Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
Languages:
German
Size:
n<1K
License:
Update README.md
#1
by
elenanereiss
- opened
README.md
CHANGED
@@ -18,7 +18,7 @@ task_categories:
|
|
18 |
task_ids:
|
19 |
- named-entity-recognition
|
20 |
paperswithcode_id: legal-documents-entity-recognition
|
21 |
-
pretty_name:
|
22 |
---
|
23 |
|
24 |
# Dataset Card for Legal Documents Entity Recognition
|
@@ -53,19 +53,19 @@ pretty_name: Legal Documents Entity Recognition
|
|
53 |
- **Repository:** None
|
54 |
- **Paper:** https://link.springer.com/chapter/10.1007/978-3-030-33220-4_20
|
55 |
- **Leaderboard:** [If the dataset supports an active leaderboard, add link here]()
|
56 |
-
- **Point of Contact:** Georg Rehm (georg.rehm@dfki.de)
|
57 |
|
58 |
### Dataset Summary
|
59 |
|
60 |
-
|
61 |
|
62 |
### Supported Tasks and Leaderboards
|
63 |
|
64 |
-
|
65 |
|
66 |
### Languages
|
67 |
|
68 |
-
|
69 |
|
70 |
## Dataset Structure
|
71 |
|
@@ -79,7 +79,8 @@ pretty_name: Legal Documents Entity Recognition
|
|
79 |
|
80 |
### Data Splits
|
81 |
|
82 |
-
|
|
|
83 |
## Dataset Creation
|
84 |
|
85 |
### Curation Rationale
|
@@ -88,7 +89,7 @@ pretty_name: Legal Documents Entity Recognition
|
|
88 |
|
89 |
### Source Data
|
90 |
|
91 |
-
[
|
92 |
|
93 |
#### Initial Data Collection and Normalization
|
94 |
|
@@ -100,7 +101,28 @@ pretty_name: Legal Documents Entity Recognition
|
|
100 |
|
101 |
### Annotations
|
102 |
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
#### Annotation process
|
106 |
|
@@ -136,11 +158,30 @@ pretty_name: Legal Documents Entity Recognition
|
|
136 |
|
137 |
### Licensing Information
|
138 |
|
139 |
-
|
140 |
|
141 |
### Citation Information
|
142 |
-
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
### Contributions
|
145 |
|
146 |
Thanks to [@abhishekkrthakur](https://github.com/abhishekkrthakur) for adding this dataset.
|
|
|
18 |
task_ids:
|
19 |
- named-entity-recognition
|
20 |
paperswithcode_id: legal-documents-entity-recognition
|
21 |
+
pretty_name: Named Entity Recognition in Legal Documents
|
22 |
---
|
23 |
|
24 |
# Dataset Card for Legal Documents Entity Recognition
|
|
|
53 |
- **Repository:** None
|
54 |
- **Paper:** https://link.springer.com/chapter/10.1007/978-3-030-33220-4_20
|
55 |
- **Leaderboard:** [If the dataset supports an active leaderboard, add link here]()
|
56 |
+
- **Point of Contact:** Elena Leitner (elena.leitner@dfki.de), Georg Rehm (georg.rehm@dfki.de)
|
57 |
|
58 |
### Dataset Summary
|
59 |
|
60 |
+
The dataset consists of 66,723 sentences with 2,157,048 tokens. The dataset includes two different versions of annotations, one with a set of 19 fine-grained semantic classes and another one with a set of 7 coarse-grained classes. There are 53,632 annotated entities in total, the majority of which (74.34 %) are legal entities, the others are person, location and organization (25.66 %).
|
61 |
|
62 |
### Supported Tasks and Leaderboards
|
63 |
|
64 |
+
Named Entity Recognition in legal Documents
|
65 |
|
66 |
### Languages
|
67 |
|
68 |
+
German
|
69 |
|
70 |
## Dataset Structure
|
71 |
|
|
|
79 |
|
80 |
### Data Splits
|
81 |
|
82 |
+
-
|
83 |
+
|
84 |
## Dataset Creation
|
85 |
|
86 |
### Curation Rationale
|
|
|
89 |
|
90 |
### Source Data
|
91 |
|
92 |
+
Court decisions from 2017 and 2018 were selected for the dataset, published online by the [Federal Ministry of Justice and Consumer Protection](http://www.rechtsprechung-im-internet.de). The documents originate from seven federal courts: Federal Labour Court (BAG), Federal Fiscal Court (BFH), Federal Court of Justice (BGH), Federal Patent Court (BPatG), Federal Social Court (BSG), Federal Constitutional Court (BVerfG) and Federal Administrative Court (BVerwG).
|
93 |
|
94 |
#### Initial Data Collection and Normalization
|
95 |
|
|
|
101 |
|
102 |
### Annotations
|
103 |
|
104 |
+
The source texts were manually annotated with 19 semantic classes:
|
105 |
+
- person
|
106 |
+
- judge
|
107 |
+
- lawyer
|
108 |
+
- country
|
109 |
+
- city
|
110 |
+
- street
|
111 |
+
- landscape
|
112 |
+
- organization
|
113 |
+
- company
|
114 |
+
- institution
|
115 |
+
- court
|
116 |
+
- brand
|
117 |
+
- law
|
118 |
+
- ordinance
|
119 |
+
- European legal norm
|
120 |
+
- regulation
|
121 |
+
- contract
|
122 |
+
- court decision
|
123 |
+
- and legal literature.
|
124 |
+
|
125 |
+
The 19 fine-grained classes were automatically generalised to seven more coarse-grained classes (person, location, organization, legal norm, case-by-case regulation, court decision, and legal literature).
|
126 |
|
127 |
#### Annotation process
|
128 |
|
|
|
158 |
|
159 |
### Licensing Information
|
160 |
|
161 |
+
<a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png" /></a><br />This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>.
|
162 |
|
163 |
### Citation Information
|
164 |
+
```
|
165 |
+
@inproceedings{leitner2019fine,
|
166 |
+
author = {Elena Leitner and Georg Rehm and Julian Moreno-Schneider},
|
167 |
+
title = {{Fine-grained Named Entity Recognition in Legal Documents}},
|
168 |
+
booktitle = {Semantic Systems. The Power of AI and Knowledge
|
169 |
+
Graphs. Proceedings of the 15th International Conference
|
170 |
+
(SEMANTiCS 2019)},
|
171 |
+
year = 2019,
|
172 |
+
editor = {Maribel Acosta and Philippe Cudré-Mauroux and Maria
|
173 |
+
Maleshkova and Tassilo Pellegrini and Harald Sack and York
|
174 |
+
Sure-Vetter},
|
175 |
+
keywords = {aip},
|
176 |
+
publisher = {Springer},
|
177 |
+
series = {Lecture Notes in Computer Science},
|
178 |
+
number = {11702},
|
179 |
+
address = {Karlsruhe, Germany},
|
180 |
+
month = 9,
|
181 |
+
note = {10/11 September 2019},
|
182 |
+
pages = {272--287},
|
183 |
+
pdf = {https://link.springer.com/content/pdf/10.1007%2F978-3-030-33220-4_20.pdf}}
|
184 |
+
```
|
185 |
### Contributions
|
186 |
|
187 |
Thanks to [@abhishekkrthakur](https://github.com/abhishekkrthakur) for adding this dataset.
|