be complex to determine the correct resource allocation and deallocation of the pool. i.e. the dataset can outlive the utility of the pool. 2. Provide a pool as an argument. Downside would be the expertise required by the user. Upside, is that there is better resource management. ### Motivation Is really slow to iteratively perform map and filter operations on a dataset. ### Your contribution If approved I could integrate it. I would need to know what method would be most suitable to implement from the two options above.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6759/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6759/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6757
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6757/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6757/comments
https://api.github.com/repos/huggingface/datasets/issues/6757/events
https://github.com/huggingface/datasets/pull/6757
2,206,280,340
PR_kwDODunzps5qr7Li
6,757
Test disabling transformers containers in docs CI
{ "login": "Wauplin", "id": 11801849, "node_id": "MDQ6VXNlcjExODAxODQ5", "avatar_url": "https://avatars.githubusercontent.com/u/11801849?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Wauplin", "html_url": "https://github.com/Wauplin", "followers_url": "https://api.github.com/users/Wauplin/followers", "following_url": "https://api.github.com/users/Wauplin/following{/other_user}", "gists_url": "https://api.github.com/users/Wauplin/gists{/gist_id}", "starred_url": "https://api.github.com/users/Wauplin/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Wauplin/subscriptions", "organizations_url": "https://api.github.com/users/Wauplin/orgs", "repos_url": "https://api.github.com/users/Wauplin/repos", "events_url": "https://api.github.com/users/Wauplin/events{/privacy}", "received_events_url": "https://api.github.com/users/Wauplin/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6757). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "On slack it was mentioned that it was actually slower for `datasets`, should we close this one or am I missing something ?", "@lhoestq I converted to draft. Want to make some more tests and will let you know" ]
2024-03-25T17:16:11
2024-03-27T16:26:35
null
CONTRIBUTOR
null
true
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6757", "html_url": "https://github.com/huggingface/datasets/pull/6757", "diff_url": "https://github.com/huggingface/datasets/pull/6757.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6757.patch", "merged_at": null }
Related to https://github.com/huggingface/doc-builder/pull/487 and [internal slack thread](https://huggingface.slack.com/archives/C04F8N7FQNL/p1711384899462349?thread_ts=1711041424.720769&cid=C04F8N7FQNL). There is now a `custom_container` option when building docs in CI. When set to `""` (instead of `"huggingface/transformers-doc-builder"` by default), we don't run the CI inside a container, therefore saving ~2min of download time. The plan is to test disabling the transformers container on a few "big" repo and if everything works correctly, we will stop making it the default container. More details on https://github.com/huggingface/doc-builder/pull/487. cc @mishig25
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6757/reactions", "total_count": 1, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 1, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6757/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6752
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6752/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6752/comments
https://api.github.com/repos/huggingface/datasets/issues/6752/events
https://github.com/huggingface/datasets/issues/6752
2,204,043,839
I_kwDODunzps6DXwo_
6,752
Precision being changed from float16 to float32 unexpectedly
{ "login": "gcervantes8", "id": 21228908, "node_id": "MDQ6VXNlcjIxMjI4OTA4", "avatar_url": "https://avatars.githubusercontent.com/u/21228908?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gcervantes8", "html_url": "https://github.com/gcervantes8", "followers_url": "https://api.github.com/users/gcervantes8/followers", "following_url": "https://api.github.com/users/gcervantes8/following{/other_user}", "gists_url": "https://api.github.com/users/gcervantes8/gists{/gist_id}", "starred_url": "https://api.github.com/users/gcervantes8/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gcervantes8/subscriptions", "organizations_url": "https://api.github.com/users/gcervantes8/orgs", "repos_url": "https://api.github.com/users/gcervantes8/repos", "events_url": "https://api.github.com/users/gcervantes8/events{/privacy}", "received_events_url": "https://api.github.com/users/gcervantes8/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "This is because of the formatter (`torch` in this case).\r\nIt defaults to `float32`.\r\n\r\nYou can load it in `float16` using `dataset.set_format(\"torch\", dtype=torch.float16)`." ]
2024-03-23T20:53:56
2024-04-10T15:21:33
null
NONE
null
null
null
### Describe the bug I'm loading a HuggingFace Dataset for images. I'm running a preprocessing (map operation) step that runs a few operations, one of them being conversion to float16. The Dataset features also say that the 'img' is of type float16. Whenever I take an image from that HuggingFace Dataset instance, the type turns out to be float32. ### Steps to reproduce the bug ```python import torchvision.transforms.v2 as transforms from datasets import load_dataset dataset = load_dataset('cifar10', split='test') dataset = dataset.with_format("torch") data_transform = transforms.Compose([transforms.Resize((32, 32)), transforms.ToDtype(torch.float16, scale=True), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]), ]) def _preprocess(examples): # Permutes from (BS x H x W x C) to (BS x C x H x W) images = torch.permute(examples['img'], (0, 3, 2, 1)) examples['img'] = data_transform(images) return examples dataset = dataset.map(_preprocess, batched=True, batch_size=8) ``` Now at this point the dataset.features are showing float16 which is great because that's what I want. ```python print(data_loader.features['img']) Sequence(feature=Sequence(feature=Sequence(feature=Value(dtype='float16', id=None), length=-1, id=None), length=-1, id=None), length=-1, id=None) ``` But when I try to sample an image from this dataloader; I'm getting a float32 image, when I'm expecting float16: ```python print(next(iter(data_loader))['img'].dtype) torch.float32 ``` ### Expected behavior I'm expecting the images loaded after the transformation to stay in float16. ### Environment info - `datasets` version: 2.18.0 - Platform: Linux-5.15.146.1-microsoft-standard-WSL2-x86_64-with-glibc2.31 - Python version: 3.10.9 - `huggingface_hub` version: 0.21.4 - PyArrow version: 14.0.2 - Pandas version: 2.0.3 - `fsspec` version: 2023.10.0
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6752/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6752/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6748
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6748/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6748/comments
https://api.github.com/repos/huggingface/datasets/issues/6748/events
https://github.com/huggingface/datasets/issues/6748
2,201,517,348
I_kwDODunzps6DOH0k
6,748
Strange slicing behavior
{ "login": "Luciennnnnnn", "id": 20135317, "node_id": "MDQ6VXNlcjIwMTM1MzE3", "avatar_url": "https://avatars.githubusercontent.com/u/20135317?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Luciennnnnnn", "html_url": "https://github.com/Luciennnnnnn", "followers_url": "https://api.github.com/users/Luciennnnnnn/followers", "following_url": "https://api.github.com/users/Luciennnnnnn/following{/other_user}", "gists_url": "https://api.github.com/users/Luciennnnnnn/gists{/gist_id}", "starred_url": "https://api.github.com/users/Luciennnnnnn/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Luciennnnnnn/subscriptions", "organizations_url": "https://api.github.com/users/Luciennnnnnn/orgs", "repos_url": "https://api.github.com/users/Luciennnnnnn/repos", "events_url": "https://api.github.com/users/Luciennnnnnn/events{/privacy}", "received_events_url": "https://api.github.com/users/Luciennnnnnn/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "As explained in the [docs](https://huggingface.co/docs/datasets/v2.18.0/en/access#slicing), slicing a `Dataset` returns a dictionary that maps its column names to their values. So, `len(dataset[:300])=2` is expected, assuming your dataset has 2 columns (the returned dict has 2 keys, but each value in the dict has 300 items).\r\n` " ]
2024-03-22T01:49:13
2024-03-22T16:43:57
null
NONE
null
null
null
### Describe the bug I have loaded a dataset, and then slice first 300 samples using `:` ops, however, the resulting dataset is not expected, as the output below: ```bash len(dataset)=1050324 len(dataset[:300])=2 len(dataset[0:300])=2 len(dataset.select(range(300)))=300 ``` ### Steps to reproduce the bug load a dataset then: ```bash dataset = load_from_disk(args.train_data_dir) print(f"{len(dataset)=}", flush=True) print(f"{len(dataset[:300])=}", flush=True) print(f"{len(dataset[0:300])=}", flush=True) print(f"{len(dataset.select(range(300)))=}", flush=True) ``` ### Expected behavior ```bash len(dataset)=1050324 len(dataset[:300])=300 len(dataset[0:300])=300 len(dataset.select(range(300)))=300 ``` ### Environment info - `datasets` version: 2.16.1 - Platform: Linux-5.15.0-60-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - `huggingface_hub` version: 0.20.2 - PyArrow version: 10.0.1 - Pandas version: 1.5.3 - `fsspec` version: 2023.10.0
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6748/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6748/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6746
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6746/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6746/comments
https://api.github.com/repos/huggingface/datasets/issues/6746/events
https://github.com/huggingface/datasets/issues/6746
2,198,993,949
I_kwDODunzps6DEfwd
6,746
ExpectedMoreSplits error when loading C4 dataset
{ "login": "billwang485", "id": 65165345, "node_id": "MDQ6VXNlcjY1MTY1MzQ1", "avatar_url": "https://avatars.githubusercontent.com/u/65165345?v=4", "gravatar_id": "", "url": "https://api.github.com/users/billwang485", "html_url": "https://github.com/billwang485", "followers_url": "https://api.github.com/users/billwang485/followers", "following_url": "https://api.github.com/users/billwang485/following{/other_user}", "gists_url": "https://api.github.com/users/billwang485/gists{/gist_id}", "starred_url": "https://api.github.com/users/billwang485/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/billwang485/subscriptions", "organizations_url": "https://api.github.com/users/billwang485/orgs", "repos_url": "https://api.github.com/users/billwang485/repos", "events_url": "https://api.github.com/users/billwang485/events{/privacy}", "received_events_url": "https://api.github.com/users/billwang485/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "Hi ! We updated the `allenai/c4` repository to allow people to specify which language to load easily (the the [c4 dataset page](https://huggingface.co/datasets/allenai/c4))\r\n\r\nTo fix this issue **you can update** `datasets` and remove the mention of the legacy configuration name \"allenai--c4\":\r\n\r\n```python\r\ntraindata = load_dataset('allenai/c4', data_files={'train': 'en/c4-train.00000-of-01024.json.gz'}, split='train')\r\nvaldata = load_dataset('allenai/c4', data_files={'validation': 'en/c4-validation.00000-of-00008.json.gz'}, split='validation')\r\n```", "Did you solve this problem?I have the same bug.It is no use to delete \"allenai--c4\".", "Did you solve it? I met this problem too.", "But after I romove allenai--c4,it still fails", "For me it works this way. I'm using datasets version 2.17.0" ]
2024-03-21T02:53:04
2024-04-22T16:30:14
null
NONE
null
null
null
### Describe the bug I encounter bug when running the example command line ```python python main.py \ --model decapoda-research/llama-7b-hf \ --prune_method wanda \ --sparsity_ratio 0.5 \ --sparsity_type unstructured \ --save out/llama_7b/unstructured/wanda/ ``` The bug occurred at these lines of code (when loading c4 dataset) ```python traindata = load_dataset('allenai/c4', 'allenai--c4', data_files={'train': 'en/c4-train.00000-of-01024.json.gz'}, split='train') valdata = load_dataset('allenai/c4', 'allenai--c4', data_files={'validation': 'en/c4-validation.00000-of-00008.json.gz'}, split='validation') ``` The error message states: ``` raise ExpectedMoreSplits(str(set(expected_splits) - set(recorded_splits))) datasets.utils.info_utils.ExpectedMoreSplits: {'validation'} ``` ### Steps to reproduce the bug 1. I encounter bug when running the example command line ### Expected behavior The error message states: ``` raise ExpectedMoreSplits(str(set(expected_splits) - set(recorded_splits))) datasets.utils.info_utils.ExpectedMoreSplits: {'validation'} ``` ### Environment info I'm using cuda 12.4, so I use ```pip install pytorch``` instead of conda provided in install.md Also, I've tried another environment using the same commands in install.md, but the same bug occured
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6746/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6746/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6744
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6744/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6744/comments
https://api.github.com/repos/huggingface/datasets/issues/6744/events
https://github.com/huggingface/datasets/issues/6744
2,197,910,168
I_kwDODunzps6DAXKY
6,744
Option to disable file locking
{ "login": "VRehnberg", "id": 35767167, "node_id": "MDQ6VXNlcjM1NzY3MTY3", "avatar_url": "https://avatars.githubusercontent.com/u/35767167?v=4", "gravatar_id": "", "url": "https://api.github.com/users/VRehnberg", "html_url": "https://github.com/VRehnberg", "followers_url": "https://api.github.com/users/VRehnberg/followers", "following_url": "https://api.github.com/users/VRehnberg/following{/other_user}", "gists_url": "https://api.github.com/users/VRehnberg/gists{/gist_id}", "starred_url": "https://api.github.com/users/VRehnberg/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/VRehnberg/subscriptions", "organizations_url": "https://api.github.com/users/VRehnberg/orgs", "repos_url": "https://api.github.com/users/VRehnberg/repos", "events_url": "https://api.github.com/users/VRehnberg/events{/privacy}", "received_events_url": "https://api.github.com/users/VRehnberg/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
open
false
null
[]
null
[]
2024-03-20T15:59:45
2024-03-20T15:59:45
null
NONE
null
null
null
### Feature request Commands such as `load_dataset` creates file locks with `filelock.FileLock`. It would be good if there was a way to disable this. ### Motivation File locking doesn't work on all file-systems (in my case NFS mounted Weka). If the `cache_dir` only had small files then it would be possible to point to local disk and the problem would be solved. However, as cache_dir is both where the small info files are written and the processed datasets are put this isn't a feasible solution. Considering https://github.com/huggingface/datasets/issues/6395 I still do think this is something that belongs in HuggingFace. The possibility to control packages separately is valuable. It might be that a user has their dataset on a file-system that doesn't support file-locking while they are using file locking on local disk to control some other type of access. ### Your contribution My suggested solution: ``` diff --git a/src/datasets/utils/_filelock.py b/src/datasets/utils/_filelock.py index 19620e6e..58f41a02 100644 --- a/src/datasets/utils/_filelock.py +++ b/src/datasets/utils/_filelock.py @@ -18,11 +18,15 @@ import os from filelock import FileLock as FileLock_ -from filelock import UnixFileLock +from filelock import SoftFileLock, UnixFileLock from filelock import __version__ as _filelock_version from packaging import version +if os.getenv('HF_USE_SOFTFILELOCK', 'false').lower() in ('true', '1'): + FileLock_ = SoftFileLock + + class FileLock(FileLock_): """ A `filelock.FileLock` initializer that handles long paths. ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6744/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6744/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6736
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6736/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6736/comments
https://api.github.com/repos/huggingface/datasets/issues/6736/events
https://github.com/huggingface/datasets/issues/6736
2,190,181,422
I_kwDODunzps6Ci4Qu
6,736
Mosaic Streaming (MDS) Support
{ "login": "siddk", "id": 2498509, "node_id": "MDQ6VXNlcjI0OTg1MDk=", "avatar_url": "https://avatars.githubusercontent.com/u/2498509?v=4", "gravatar_id": "", "url": "https://api.github.com/users/siddk", "html_url": "https://github.com/siddk", "followers_url": "https://api.github.com/users/siddk/followers", "following_url": "https://api.github.com/users/siddk/following{/other_user}", "gists_url": "https://api.github.com/users/siddk/gists{/gist_id}", "starred_url": "https://api.github.com/users/siddk/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/siddk/subscriptions", "organizations_url": "https://api.github.com/users/siddk/orgs", "repos_url": "https://api.github.com/users/siddk/repos", "events_url": "https://api.github.com/users/siddk/events{/privacy}", "received_events_url": "https://api.github.com/users/siddk/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
open
false
null
[]
null
[ "Hi ! that would be great :) Though note that `datasets` doesn't implement format-specific resuming when streaming, so in general I think it's better if users can use the mosaic-streaming library to read their MDS datasets. I wonder if they support `hf://` paths though...\r\n\r\nAnyway for those interested, the code for WebDataset is a single file here: https://github.com/huggingface/datasets/blob/main/src/datasets/packaged_modules/webdataset/webdataset.py.\r\n\r\nIt implements `_split_generators` that downloads files and returns the lists of splits (train/validation/test) and `_split_generators` to generate examples (dicts) from the downloaded files. Streaming is automatically supported by making download steps lazy and by extending `open()` to work with remote URLs." ]
2024-03-16T18:42:04
2024-03-18T15:13:34
null
NONE
null
null
null
### Feature request I'm a huge fan of the current HF Datasets `webdataset` integration (especially the built-in streaming support). However, I'd love to upload some robotics and multimodal datasets I've processed for use with [Mosaic Streaming](https://docs.mosaicml.com/projects/streaming/en/stable/), specifically their [MDS Format](https://docs.mosaicml.com/projects/streaming/en/stable/fundamentals/dataset_format.html#mds). Because the shard files have similar semantics to WebDataset, I'm hoping that adding such support won't be too much trouble? ### Motivation One of the downsides with WebDataset is a lack of out-of-the-box determinism (especially for large-scale training and reproducibility), easy job resumption, and the ability to quickly debug / visualize individual examples. Mosaic Streaming provides a [great interface for this out of the box](https://docs.mosaicml.com/projects/streaming/en/stable/#key-features), so I'd love to see it supported in HF Datasets. ### Your contribution Happy to help test things / provide example data. Can potentially submit a PR if maintainers could point me to the necessary WebDataset logic / steps for adding a new streaming format!
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6736/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6736/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6734
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6734/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6734/comments
https://api.github.com/repos/huggingface/datasets/issues/6734/events
https://github.com/huggingface/datasets/issues/6734
2,187,646,694
I_kwDODunzps6CZNbm
6,734
Tokenization slows towards end of dataset
{ "login": "ethansmith2000", "id": 98723285, "node_id": "U_kgDOBeJl1Q", "avatar_url": "https://avatars.githubusercontent.com/u/98723285?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ethansmith2000", "html_url": "https://github.com/ethansmith2000", "followers_url": "https://api.github.com/users/ethansmith2000/followers", "following_url": "https://api.github.com/users/ethansmith2000/following{/other_user}", "gists_url": "https://api.github.com/users/ethansmith2000/gists{/gist_id}", "starred_url": "https://api.github.com/users/ethansmith2000/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ethansmith2000/subscriptions", "organizations_url": "https://api.github.com/users/ethansmith2000/orgs", "repos_url": "https://api.github.com/users/ethansmith2000/repos", "events_url": "https://api.github.com/users/ethansmith2000/events{/privacy}", "received_events_url": "https://api.github.com/users/ethansmith2000/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "Hi ! First note that if the dataset is not heterogeneous / shuffled, there might be places in the data with shorter texts that are faster to tokenize.\r\n\r\nMoreover, the way `num_proc` works is by slicing the dataset and passing each slice to a process to run the `map()` function. So at the very end of `map()`, some processes might have finished transforming their slice of data while others are still running, causing the throughput to become lower.", "I did see some comments about how num_proc=None could help and outputting numpy arrays can also help in the docs, but this seems quite odd now dropping down to 1it/s\r\n\r\n```bash\r\nRunning tokenizer on dataset (num_proc=48): 99%|█████████▉| 46048888/46390354 [12:33:30<4:20:32, 21.84 examples/s]\r\nRunning tokenizer on dataset (num_proc=48): 99%|█████████▉| 46049888/46390354 [12:36:11<8:37:59, 10.95 examples/s]\r\nRunning tokenizer on dataset (num_proc=48): 99%|█████████▉| 46050888/46390354 [12:46:35<24:56:56, 3.78 examples/s]\r\nRunning tokenizer on dataset (num_proc=48): 99%|█████████▉| 46051888/46390354 [12:56:43<35:08:10, 2.68 examples/s]\r\nRunning tokenizer on dataset (num_proc=48): 99%|█████████▉| 46052888/46390354 [13:06:58<42:05:41, 2.23 examples/s]\r\nRunning tokenizer on dataset (num_proc=48): 99%|█████████▉| 46053888/46390354 [13:16:01<44:40:18, 2.09 examples/s]\r\nRunning tokenizer on dataset (num_proc=48): 99%|█████████▉| 46054888/46390354 [13:25:11<46:35:28, 2.00 examples/s]\r\nRunning tokenizer on dataset (num_proc=48): 99%|█████████▉| 46055888/46390354 [13:34:23<47:55:34, 1.94 examples/s]\r\n```\r\n\r\n", "@ethansmith2000 Hi, did you solve this problem? I'm strugging with the same problem now." ]
2024-03-15T03:27:36
2024-04-11T10:48:07
null
NONE
null
null
null
### Describe the bug Mapped tokenization slows down substantially towards end of dataset. train set started off very slow, caught up to 20k then tapered off til the end. what's particularly strange is that the tokenization crashed a few times before due to errors with invalid tokens somewhere or corrupted downloads, and the speed ups/downs consistently happened the same times ```bash Running tokenizer on dataset (num_proc=48): 0%| | 847000/881416735 [12:18<252:45:45, 967.72 examples/s] Running tokenizer on dataset (num_proc=48): 0%| | 848000/881416735 [12:19<224:16:10, 1090.66 examples/s] Running tokenizer on dataset (num_proc=48): 10%|▉ | 84964000/881416735 [3:48:00<11:21:34, 19476.01 examples/s] Running tokenizer on dataset (num_proc=48): 10%|▉ | 84967000/881416735 [3:48:00<12:04:01, 18333.79 examples/s] Running tokenizer on dataset (num_proc=48): 61%|██████ | 538631977/881416735 [13:46:40<27:50:04, 3420.84 examples/s] Running tokenizer on dataset (num_proc=48): 61%|██████ | 538632977/881416735 [13:46:40<23:48:20, 3999.77 examples/s] Running tokenizer on dataset (num_proc=48): 100%|█████████▉| 881365886/881416735 [38:30:19<04:34, 185.10 examples/s] Running tokenizer on dataset (num_proc=48): 100%|█████████▉| 881366886/881416735 [38:30:25<04:36, 180.57 examples/s] ``` and validation set as well ```bash Running tokenizer on dataset (num_proc=48): 90%|████████▉ | 41544000/46390354 [28:44<02:37, 30798.76 examples/s] Running tokenizer on dataset (num_proc=48): 90%|████████▉ | 41550000/46390354 [28:44<02:08, 37698.08 examples/s] Running tokenizer on dataset (num_proc=48): 96%|█████████▋| 44747422/46390354 [2:15:48<12:22:44, 36.87 examples/s] Running tokenizer on dataset (num_proc=48): 96%|█████████▋| 44747422/46390354 [2:16:00<12:22:44, 36.87 examples/s] ``` ### Steps to reproduce the bug using the following kwargs ```python with accelerator.main_process_first(): lm_datasets = tokenized_datasets.map( group_texts, batched=True, num_proc=48 load_from_cache_file=True, desc=f"Grouping texts in chunks of {block_size}", ) ``` running through slurm script ```bash #SBATCH --partition=gpu-nvidia-a100 #SBATCH --nodes=1 #SBATCH --ntasks=1 #SBATCH --gpus-per-task=8 #SBATCH --cpus-per-task=96 ``` using this dataset https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T ### Expected behavior Constant speed throughout ### Environment info - `datasets` version: 2.15.0 - Platform: Linux-5.15.0-1049-aws-x86_64-with-glibc2.10 - Python version: 3.8.18 - `huggingface_hub` version: 0.19.4 - PyArrow version: 14.0.1 - Pandas version: 2.0.3 - `fsspec` version: 2023.10.0
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6734/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6734/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6733
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6733/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6733/comments
https://api.github.com/repos/huggingface/datasets/issues/6733/events
https://github.com/huggingface/datasets/issues/6733
2,186,811,724
I_kwDODunzps6CWBlM
6,733
EmptyDatasetError when loading dataset downloaded with HuggingFace cli
{ "login": "StwayneXG", "id": 77196999, "node_id": "MDQ6VXNlcjc3MTk2OTk5", "avatar_url": "https://avatars.githubusercontent.com/u/77196999?v=4", "gravatar_id": "", "url": "https://api.github.com/users/StwayneXG", "html_url": "https://github.com/StwayneXG", "followers_url": "https://api.github.com/users/StwayneXG/followers", "following_url": "https://api.github.com/users/StwayneXG/following{/other_user}", "gists_url": "https://api.github.com/users/StwayneXG/gists{/gist_id}", "starred_url": "https://api.github.com/users/StwayneXG/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/StwayneXG/subscriptions", "organizations_url": "https://api.github.com/users/StwayneXG/orgs", "repos_url": "https://api.github.com/users/StwayneXG/repos", "events_url": "https://api.github.com/users/StwayneXG/events{/privacy}", "received_events_url": "https://api.github.com/users/StwayneXG/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "Hi! `datasets` is not compatible with `huggingface_hub`'s cache structure, hence the error.\r\n\r\nYou can track https://github.com/huggingface/datasets/issues/5080 to get notified when this is implemented." ]
2024-03-14T16:41:27
2024-03-15T18:09:02
null
NONE
null
null
null
### Describe the bug I am using a cluster that does not have access to the internet when given a job. I tried downloading the dataset using the huggingface-cli command and then loading it with load_dataset but I get an error: ```raise EmptyDatasetError(f"The directory at {base_path} doesn't contain any data files") from None``` The dataset I'm using is "lmsys/chatbot_arena_conversations". The folder structure is - README.md - data - train-00000-of-00001-cced8514c7ed782a.parquet ### Steps to reproduce the bug 1. Download dataset using HuggingFace CLI: ```huggingface-cli download lmsys/chatbot_arena_conversations --local-dir ./lmsys/chatbot_arena_conversations``` 2. In Python ``` from datasets import load_dataset load_dataset("lmsys/chatbot_arena_conversations") ``` ### Expected behavior Should return a Dataset Dict in the form of ``` DatasetDict({ train: Dataset({ features: [...], num_rows: 33,000 }) }) ``` ### Environment info Python 3.11.5 Datasets 2.18.0 Transformers 4.38.2 Pytorch 2.2.0 Pyarrow 15.0.1 Rocky Linux release 8.9 (Green Obsidian)
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6733/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6733/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6729
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6729/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6729/comments
https://api.github.com/repos/huggingface/datasets/issues/6729/events
https://github.com/huggingface/datasets/issues/6729
2,180,237,159
I_kwDODunzps6B88dn
6,729
Support zipfiles that span multiple disks?
{ "login": "severo", "id": 1676121, "node_id": "MDQ6VXNlcjE2NzYxMjE=", "avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4", "gravatar_id": "", "url": "https://api.github.com/users/severo", "html_url": "https://github.com/severo", "followers_url": "https://api.github.com/users/severo/followers", "following_url": "https://api.github.com/users/severo/following{/other_user}", "gists_url": "https://api.github.com/users/severo/gists{/gist_id}", "starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/severo/subscriptions", "organizations_url": "https://api.github.com/users/severo/orgs", "repos_url": "https://api.github.com/users/severo/repos", "events_url": "https://api.github.com/users/severo/events{/privacy}", "received_events_url": "https://api.github.com/users/severo/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892912, "node_id": "MDU6TGFiZWwxOTM1ODkyOTEy", "url": "https://api.github.com/repos/huggingface/datasets/labels/question", "name": "question", "color": "d876e3", "default": true, "description": "Further information is requested" } ]
open
false
null
[]
null
[]
2024-03-11T21:07:41
2024-03-11T21:07:46
null
CONTRIBUTOR
null
null
null
See https://huggingface.co/datasets/PhilEO-community/PhilEO-downstream The dataset viewer gives the following error: ``` Error code: ConfigNamesError Exception: BadZipFile Message: zipfiles that span multiple disks are not supported Traceback: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 67, in compute_config_names_response get_dataset_config_names( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 347, in get_dataset_config_names dataset_module = dataset_module_factory( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1871, in dataset_module_factory raise e1 from None File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1846, in dataset_module_factory return HubDatasetModuleFactoryWithoutScript( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1240, in get_module module_name, default_builder_kwargs = infer_module_for_data_files( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 584, in infer_module_for_data_files split_modules = { File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 585, in <dictcomp> split: infer_module_for_data_files_list(data_files_list, download_config=download_config) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 526, in infer_module_for_data_files_list return infer_module_for_data_files_list_in_archives(data_files_list, download_config=download_config) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 554, in infer_module_for_data_files_list_in_archives for f in xglob(extracted, recursive=True, download_config=download_config)[ File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/download/streaming_download_manager.py", line 576, in xglob fs, *_ = fsspec.get_fs_token_paths(urlpath, storage_options=storage_options) File "/src/services/worker/.venv/lib/python3.9/site-packages/fsspec/core.py", line 622, in get_fs_token_paths fs = filesystem(protocol, **inkwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/fsspec/registry.py", line 290, in filesystem return cls(**storage_options) File "/src/services/worker/.venv/lib/python3.9/site-packages/fsspec/spec.py", line 79, in __call__ obj = super().__call__(*args, **kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/fsspec/implementations/zip.py", line 57, in __init__ self.zip = zipfile.ZipFile( File "/usr/local/lib/python3.9/zipfile.py", line 1266, in __init__ self._RealGetContents() File "/usr/local/lib/python3.9/zipfile.py", line 1329, in _RealGetContents endrec = _EndRecData(fp) File "/usr/local/lib/python3.9/zipfile.py", line 286, in _EndRecData return _EndRecData64(fpin, -sizeEndCentDir, endrec) File "/usr/local/lib/python3.9/zipfile.py", line 232, in _EndRecData64 raise BadZipFile("zipfiles that span multiple disks are not supported") zipfile.BadZipFile: zipfiles that span multiple disks are not supported ``` The files (https://huggingface.co/datasets/PhilEO-community/PhilEO-downstream/tree/main/data) are: <img width="629" alt="Capture d’écran 2024-03-11 à 22 07 30" src="https://github.com/huggingface/datasets/assets/1676121/0bb15a51-d54f-4d73-8572-e427ea644b36">
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6729/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6729/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6726
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6726/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6726/comments
https://api.github.com/repos/huggingface/datasets/issues/6726/events
https://github.com/huggingface/datasets/issues/6726
2,177,097,232
I_kwDODunzps6Bw94Q
6,726
Profiling for HF Filesystem shows there are easy performance gains to be made
{ "login": "awgr", "id": 159512661, "node_id": "U_kgDOCYH4VQ", "avatar_url": "https://avatars.githubusercontent.com/u/159512661?v=4", "gravatar_id": "", "url": "https://api.github.com/users/awgr", "html_url": "https://github.com/awgr", "followers_url": "https://api.github.com/users/awgr/followers", "following_url": "https://api.github.com/users/awgr/following{/other_user}", "gists_url": "https://api.github.com/users/awgr/gists{/gist_id}", "starred_url": "https://api.github.com/users/awgr/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/awgr/subscriptions", "organizations_url": "https://api.github.com/users/awgr/orgs", "repos_url": "https://api.github.com/users/awgr/repos", "events_url": "https://api.github.com/users/awgr/events{/privacy}", "received_events_url": "https://api.github.com/users/awgr/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "FWIW I debugged this while waiting for it to go", "Oh I forgot to mention you can also cache resolve_pattern, and that seemed to also substantially improves things, if you want to load a dataset twice for whatever reason." ]
2024-03-09T07:08:45
2024-03-09T07:11:08
null
NONE
null
null
null
### Describe the bug # Let's make it faster First, an evidence... ![image](https://github.com/huggingface/datasets/assets/159512661/a703a82c-43a0-426c-9d99-24c563d70965) Figure 1: CProfile for loading 3 files from cerebras/SlimPajama-627B train split, and 3 files from test split using streaming=True. X axis is 1106 seconds long. See? It's pretty slow. What is resolve pattern doing? ``` resolve_pattern called with **/train/** and hf://datasets/cerebras/SlimPajama-627B@2d0accdd58c5d5511943ca1f5ff0e3eb5e293543 resolve_pattern took 20.815081119537354 seconds ``` Makes sense. How to improve it? ## Bigger project, biggest payoff Databricks (and consequently, spark) store a compressed manifest file of the files contained in the remote filesystem. Then, you download one tiny file, decompress it, and all the operations are local instead of this shenanigans. It seems pretty straightforward to make dataset uploads compute a manifest and upload it alongside their data. This would make resolution time so fast that nobody would ever think about it again. It also means you either need to have the uploader compute it _every time_, or have a hook that computes it. ## Smaller project, immediate payoff: Be diligent in avoiding deepcopy Revise the _ls_tree method to avoid deepcopy: ``` def _ls_tree( self, path: str, recursive: bool = False, refresh: bool = False, revision: Optional[str] = None, expand_info: bool = True, ): ..... omitted ..... for path_info in tree: if isinstance(path_info, RepoFile): cache_path_info = { "name": root_path + "/" + path_info.path, "size": path_info.size, "type": "file", "blob_id": path_info.blob_id, "lfs": path_info.lfs, "last_commit": path_info.last_commit, "security": path_info.security, } else: cache_path_info = { "name": root_path + "/" + path_info.path, "size": 0, "type": "directory", "tree_id": path_info.tree_id, "last_commit": path_info.last_commit, } parent_path = self._parent(cache_path_info["name"]) self.dircache.setdefault(parent_path, []).append(cache_path_info) out.append(cache_path_info) return copy.deepcopy(out) # copy to not let users modify the dircache ``` Observe this deepcopy at the end. It is making a copy of a very simple data structure. We do not need to copy. We can simply generate the data structure twice instead. It will be much faster. ``` def _ls_tree( self, path: str, recursive: bool = False, refresh: bool = False, revision: Optional[str] = None, expand_info: bool = True, ): ..... omitted ..... def make_cache_path_info(path_info): if isinstance(path_info, RepoFile): return { "name": root_path + "/" + path_info.path, "size": path_info.size, "type": "file", "blob_id": path_info.blob_id, "lfs": path_info.lfs, "last_commit": path_info.last_commit, "security": path_info.security, } else: return { "name": root_path + "/" + path_info.path, "size": 0, "type": "directory", "tree_id": path_info.tree_id, "last_commit": path_info.last_commit, } for path_info in tree: cache_path_info = make_cache_path_info(path_info) out_cache_path_info = make_cache_path_info(path_info) # copy to not let users modify the dircache parent_path = self._parent(cache_path_info["name"]) self.dircache.setdefault(parent_path, []).append(cache_path_info) out.append(out_cache_path_info) return out ``` Note there is no longer a deepcopy in this method. We have replaced it with generating the output twice. This is substantially faster. For me, the entire resolution went from 1100s to 360s. ## Medium project, medium payoff After the above change, we have this profile: ![image](https://github.com/huggingface/datasets/assets/159512661/db7b83da-2dfc-4c2e-abab-0ede9477876c) Figure 2: x-axis is 355 seconds. Note that globbing and _ls_tree deep copy is gone. No surprise there. It's much faster now, but we still spend ~187seconds in get_fs_token_paths. Well get_fs_token_paths is part of fsspec. We don't need to fix that because we can trust their developers to write high performance code. Probably the caller has misconfigured something. Let's take a look at the storage_options being provided to the filesystem that is constructed during this call. Ah yes, streaming_download_manager::_prepare_single_hop_path_and_storage_options. We know streaming download manager is not compatible with async right now, but we really need this specific part of the code to be async. We're spending so much time checking isDir on the remote filesystem, it's a huge waste. We can make the call easily 20-30x faster by using async, removing this performance bottleneck almost entirely (and reducing the total time of this part of the code to <30s. There is no reason to block async isDir calls for streaming. I'm not going to mess w/ this one myself; I didn't write the streaming impl, and I don't know how it works, but I know the isDir check can be async. ### Steps to reproduce the bug ``` with cProfile.Profile() as pr: pr.enable() # Begin Data if not os.path.exists(data_cache_dir): os.makedirs(data_cache_dir, exist_ok=True) training_dataset = load_dataset(training_dataset_name, split=training_split, cache_dir=data_cache_dir, streaming=True).take(training_slice) eval_dataset = load_dataset(eval_dataset_name, split=eval_split, cache_dir=data_cache_dir, streaming=True).take(eval_slice) # End Data pr.disable() pr.create_stats() if not os.path.exists(profiling_path): os.makedirs(profiling_path, exist_ok=True) pr.dump_stats(os.path.join(profiling_path, "cprofile.prof")) ``` run this code for "cerebras/SlimPajama-627B" and whatever other params ### Expected behavior Something better. ### Environment info - `datasets` version: 2.18.0 - Platform: Linux-5.15.146.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 - Python version: 3.10.13 - `huggingface_hub` version: 0.21.3 - PyArrow version: 15.0.0 - Pandas version: 2.2.1 - `fsspec` version: 2024.2.0
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6726/reactions", "total_count": 1, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 1, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6726/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6725
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6725/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6725/comments
https://api.github.com/repos/huggingface/datasets/issues/6725/events
https://github.com/huggingface/datasets/issues/6725
2,175,527,530
I_kwDODunzps6Bq-pq
6,725
Request for a comparison of huggingface datasets compared with other data format especially webdataset
{ "login": "Luciennnnnnn", "id": 20135317, "node_id": "MDQ6VXNlcjIwMTM1MzE3", "avatar_url": "https://avatars.githubusercontent.com/u/20135317?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Luciennnnnnn", "html_url": "https://github.com/Luciennnnnnn", "followers_url": "https://api.github.com/users/Luciennnnnnn/followers", "following_url": "https://api.github.com/users/Luciennnnnnn/following{/other_user}", "gists_url": "https://api.github.com/users/Luciennnnnnn/gists{/gist_id}", "starred_url": "https://api.github.com/users/Luciennnnnnn/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Luciennnnnnn/subscriptions", "organizations_url": "https://api.github.com/users/Luciennnnnnn/orgs", "repos_url": "https://api.github.com/users/Luciennnnnnn/repos", "events_url": "https://api.github.com/users/Luciennnnnnn/events{/privacy}", "received_events_url": "https://api.github.com/users/Luciennnnnnn/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
open
false
null
[]
null
[]
2024-03-08T08:23:01
2024-03-08T08:23:01
null
NONE
null
null
null
### Feature request Request for a comparison of huggingface datasets compared with other data format especially webdataset ### Motivation I see huggingface datasets uses Apache Arrow as its backend, it seems to be great, but I'm curious about how it is good compared with other dataset format, like webdataset, what's the pros/cons of them. ### Your contribution More information
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6725/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6725/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6724
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6724/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6724/comments
https://api.github.com/repos/huggingface/datasets/issues/6724/events
https://github.com/huggingface/datasets/issues/6724
2,174,398,227
I_kwDODunzps6Bmq8T
6,724
Dataset with loading script does not work in renamed repos
{ "login": "BramVanroy", "id": 2779410, "node_id": "MDQ6VXNlcjI3Nzk0MTA=", "avatar_url": "https://avatars.githubusercontent.com/u/2779410?v=4", "gravatar_id": "", "url": "https://api.github.com/users/BramVanroy", "html_url": "https://github.com/BramVanroy", "followers_url": "https://api.github.com/users/BramVanroy/followers", "following_url": "https://api.github.com/users/BramVanroy/following{/other_user}", "gists_url": "https://api.github.com/users/BramVanroy/gists{/gist_id}", "starred_url": "https://api.github.com/users/BramVanroy/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/BramVanroy/subscriptions", "organizations_url": "https://api.github.com/users/BramVanroy/orgs", "repos_url": "https://api.github.com/users/BramVanroy/repos", "events_url": "https://api.github.com/users/BramVanroy/events{/privacy}", "received_events_url": "https://api.github.com/users/BramVanroy/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[]
2024-03-07T17:38:38
2024-03-07T20:06:25
null
CONTRIBUTOR
null
null
null
### Describe the bug My data repository was first called `BramVanroy/hplt-mono-v1-2` but I then renamed to use underscores instead of dashes. However, it seems that `datasets` retrieves the old repo name when it checks whether the repo contains data loading scripts in this line. https://github.com/huggingface/datasets/blob/6fb6c834f008996c994b0a86c3808d0a33d44525/src/datasets/load.py#L1845 When I print `filename` it returns `hplt-mono-v1-2.py` but the files in the repo are of course `['.gitattributes', 'README.md', 'hplt_mono_v1_2.py']`. So the `filename` is the original reponame instead of the renamed one. I am not sure if this is a caching issue or not or how I can resolve it. ### Steps to reproduce the bug ``` from datasets import load_dataset ds = load_dataset( "BramVanroy/hplt-mono-v1-2", "ky", trust_remote_code=True ) ``` ### Expected behavior That the most recent repo name is used when `filename` is generated. ### Environment info - `datasets` version: 2.16.1 - Platform: Linux-5.14.0-284.25.1.el9_2.x86_64-x86_64-with-glibc2.34 - Python version: 3.10.13 - `huggingface_hub` version: 0.20.2 - PyArrow version: 14.0.1 - Pandas version: 2.1.3 - `fsspec` version: 2023.10.0
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6724/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6724/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6721
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6721/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6721/comments
https://api.github.com/repos/huggingface/datasets/issues/6721/events
https://github.com/huggingface/datasets/issues/6721
2,173,931,714
I_kwDODunzps6Bk5DC
6,721
Hi,do you know how to load the dataset from local file now?
{ "login": "Gera001", "id": 50232044, "node_id": "MDQ6VXNlcjUwMjMyMDQ0", "avatar_url": "https://avatars.githubusercontent.com/u/50232044?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Gera001", "html_url": "https://github.com/Gera001", "followers_url": "https://api.github.com/users/Gera001/followers", "following_url": "https://api.github.com/users/Gera001/following{/other_user}", "gists_url": "https://api.github.com/users/Gera001/gists{/gist_id}", "starred_url": "https://api.github.com/users/Gera001/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Gera001/subscriptions", "organizations_url": "https://api.github.com/users/Gera001/orgs", "repos_url": "https://api.github.com/users/Gera001/repos", "events_url": "https://api.github.com/users/Gera001/events{/privacy}", "received_events_url": "https://api.github.com/users/Gera001/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "\r\n@Gera001\r\n# Loading Dataset from Local Files Using 🤗Hugging Face.\r\n\r\nTo load a dataset from local files using the Hugging Face datasets library, you can use the `load_dataset` function.\r\n\r\n```\r\nfrom datasets import load_dataset\r\ndataset = load_dataset('csv', data_files={'train': 'path/to/train.csv',\r\n 'test': 'path/to/test.csv'})\r\n```\r\n\r\nReference to [HF Datasets docs for loading from local](https://huggingface.co/docs/datasets/en/loading#csv). \r\n\r\n@albertvillanova\r\nthis issue can be closed here.", "like this: from datasets import load_from_disk\r\ndataset = load_from_disk(data_path)\r\n", "@ge00009 \r\n> like this: from datasets import load_from_disk dataset = load_from_disk(data_path)\r\n\r\nLoads a dataset that was previously saved using `save_to_disk()`.\r\n\r\nReference link:\r\nhttps://huggingface.co/docs/datasets/en/package_reference/loading_methods#datasets.load_from_disk.example" ]
2024-03-07T13:58:40
2024-03-31T08:09:25
null
NONE
null
null
null
Hi, if I want to load the dataset from local file, then how to specify the configuration name? _Originally posted by @WHU-gentle in https://github.com/huggingface/datasets/issues/2976#issuecomment-1333455222_
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6721/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6721/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6719
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6719/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6719/comments
https://api.github.com/repos/huggingface/datasets/issues/6719/events
https://github.com/huggingface/datasets/issues/6719
2,169,585,727
I_kwDODunzps6BUUA_
6,719
Is there any way to solve hanging of IterableDataset using split by node + filtering during inference
{ "login": "ssharpe42", "id": 8136905, "node_id": "MDQ6VXNlcjgxMzY5MDU=", "avatar_url": "https://avatars.githubusercontent.com/u/8136905?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ssharpe42", "html_url": "https://github.com/ssharpe42", "followers_url": "https://api.github.com/users/ssharpe42/followers", "following_url": "https://api.github.com/users/ssharpe42/following{/other_user}", "gists_url": "https://api.github.com/users/ssharpe42/gists{/gist_id}", "starred_url": "https://api.github.com/users/ssharpe42/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ssharpe42/subscriptions", "organizations_url": "https://api.github.com/users/ssharpe42/orgs", "repos_url": "https://api.github.com/users/ssharpe42/repos", "events_url": "https://api.github.com/users/ssharpe42/events{/privacy}", "received_events_url": "https://api.github.com/users/ssharpe42/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[]
2024-03-05T15:55:13
2024-03-05T15:55:13
null
NONE
null
null
null
### Describe the bug I am using an iterable dataset in a multi-node setup, trying to do training/inference while filtering the data on the fly. I usually do not use `split_dataset_by_node` but it is very slow using the IterableDatasetShard in `accelerate` and `transformers`. When I filter after applying `split_dataset_by_node`, it results in shards that are not equal sizes due to unequal samples filtered from each one. The distributed process hangs when trying to accomplish this. Is there any way to resolve this or is it impossible to implement? ### Steps to reproduce the bug Here is a toy example of what I am trying to do that reproduces the behavior ``` # torchrun --nproc-per-node 2 file.py import os import pandas as pd import torch from accelerate import Accelerator from datasets import Features, Value, load_dataset from datasets.distributed import split_dataset_by_node from torch.utils.data import DataLoader accelerator = Accelerator(device_placement=True, dispatch_batches=False) if accelerator.is_main_process: if not os.path.exists("scratch_data"): os.mkdir("scratch_data") n_shards = 4 for i in range(n_shards): df = pd.DataFrame({"id": list(range(10 * i, 10 * (i + 1)))}) df.to_parquet(f"scratch_data/shard_{i}.parquet") world_size = accelerator.num_processes local_rank = accelerator.process_index def collate_fn(examples): input_ids = [] for example in examples: input_ids.append(example["id"]) return torch.LongTensor(input_ids) dataset = load_dataset( "parquet", data_dir="scratch_data", split="train", streaming=True ) dataset = ( split_dataset_by_node(dataset, rank=local_rank, world_size=world_size) .filter(lambda x: x["id"] < 35) .shuffle(seed=42, buffer_size=100) ) batch_size = 2 train_dataloader = DataLoader( dataset, batch_size=batch_size, collate_fn=collate_fn, num_workers=2 ) for x in train_dataloader: x = x.to(accelerator.device) print({"rank": local_rank, "id": x}) y = accelerator.gather_for_metrics(x) if accelerator.is_main_process: print("gathered", y) ``` ### Expected behavior Is there any way to continue training/inference on the GPUs that have remaining data left without waiting for the others? Is it impossible to filter when ### Environment info - `datasets` version: 2.18.0 - Platform: Linux-5.10.209-198.812.amzn2.x86_64-x86_64-with-glibc2.31 - Python version: 3.10.13 - `huggingface_hub` version: 0.21.3 - PyArrow version: 15.0.0 - Pandas version: 2.2.1 - `fsspec` version: 2023.6.0
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6719/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6719/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6717
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6717/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6717/comments
https://api.github.com/repos/huggingface/datasets/issues/6717/events
https://github.com/huggingface/datasets/issues/6717
2,168,726,432
I_kwDODunzps6BRCOg
6,717
`remove_columns` method used with a streaming enable dataset mode produces a LibsndfileError on multichannel audio
{ "login": "jhauret", "id": 53187038, "node_id": "MDQ6VXNlcjUzMTg3MDM4", "avatar_url": "https://avatars.githubusercontent.com/u/53187038?v=4", "gravatar_id": "", "url": "https://api.github.com/users/jhauret", "html_url": "https://github.com/jhauret", "followers_url": "https://api.github.com/users/jhauret/followers", "following_url": "https://api.github.com/users/jhauret/following{/other_user}", "gists_url": "https://api.github.com/users/jhauret/gists{/gist_id}", "starred_url": "https://api.github.com/users/jhauret/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jhauret/subscriptions", "organizations_url": "https://api.github.com/users/jhauret/orgs", "repos_url": "https://api.github.com/users/jhauret/repos", "events_url": "https://api.github.com/users/jhauret/events{/privacy}", "received_events_url": "https://api.github.com/users/jhauret/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "And it also works well with `dataset = dataset.select_columns([\"audio\"])`" ]
2024-03-05T09:33:26
2024-03-05T10:32:19
null
NONE
null
null
null
### Describe the bug When loading a HF dataset in streaming mode and removing some columns, it is impossible to load a sample if the audio contains more than one channel. I have the impression that the time axis and channels are swapped or concatenated. ### Steps to reproduce the bug Minimal error code: ```python from datasets import load_dataset dataset_name = "zinc75/Vibravox_dummy" config_name = "BWE_Larynx_microphone" # if we use "ASR_Larynx_microphone" subset which is a monochannel audio, no error is thrown. dataset = load_dataset( path=dataset_name, name=config_name, split="train", streaming=True ) dataset = dataset.remove_columns(["sensor_id"]) # dataset = dataset.map(lambda x:x, remove_columns=["sensor_id"]) # The commented version does not produce an error, but loses the dataset features. sample = next(iter(dataset)) ``` Error: ``` Traceback (most recent call last): File "/home/julien/Bureau/github/vibravox/tmp.py", line 15, in <module> sample = next(iter(dataset)) ^^^^^^^^^^^^^^^^^^^ File "/home/julien/.pyenv/versions/vibravox/lib/python3.11/site-packages/datasets/iterable_dataset.py", line 1392, in __iter__ example = _apply_feature_types_on_example( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/julien/.pyenv/versions/vibravox/lib/python3.11/site-packages/datasets/iterable_dataset.py", line 1080, in _apply_feature_types_on_example encoded_example = features.encode_example(example) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/julien/.pyenv/versions/vibravox/lib/python3.11/site-packages/datasets/features/features.py", line 1889, in encode_example return encode_nested_example(self, example) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/julien/.pyenv/versions/vibravox/lib/python3.11/site-packages/datasets/features/features.py", line 1244, in encode_nested_example {k: encode_nested_example(schema[k], obj.get(k), level=level + 1) for k in schema} File "/home/julien/.pyenv/versions/vibravox/lib/python3.11/site-packages/datasets/features/features.py", line 1244, in <dictcomp> {k: encode_nested_example(schema[k], obj.get(k), level=level + 1) for k in schema} ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/julien/.pyenv/versions/vibravox/lib/python3.11/site-packages/datasets/features/features.py", line 1300, in encode_nested_example return schema.encode_example(obj) if obj is not None else None ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/julien/.pyenv/versions/vibravox/lib/python3.11/site-packages/datasets/features/audio.py", line 98, in encode_example sf.write(buffer, value["array"], value["sampling_rate"], format="wav") File "/home/julien/.pyenv/versions/vibravox/lib/python3.11/site-packages/soundfile.py", line 343, in write with SoundFile(file, 'w', samplerate, channels, ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/julien/.pyenv/versions/vibravox/lib/python3.11/site-packages/soundfile.py", line 658, in __init__ self._file = self._open(file, mode_int, closefd) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/julien/.pyenv/versions/vibravox/lib/python3.11/site-packages/soundfile.py", line 1216, in _open raise LibsndfileError(err, prefix="Error opening {0!r}: ".format(self.name)) soundfile.LibsndfileError: Error opening <_io.BytesIO object at 0x7fd795d24680>: Format not recognised. Process finished with exit code 1 ``` ### Expected behavior I would expect this code to run without error. ### Environment info - `datasets` version: 2.18.0 - Platform: Linux-6.5.0-21-generic-x86_64-with-glibc2.35 - Python version: 3.11.0 - `huggingface_hub` version: 0.21.3 - PyArrow version: 15.0.0 - Pandas version: 2.2.1 - `fsspec` version: 2023.10.0
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6717/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6717/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6711
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6711/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6711/comments
https://api.github.com/repos/huggingface/datasets/issues/6711/events
https://github.com/huggingface/datasets/pull/6711
2,165,507,817
PR_kwDODunzps5ohM1a
6,711
3x Faster Text Preprocessing
{ "login": "ashvardanian", "id": 1983160, "node_id": "MDQ6VXNlcjE5ODMxNjA=", "avatar_url": "https://avatars.githubusercontent.com/u/1983160?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ashvardanian", "html_url": "https://github.com/ashvardanian", "followers_url": "https://api.github.com/users/ashvardanian/followers", "following_url": "https://api.github.com/users/ashvardanian/following{/other_user}", "gists_url": "https://api.github.com/users/ashvardanian/gists{/gist_id}", "starred_url": "https://api.github.com/users/ashvardanian/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ashvardanian/subscriptions", "organizations_url": "https://api.github.com/users/ashvardanian/orgs", "repos_url": "https://api.github.com/users/ashvardanian/repos", "events_url": "https://api.github.com/users/ashvardanian/events{/privacy}", "received_events_url": "https://api.github.com/users/ashvardanian/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "Unfortunately, that won't improve the performance. StringZilla repository has extensive benchmarks comparing against different built-in functionality of several programming languages. Using `re.finditer` for tokenization is practically the slowest anti-pattern I've encountered in any language. The gap between that and a SIMD-accelerated kernel can be as big as 10 MB/s vs 10 GB/s.\n\nI understand the need to keep the dependencies minimal. It helps the package remain small and portable. At this point, StringZilla provides 105 binaries for different OS and hardware versions (more portable than NumPy) and the [binary size generally ranges from 50 KB to 250 KB](https://pypi.org/project/stringzilla/), smaller than a single JPEG. \n", "The `text` builder is not very popular, so I'm also not a fan of introducing a dependency for it.\r\n\r\nMoreover, I couldn't find any projects of this size/usage depending on StringZilla (with GitHub search), so we should at least wait for its greater adoption to merge this PR.\r\n" ]
2024-03-03T19:03:04
2024-03-04T15:15:51
null
NONE
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6711", "html_url": "https://github.com/huggingface/datasets/pull/6711", "diff_url": "https://github.com/huggingface/datasets/pull/6711.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6711.patch", "merged_at": null }
I was preparing some datasets for AI training and noticed that `datasets` by HuggingFace uses the conventional `open` mechanism to read the file and split it into chunks. I thought it can be significantly accelerated, and [started with a benchmark](https://gist.github.com/ashvardanian/55c2052e9f78b05b8d614aa90cb12347): ```sh $ pip install --upgrade --force-reinstall datasets $ python benchmark_huggingface_datasets.py xlsum.csv Generating train split: 1004598 examples [00:47, 21116.16 examples/s] Time taken to load the dataset: 48.66838526725769 seconds Time taken to chunk the dataset into parts of size 10000: 0.11466407775878906 seconds Total time taken: 48.78304934501648 seconds ``` For benchmarks I've used a [large CSV file with mixed UTF-8 content](https://github.com/ashvardanian/StringZilla/blob/main/CONTRIBUTING.md#benchmarking-datasets), most common in modern large-scale pre-training pipelines. I've later patched the `datasets` library to use `stringzilla`, which resulted in significantly lower memory consumption and in 2.9x throughput improvement on the AWS `r7iz` instances. That's using slow SSDs mounted over the network. Performance on local SSDs on something like a DGX-H100 should be even higher: ```sh $ pip install -e . $ python benchmark_huggingface_datasets.py xlsum.csv Generating train split: 1004598 examples [00:15, 64529.90 examples/s] Time taken to load the dataset: 16.45028805732727 seconds Time taken to chunk the dataset into parts of size 10000: 0.1291060447692871 seconds Total time taken: 16.579394102096558 seconds ``` I've already [pushed the patches to my fork](https://github.com/ashvardanian/datasets/tree/faster-text-parsers), and would love to contribute them to the upstream repository. --- All the tests pass, but they leave a couple of important questions open. The default Python `open(..., newline=None)` uses universal newlines, where `\n`, `\r`, and `\r\n` are all converted to `\n` on the fly. I am not sure if its a good idea for a general purpose dataset preparation pipeline? I can simulate the same behavior (which I don't yet do) for `"line"` splitter. Adjusting it for `"paragraph"`-splitter would be harder. Should we stick exactly to the old Pythonic behavior or stay closer to how C and other programming languages do that?
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6711/reactions", "total_count": 4, "+1": 4, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6711/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6710
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6710/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6710/comments
https://api.github.com/repos/huggingface/datasets/issues/6710/events
https://github.com/huggingface/datasets/pull/6710
2,164,781,564
PR_kwDODunzps5oe4ov
6,710
Persist IterableDataset epoch in workers
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6710). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
2024-03-02T12:08:50
2024-03-06T14:41:54
null
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6710", "html_url": "https://github.com/huggingface/datasets/pull/6710", "diff_url": "https://github.com/huggingface/datasets/pull/6710.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6710.patch", "merged_at": null }
Use shared memory for the IterableDataset epoch. This way calling `ds.set_epoch()` in the main process will update the epoch in the DataLoader workers as well. This is useful especially because the epoch is used to compute the `effective_seed` used for shuffling. I used torch's shared memory in case users want to send dataset copies without shared memory using pickle. I also find it easier to use than using `multiprocessing.shared_memory` than requires unlinking only in the main process, or `mp.Value` that is not picklable. close https://github.com/huggingface/datasets/issues/6673 cc @rwightman
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6710/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6710/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6699
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6699/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6699/comments
https://api.github.com/repos/huggingface/datasets/issues/6699/events
https://github.com/huggingface/datasets/issues/6699
2,158,152,341
I_kwDODunzps6AosqV
6,699
`Dataset` unexpected changed dict data and may cause error
{ "login": "scruel", "id": 16933298, "node_id": "MDQ6VXNlcjE2OTMzMjk4", "avatar_url": "https://avatars.githubusercontent.com/u/16933298?v=4", "gravatar_id": "", "url": "https://api.github.com/users/scruel", "html_url": "https://github.com/scruel", "followers_url": "https://api.github.com/users/scruel/followers", "following_url": "https://api.github.com/users/scruel/following{/other_user}", "gists_url": "https://api.github.com/users/scruel/gists{/gist_id}", "starred_url": "https://api.github.com/users/scruel/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/scruel/subscriptions", "organizations_url": "https://api.github.com/users/scruel/orgs", "repos_url": "https://api.github.com/users/scruel/repos", "events_url": "https://api.github.com/users/scruel/events{/privacy}", "received_events_url": "https://api.github.com/users/scruel/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "If `test.jsonl` contains more lines like:\r\n```\r\n{\"id\": 0, \"indexs\": {\"-1\": [0, 10]}}\r\n{\"id\": 1, \"indexs\": {\"-1\": [0, 10]}}\r\n{\"id\": 2, \"indexs\": {\"-2\": [0, 10]}}\r\n...\r\n{\"id\": n, \"indexs\": {\"-9999\": [0, 10]}}\r\n```\r\n\r\n`Dataset.from_json` will just raise an error:\r\n```\r\nAn error occurred while generating the dataset\r\nTypeError: Couldn't cast array of type\r\nstruct<-5942: list<item: int64>, -5943: list<item: int64>, -5944: list<item: int64>, -5945: list<item: int64>, -5946: list<item: int64>, -5947: list<item: int64>, -5948: list<item: int64>, -5949: list<item: int64>: ...\r\nto\r\n{... '-5312': Sequence(feature=Value(dtype='int64', id=None), length=-1, id=None), '-5313': Sequence(feature=Value(dtype='int64', id=None), length=-1, id=None)}\r\n\r\nThe above exception was the direct cause of the following exception:\r\n\r\nTraceback (most recent call last):\r\n File \"/home/scruel/mambaforge/envs/vae/lib/python3.11/runpy.py\", line 198, in _run_module_as_main\r\n return _run_code(code, main_globals, None,\r\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\r\n File \"/home/scruel/mambaforge/envs/vae/lib/python3.11/runpy.py\", line 88, in _run_code\r\n exec(code, run_globals)\r\n File \"/home/scruel/.vscode-server/extensions/ms-python.debugpy-2024.0.0-linux-x64/bundled/libs/debugpy/adapter/../../debugpy/launcher/../../debugpy/__main__.py\", line 39, in <module>\r\n cli.main()\r\n File \"/home/scruel/.vscode-server/extensions/ms-python.debugpy-2024.0.0-linux-x64/bundled/libs/debugpy/adapter/../../debugpy/launcher/../../debugpy/../debugpy/server/cli.py\", line 430, in main\r\n run()\r\n File \"/home/scruel/.vscode-server/extensions/ms-python.debugpy-2024.0.0-linux-x64/bundled/libs/debugpy/adapter/../../debugpy/launcher/../../debugpy/../debugpy/server/cli.py\", line 284, in run_file\r\n runpy.run_path(target, run_name=\"__main__\")\r\n File \"/home/scruel/.vscode-server/extensions/ms-python.debugpy-2024.0.0-linux-x64/bundled/libs/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_runpy.py\", line 321, in run_path\r\n return _run_module_code(code, init_globals, run_name,\r\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\r\n File \"/home/scruel/.vscode-server/extensions/ms-python.debugpy-2024.0.0-linux-x64/bundled/libs/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_runpy.py\", line 135, in _run_module_code\r\n _run_code(code, mod_globals, init_globals,\r\n File \"/home/scruel/.vscode-server/extensions/ms-python.debugpy-2024.0.0-linux-x64/bundled/libs/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_runpy.py\", line 124, in _run_code\r\n exec(code, run_globals)\r\n File \"/home/scruel/Code/Python/Working/llm-memory/data_reader.py\", line 120, in <module>\r\n reader = SnippetReader(jsonl_path, npy_path)\r\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\r\n File \"/home/scruel/Code/Python/Working/llm-memory/data_reader.py\", line 85, in __init__\r\n self._dataset = Dataset.from_json(jsonl_path, features=)\r\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\r\n File \"/home/scruel/mambaforge/envs/vae/lib/python3.11/site-packages/datasets/arrow_dataset.py\", line 1130, in from_json\r\n ).read()\r\n ^^^^^^\r\n File \"/home/scruel/mambaforge/envs/vae/lib/python3.11/site-packages/datasets/io/json.py\", line 59, in read\r\n self.builder.download_and_prepare(\r\n File \"/home/scruel/mambaforge/envs/vae/lib/python3.11/site-packages/datasets/builder.py\", line 1005, in download_and_prepare\r\n self._download_and_prepare(\r\n File \"/home/scruel/mambaforge/envs/vae/lib/python3.11/site-packages/datasets/builder.py\", line 1100, in _download_and_prepare\r\n self._prepare_split(split_generator, **prepare_split_kwargs)\r\n File \"/home/scruel/mambaforge/envs/vae/lib/python3.11/site-packages/datasets/builder.py\", line 1860, in _prepare_split\r\n for job_id, done, content in self._prepare_split_single(\r\n File \"/home/scruel/mambaforge/envs/vae/lib/python3.11/site-packages/datasets/builder.py\", line 2016, in _prepare_split_single\r\n raise DatasetGenerationError(\"An error occurred while generating the dataset\") from e\r\ndatasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset\r\n```", "Hi! Our JSON parser expects all examples/rows to share the same set of columns (applies to nested columns, too), hence the error. \r\n\r\nTo read the `index` column, we would have to manually cast the input to PyArrow's `pa.map_` type, but this requires a more thorough investigation, as `pa.map_` has limited support in PyArrow." ]
2024-02-28T05:30:10
2024-02-28T19:14:36
null
NONE
null
null
null
### Describe the bug Will unexpected get keys with `None` value in the parsed json dict. ### Steps to reproduce the bug ```jsonl test.jsonl {"id": 0, "indexs": {"-1": [0, 10]}} {"id": 1, "indexs": {"-1": [0, 10]}} ``` ```python dataset = Dataset.from_json('.test.jsonl') print(dataset[0]) ``` Result: ``` {'id': 0, 'indexs': {'-1': [...], '-2': None, '-3': None, '-4': None, '-5': None, '-6': None, '-7': None, '-8': None, '-9': None, ...}} ``` Those keys with `None` value will unexpected appear in the dict. ### Expected behavior Result should be ``` {'id': 0, 'indexs': {'-1': [0, 10]}} ``` ### Environment info - `datasets` version: 2.16.1 - Platform: Linux-6.5.0-14-generic-x86_64-with-glibc2.35 - Python version: 3.11.6 - `huggingface_hub` version: 0.20.2 - PyArrow version: 14.0.2 - Pandas version: 2.1.4 - `fsspec` version: 2023.10.0
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6699/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6699/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6694
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6694/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6694/comments
https://api.github.com/repos/huggingface/datasets/issues/6694/events
https://github.com/huggingface/datasets/pull/6694
2,153,086,984
PR_kwDODunzps5n23Jz
6,694
__add__ for Dataset, IterableDataset
{ "login": "oh-gnues-iohc", "id": 79557937, "node_id": "MDQ6VXNlcjc5NTU3OTM3", "avatar_url": "https://avatars.githubusercontent.com/u/79557937?v=4", "gravatar_id": "", "url": "https://api.github.com/users/oh-gnues-iohc", "html_url": "https://github.com/oh-gnues-iohc", "followers_url": "https://api.github.com/users/oh-gnues-iohc/followers", "following_url": "https://api.github.com/users/oh-gnues-iohc/following{/other_user}", "gists_url": "https://api.github.com/users/oh-gnues-iohc/gists{/gist_id}", "starred_url": "https://api.github.com/users/oh-gnues-iohc/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/oh-gnues-iohc/subscriptions", "organizations_url": "https://api.github.com/users/oh-gnues-iohc/orgs", "repos_url": "https://api.github.com/users/oh-gnues-iohc/repos", "events_url": "https://api.github.com/users/oh-gnues-iohc/events{/privacy}", "received_events_url": "https://api.github.com/users/oh-gnues-iohc/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "Hi! You can find a reason why we are against this feature in https://github.com/huggingface/datasets/issues/3449. \r\n\r\n> It's too cumbersome to write this command every time we perform a dataset merging operation\r\n\r\nExplicit is better than implicit, so this isn't a good enough reason. \r\n\r\nThanks for the effort nonetheless :)!" ]
2024-02-26T01:46:55
2024-02-29T16:52:58
null
NONE
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6694", "html_url": "https://github.com/huggingface/datasets/pull/6694", "diff_url": "https://github.com/huggingface/datasets/pull/6694.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6694.patch", "merged_at": null }
It's too cumbersome to write this command every time we perform a dataset merging operation. ```pythonfrom datasets import concatenate_datasets``` We have added a simple `__add__` magic method to each class using `concatenate_datasets.` ```python from datasets import load_dataset bookcorpus = load_dataset("bookcorpus", split="train") wiki = load_dataset("wikimedia/wikipedia", "20231101.ab", split="train") wiki = wiki.remove_columns([col for col in wiki.column_names if col != "text"]) # only keep the 'text' column bookcorpus + wiki #Dataset({ # features: ['text'], # num_rows: 74004228 #}) #Dataset({ # features: ['text'], # num_rows: 6152 #}) #Dataset({ # features: ['text'], # num_rows: 74010380 #}) ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6694/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6694/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6688
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6688/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6688/comments
https://api.github.com/repos/huggingface/datasets/issues/6688/events
https://github.com/huggingface/datasets/issues/6688
2,148,609,859
I_kwDODunzps6AES9D
6,688
Tensor type (e.g. from `return_tensors`) ignored in map
{ "login": "srossi93", "id": 11166137, "node_id": "MDQ6VXNlcjExMTY2MTM3", "avatar_url": "https://avatars.githubusercontent.com/u/11166137?v=4", "gravatar_id": "", "url": "https://api.github.com/users/srossi93", "html_url": "https://github.com/srossi93", "followers_url": "https://api.github.com/users/srossi93/followers", "following_url": "https://api.github.com/users/srossi93/following{/other_user}", "gists_url": "https://api.github.com/users/srossi93/gists{/gist_id}", "starred_url": "https://api.github.com/users/srossi93/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/srossi93/subscriptions", "organizations_url": "https://api.github.com/users/srossi93/orgs", "repos_url": "https://api.github.com/users/srossi93/repos", "events_url": "https://api.github.com/users/srossi93/events{/privacy}", "received_events_url": "https://api.github.com/users/srossi93/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "Hi, this is expected behavior since all the tensors are converted to Arrow data (the storage type behind a Dataset).\r\n\r\nTo get pytorch tensors back, you can set the dataset format to \"torch\":\r\n\r\n```python\r\nds = ds.with_format(\"torch\")\r\n```", "Thanks. Just one additional question. During the pipeline `<framework> -> arrow -> <framework>`, does `.with_format` zero-copies the tensors or is it a deep copy? And is this behavior framework-dependent?\r\n\r\nThanks again.", "We do zero-copy Arrow <-> NumPy <-> PyTorch when the output dtype matches the original dtype, but for other frameworks it depends. For example JAX doesn't allow zero-copy NumPy -> JAX at all IIRC.\r\n\r\nCurrently tokenized data are formatted using a copy though, since tokens are stored as int32 and returned as int64 torch tensors." ]
2024-02-22T09:27:57
2024-02-22T15:56:21
null
NONE
null
null
null
### Describe the bug I don't know if it is a bug or an expected behavior, but the tensor type seems to be ignored after applying map. For example, mapping over to tokenize text with a transformers' tokenizer always returns lists and it ignore the `return_tensors` argument. If this is an expected behaviour (e.g., for caching/Arrow compatibility/etc.) it should be clearly documented. For example, current documentation (see [here](https://huggingface.co/docs/datasets/v2.17.1/en/nlp_process#map)) clearly state to "set `return_tensors="np"` when you tokenize your text" to have Numpy arrays. ### Steps to reproduce the bug ```py # %%% import datasets import numpy as np import tensorflow as tf import torch from transformers import AutoTokenizer # %% ds = datasets.load_dataset("cnn_dailymail", "1.0.0", split="train[:1%]") tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") #%% for return_tensors in [None, "np", "pt", "tf", "jax"]: print(f"********** no map, return_tensors={return_tensors} **********") _ds = tokenizer(ds["article"], return_tensors=return_tensors, truncation=True, padding=True) print('Type <input_ids>:', type(_ds["input_ids"])) # %% for return_tensors in [None, "np", "pt", "tf", "jax"]: print(f"********** map, return_tensors={return_tensors} **********") _ds = ds.map( lambda examples: tokenizer(examples["article"], return_tensors=return_tensors, truncation=True, padding=True), batched=True, remove_columns=["article"], ) print('Type <input_ids>:', type(_ds[0]["input_ids"])) ``` ### Expected behavior The output from the script above. I would expect the second half to be the same. ``` ********** no map, return_tensors=None ********** Type <input_ids>: <class 'list'> ********** no map, return_tensors=np ********** Type <input_ids>: <class 'numpy.ndarray'> ********** no map, return_tensors=pt ********** Type <input_ids>: <class 'torch.Tensor'> ********** no map, return_tensors=tf ********** Type <input_ids>: <class 'tensorflow.python.framework.ops.EagerTensor'> ********** no map, return_tensors=jax ********** Type <input_ids>: <class 'jaxlib.xla_extension.ArrayImpl'> ********** map, return_tensors=None ********** Type <input_ids>: <class 'list'> ********** map, return_tensors=np ********** Type <input_ids>: <class 'list'> ********** map, return_tensors=pt ********** Type <input_ids>: <class 'list'> ********** map, return_tensors=tf ********** Type <input_ids>: <class 'list'> ********** map, return_tensors=jax ********** Type <input_ids>: <class 'list'> ``` ### Environment info - `datasets` version: 2.17.1 - Platform: Redacted (linux) - Python version: 3.10.12 - `huggingface_hub` version: 0.20.3 - PyArrow version: 15.0.0 - Pandas version: 2.1.3 - `fsspec` version: 2023.10.0
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6688/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6688/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6686
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6686/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6686/comments
https://api.github.com/repos/huggingface/datasets/issues/6686/events
https://github.com/huggingface/datasets/issues/6686
2,147,795,103
I_kwDODunzps6ABMCf
6,686
Question: Is there any way for uploading a large image dataset?
{ "login": "zhjohnchan", "id": 37367987, "node_id": "MDQ6VXNlcjM3MzY3OTg3", "avatar_url": "https://avatars.githubusercontent.com/u/37367987?v=4", "gravatar_id": "", "url": "https://api.github.com/users/zhjohnchan", "html_url": "https://github.com/zhjohnchan", "followers_url": "https://api.github.com/users/zhjohnchan/followers", "following_url": "https://api.github.com/users/zhjohnchan/following{/other_user}", "gists_url": "https://api.github.com/users/zhjohnchan/gists{/gist_id}", "starred_url": "https://api.github.com/users/zhjohnchan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/zhjohnchan/subscriptions", "organizations_url": "https://api.github.com/users/zhjohnchan/orgs", "repos_url": "https://api.github.com/users/zhjohnchan/repos", "events_url": "https://api.github.com/users/zhjohnchan/events{/privacy}", "received_events_url": "https://api.github.com/users/zhjohnchan/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "```\r\nimport pandas as pd\r\nfrom datasets import Dataset, Image\r\n\r\n# Read the CSV file\r\ndata = pd.read_csv(\"XXXX.csv\")\r\n\r\n# Create a Hugging Face Dataset\r\ndataset = Dataset.from_pandas(data)\r\ndataset = dataset.cast_column(\"file_name\", Image())\r\n\r\n# Upload to Hugging Face Hub (make sure authentication is set up)\r\ndataset.push_to_hub(\"XXXXX\"\")\r\n```\r\n\r\nstuck in \"Casting the dataset\r\n![截屏2024-05-02 11 44 50](https://github.com/huggingface/datasets/assets/48406770/dc012dc5-16f6-4fd5-9e02-1b705c552c5b)\r\n\"\r\n" ]
2024-02-21T22:07:21
2024-05-02T03:44:59
null
NONE
null
null
null
I am uploading an image dataset like this: ``` dataset = load_dataset( "json", data_files={"train": "data/custom_dataset/train.json", "validation": "data/custom_dataset/val.json"}, ) dataset = dataset.cast_column("images", Sequence(Image())) dataset.push_to_hub("StanfordAIMI/custom_dataset", max_shard_size="1GB") ``` where it takes a long time in the `Map` process. Do you think I can use multi-processing to map all the image data to the memory first? For the `Map()` function, I can set `num_proc`. But for `push_to_hub` and `cast_column`, I can not find it. Thanks in advance! Best,
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6686/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6686/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6676
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6676/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6676/comments
https://api.github.com/repos/huggingface/datasets/issues/6676/events
https://github.com/huggingface/datasets/issues/6676
2,140,648,619
I_kwDODunzps5_l7Sr
6,676
Can't Read List of JSON Files Properly
{ "login": "lordsoffallen", "id": 20232088, "node_id": "MDQ6VXNlcjIwMjMyMDg4", "avatar_url": "https://avatars.githubusercontent.com/u/20232088?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lordsoffallen", "html_url": "https://github.com/lordsoffallen", "followers_url": "https://api.github.com/users/lordsoffallen/followers", "following_url": "https://api.github.com/users/lordsoffallen/following{/other_user}", "gists_url": "https://api.github.com/users/lordsoffallen/gists{/gist_id}", "starred_url": "https://api.github.com/users/lordsoffallen/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lordsoffallen/subscriptions", "organizations_url": "https://api.github.com/users/lordsoffallen/orgs", "repos_url": "https://api.github.com/users/lordsoffallen/repos", "events_url": "https://api.github.com/users/lordsoffallen/events{/privacy}", "received_events_url": "https://api.github.com/users/lordsoffallen/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "Found the issue, if there are other files in the directory, it gets caught into this `*` so essentially it should be `*.json`. Could we possibly to check for list of files to make sure the pattern matches json files and raise error if not?", "I don't think we should filter for `*.json` as this might silently remove desired files for many users. And this could be a major breaking change for many organizations.\r\n\r\nYou could do the globbing yourself which would keep the code clean.\r\n\r\n```python\r\nfrom glob import glob\r\n\r\nDataset.from_json(glob('folder/*.json'))\r\n```", "I think it should still be fine to log a warning message in case the folder contains different files? I also don't get why would this be breaking as in the end using `from_FILE_TYPE` should be able to read a specific file type only. Maybe some other use case I am not aware of but since globbing or this case not mentioned anywhere in the doc, I spent quite a bit of time trying to figure out where the issue was. Just making sure it's clear for users." ]
2024-02-17T22:58:15
2024-03-02T20:47:22
null
NONE
null
null
null
### Describe the bug Trying to read a bunch of JSON files into Dataset class but default approach doesn't work. I don't get why it works when I read it one by one but not when I pass as a list :man_shrugging: The code fails with ``` ArrowInvalid: JSON parse error: Invalid value. in row 0 UnicodeDecodeError: 'utf-8' codec can't decode byte 0x80 in position 0: invalid start byte DatasetGenerationError: An error occurred while generating the dataset ``` ### Steps to reproduce the bug This doesn't work ``` from datasets import Dataset # dir contains 100 json files. Dataset.from_json("/PUT SOME PATH HERE/*") ``` This works: ``` from datasets import concatenate_datasets ls_ds = [] for file in list_of_json_files: ls_ds.append(Dataset.from_json(file)) ds = concatenate_datasets(ls_ds) ``` ### Expected behavior I expect this to read json files properly as error is not clear ### Environment info - `datasets` version: 2.17.0 - Platform: Linux-6.5.0-15-generic-x86_64-with-glibc2.35 - Python version: 3.10.13 - `huggingface_hub` version: 0.20.2 - PyArrow version: 15.0.0 - Pandas version: 2.2.0 - `fsspec` version: 2023.10.0
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6676/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6676/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6673
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6673/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6673/comments
https://api.github.com/repos/huggingface/datasets/issues/6673/events
https://github.com/huggingface/datasets/issues/6673
2,139,522,827
I_kwDODunzps5_hocL
6,673
IterableDataset `set_epoch` is ignored when DataLoader `persistent_workers=True`
{ "login": "rwightman", "id": 5702664, "node_id": "MDQ6VXNlcjU3MDI2NjQ=", "avatar_url": "https://avatars.githubusercontent.com/u/5702664?v=4", "gravatar_id": "", "url": "https://api.github.com/users/rwightman", "html_url": "https://github.com/rwightman", "followers_url": "https://api.github.com/users/rwightman/followers", "following_url": "https://api.github.com/users/rwightman/following{/other_user}", "gists_url": "https://api.github.com/users/rwightman/gists{/gist_id}", "starred_url": "https://api.github.com/users/rwightman/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/rwightman/subscriptions", "organizations_url": "https://api.github.com/users/rwightman/orgs", "repos_url": "https://api.github.com/users/rwightman/repos", "events_url": "https://api.github.com/users/rwightman/events{/privacy}", "received_events_url": "https://api.github.com/users/rwightman/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892857, "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug", "name": "bug", "color": "d73a4a", "default": true, "description": "Something isn't working" }, { "id": 3287858981, "node_id": "MDU6TGFiZWwzMjg3ODU4OTgx", "url": "https://api.github.com/repos/huggingface/datasets/labels/streaming", "name": "streaming", "color": "fef2c0", "default": false, "description": "" } ]
open
false
null
[]
null
[]
2024-02-16T21:38:12
2024-02-22T13:17:14
null
NONE
null
null
null
### Describe the bug When persistent workers are enabled, the epoch that's set via the IterableDataset instance held by the training process is ignored by the workers as they are disconnected across processes. PyTorch samplers for non-iterable datasets have a mechanism to sync this, datasets.IterableDataset does not. In my own use of IterableDatasets I usually track the epoch count which crosses process boundaries in a multiprocessing.Value ### Steps to reproduce the bug Use a streaming dataset (Iterable) w/ the recommended pattern below and `persistent_workers=True` in the torch DataLoader. ``` for epoch in range(epochs): shuffled_dataset.set_epoch(epoch) for example in shuffled_dataset: ... ``` ### Expected behavior When the canonical bit of code above is used with `num_workers > 0` and `persistent_workers=True`, the epoch set via `set_epoch()` is propagated to the IterableDataset instances in the worker processes ### Environment info N/A
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6673/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6673/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6668
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6668/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6668/comments
https://api.github.com/repos/huggingface/datasets/issues/6668/events
https://github.com/huggingface/datasets/issues/6668
2,137,859,935
I_kwDODunzps5_bSdf
6,668
Chapter 6 - Issue Loading `cnn_dailymail` dataset
{ "login": "hariravichandran", "id": 34660389, "node_id": "MDQ6VXNlcjM0NjYwMzg5", "avatar_url": "https://avatars.githubusercontent.com/u/34660389?v=4", "gravatar_id": "", "url": "https://api.github.com/users/hariravichandran", "html_url": "https://github.com/hariravichandran", "followers_url": "https://api.github.com/users/hariravichandran/followers", "following_url": "https://api.github.com/users/hariravichandran/following{/other_user}", "gists_url": "https://api.github.com/users/hariravichandran/gists{/gist_id}", "starred_url": "https://api.github.com/users/hariravichandran/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/hariravichandran/subscriptions", "organizations_url": "https://api.github.com/users/hariravichandran/orgs", "repos_url": "https://api.github.com/users/hariravichandran/repos", "events_url": "https://api.github.com/users/hariravichandran/events{/privacy}", "received_events_url": "https://api.github.com/users/hariravichandran/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[]
2024-02-16T04:40:56
2024-02-16T04:40:56
null
NONE
null
null
null
### Describe the bug So I am getting this bug when I try to run cell 4 of the Chapter 6 notebook code: `dataset = load_dataset("ccdv/cnn_dailymail", version="3.0.0")` Error Message: ``` --------------------------------------------------------------------------- ValueError Traceback (most recent call last) Cell In[4], line 4 1 #hide_output 2 from datasets import load_dataset ----> 4 dataset = load_dataset("ccdv/cnn_dailymail", version="3.0.0") 7 # dataset = load_dataset("ccdv/cnn_dailymail", version="3.0.0", trust_remote_code=True) 8 print(f"Features: {dataset['train'].column_names}") File ~\anaconda3\envs\nlp-transformers\lib\site-packages\datasets\load.py:2587, in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, token, use_auth_token, task, streaming, num_proc, storage_options, trust_remote_code, **config_kwargs) 2583 # Build dataset for splits 2584 keep_in_memory = ( 2585 keep_in_memory if keep_in_memory is not None else is_small_dataset(builder_instance.info.dataset_size) 2586 ) -> 2587 ds = builder_instance.as_dataset(split=split, verification_mode=verification_mode, in_memory=keep_in_memory) 2588 # Rename and cast features to match task schema 2589 if task is not None: 2590 # To avoid issuing the same warning twice File ~\anaconda3\envs\nlp-transformers\lib\site-packages\datasets\builder.py:1244, in DatasetBuilder.as_dataset(self, split, run_post_process, verification_mode, ignore_verifications, in_memory) 1241 verification_mode = VerificationMode(verification_mode or VerificationMode.BASIC_CHECKS) 1243 # Create a dataset for each of the given splits -> 1244 datasets = map_nested( 1245 partial( 1246 self._build_single_dataset, 1247 run_post_process=run_post_process, 1248 verification_mode=verification_mode, 1249 in_memory=in_memory, 1250 ), 1251 split, 1252 map_tuple=True, 1253 disable_tqdm=True, 1254 ) 1255 if isinstance(datasets, dict): 1256 datasets = DatasetDict(datasets) File ~\anaconda3\envs\nlp-transformers\lib\site-packages\datasets\utils\py_utils.py:477, in map_nested(function, data_struct, dict_only, map_list, map_tuple, map_numpy, num_proc, parallel_min_length, types, disable_tqdm, desc) 466 mapped = [ 467 map_nested( 468 function=function, (...) 474 for obj in iterable 475 ] 476 elif num_proc != -1 and num_proc <= 1 or len(iterable) < parallel_min_length: --> 477 mapped = [ 478 _single_map_nested((function, obj, types, None, True, None)) 479 for obj in hf_tqdm(iterable, disable=disable_tqdm, desc=desc) 480 ] 481 else: 482 with warnings.catch_warnings(): File ~\anaconda3\envs\nlp-transformers\lib\site-packages\datasets\utils\py_utils.py:478, in <listcomp>(.0) 466 mapped = [ 467 map_nested( 468 function=function, (...) 474 for obj in iterable 475 ] 476 elif num_proc != -1 and num_proc <= 1 or len(iterable) < parallel_min_length: 477 mapped = [ --> 478 _single_map_nested((function, obj, types, None, True, None)) 479 for obj in hf_tqdm(iterable, disable=disable_tqdm, desc=desc) 480 ] 481 else: 482 with warnings.catch_warnings(): File ~\anaconda3\envs\nlp-transformers\lib\site-packages\datasets\utils\py_utils.py:370, in _single_map_nested(args) 368 # Singleton first to spare some computation 369 if not isinstance(data_struct, dict) and not isinstance(data_struct, types): --> 370 return function(data_struct) 372 # Reduce logging to keep things readable in multiprocessing with tqdm 373 if rank is not None and logging.get_verbosity() < logging.WARNING: File ~\anaconda3\envs\nlp-transformers\lib\site-packages\datasets\builder.py:1274, in DatasetBuilder._build_single_dataset(self, split, run_post_process, verification_mode, in_memory) 1271 split = Split(split) 1273 # Build base dataset -> 1274 ds = self._as_dataset( 1275 split=split, 1276 in_memory=in_memory, 1277 ) 1278 if run_post_process: 1279 for resource_file_name in self._post_processing_resources(split).values(): File ~\anaconda3\envs\nlp-transformers\lib\site-packages\datasets\builder.py:1348, in DatasetBuilder._as_dataset(self, split, in_memory) 1346 if self._check_legacy_cache(): 1347 dataset_name = self.name -> 1348 dataset_kwargs = ArrowReader(cache_dir, self.info).read( 1349 name=dataset_name, 1350 instructions=split, 1351 split_infos=self.info.splits.values(), 1352 in_memory=in_memory, 1353 ) 1354 fingerprint = self._get_dataset_fingerprint(split) 1355 return Dataset(fingerprint=fingerprint, **dataset_kwargs) File ~\anaconda3\envs\nlp-transformers\lib\site-packages\datasets\arrow_reader.py:254, in BaseReader.read(self, name, instructions, split_infos, in_memory) 252 if not files: 253 msg = f'Instruction "{instructions}" corresponds to no data!' --> 254 raise ValueError(msg) 255 return self.read_files(files=files, original_instructions=instructions, in_memory=in_memory) **ValueError: Instruction "validation" corresponds to no data!** ```` Looks like the data is not being loaded. Any advice would be appreciated. Thanks! ### Steps to reproduce the bug Run all cells of Chapter 6 notebook. ### Expected behavior Data should load correctly without any errors. ### Environment info - `datasets` version: 2.17.0 - Platform: Windows-10-10.0.19045-SP0 - Python version: 3.9.18 - `huggingface_hub` version: 0.20.3 - PyArrow version: 15.0.0 - Pandas version: 2.2.0 - `fsspec` version: 2023.10.0
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6668/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6668/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6667
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6667/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6667/comments
https://api.github.com/repos/huggingface/datasets/issues/6667/events
https://github.com/huggingface/datasets/issues/6667
2,137,769,552
I_kwDODunzps5_a8ZQ
6,667
Default config for squad is incorrect
{ "login": "kiddyboots216", "id": 22651617, "node_id": "MDQ6VXNlcjIyNjUxNjE3", "avatar_url": "https://avatars.githubusercontent.com/u/22651617?v=4", "gravatar_id": "", "url": "https://api.github.com/users/kiddyboots216", "html_url": "https://github.com/kiddyboots216", "followers_url": "https://api.github.com/users/kiddyboots216/followers", "following_url": "https://api.github.com/users/kiddyboots216/following{/other_user}", "gists_url": "https://api.github.com/users/kiddyboots216/gists{/gist_id}", "starred_url": "https://api.github.com/users/kiddyboots216/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/kiddyboots216/subscriptions", "organizations_url": "https://api.github.com/users/kiddyboots216/orgs", "repos_url": "https://api.github.com/users/kiddyboots216/repos", "events_url": "https://api.github.com/users/kiddyboots216/events{/privacy}", "received_events_url": "https://api.github.com/users/kiddyboots216/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "you can try: pip install datasets==2.16.1" ]
2024-02-16T02:36:55
2024-02-23T09:10:00
null
NONE
null
null
null
### Describe the bug If you download Squad, it will download the plain_text version, but the config still specifies "default", so if you set the offline mode the cache will try to look it up according to the config_id which is "default" and this will say; ValueError: Couldn't find cache for squad for config 'default' Available configs in the cache: ['plain_text'] ### Steps to reproduce the bug 1. export HF_DATASETS_OFFLINE=0 2. load_dataset("squad") 3. export HF_DATASETS_OFFLINE=1 4. load_dataset("squad") ### Expected behavior We should change the config_name I guess? ### Environment info linux, latest version of datasets
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6667/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6667/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6658
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6658/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6658/comments
https://api.github.com/repos/huggingface/datasets/issues/6658/events
https://github.com/huggingface/datasets/pull/6658
2,129,158,371
PR_kwDODunzps5mlZyb
6,658
[Resumable IterableDataset] Add IterableDataset state_dict
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6658). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "would be nice to have this feature in the new dataset release!", "Before finalising this this I'd like to make sure this philosophy makes sense for other libs like `accelerate` for example.\r\n\r\ncc @muellerzr I'd love your feedback on this one\r\ncc @LysandreJik also if you think other people should take a look", "> One design question though: what's the logic behind self._state_dict rather than having it all be state_dict?\r\n\r\nThe `_state_dict` is the internal object that is updated in-place while you iterate on the dataset.\r\n\r\nWe need to copy it every time the user accesses it.\r\n\r\nOtherwise we would get\r\n```python\r\nstate_dict = ds.state_dict()\r\nfor x in ds:\r\n assert ds.state_dict() == state_dict # and actually `assert ds.state_dict() is state_dict`\r\n```\r\n\r\nThe state is updated in-place since it's made of dictionaries that are shared with the steps in the IterableDataset pipeline.", "What do you think of making it a full property with a docstring explicitly stating users shouldn’t call/modify it directly?\r\n\r\nI can imagine some exploratory users getting curious", "I don't think users read docstrings of properties that often. What about explaining the logic in the `.state_dict()` docstring ? This also feels aligned with the way `.state_dict()` and `.load_state_dict()` works in pytorch (you should use load_state_dict to load a modified copy of the state dict)", "Sure, I can agree with that!", "Just a small note mentioning returns a copy of the state dict should be enough imo", "looking forward as well for this PR to be merge" ]
2024-02-11T20:35:52
2024-05-07T10:04:53
null
MEMBER
null
true
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6658", "html_url": "https://github.com/huggingface/datasets/pull/6658", "diff_url": "https://github.com/huggingface/datasets/pull/6658.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6658.patch", "merged_at": null }
A simple implementation of a mechanism to resume an IterableDataset. This is WIP and untested. Example: ```python from datasets import Dataset, concatenate_datasets ds = Dataset.from_dict({"a": range(5)}).to_iterable_dataset(num_shards=3) ds = concatenate_datasets([ds] * 2) print(f"{ds.state_dict()=}") for i, example in enumerate(ds): print(example) if i == 6: state_dict = ds.state_dict() ds.load_state_dict(state_dict) print(f"{ds.state_dict()=}") for example in ds: print(example) ``` returns ``` ds.state_dict()={'ex_iterable_idx': 0, 'ex_iterables': [{'shard_idx': 0, 'shard_example_idx': 0}, {'shard_idx': 0, 'shard_example_idx': 0}]} {'a': 0} {'a': 1} {'a': 2} {'a': 3} {'a': 4} {'a': 0} {'a': 1} {'a': 2} {'a': 3} {'a': 4} ds.state_dict()={'ex_iterable_idx': 1, 'ex_iterables': [{'shard_idx': 3, 'shard_example_idx': 0}, {'shard_idx': 0, 'shard_example_idx': 2}]} {'a': 2} {'a': 3} {'a': 4} ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6658/reactions", "total_count": 2, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 2, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6658/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6656
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6656/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6656/comments
https://api.github.com/repos/huggingface/datasets/issues/6656/events
https://github.com/huggingface/datasets/issues/6656
2,127,338,377
I_kwDODunzps5-zJuJ
6,656
Error when loading a big local json file
{ "login": "Riccorl", "id": 10062216, "node_id": "MDQ6VXNlcjEwMDYyMjE2", "avatar_url": "https://avatars.githubusercontent.com/u/10062216?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Riccorl", "html_url": "https://github.com/Riccorl", "followers_url": "https://api.github.com/users/Riccorl/followers", "following_url": "https://api.github.com/users/Riccorl/following{/other_user}", "gists_url": "https://api.github.com/users/Riccorl/gists{/gist_id}", "starred_url": "https://api.github.com/users/Riccorl/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Riccorl/subscriptions", "organizations_url": "https://api.github.com/users/Riccorl/orgs", "repos_url": "https://api.github.com/users/Riccorl/repos", "events_url": "https://api.github.com/users/Riccorl/events{/privacy}", "received_events_url": "https://api.github.com/users/Riccorl/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "I get similar when dealing with a large jsonl file (6k lines), \r\n\r\n> TypeError: Couldn't cast array of type timestamp[us] to null\r\n\r\nYet when I split it into 1k lines, files, load_dataset works fine!\r\n\r\nhttps://github.com/huggingface/course/issues/692\r\n\r\n" ]
2024-02-09T15:14:21
2024-03-15T22:18:21
null
NONE
null
null
null
### Describe the bug When trying to load big json files from a local directory, `load_dataset` throws the following error ``` Traceback (most recent call last): File "/miniconda3/envs/conda-env/lib/python3.10/site-packages/datasets/builder.py", line 1989, in _prepare_split_single writer.write_table(table) File "miniconda3/envs/conda-env/lib/python3.10/site-packages/datasets/arrow_writer.py", line 573, in write_table pa_table = pa_table.combine_chunks() File "pyarrow/table.pxi", line 3638, in pyarrow.lib.Table.combine_chunks File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: offset overflow while concatenating arrays ``` ### Steps to reproduce the bug 1. Download a big file, e.g. `https://dl.fbaipublicfiles.com/dpr/data/retriever/biencoder-nq-train.json.gz` 2. Load it like `data = load_dataset("json", data_files=["nq-train.json"], split="train")` ```python from datasets import load_dataset data = load_dataset("json", data_files=["nq-train.json"], split="train") ``` A similarly formatted but smaller file, e.g. e.g. `https://dl.fbaipublicfiles.com/dpr/data/retriever/biencoder-nq-dev.json.gz` is loaded without issues ```python from datasets import load_dataset data = load_dataset("json", data_files=["nq-dev.json"], split="train") ``` ### Expected behavior It should load normally ### Environment info - `datasets` version: 2.16.1 - Platform: Linux-5.18.10-76051810-generic-x86_64-with-glibc2.31 - Python version: 3.10.13 - `huggingface_hub` version: 0.20.3 - PyArrow version: 15.0.0 - Pandas version: 2.2.0 - `fsspec` version: 2023.10.0
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6656/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6656/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6655
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6655/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6655/comments
https://api.github.com/repos/huggingface/datasets/issues/6655/events
https://github.com/huggingface/datasets/issues/6655
2,127,020,042
I_kwDODunzps5-x8AK
6,655
Cannot load the dataset go_emotions
{ "login": "arame", "id": 688324, "node_id": "MDQ6VXNlcjY4ODMyNA==", "avatar_url": "https://avatars.githubusercontent.com/u/688324?v=4", "gravatar_id": "", "url": "https://api.github.com/users/arame", "html_url": "https://github.com/arame", "followers_url": "https://api.github.com/users/arame/followers", "following_url": "https://api.github.com/users/arame/following{/other_user}", "gists_url": "https://api.github.com/users/arame/gists{/gist_id}", "starred_url": "https://api.github.com/users/arame/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/arame/subscriptions", "organizations_url": "https://api.github.com/users/arame/orgs", "repos_url": "https://api.github.com/users/arame/repos", "events_url": "https://api.github.com/users/arame/events{/privacy}", "received_events_url": "https://api.github.com/users/arame/received_events", "type": "User", "site_admin": false }
[]
open
false
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false } ]
null
[ "Thanks for reporting, @arame.\r\n\r\nI guess you have an old version of `transformers` (that submodule is present in `transformers` since version 3.0.1, since nearly 4 years ago). If you update it, the error should disappear:\r\n```shell\r\npip install -U transformers\r\n```\r\n\r\nOn the other hand, I am wondering: does it make sense to use `transformers` in this case, even if we don't need it to load the `go_emotions` dataset (already converted to Parquet files)?\r\n- Maybe @mariosasko can give some insight, as he included these code lines:\r\n - #6454\r\n\r\nhttps://github.com/huggingface/datasets/blob/9751fb14594d354e952f0ebdfaf31cb203b011e7/src/datasets/utils/_dill.py#L60-L63\r\n", "The linked code lazily registers a custom reducer for `transformers.PreTrainedTokenizerBase` only if `transformers` have already been imported (imports are expensive, so we check `sys.modules`).\r\n\r\nHowever, the logic does not account for `transformers<3`, so we should add a version check to fix that.", "> The linked code lazily registers a custom reducer for `transformers.PreTrainedTokenizerBase` only if `transformers` have already been imported (imports are expensive, so we check `sys.modules`).\r\n> \r\n> However, the logic does not account for `transformers<3`, so we should add a version check to fix that.\r\n\r\nThank you for that Mario. Would this fix solve the problem and do you have any idea when it will be done? \r\nI tried the pip install suggested by Albert and it made no difference.", "I tried running the code today and the problem appears to be fixed." ]
2024-02-09T12:15:39
2024-02-12T09:35:55
null
NONE
null
null
null
### Describe the bug When I run the following code I get an exception; `go_emotions = load_dataset("go_emotions")` > AttributeError Traceback (most recent call last) Cell In[6], [line 1](vscode-notebook-cell:?execution_count=6&line=1) ----> [1](vscode-notebook-cell:?execution_count=6&line=1) go_emotions = load_dataset("go_emotions") [2](vscode-notebook-cell:?execution_count=6&line=2) data = go_emotions.data File [c:\Users\hijik\anaconda3\Lib\site-packages\datasets\load.py:2523](file:///C:/Users/hijik/anaconda3/Lib/site-packages/datasets/load.py:2523), in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, token, use_auth_token, task, streaming, num_proc, storage_options, trust_remote_code, **config_kwargs) [2518](file:///C:/Users/hijik/anaconda3/Lib/site-packages/datasets/load.py:2518) verification_mode = VerificationMode( [2519](file:///C:/Users/hijik/anaconda3/Lib/site-packages/datasets/load.py:2519) (verification_mode or VerificationMode.BASIC_CHECKS) if not save_infos else VerificationMode.ALL_CHECKS [2520](file:///C:/Users/hijik/anaconda3/Lib/site-packages/datasets/load.py:2520) ) [2522](file:///C:/Users/hijik/anaconda3/Lib/site-packages/datasets/load.py:2522) # Create a dataset builder -> [2523](file:///C:/Users/hijik/anaconda3/Lib/site-packages/datasets/load.py:2523) builder_instance = load_dataset_builder( [2524](file:///C:/Users/hijik/anaconda3/Lib/site-packages/datasets/load.py:2524) path=path, [2525](file:///C:/Users/hijik/anaconda3/Lib/site-packages/datasets/load.py:2525) name=name, [2526](file:///C:/Users/hijik/anaconda3/Lib/site-packages/datasets/load.py:2526) data_dir=data_dir, [2527](file:///C:/Users/hijik/anaconda3/Lib/site-packages/datasets/load.py:2527) data_files=data_files, [2528](file:///C:/Users/hijik/anaconda3/Lib/site-packages/datasets/load.py:2528) cache_dir=cache_dir, [2529](file:///C:/Users/hijik/anaconda3/Lib/site-packages/datasets/load.py:2529) features=features, [2530](file:///C:/Users/hijik/anaconda3/Lib/site-packages/datasets/load.py:2530) download_config=download_config, [2531](file:///C:/Users/hijik/anaconda3/Lib/site-packages/datasets/load.py:2531) download_mode=download_mode, [2532](file:///C:/Users/hijik/anaconda3/Lib/site-packages/datasets/load.py:2532) revision=revision, [2533](file:///C:/Users/hijik/anaconda3/Lib/site-packages/datasets/load.py:2533) token=token, [2534](file:///C:/Users/hijik/anaconda3/Lib/site-packages/datasets/load.py:2534) storage_options=storage_options, [2535](file:///C:/Users/hijik/anaconda3/Lib/site-packages/datasets/load.py:2535) trust_remote_code=trust_remote_code, [2536](file:///C:/Users/hijik/anaconda3/Lib/site-packages/datasets/load.py:2536) _require_default_config_name=name is None, ... ---> [63](file:///C:/Users/hijik/anaconda3/Lib/site-packages/datasets/utils/_dill.py:63) if issubclass(obj_type, transformers.PreTrainedTokenizerBase): [64](file:///C:/Users/hijik/anaconda3/Lib/site-packages/datasets/utils/_dill.py:64) pklregister(obj_type)(_save_transformersPreTrainedTokenizerBase) [66](file:///C:/Users/hijik/anaconda3/Lib/site-packages/datasets/utils/_dill.py:66) # Unwrap `torch.compile`-ed functions AttributeError: module 'transformers' has no attribute 'PreTrainedTokenizerBase' Output is truncated. View as a [scrollable element](command:cellOutput.enableScrolling?10bc0728-6947-456e-9a3e-f056872b04c6) or open in a [text editor](command:workbench.action.openLargeOutput?10bc0728-6947-456e-9a3e-f056872b04c6). Adjust cell output [settings](command:workbench.action.openSettings?%5B%22%40tag%3AnotebookOutputLayout%22%5D)... ### Steps to reproduce the bug ``` from datasets import load_dataset go_emotions = load_dataset("go_emotions") ``` ### Expected behavior Should simply load the variable with the data from the file ### Environment info Copy-and-paste the text below in your GitHub issue. - `datasets` version: 2.16.1 - Platform: Windows-10-10.0.22631-SP0 - Python version: 3.11.4 - `huggingface_hub` version: 0.20.3 - PyArrow version: 11.0.0 - Pandas version: 1.5.3 - `fsspec` version: 2023.10.0
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6655/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6655/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6651
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6651/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6651/comments
https://api.github.com/repos/huggingface/datasets/issues/6651/events
https://github.com/huggingface/datasets/issues/6651
2,126,649,626
I_kwDODunzps5-whka
6,651
Slice splits support for datasets.load_from_disk
{ "login": "mhorlacher", "id": 37439882, "node_id": "MDQ6VXNlcjM3NDM5ODgy", "avatar_url": "https://avatars.githubusercontent.com/u/37439882?v=4", "gravatar_id": "", "url": "https://api.github.com/users/mhorlacher", "html_url": "https://github.com/mhorlacher", "followers_url": "https://api.github.com/users/mhorlacher/followers", "following_url": "https://api.github.com/users/mhorlacher/following{/other_user}", "gists_url": "https://api.github.com/users/mhorlacher/gists{/gist_id}", "starred_url": "https://api.github.com/users/mhorlacher/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mhorlacher/subscriptions", "organizations_url": "https://api.github.com/users/mhorlacher/orgs", "repos_url": "https://api.github.com/users/mhorlacher/repos", "events_url": "https://api.github.com/users/mhorlacher/events{/privacy}", "received_events_url": "https://api.github.com/users/mhorlacher/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
open
false
null
[]
null
[]
2024-02-09T08:00:21
2024-02-09T08:00:21
null
NONE
null
null
null
### Feature request Support for slice splits in `datasets.load_from_disk`, similar to how it's already supported for `datasets.load_dataset`. See https://www.nature.com/articles/s41551-023-01093-3. ### Motivation Slice splits are convienient in a numer of cases - adding support to `datasets.load_from_disk` would make working with local datasets easier and homogenize the APIs of load_from_disk and load_dataset. ### Your contribution Sure, if the devs think the feature request is sensible.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6651/reactions", "total_count": 3, "+1": 3, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6651/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6650
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6650/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6650/comments
https://api.github.com/repos/huggingface/datasets/issues/6650/events
https://github.com/huggingface/datasets/issues/6650
2,125,680,991
I_kwDODunzps5-s1Ff
6,650
AttributeError: 'InMemoryTable' object has no attribute '_batches'
{ "login": "matsuobasho", "id": 13874772, "node_id": "MDQ6VXNlcjEzODc0Nzcy", "avatar_url": "https://avatars.githubusercontent.com/u/13874772?v=4", "gravatar_id": "", "url": "https://api.github.com/users/matsuobasho", "html_url": "https://github.com/matsuobasho", "followers_url": "https://api.github.com/users/matsuobasho/followers", "following_url": "https://api.github.com/users/matsuobasho/following{/other_user}", "gists_url": "https://api.github.com/users/matsuobasho/gists{/gist_id}", "starred_url": "https://api.github.com/users/matsuobasho/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/matsuobasho/subscriptions", "organizations_url": "https://api.github.com/users/matsuobasho/orgs", "repos_url": "https://api.github.com/users/matsuobasho/repos", "events_url": "https://api.github.com/users/matsuobasho/events{/privacy}", "received_events_url": "https://api.github.com/users/matsuobasho/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "Hi! Does running the following code also return the same error on your machine? \r\n\r\n```python\r\nimport copy\r\nimport pyarrow as pa\r\nfrom datasets.table import InMemoryTable\r\n\r\ncopy.deepcopy(InMemoryTable(pa.table({\"a\": [1, 2, 3], \"b\": [\"foo\", \"bar\", \"foobar\"]})))\r\n```", "No, it doesn't, it runs fine. But what's really strange is that the error just went away after I reran the data prep script for conversion from csv to a datasets object. I realize that's not very helpful since the problem isn't reproducible. ", "Feel free to close the issue then :)." ]
2024-02-08T17:11:26
2024-02-21T00:34:41
null
NONE
null
null
null
### Describe the bug ``` Traceback (most recent call last): File "finetune.py", line 103, in <module> main(args) File "finetune.py", line 45, in main data_tokenized = data.map(partial(funcs.tokenize_function, tokenizer, File "/opt/conda/envs/ptca/lib/python3.8/site-packages/datasets/dataset_dict.py", line 868, in map { File "/opt/conda/envs/ptca/lib/python3.8/site-packages/datasets/dataset_dict.py", line 869, in <dictcomp> k: dataset.map( File "/opt/conda/envs/ptca/lib/python3.8/site-packages/datasets/arrow_dataset.py", line 592, in wrapper out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) File "/opt/conda/envs/ptca/lib/python3.8/site-packages/datasets/arrow_dataset.py", line 557, in wrapper out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) File "/opt/conda/envs/ptca/lib/python3.8/site-packages/datasets/arrow_dataset.py", line 3093, in map for rank, done, content in Dataset._map_single(**dataset_kwargs): File "/opt/conda/envs/ptca/lib/python3.8/site-packages/datasets/arrow_dataset.py", line 3432, in _map_single arrow_formatted_shard = shard.with_format("arrow") File "/opt/conda/envs/ptca/lib/python3.8/site-packages/datasets/arrow_dataset.py", line 2667, in with_format dataset = copy.deepcopy(self) File "/opt/conda/envs/ptca/lib/python3.8/copy.py", line 172, in deepcopy y = _reconstruct(x, memo, *rv) File "/opt/conda/envs/ptca/lib/python3.8/copy.py", line 270, in _reconstruct state = deepcopy(state, memo) File "/opt/conda/envs/ptca/lib/python3.8/copy.py", line 146, in deepcopy y = copier(x, memo) File "/opt/conda/envs/ptca/lib/python3.8/copy.py", line 230, in _deepcopy_dict y[deepcopy(key, memo)] = deepcopy(value, memo) File "/opt/conda/envs/ptca/lib/python3.8/copy.py", line 153, in deepcopy y = copier(memo) File "/opt/conda/envs/ptca/lib/python3.8/site-packages/datasets/table.py", line 176, in __deepcopy__ memo[id(self._batches)] = list(self._batches) AttributeError: 'InMemoryTable' object has no attribute '_batches' ``` ### Steps to reproduce the bug I'm running an MLOps flow using AzureML. The error appears when I run the following function in my training script: ```python data_tokenized = data.map(partial(funcs.tokenize_function, tokenizer, seq_length), batched=True, batch_size=batch_size, remove_columns=['col1', 'col2']) ``` ```python def tokenize_function(tok, seq_length, example) # Pad so that each batch has the same sequence length inp = tok(example['col1'], padding=True, truncation=True) outp = tok(example['col2'], padding="max_length", max_length=seq_length) res = { 'input_ids': inp['input_ids'], 'attention_mask': inp['attention_mask'], 'decoder_input_ids': outp['input_ids'], 'labels': outp['input_ids'], 'decoder_attention_mask': outp['attention_mask'] } return res ``` ### Expected behavior Processing proceeds without errors. I ran this same workflow 2 weeks ago without a problem. I recreated the environment since then but it doesn't appear that datasets versions have changed since Dec. '23. ### Environment info datasets 2.16.1 transformers 4.35.2 pyarrow 15.0.0 pyarrow-hotfix 0.6 torch 2.0.1 I'm not using the latest transformers version because there was an error due to a conflict with Azure mlflow when I tried the last time.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6650/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6650/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6647
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6647/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6647/comments
https://api.github.com/repos/huggingface/datasets/issues/6647/events
https://github.com/huggingface/datasets/pull/6647
2,123,397,569
PR_kwDODunzps5mSB2B
6,647
Update loading.mdx to include "jsonl" file loading.
{ "login": "mosheber", "id": 22236370, "node_id": "MDQ6VXNlcjIyMjM2Mzcw", "avatar_url": "https://avatars.githubusercontent.com/u/22236370?v=4", "gravatar_id": "", "url": "https://api.github.com/users/mosheber", "html_url": "https://github.com/mosheber", "followers_url": "https://api.github.com/users/mosheber/followers", "following_url": "https://api.github.com/users/mosheber/following{/other_user}", "gists_url": "https://api.github.com/users/mosheber/gists{/gist_id}", "starred_url": "https://api.github.com/users/mosheber/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mosheber/subscriptions", "organizations_url": "https://api.github.com/users/mosheber/orgs", "repos_url": "https://api.github.com/users/mosheber/repos", "events_url": "https://api.github.com/users/mosheber/events{/privacy}", "received_events_url": "https://api.github.com/users/mosheber/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6647). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "> Thanks for adding the explicit loading command.\r\n> \r\n> However, I would move it just below, where we present the JSON-Lines example.\r\n> \r\n> * Maybe adding that this format is called JSON-Lines\r\n> * Add the example after the JSON-Lines data example\r\n> \r\n> https://github.com/huggingface/datasets/blob/14d9afbb7ae1b787c450261ca0ff374551993031/docs/source/loading.mdx#L135-L138\r\n\r\nThank you @albertvillanova for the feedback! I moved the jsonl file loading example to a more appropriate location. " ]
2024-02-07T16:18:08
2024-02-08T15:34:17
null
NONE
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6647", "html_url": "https://github.com/huggingface/datasets/pull/6647", "diff_url": "https://github.com/huggingface/datasets/pull/6647.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6647.patch", "merged_at": null }
* A small update to the documentation, noting the ability to load jsonl files.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6647/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6647/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6643
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6643/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6643/comments
https://api.github.com/repos/huggingface/datasets/issues/6643/events
https://github.com/huggingface/datasets/issues/6643
2,121,239,039
I_kwDODunzps5-b4n_
6,643
Faiss GPU index cannot be serialised when passed to trainer
{ "login": "rubenweitzman", "id": 56388976, "node_id": "MDQ6VXNlcjU2Mzg4OTc2", "avatar_url": "https://avatars.githubusercontent.com/u/56388976?v=4", "gravatar_id": "", "url": "https://api.github.com/users/rubenweitzman", "html_url": "https://github.com/rubenweitzman", "followers_url": "https://api.github.com/users/rubenweitzman/followers", "following_url": "https://api.github.com/users/rubenweitzman/following{/other_user}", "gists_url": "https://api.github.com/users/rubenweitzman/gists{/gist_id}", "starred_url": "https://api.github.com/users/rubenweitzman/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/rubenweitzman/subscriptions", "organizations_url": "https://api.github.com/users/rubenweitzman/orgs", "repos_url": "https://api.github.com/users/rubenweitzman/repos", "events_url": "https://api.github.com/users/rubenweitzman/events{/privacy}", "received_events_url": "https://api.github.com/users/rubenweitzman/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "Hi ! make sure your query embeddings are numpy arrays, not torch tensors ;)", "Hi Quentin, not sure how that solves the problem number 1. I am trying to pass on a dataset with a faiss gpu for training to the standard trainer but getting this serialisation error. What is a workaround this? I do not want to remove the faiss index, as I would want to use it to create batches of retrieved samples from the dataset. \r\nThanks in advance for your help!", "Issue number one seems to be an issue with FAISS indexes not being compatible with copy.deepcopy.\r\n\r\nMaybe you try to not remove the columns, e.g. by passing `remove_unused_columns=False`" ]
2024-02-06T16:41:00
2024-02-15T10:29:32
null
NONE
null
null
null
### Describe the bug I am working on a retrieval project and encountering I have encountered two issues in the hugging face faiss integration: 1. I am trying to pass in a dataset with a faiss index to the Huggingface trainer. The code works for a cpu faiss index, but doesn't for a gpu one, getting error: ``` File "/users/rubman/.conda/envs/protein_npt_env/lib/python3.10/site-packages/transformers/trainer.py", line 1543, in train return inner_training_loop( File "/users/rubman/.conda/envs/protein_npt_env/lib/python3.10/site-packages/transformers/trainer.py", line 1555, in _inner_training_loop train_dataloader = self.get_train_dataloader() File "/users/rubman/.conda/envs/protein_npt_env/lib/python3.10/site-packages/transformers/trainer.py", line 831, in get_train_dataloader train_dataset = self._remove_unused_columns(train_dataset, description="training") File "/users/rubman/.conda/envs/protein_npt_env/lib/python3.10/site-packages/transformers/trainer.py", line 725, in _remove_unused_columns return dataset.remove_columns(ignored_columns) File "/users/rubman/.conda/envs/protein_npt_env/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 592, in wrapper out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) File "/users/rubman/.conda/envs/protein_npt_env/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 557, in wrapper out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) File "/users/rubman/.conda/envs/protein_npt_env/lib/python3.10/site-packages/datasets/fingerprint.py", line 481, in wrapper out = func(dataset, *args, **kwargs) File "/users/rubman/.conda/envs/protein_npt_env/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 2146, in remove_columns dataset = copy.deepcopy(self) File "/users/rubman/.conda/envs/protein_npt_env/lib/python3.10/copy.py", line 172, in deepcopy y = _reconstruct(x, memo, *rv) File "/users/rubman/.conda/envs/protein_npt_env/lib/python3.10/copy.py", line 271, in _reconstruct state = deepcopy(state, memo) File "/users/rubman/.conda/envs/protein_npt_env/lib/python3.10/copy.py", line 146, in deepcopy y = copier(x, memo) File "/users/rubman/.conda/envs/protein_npt_env/lib/python3.10/copy.py", line 231, in _deepcopy_dict y[deepcopy(key, memo)] = deepcopy(value, memo) File "/users/rubman/.conda/envs/protein_npt_env/lib/python3.10/copy.py", line 146, in deepcopy y = copier(x, memo) File "/users/rubman/.conda/envs/protein_npt_env/lib/python3.10/copy.py", line 231, in _deepcopy_dict y[deepcopy(key, memo)] = deepcopy(value, memo) File "/users/rubman/.conda/envs/protein_npt_env/lib/python3.10/copy.py", line 172, in deepcopy y = _reconstruct(x, memo, *rv) File "/users/rubman/.conda/envs/protein_npt_env/lib/python3.10/copy.py", line 271, in _reconstruct state = deepcopy(state, memo) File "/users/rubman/.conda/envs/protein_npt_env/lib/python3.10/copy.py", line 146, in deepcopy y = copier(x, memo) File "/users/rubman/.conda/envs/protein_npt_env/lib/python3.10/copy.py", line 231, in _deepcopy_dict y[deepcopy(key, memo)] = deepcopy(value, memo) File "/users/rubman/.conda/envs/protein_npt_env/lib/python3.10/copy.py", line 161, in deepcopy rv = reductor(4) File "/users/rubman/.conda/envs/protein_npt_env/lib/python3.10/site-packages/faiss/__init__.py", line 556, in index_getstate return {"this": serialize_index(self).tobytes()} File "/users/rubman/.conda/envs/protein_npt_env/lib/python3.10/site-packages/faiss/__init__.py", line 1607, in serialize_index write_index(index, writer) File "/users/rubman/.conda/envs/protein_npt_env/lib/python3.10/site-packages/faiss/swigfaiss.py", line 9843, in write_index return _swigfaiss.write_index(*args) RuntimeError: Error in void faiss::write_index(const faiss::Index*, faiss::IOWriter*) at /project/faiss/faiss/impl/index_write.cpp:590: don't know how to serialize this type of index ``` The index was created with the add_faiss_index method ``` train_dataset.add_faiss_index( column='embeddings', index_name='embeddings', string_factory=faiss_index_string, train_size=config.faiss_train_size, device=0, # Use -1 for CPU, or specify GPU device ID faiss_verbose=True ) ``` 2. Athough faiss is written to be compatible on the gpu for searching [https://github.com/facebookresearch/faiss/wiki/Faiss-on-the-GPU](https://github.com/facebookresearch/faiss/wiki/Faiss-on-the-GPU) I am getting error when trying to use the hugggingface code to do the search on gpu. This seems to be caused by this line https://github.com/huggingface/datasets/blob/f9975f636542df7f95c27065ea93147440d690b7/src/datasets/search.py#L376 producing error ``` total_scores, total_examples = self.dataset.get_nearest_examples_batch('embeddings', embeddings, k=self.k) File "/users/rubman/.conda/envs/protein_npt_env/lib/python3.10/site-packages/datasets/search.py", line 773, in get_nearest_examples_batch total_scores, total_indices = self.search_batch(index_name, queries, k, **kwargs) File "/users/rubman/.conda/envs/protein_npt_env/lib/python3.10/site-packages/datasets/search.py", line 727, in search_batch return self._indexes[index_name].search_batch(queries, k, **kwargs) File "/users/rubman/.conda/envs/protein_npt_env/lib/python3.10/site-packages/datasets/search.py", line 376, in search_batch if not queries.flags.c_contiguous: AttributeError: 'Tensor' object has no attribute 'flags' ``` ### Steps to reproduce the bug ``` train_dataset.add_faiss_index( column='embeddings', index_name='embeddings', string_factory=faiss_index_string, train_size=config.faiss_train_size, device=0, # Use -1 for CPU, or specify GPU device ID faiss_verbose=True ) Trainer( model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, data_collator=data_collator, tokenizer=tokenizer ) train_dataset.get_nearest_examples_batch('embeddings', embeddings, k=self.k) ``` ### Expected behavior I would expect the faiss database code to be gpu compatible ### Environment info huggingface Version: 2.16.1
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6643/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6643/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6640
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6640/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6640/comments
https://api.github.com/repos/huggingface/datasets/issues/6640/events
https://github.com/huggingface/datasets/issues/6640
2,115,864,531
I_kwDODunzps5-HYfT
6,640
Sign Language Support
{ "login": "Merterm", "id": 6684795, "node_id": "MDQ6VXNlcjY2ODQ3OTU=", "avatar_url": "https://avatars.githubusercontent.com/u/6684795?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Merterm", "html_url": "https://github.com/Merterm", "followers_url": "https://api.github.com/users/Merterm/followers", "following_url": "https://api.github.com/users/Merterm/following{/other_user}", "gists_url": "https://api.github.com/users/Merterm/gists{/gist_id}", "starred_url": "https://api.github.com/users/Merterm/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Merterm/subscriptions", "organizations_url": "https://api.github.com/users/Merterm/orgs", "repos_url": "https://api.github.com/users/Merterm/repos", "events_url": "https://api.github.com/users/Merterm/events{/privacy}", "received_events_url": "https://api.github.com/users/Merterm/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
open
false
null
[]
null
[]
2024-02-02T21:54:51
2024-02-02T21:54:51
null
NONE
null
null
null
### Feature request Currently, there are only several Sign Language labels, I would like to propose adding all the Signed Languages as new labels which are described in this ISO standard: https://www.evertype.com/standards/iso639/sign-language.html ### Motivation Datasets currently only have labels for several signed languages. There are more signed languages in the world. Furthermore, some signed languages that have a lot of online data cannot be found because of this reason (for instance, German Sign Language, and there is no German Sign Language label on huggingface datasets even though there are a lot of readily available sign language datasets exist for German Sign Language, which are used very frequently in Sign Language Processing papers, and models.) ### Your contribution I can submit a PR for this as well, adding the ISO codes and languages to the labels in datasets.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6640/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6640/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6639
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6639/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6639/comments
https://api.github.com/repos/huggingface/datasets/issues/6639/events
https://github.com/huggingface/datasets/pull/6639
2,114,620,200
PR_kwDODunzps5l0KPG
6,639
Run download_and_prepare if missing splits
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6639). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
2024-02-02T10:36:49
2024-02-06T16:54:22
null
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6639", "html_url": "https://github.com/huggingface/datasets/pull/6639", "diff_url": "https://github.com/huggingface/datasets/pull/6639.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6639.patch", "merged_at": null }
A first step towards https://github.com/huggingface/datasets/issues/6529
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6639/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6639/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6637
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6637/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6637/comments
https://api.github.com/repos/huggingface/datasets/issues/6637/events
https://github.com/huggingface/datasets/issues/6637
2,113,025,975
I_kwDODunzps598je3
6,637
'with_format' is extremely slow when used together with 'interleave_datasets' or 'shuffle' on IterableDatasets
{ "login": "tobycrisford", "id": 22883190, "node_id": "MDQ6VXNlcjIyODgzMTkw", "avatar_url": "https://avatars.githubusercontent.com/u/22883190?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tobycrisford", "html_url": "https://github.com/tobycrisford", "followers_url": "https://api.github.com/users/tobycrisford/followers", "following_url": "https://api.github.com/users/tobycrisford/following{/other_user}", "gists_url": "https://api.github.com/users/tobycrisford/gists{/gist_id}", "starred_url": "https://api.github.com/users/tobycrisford/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tobycrisford/subscriptions", "organizations_url": "https://api.github.com/users/tobycrisford/orgs", "repos_url": "https://api.github.com/users/tobycrisford/repos", "events_url": "https://api.github.com/users/tobycrisford/events{/privacy}", "received_events_url": "https://api.github.com/users/tobycrisford/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "The \"torch\" formatting is usually fast because we do zero-copy conversion from the Arrow data on your disk to Torch tensors. However IterableDataset shuffling seems to do data copies that slow down the pipeline, and it shuffles python objects instead of Arrow data.\r\n\r\nTo fix this we need to implement `BufferShuffledExamplesIterable.iter_arrow()` (same as regular `BufferShuffledExamplesIterable.__iter__()` but yields Arrow tables)\r\n\r\nhttps://github.com/huggingface/datasets/blob/b7d854b7fd3e9a330e21b76ee8421d4a7ebb4a7a/src/datasets/iterable_dataset.py#L968-L974\r\n" ]
2024-02-01T17:16:54
2024-02-05T10:43:47
null
NONE
null
null
null
### Describe the bug If you: 1. Interleave two iterable datasets together with the interleave_datasets function, or shuffle an iterable dataset 2. Set the output format to torch tensors with .with_format('torch') Then iterating through the dataset becomes over 100x slower than it is if you don't apply the torch formatting. ### Steps to reproduce the bug ```python import datasets import torch from tqdm import tqdm rand_a = torch.randn(3,224,224) rand_b = torch.randn(3,224,224) a = torch.stack([rand_a] * 1000) b = torch.stack([rand_b] * 1000) features = datasets.Features({"tensor": datasets.Array3D(shape=(3,224,224), dtype="float32")}) ds_a = datasets.Dataset.from_dict({"tensor": a}, features=features).to_iterable_dataset() ds_b = datasets.Dataset.from_dict({"tensor": b}, features=features).to_iterable_dataset() # Iterating through either dataset with torch formatting is really fast (2000it/s on my machine) for example in tqdm(ds_a.with_format('torch')): pass # Iterating through either dataset shuffled is also pretty fast (100it/s on my machine) for example in tqdm(ds_a.shuffle()): pass # Iterating through this interleaved dataset is pretty fast (200it/s on my machine) ds_fast = datasets.interleave_datasets([ds_a, ds_b]) for example in tqdm(ds_fast): pass # Iterating through either dataset with torch formatting *after shuffling* is really slow... (<2it/s on my machine) for example in tqdm(ds_a.shuffle().with_format('torch')): pass # Iterating through this torch formatted interleaved dataset is also really slow (<2it/s on my machine)... ds_slow = datasets.interleave_datasets([ds_a, ds_b]).with_format('torch') for example in tqdm(ds_slow): pass # Even doing this is way faster!! (70it/s on my machine) for example in tqdm(ds_fast): test = torch.tensor(example['tensor']) ``` ### Expected behavior Applying torch formatting to the interleaved dataset shouldn't increase the time taken to iterate through the dataset by very much, since even explicitly converting every example is over 70x faster than calling .with_format('torch'). ### Environment info - `datasets` version: 2.16.1 - Platform: Linux-6.5.0-15-generic-x86_64-with-glibc2.38 - Python version: 3.11.6 - `huggingface_hub` version: 0.20.3 - PyArrow version: 15.0.0 - Pandas version: 2.2.0 - `fsspec` version: 2023.10.0
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6637/reactions", "total_count": 1, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 1 }
https://api.github.com/repos/huggingface/datasets/issues/6637/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6623
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6623/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6623/comments
https://api.github.com/repos/huggingface/datasets/issues/6623/events
https://github.com/huggingface/datasets/issues/6623
2,103,870,123
I_kwDODunzps59ZoKr
6,623
streaming datasets doesn't work properly with multi-node
{ "login": "rohitgr7", "id": 30778939, "node_id": "MDQ6VXNlcjMwNzc4OTM5", "avatar_url": "https://avatars.githubusercontent.com/u/30778939?v=4", "gravatar_id": "", "url": "https://api.github.com/users/rohitgr7", "html_url": "https://github.com/rohitgr7", "followers_url": "https://api.github.com/users/rohitgr7/followers", "following_url": "https://api.github.com/users/rohitgr7/following{/other_user}", "gists_url": "https://api.github.com/users/rohitgr7/gists{/gist_id}", "starred_url": "https://api.github.com/users/rohitgr7/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/rohitgr7/subscriptions", "organizations_url": "https://api.github.com/users/rohitgr7/orgs", "repos_url": "https://api.github.com/users/rohitgr7/repos", "events_url": "https://api.github.com/users/rohitgr7/events{/privacy}", "received_events_url": "https://api.github.com/users/rohitgr7/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
open
false
null
[]
null
[ "@mariosasko, @lhoestq, @albertvillanova\r\nhey guys! can anyone help? or can you guys suggest who can help with this?", "Hi ! \r\n\r\n1. When the dataset is running of of examples, the last batches received by the GPU can be incomplete or empty/missing. We haven't implemented yet a way to ignore the last batch. It might require the datasets to provide the number of examples per shard though, so that we can know when to stop.\r\n2. Samplers are not compatible with IterableDatasets in pytorch\r\n3. if `dataset.n_shards % world_size != 0` then all the nodes will read/stream the full dataset in order (possibly reading/streaming the same data multiple times), BUT will only yield one example out of `world_size` so that each example goes to one exactly one GPU.\r\n4. no, sharding should be down up-front and can take some time depending on the dataset size and format", "> if dataset.n_shards % world_size != 0 then all the nodes will read/stream the full dataset in order (possibly reading/streaming the same data multiple times), BUT will only yield one example out of world_size so that each example goes to one exactly one GPU.\r\n\r\nconsidering there's just 1 shard and 2 worker nodes, do you mean each worker node will load the whole dataset but still receive half of that shard while streaming?", "Yes both nodes will stream from the 1 shard, but each node will skip half of the examples. This way in total each example is seen once and exactly once during you distributed training.\r\n\r\nThough it terms of I/O, the dataset is effectively read/streamed twice.", "what if the number of samples in that shard % num_nodes != 0? it will break/get stuck? or is the data repeated in that case for gradient sync?", "In the case one at least one of the noes will get an empty/incomplete batch. The data is not repeated in that case. If the training loop doesn't take this into account it can lead to unexpected behaviors indeed.\r\n\r\nIn the future we'd like to add a feature that would allow the nodes to ignore the last batch, this way all the nodes would only have full batches.", "> In the case one at least one of the noes will get an empty/incomplete batch. The data is not repeated in that case. If the training loop doesn't take this into account it can lead to unexpected behaviors indeed.\r\n> \r\n> In the future we'd like to add a feature that would allow the nodes to ignore the last batch, this way all the nodes would only have full batches.\r\n\r\nIs there any method to modify one dataset's n_shard? modify the number of files is ok? one file == one shard?", "> modify the number of files is ok? one file == one shard?\r\n\r\nYep, one file == one shard :)" ]
2024-01-27T23:46:13
2024-03-08T14:27:08
null
NONE
null
null
null
### Feature request Let’s say I have a dataset with 5 samples with values [1, 2, 3, 4, 5], with 2 GPUs (for DDP) and batch size of 2. This dataset is an `IterableDataset` since I am streaming it. Now I split the dataset using `split_dataset_by_node` to ensure it doesn’t get repeated. And since it’s already splitted, I don’t have to use `DistributedSampler` (also they don't work with iterable datasets anyway)? But in this case I noticed that the: First iteraton: first GPU will get → [1, 2] first GPU will get → [3, 4] Second iteraton: first GPU will get → [5] first GPU will get → Nothing which actually creates an issue since in case of `DistributedSampler`, the samples are repeated internally to ensure non of the GPUs at any iteration is missing any data for gradient sync. So my questions are: 1. Here since splitting is happening before hand, how to make sure each GPU get’s a batch at each iteration to avoid gradient sync issues? 2. Do we need to use `DistributedSampler`? If yes, how? 3. in the docstrings of `split_dataset_by_node`, this is mentioned: *"If the dataset has a number of shards that is a factor of `world_size` (i.e. if `dataset.n_shards % world_size == 0`), then the shards are evenly assigned across the nodes, which is the most optimized. Otherwise, each node keeps 1 example out of `world_size`, skipping the other examples."* Can you explain the last part here? 4. If `dataset.n_shards % world_size != 0`, is it possible to shard the streaming dataset on the fly to avoid the case where data is missing? ### Motivation Somehow streaming datasets should work with DDP since for big LLMs a lot of data is required and DDP/multi-node is mostly used to train such models and streaming can actually help solve the data part of it. ### Your contribution Yes, I can help in submitting the PR once we get mutual understanding on how it should behave.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6623/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6623/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6614
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6614/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6614/comments
https://api.github.com/repos/huggingface/datasets/issues/6614/events
https://github.com/huggingface/datasets/issues/6614
2,098,884,520
I_kwDODunzps59Gm-o
6,614
`datasets/downloads` cleanup tool
{ "login": "stas00", "id": 10676103, "node_id": "MDQ6VXNlcjEwNjc2MTAz", "avatar_url": "https://avatars.githubusercontent.com/u/10676103?v=4", "gravatar_id": "", "url": "https://api.github.com/users/stas00", "html_url": "https://github.com/stas00", "followers_url": "https://api.github.com/users/stas00/followers", "following_url": "https://api.github.com/users/stas00/following{/other_user}", "gists_url": "https://api.github.com/users/stas00/gists{/gist_id}", "starred_url": "https://api.github.com/users/stas00/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/stas00/subscriptions", "organizations_url": "https://api.github.com/users/stas00/orgs", "repos_url": "https://api.github.com/users/stas00/repos", "events_url": "https://api.github.com/users/stas00/events{/privacy}", "received_events_url": "https://api.github.com/users/stas00/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
open
false
null
[]
null
[]
2024-01-24T18:52:10
2024-01-24T18:55:09
null
CONTRIBUTOR
null
null
null
### Feature request Splitting off https://github.com/huggingface/huggingface_hub/issues/1997 - currently `huggingface-cli delete-cache` doesn't take care of cleaning `datasets` temp files e.g. I discovered having millions of files under `datasets/downloads` cache, I had to do: ``` sudo find /data/huggingface/datasets/downloads -type f -mtime +3 -exec rm {} \+ sudo find /data/huggingface/datasets/downloads -type d -empty -delete ``` could the cleanup be integrated into `huggingface-cli` or a different tool provided to keep the folders tidy and not consume inodes and space e.g. there were tens of thousands of `.lock` files - I don't know why they never get removed - lock files should be temporary for the duration of the operation requiring the lock and not remain after the operation finished, IMHO. Also I think one should be able to nuke `datasets/downloads` w/o hurting the cache, but I think there are some datasets that rely on files extracted under this dir - or at least they did in the past - which is very difficult to manage since one has no idea what is safe to delete and what not. Thank you @Wauplin (requested to be tagged)
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6614/reactions", "total_count": 2, "+1": 2, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6614/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6611
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6611/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6611/comments
https://api.github.com/repos/huggingface/datasets/issues/6611/events
https://github.com/huggingface/datasets/issues/6611
2,096,004,858
I_kwDODunzps587n76
6,611
`load_from_disk` with large dataset from S3 runs into `botocore.exceptions.ClientError`
{ "login": "zotroneneis", "id": 15320635, "node_id": "MDQ6VXNlcjE1MzIwNjM1", "avatar_url": "https://avatars.githubusercontent.com/u/15320635?v=4", "gravatar_id": "", "url": "https://api.github.com/users/zotroneneis", "html_url": "https://github.com/zotroneneis", "followers_url": "https://api.github.com/users/zotroneneis/followers", "following_url": "https://api.github.com/users/zotroneneis/following{/other_user}", "gists_url": "https://api.github.com/users/zotroneneis/gists{/gist_id}", "starred_url": "https://api.github.com/users/zotroneneis/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/zotroneneis/subscriptions", "organizations_url": "https://api.github.com/users/zotroneneis/orgs", "repos_url": "https://api.github.com/users/zotroneneis/repos", "events_url": "https://api.github.com/users/zotroneneis/events{/privacy}", "received_events_url": "https://api.github.com/users/zotroneneis/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[]
2024-01-23T12:37:57
2024-01-23T12:37:57
null
NONE
null
null
null
### Describe the bug When loading a large dataset (>1000GB) from S3 I run into the following error: ``` Traceback (most recent call last): File "/home/alp/.local/lib/python3.10/site-packages/s3fs/core.py", line 113, in _error_wrapper return await func(*args, **kwargs) File "/home/alp/.local/lib/python3.10/site-packages/aiobotocore/client.py", line 383, in _make_api_call raise error_class(parsed_response, operation_name) botocore.exceptions.ClientError: An error occurred (RequestTimeTooSkewed) when calling the GetObject operation: The difference between the request time and the current time is too large. The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/home/alp/phoneme-classification.monorepo/aws_sagemaker/data_processing/inspect_final_dataset.py", line 13, in <module> dataset = load_from_disk("s3://speech-recognition-processed-data/whisper/de/train_data/", storage_options=storage_options) File "/home/alp/.local/lib/python3.10/site-packages/datasets/load.py", line 1902, in load_from_disk return Dataset.load_from_disk(dataset_path, keep_in_memory=keep_in_memory, storage_options=storage_options) File "/home/alp/.local/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 1686, in load_from_disk fs.download(src_dataset_path, [dest_dataset_path.as](http://dest_dataset_path.as/)_posix(), recursive=True) File "/home/alp/.local/lib/python3.10/site-packages/fsspec/spec.py", line 1480, in download return self.get(rpath, lpath, recursive=recursive, **kwargs) File "/home/alp/.local/lib/python3.10/site-packages/fsspec/asyn.py", line 121, in wrapper return sync(self.loop, func, *args, **kwargs) File "/home/alp/.local/lib/python3.10/site-packages/fsspec/asyn.py", line 106, in sync raise return_result File "/home/alp/.local/lib/python3.10/site-packages/fsspec/asyn.py", line 61, in _runner result[0] = await coro File "/home/alp/.local/lib/python3.10/site-packages/fsspec/asyn.py", line 604, in _get return await _run_coros_in_chunks( File "/home/alp/.local/lib/python3.10/site-packages/fsspec/asyn.py", line 257, in _run_coros_in_chunks await asyncio.gather(*chunk, return_exceptions=return_exceptions), File "/usr/lib/python3.10/asyncio/tasks.py", line 408, in wait_for return await fut File "/home/alp/.local/lib/python3.10/site-packages/s3fs/core.py", line 1193, in _get_file body, content_length = await _open_file(range=0) File "/home/alp/.local/lib/python3.10/site-packages/s3fs/core.py", line 1184, in _open_file resp = await self._call_s3( File "/home/alp/.local/lib/python3.10/site-packages/s3fs/core.py", line 348, in _call_s3 return await _error_wrapper( File "/home/alp/.local/lib/python3.10/site-packages/s3fs/core.py", line 140, in _error_wrapper raise err PermissionError: The difference between the request time and the current time is too large. ``` The usual problem for this error is that the time on my local machine is out of sync with the current time. However, this is not the case here. I checked the time and even reset it with no success. See resources here: - https://stackoverflow.com/questions/4770635/s3-error-the-difference-between-the-request-time-and-the-current-time-is-too-la - https://stackoverflow.com/questions/25964491/aws-s3-upload-fails-requesttimetooskewed The error does not appear when loading a smaller dataset (e.g. our test set) from the same s3 path. ### Steps to reproduce the bug 1. Create large dataset 2. Try loading it from s3 using: ``` dataset = load_from_disk("s3://...", storage_options=storage_options) ``` ### Expected behavior Load dataset without running into this error. ### Environment info - `datasets` version: 2.13.1 - Platform: Linux-5.15.0-91-generic-x86_64-with-glibc2.35 - Python version: 3.10.12 - Huggingface_hub version: 0.19.3 - PyArrow version: 12.0.1 - Pandas version: 2.0.3
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6611/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6611/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6607
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6607/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6607/comments
https://api.github.com/repos/huggingface/datasets/issues/6607/events
https://github.com/huggingface/datasets/pull/6607
2,091,766,063
PR_kwDODunzps5knGse
6,607
Update features.py to avoid bfloat16 unsupported error
{ "login": "skaulintel", "id": 75697181, "node_id": "MDQ6VXNlcjc1Njk3MTgx", "avatar_url": "https://avatars.githubusercontent.com/u/75697181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/skaulintel", "html_url": "https://github.com/skaulintel", "followers_url": "https://api.github.com/users/skaulintel/followers", "following_url": "https://api.github.com/users/skaulintel/following{/other_user}", "gists_url": "https://api.github.com/users/skaulintel/gists{/gist_id}", "starred_url": "https://api.github.com/users/skaulintel/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/skaulintel/subscriptions", "organizations_url": "https://api.github.com/users/skaulintel/orgs", "repos_url": "https://api.github.com/users/skaulintel/repos", "events_url": "https://api.github.com/users/skaulintel/events{/privacy}", "received_events_url": "https://api.github.com/users/skaulintel/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "I think not all torch tensors should be converted to float, what if it's a tensor of integers for example ?\r\nMaybe you can check for the tensor dtype before converting" ]
2024-01-20T00:39:44
2024-05-04T13:41:58
null
NONE
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6607", "html_url": "https://github.com/huggingface/datasets/pull/6607", "diff_url": "https://github.com/huggingface/datasets/pull/6607.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6607.patch", "merged_at": null }
Fixes https://github.com/huggingface/datasets/issues/6566 Let me know if there's any tests I need to clear.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6607/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6607/timeline
null
null
true