Files changed (1) hide show
  1. README.md +52 -11
README.md CHANGED
@@ -18,7 +18,7 @@ task_categories:
18
  task_ids:
19
  - named-entity-recognition
20
  paperswithcode_id: legal-documents-entity-recognition
21
- pretty_name: Legal Documents Entity Recognition
22
  ---
23
 
24
  # Dataset Card for Legal Documents Entity Recognition
@@ -53,19 +53,19 @@ pretty_name: Legal Documents Entity Recognition
53
  - **Repository:** None
54
  - **Paper:** https://link.springer.com/chapter/10.1007/978-3-030-33220-4_20
55
  - **Leaderboard:** [If the dataset supports an active leaderboard, add link here]()
56
- - **Point of Contact:** Georg Rehm (georg.rehm@dfki.de)
57
 
58
  ### Dataset Summary
59
 
60
- [More Information Needed]
61
 
62
  ### Supported Tasks and Leaderboards
63
 
64
- [More Information Needed]
65
 
66
  ### Languages
67
 
68
- [More Information Needed]
69
 
70
  ## Dataset Structure
71
 
@@ -79,7 +79,8 @@ pretty_name: Legal Documents Entity Recognition
79
 
80
  ### Data Splits
81
 
82
- [More Information Needed]
 
83
  ## Dataset Creation
84
 
85
  ### Curation Rationale
@@ -88,7 +89,7 @@ pretty_name: Legal Documents Entity Recognition
88
 
89
  ### Source Data
90
 
91
- [More Information Needed]
92
 
93
  #### Initial Data Collection and Normalization
94
 
@@ -100,7 +101,28 @@ pretty_name: Legal Documents Entity Recognition
100
 
101
  ### Annotations
102
 
103
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104
 
105
  #### Annotation process
106
 
@@ -136,11 +158,30 @@ pretty_name: Legal Documents Entity Recognition
136
 
137
  ### Licensing Information
138
 
139
- [More Information Needed]
140
 
141
  ### Citation Information
142
-
143
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
144
  ### Contributions
145
 
146
  Thanks to [@abhishekkrthakur](https://github.com/abhishekkrthakur) for adding this dataset.
 
18
  task_ids:
19
  - named-entity-recognition
20
  paperswithcode_id: legal-documents-entity-recognition
21
+ pretty_name: Named Entity Recognition in Legal Documents
22
  ---
23
 
24
  # Dataset Card for Legal Documents Entity Recognition
 
53
  - **Repository:** None
54
  - **Paper:** https://link.springer.com/chapter/10.1007/978-3-030-33220-4_20
55
  - **Leaderboard:** [If the dataset supports an active leaderboard, add link here]()
56
+ - **Point of Contact:** Elena Leitner (elena.leitner@dfki.de), Georg Rehm (georg.rehm@dfki.de)
57
 
58
  ### Dataset Summary
59
 
60
+ The dataset consists of 66,723 sentences with 2,157,048 tokens. The dataset includes two different versions of annotations, one with a set of 19 fine-grained semantic classes and another one with a set of 7 coarse-grained classes. There are 53,632 annotated entities in total, the majority of which (74.34 %) are legal entities, the others are person, location and organization (25.66 %).
61
 
62
  ### Supported Tasks and Leaderboards
63
 
64
+ Named Entity Recognition in legal Documents
65
 
66
  ### Languages
67
 
68
+ German
69
 
70
  ## Dataset Structure
71
 
 
79
 
80
  ### Data Splits
81
 
82
+ -
83
+
84
  ## Dataset Creation
85
 
86
  ### Curation Rationale
 
89
 
90
  ### Source Data
91
 
92
+ Court decisions from 2017 and 2018 were selected for the dataset, published online by the [Federal Ministry of Justice and Consumer Protection](http://www.rechtsprechung-im-internet.de). The documents originate from seven federal courts: Federal Labour Court (BAG), Federal Fiscal Court (BFH), Federal Court of Justice (BGH), Federal Patent Court (BPatG), Federal Social Court (BSG), Federal Constitutional Court (BVerfG) and Federal Administrative Court (BVerwG).
93
 
94
  #### Initial Data Collection and Normalization
95
 
 
101
 
102
  ### Annotations
103
 
104
+ The source texts were manually annotated with 19 semantic classes:
105
+ - person
106
+ - judge
107
+ - lawyer
108
+ - country
109
+ - city
110
+ - street
111
+ - landscape
112
+ - organization
113
+ - company
114
+ - institution
115
+ - court
116
+ - brand
117
+ - law
118
+ - ordinance
119
+ - European legal norm
120
+ - regulation
121
+ - contract
122
+ - court decision
123
+ - and legal literature.
124
+
125
+ The 19 fine-grained classes were automatically generalised to seven more coarse-grained classes (person, location, organization, legal norm, case-by-case regulation, court decision, and legal literature).
126
 
127
  #### Annotation process
128
 
 
158
 
159
  ### Licensing Information
160
 
161
+ <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png" /></a><br />This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>.
162
 
163
  ### Citation Information
164
+ ```
165
+ @inproceedings{leitner2019fine,
166
+ author = {Elena Leitner and Georg Rehm and Julian Moreno-Schneider},
167
+ title = {{Fine-grained Named Entity Recognition in Legal Documents}},
168
+ booktitle = {Semantic Systems. The Power of AI and Knowledge
169
+ Graphs. Proceedings of the 15th International Conference
170
+ (SEMANTiCS 2019)},
171
+ year = 2019,
172
+ editor = {Maribel Acosta and Philippe Cudré-Mauroux and Maria
173
+ Maleshkova and Tassilo Pellegrini and Harald Sack and York
174
+ Sure-Vetter},
175
+ keywords = {aip},
176
+ publisher = {Springer},
177
+ series = {Lecture Notes in Computer Science},
178
+ number = {11702},
179
+ address = {Karlsruhe, Germany},
180
+ month = 9,
181
+ note = {10/11 September 2019},
182
+ pages = {272--287},
183
+ pdf = {https://link.springer.com/content/pdf/10.1007%2F978-3-030-33220-4_20.pdf}}
184
+ ```
185
  ### Contributions
186
 
187
  Thanks to [@abhishekkrthakur](https://github.com/abhishekkrthakur) for adding this dataset.