Unnamed: 0
int64 0
10k
| repository_name
stringlengths 7
54
| func_path_in_repository
stringlengths 5
223
| func_name
stringlengths 1
134
| whole_func_string
stringlengths 100
30.3k
| language
stringclasses 1
value | func_code_string
stringlengths 100
30.3k
| func_code_tokens
stringlengths 138
33.2k
| func_documentation_string
stringlengths 1
15k
| func_documentation_tokens
stringlengths 5
5.14k
| split_name
stringclasses 1
value | func_code_url
stringlengths 91
315
|
---|---|---|---|---|---|---|---|---|---|---|---|
0 | getsentry/libsourcemap | libsourcemap/highlevel.py | View.get_original_function_name | def get_original_function_name(self, line, col, minified_name,
minified_source):
"""Given a token location and a minified function name and the
minified source file this returns the original function name if it
can be found of the minified function in scope.
"""
# Silently ignore underflows
if line < 0 or col < 0:
return None
minified_name = minified_name.encode('utf-8')
sout = _ffi.new('const char **')
try:
slen = rustcall(_lib.lsm_view_get_original_function_name,
self._get_ptr(), line, col, minified_name,
minified_source, sout)
if slen > 0:
return _ffi.unpack(sout[0], slen).decode('utf-8', 'replace')
except SourceMapError:
# In some rare cases the library is/was known to panic. We do
# not want to report this upwards (this happens on slicing
# out of range on older rust versions in the rust-sourcemap
# library)
pass | python | def get_original_function_name(self, line, col, minified_name,
minified_source):
"""Given a token location and a minified function name and the
minified source file this returns the original function name if it
can be found of the minified function in scope.
"""
# Silently ignore underflows
if line < 0 or col < 0:
return None
minified_name = minified_name.encode('utf-8')
sout = _ffi.new('const char **')
try:
slen = rustcall(_lib.lsm_view_get_original_function_name,
self._get_ptr(), line, col, minified_name,
minified_source, sout)
if slen > 0:
return _ffi.unpack(sout[0], slen).decode('utf-8', 'replace')
except SourceMapError:
# In some rare cases the library is/was known to panic. We do
# not want to report this upwards (this happens on slicing
# out of range on older rust versions in the rust-sourcemap
# library)
pass | ['def', 'get_original_function_name', '(', 'self', ',', 'line', ',', 'col', ',', 'minified_name', ',', 'minified_source', ')', ':', '# Silently ignore underflows', 'if', 'line', '<', '0', 'or', 'col', '<', '0', ':', 'return', 'None', 'minified_name', '=', 'minified_name', '.', 'encode', '(', "'utf-8'", ')', 'sout', '=', '_ffi', '.', 'new', '(', "'const char **'", ')', 'try', ':', 'slen', '=', 'rustcall', '(', '_lib', '.', 'lsm_view_get_original_function_name', ',', 'self', '.', '_get_ptr', '(', ')', ',', 'line', ',', 'col', ',', 'minified_name', ',', 'minified_source', ',', 'sout', ')', 'if', 'slen', '>', '0', ':', 'return', '_ffi', '.', 'unpack', '(', 'sout', '[', '0', ']', ',', 'slen', ')', '.', 'decode', '(', "'utf-8'", ',', "'replace'", ')', 'except', 'SourceMapError', ':', '# In some rare cases the library is/was known to panic. We do', '# not want to report this upwards (this happens on slicing', '# out of range on older rust versions in the rust-sourcemap', '# library)', 'pass'] | Given a token location and a minified function name and the
minified source file this returns the original function name if it
can be found of the minified function in scope. | ['Given', 'a', 'token', 'location', 'and', 'a', 'minified', 'function', 'name', 'and', 'the', 'minified', 'source', 'file', 'this', 'returns', 'the', 'original', 'function', 'name', 'if', 'it', 'can', 'be', 'found', 'of', 'the', 'minified', 'function', 'in', 'scope', '.'] | train | https://github.com/getsentry/libsourcemap/blob/94b5a34814fafee9dc23da8ec0ccca77f30e3370/libsourcemap/highlevel.py#L163-L185 |
1 | brocade/pynos | pynos/versions/ver_7/ver_7_1_0/yang/brocade_mac_address_table.py | brocade_mac_address_table.get_mac_address_table_input_request_type_get_interface_based_request_mac_type | def get_mac_address_table_input_request_type_get_interface_based_request_mac_type(self, **kwargs):
"""Auto Generated Code
"""
config = ET.Element("config")
get_mac_address_table = ET.Element("get_mac_address_table")
config = get_mac_address_table
input = ET.SubElement(get_mac_address_table, "input")
request_type = ET.SubElement(input, "request-type")
get_interface_based_request = ET.SubElement(request_type, "get-interface-based-request")
mac_type = ET.SubElement(get_interface_based_request, "mac-type")
mac_type.text = kwargs.pop('mac_type')
callback = kwargs.pop('callback', self._callback)
return callback(config) | python | def get_mac_address_table_input_request_type_get_interface_based_request_mac_type(self, **kwargs):
"""Auto Generated Code
"""
config = ET.Element("config")
get_mac_address_table = ET.Element("get_mac_address_table")
config = get_mac_address_table
input = ET.SubElement(get_mac_address_table, "input")
request_type = ET.SubElement(input, "request-type")
get_interface_based_request = ET.SubElement(request_type, "get-interface-based-request")
mac_type = ET.SubElement(get_interface_based_request, "mac-type")
mac_type.text = kwargs.pop('mac_type')
callback = kwargs.pop('callback', self._callback)
return callback(config) | ['def', 'get_mac_address_table_input_request_type_get_interface_based_request_mac_type', '(', 'self', ',', '*', '*', 'kwargs', ')', ':', 'config', '=', 'ET', '.', 'Element', '(', '"config"', ')', 'get_mac_address_table', '=', 'ET', '.', 'Element', '(', '"get_mac_address_table"', ')', 'config', '=', 'get_mac_address_table', 'input', '=', 'ET', '.', 'SubElement', '(', 'get_mac_address_table', ',', '"input"', ')', 'request_type', '=', 'ET', '.', 'SubElement', '(', 'input', ',', '"request-type"', ')', 'get_interface_based_request', '=', 'ET', '.', 'SubElement', '(', 'request_type', ',', '"get-interface-based-request"', ')', 'mac_type', '=', 'ET', '.', 'SubElement', '(', 'get_interface_based_request', ',', '"mac-type"', ')', 'mac_type', '.', 'text', '=', 'kwargs', '.', 'pop', '(', "'mac_type'", ')', 'callback', '=', 'kwargs', '.', 'pop', '(', "'callback'", ',', 'self', '.', '_callback', ')', 'return', 'callback', '(', 'config', ')'] | Auto Generated Code | ['Auto', 'Generated', 'Code'] | train | https://github.com/brocade/pynos/blob/bd8a34e98f322de3fc06750827d8bbc3a0c00380/pynos/versions/ver_7/ver_7_1_0/yang/brocade_mac_address_table.py#L297-L310 |
2 | nicolargo/glances | glances/plugins/glances_memswap.py | Plugin.update_views | def update_views(self):
"""Update stats views."""
# Call the father's method
super(Plugin, self).update_views()
# Add specifics informations
# Alert and log
self.views['used']['decoration'] = self.get_alert_log(self.stats['used'], maximum=self.stats['total']) | python | def update_views(self):
"""Update stats views."""
# Call the father's method
super(Plugin, self).update_views()
# Add specifics informations
# Alert and log
self.views['used']['decoration'] = self.get_alert_log(self.stats['used'], maximum=self.stats['total']) | ['def', 'update_views', '(', 'self', ')', ':', "# Call the father's method", 'super', '(', 'Plugin', ',', 'self', ')', '.', 'update_views', '(', ')', '# Add specifics informations', '# Alert and log', 'self', '.', 'views', '[', "'used'", ']', '[', "'decoration'", ']', '=', 'self', '.', 'get_alert_log', '(', 'self', '.', 'stats', '[', "'used'", ']', ',', 'maximum', '=', 'self', '.', 'stats', '[', "'total'", ']', ')'] | Update stats views. | ['Update', 'stats', 'views', '.'] | train | https://github.com/nicolargo/glances/blob/5bd4d587a736e0d2b03170b56926841d2a3eb7ee/glances/plugins/glances_memswap.py#L130-L137 |
3 | DLR-RM/RAFCON | source/rafcon/gui/helpers/meta_data.py | contains_geometric_info | def contains_geometric_info(var):
""" Check whether the passed variable is a tuple with two floats or integers """
return isinstance(var, tuple) and len(var) == 2 and all(isinstance(val, (int, float)) for val in var) | python | def contains_geometric_info(var):
""" Check whether the passed variable is a tuple with two floats or integers """
return isinstance(var, tuple) and len(var) == 2 and all(isinstance(val, (int, float)) for val in var) | ['def', 'contains_geometric_info', '(', 'var', ')', ':', 'return', 'isinstance', '(', 'var', ',', 'tuple', ')', 'and', 'len', '(', 'var', ')', '==', '2', 'and', 'all', '(', 'isinstance', '(', 'val', ',', '(', 'int', ',', 'float', ')', ')', 'for', 'val', 'in', 'var', ')'] | Check whether the passed variable is a tuple with two floats or integers | ['Check', 'whether', 'the', 'passed', 'variable', 'is', 'a', 'tuple', 'with', 'two', 'floats', 'or', 'integers'] | train | https://github.com/DLR-RM/RAFCON/blob/24942ef1a904531f49ab8830a1dbb604441be498/source/rafcon/gui/helpers/meta_data.py#L55-L57 |
4 | ejeschke/ginga | ginga/gtk3w/ImageViewGtk.py | ImageViewGtk.save_plain_image_as_file | def save_plain_image_as_file(self, filepath, format='png', quality=90):
"""Used for generating thumbnails. Does not include overlaid
graphics.
"""
pixbuf = self.get_plain_image_as_pixbuf()
options, values = [], []
if format == 'jpeg':
options.append('quality')
values.append(str(quality))
pixbuf.savev(filepath, format, options, values) | python | def save_plain_image_as_file(self, filepath, format='png', quality=90):
"""Used for generating thumbnails. Does not include overlaid
graphics.
"""
pixbuf = self.get_plain_image_as_pixbuf()
options, values = [], []
if format == 'jpeg':
options.append('quality')
values.append(str(quality))
pixbuf.savev(filepath, format, options, values) | ['def', 'save_plain_image_as_file', '(', 'self', ',', 'filepath', ',', 'format', '=', "'png'", ',', 'quality', '=', '90', ')', ':', 'pixbuf', '=', 'self', '.', 'get_plain_image_as_pixbuf', '(', ')', 'options', ',', 'values', '=', '[', ']', ',', '[', ']', 'if', 'format', '==', "'jpeg'", ':', 'options', '.', 'append', '(', "'quality'", ')', 'values', '.', 'append', '(', 'str', '(', 'quality', ')', ')', 'pixbuf', '.', 'savev', '(', 'filepath', ',', 'format', ',', 'options', ',', 'values', ')'] | Used for generating thumbnails. Does not include overlaid
graphics. | ['Used', 'for', 'generating', 'thumbnails', '.', 'Does', 'not', 'include', 'overlaid', 'graphics', '.'] | train | https://github.com/ejeschke/ginga/blob/a78c893ec6f37a837de851947e9bb4625c597915/ginga/gtk3w/ImageViewGtk.py#L75-L84 |
5 | poppy-project/pypot | pypot/vrep/remoteApiBindings/vrep.py | simxClearFloatSignal | def simxClearFloatSignal(clientID, signalName, operationMode):
'''
Please have a look at the function description/documentation in the V-REP user manual
'''
if (sys.version_info[0] == 3) and (type(signalName) is str):
signalName=signalName.encode('utf-8')
return c_ClearFloatSignal(clientID, signalName, operationMode) | python | def simxClearFloatSignal(clientID, signalName, operationMode):
'''
Please have a look at the function description/documentation in the V-REP user manual
'''
if (sys.version_info[0] == 3) and (type(signalName) is str):
signalName=signalName.encode('utf-8')
return c_ClearFloatSignal(clientID, signalName, operationMode) | ['def', 'simxClearFloatSignal', '(', 'clientID', ',', 'signalName', ',', 'operationMode', ')', ':', 'if', '(', 'sys', '.', 'version_info', '[', '0', ']', '==', '3', ')', 'and', '(', 'type', '(', 'signalName', ')', 'is', 'str', ')', ':', 'signalName', '=', 'signalName', '.', 'encode', '(', "'utf-8'", ')', 'return', 'c_ClearFloatSignal', '(', 'clientID', ',', 'signalName', ',', 'operationMode', ')'] | Please have a look at the function description/documentation in the V-REP user manual | ['Please', 'have', 'a', 'look', 'at', 'the', 'function', 'description', '/', 'documentation', 'in', 'the', 'V', '-', 'REP', 'user', 'manual'] | train | https://github.com/poppy-project/pypot/blob/d9c6551bbc87d45d9d1f0bc15e35b616d0002afd/pypot/vrep/remoteApiBindings/vrep.py#L900-L907 |
6 | cloudify-cosmo/repex | repex.py | Repex.find_matches | def find_matches(self, content, file_to_handle):
"""Find all matches of an expression in a file
"""
# look for all match groups in the content
groups = [match.groupdict() for match in
self.match_expression.finditer(content)]
# filter out content not in the matchgroup
matches = [group['matchgroup'] for group in groups
if group.get('matchgroup')]
logger.info('Found %s matches in %s', len(matches), file_to_handle)
# We only need the unique strings found as we'll be replacing each
# of them. No need to replace the ones already replaced.
return list(set(matches)) | python | def find_matches(self, content, file_to_handle):
"""Find all matches of an expression in a file
"""
# look for all match groups in the content
groups = [match.groupdict() for match in
self.match_expression.finditer(content)]
# filter out content not in the matchgroup
matches = [group['matchgroup'] for group in groups
if group.get('matchgroup')]
logger.info('Found %s matches in %s', len(matches), file_to_handle)
# We only need the unique strings found as we'll be replacing each
# of them. No need to replace the ones already replaced.
return list(set(matches)) | ['def', 'find_matches', '(', 'self', ',', 'content', ',', 'file_to_handle', ')', ':', '# look for all match groups in the content', 'groups', '=', '[', 'match', '.', 'groupdict', '(', ')', 'for', 'match', 'in', 'self', '.', 'match_expression', '.', 'finditer', '(', 'content', ')', ']', '# filter out content not in the matchgroup', 'matches', '=', '[', 'group', '[', "'matchgroup'", ']', 'for', 'group', 'in', 'groups', 'if', 'group', '.', 'get', '(', "'matchgroup'", ')', ']', 'logger', '.', 'info', '(', "'Found %s matches in %s'", ',', 'len', '(', 'matches', ')', ',', 'file_to_handle', ')', "# We only need the unique strings found as we'll be replacing each", '# of them. No need to replace the ones already replaced.', 'return', 'list', '(', 'set', '(', 'matches', ')', ')'] | Find all matches of an expression in a file | ['Find', 'all', 'matches', 'of', 'an', 'expression', 'in', 'a', 'file'] | train | https://github.com/cloudify-cosmo/repex/blob/589e442857fa4a99fa88670d7df1a72f983bbd28/repex.py#L605-L618 |
7 | mariocj89/github-token | github_token/__init__.py | TokenFactory.create | def create(self):
"""Creates a token
It uses the app_name as the notes and the scopes are
the permissions required by the application. See those
in github when configuring an app token
Raises a TFARequired if a two factor is required after
the atempt to create it without having call tfa before
"""
headers = dict()
if self.tfa_token:
headers["X-GitHub-OTP"] = self.tfa_token
token_name = self.app_name + platform.node() # node specific in case the user has multiple hosts
payload = dict(note=token_name, scopes=self.scopes)
response = requests.post(
self.api_url + "authorizations", auth=(self.user, self.password),
headers=headers, json=payload
)
if response.status_code == 401 and "required" in response.headers.get("X-GitHub-OTP", ""):
raise TFARequired("TFA required for the user")
if response.status_code == 422:
raise AlreadyExistsError("APP already exists. Please delete {} token".format(token_name))
if response.status_code == 401:
raise BadPassword("Bad User/Password")
response.raise_for_status()
return response.json()["token"] | python | def create(self):
"""Creates a token
It uses the app_name as the notes and the scopes are
the permissions required by the application. See those
in github when configuring an app token
Raises a TFARequired if a two factor is required after
the atempt to create it without having call tfa before
"""
headers = dict()
if self.tfa_token:
headers["X-GitHub-OTP"] = self.tfa_token
token_name = self.app_name + platform.node() # node specific in case the user has multiple hosts
payload = dict(note=token_name, scopes=self.scopes)
response = requests.post(
self.api_url + "authorizations", auth=(self.user, self.password),
headers=headers, json=payload
)
if response.status_code == 401 and "required" in response.headers.get("X-GitHub-OTP", ""):
raise TFARequired("TFA required for the user")
if response.status_code == 422:
raise AlreadyExistsError("APP already exists. Please delete {} token".format(token_name))
if response.status_code == 401:
raise BadPassword("Bad User/Password")
response.raise_for_status()
return response.json()["token"] | ['def', 'create', '(', 'self', ')', ':', 'headers', '=', 'dict', '(', ')', 'if', 'self', '.', 'tfa_token', ':', 'headers', '[', '"X-GitHub-OTP"', ']', '=', 'self', '.', 'tfa_token', 'token_name', '=', 'self', '.', 'app_name', '+', 'platform', '.', 'node', '(', ')', '# node specific in case the user has multiple hosts', 'payload', '=', 'dict', '(', 'note', '=', 'token_name', ',', 'scopes', '=', 'self', '.', 'scopes', ')', 'response', '=', 'requests', '.', 'post', '(', 'self', '.', 'api_url', '+', '"authorizations"', ',', 'auth', '=', '(', 'self', '.', 'user', ',', 'self', '.', 'password', ')', ',', 'headers', '=', 'headers', ',', 'json', '=', 'payload', ')', 'if', 'response', '.', 'status_code', '==', '401', 'and', '"required"', 'in', 'response', '.', 'headers', '.', 'get', '(', '"X-GitHub-OTP"', ',', '""', ')', ':', 'raise', 'TFARequired', '(', '"TFA required for the user"', ')', 'if', 'response', '.', 'status_code', '==', '422', ':', 'raise', 'AlreadyExistsError', '(', '"APP already exists. Please delete {} token"', '.', 'format', '(', 'token_name', ')', ')', 'if', 'response', '.', 'status_code', '==', '401', ':', 'raise', 'BadPassword', '(', '"Bad User/Password"', ')', 'response', '.', 'raise_for_status', '(', ')', 'return', 'response', '.', 'json', '(', ')', '[', '"token"', ']'] | Creates a token
It uses the app_name as the notes and the scopes are
the permissions required by the application. See those
in github when configuring an app token
Raises a TFARequired if a two factor is required after
the atempt to create it without having call tfa before | ['Creates', 'a', 'token'] | train | https://github.com/mariocj89/github-token/blob/8ca85fa51a52aef94cfb4f851eb229ee500bc28f/github_token/__init__.py#L81-L108 |
8 | brycedrennan/eulerian-magnification | eulerian_magnification/base.py | combine_pyramid_and_save | def combine_pyramid_and_save(g_video, orig_video, enlarge_multiple, fps, save_filename='media/output.avi'):
"""Combine a gaussian video representation with the original and save to file"""
width, height = get_frame_dimensions(orig_video[0])
fourcc = cv2.VideoWriter_fourcc(*'MJPG')
print("Outputting to %s" % save_filename)
writer = cv2.VideoWriter(save_filename, fourcc, fps, (width, height), 1)
for x in range(0, g_video.shape[0]):
img = np.ndarray(shape=g_video[x].shape, dtype='float')
img[:] = g_video[x]
for i in range(enlarge_multiple):
img = cv2.pyrUp(img)
img[:height, :width] = img[:height, :width] + orig_video[x]
res = cv2.convertScaleAbs(img[:height, :width])
writer.write(res) | python | def combine_pyramid_and_save(g_video, orig_video, enlarge_multiple, fps, save_filename='media/output.avi'):
"""Combine a gaussian video representation with the original and save to file"""
width, height = get_frame_dimensions(orig_video[0])
fourcc = cv2.VideoWriter_fourcc(*'MJPG')
print("Outputting to %s" % save_filename)
writer = cv2.VideoWriter(save_filename, fourcc, fps, (width, height), 1)
for x in range(0, g_video.shape[0]):
img = np.ndarray(shape=g_video[x].shape, dtype='float')
img[:] = g_video[x]
for i in range(enlarge_multiple):
img = cv2.pyrUp(img)
img[:height, :width] = img[:height, :width] + orig_video[x]
res = cv2.convertScaleAbs(img[:height, :width])
writer.write(res) | ['def', 'combine_pyramid_and_save', '(', 'g_video', ',', 'orig_video', ',', 'enlarge_multiple', ',', 'fps', ',', 'save_filename', '=', "'media/output.avi'", ')', ':', 'width', ',', 'height', '=', 'get_frame_dimensions', '(', 'orig_video', '[', '0', ']', ')', 'fourcc', '=', 'cv2', '.', 'VideoWriter_fourcc', '(', '*', "'MJPG'", ')', 'print', '(', '"Outputting to %s"', '%', 'save_filename', ')', 'writer', '=', 'cv2', '.', 'VideoWriter', '(', 'save_filename', ',', 'fourcc', ',', 'fps', ',', '(', 'width', ',', 'height', ')', ',', '1', ')', 'for', 'x', 'in', 'range', '(', '0', ',', 'g_video', '.', 'shape', '[', '0', ']', ')', ':', 'img', '=', 'np', '.', 'ndarray', '(', 'shape', '=', 'g_video', '[', 'x', ']', '.', 'shape', ',', 'dtype', '=', "'float'", ')', 'img', '[', ':', ']', '=', 'g_video', '[', 'x', ']', 'for', 'i', 'in', 'range', '(', 'enlarge_multiple', ')', ':', 'img', '=', 'cv2', '.', 'pyrUp', '(', 'img', ')', 'img', '[', ':', 'height', ',', ':', 'width', ']', '=', 'img', '[', ':', 'height', ',', ':', 'width', ']', '+', 'orig_video', '[', 'x', ']', 'res', '=', 'cv2', '.', 'convertScaleAbs', '(', 'img', '[', ':', 'height', ',', ':', 'width', ']', ')', 'writer', '.', 'write', '(', 'res', ')'] | Combine a gaussian video representation with the original and save to file | ['Combine', 'a', 'gaussian', 'video', 'representation', 'with', 'the', 'original', 'and', 'save', 'to', 'file'] | train | https://github.com/brycedrennan/eulerian-magnification/blob/9ae0651fe3334176300d183f8240ad36d77759a9/eulerian_magnification/base.py#L108-L122 |
9 | PmagPy/PmagPy | pmagpy/pmag.py | PintPars | def PintPars(datablock, araiblock, zijdblock, start, end, accept, **kwargs):
"""
calculate the paleointensity magic parameters make some definitions
"""
if 'version' in list(kwargs.keys()) and kwargs['version'] == 3:
meth_key = 'method_codes'
beta_key = 'int_b_beta'
temp_key, min_key, max_key = 'treat_temp', 'meas_step_min', 'meas_step_max'
dc_theta_key, dc_phi_key = 'treat_dc_field_theta', 'treat_dc_field_phi'
# convert dataframe to list of dictionaries
datablock = datablock.to_dict('records')
z_key = 'int_z'
drats_key = 'int_drats'
drat_key = 'int_drat'
md_key = 'int_md'
dec_key = 'dir_dec'
inc_key = 'dir_inc'
mad_key = 'int_mad_free'
dang_key = 'int_dang'
ptrm_key = 'int_n_ptrm'
theta_key = 'int_theta'
gamma_key = 'int_gamma'
delta_key = 'int_delta'
frac_key = 'int_frac'
gmax_key = 'int_gmax'
scat_key = 'int_scat'
else:
beta_key = 'specimen_b_beta'
meth_key = 'magic_method_codes'
temp_key, min_key, max_key = 'treatment_temp', 'measurement_step_min', 'measurement_step_max'
z_key = 'specimen_z'
drats_key = 'specimen_drats'
drat_key = 'specimen_drat'
md_key = 'specimen_md'
dec_key = 'specimen_dec'
inc_key = 'specimen_inc'
mad_key = 'specimen_int_mad'
dang_key = 'specimen_dang'
ptrm_key = 'specimen_int_ptrm_n'
theta_key = 'specimen_theta'
gamma_key = 'specimen_gamma'
delta_key = 'specimen_delta'
frac_key = 'specimen_frac'
gmax_key = 'specimen_gmax'
scat_key = 'specimen_scat'
first_Z, first_I, zptrm_check, ptrm_check, ptrm_tail = [], [], [], [], []
methcode, ThetaChecks, DeltaChecks, GammaChecks = "", "", "", ""
zptrm_check = []
first_Z, first_I, ptrm_check, ptrm_tail, zptrm_check, GammaChecks = araiblock[
0], araiblock[1], araiblock[2], araiblock[3], araiblock[4], araiblock[5]
if len(araiblock) > 6:
# used only for perpendicular method of paleointensity
ThetaChecks = araiblock[6]
# used only for perpendicular method of paleointensity
DeltaChecks = araiblock[7]
xi, yi, diffcum = [], [], 0
xiz, xzi, yiz, yzi = [], [], [], []
Nptrm, dmax = 0, -1e-22
# check if even zero and infield steps
if len(first_Z) > len(first_I):
maxe = len(first_I) - 1
else:
maxe = len(first_Z) - 1
if end == 0 or end > maxe:
end = maxe
# get the MAD, DANG, etc. for directional data
bstep = araiblock[0][start][0]
estep = araiblock[0][end][0]
zstart, zend = 0, len(zijdblock)
for k in range(len(zijdblock)):
zrec = zijdblock[k]
if zrec[0] == bstep:
zstart = k
if zrec[0] == estep:
zend = k
PCA = domean(zijdblock, zstart, zend, 'DE-BFL')
D, Diz, Dzi, Du = [], [], [], [] # list of NRM vectors, and separated by zi and iz
for rec in zijdblock:
D.append((rec[1], rec[2], rec[3]))
Du.append((rec[1], rec[2]))
if rec[4] == 1:
Dzi.append((rec[1], rec[2])) # if this is ZI step
else:
Diz.append((rec[1], rec[2])) # if this is IZ step
# calculate the vector difference sum
vds = dovds(D)
b_zi, b_iz = [], []
# collect data included in ZigZag calculation
if end + 1 >= len(first_Z):
stop = end - 1
else:
stop = end
for k in range(start, end + 1):
for l in range(len(first_I)):
irec = first_I[l]
if irec[0] == first_Z[k][0]:
xi.append(irec[3])
yi.append(first_Z[k][3])
pars, errcode = int_pars(xi, yi, vds)
if errcode == 1:
return pars, errcode
# for k in range(start,end+1):
for k in range(len(first_Z) - 1):
for l in range(k):
# only go down to 10% of NRM.....
if old_div(first_Z[k][3], vds) > 0.1:
irec = first_I[l]
if irec[4] == 1 and first_I[l + 1][4] == 0: # a ZI step
xzi = irec[3]
yzi = first_Z[k][3]
xiz = first_I[l + 1][3]
yiz = first_Z[k + 1][3]
slope = np.arctan2((yzi - yiz), (xiz - xzi))
r = np.sqrt((yzi - yiz)**2 + (xiz - xzi)**2)
if r > .1 * vds:
b_zi.append(slope) # suppress noise
elif irec[4] == 0 and first_I[l + 1][4] == 1: # an IZ step
xiz = irec[3]
yiz = first_Z[k][3]
xzi = first_I[l + 1][3]
yzi = first_Z[k + 1][3]
slope = np.arctan2((yiz - yzi), (xzi - xiz))
r = np.sqrt((yiz - yzi)**2 + (xzi - xiz)**2)
if r > .1 * vds:
b_iz.append(slope) # suppress noise
#
ZigZag, Frat, Trat = -1, 0, 0
if len(Diz) > 2 and len(Dzi) > 2:
ZigZag = 0
dizp = fisher_mean(Diz) # get Fisher stats on IZ steps
dzip = fisher_mean(Dzi) # get Fisher stats on ZI steps
dup = fisher_mean(Du) # get Fisher stats on all steps
#
# if directions are TOO well grouped, can get false positive for ftest, so
# angles must be > 3 degrees apart.
#
if angle([dizp['dec'], dizp['inc']], [dzip['dec'], dzip['inc']]) > 3.:
F = (dup['n'] - 2.) * (dzip['r'] + dizp['r'] - dup['r']) / \
(dup['n'] - dzip['r'] - dizp['r']
) # Watson test for common mean
nf = 2. * (dup['n'] - 2.) # number of degees of freedom
ftest = fcalc(2, nf)
Frat = old_div(F, ftest)
if Frat > 1.:
ZigZag = Frat # fails zigzag on directions
methcode = "SM-FTEST"
# now do slopes
if len(b_zi) > 2 and len(b_iz) > 2:
bzi_m, bzi_sig = gausspars(b_zi) # mean, std dev
biz_m, biz_sig = gausspars(b_iz)
n_zi = float(len(b_zi))
n_iz = float(len(b_iz))
b_diff = abs(bzi_m - biz_m) # difference in means
#
# avoid false positives - set 3 degree slope difference here too
if b_diff > 3 * np.pi / 180.:
nf = n_zi + n_iz - 2. # degrees of freedom
svar = old_div(((n_zi - 1.) * bzi_sig**2 +
(n_iz - 1.) * biz_sig**2), nf)
T = old_div((b_diff), np.sqrt(
svar * (old_div(1.0, n_zi) + old_div(1.0, n_iz)))) # student's t
ttest = tcalc(nf, .05) # t-test at 95% conf.
Trat = old_div(T, ttest)
if Trat > 1 and Trat > Frat:
ZigZag = Trat # fails zigzag on directions
methcode = "SM-TTEST"
pars[z_key] = ZigZag
pars[meth_key] = methcode
# do drats
if len(ptrm_check) != 0:
diffcum, drat_max = 0, 0
for prec in ptrm_check:
step = prec[0]
endbak = end
zend = end
while zend > len(zijdblock) - 1:
zend = zend - 2 # don't count alteration that happens after this step
if step < zijdblock[zend][0]:
Nptrm += 1
for irec in first_I:
if irec[0] == step:
break
diffcum += prec[3] - irec[3]
if abs(prec[3] - irec[3]) > drat_max:
drat_max = abs(prec[3] - irec[3])
pars[drats_key] = (100 * abs(diffcum) / first_I[zend][3])
pars[drat_key] = (100 * abs(drat_max) / first_I[zend][3])
elif len(zptrm_check) != 0:
diffcum = 0
for prec in zptrm_check:
step = prec[0]
endbak = end
zend = end
while zend > len(zijdblock) - 1:
zend = zend - 1
if step < zijdblock[zend][0]:
Nptrm += 1
for irec in first_I:
if irec[0] == step:
break
diffcum += prec[3] - irec[3]
pars[drats_key] = (100 * abs(diffcum) / first_I[zend][3])
else:
pars[drats_key] = -1
pars[drat_key] = -1
# and the pTRM tails
if len(ptrm_tail) != 0:
for trec in ptrm_tail:
step = trec[0]
for irec in first_I:
if irec[0] == step:
break
if abs(trec[3]) > dmax:
dmax = abs(trec[3])
pars[md_key] = (100 * dmax / vds)
else:
pars[md_key] = -1
pars[min_key] = bstep
pars[max_key] = estep
pars[dec_key] = PCA["specimen_dec"]
pars[inc_key] = PCA["specimen_inc"]
pars[mad_key] = PCA["specimen_mad"]
pars[dang_key] = PCA["specimen_dang"]
pars[ptrm_key] = Nptrm
# and the ThetaChecks
if ThetaChecks != "":
t = 0
for theta in ThetaChecks:
if theta[0] >= bstep and theta[0] <= estep and theta[1] > t:
t = theta[1]
pars[theta_key] = t
else:
pars[theta_key] = -1
# and the DeltaChecks
if DeltaChecks != "":
d = 0
for delta in DeltaChecks:
if delta[0] >= bstep and delta[0] <= estep and delta[1] > d:
d = delta[1]
pars[delta_key]
else:
pars[delta_key] = -1
pars[gamma_key] = -1
if GammaChecks != "":
for gamma in GammaChecks:
if gamma[0] <= estep:
pars['specimen_gamma'] = gamma[1]
# --------------------------------------------------------------
# From here added By Ron Shaar 11-Dec 2012
# New parameters defined in Shaar and Tauxe (2012):
# FRAC (specimen_frac) - ranges from 0. to 1.
# SCAT (specimen_scat) - takes 1/0
# gap_max (specimen_gmax) - ranges from 0. to 1.
# --------------------------------------------------------------
# --------------------------------------------------------------
# FRAC is similar to Fvds, but the numerator is the vds fraction:
# FRAC= [ vds (start,end)] / total vds ]
# gap_max= max [ (vector difference) / vds (start,end)]
# --------------------------------------------------------------
# collect all zijderveld data to arrays and calculate VDS
z_temperatures = [row[0] for row in zijdblock]
zdata = [] # array of zero-fields measurements in Cartezian coordinates
# array of vector differences (for vds calculation)
vector_diffs = []
NRM = zijdblock[0][3] # NRM
for k in range(len(zijdblock)):
DIR = [zijdblock[k][1], zijdblock[k][2], old_div(zijdblock[k][3], NRM)]
cart = dir2cart(DIR)
zdata.append(np.array([cart[0], cart[1], cart[2]]))
if k > 0:
vector_diffs.append(
np.sqrt(sum((np.array(zdata[-2]) - np.array(zdata[-1]))**2)))
# last vector difference: from the last point to the origin.
vector_diffs.append(np.sqrt(sum(np.array(zdata[-1])**2)))
vds = sum(vector_diffs) # vds calculation
zdata = np.array(zdata)
vector_diffs = np.array(vector_diffs)
# calculate the vds within the chosen segment
vector_diffs_segment = vector_diffs[zstart:zend]
# FRAC calculation
FRAC = old_div(sum(vector_diffs_segment), vds)
pars[frac_key] = FRAC
# gap_max calculation
max_FRAC_gap = max(
old_div(vector_diffs_segment, sum(vector_diffs_segment)))
pars[gmax_key] = max_FRAC_gap
# ---------------------------------------------------------------------
# Calculate the "scat box"
# all data-points, pTRM checks, and tail-checks, should be inside a "scat box"
# ---------------------------------------------------------------------
# intialization
# fail scat due to arai plot data points
pars["fail_arai_beta_box_scatter"] = False
pars["fail_ptrm_beta_box_scatter"] = False # fail scat due to pTRM checks
pars["fail_tail_beta_box_scatter"] = False # fail scat due to tail checks
pars[scat_key] = "t" # Pass by default
# --------------------------------------------------------------
# collect all Arai plot data points in arrays
x_Arai, y_Arai, t_Arai, steps_Arai = [], [], [], []
NRMs = araiblock[0]
PTRMs = araiblock[1]
ptrm_checks = araiblock[2]
ptrm_tail = araiblock[3]
PTRMs_temperatures = [row[0] for row in PTRMs]
NRMs_temperatures = [row[0] for row in NRMs]
NRM = NRMs[0][3]
for k in range(len(NRMs)):
index_pTRMs = PTRMs_temperatures.index(NRMs[k][0])
x_Arai.append(old_div(PTRMs[index_pTRMs][3], NRM))
y_Arai.append(old_div(NRMs[k][3], NRM))
t_Arai.append(NRMs[k][0])
if NRMs[k][4] == 1:
steps_Arai.append('ZI')
else:
steps_Arai.append('IZ')
x_Arai = np.array(x_Arai)
y_Arai = np.array(y_Arai)
# --------------------------------------------------------------
# collect all pTRM check to arrays
x_ptrm_check, y_ptrm_check, ptrm_checks_temperatures, = [], [], []
x_ptrm_check_starting_point, y_ptrm_check_starting_point, ptrm_checks_starting_temperatures = [], [], []
for k in range(len(ptrm_checks)):
if ptrm_checks[k][0] in NRMs_temperatures:
# find the starting point of the pTRM check:
for i in range(len(datablock)):
rec = datablock[i]
if "LT-PTRM-I" in rec[meth_key] and float(rec[temp_key]) == ptrm_checks[k][0]:
starting_temperature = (float(datablock[i - 1][temp_key]))
try:
index = t_Arai.index(starting_temperature)
x_ptrm_check_starting_point.append(x_Arai[index])
y_ptrm_check_starting_point.append(y_Arai[index])
ptrm_checks_starting_temperatures.append(
starting_temperature)
index_zerofield = zerofield_temperatures.index(
ptrm_checks[k][0])
x_ptrm_check.append(old_div(ptrm_checks[k][3], NRM))
y_ptrm_check.append(
old_div(zerofields[index_zerofield][3], NRM))
ptrm_checks_temperatures.append(ptrm_checks[k][0])
break
except:
pass
x_ptrm_check_starting_point = np.array(x_ptrm_check_starting_point)
y_ptrm_check_starting_point = np.array(y_ptrm_check_starting_point)
ptrm_checks_starting_temperatures = np.array(
ptrm_checks_starting_temperatures)
x_ptrm_check = np.array(x_ptrm_check)
y_ptrm_check = np.array(y_ptrm_check)
ptrm_checks_temperatures = np.array(ptrm_checks_temperatures)
# --------------------------------------------------------------
# collect tail checks to arrays
x_tail_check, y_tail_check, tail_check_temperatures = [], [], []
x_tail_check_starting_point, y_tail_check_starting_point, tail_checks_starting_temperatures = [], [], []
for k in range(len(ptrm_tail)):
if ptrm_tail[k][0] in NRMs_temperatures:
# find the starting point of the pTRM check:
for i in range(len(datablock)):
rec = datablock[i]
if "LT-PTRM-MD" in rec[meth_key] and float(rec[temp_key]) == ptrm_tail[k][0]:
starting_temperature = (float(datablock[i - 1][temp_key]))
try:
index = t_Arai.index(starting_temperature)
x_tail_check_starting_point.append(x_Arai[index])
y_tail_check_starting_point.append(y_Arai[index])
tail_checks_starting_temperatures.append(
starting_temperature)
index_infield = infield_temperatures.index(
ptrm_tail[k][0])
x_tail_check.append(
old_div(infields[index_infield][3], NRM))
y_tail_check.append(
old_div(ptrm_tail[k][3], NRM) + old_div(zerofields[index_infield][3], NRM))
tail_check_temperatures.append(ptrm_tail[k][0])
break
except:
pass
x_tail_check = np.array(x_tail_check)
y_tail_check = np.array(y_tail_check)
tail_check_temperatures = np.array(tail_check_temperatures)
x_tail_check_starting_point = np.array(x_tail_check_starting_point)
y_tail_check_starting_point = np.array(y_tail_check_starting_point)
tail_checks_starting_temperatures = np.array(
tail_checks_starting_temperatures)
# --------------------------------------------------------------
# collect the chosen segment in the Arai plot to arrays
x_Arai_segment = x_Arai[start:end + 1] # chosen segent in the Arai plot
y_Arai_segment = y_Arai[start:end + 1] # chosen segent in the Arai plot
# --------------------------------------------------------------
# collect pTRM checks in segment to arrays
# notice, this is different than the conventional DRATS.
# for scat calculation we take only the pTRM checks which were carried out
# before reaching the highest temperature in the chosen segment
x_ptrm_check_for_SCAT, y_ptrm_check_for_SCAT = [], []
for k in range(len(ptrm_checks_temperatures)):
if ptrm_checks_temperatures[k] >= pars[min_key] and ptrm_checks_starting_temperatures <= pars[max_key]:
x_ptrm_check_for_SCAT.append(x_ptrm_check[k])
y_ptrm_check_for_SCAT.append(y_ptrm_check[k])
x_ptrm_check_for_SCAT = np.array(x_ptrm_check_for_SCAT)
y_ptrm_check_for_SCAT = np.array(y_ptrm_check_for_SCAT)
# --------------------------------------------------------------
# collect Tail checks in segment to arrays
# for scat calculation we take only the tail checks which were carried out
# before reaching the highest temperature in the chosen segment
x_tail_check_for_SCAT, y_tail_check_for_SCAT = [], []
for k in range(len(tail_check_temperatures)):
if tail_check_temperatures[k] >= pars[min_key] and tail_checks_starting_temperatures[k] <= pars[max_key]:
x_tail_check_for_SCAT.append(x_tail_check[k])
y_tail_check_for_SCAT.append(y_tail_check[k])
x_tail_check_for_SCAT = np.array(x_tail_check_for_SCAT)
y_tail_check_for_SCAT = np.array(y_tail_check_for_SCAT)
# --------------------------------------------------------------
# calculate the lines that define the scat box:
# if threshold value for beta is not defined, then scat cannot be calculated (pass)
# in this case, scat pass
if beta_key in list(accept.keys()) and accept[beta_key] != "":
b_beta_threshold = float(accept[beta_key])
b = pars[b_key] # best fit line
cm_x = np.mean(np.array(x_Arai_segment)) # x center of mass
cm_y = np.mean(np.array(y_Arai_segment)) # y center of mass
a = cm_y - b * cm_x
# lines with slope = slope +/- 2*(specimen_b_beta)
two_sigma_beta_threshold = 2 * b_beta_threshold
two_sigma_slope_threshold = abs(two_sigma_beta_threshold * b)
# a line with a shallower slope (b + 2*beta*b) passing through the center of mass
# y=a1+b1x
b1 = b + two_sigma_slope_threshold
a1 = cm_y - b1 * cm_x
# bounding line with steeper slope (b - 2*beta*b) passing through the center of mass
# y=a2+b2x
b2 = b - two_sigma_slope_threshold
a2 = cm_y - b2 * cm_x
# lower bounding line of the 'beta box'
# y=intercept1+slop1x
slop1 = old_div(a1, ((old_div(a2, b2))))
intercept1 = a1
# higher bounding line of the 'beta box'
# y=intercept2+slop2x
slop2 = old_div(a2, ((old_div(a1, b1))))
intercept2 = a2
pars['specimen_scat_bounding_line_high'] = [intercept2, slop2]
pars['specimen_scat_bounding_line_low'] = [intercept1, slop1]
# --------------------------------------------------------------
# check if the Arai data points are in the 'box'
# the two bounding lines
ymin = intercept1 + x_Arai_segment * slop1
ymax = intercept2 + x_Arai_segment * slop2
# arrays of "True" or "False"
check_1 = y_Arai_segment > ymax
check_2 = y_Arai_segment < ymin
# check if at least one "True"
if (sum(check_1) + sum(check_2)) > 0:
pars["fail_arai_beta_box_scatter"] = True
# --------------------------------------------------------------
# check if the pTRM checks data points are in the 'box'
if len(x_ptrm_check_for_SCAT) > 0:
# the two bounding lines
ymin = intercept1 + x_ptrm_check_for_SCAT * slop1
ymax = intercept2 + x_ptrm_check_for_SCAT * slop2
# arrays of "True" or "False"
check_1 = y_ptrm_check_for_SCAT > ymax
check_2 = y_ptrm_check_for_SCAT < ymin
# check if at least one "True"
if (sum(check_1) + sum(check_2)) > 0:
pars["fail_ptrm_beta_box_scatter"] = True
# --------------------------------------------------------------
# check if the tail checks data points are in the 'box'
if len(x_tail_check_for_SCAT) > 0:
# the two bounding lines
ymin = intercept1 + x_tail_check_for_SCAT * slop1
ymax = intercept2 + x_tail_check_for_SCAT * slop2
# arrays of "True" or "False"
check_1 = y_tail_check_for_SCAT > ymax
check_2 = y_tail_check_for_SCAT < ymin
# check if at least one "True"
if (sum(check_1) + sum(check_2)) > 0:
pars["fail_tail_beta_box_scatter"] = True
# --------------------------------------------------------------
# check if specimen_scat is PASS or FAIL:
if pars["fail_tail_beta_box_scatter"] or pars["fail_ptrm_beta_box_scatter"] or pars["fail_arai_beta_box_scatter"]:
pars[scat_key] = 'f'
else:
pars[scat_key] = 't'
return pars, 0 | python | def PintPars(datablock, araiblock, zijdblock, start, end, accept, **kwargs):
"""
calculate the paleointensity magic parameters make some definitions
"""
if 'version' in list(kwargs.keys()) and kwargs['version'] == 3:
meth_key = 'method_codes'
beta_key = 'int_b_beta'
temp_key, min_key, max_key = 'treat_temp', 'meas_step_min', 'meas_step_max'
dc_theta_key, dc_phi_key = 'treat_dc_field_theta', 'treat_dc_field_phi'
# convert dataframe to list of dictionaries
datablock = datablock.to_dict('records')
z_key = 'int_z'
drats_key = 'int_drats'
drat_key = 'int_drat'
md_key = 'int_md'
dec_key = 'dir_dec'
inc_key = 'dir_inc'
mad_key = 'int_mad_free'
dang_key = 'int_dang'
ptrm_key = 'int_n_ptrm'
theta_key = 'int_theta'
gamma_key = 'int_gamma'
delta_key = 'int_delta'
frac_key = 'int_frac'
gmax_key = 'int_gmax'
scat_key = 'int_scat'
else:
beta_key = 'specimen_b_beta'
meth_key = 'magic_method_codes'
temp_key, min_key, max_key = 'treatment_temp', 'measurement_step_min', 'measurement_step_max'
z_key = 'specimen_z'
drats_key = 'specimen_drats'
drat_key = 'specimen_drat'
md_key = 'specimen_md'
dec_key = 'specimen_dec'
inc_key = 'specimen_inc'
mad_key = 'specimen_int_mad'
dang_key = 'specimen_dang'
ptrm_key = 'specimen_int_ptrm_n'
theta_key = 'specimen_theta'
gamma_key = 'specimen_gamma'
delta_key = 'specimen_delta'
frac_key = 'specimen_frac'
gmax_key = 'specimen_gmax'
scat_key = 'specimen_scat'
first_Z, first_I, zptrm_check, ptrm_check, ptrm_tail = [], [], [], [], []
methcode, ThetaChecks, DeltaChecks, GammaChecks = "", "", "", ""
zptrm_check = []
first_Z, first_I, ptrm_check, ptrm_tail, zptrm_check, GammaChecks = araiblock[
0], araiblock[1], araiblock[2], araiblock[3], araiblock[4], araiblock[5]
if len(araiblock) > 6:
# used only for perpendicular method of paleointensity
ThetaChecks = araiblock[6]
# used only for perpendicular method of paleointensity
DeltaChecks = araiblock[7]
xi, yi, diffcum = [], [], 0
xiz, xzi, yiz, yzi = [], [], [], []
Nptrm, dmax = 0, -1e-22
# check if even zero and infield steps
if len(first_Z) > len(first_I):
maxe = len(first_I) - 1
else:
maxe = len(first_Z) - 1
if end == 0 or end > maxe:
end = maxe
# get the MAD, DANG, etc. for directional data
bstep = araiblock[0][start][0]
estep = araiblock[0][end][0]
zstart, zend = 0, len(zijdblock)
for k in range(len(zijdblock)):
zrec = zijdblock[k]
if zrec[0] == bstep:
zstart = k
if zrec[0] == estep:
zend = k
PCA = domean(zijdblock, zstart, zend, 'DE-BFL')
D, Diz, Dzi, Du = [], [], [], [] # list of NRM vectors, and separated by zi and iz
for rec in zijdblock:
D.append((rec[1], rec[2], rec[3]))
Du.append((rec[1], rec[2]))
if rec[4] == 1:
Dzi.append((rec[1], rec[2])) # if this is ZI step
else:
Diz.append((rec[1], rec[2])) # if this is IZ step
# calculate the vector difference sum
vds = dovds(D)
b_zi, b_iz = [], []
# collect data included in ZigZag calculation
if end + 1 >= len(first_Z):
stop = end - 1
else:
stop = end
for k in range(start, end + 1):
for l in range(len(first_I)):
irec = first_I[l]
if irec[0] == first_Z[k][0]:
xi.append(irec[3])
yi.append(first_Z[k][3])
pars, errcode = int_pars(xi, yi, vds)
if errcode == 1:
return pars, errcode
# for k in range(start,end+1):
for k in range(len(first_Z) - 1):
for l in range(k):
# only go down to 10% of NRM.....
if old_div(first_Z[k][3], vds) > 0.1:
irec = first_I[l]
if irec[4] == 1 and first_I[l + 1][4] == 0: # a ZI step
xzi = irec[3]
yzi = first_Z[k][3]
xiz = first_I[l + 1][3]
yiz = first_Z[k + 1][3]
slope = np.arctan2((yzi - yiz), (xiz - xzi))
r = np.sqrt((yzi - yiz)**2 + (xiz - xzi)**2)
if r > .1 * vds:
b_zi.append(slope) # suppress noise
elif irec[4] == 0 and first_I[l + 1][4] == 1: # an IZ step
xiz = irec[3]
yiz = first_Z[k][3]
xzi = first_I[l + 1][3]
yzi = first_Z[k + 1][3]
slope = np.arctan2((yiz - yzi), (xzi - xiz))
r = np.sqrt((yiz - yzi)**2 + (xzi - xiz)**2)
if r > .1 * vds:
b_iz.append(slope) # suppress noise
#
ZigZag, Frat, Trat = -1, 0, 0
if len(Diz) > 2 and len(Dzi) > 2:
ZigZag = 0
dizp = fisher_mean(Diz) # get Fisher stats on IZ steps
dzip = fisher_mean(Dzi) # get Fisher stats on ZI steps
dup = fisher_mean(Du) # get Fisher stats on all steps
#
# if directions are TOO well grouped, can get false positive for ftest, so
# angles must be > 3 degrees apart.
#
if angle([dizp['dec'], dizp['inc']], [dzip['dec'], dzip['inc']]) > 3.:
F = (dup['n'] - 2.) * (dzip['r'] + dizp['r'] - dup['r']) / \
(dup['n'] - dzip['r'] - dizp['r']
) # Watson test for common mean
nf = 2. * (dup['n'] - 2.) # number of degees of freedom
ftest = fcalc(2, nf)
Frat = old_div(F, ftest)
if Frat > 1.:
ZigZag = Frat # fails zigzag on directions
methcode = "SM-FTEST"
# now do slopes
if len(b_zi) > 2 and len(b_iz) > 2:
bzi_m, bzi_sig = gausspars(b_zi) # mean, std dev
biz_m, biz_sig = gausspars(b_iz)
n_zi = float(len(b_zi))
n_iz = float(len(b_iz))
b_diff = abs(bzi_m - biz_m) # difference in means
#
# avoid false positives - set 3 degree slope difference here too
if b_diff > 3 * np.pi / 180.:
nf = n_zi + n_iz - 2. # degrees of freedom
svar = old_div(((n_zi - 1.) * bzi_sig**2 +
(n_iz - 1.) * biz_sig**2), nf)
T = old_div((b_diff), np.sqrt(
svar * (old_div(1.0, n_zi) + old_div(1.0, n_iz)))) # student's t
ttest = tcalc(nf, .05) # t-test at 95% conf.
Trat = old_div(T, ttest)
if Trat > 1 and Trat > Frat:
ZigZag = Trat # fails zigzag on directions
methcode = "SM-TTEST"
pars[z_key] = ZigZag
pars[meth_key] = methcode
# do drats
if len(ptrm_check) != 0:
diffcum, drat_max = 0, 0
for prec in ptrm_check:
step = prec[0]
endbak = end
zend = end
while zend > len(zijdblock) - 1:
zend = zend - 2 # don't count alteration that happens after this step
if step < zijdblock[zend][0]:
Nptrm += 1
for irec in first_I:
if irec[0] == step:
break
diffcum += prec[3] - irec[3]
if abs(prec[3] - irec[3]) > drat_max:
drat_max = abs(prec[3] - irec[3])
pars[drats_key] = (100 * abs(diffcum) / first_I[zend][3])
pars[drat_key] = (100 * abs(drat_max) / first_I[zend][3])
elif len(zptrm_check) != 0:
diffcum = 0
for prec in zptrm_check:
step = prec[0]
endbak = end
zend = end
while zend > len(zijdblock) - 1:
zend = zend - 1
if step < zijdblock[zend][0]:
Nptrm += 1
for irec in first_I:
if irec[0] == step:
break
diffcum += prec[3] - irec[3]
pars[drats_key] = (100 * abs(diffcum) / first_I[zend][3])
else:
pars[drats_key] = -1
pars[drat_key] = -1
# and the pTRM tails
if len(ptrm_tail) != 0:
for trec in ptrm_tail:
step = trec[0]
for irec in first_I:
if irec[0] == step:
break
if abs(trec[3]) > dmax:
dmax = abs(trec[3])
pars[md_key] = (100 * dmax / vds)
else:
pars[md_key] = -1
pars[min_key] = bstep
pars[max_key] = estep
pars[dec_key] = PCA["specimen_dec"]
pars[inc_key] = PCA["specimen_inc"]
pars[mad_key] = PCA["specimen_mad"]
pars[dang_key] = PCA["specimen_dang"]
pars[ptrm_key] = Nptrm
# and the ThetaChecks
if ThetaChecks != "":
t = 0
for theta in ThetaChecks:
if theta[0] >= bstep and theta[0] <= estep and theta[1] > t:
t = theta[1]
pars[theta_key] = t
else:
pars[theta_key] = -1
# and the DeltaChecks
if DeltaChecks != "":
d = 0
for delta in DeltaChecks:
if delta[0] >= bstep and delta[0] <= estep and delta[1] > d:
d = delta[1]
pars[delta_key]
else:
pars[delta_key] = -1
pars[gamma_key] = -1
if GammaChecks != "":
for gamma in GammaChecks:
if gamma[0] <= estep:
pars['specimen_gamma'] = gamma[1]
# --------------------------------------------------------------
# From here added By Ron Shaar 11-Dec 2012
# New parameters defined in Shaar and Tauxe (2012):
# FRAC (specimen_frac) - ranges from 0. to 1.
# SCAT (specimen_scat) - takes 1/0
# gap_max (specimen_gmax) - ranges from 0. to 1.
# --------------------------------------------------------------
# --------------------------------------------------------------
# FRAC is similar to Fvds, but the numerator is the vds fraction:
# FRAC= [ vds (start,end)] / total vds ]
# gap_max= max [ (vector difference) / vds (start,end)]
# --------------------------------------------------------------
# collect all zijderveld data to arrays and calculate VDS
z_temperatures = [row[0] for row in zijdblock]
zdata = [] # array of zero-fields measurements in Cartezian coordinates
# array of vector differences (for vds calculation)
vector_diffs = []
NRM = zijdblock[0][3] # NRM
for k in range(len(zijdblock)):
DIR = [zijdblock[k][1], zijdblock[k][2], old_div(zijdblock[k][3], NRM)]
cart = dir2cart(DIR)
zdata.append(np.array([cart[0], cart[1], cart[2]]))
if k > 0:
vector_diffs.append(
np.sqrt(sum((np.array(zdata[-2]) - np.array(zdata[-1]))**2)))
# last vector difference: from the last point to the origin.
vector_diffs.append(np.sqrt(sum(np.array(zdata[-1])**2)))
vds = sum(vector_diffs) # vds calculation
zdata = np.array(zdata)
vector_diffs = np.array(vector_diffs)
# calculate the vds within the chosen segment
vector_diffs_segment = vector_diffs[zstart:zend]
# FRAC calculation
FRAC = old_div(sum(vector_diffs_segment), vds)
pars[frac_key] = FRAC
# gap_max calculation
max_FRAC_gap = max(
old_div(vector_diffs_segment, sum(vector_diffs_segment)))
pars[gmax_key] = max_FRAC_gap
# ---------------------------------------------------------------------
# Calculate the "scat box"
# all data-points, pTRM checks, and tail-checks, should be inside a "scat box"
# ---------------------------------------------------------------------
# intialization
# fail scat due to arai plot data points
pars["fail_arai_beta_box_scatter"] = False
pars["fail_ptrm_beta_box_scatter"] = False # fail scat due to pTRM checks
pars["fail_tail_beta_box_scatter"] = False # fail scat due to tail checks
pars[scat_key] = "t" # Pass by default
# --------------------------------------------------------------
# collect all Arai plot data points in arrays
x_Arai, y_Arai, t_Arai, steps_Arai = [], [], [], []
NRMs = araiblock[0]
PTRMs = araiblock[1]
ptrm_checks = araiblock[2]
ptrm_tail = araiblock[3]
PTRMs_temperatures = [row[0] for row in PTRMs]
NRMs_temperatures = [row[0] for row in NRMs]
NRM = NRMs[0][3]
for k in range(len(NRMs)):
index_pTRMs = PTRMs_temperatures.index(NRMs[k][0])
x_Arai.append(old_div(PTRMs[index_pTRMs][3], NRM))
y_Arai.append(old_div(NRMs[k][3], NRM))
t_Arai.append(NRMs[k][0])
if NRMs[k][4] == 1:
steps_Arai.append('ZI')
else:
steps_Arai.append('IZ')
x_Arai = np.array(x_Arai)
y_Arai = np.array(y_Arai)
# --------------------------------------------------------------
# collect all pTRM check to arrays
x_ptrm_check, y_ptrm_check, ptrm_checks_temperatures, = [], [], []
x_ptrm_check_starting_point, y_ptrm_check_starting_point, ptrm_checks_starting_temperatures = [], [], []
for k in range(len(ptrm_checks)):
if ptrm_checks[k][0] in NRMs_temperatures:
# find the starting point of the pTRM check:
for i in range(len(datablock)):
rec = datablock[i]
if "LT-PTRM-I" in rec[meth_key] and float(rec[temp_key]) == ptrm_checks[k][0]:
starting_temperature = (float(datablock[i - 1][temp_key]))
try:
index = t_Arai.index(starting_temperature)
x_ptrm_check_starting_point.append(x_Arai[index])
y_ptrm_check_starting_point.append(y_Arai[index])
ptrm_checks_starting_temperatures.append(
starting_temperature)
index_zerofield = zerofield_temperatures.index(
ptrm_checks[k][0])
x_ptrm_check.append(old_div(ptrm_checks[k][3], NRM))
y_ptrm_check.append(
old_div(zerofields[index_zerofield][3], NRM))
ptrm_checks_temperatures.append(ptrm_checks[k][0])
break
except:
pass
x_ptrm_check_starting_point = np.array(x_ptrm_check_starting_point)
y_ptrm_check_starting_point = np.array(y_ptrm_check_starting_point)
ptrm_checks_starting_temperatures = np.array(
ptrm_checks_starting_temperatures)
x_ptrm_check = np.array(x_ptrm_check)
y_ptrm_check = np.array(y_ptrm_check)
ptrm_checks_temperatures = np.array(ptrm_checks_temperatures)
# --------------------------------------------------------------
# collect tail checks to arrays
x_tail_check, y_tail_check, tail_check_temperatures = [], [], []
x_tail_check_starting_point, y_tail_check_starting_point, tail_checks_starting_temperatures = [], [], []
for k in range(len(ptrm_tail)):
if ptrm_tail[k][0] in NRMs_temperatures:
# find the starting point of the pTRM check:
for i in range(len(datablock)):
rec = datablock[i]
if "LT-PTRM-MD" in rec[meth_key] and float(rec[temp_key]) == ptrm_tail[k][0]:
starting_temperature = (float(datablock[i - 1][temp_key]))
try:
index = t_Arai.index(starting_temperature)
x_tail_check_starting_point.append(x_Arai[index])
y_tail_check_starting_point.append(y_Arai[index])
tail_checks_starting_temperatures.append(
starting_temperature)
index_infield = infield_temperatures.index(
ptrm_tail[k][0])
x_tail_check.append(
old_div(infields[index_infield][3], NRM))
y_tail_check.append(
old_div(ptrm_tail[k][3], NRM) + old_div(zerofields[index_infield][3], NRM))
tail_check_temperatures.append(ptrm_tail[k][0])
break
except:
pass
x_tail_check = np.array(x_tail_check)
y_tail_check = np.array(y_tail_check)
tail_check_temperatures = np.array(tail_check_temperatures)
x_tail_check_starting_point = np.array(x_tail_check_starting_point)
y_tail_check_starting_point = np.array(y_tail_check_starting_point)
tail_checks_starting_temperatures = np.array(
tail_checks_starting_temperatures)
# --------------------------------------------------------------
# collect the chosen segment in the Arai plot to arrays
x_Arai_segment = x_Arai[start:end + 1] # chosen segent in the Arai plot
y_Arai_segment = y_Arai[start:end + 1] # chosen segent in the Arai plot
# --------------------------------------------------------------
# collect pTRM checks in segment to arrays
# notice, this is different than the conventional DRATS.
# for scat calculation we take only the pTRM checks which were carried out
# before reaching the highest temperature in the chosen segment
x_ptrm_check_for_SCAT, y_ptrm_check_for_SCAT = [], []
for k in range(len(ptrm_checks_temperatures)):
if ptrm_checks_temperatures[k] >= pars[min_key] and ptrm_checks_starting_temperatures <= pars[max_key]:
x_ptrm_check_for_SCAT.append(x_ptrm_check[k])
y_ptrm_check_for_SCAT.append(y_ptrm_check[k])
x_ptrm_check_for_SCAT = np.array(x_ptrm_check_for_SCAT)
y_ptrm_check_for_SCAT = np.array(y_ptrm_check_for_SCAT)
# --------------------------------------------------------------
# collect Tail checks in segment to arrays
# for scat calculation we take only the tail checks which were carried out
# before reaching the highest temperature in the chosen segment
x_tail_check_for_SCAT, y_tail_check_for_SCAT = [], []
for k in range(len(tail_check_temperatures)):
if tail_check_temperatures[k] >= pars[min_key] and tail_checks_starting_temperatures[k] <= pars[max_key]:
x_tail_check_for_SCAT.append(x_tail_check[k])
y_tail_check_for_SCAT.append(y_tail_check[k])
x_tail_check_for_SCAT = np.array(x_tail_check_for_SCAT)
y_tail_check_for_SCAT = np.array(y_tail_check_for_SCAT)
# --------------------------------------------------------------
# calculate the lines that define the scat box:
# if threshold value for beta is not defined, then scat cannot be calculated (pass)
# in this case, scat pass
if beta_key in list(accept.keys()) and accept[beta_key] != "":
b_beta_threshold = float(accept[beta_key])
b = pars[b_key] # best fit line
cm_x = np.mean(np.array(x_Arai_segment)) # x center of mass
cm_y = np.mean(np.array(y_Arai_segment)) # y center of mass
a = cm_y - b * cm_x
# lines with slope = slope +/- 2*(specimen_b_beta)
two_sigma_beta_threshold = 2 * b_beta_threshold
two_sigma_slope_threshold = abs(two_sigma_beta_threshold * b)
# a line with a shallower slope (b + 2*beta*b) passing through the center of mass
# y=a1+b1x
b1 = b + two_sigma_slope_threshold
a1 = cm_y - b1 * cm_x
# bounding line with steeper slope (b - 2*beta*b) passing through the center of mass
# y=a2+b2x
b2 = b - two_sigma_slope_threshold
a2 = cm_y - b2 * cm_x
# lower bounding line of the 'beta box'
# y=intercept1+slop1x
slop1 = old_div(a1, ((old_div(a2, b2))))
intercept1 = a1
# higher bounding line of the 'beta box'
# y=intercept2+slop2x
slop2 = old_div(a2, ((old_div(a1, b1))))
intercept2 = a2
pars['specimen_scat_bounding_line_high'] = [intercept2, slop2]
pars['specimen_scat_bounding_line_low'] = [intercept1, slop1]
# --------------------------------------------------------------
# check if the Arai data points are in the 'box'
# the two bounding lines
ymin = intercept1 + x_Arai_segment * slop1
ymax = intercept2 + x_Arai_segment * slop2
# arrays of "True" or "False"
check_1 = y_Arai_segment > ymax
check_2 = y_Arai_segment < ymin
# check if at least one "True"
if (sum(check_1) + sum(check_2)) > 0:
pars["fail_arai_beta_box_scatter"] = True
# --------------------------------------------------------------
# check if the pTRM checks data points are in the 'box'
if len(x_ptrm_check_for_SCAT) > 0:
# the two bounding lines
ymin = intercept1 + x_ptrm_check_for_SCAT * slop1
ymax = intercept2 + x_ptrm_check_for_SCAT * slop2
# arrays of "True" or "False"
check_1 = y_ptrm_check_for_SCAT > ymax
check_2 = y_ptrm_check_for_SCAT < ymin
# check if at least one "True"
if (sum(check_1) + sum(check_2)) > 0:
pars["fail_ptrm_beta_box_scatter"] = True
# --------------------------------------------------------------
# check if the tail checks data points are in the 'box'
if len(x_tail_check_for_SCAT) > 0:
# the two bounding lines
ymin = intercept1 + x_tail_check_for_SCAT * slop1
ymax = intercept2 + x_tail_check_for_SCAT * slop2
# arrays of "True" or "False"
check_1 = y_tail_check_for_SCAT > ymax
check_2 = y_tail_check_for_SCAT < ymin
# check if at least one "True"
if (sum(check_1) + sum(check_2)) > 0:
pars["fail_tail_beta_box_scatter"] = True
# --------------------------------------------------------------
# check if specimen_scat is PASS or FAIL:
if pars["fail_tail_beta_box_scatter"] or pars["fail_ptrm_beta_box_scatter"] or pars["fail_arai_beta_box_scatter"]:
pars[scat_key] = 'f'
else:
pars[scat_key] = 't'
return pars, 0 | ['def', 'PintPars', '(', 'datablock', ',', 'araiblock', ',', 'zijdblock', ',', 'start', ',', 'end', ',', 'accept', ',', '*', '*', 'kwargs', ')', ':', 'if', "'version'", 'in', 'list', '(', 'kwargs', '.', 'keys', '(', ')', ')', 'and', 'kwargs', '[', "'version'", ']', '==', '3', ':', 'meth_key', '=', "'method_codes'", 'beta_key', '=', "'int_b_beta'", 'temp_key', ',', 'min_key', ',', 'max_key', '=', "'treat_temp'", ',', "'meas_step_min'", ',', "'meas_step_max'", 'dc_theta_key', ',', 'dc_phi_key', '=', "'treat_dc_field_theta'", ',', "'treat_dc_field_phi'", '# convert dataframe to list of dictionaries', 'datablock', '=', 'datablock', '.', 'to_dict', '(', "'records'", ')', 'z_key', '=', "'int_z'", 'drats_key', '=', "'int_drats'", 'drat_key', '=', "'int_drat'", 'md_key', '=', "'int_md'", 'dec_key', '=', "'dir_dec'", 'inc_key', '=', "'dir_inc'", 'mad_key', '=', "'int_mad_free'", 'dang_key', '=', "'int_dang'", 'ptrm_key', '=', "'int_n_ptrm'", 'theta_key', '=', "'int_theta'", 'gamma_key', '=', "'int_gamma'", 'delta_key', '=', "'int_delta'", 'frac_key', '=', "'int_frac'", 'gmax_key', '=', "'int_gmax'", 'scat_key', '=', "'int_scat'", 'else', ':', 'beta_key', '=', "'specimen_b_beta'", 'meth_key', '=', "'magic_method_codes'", 'temp_key', ',', 'min_key', ',', 'max_key', '=', "'treatment_temp'", ',', "'measurement_step_min'", ',', "'measurement_step_max'", 'z_key', '=', "'specimen_z'", 'drats_key', '=', "'specimen_drats'", 'drat_key', '=', "'specimen_drat'", 'md_key', '=', "'specimen_md'", 'dec_key', '=', "'specimen_dec'", 'inc_key', '=', "'specimen_inc'", 'mad_key', '=', "'specimen_int_mad'", 'dang_key', '=', "'specimen_dang'", 'ptrm_key', '=', "'specimen_int_ptrm_n'", 'theta_key', '=', "'specimen_theta'", 'gamma_key', '=', "'specimen_gamma'", 'delta_key', '=', "'specimen_delta'", 'frac_key', '=', "'specimen_frac'", 'gmax_key', '=', "'specimen_gmax'", 'scat_key', '=', "'specimen_scat'", 'first_Z', ',', 'first_I', ',', 'zptrm_check', ',', 'ptrm_check', ',', 'ptrm_tail', '=', '[', ']', ',', '[', ']', ',', '[', ']', ',', '[', ']', ',', '[', ']', 'methcode', ',', 'ThetaChecks', ',', 'DeltaChecks', ',', 'GammaChecks', '=', '""', ',', '""', ',', '""', ',', '""', 'zptrm_check', '=', '[', ']', 'first_Z', ',', 'first_I', ',', 'ptrm_check', ',', 'ptrm_tail', ',', 'zptrm_check', ',', 'GammaChecks', '=', 'araiblock', '[', '0', ']', ',', 'araiblock', '[', '1', ']', ',', 'araiblock', '[', '2', ']', ',', 'araiblock', '[', '3', ']', ',', 'araiblock', '[', '4', ']', ',', 'araiblock', '[', '5', ']', 'if', 'len', '(', 'araiblock', ')', '>', '6', ':', '# used only for perpendicular method of paleointensity', 'ThetaChecks', '=', 'araiblock', '[', '6', ']', '# used only for perpendicular method of paleointensity', 'DeltaChecks', '=', 'araiblock', '[', '7', ']', 'xi', ',', 'yi', ',', 'diffcum', '=', '[', ']', ',', '[', ']', ',', '0', 'xiz', ',', 'xzi', ',', 'yiz', ',', 'yzi', '=', '[', ']', ',', '[', ']', ',', '[', ']', ',', '[', ']', 'Nptrm', ',', 'dmax', '=', '0', ',', '-', '1e-22', '# check if even zero and infield steps', 'if', 'len', '(', 'first_Z', ')', '>', 'len', '(', 'first_I', ')', ':', 'maxe', '=', 'len', '(', 'first_I', ')', '-', '1', 'else', ':', 'maxe', '=', 'len', '(', 'first_Z', ')', '-', '1', 'if', 'end', '==', '0', 'or', 'end', '>', 'maxe', ':', 'end', '=', 'maxe', '# get the MAD, DANG, etc. for directional data', 'bstep', '=', 'araiblock', '[', '0', ']', '[', 'start', ']', '[', '0', ']', 'estep', '=', 'araiblock', '[', '0', ']', '[', 'end', ']', '[', '0', ']', 'zstart', ',', 'zend', '=', '0', ',', 'len', '(', 'zijdblock', ')', 'for', 'k', 'in', 'range', '(', 'len', '(', 'zijdblock', ')', ')', ':', 'zrec', '=', 'zijdblock', '[', 'k', ']', 'if', 'zrec', '[', '0', ']', '==', 'bstep', ':', 'zstart', '=', 'k', 'if', 'zrec', '[', '0', ']', '==', 'estep', ':', 'zend', '=', 'k', 'PCA', '=', 'domean', '(', 'zijdblock', ',', 'zstart', ',', 'zend', ',', "'DE-BFL'", ')', 'D', ',', 'Diz', ',', 'Dzi', ',', 'Du', '=', '[', ']', ',', '[', ']', ',', '[', ']', ',', '[', ']', '# list of NRM vectors, and separated by zi and iz', 'for', 'rec', 'in', 'zijdblock', ':', 'D', '.', 'append', '(', '(', 'rec', '[', '1', ']', ',', 'rec', '[', '2', ']', ',', 'rec', '[', '3', ']', ')', ')', 'Du', '.', 'append', '(', '(', 'rec', '[', '1', ']', ',', 'rec', '[', '2', ']', ')', ')', 'if', 'rec', '[', '4', ']', '==', '1', ':', 'Dzi', '.', 'append', '(', '(', 'rec', '[', '1', ']', ',', 'rec', '[', '2', ']', ')', ')', '# if this is ZI step', 'else', ':', 'Diz', '.', 'append', '(', '(', 'rec', '[', '1', ']', ',', 'rec', '[', '2', ']', ')', ')', '# if this is IZ step', '# calculate the vector difference sum', 'vds', '=', 'dovds', '(', 'D', ')', 'b_zi', ',', 'b_iz', '=', '[', ']', ',', '[', ']', '# collect data included in ZigZag calculation', 'if', 'end', '+', '1', '>=', 'len', '(', 'first_Z', ')', ':', 'stop', '=', 'end', '-', '1', 'else', ':', 'stop', '=', 'end', 'for', 'k', 'in', 'range', '(', 'start', ',', 'end', '+', '1', ')', ':', 'for', 'l', 'in', 'range', '(', 'len', '(', 'first_I', ')', ')', ':', 'irec', '=', 'first_I', '[', 'l', ']', 'if', 'irec', '[', '0', ']', '==', 'first_Z', '[', 'k', ']', '[', '0', ']', ':', 'xi', '.', 'append', '(', 'irec', '[', '3', ']', ')', 'yi', '.', 'append', '(', 'first_Z', '[', 'k', ']', '[', '3', ']', ')', 'pars', ',', 'errcode', '=', 'int_pars', '(', 'xi', ',', 'yi', ',', 'vds', ')', 'if', 'errcode', '==', '1', ':', 'return', 'pars', ',', 'errcode', '# for k in range(start,end+1):', 'for', 'k', 'in', 'range', '(', 'len', '(', 'first_Z', ')', '-', '1', ')', ':', 'for', 'l', 'in', 'range', '(', 'k', ')', ':', '# only go down to 10% of NRM.....', 'if', 'old_div', '(', 'first_Z', '[', 'k', ']', '[', '3', ']', ',', 'vds', ')', '>', '0.1', ':', 'irec', '=', 'first_I', '[', 'l', ']', 'if', 'irec', '[', '4', ']', '==', '1', 'and', 'first_I', '[', 'l', '+', '1', ']', '[', '4', ']', '==', '0', ':', '# a ZI step', 'xzi', '=', 'irec', '[', '3', ']', 'yzi', '=', 'first_Z', '[', 'k', ']', '[', '3', ']', 'xiz', '=', 'first_I', '[', 'l', '+', '1', ']', '[', '3', ']', 'yiz', '=', 'first_Z', '[', 'k', '+', '1', ']', '[', '3', ']', 'slope', '=', 'np', '.', 'arctan2', '(', '(', 'yzi', '-', 'yiz', ')', ',', '(', 'xiz', '-', 'xzi', ')', ')', 'r', '=', 'np', '.', 'sqrt', '(', '(', 'yzi', '-', 'yiz', ')', '**', '2', '+', '(', 'xiz', '-', 'xzi', ')', '**', '2', ')', 'if', 'r', '>', '.1', '*', 'vds', ':', 'b_zi', '.', 'append', '(', 'slope', ')', '# suppress noise', 'elif', 'irec', '[', '4', ']', '==', '0', 'and', 'first_I', '[', 'l', '+', '1', ']', '[', '4', ']', '==', '1', ':', '# an IZ step', 'xiz', '=', 'irec', '[', '3', ']', 'yiz', '=', 'first_Z', '[', 'k', ']', '[', '3', ']', 'xzi', '=', 'first_I', '[', 'l', '+', '1', ']', '[', '3', ']', 'yzi', '=', 'first_Z', '[', 'k', '+', '1', ']', '[', '3', ']', 'slope', '=', 'np', '.', 'arctan2', '(', '(', 'yiz', '-', 'yzi', ')', ',', '(', 'xzi', '-', 'xiz', ')', ')', 'r', '=', 'np', '.', 'sqrt', '(', '(', 'yiz', '-', 'yzi', ')', '**', '2', '+', '(', 'xzi', '-', 'xiz', ')', '**', '2', ')', 'if', 'r', '>', '.1', '*', 'vds', ':', 'b_iz', '.', 'append', '(', 'slope', ')', '# suppress noise', '#', 'ZigZag', ',', 'Frat', ',', 'Trat', '=', '-', '1', ',', '0', ',', '0', 'if', 'len', '(', 'Diz', ')', '>', '2', 'and', 'len', '(', 'Dzi', ')', '>', '2', ':', 'ZigZag', '=', '0', 'dizp', '=', 'fisher_mean', '(', 'Diz', ')', '# get Fisher stats on IZ steps', 'dzip', '=', 'fisher_mean', '(', 'Dzi', ')', '# get Fisher stats on ZI steps', 'dup', '=', 'fisher_mean', '(', 'Du', ')', '# get Fisher stats on all steps', '#', '# if directions are TOO well grouped, can get false positive for ftest, so', '# angles must be > 3 degrees apart.', '#', 'if', 'angle', '(', '[', 'dizp', '[', "'dec'", ']', ',', 'dizp', '[', "'inc'", ']', ']', ',', '[', 'dzip', '[', "'dec'", ']', ',', 'dzip', '[', "'inc'", ']', ']', ')', '>', '3.', ':', 'F', '=', '(', 'dup', '[', "'n'", ']', '-', '2.', ')', '*', '(', 'dzip', '[', "'r'", ']', '+', 'dizp', '[', "'r'", ']', '-', 'dup', '[', "'r'", ']', ')', '/', '(', 'dup', '[', "'n'", ']', '-', 'dzip', '[', "'r'", ']', '-', 'dizp', '[', "'r'", ']', ')', '# Watson test for common mean', 'nf', '=', '2.', '*', '(', 'dup', '[', "'n'", ']', '-', '2.', ')', '# number of degees of freedom', 'ftest', '=', 'fcalc', '(', '2', ',', 'nf', ')', 'Frat', '=', 'old_div', '(', 'F', ',', 'ftest', ')', 'if', 'Frat', '>', '1.', ':', 'ZigZag', '=', 'Frat', '# fails zigzag on directions', 'methcode', '=', '"SM-FTEST"', '# now do slopes', 'if', 'len', '(', 'b_zi', ')', '>', '2', 'and', 'len', '(', 'b_iz', ')', '>', '2', ':', 'bzi_m', ',', 'bzi_sig', '=', 'gausspars', '(', 'b_zi', ')', '# mean, std dev', 'biz_m', ',', 'biz_sig', '=', 'gausspars', '(', 'b_iz', ')', 'n_zi', '=', 'float', '(', 'len', '(', 'b_zi', ')', ')', 'n_iz', '=', 'float', '(', 'len', '(', 'b_iz', ')', ')', 'b_diff', '=', 'abs', '(', 'bzi_m', '-', 'biz_m', ')', '# difference in means', '#', '# avoid false positives - set 3 degree slope difference here too', 'if', 'b_diff', '>', '3', '*', 'np', '.', 'pi', '/', '180.', ':', 'nf', '=', 'n_zi', '+', 'n_iz', '-', '2.', '# degrees of freedom', 'svar', '=', 'old_div', '(', '(', '(', 'n_zi', '-', '1.', ')', '*', 'bzi_sig', '**', '2', '+', '(', 'n_iz', '-', '1.', ')', '*', 'biz_sig', '**', '2', ')', ',', 'nf', ')', 'T', '=', 'old_div', '(', '(', 'b_diff', ')', ',', 'np', '.', 'sqrt', '(', 'svar', '*', '(', 'old_div', '(', '1.0', ',', 'n_zi', ')', '+', 'old_div', '(', '1.0', ',', 'n_iz', ')', ')', ')', ')', "# student's t", 'ttest', '=', 'tcalc', '(', 'nf', ',', '.05', ')', '# t-test at 95% conf.', 'Trat', '=', 'old_div', '(', 'T', ',', 'ttest', ')', 'if', 'Trat', '>', '1', 'and', 'Trat', '>', 'Frat', ':', 'ZigZag', '=', 'Trat', '# fails zigzag on directions', 'methcode', '=', '"SM-TTEST"', 'pars', '[', 'z_key', ']', '=', 'ZigZag', 'pars', '[', 'meth_key', ']', '=', 'methcode', '# do drats', 'if', 'len', '(', 'ptrm_check', ')', '!=', '0', ':', 'diffcum', ',', 'drat_max', '=', '0', ',', '0', 'for', 'prec', 'in', 'ptrm_check', ':', 'step', '=', 'prec', '[', '0', ']', 'endbak', '=', 'end', 'zend', '=', 'end', 'while', 'zend', '>', 'len', '(', 'zijdblock', ')', '-', '1', ':', 'zend', '=', 'zend', '-', '2', "# don't count alteration that happens after this step", 'if', 'step', '<', 'zijdblock', '[', 'zend', ']', '[', '0', ']', ':', 'Nptrm', '+=', '1', 'for', 'irec', 'in', 'first_I', ':', 'if', 'irec', '[', '0', ']', '==', 'step', ':', 'break', 'diffcum', '+=', 'prec', '[', '3', ']', '-', 'irec', '[', '3', ']', 'if', 'abs', '(', 'prec', '[', '3', ']', '-', 'irec', '[', '3', ']', ')', '>', 'drat_max', ':', 'drat_max', '=', 'abs', '(', 'prec', '[', '3', ']', '-', 'irec', '[', '3', ']', ')', 'pars', '[', 'drats_key', ']', '=', '(', '100', '*', 'abs', '(', 'diffcum', ')', '/', 'first_I', '[', 'zend', ']', '[', '3', ']', ')', 'pars', '[', 'drat_key', ']', '=', '(', '100', '*', 'abs', '(', 'drat_max', ')', '/', 'first_I', '[', 'zend', ']', '[', '3', ']', ')', 'elif', 'len', '(', 'zptrm_check', ')', '!=', '0', ':', 'diffcum', '=', '0', 'for', 'prec', 'in', 'zptrm_check', ':', 'step', '=', 'prec', '[', '0', ']', 'endbak', '=', 'end', 'zend', '=', 'end', 'while', 'zend', '>', 'len', '(', 'zijdblock', ')', '-', '1', ':', 'zend', '=', 'zend', '-', '1', 'if', 'step', '<', 'zijdblock', '[', 'zend', ']', '[', '0', ']', ':', 'Nptrm', '+=', '1', 'for', 'irec', 'in', 'first_I', ':', 'if', 'irec', '[', '0', ']', '==', 'step', ':', 'break', 'diffcum', '+=', 'prec', '[', '3', ']', '-', 'irec', '[', '3', ']', 'pars', '[', 'drats_key', ']', '=', '(', '100', '*', 'abs', '(', 'diffcum', ')', '/', 'first_I', '[', 'zend', ']', '[', '3', ']', ')', 'else', ':', 'pars', '[', 'drats_key', ']', '=', '-', '1', 'pars', '[', 'drat_key', ']', '=', '-', '1', '# and the pTRM tails', 'if', 'len', '(', 'ptrm_tail', ')', '!=', '0', ':', 'for', 'trec', 'in', 'ptrm_tail', ':', 'step', '=', 'trec', '[', '0', ']', 'for', 'irec', 'in', 'first_I', ':', 'if', 'irec', '[', '0', ']', '==', 'step', ':', 'break', 'if', 'abs', '(', 'trec', '[', '3', ']', ')', '>', 'dmax', ':', 'dmax', '=', 'abs', '(', 'trec', '[', '3', ']', ')', 'pars', '[', 'md_key', ']', '=', '(', '100', '*', 'dmax', '/', 'vds', ')', 'else', ':', 'pars', '[', 'md_key', ']', '=', '-', '1', 'pars', '[', 'min_key', ']', '=', 'bstep', 'pars', '[', 'max_key', ']', '=', 'estep', 'pars', '[', 'dec_key', ']', '=', 'PCA', '[', '"specimen_dec"', ']', 'pars', '[', 'inc_key', ']', '=', 'PCA', '[', '"specimen_inc"', ']', 'pars', '[', 'mad_key', ']', '=', 'PCA', '[', '"specimen_mad"', ']', 'pars', '[', 'dang_key', ']', '=', 'PCA', '[', '"specimen_dang"', ']', 'pars', '[', 'ptrm_key', ']', '=', 'Nptrm', '# and the ThetaChecks', 'if', 'ThetaChecks', '!=', '""', ':', 't', '=', '0', 'for', 'theta', 'in', 'ThetaChecks', ':', 'if', 'theta', '[', '0', ']', '>=', 'bstep', 'and', 'theta', '[', '0', ']', '<=', 'estep', 'and', 'theta', '[', '1', ']', '>', 't', ':', 't', '=', 'theta', '[', '1', ']', 'pars', '[', 'theta_key', ']', '=', 't', 'else', ':', 'pars', '[', 'theta_key', ']', '=', '-', '1', '# and the DeltaChecks', 'if', 'DeltaChecks', '!=', '""', ':', 'd', '=', '0', 'for', 'delta', 'in', 'DeltaChecks', ':', 'if', 'delta', '[', '0', ']', '>=', 'bstep', 'and', 'delta', '[', '0', ']', '<=', 'estep', 'and', 'delta', '[', '1', ']', '>', 'd', ':', 'd', '=', 'delta', '[', '1', ']', 'pars', '[', 'delta_key', ']', 'else', ':', 'pars', '[', 'delta_key', ']', '=', '-', '1', 'pars', '[', 'gamma_key', ']', '=', '-', '1', 'if', 'GammaChecks', '!=', '""', ':', 'for', 'gamma', 'in', 'GammaChecks', ':', 'if', 'gamma', '[', '0', ']', '<=', 'estep', ':', 'pars', '[', "'specimen_gamma'", ']', '=', 'gamma', '[', '1', ']', '# --------------------------------------------------------------', '# From here added By Ron Shaar 11-Dec 2012', '# New parameters defined in Shaar and Tauxe (2012):', '# FRAC (specimen_frac) - ranges from 0. to 1.', '# SCAT (specimen_scat) - takes 1/0', '# gap_max (specimen_gmax) - ranges from 0. to 1.', '# --------------------------------------------------------------', '# --------------------------------------------------------------', '# FRAC is similar to Fvds, but the numerator is the vds fraction:', '# FRAC= [ vds (start,end)] / total vds ]', '# gap_max= max [ (vector difference) / vds (start,end)]', '# --------------------------------------------------------------', '# collect all zijderveld data to arrays and calculate VDS', 'z_temperatures', '=', '[', 'row', '[', '0', ']', 'for', 'row', 'in', 'zijdblock', ']', 'zdata', '=', '[', ']', '# array of zero-fields measurements in Cartezian coordinates', '# array of vector differences (for vds calculation)', 'vector_diffs', '=', '[', ']', 'NRM', '=', 'zijdblock', '[', '0', ']', '[', '3', ']', '# NRM', 'for', 'k', 'in', 'range', '(', 'len', '(', 'zijdblock', ')', ')', ':', 'DIR', '=', '[', 'zijdblock', '[', 'k', ']', '[', '1', ']', ',', 'zijdblock', '[', 'k', ']', '[', '2', ']', ',', 'old_div', '(', 'zijdblock', '[', 'k', ']', '[', '3', ']', ',', 'NRM', ')', ']', 'cart', '=', 'dir2cart', '(', 'DIR', ')', 'zdata', '.', 'append', '(', 'np', '.', 'array', '(', '[', 'cart', '[', '0', ']', ',', 'cart', '[', '1', ']', ',', 'cart', '[', '2', ']', ']', ')', ')', 'if', 'k', '>', '0', ':', 'vector_diffs', '.', 'append', '(', 'np', '.', 'sqrt', '(', 'sum', '(', '(', 'np', '.', 'array', '(', 'zdata', '[', '-', '2', ']', ')', '-', 'np', '.', 'array', '(', 'zdata', '[', '-', '1', ']', ')', ')', '**', '2', ')', ')', ')', '# last vector difference: from the last point to the origin.', 'vector_diffs', '.', 'append', '(', 'np', '.', 'sqrt', '(', 'sum', '(', 'np', '.', 'array', '(', 'zdata', '[', '-', '1', ']', ')', '**', '2', ')', ')', ')', 'vds', '=', 'sum', '(', 'vector_diffs', ')', '# vds calculation', 'zdata', '=', 'np', '.', 'array', '(', 'zdata', ')', 'vector_diffs', '=', 'np', '.', 'array', '(', 'vector_diffs', ')', '# calculate the vds within the chosen segment', 'vector_diffs_segment', '=', 'vector_diffs', '[', 'zstart', ':', 'zend', ']', '# FRAC calculation', 'FRAC', '=', 'old_div', '(', 'sum', '(', 'vector_diffs_segment', ')', ',', 'vds', ')', 'pars', '[', 'frac_key', ']', '=', 'FRAC', '# gap_max calculation', 'max_FRAC_gap', '=', 'max', '(', 'old_div', '(', 'vector_diffs_segment', ',', 'sum', '(', 'vector_diffs_segment', ')', ')', ')', 'pars', '[', 'gmax_key', ']', '=', 'max_FRAC_gap', '# ---------------------------------------------------------------------', '# Calculate the "scat box"', '# all data-points, pTRM checks, and tail-checks, should be inside a "scat box"', '# ---------------------------------------------------------------------', '# intialization', '# fail scat due to arai plot data points', 'pars', '[', '"fail_arai_beta_box_scatter"', ']', '=', 'False', 'pars', '[', '"fail_ptrm_beta_box_scatter"', ']', '=', 'False', '# fail scat due to pTRM checks', 'pars', '[', '"fail_tail_beta_box_scatter"', ']', '=', 'False', '# fail scat due to tail checks', 'pars', '[', 'scat_key', ']', '=', '"t"', '# Pass by default', '# --------------------------------------------------------------', '# collect all Arai plot data points in arrays', 'x_Arai', ',', 'y_Arai', ',', 't_Arai', ',', 'steps_Arai', '=', '[', ']', ',', '[', ']', ',', '[', ']', ',', '[', ']', 'NRMs', '=', 'araiblock', '[', '0', ']', 'PTRMs', '=', 'araiblock', '[', '1', ']', 'ptrm_checks', '=', 'araiblock', '[', '2', ']', 'ptrm_tail', '=', 'araiblock', '[', '3', ']', 'PTRMs_temperatures', '=', '[', 'row', '[', '0', ']', 'for', 'row', 'in', 'PTRMs', ']', 'NRMs_temperatures', '=', '[', 'row', '[', '0', ']', 'for', 'row', 'in', 'NRMs', ']', 'NRM', '=', 'NRMs', '[', '0', ']', '[', '3', ']', 'for', 'k', 'in', 'range', '(', 'len', '(', 'NRMs', ')', ')', ':', 'index_pTRMs', '=', 'PTRMs_temperatures', '.', 'index', '(', 'NRMs', '[', 'k', ']', '[', '0', ']', ')', 'x_Arai', '.', 'append', '(', 'old_div', '(', 'PTRMs', '[', 'index_pTRMs', ']', '[', '3', ']', ',', 'NRM', ')', ')', 'y_Arai', '.', 'append', '(', 'old_div', '(', 'NRMs', '[', 'k', ']', '[', '3', ']', ',', 'NRM', ')', ')', 't_Arai', '.', 'append', '(', 'NRMs', '[', 'k', ']', '[', '0', ']', ')', 'if', 'NRMs', '[', 'k', ']', '[', '4', ']', '==', '1', ':', 'steps_Arai', '.', 'append', '(', "'ZI'", ')', 'else', ':', 'steps_Arai', '.', 'append', '(', "'IZ'", ')', 'x_Arai', '=', 'np', '.', 'array', '(', 'x_Arai', ')', 'y_Arai', '=', 'np', '.', 'array', '(', 'y_Arai', ')', '# --------------------------------------------------------------', '# collect all pTRM check to arrays', 'x_ptrm_check', ',', 'y_ptrm_check', ',', 'ptrm_checks_temperatures', ',', '=', '[', ']', ',', '[', ']', ',', '[', ']', 'x_ptrm_check_starting_point', ',', 'y_ptrm_check_starting_point', ',', 'ptrm_checks_starting_temperatures', '=', '[', ']', ',', '[', ']', ',', '[', ']', 'for', 'k', 'in', 'range', '(', 'len', '(', 'ptrm_checks', ')', ')', ':', 'if', 'ptrm_checks', '[', 'k', ']', '[', '0', ']', 'in', 'NRMs_temperatures', ':', '# find the starting point of the pTRM check:', 'for', 'i', 'in', 'range', '(', 'len', '(', 'datablock', ')', ')', ':', 'rec', '=', 'datablock', '[', 'i', ']', 'if', '"LT-PTRM-I"', 'in', 'rec', '[', 'meth_key', ']', 'and', 'float', '(', 'rec', '[', 'temp_key', ']', ')', '==', 'ptrm_checks', '[', 'k', ']', '[', '0', ']', ':', 'starting_temperature', '=', '(', 'float', '(', 'datablock', '[', 'i', '-', '1', ']', '[', 'temp_key', ']', ')', ')', 'try', ':', 'index', '=', 't_Arai', '.', 'index', '(', 'starting_temperature', ')', 'x_ptrm_check_starting_point', '.', 'append', '(', 'x_Arai', '[', 'index', ']', ')', 'y_ptrm_check_starting_point', '.', 'append', '(', 'y_Arai', '[', 'index', ']', ')', 'ptrm_checks_starting_temperatures', '.', 'append', '(', 'starting_temperature', ')', 'index_zerofield', '=', 'zerofield_temperatures', '.', 'index', '(', 'ptrm_checks', '[', 'k', ']', '[', '0', ']', ')', 'x_ptrm_check', '.', 'append', '(', 'old_div', '(', 'ptrm_checks', '[', 'k', ']', '[', '3', ']', ',', 'NRM', ')', ')', 'y_ptrm_check', '.', 'append', '(', 'old_div', '(', 'zerofields', '[', 'index_zerofield', ']', '[', '3', ']', ',', 'NRM', ')', ')', 'ptrm_checks_temperatures', '.', 'append', '(', 'ptrm_checks', '[', 'k', ']', '[', '0', ']', ')', 'break', 'except', ':', 'pass', 'x_ptrm_check_starting_point', '=', 'np', '.', 'array', '(', 'x_ptrm_check_starting_point', ')', 'y_ptrm_check_starting_point', '=', 'np', '.', 'array', '(', 'y_ptrm_check_starting_point', ')', 'ptrm_checks_starting_temperatures', '=', 'np', '.', 'array', '(', 'ptrm_checks_starting_temperatures', ')', 'x_ptrm_check', '=', 'np', '.', 'array', '(', 'x_ptrm_check', ')', 'y_ptrm_check', '=', 'np', '.', 'array', '(', 'y_ptrm_check', ')', 'ptrm_checks_temperatures', '=', 'np', '.', 'array', '(', 'ptrm_checks_temperatures', ')', '# --------------------------------------------------------------', '# collect tail checks to arrays', 'x_tail_check', ',', 'y_tail_check', ',', 'tail_check_temperatures', '=', '[', ']', ',', '[', ']', ',', '[', ']', 'x_tail_check_starting_point', ',', 'y_tail_check_starting_point', ',', 'tail_checks_starting_temperatures', '=', '[', ']', ',', '[', ']', ',', '[', ']', 'for', 'k', 'in', 'range', '(', 'len', '(', 'ptrm_tail', ')', ')', ':', 'if', 'ptrm_tail', '[', 'k', ']', '[', '0', ']', 'in', 'NRMs_temperatures', ':', '# find the starting point of the pTRM check:', 'for', 'i', 'in', 'range', '(', 'len', '(', 'datablock', ')', ')', ':', 'rec', '=', 'datablock', '[', 'i', ']', 'if', '"LT-PTRM-MD"', 'in', 'rec', '[', 'meth_key', ']', 'and', 'float', '(', 'rec', '[', 'temp_key', ']', ')', '==', 'ptrm_tail', '[', 'k', ']', '[', '0', ']', ':', 'starting_temperature', '=', '(', 'float', '(', 'datablock', '[', 'i', '-', '1', ']', '[', 'temp_key', ']', ')', ')', 'try', ':', 'index', '=', 't_Arai', '.', 'index', '(', 'starting_temperature', ')', 'x_tail_check_starting_point', '.', 'append', '(', 'x_Arai', '[', 'index', ']', ')', 'y_tail_check_starting_point', '.', 'append', '(', 'y_Arai', '[', 'index', ']', ')', 'tail_checks_starting_temperatures', '.', 'append', '(', 'starting_temperature', ')', 'index_infield', '=', 'infield_temperatures', '.', 'index', '(', 'ptrm_tail', '[', 'k', ']', '[', '0', ']', ')', 'x_tail_check', '.', 'append', '(', 'old_div', '(', 'infields', '[', 'index_infield', ']', '[', '3', ']', ',', 'NRM', ')', ')', 'y_tail_check', '.', 'append', '(', 'old_div', '(', 'ptrm_tail', '[', 'k', ']', '[', '3', ']', ',', 'NRM', ')', '+', 'old_div', '(', 'zerofields', '[', 'index_infield', ']', '[', '3', ']', ',', 'NRM', ')', ')', 'tail_check_temperatures', '.', 'append', '(', 'ptrm_tail', '[', 'k', ']', '[', '0', ']', ')', 'break', 'except', ':', 'pass', 'x_tail_check', '=', 'np', '.', 'array', '(', 'x_tail_check', ')', 'y_tail_check', '=', 'np', '.', 'array', '(', 'y_tail_check', ')', 'tail_check_temperatures', '=', 'np', '.', 'array', '(', 'tail_check_temperatures', ')', 'x_tail_check_starting_point', '=', 'np', '.', 'array', '(', 'x_tail_check_starting_point', ')', 'y_tail_check_starting_point', '=', 'np', '.', 'array', '(', 'y_tail_check_starting_point', ')', 'tail_checks_starting_temperatures', '=', 'np', '.', 'array', '(', 'tail_checks_starting_temperatures', ')', '# --------------------------------------------------------------', '# collect the chosen segment in the Arai plot to arrays', 'x_Arai_segment', '=', 'x_Arai', '[', 'start', ':', 'end', '+', '1', ']', '# chosen segent in the Arai plot', 'y_Arai_segment', '=', 'y_Arai', '[', 'start', ':', 'end', '+', '1', ']', '# chosen segent in the Arai plot', '# --------------------------------------------------------------', '# collect pTRM checks in segment to arrays', '# notice, this is different than the conventional DRATS.', '# for scat calculation we take only the pTRM checks which were carried out', '# before reaching the highest temperature in the chosen segment', 'x_ptrm_check_for_SCAT', ',', 'y_ptrm_check_for_SCAT', '=', '[', ']', ',', '[', ']', 'for', 'k', 'in', 'range', '(', 'len', '(', 'ptrm_checks_temperatures', ')', ')', ':', 'if', 'ptrm_checks_temperatures', '[', 'k', ']', '>=', 'pars', '[', 'min_key', ']', 'and', 'ptrm_checks_starting_temperatures', '<=', 'pars', '[', 'max_key', ']', ':', 'x_ptrm_check_for_SCAT', '.', 'append', '(', 'x_ptrm_check', '[', 'k', ']', ')', 'y_ptrm_check_for_SCAT', '.', 'append', '(', 'y_ptrm_check', '[', 'k', ']', ')', 'x_ptrm_check_for_SCAT', '=', 'np', '.', 'array', '(', 'x_ptrm_check_for_SCAT', ')', 'y_ptrm_check_for_SCAT', '=', 'np', '.', 'array', '(', 'y_ptrm_check_for_SCAT', ')', '# --------------------------------------------------------------', '# collect Tail checks in segment to arrays', '# for scat calculation we take only the tail checks which were carried out', '# before reaching the highest temperature in the chosen segment', 'x_tail_check_for_SCAT', ',', 'y_tail_check_for_SCAT', '=', '[', ']', ',', '[', ']', 'for', 'k', 'in', 'range', '(', 'len', '(', 'tail_check_temperatures', ')', ')', ':', 'if', 'tail_check_temperatures', '[', 'k', ']', '>=', 'pars', '[', 'min_key', ']', 'and', 'tail_checks_starting_temperatures', '[', 'k', ']', '<=', 'pars', '[', 'max_key', ']', ':', 'x_tail_check_for_SCAT', '.', 'append', '(', 'x_tail_check', '[', 'k', ']', ')', 'y_tail_check_for_SCAT', '.', 'append', '(', 'y_tail_check', '[', 'k', ']', ')', 'x_tail_check_for_SCAT', '=', 'np', '.', 'array', '(', 'x_tail_check_for_SCAT', ')', 'y_tail_check_for_SCAT', '=', 'np', '.', 'array', '(', 'y_tail_check_for_SCAT', ')', '# --------------------------------------------------------------', '# calculate the lines that define the scat box:', '# if threshold value for beta is not defined, then scat cannot be calculated (pass)', '# in this case, scat pass', 'if', 'beta_key', 'in', 'list', '(', 'accept', '.', 'keys', '(', ')', ')', 'and', 'accept', '[', 'beta_key', ']', '!=', '""', ':', 'b_beta_threshold', '=', 'float', '(', 'accept', '[', 'beta_key', ']', ')', 'b', '=', 'pars', '[', 'b_key', ']', '# best fit line', 'cm_x', '=', 'np', '.', 'mean', '(', 'np', '.', 'array', '(', 'x_Arai_segment', ')', ')', '# x center of mass', 'cm_y', '=', 'np', '.', 'mean', '(', 'np', '.', 'array', '(', 'y_Arai_segment', ')', ')', '# y center of mass', 'a', '=', 'cm_y', '-', 'b', '*', 'cm_x', '# lines with slope = slope +/- 2*(specimen_b_beta)', 'two_sigma_beta_threshold', '=', '2', '*', 'b_beta_threshold', 'two_sigma_slope_threshold', '=', 'abs', '(', 'two_sigma_beta_threshold', '*', 'b', ')', '# a line with a shallower slope (b + 2*beta*b) passing through the center of mass', '# y=a1+b1x', 'b1', '=', 'b', '+', 'two_sigma_slope_threshold', 'a1', '=', 'cm_y', '-', 'b1', '*', 'cm_x', '# bounding line with steeper slope (b - 2*beta*b) passing through the center of mass', '# y=a2+b2x', 'b2', '=', 'b', '-', 'two_sigma_slope_threshold', 'a2', '=', 'cm_y', '-', 'b2', '*', 'cm_x', "# lower bounding line of the 'beta box'", '# y=intercept1+slop1x', 'slop1', '=', 'old_div', '(', 'a1', ',', '(', '(', 'old_div', '(', 'a2', ',', 'b2', ')', ')', ')', ')', 'intercept1', '=', 'a1', "# higher bounding line of the 'beta box'", '# y=intercept2+slop2x', 'slop2', '=', 'old_div', '(', 'a2', ',', '(', '(', 'old_div', '(', 'a1', ',', 'b1', ')', ')', ')', ')', 'intercept2', '=', 'a2', 'pars', '[', "'specimen_scat_bounding_line_high'", ']', '=', '[', 'intercept2', ',', 'slop2', ']', 'pars', '[', "'specimen_scat_bounding_line_low'", ']', '=', '[', 'intercept1', ',', 'slop1', ']', '# --------------------------------------------------------------', "# check if the Arai data points are in the 'box'", '# the two bounding lines', 'ymin', '=', 'intercept1', '+', 'x_Arai_segment', '*', 'slop1', 'ymax', '=', 'intercept2', '+', 'x_Arai_segment', '*', 'slop2', '# arrays of "True" or "False"', 'check_1', '=', 'y_Arai_segment', '>', 'ymax', 'check_2', '=', 'y_Arai_segment', '<', 'ymin', '# check if at least one "True"', 'if', '(', 'sum', '(', 'check_1', ')', '+', 'sum', '(', 'check_2', ')', ')', '>', '0', ':', 'pars', '[', '"fail_arai_beta_box_scatter"', ']', '=', 'True', '# --------------------------------------------------------------', "# check if the pTRM checks data points are in the 'box'", 'if', 'len', '(', 'x_ptrm_check_for_SCAT', ')', '>', '0', ':', '# the two bounding lines', 'ymin', '=', 'intercept1', '+', 'x_ptrm_check_for_SCAT', '*', 'slop1', 'ymax', '=', 'intercept2', '+', 'x_ptrm_check_for_SCAT', '*', 'slop2', '# arrays of "True" or "False"', 'check_1', '=', 'y_ptrm_check_for_SCAT', '>', 'ymax', 'check_2', '=', 'y_ptrm_check_for_SCAT', '<', 'ymin', '# check if at least one "True"', 'if', '(', 'sum', '(', 'check_1', ')', '+', 'sum', '(', 'check_2', ')', ')', '>', '0', ':', 'pars', '[', '"fail_ptrm_beta_box_scatter"', ']', '=', 'True', '# --------------------------------------------------------------', "# check if the tail checks data points are in the 'box'", 'if', 'len', '(', 'x_tail_check_for_SCAT', ')', '>', '0', ':', '# the two bounding lines', 'ymin', '=', 'intercept1', '+', 'x_tail_check_for_SCAT', '*', 'slop1', 'ymax', '=', 'intercept2', '+', 'x_tail_check_for_SCAT', '*', 'slop2', '# arrays of "True" or "False"', 'check_1', '=', 'y_tail_check_for_SCAT', '>', 'ymax', 'check_2', '=', 'y_tail_check_for_SCAT', '<', 'ymin', '# check if at least one "True"', 'if', '(', 'sum', '(', 'check_1', ')', '+', 'sum', '(', 'check_2', ')', ')', '>', '0', ':', 'pars', '[', '"fail_tail_beta_box_scatter"', ']', '=', 'True', '# --------------------------------------------------------------', '# check if specimen_scat is PASS or FAIL:', 'if', 'pars', '[', '"fail_tail_beta_box_scatter"', ']', 'or', 'pars', '[', '"fail_ptrm_beta_box_scatter"', ']', 'or', 'pars', '[', '"fail_arai_beta_box_scatter"', ']', ':', 'pars', '[', 'scat_key', ']', '=', "'f'", 'else', ':', 'pars', '[', 'scat_key', ']', '=', "'t'", 'return', 'pars', ',', '0'] | calculate the paleointensity magic parameters make some definitions | ['calculate', 'the', 'paleointensity', 'magic', 'parameters', 'make', 'some', 'definitions'] | train | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmag.py#L2827-L3374 |
10 | lowandrew/OLCTools | spadespipeline/vtyper.py | Vtyper.epcrparse | def epcrparse(self):
"""
Parse the ePCR text file outputs
"""
logging.info('Parsing ePCR results')
for sample in self.metadata:
if sample.general.bestassemblyfile != 'NA':
if 'stx' in sample.general.datastore:
# Initialise count - this allows for the population of vtyperresults with unique values
uniquecount = 0
# This populates vtyperresults with the verotoxin subtypes
toxinlist = []
if os.path.isfile(sample[self.analysistype].resultsfile):
epcrresults = open(sample[self.analysistype].resultsfile, 'r')
for result in epcrresults:
# Only the lines without a # contain results
if "#" not in result:
uniquecount += 1
# Split on \t
data = result.split('\t')
# The subtyping primer pair is the first entry on lines with results
vttype = data[0].split('_')[0]
# Push the name of the primer pair - stripped of anything after a _ to the dictionary
if vttype not in toxinlist:
toxinlist.append(vttype)
# Create a string of the entries in list1 joined with ";"
toxinstring = ";".join(sorted(toxinlist))
# Save the string to the metadata
sample[self.analysistype].toxinprofile = toxinstring
else:
setattr(sample, self.analysistype, GenObject())
sample[self.analysistype].toxinprofile = 'NA'
else:
setattr(sample, self.analysistype, GenObject())
sample[self.analysistype].toxinprofile = 'NA' | python | def epcrparse(self):
"""
Parse the ePCR text file outputs
"""
logging.info('Parsing ePCR results')
for sample in self.metadata:
if sample.general.bestassemblyfile != 'NA':
if 'stx' in sample.general.datastore:
# Initialise count - this allows for the population of vtyperresults with unique values
uniquecount = 0
# This populates vtyperresults with the verotoxin subtypes
toxinlist = []
if os.path.isfile(sample[self.analysistype].resultsfile):
epcrresults = open(sample[self.analysistype].resultsfile, 'r')
for result in epcrresults:
# Only the lines without a # contain results
if "#" not in result:
uniquecount += 1
# Split on \t
data = result.split('\t')
# The subtyping primer pair is the first entry on lines with results
vttype = data[0].split('_')[0]
# Push the name of the primer pair - stripped of anything after a _ to the dictionary
if vttype not in toxinlist:
toxinlist.append(vttype)
# Create a string of the entries in list1 joined with ";"
toxinstring = ";".join(sorted(toxinlist))
# Save the string to the metadata
sample[self.analysistype].toxinprofile = toxinstring
else:
setattr(sample, self.analysistype, GenObject())
sample[self.analysistype].toxinprofile = 'NA'
else:
setattr(sample, self.analysistype, GenObject())
sample[self.analysistype].toxinprofile = 'NA' | ['def', 'epcrparse', '(', 'self', ')', ':', 'logging', '.', 'info', '(', "'Parsing ePCR results'", ')', 'for', 'sample', 'in', 'self', '.', 'metadata', ':', 'if', 'sample', '.', 'general', '.', 'bestassemblyfile', '!=', "'NA'", ':', 'if', "'stx'", 'in', 'sample', '.', 'general', '.', 'datastore', ':', '# Initialise count - this allows for the population of vtyperresults with unique values', 'uniquecount', '=', '0', '# This populates vtyperresults with the verotoxin subtypes', 'toxinlist', '=', '[', ']', 'if', 'os', '.', 'path', '.', 'isfile', '(', 'sample', '[', 'self', '.', 'analysistype', ']', '.', 'resultsfile', ')', ':', 'epcrresults', '=', 'open', '(', 'sample', '[', 'self', '.', 'analysistype', ']', '.', 'resultsfile', ',', "'r'", ')', 'for', 'result', 'in', 'epcrresults', ':', '# Only the lines without a # contain results', 'if', '"#"', 'not', 'in', 'result', ':', 'uniquecount', '+=', '1', '# Split on \\t', 'data', '=', 'result', '.', 'split', '(', "'\\t'", ')', '# The subtyping primer pair is the first entry on lines with results', 'vttype', '=', 'data', '[', '0', ']', '.', 'split', '(', "'_'", ')', '[', '0', ']', '# Push the name of the primer pair - stripped of anything after a _ to the dictionary', 'if', 'vttype', 'not', 'in', 'toxinlist', ':', 'toxinlist', '.', 'append', '(', 'vttype', ')', '# Create a string of the entries in list1 joined with ";"', 'toxinstring', '=', '";"', '.', 'join', '(', 'sorted', '(', 'toxinlist', ')', ')', '# Save the string to the metadata', 'sample', '[', 'self', '.', 'analysistype', ']', '.', 'toxinprofile', '=', 'toxinstring', 'else', ':', 'setattr', '(', 'sample', ',', 'self', '.', 'analysistype', ',', 'GenObject', '(', ')', ')', 'sample', '[', 'self', '.', 'analysistype', ']', '.', 'toxinprofile', '=', "'NA'", 'else', ':', 'setattr', '(', 'sample', ',', 'self', '.', 'analysistype', ',', 'GenObject', '(', ')', ')', 'sample', '[', 'self', '.', 'analysistype', ']', '.', 'toxinprofile', '=', "'NA'"] | Parse the ePCR text file outputs | ['Parse', 'the', 'ePCR', 'text', 'file', 'outputs'] | train | https://github.com/lowandrew/OLCTools/blob/88aa90ac85f84d0bbeb03e43c29b0a9d36e4ce2a/spadespipeline/vtyper.py#L96-L131 |
11 | atztogo/phonopy | phonopy/structure/spglib.py | get_pointgroup | def get_pointgroup(rotations):
"""Return point group in international table symbol and number.
The symbols are mapped to the numbers as follows:
1 "1 "
2 "-1 "
3 "2 "
4 "m "
5 "2/m "
6 "222 "
7 "mm2 "
8 "mmm "
9 "4 "
10 "-4 "
11 "4/m "
12 "422 "
13 "4mm "
14 "-42m "
15 "4/mmm"
16 "3 "
17 "-3 "
18 "32 "
19 "3m "
20 "-3m "
21 "6 "
22 "-6 "
23 "6/m "
24 "622 "
25 "6mm "
26 "-62m "
27 "6/mmm"
28 "23 "
29 "m-3 "
30 "432 "
31 "-43m "
32 "m-3m "
"""
_set_no_error()
# (symbol, pointgroup_number, transformation_matrix)
pointgroup = spg.pointgroup(np.array(rotations, dtype='intc', order='C'))
_set_error_message()
return pointgroup | python | def get_pointgroup(rotations):
"""Return point group in international table symbol and number.
The symbols are mapped to the numbers as follows:
1 "1 "
2 "-1 "
3 "2 "
4 "m "
5 "2/m "
6 "222 "
7 "mm2 "
8 "mmm "
9 "4 "
10 "-4 "
11 "4/m "
12 "422 "
13 "4mm "
14 "-42m "
15 "4/mmm"
16 "3 "
17 "-3 "
18 "32 "
19 "3m "
20 "-3m "
21 "6 "
22 "-6 "
23 "6/m "
24 "622 "
25 "6mm "
26 "-62m "
27 "6/mmm"
28 "23 "
29 "m-3 "
30 "432 "
31 "-43m "
32 "m-3m "
"""
_set_no_error()
# (symbol, pointgroup_number, transformation_matrix)
pointgroup = spg.pointgroup(np.array(rotations, dtype='intc', order='C'))
_set_error_message()
return pointgroup | ['def', 'get_pointgroup', '(', 'rotations', ')', ':', '_set_no_error', '(', ')', '# (symbol, pointgroup_number, transformation_matrix)', 'pointgroup', '=', 'spg', '.', 'pointgroup', '(', 'np', '.', 'array', '(', 'rotations', ',', 'dtype', '=', "'intc'", ',', 'order', '=', "'C'", ')', ')', '_set_error_message', '(', ')', 'return', 'pointgroup'] | Return point group in international table symbol and number.
The symbols are mapped to the numbers as follows:
1 "1 "
2 "-1 "
3 "2 "
4 "m "
5 "2/m "
6 "222 "
7 "mm2 "
8 "mmm "
9 "4 "
10 "-4 "
11 "4/m "
12 "422 "
13 "4mm "
14 "-42m "
15 "4/mmm"
16 "3 "
17 "-3 "
18 "32 "
19 "3m "
20 "-3m "
21 "6 "
22 "-6 "
23 "6/m "
24 "622 "
25 "6mm "
26 "-62m "
27 "6/mmm"
28 "23 "
29 "m-3 "
30 "432 "
31 "-43m "
32 "m-3m " | ['Return', 'point', 'group', 'in', 'international', 'table', 'symbol', 'and', 'number', '.'] | train | https://github.com/atztogo/phonopy/blob/869cc2ba9e7d495d5f4cf6942415ab3fc9e2a10f/phonopy/structure/spglib.py#L301-L343 |
12 | automl/HpBandSter | hpbandster/core/nameserver.py | NameServer.start | def start(self):
"""
starts a Pyro4 nameserver in a separate thread
Returns
-------
tuple (str, int):
the host name and the used port
"""
if self.host is None:
if self.nic_name is None:
self.host = 'localhost'
else:
self.host = nic_name_to_host(self.nic_name)
uri, self.pyro_ns, _ = Pyro4.naming.startNS(host=self.host, port=self.port)
self.host, self.port = self.pyro_ns.locationStr.split(':')
self.port = int(self.port)
thread = threading.Thread(target=self.pyro_ns.requestLoop, name='Pyro4 nameserver started by HpBandSter')
thread.start()
if not self.dir is None:
os.makedirs(self.dir, exist_ok=True)
self.conf_fn = os.path.join(self.dir, 'HPB_run_%s_pyro.pkl'%self.run_id)
with open(self.conf_fn, 'wb') as fh:
pickle.dump((self.host, self.port), fh)
return(self.host, self.port) | python | def start(self):
"""
starts a Pyro4 nameserver in a separate thread
Returns
-------
tuple (str, int):
the host name and the used port
"""
if self.host is None:
if self.nic_name is None:
self.host = 'localhost'
else:
self.host = nic_name_to_host(self.nic_name)
uri, self.pyro_ns, _ = Pyro4.naming.startNS(host=self.host, port=self.port)
self.host, self.port = self.pyro_ns.locationStr.split(':')
self.port = int(self.port)
thread = threading.Thread(target=self.pyro_ns.requestLoop, name='Pyro4 nameserver started by HpBandSter')
thread.start()
if not self.dir is None:
os.makedirs(self.dir, exist_ok=True)
self.conf_fn = os.path.join(self.dir, 'HPB_run_%s_pyro.pkl'%self.run_id)
with open(self.conf_fn, 'wb') as fh:
pickle.dump((self.host, self.port), fh)
return(self.host, self.port) | ['def', 'start', '(', 'self', ')', ':', 'if', 'self', '.', 'host', 'is', 'None', ':', 'if', 'self', '.', 'nic_name', 'is', 'None', ':', 'self', '.', 'host', '=', "'localhost'", 'else', ':', 'self', '.', 'host', '=', 'nic_name_to_host', '(', 'self', '.', 'nic_name', ')', 'uri', ',', 'self', '.', 'pyro_ns', ',', '_', '=', 'Pyro4', '.', 'naming', '.', 'startNS', '(', 'host', '=', 'self', '.', 'host', ',', 'port', '=', 'self', '.', 'port', ')', 'self', '.', 'host', ',', 'self', '.', 'port', '=', 'self', '.', 'pyro_ns', '.', 'locationStr', '.', 'split', '(', "':'", ')', 'self', '.', 'port', '=', 'int', '(', 'self', '.', 'port', ')', 'thread', '=', 'threading', '.', 'Thread', '(', 'target', '=', 'self', '.', 'pyro_ns', '.', 'requestLoop', ',', 'name', '=', "'Pyro4 nameserver started by HpBandSter'", ')', 'thread', '.', 'start', '(', ')', 'if', 'not', 'self', '.', 'dir', 'is', 'None', ':', 'os', '.', 'makedirs', '(', 'self', '.', 'dir', ',', 'exist_ok', '=', 'True', ')', 'self', '.', 'conf_fn', '=', 'os', '.', 'path', '.', 'join', '(', 'self', '.', 'dir', ',', "'HPB_run_%s_pyro.pkl'", '%', 'self', '.', 'run_id', ')', 'with', 'open', '(', 'self', '.', 'conf_fn', ',', "'wb'", ')', 'as', 'fh', ':', 'pickle', '.', 'dump', '(', '(', 'self', '.', 'host', ',', 'self', '.', 'port', ')', ',', 'fh', ')', 'return', '(', 'self', '.', 'host', ',', 'self', '.', 'port', ')'] | starts a Pyro4 nameserver in a separate thread
Returns
-------
tuple (str, int):
the host name and the used port | ['starts', 'a', 'Pyro4', 'nameserver', 'in', 'a', 'separate', 'thread', 'Returns', '-------', 'tuple', '(', 'str', 'int', ')', ':', 'the', 'host', 'name', 'and', 'the', 'used', 'port'] | train | https://github.com/automl/HpBandSter/blob/841db4b827f342e5eb7f725723ea6461ac52d45a/hpbandster/core/nameserver.py#L48-L79 |
13 | PixelwarStudio/PyTree | Tree/core.py | Tree.grow | def grow(self, times=1):
"""Let the tree grow.
Args:
times (integer): Indicate how many times the tree will grow.
"""
self.nodes.append([])
for n, node in enumerate(self.nodes[self.age]):
if self.age == 0:
p_node = Node(self.pos[:2])
else:
p_node = self._get_node_parent(self.age-1, n)
angle = node.get_node_angle(p_node)
for i in range(self.comp):
tot_angle = self.__get_total_angle(angle, i)
length = self.__get_total_length(self.age+1, i)
self.nodes[self.age+1].append(node.make_new_node(length, tot_angle))
self.age += 1
if times > 1:
self.grow(times-1) | python | def grow(self, times=1):
"""Let the tree grow.
Args:
times (integer): Indicate how many times the tree will grow.
"""
self.nodes.append([])
for n, node in enumerate(self.nodes[self.age]):
if self.age == 0:
p_node = Node(self.pos[:2])
else:
p_node = self._get_node_parent(self.age-1, n)
angle = node.get_node_angle(p_node)
for i in range(self.comp):
tot_angle = self.__get_total_angle(angle, i)
length = self.__get_total_length(self.age+1, i)
self.nodes[self.age+1].append(node.make_new_node(length, tot_angle))
self.age += 1
if times > 1:
self.grow(times-1) | ['def', 'grow', '(', 'self', ',', 'times', '=', '1', ')', ':', 'self', '.', 'nodes', '.', 'append', '(', '[', ']', ')', 'for', 'n', ',', 'node', 'in', 'enumerate', '(', 'self', '.', 'nodes', '[', 'self', '.', 'age', ']', ')', ':', 'if', 'self', '.', 'age', '==', '0', ':', 'p_node', '=', 'Node', '(', 'self', '.', 'pos', '[', ':', '2', ']', ')', 'else', ':', 'p_node', '=', 'self', '.', '_get_node_parent', '(', 'self', '.', 'age', '-', '1', ',', 'n', ')', 'angle', '=', 'node', '.', 'get_node_angle', '(', 'p_node', ')', 'for', 'i', 'in', 'range', '(', 'self', '.', 'comp', ')', ':', 'tot_angle', '=', 'self', '.', '__get_total_angle', '(', 'angle', ',', 'i', ')', 'length', '=', 'self', '.', '__get_total_length', '(', 'self', '.', 'age', '+', '1', ',', 'i', ')', 'self', '.', 'nodes', '[', 'self', '.', 'age', '+', '1', ']', '.', 'append', '(', 'node', '.', 'make_new_node', '(', 'length', ',', 'tot_angle', ')', ')', 'self', '.', 'age', '+=', '1', 'if', 'times', '>', '1', ':', 'self', '.', 'grow', '(', 'times', '-', '1', ')'] | Let the tree grow.
Args:
times (integer): Indicate how many times the tree will grow. | ['Let', 'the', 'tree', 'grow', '.'] | train | https://github.com/PixelwarStudio/PyTree/blob/f14b25ea145da6b00d836e34251d2a4c823766dc/Tree/core.py#L167-L189 |
14 | saltstack/salt | salt/modules/osquery.py | kernel_integrity | def kernel_integrity(attrs=None, where=None):
'''
Return kernel_integrity information from osquery
CLI Example:
.. code-block:: bash
salt '*' osquery.kernel_integrity
'''
if __grains__['os_family'] in ['RedHat', 'Debian']:
return _osquery_cmd(table='kernel_integrity', attrs=attrs, where=where)
return {'result': False, 'comment': 'Only available on Red Hat or Debian based systems.'} | python | def kernel_integrity(attrs=None, where=None):
'''
Return kernel_integrity information from osquery
CLI Example:
.. code-block:: bash
salt '*' osquery.kernel_integrity
'''
if __grains__['os_family'] in ['RedHat', 'Debian']:
return _osquery_cmd(table='kernel_integrity', attrs=attrs, where=where)
return {'result': False, 'comment': 'Only available on Red Hat or Debian based systems.'} | ['def', 'kernel_integrity', '(', 'attrs', '=', 'None', ',', 'where', '=', 'None', ')', ':', 'if', '__grains__', '[', "'os_family'", ']', 'in', '[', "'RedHat'", ',', "'Debian'", ']', ':', 'return', '_osquery_cmd', '(', 'table', '=', "'kernel_integrity'", ',', 'attrs', '=', 'attrs', ',', 'where', '=', 'where', ')', 'return', '{', "'result'", ':', 'False', ',', "'comment'", ':', "'Only available on Red Hat or Debian based systems.'", '}'] | Return kernel_integrity information from osquery
CLI Example:
.. code-block:: bash
salt '*' osquery.kernel_integrity | ['Return', 'kernel_integrity', 'information', 'from', 'osquery'] | train | https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/modules/osquery.py#L149-L161 |
15 | rackerlabs/lambda-uploader | lambda_uploader/package.py | Package.virtualenv | def virtualenv(self, virtualenv):
'''
Sets the virtual environment for the lambda package
If this is not set then package_dependencies will create a new one.
Takes a path to a virtualenv or a boolean if the virtualenv creation
should be skipped.
'''
# If a boolean is passed then set the internal _skip_virtualenv flag
if isinstance(virtualenv, bool):
self._skip_virtualenv = virtualenv
else:
self._virtualenv = virtualenv
if not os.path.isdir(self._virtualenv):
raise Exception("virtualenv %s not found" % self._virtualenv)
LOG.info("Using existing virtualenv at %s" % self._virtualenv)
# use supplied virtualenv path
self._pkg_venv = self._virtualenv
self._skip_virtualenv = True | python | def virtualenv(self, virtualenv):
'''
Sets the virtual environment for the lambda package
If this is not set then package_dependencies will create a new one.
Takes a path to a virtualenv or a boolean if the virtualenv creation
should be skipped.
'''
# If a boolean is passed then set the internal _skip_virtualenv flag
if isinstance(virtualenv, bool):
self._skip_virtualenv = virtualenv
else:
self._virtualenv = virtualenv
if not os.path.isdir(self._virtualenv):
raise Exception("virtualenv %s not found" % self._virtualenv)
LOG.info("Using existing virtualenv at %s" % self._virtualenv)
# use supplied virtualenv path
self._pkg_venv = self._virtualenv
self._skip_virtualenv = True | ['def', 'virtualenv', '(', 'self', ',', 'virtualenv', ')', ':', '# If a boolean is passed then set the internal _skip_virtualenv flag', 'if', 'isinstance', '(', 'virtualenv', ',', 'bool', ')', ':', 'self', '.', '_skip_virtualenv', '=', 'virtualenv', 'else', ':', 'self', '.', '_virtualenv', '=', 'virtualenv', 'if', 'not', 'os', '.', 'path', '.', 'isdir', '(', 'self', '.', '_virtualenv', ')', ':', 'raise', 'Exception', '(', '"virtualenv %s not found"', '%', 'self', '.', '_virtualenv', ')', 'LOG', '.', 'info', '(', '"Using existing virtualenv at %s"', '%', 'self', '.', '_virtualenv', ')', '# use supplied virtualenv path', 'self', '.', '_pkg_venv', '=', 'self', '.', '_virtualenv', 'self', '.', '_skip_virtualenv', '=', 'True'] | Sets the virtual environment for the lambda package
If this is not set then package_dependencies will create a new one.
Takes a path to a virtualenv or a boolean if the virtualenv creation
should be skipped. | ['Sets', 'the', 'virtual', 'environment', 'for', 'the', 'lambda', 'package'] | train | https://github.com/rackerlabs/lambda-uploader/blob/a5036e60d45d1a4fdc07df071f5b6e3b113388d4/lambda_uploader/package.py#L114-L133 |
16 | agoragames/kairos | kairos/cassandra_backend.py | CassandraSet._insert_stmt | def _insert_stmt(self, name, value, timestamp, interval, config):
'''Helper to generate the insert statement.'''
# Calculate the TTL and abort if inserting into the past
expire, ttl = config['expire'], config['ttl'](timestamp)
if expire and not ttl:
return None
i_time = config['i_calc'].to_bucket(timestamp)
if not config['coarse']:
r_time = config['r_calc'].to_bucket(timestamp)
else:
r_time = -1
# TODO: figure out escaping rules of CQL
stmt = '''INSERT INTO %s (name, interval, i_time, r_time, value)
VALUES ('%s', '%s', %s, %s, %s)'''%(self._table, name, interval, i_time, r_time, value)
expire = config['expire']
if ttl:
stmt += " USING TTL %s"%(ttl)
return stmt | python | def _insert_stmt(self, name, value, timestamp, interval, config):
'''Helper to generate the insert statement.'''
# Calculate the TTL and abort if inserting into the past
expire, ttl = config['expire'], config['ttl'](timestamp)
if expire and not ttl:
return None
i_time = config['i_calc'].to_bucket(timestamp)
if not config['coarse']:
r_time = config['r_calc'].to_bucket(timestamp)
else:
r_time = -1
# TODO: figure out escaping rules of CQL
stmt = '''INSERT INTO %s (name, interval, i_time, r_time, value)
VALUES ('%s', '%s', %s, %s, %s)'''%(self._table, name, interval, i_time, r_time, value)
expire = config['expire']
if ttl:
stmt += " USING TTL %s"%(ttl)
return stmt | ['def', '_insert_stmt', '(', 'self', ',', 'name', ',', 'value', ',', 'timestamp', ',', 'interval', ',', 'config', ')', ':', '# Calculate the TTL and abort if inserting into the past', 'expire', ',', 'ttl', '=', 'config', '[', "'expire'", ']', ',', 'config', '[', "'ttl'", ']', '(', 'timestamp', ')', 'if', 'expire', 'and', 'not', 'ttl', ':', 'return', 'None', 'i_time', '=', 'config', '[', "'i_calc'", ']', '.', 'to_bucket', '(', 'timestamp', ')', 'if', 'not', 'config', '[', "'coarse'", ']', ':', 'r_time', '=', 'config', '[', "'r_calc'", ']', '.', 'to_bucket', '(', 'timestamp', ')', 'else', ':', 'r_time', '=', '-', '1', '# TODO: figure out escaping rules of CQL', 'stmt', '=', "'''INSERT INTO %s (name, interval, i_time, r_time, value)\n VALUES ('%s', '%s', %s, %s, %s)'''", '%', '(', 'self', '.', '_table', ',', 'name', ',', 'interval', ',', 'i_time', ',', 'r_time', ',', 'value', ')', 'expire', '=', 'config', '[', "'expire'", ']', 'if', 'ttl', ':', 'stmt', '+=', '" USING TTL %s"', '%', '(', 'ttl', ')', 'return', 'stmt'] | Helper to generate the insert statement. | ['Helper', 'to', 'generate', 'the', 'insert', 'statement', '.'] | train | https://github.com/agoragames/kairos/blob/0b062d543b0f4a46df460fa0eb6ec281232ab179/kairos/cassandra_backend.py#L646-L665 |
17 | pavelsof/ipalint | ipalint/read.py | Reader._determine_dialect | def _determine_dialect(self, lines):
"""
Expects a non-empty [] of strings; these would normally be the first
few lines of a csv file. Returns the most likely Dialect named tuple or
None if the data seems to form a single column.
Ensures that using the returned dialect, all the lines given will have
the same number of columns.
Helper for the get_dialect method.
"""
permuts = [(quotechar, escapechar)
for quotechar in CSV_QUOTECHARS
for escapechar in CSV_ESCAPECHARS]
for delim in CSV_DELIMITERS:
counts = [line.count(delim) for line in lines]
if min(counts) == 0:
continue
for quotechar, escapechar in permuts:
doublequote = True if escapechar is None else False
reader = csv.reader(lines, delimiter=delim, quotechar=quotechar,
doublequote=doublequote, escapechar=escapechar)
try:
assert len(set([len(line) for line in reader])) == 1
except AssertionError:
continue
else:
break
else:
continue # no suitable quoting found
break # found it!
else:
return None
return Dialect(delim, quotechar, doublequote, escapechar) | python | def _determine_dialect(self, lines):
"""
Expects a non-empty [] of strings; these would normally be the first
few lines of a csv file. Returns the most likely Dialect named tuple or
None if the data seems to form a single column.
Ensures that using the returned dialect, all the lines given will have
the same number of columns.
Helper for the get_dialect method.
"""
permuts = [(quotechar, escapechar)
for quotechar in CSV_QUOTECHARS
for escapechar in CSV_ESCAPECHARS]
for delim in CSV_DELIMITERS:
counts = [line.count(delim) for line in lines]
if min(counts) == 0:
continue
for quotechar, escapechar in permuts:
doublequote = True if escapechar is None else False
reader = csv.reader(lines, delimiter=delim, quotechar=quotechar,
doublequote=doublequote, escapechar=escapechar)
try:
assert len(set([len(line) for line in reader])) == 1
except AssertionError:
continue
else:
break
else:
continue # no suitable quoting found
break # found it!
else:
return None
return Dialect(delim, quotechar, doublequote, escapechar) | ['def', '_determine_dialect', '(', 'self', ',', 'lines', ')', ':', 'permuts', '=', '[', '(', 'quotechar', ',', 'escapechar', ')', 'for', 'quotechar', 'in', 'CSV_QUOTECHARS', 'for', 'escapechar', 'in', 'CSV_ESCAPECHARS', ']', 'for', 'delim', 'in', 'CSV_DELIMITERS', ':', 'counts', '=', '[', 'line', '.', 'count', '(', 'delim', ')', 'for', 'line', 'in', 'lines', ']', 'if', 'min', '(', 'counts', ')', '==', '0', ':', 'continue', 'for', 'quotechar', ',', 'escapechar', 'in', 'permuts', ':', 'doublequote', '=', 'True', 'if', 'escapechar', 'is', 'None', 'else', 'False', 'reader', '=', 'csv', '.', 'reader', '(', 'lines', ',', 'delimiter', '=', 'delim', ',', 'quotechar', '=', 'quotechar', ',', 'doublequote', '=', 'doublequote', ',', 'escapechar', '=', 'escapechar', ')', 'try', ':', 'assert', 'len', '(', 'set', '(', '[', 'len', '(', 'line', ')', 'for', 'line', 'in', 'reader', ']', ')', ')', '==', '1', 'except', 'AssertionError', ':', 'continue', 'else', ':', 'break', 'else', ':', 'continue', '# no suitable quoting found', 'break', '# found it!', 'else', ':', 'return', 'None', 'return', 'Dialect', '(', 'delim', ',', 'quotechar', ',', 'doublequote', ',', 'escapechar', ')'] | Expects a non-empty [] of strings; these would normally be the first
few lines of a csv file. Returns the most likely Dialect named tuple or
None if the data seems to form a single column.
Ensures that using the returned dialect, all the lines given will have
the same number of columns.
Helper for the get_dialect method. | ['Expects', 'a', 'non', '-', 'empty', '[]', 'of', 'strings', ';', 'these', 'would', 'normally', 'be', 'the', 'first', 'few', 'lines', 'of', 'a', 'csv', 'file', '.', 'Returns', 'the', 'most', 'likely', 'Dialect', 'named', 'tuple', 'or', 'None', 'if', 'the', 'data', 'seems', 'to', 'form', 'a', 'single', 'column', '.'] | train | https://github.com/pavelsof/ipalint/blob/763e5979ede6980cbfc746b06fd007b379762eeb/ipalint/read.py#L177-L218 |
18 | angr/angr | angr/utils/graph.py | compute_dominance_frontier | def compute_dominance_frontier(graph, domtree):
"""
Compute a dominance frontier based on the given post-dominator tree.
This implementation is based on figure 2 of paper An Efficient Method of Computing Static Single Assignment
Form by Ron Cytron, etc.
:param graph: The graph where we want to compute the dominance frontier.
:param domtree: The dominator tree
:returns: A dict of dominance frontier
"""
df = {}
# Perform a post-order search on the dominator tree
for x in networkx.dfs_postorder_nodes(domtree):
if x not in graph:
# Skip nodes that are not in the graph
continue
df[x] = set()
# local set
for y in graph.successors(x):
if x not in domtree.predecessors(y):
df[x].add(y)
# up set
if x is None:
continue
for z in domtree.successors(x):
if z is x:
continue
if z not in df:
continue
for y in df[z]:
if x not in list(domtree.predecessors(y)):
df[x].add(y)
return df | python | def compute_dominance_frontier(graph, domtree):
"""
Compute a dominance frontier based on the given post-dominator tree.
This implementation is based on figure 2 of paper An Efficient Method of Computing Static Single Assignment
Form by Ron Cytron, etc.
:param graph: The graph where we want to compute the dominance frontier.
:param domtree: The dominator tree
:returns: A dict of dominance frontier
"""
df = {}
# Perform a post-order search on the dominator tree
for x in networkx.dfs_postorder_nodes(domtree):
if x not in graph:
# Skip nodes that are not in the graph
continue
df[x] = set()
# local set
for y in graph.successors(x):
if x not in domtree.predecessors(y):
df[x].add(y)
# up set
if x is None:
continue
for z in domtree.successors(x):
if z is x:
continue
if z not in df:
continue
for y in df[z]:
if x not in list(domtree.predecessors(y)):
df[x].add(y)
return df | ['def', 'compute_dominance_frontier', '(', 'graph', ',', 'domtree', ')', ':', 'df', '=', '{', '}', '# Perform a post-order search on the dominator tree', 'for', 'x', 'in', 'networkx', '.', 'dfs_postorder_nodes', '(', 'domtree', ')', ':', 'if', 'x', 'not', 'in', 'graph', ':', '# Skip nodes that are not in the graph', 'continue', 'df', '[', 'x', ']', '=', 'set', '(', ')', '# local set', 'for', 'y', 'in', 'graph', '.', 'successors', '(', 'x', ')', ':', 'if', 'x', 'not', 'in', 'domtree', '.', 'predecessors', '(', 'y', ')', ':', 'df', '[', 'x', ']', '.', 'add', '(', 'y', ')', '# up set', 'if', 'x', 'is', 'None', ':', 'continue', 'for', 'z', 'in', 'domtree', '.', 'successors', '(', 'x', ')', ':', 'if', 'z', 'is', 'x', ':', 'continue', 'if', 'z', 'not', 'in', 'df', ':', 'continue', 'for', 'y', 'in', 'df', '[', 'z', ']', ':', 'if', 'x', 'not', 'in', 'list', '(', 'domtree', '.', 'predecessors', '(', 'y', ')', ')', ':', 'df', '[', 'x', ']', '.', 'add', '(', 'y', ')', 'return', 'df'] | Compute a dominance frontier based on the given post-dominator tree.
This implementation is based on figure 2 of paper An Efficient Method of Computing Static Single Assignment
Form by Ron Cytron, etc.
:param graph: The graph where we want to compute the dominance frontier.
:param domtree: The dominator tree
:returns: A dict of dominance frontier | ['Compute', 'a', 'dominance', 'frontier', 'based', 'on', 'the', 'given', 'post', '-', 'dominator', 'tree', '.'] | train | https://github.com/angr/angr/blob/4e2f97d56af5419ee73bdb30482c8dd8ff5f3e40/angr/utils/graph.py#L63-L104 |
19 | CI-WATER/mapkit | mapkit/RasterConverter.py | RasterConverter.isNumber | def isNumber(self, value):
"""
Validate whether a value is a number or not
"""
try:
str(value)
float(value)
return True
except ValueError:
return False | python | def isNumber(self, value):
"""
Validate whether a value is a number or not
"""
try:
str(value)
float(value)
return True
except ValueError:
return False | ['def', 'isNumber', '(', 'self', ',', 'value', ')', ':', 'try', ':', 'str', '(', 'value', ')', 'float', '(', 'value', ')', 'return', 'True', 'except', 'ValueError', ':', 'return', 'False'] | Validate whether a value is a number or not | ['Validate', 'whether', 'a', 'value', 'is', 'a', 'number', 'or', 'not'] | train | https://github.com/CI-WATER/mapkit/blob/ce5fbded6af7adabdf1eec85631c6811ef8ecc34/mapkit/RasterConverter.py#L1097-L1107 |
20 | CamDavidsonPilon/lifelines | lifelines/utils/__init__.py | survival_table_from_events | def survival_table_from_events(
death_times,
event_observed,
birth_times=None,
columns=["removed", "observed", "censored", "entrance", "at_risk"],
weights=None,
collapse=False,
intervals=None,
): # pylint: disable=dangerous-default-value,too-many-locals
"""
Parameters
----------
death_times: (n,) array
represent the event times
event_observed: (n,) array
1 if observed event, 0 is censored event.
birth_times: a (n,) array, optional
representing when the subject was first observed. A subject's death event is then at [birth times + duration observed].
If None (default), birth_times are set to be the first observation or 0, which ever is smaller.
columns: iterable, optional
a 3-length array to call the, in order, removed individuals, observed deaths
and censorships.
weights: (n,1) array, optional
Optional argument to use weights for individuals. Assumes weights of 1 if not provided.
collapse: boolean, optional (default=False)
If True, collapses survival table into lifetable to show events in interval bins
intervals: iterable, optional
Default None, otherwise a list/(n,1) array of interval edge measures. If left as None
while collapse=True, then Freedman-Diaconis rule for histogram bins will be used to determine intervals.
Returns
-------
DataFrame
Pandas DataFrame with index as the unique times or intervals in event_times. The columns named
'removed' refers to the number of individuals who were removed from the population
by the end of the period. The column 'observed' refers to the number of removed
individuals who were observed to have died (i.e. not censored.) The column
'censored' is defined as 'removed' - 'observed' (the number of individuals who
left the population due to event_observed)
Example
-------
>>> #Uncollapsed output
>>> removed observed censored entrance at_risk
>>> event_at
>>> 0 0 0 0 11 11
>>> 6 1 1 0 0 11
>>> 7 2 2 0 0 10
>>> 9 3 3 0 0 8
>>> 13 3 3 0 0 5
>>> 15 2 2 0 0 2
>>> #Collapsed output
>>> removed observed censored at_risk
>>> sum sum sum max
>>> event_at
>>> (0, 2] 34 33 1 312
>>> (2, 4] 84 42 42 278
>>> (4, 6] 64 17 47 194
>>> (6, 8] 63 16 47 130
>>> (8, 10] 35 12 23 67
>>> (10, 12] 24 5 19 32
See Also
--------
group_survival_table_from_events
"""
removed, observed, censored, entrance, at_risk = columns
death_times = np.asarray(death_times)
if birth_times is None:
birth_times = min(0, death_times.min()) * np.ones(death_times.shape[0])
else:
birth_times = np.asarray(birth_times)
if np.any(birth_times > death_times):
raise ValueError("birth time must be less than time of death.")
if weights is None:
weights = 1
# deal with deaths and censorships
df = pd.DataFrame(death_times, columns=["event_at"])
df[removed] = np.asarray(weights)
df[observed] = np.asarray(weights) * (np.asarray(event_observed).astype(bool))
death_table = df.groupby("event_at").sum()
death_table[censored] = (death_table[removed] - death_table[observed]).astype(int)
# deal with late births
births = pd.DataFrame(birth_times, columns=["event_at"])
births[entrance] = np.asarray(weights)
births_table = births.groupby("event_at").sum()
event_table = death_table.join(births_table, how="outer", sort=True).fillna(0) # http://wesmckinney.com/blog/?p=414
event_table[at_risk] = event_table[entrance].cumsum() - event_table[removed].cumsum().shift(1).fillna(0)
# group by intervals
if (collapse) or (intervals is not None):
event_table = _group_event_table_by_intervals(event_table, intervals)
if (np.asarray(weights).astype(int) != weights).any():
return event_table.astype(float)
return event_table.astype(int) | python | def survival_table_from_events(
death_times,
event_observed,
birth_times=None,
columns=["removed", "observed", "censored", "entrance", "at_risk"],
weights=None,
collapse=False,
intervals=None,
): # pylint: disable=dangerous-default-value,too-many-locals
"""
Parameters
----------
death_times: (n,) array
represent the event times
event_observed: (n,) array
1 if observed event, 0 is censored event.
birth_times: a (n,) array, optional
representing when the subject was first observed. A subject's death event is then at [birth times + duration observed].
If None (default), birth_times are set to be the first observation or 0, which ever is smaller.
columns: iterable, optional
a 3-length array to call the, in order, removed individuals, observed deaths
and censorships.
weights: (n,1) array, optional
Optional argument to use weights for individuals. Assumes weights of 1 if not provided.
collapse: boolean, optional (default=False)
If True, collapses survival table into lifetable to show events in interval bins
intervals: iterable, optional
Default None, otherwise a list/(n,1) array of interval edge measures. If left as None
while collapse=True, then Freedman-Diaconis rule for histogram bins will be used to determine intervals.
Returns
-------
DataFrame
Pandas DataFrame with index as the unique times or intervals in event_times. The columns named
'removed' refers to the number of individuals who were removed from the population
by the end of the period. The column 'observed' refers to the number of removed
individuals who were observed to have died (i.e. not censored.) The column
'censored' is defined as 'removed' - 'observed' (the number of individuals who
left the population due to event_observed)
Example
-------
>>> #Uncollapsed output
>>> removed observed censored entrance at_risk
>>> event_at
>>> 0 0 0 0 11 11
>>> 6 1 1 0 0 11
>>> 7 2 2 0 0 10
>>> 9 3 3 0 0 8
>>> 13 3 3 0 0 5
>>> 15 2 2 0 0 2
>>> #Collapsed output
>>> removed observed censored at_risk
>>> sum sum sum max
>>> event_at
>>> (0, 2] 34 33 1 312
>>> (2, 4] 84 42 42 278
>>> (4, 6] 64 17 47 194
>>> (6, 8] 63 16 47 130
>>> (8, 10] 35 12 23 67
>>> (10, 12] 24 5 19 32
See Also
--------
group_survival_table_from_events
"""
removed, observed, censored, entrance, at_risk = columns
death_times = np.asarray(death_times)
if birth_times is None:
birth_times = min(0, death_times.min()) * np.ones(death_times.shape[0])
else:
birth_times = np.asarray(birth_times)
if np.any(birth_times > death_times):
raise ValueError("birth time must be less than time of death.")
if weights is None:
weights = 1
# deal with deaths and censorships
df = pd.DataFrame(death_times, columns=["event_at"])
df[removed] = np.asarray(weights)
df[observed] = np.asarray(weights) * (np.asarray(event_observed).astype(bool))
death_table = df.groupby("event_at").sum()
death_table[censored] = (death_table[removed] - death_table[observed]).astype(int)
# deal with late births
births = pd.DataFrame(birth_times, columns=["event_at"])
births[entrance] = np.asarray(weights)
births_table = births.groupby("event_at").sum()
event_table = death_table.join(births_table, how="outer", sort=True).fillna(0) # http://wesmckinney.com/blog/?p=414
event_table[at_risk] = event_table[entrance].cumsum() - event_table[removed].cumsum().shift(1).fillna(0)
# group by intervals
if (collapse) or (intervals is not None):
event_table = _group_event_table_by_intervals(event_table, intervals)
if (np.asarray(weights).astype(int) != weights).any():
return event_table.astype(float)
return event_table.astype(int) | ['def', 'survival_table_from_events', '(', 'death_times', ',', 'event_observed', ',', 'birth_times', '=', 'None', ',', 'columns', '=', '[', '"removed"', ',', '"observed"', ',', '"censored"', ',', '"entrance"', ',', '"at_risk"', ']', ',', 'weights', '=', 'None', ',', 'collapse', '=', 'False', ',', 'intervals', '=', 'None', ',', ')', ':', '# pylint: disable=dangerous-default-value,too-many-locals', 'removed', ',', 'observed', ',', 'censored', ',', 'entrance', ',', 'at_risk', '=', 'columns', 'death_times', '=', 'np', '.', 'asarray', '(', 'death_times', ')', 'if', 'birth_times', 'is', 'None', ':', 'birth_times', '=', 'min', '(', '0', ',', 'death_times', '.', 'min', '(', ')', ')', '*', 'np', '.', 'ones', '(', 'death_times', '.', 'shape', '[', '0', ']', ')', 'else', ':', 'birth_times', '=', 'np', '.', 'asarray', '(', 'birth_times', ')', 'if', 'np', '.', 'any', '(', 'birth_times', '>', 'death_times', ')', ':', 'raise', 'ValueError', '(', '"birth time must be less than time of death."', ')', 'if', 'weights', 'is', 'None', ':', 'weights', '=', '1', '# deal with deaths and censorships', 'df', '=', 'pd', '.', 'DataFrame', '(', 'death_times', ',', 'columns', '=', '[', '"event_at"', ']', ')', 'df', '[', 'removed', ']', '=', 'np', '.', 'asarray', '(', 'weights', ')', 'df', '[', 'observed', ']', '=', 'np', '.', 'asarray', '(', 'weights', ')', '*', '(', 'np', '.', 'asarray', '(', 'event_observed', ')', '.', 'astype', '(', 'bool', ')', ')', 'death_table', '=', 'df', '.', 'groupby', '(', '"event_at"', ')', '.', 'sum', '(', ')', 'death_table', '[', 'censored', ']', '=', '(', 'death_table', '[', 'removed', ']', '-', 'death_table', '[', 'observed', ']', ')', '.', 'astype', '(', 'int', ')', '# deal with late births', 'births', '=', 'pd', '.', 'DataFrame', '(', 'birth_times', ',', 'columns', '=', '[', '"event_at"', ']', ')', 'births', '[', 'entrance', ']', '=', 'np', '.', 'asarray', '(', 'weights', ')', 'births_table', '=', 'births', '.', 'groupby', '(', '"event_at"', ')', '.', 'sum', '(', ')', 'event_table', '=', 'death_table', '.', 'join', '(', 'births_table', ',', 'how', '=', '"outer"', ',', 'sort', '=', 'True', ')', '.', 'fillna', '(', '0', ')', '# http://wesmckinney.com/blog/?p=414', 'event_table', '[', 'at_risk', ']', '=', 'event_table', '[', 'entrance', ']', '.', 'cumsum', '(', ')', '-', 'event_table', '[', 'removed', ']', '.', 'cumsum', '(', ')', '.', 'shift', '(', '1', ')', '.', 'fillna', '(', '0', ')', '# group by intervals', 'if', '(', 'collapse', ')', 'or', '(', 'intervals', 'is', 'not', 'None', ')', ':', 'event_table', '=', '_group_event_table_by_intervals', '(', 'event_table', ',', 'intervals', ')', 'if', '(', 'np', '.', 'asarray', '(', 'weights', ')', '.', 'astype', '(', 'int', ')', '!=', 'weights', ')', '.', 'any', '(', ')', ':', 'return', 'event_table', '.', 'astype', '(', 'float', ')', 'return', 'event_table', '.', 'astype', '(', 'int', ')'] | Parameters
----------
death_times: (n,) array
represent the event times
event_observed: (n,) array
1 if observed event, 0 is censored event.
birth_times: a (n,) array, optional
representing when the subject was first observed. A subject's death event is then at [birth times + duration observed].
If None (default), birth_times are set to be the first observation or 0, which ever is smaller.
columns: iterable, optional
a 3-length array to call the, in order, removed individuals, observed deaths
and censorships.
weights: (n,1) array, optional
Optional argument to use weights for individuals. Assumes weights of 1 if not provided.
collapse: boolean, optional (default=False)
If True, collapses survival table into lifetable to show events in interval bins
intervals: iterable, optional
Default None, otherwise a list/(n,1) array of interval edge measures. If left as None
while collapse=True, then Freedman-Diaconis rule for histogram bins will be used to determine intervals.
Returns
-------
DataFrame
Pandas DataFrame with index as the unique times or intervals in event_times. The columns named
'removed' refers to the number of individuals who were removed from the population
by the end of the period. The column 'observed' refers to the number of removed
individuals who were observed to have died (i.e. not censored.) The column
'censored' is defined as 'removed' - 'observed' (the number of individuals who
left the population due to event_observed)
Example
-------
>>> #Uncollapsed output
>>> removed observed censored entrance at_risk
>>> event_at
>>> 0 0 0 0 11 11
>>> 6 1 1 0 0 11
>>> 7 2 2 0 0 10
>>> 9 3 3 0 0 8
>>> 13 3 3 0 0 5
>>> 15 2 2 0 0 2
>>> #Collapsed output
>>> removed observed censored at_risk
>>> sum sum sum max
>>> event_at
>>> (0, 2] 34 33 1 312
>>> (2, 4] 84 42 42 278
>>> (4, 6] 64 17 47 194
>>> (6, 8] 63 16 47 130
>>> (8, 10] 35 12 23 67
>>> (10, 12] 24 5 19 32
See Also
--------
group_survival_table_from_events | ['Parameters', '----------', 'death_times', ':', '(', 'n', ')', 'array', 'represent', 'the', 'event', 'times', 'event_observed', ':', '(', 'n', ')', 'array', '1', 'if', 'observed', 'event', '0', 'is', 'censored', 'event', '.', 'birth_times', ':', 'a', '(', 'n', ')', 'array', 'optional', 'representing', 'when', 'the', 'subject', 'was', 'first', 'observed', '.', 'A', 'subject', 's', 'death', 'event', 'is', 'then', 'at', '[', 'birth', 'times', '+', 'duration', 'observed', ']', '.', 'If', 'None', '(', 'default', ')', 'birth_times', 'are', 'set', 'to', 'be', 'the', 'first', 'observation', 'or', '0', 'which', 'ever', 'is', 'smaller', '.', 'columns', ':', 'iterable', 'optional', 'a', '3', '-', 'length', 'array', 'to', 'call', 'the', 'in', 'order', 'removed', 'individuals', 'observed', 'deaths', 'and', 'censorships', '.', 'weights', ':', '(', 'n', '1', ')', 'array', 'optional', 'Optional', 'argument', 'to', 'use', 'weights', 'for', 'individuals', '.', 'Assumes', 'weights', 'of', '1', 'if', 'not', 'provided', '.', 'collapse', ':', 'boolean', 'optional', '(', 'default', '=', 'False', ')', 'If', 'True', 'collapses', 'survival', 'table', 'into', 'lifetable', 'to', 'show', 'events', 'in', 'interval', 'bins', 'intervals', ':', 'iterable', 'optional', 'Default', 'None', 'otherwise', 'a', 'list', '/', '(', 'n', '1', ')', 'array', 'of', 'interval', 'edge', 'measures', '.', 'If', 'left', 'as', 'None', 'while', 'collapse', '=', 'True', 'then', 'Freedman', '-', 'Diaconis', 'rule', 'for', 'histogram', 'bins', 'will', 'be', 'used', 'to', 'determine', 'intervals', '.'] | train | https://github.com/CamDavidsonPilon/lifelines/blob/bdf6be6f1d10eea4c46365ee0ee6a47d8c30edf8/lifelines/utils/__init__.py#L262-L361 |
21 | django-blog-zinnia/cmsplugin-zinnia | cmsplugin_zinnia/cms_plugins.py | CMSRandomEntriesPlugin.render | def render(self, context, instance, placeholder):
"""
Update the context with plugin's data
"""
context = super(CMSRandomEntriesPlugin, self).render(
context, instance, placeholder)
context['template_to_render'] = (str(instance.template_to_render) or
'zinnia/tags/entries_random.html')
return context | python | def render(self, context, instance, placeholder):
"""
Update the context with plugin's data
"""
context = super(CMSRandomEntriesPlugin, self).render(
context, instance, placeholder)
context['template_to_render'] = (str(instance.template_to_render) or
'zinnia/tags/entries_random.html')
return context | ['def', 'render', '(', 'self', ',', 'context', ',', 'instance', ',', 'placeholder', ')', ':', 'context', '=', 'super', '(', 'CMSRandomEntriesPlugin', ',', 'self', ')', '.', 'render', '(', 'context', ',', 'instance', ',', 'placeholder', ')', 'context', '[', "'template_to_render'", ']', '=', '(', 'str', '(', 'instance', '.', 'template_to_render', ')', 'or', "'zinnia/tags/entries_random.html'", ')', 'return', 'context'] | Update the context with plugin's data | ['Update', 'the', 'context', 'with', 'plugin', 's', 'data'] | train | https://github.com/django-blog-zinnia/cmsplugin-zinnia/blob/7613c0d9ae29affe9ab97527e4b6d5bef124afdc/cmsplugin_zinnia/cms_plugins.py#L131-L139 |
22 | rjw57/throw | throw/minus/minus.py | Gallery.SaveGallery | def SaveGallery(self, name=None, items=None):
"""Use this to update the gallery name or change sort order.
Specify which attribute (name or items or both) you want to change."""
url = 'http://min.us/api/SaveGallery'
if not name:
if not self.name:
name = self.GetItems()[0]
if self.name:
name = self.name
if not items:
if not self.items:
items = self.GetItems()[1]
elif self.items:
items = self.items
params = {"name": name, "id":self.editor_id, "items":items}
try:
response = _dopost(url, params)
except:
pass
else:
self.name = name
self.items = items | python | def SaveGallery(self, name=None, items=None):
"""Use this to update the gallery name or change sort order.
Specify which attribute (name or items or both) you want to change."""
url = 'http://min.us/api/SaveGallery'
if not name:
if not self.name:
name = self.GetItems()[0]
if self.name:
name = self.name
if not items:
if not self.items:
items = self.GetItems()[1]
elif self.items:
items = self.items
params = {"name": name, "id":self.editor_id, "items":items}
try:
response = _dopost(url, params)
except:
pass
else:
self.name = name
self.items = items | ['def', 'SaveGallery', '(', 'self', ',', 'name', '=', 'None', ',', 'items', '=', 'None', ')', ':', 'url', '=', "'http://min.us/api/SaveGallery'", 'if', 'not', 'name', ':', 'if', 'not', 'self', '.', 'name', ':', 'name', '=', 'self', '.', 'GetItems', '(', ')', '[', '0', ']', 'if', 'self', '.', 'name', ':', 'name', '=', 'self', '.', 'name', 'if', 'not', 'items', ':', 'if', 'not', 'self', '.', 'items', ':', 'items', '=', 'self', '.', 'GetItems', '(', ')', '[', '1', ']', 'elif', 'self', '.', 'items', ':', 'items', '=', 'self', '.', 'items', 'params', '=', '{', '"name"', ':', 'name', ',', '"id"', ':', 'self', '.', 'editor_id', ',', '"items"', ':', 'items', '}', 'try', ':', 'response', '=', '_dopost', '(', 'url', ',', 'params', ')', 'except', ':', 'pass', 'else', ':', 'self', '.', 'name', '=', 'name', 'self', '.', 'items', '=', 'items'] | Use this to update the gallery name or change sort order.
Specify which attribute (name or items or both) you want to change. | ['Use', 'this', 'to', 'update', 'the', 'gallery', 'name', 'or', 'change', 'sort', 'order', '.', 'Specify', 'which', 'attribute', '(', 'name', 'or', 'items', 'or', 'both', ')', 'you', 'want', 'to', 'change', '.'] | train | https://github.com/rjw57/throw/blob/74a7116362ba5b45635ab247472b25cfbdece4ee/throw/minus/minus.py#L62-L88 |
23 | letuananh/chirptext | chirptext/cli.py | setup_logging | def setup_logging(filename, log_dir=None, force_setup=False):
''' Try to load logging configuration from a file. Set level to INFO if failed.
'''
if not force_setup and ChirpCLI.SETUP_COMPLETED:
logging.debug("Master logging has been setup. This call will be ignored.")
return
if log_dir and not os.path.exists(log_dir):
os.makedirs(log_dir)
if os.path.isfile(filename):
with open(filename) as config_file:
try:
config = json.load(config_file)
logging.config.dictConfig(config)
logging.info("logging was setup using {}".format(filename))
ChirpCLI.SETUP_COMPLETED = True
except Exception as e:
logging.exception("Could not load logging config")
# default logging config
logging.basicConfig(level=logging.INFO)
else:
logging.basicConfig(level=logging.INFO) | python | def setup_logging(filename, log_dir=None, force_setup=False):
''' Try to load logging configuration from a file. Set level to INFO if failed.
'''
if not force_setup and ChirpCLI.SETUP_COMPLETED:
logging.debug("Master logging has been setup. This call will be ignored.")
return
if log_dir and not os.path.exists(log_dir):
os.makedirs(log_dir)
if os.path.isfile(filename):
with open(filename) as config_file:
try:
config = json.load(config_file)
logging.config.dictConfig(config)
logging.info("logging was setup using {}".format(filename))
ChirpCLI.SETUP_COMPLETED = True
except Exception as e:
logging.exception("Could not load logging config")
# default logging config
logging.basicConfig(level=logging.INFO)
else:
logging.basicConfig(level=logging.INFO) | ['def', 'setup_logging', '(', 'filename', ',', 'log_dir', '=', 'None', ',', 'force_setup', '=', 'False', ')', ':', 'if', 'not', 'force_setup', 'and', 'ChirpCLI', '.', 'SETUP_COMPLETED', ':', 'logging', '.', 'debug', '(', '"Master logging has been setup. This call will be ignored."', ')', 'return', 'if', 'log_dir', 'and', 'not', 'os', '.', 'path', '.', 'exists', '(', 'log_dir', ')', ':', 'os', '.', 'makedirs', '(', 'log_dir', ')', 'if', 'os', '.', 'path', '.', 'isfile', '(', 'filename', ')', ':', 'with', 'open', '(', 'filename', ')', 'as', 'config_file', ':', 'try', ':', 'config', '=', 'json', '.', 'load', '(', 'config_file', ')', 'logging', '.', 'config', '.', 'dictConfig', '(', 'config', ')', 'logging', '.', 'info', '(', '"logging was setup using {}"', '.', 'format', '(', 'filename', ')', ')', 'ChirpCLI', '.', 'SETUP_COMPLETED', '=', 'True', 'except', 'Exception', 'as', 'e', ':', 'logging', '.', 'exception', '(', '"Could not load logging config"', ')', '# default logging config', 'logging', '.', 'basicConfig', '(', 'level', '=', 'logging', '.', 'INFO', ')', 'else', ':', 'logging', '.', 'basicConfig', '(', 'level', '=', 'logging', '.', 'INFO', ')'] | Try to load logging configuration from a file. Set level to INFO if failed. | ['Try', 'to', 'load', 'logging', 'configuration', 'from', 'a', 'file', '.', 'Set', 'level', 'to', 'INFO', 'if', 'failed', '.'] | train | https://github.com/letuananh/chirptext/blob/ce60b47257b272a587c8703ea1f86cd1a45553a7/chirptext/cli.py#L35-L55 |
24 | doconix/django-mako-plus | django_mako_plus/template/adapter.py | MakoTemplateAdapter.name | def name(self):
'''Returns the name of this template (if created from a file) or "string" if not'''
if self.mako_template.filename:
return os.path.basename(self.mako_template.filename)
return 'string' | python | def name(self):
'''Returns the name of this template (if created from a file) or "string" if not'''
if self.mako_template.filename:
return os.path.basename(self.mako_template.filename)
return 'string' | ['def', 'name', '(', 'self', ')', ':', 'if', 'self', '.', 'mako_template', '.', 'filename', ':', 'return', 'os', '.', 'path', '.', 'basename', '(', 'self', '.', 'mako_template', '.', 'filename', ')', 'return', "'string'"] | Returns the name of this template (if created from a file) or "string" if not | ['Returns', 'the', 'name', 'of', 'this', 'template', '(', 'if', 'created', 'from', 'a', 'file', ')', 'or', 'string', 'if', 'not'] | train | https://github.com/doconix/django-mako-plus/blob/a90f9b4af19e5fa9f83452989cdcaed21569a181/django_mako_plus/template/adapter.py#L39-L43 |
25 | HazyResearch/fonduer | src/fonduer/learning/disc_models/sparse_lstm.py | SparseLSTM.forward | def forward(self, X):
"""Forward function.
:param X: The input (batch) of the model contains word sequences for lstm,
features and feature weights.
:type X: For word sequences: a list of torch.Tensor pair (word sequence
and word mask) of shape (batch_size, sequence_length).
For features: torch.Tensor of shape (batch_size, sparse_feature_size).
For feature weights: torch.Tensor of shape
(batch_size, sparse_feature_size).
:return: The output of LSTM layer.
:rtype: torch.Tensor of shape (batch_size, num_classes)
"""
s = X[:-2]
f = X[-2]
w = X[-1]
batch_size = len(f)
# Generate lstm weight indices
x_idx = self._cuda(
torch.as_tensor(np.arange(1, self.settings["lstm_dim"] + 1)).repeat(
batch_size, 1
)
)
outputs = self._cuda(torch.Tensor([]))
# Calculate textual features from LSTMs
for i in range(len(s)):
state_word = self.lstms[0].init_hidden(batch_size)
output = self.lstms[0].forward(s[i][0], s[i][1], state_word)
outputs = torch.cat((outputs, output), 1)
# Concatenate textual features with multi-modal features
feaures = torch.cat((x_idx, f), 1)
weights = torch.cat((outputs, w), 1)
return self.sparse_linear(feaures, weights) | python | def forward(self, X):
"""Forward function.
:param X: The input (batch) of the model contains word sequences for lstm,
features and feature weights.
:type X: For word sequences: a list of torch.Tensor pair (word sequence
and word mask) of shape (batch_size, sequence_length).
For features: torch.Tensor of shape (batch_size, sparse_feature_size).
For feature weights: torch.Tensor of shape
(batch_size, sparse_feature_size).
:return: The output of LSTM layer.
:rtype: torch.Tensor of shape (batch_size, num_classes)
"""
s = X[:-2]
f = X[-2]
w = X[-1]
batch_size = len(f)
# Generate lstm weight indices
x_idx = self._cuda(
torch.as_tensor(np.arange(1, self.settings["lstm_dim"] + 1)).repeat(
batch_size, 1
)
)
outputs = self._cuda(torch.Tensor([]))
# Calculate textual features from LSTMs
for i in range(len(s)):
state_word = self.lstms[0].init_hidden(batch_size)
output = self.lstms[0].forward(s[i][0], s[i][1], state_word)
outputs = torch.cat((outputs, output), 1)
# Concatenate textual features with multi-modal features
feaures = torch.cat((x_idx, f), 1)
weights = torch.cat((outputs, w), 1)
return self.sparse_linear(feaures, weights) | ['def', 'forward', '(', 'self', ',', 'X', ')', ':', 's', '=', 'X', '[', ':', '-', '2', ']', 'f', '=', 'X', '[', '-', '2', ']', 'w', '=', 'X', '[', '-', '1', ']', 'batch_size', '=', 'len', '(', 'f', ')', '# Generate lstm weight indices', 'x_idx', '=', 'self', '.', '_cuda', '(', 'torch', '.', 'as_tensor', '(', 'np', '.', 'arange', '(', '1', ',', 'self', '.', 'settings', '[', '"lstm_dim"', ']', '+', '1', ')', ')', '.', 'repeat', '(', 'batch_size', ',', '1', ')', ')', 'outputs', '=', 'self', '.', '_cuda', '(', 'torch', '.', 'Tensor', '(', '[', ']', ')', ')', '# Calculate textual features from LSTMs', 'for', 'i', 'in', 'range', '(', 'len', '(', 's', ')', ')', ':', 'state_word', '=', 'self', '.', 'lstms', '[', '0', ']', '.', 'init_hidden', '(', 'batch_size', ')', 'output', '=', 'self', '.', 'lstms', '[', '0', ']', '.', 'forward', '(', 's', '[', 'i', ']', '[', '0', ']', ',', 's', '[', 'i', ']', '[', '1', ']', ',', 'state_word', ')', 'outputs', '=', 'torch', '.', 'cat', '(', '(', 'outputs', ',', 'output', ')', ',', '1', ')', '# Concatenate textual features with multi-modal features', 'feaures', '=', 'torch', '.', 'cat', '(', '(', 'x_idx', ',', 'f', ')', ',', '1', ')', 'weights', '=', 'torch', '.', 'cat', '(', '(', 'outputs', ',', 'w', ')', ',', '1', ')', 'return', 'self', '.', 'sparse_linear', '(', 'feaures', ',', 'weights', ')'] | Forward function.
:param X: The input (batch) of the model contains word sequences for lstm,
features and feature weights.
:type X: For word sequences: a list of torch.Tensor pair (word sequence
and word mask) of shape (batch_size, sequence_length).
For features: torch.Tensor of shape (batch_size, sparse_feature_size).
For feature weights: torch.Tensor of shape
(batch_size, sparse_feature_size).
:return: The output of LSTM layer.
:rtype: torch.Tensor of shape (batch_size, num_classes) | ['Forward', 'function', '.'] | train | https://github.com/HazyResearch/fonduer/blob/4520f86a716f03dcca458a9f4bddac75b4e7068f/src/fonduer/learning/disc_models/sparse_lstm.py#L25-L64 |
26 | google/grr | grr/server/grr_response_server/databases/mysql_flows.py | MySQLDBFlowMixin.CountFlowResultsByType | def CountFlowResultsByType(self, client_id, flow_id, cursor=None):
"""Returns counts of flow results grouped by result type."""
query = ("SELECT type, COUNT(*) FROM flow_results "
"FORCE INDEX (flow_results_by_client_id_flow_id_timestamp) "
"WHERE client_id = %s AND flow_id = %s "
"GROUP BY type")
args = [db_utils.ClientIDToInt(client_id), db_utils.FlowIDToInt(flow_id)]
cursor.execute(query, args)
return dict(cursor.fetchall()) | python | def CountFlowResultsByType(self, client_id, flow_id, cursor=None):
"""Returns counts of flow results grouped by result type."""
query = ("SELECT type, COUNT(*) FROM flow_results "
"FORCE INDEX (flow_results_by_client_id_flow_id_timestamp) "
"WHERE client_id = %s AND flow_id = %s "
"GROUP BY type")
args = [db_utils.ClientIDToInt(client_id), db_utils.FlowIDToInt(flow_id)]
cursor.execute(query, args)
return dict(cursor.fetchall()) | ['def', 'CountFlowResultsByType', '(', 'self', ',', 'client_id', ',', 'flow_id', ',', 'cursor', '=', 'None', ')', ':', 'query', '=', '(', '"SELECT type, COUNT(*) FROM flow_results "', '"FORCE INDEX (flow_results_by_client_id_flow_id_timestamp) "', '"WHERE client_id = %s AND flow_id = %s "', '"GROUP BY type"', ')', 'args', '=', '[', 'db_utils', '.', 'ClientIDToInt', '(', 'client_id', ')', ',', 'db_utils', '.', 'FlowIDToInt', '(', 'flow_id', ')', ']', 'cursor', '.', 'execute', '(', 'query', ',', 'args', ')', 'return', 'dict', '(', 'cursor', '.', 'fetchall', '(', ')', ')'] | Returns counts of flow results grouped by result type. | ['Returns', 'counts', 'of', 'flow', 'results', 'grouped', 'by', 'result', 'type', '.'] | train | https://github.com/google/grr/blob/5cef4e8e2f0d5df43ea4877e9c798e0bf60bfe74/grr/server/grr_response_server/databases/mysql_flows.py#L1350-L1360 |
27 | google/grr | grr/client/grr_response_client/client_actions/artifact_collector.py | ArtifactCollector._ProcessGrepSource | def _ProcessGrepSource(self, source):
"""Find files fulfilling regex conditions."""
attributes = source.base_source.attributes
paths = artifact_utils.InterpolateListKbAttributes(
attributes["paths"], self.knowledge_base,
self.ignore_interpolation_errors)
regex = utils.RegexListDisjunction(attributes["content_regex_list"])
condition = rdf_file_finder.FileFinderCondition.ContentsRegexMatch(
regex=regex, mode="ALL_HITS")
file_finder_action = rdf_file_finder.FileFinderAction.Stat()
request = rdf_file_finder.FileFinderArgs(
paths=paths,
action=file_finder_action,
conditions=[condition],
follow_links=True)
action = file_finder.FileFinderOSFromClient
yield action, request | python | def _ProcessGrepSource(self, source):
"""Find files fulfilling regex conditions."""
attributes = source.base_source.attributes
paths = artifact_utils.InterpolateListKbAttributes(
attributes["paths"], self.knowledge_base,
self.ignore_interpolation_errors)
regex = utils.RegexListDisjunction(attributes["content_regex_list"])
condition = rdf_file_finder.FileFinderCondition.ContentsRegexMatch(
regex=regex, mode="ALL_HITS")
file_finder_action = rdf_file_finder.FileFinderAction.Stat()
request = rdf_file_finder.FileFinderArgs(
paths=paths,
action=file_finder_action,
conditions=[condition],
follow_links=True)
action = file_finder.FileFinderOSFromClient
yield action, request | ['def', '_ProcessGrepSource', '(', 'self', ',', 'source', ')', ':', 'attributes', '=', 'source', '.', 'base_source', '.', 'attributes', 'paths', '=', 'artifact_utils', '.', 'InterpolateListKbAttributes', '(', 'attributes', '[', '"paths"', ']', ',', 'self', '.', 'knowledge_base', ',', 'self', '.', 'ignore_interpolation_errors', ')', 'regex', '=', 'utils', '.', 'RegexListDisjunction', '(', 'attributes', '[', '"content_regex_list"', ']', ')', 'condition', '=', 'rdf_file_finder', '.', 'FileFinderCondition', '.', 'ContentsRegexMatch', '(', 'regex', '=', 'regex', ',', 'mode', '=', '"ALL_HITS"', ')', 'file_finder_action', '=', 'rdf_file_finder', '.', 'FileFinderAction', '.', 'Stat', '(', ')', 'request', '=', 'rdf_file_finder', '.', 'FileFinderArgs', '(', 'paths', '=', 'paths', ',', 'action', '=', 'file_finder_action', ',', 'conditions', '=', '[', 'condition', ']', ',', 'follow_links', '=', 'True', ')', 'action', '=', 'file_finder', '.', 'FileFinderOSFromClient', 'yield', 'action', ',', 'request'] | Find files fulfilling regex conditions. | ['Find', 'files', 'fulfilling', 'regex', 'conditions', '.'] | train | https://github.com/google/grr/blob/5cef4e8e2f0d5df43ea4877e9c798e0bf60bfe74/grr/client/grr_response_client/client_actions/artifact_collector.py#L208-L225 |
28 | F5Networks/f5-common-python | f5/multi_device/cluster/__init__.py | ClusterManager.manage_extant | def manage_extant(self, **kwargs):
'''Manage an existing cluster
:param kwargs: dict -- keyword args in dict
'''
self._check_device_number(kwargs['devices'])
self.trust_domain = TrustDomain(
devices=kwargs['devices'],
partition=kwargs['device_group_partition']
)
self.device_group = DeviceGroup(**kwargs)
self.cluster = Cluster(**kwargs) | python | def manage_extant(self, **kwargs):
'''Manage an existing cluster
:param kwargs: dict -- keyword args in dict
'''
self._check_device_number(kwargs['devices'])
self.trust_domain = TrustDomain(
devices=kwargs['devices'],
partition=kwargs['device_group_partition']
)
self.device_group = DeviceGroup(**kwargs)
self.cluster = Cluster(**kwargs) | ['def', 'manage_extant', '(', 'self', ',', '*', '*', 'kwargs', ')', ':', 'self', '.', '_check_device_number', '(', 'kwargs', '[', "'devices'", ']', ')', 'self', '.', 'trust_domain', '=', 'TrustDomain', '(', 'devices', '=', 'kwargs', '[', "'devices'", ']', ',', 'partition', '=', 'kwargs', '[', "'device_group_partition'", ']', ')', 'self', '.', 'device_group', '=', 'DeviceGroup', '(', '*', '*', 'kwargs', ')', 'self', '.', 'cluster', '=', 'Cluster', '(', '*', '*', 'kwargs', ')'] | Manage an existing cluster
:param kwargs: dict -- keyword args in dict | ['Manage', 'an', 'existing', 'cluster'] | train | https://github.com/F5Networks/f5-common-python/blob/7e67d5acd757a60e3d5f8c88c534bd72208f5494/f5/multi_device/cluster/__init__.py#L136-L148 |
29 | google/python-gflags | gflags/flagvalues.py | FlagValues._GetFlagsDefinedByModule | def _GetFlagsDefinedByModule(self, module):
"""Returns the list of flags defined by a module.
Args:
module: A module object or a module name (a string).
Returns:
A new list of Flag objects. Caller may update this list as he
wishes: none of those changes will affect the internals of this
FlagValue object.
"""
if not isinstance(module, str):
module = module.__name__
return list(self.FlagsByModuleDict().get(module, [])) | python | def _GetFlagsDefinedByModule(self, module):
"""Returns the list of flags defined by a module.
Args:
module: A module object or a module name (a string).
Returns:
A new list of Flag objects. Caller may update this list as he
wishes: none of those changes will affect the internals of this
FlagValue object.
"""
if not isinstance(module, str):
module = module.__name__
return list(self.FlagsByModuleDict().get(module, [])) | ['def', '_GetFlagsDefinedByModule', '(', 'self', ',', 'module', ')', ':', 'if', 'not', 'isinstance', '(', 'module', ',', 'str', ')', ':', 'module', '=', 'module', '.', '__name__', 'return', 'list', '(', 'self', '.', 'FlagsByModuleDict', '(', ')', '.', 'get', '(', 'module', ',', '[', ']', ')', ')'] | Returns the list of flags defined by a module.
Args:
module: A module object or a module name (a string).
Returns:
A new list of Flag objects. Caller may update this list as he
wishes: none of those changes will affect the internals of this
FlagValue object. | ['Returns', 'the', 'list', 'of', 'flags', 'defined', 'by', 'a', 'module', '.'] | train | https://github.com/google/python-gflags/blob/4f06c3d0d6cbe9b1fb90ee9fb1c082b3bf9285f6/gflags/flagvalues.py#L265-L279 |
30 | openp2pdesign/makerlabs | makerlabs/hackaday_io.py | get_labs | def get_labs(format):
"""Gets Hackerspaces data from hackaday.io."""
hackerspaces_json = data_from_hackaday_io(hackaday_io_labs_map_url)
hackerspaces = {}
# Load all the Hackerspaces
for i in hackerspaces_json:
current_lab = Hackerspace()
current_lab.id = i["id"]
current_lab.url = "https://hackaday.io/hackerspace/" + current_lab.id
current_lab.name = i["name"]
if len(i["description"]) != 0:
current_lab.description = i["description"]
elif len(i["summary"]) != 0:
current_lab.description = i["summary"]
current_lab.created_at = i["moments"]["exact"]
# Check if there are coordinates
if i["latlon"] is not None:
latlon = json.loads(i["latlon"])
current_lab.latitude = latlon["lat"]
current_lab.longitude = latlon["lng"]
# Get country, county and city from them
country = geolocator.reverse(
[latlon["lat"], latlon["lng"]])
current_lab.country = country.raw[
"address"]["country"]
current_lab.address = country.raw["display_name"]
current_lab.address_1 = country.raw["display_name"]
current_lab.country_code = country.raw[
"address"]["country_code"]
current_lab.county = country.raw[
"address"]["state_district"]
current_lab.city = country.raw[
"address"]["city"]
current_lab.postal_code = country.raw[
"address"]["postcode"]
else:
# For labs without a location or coordinates
# add 0,0 as coordinates
current_lab.latitude = 0.0
current_lab.longitude = 0.0
# Add the lab
hackerspaces[i["name"]] = current_lab
# Return a dictiornary / json
if format.lower() == "dict" or format.lower() == "json":
output = {}
for j in hackerspaces:
output[j] = hackerspaces[j].__dict__
# Return a geojson
elif format.lower() == "geojson" or format.lower() == "geo":
labs_list = []
for l in hackerspaces:
single = hackerspaces[l].__dict__
single_lab = Feature(
type="Feature",
geometry=Point((single["latitude"], single["longitude"])),
properties=single)
labs_list.append(single_lab)
output = dumps(FeatureCollection(labs_list))
# Return a Pandas DataFrame
elif format.lower() == "pandas" or format.lower() == "dataframe":
output = {}
for j in hackerspaces:
output[j] = hackerspaces[j].__dict__
# Transform the dict into a Pandas DataFrame
output = pd.DataFrame.from_dict(output)
output = output.transpose()
# Return an object
elif format.lower() == "object" or format.lower() == "obj":
output = hackerspaces
# Default: return an oject
else:
output = hackerspaces
# Return a proper json
if format.lower() == "json":
output = json.dumps(output)
return output | python | def get_labs(format):
"""Gets Hackerspaces data from hackaday.io."""
hackerspaces_json = data_from_hackaday_io(hackaday_io_labs_map_url)
hackerspaces = {}
# Load all the Hackerspaces
for i in hackerspaces_json:
current_lab = Hackerspace()
current_lab.id = i["id"]
current_lab.url = "https://hackaday.io/hackerspace/" + current_lab.id
current_lab.name = i["name"]
if len(i["description"]) != 0:
current_lab.description = i["description"]
elif len(i["summary"]) != 0:
current_lab.description = i["summary"]
current_lab.created_at = i["moments"]["exact"]
# Check if there are coordinates
if i["latlon"] is not None:
latlon = json.loads(i["latlon"])
current_lab.latitude = latlon["lat"]
current_lab.longitude = latlon["lng"]
# Get country, county and city from them
country = geolocator.reverse(
[latlon["lat"], latlon["lng"]])
current_lab.country = country.raw[
"address"]["country"]
current_lab.address = country.raw["display_name"]
current_lab.address_1 = country.raw["display_name"]
current_lab.country_code = country.raw[
"address"]["country_code"]
current_lab.county = country.raw[
"address"]["state_district"]
current_lab.city = country.raw[
"address"]["city"]
current_lab.postal_code = country.raw[
"address"]["postcode"]
else:
# For labs without a location or coordinates
# add 0,0 as coordinates
current_lab.latitude = 0.0
current_lab.longitude = 0.0
# Add the lab
hackerspaces[i["name"]] = current_lab
# Return a dictiornary / json
if format.lower() == "dict" or format.lower() == "json":
output = {}
for j in hackerspaces:
output[j] = hackerspaces[j].__dict__
# Return a geojson
elif format.lower() == "geojson" or format.lower() == "geo":
labs_list = []
for l in hackerspaces:
single = hackerspaces[l].__dict__
single_lab = Feature(
type="Feature",
geometry=Point((single["latitude"], single["longitude"])),
properties=single)
labs_list.append(single_lab)
output = dumps(FeatureCollection(labs_list))
# Return a Pandas DataFrame
elif format.lower() == "pandas" or format.lower() == "dataframe":
output = {}
for j in hackerspaces:
output[j] = hackerspaces[j].__dict__
# Transform the dict into a Pandas DataFrame
output = pd.DataFrame.from_dict(output)
output = output.transpose()
# Return an object
elif format.lower() == "object" or format.lower() == "obj":
output = hackerspaces
# Default: return an oject
else:
output = hackerspaces
# Return a proper json
if format.lower() == "json":
output = json.dumps(output)
return output | ['def', 'get_labs', '(', 'format', ')', ':', 'hackerspaces_json', '=', 'data_from_hackaday_io', '(', 'hackaday_io_labs_map_url', ')', 'hackerspaces', '=', '{', '}', '# Load all the Hackerspaces', 'for', 'i', 'in', 'hackerspaces_json', ':', 'current_lab', '=', 'Hackerspace', '(', ')', 'current_lab', '.', 'id', '=', 'i', '[', '"id"', ']', 'current_lab', '.', 'url', '=', '"https://hackaday.io/hackerspace/"', '+', 'current_lab', '.', 'id', 'current_lab', '.', 'name', '=', 'i', '[', '"name"', ']', 'if', 'len', '(', 'i', '[', '"description"', ']', ')', '!=', '0', ':', 'current_lab', '.', 'description', '=', 'i', '[', '"description"', ']', 'elif', 'len', '(', 'i', '[', '"summary"', ']', ')', '!=', '0', ':', 'current_lab', '.', 'description', '=', 'i', '[', '"summary"', ']', 'current_lab', '.', 'created_at', '=', 'i', '[', '"moments"', ']', '[', '"exact"', ']', '# Check if there are coordinates', 'if', 'i', '[', '"latlon"', ']', 'is', 'not', 'None', ':', 'latlon', '=', 'json', '.', 'loads', '(', 'i', '[', '"latlon"', ']', ')', 'current_lab', '.', 'latitude', '=', 'latlon', '[', '"lat"', ']', 'current_lab', '.', 'longitude', '=', 'latlon', '[', '"lng"', ']', '# Get country, county and city from them', 'country', '=', 'geolocator', '.', 'reverse', '(', '[', 'latlon', '[', '"lat"', ']', ',', 'latlon', '[', '"lng"', ']', ']', ')', 'current_lab', '.', 'country', '=', 'country', '.', 'raw', '[', '"address"', ']', '[', '"country"', ']', 'current_lab', '.', 'address', '=', 'country', '.', 'raw', '[', '"display_name"', ']', 'current_lab', '.', 'address_1', '=', 'country', '.', 'raw', '[', '"display_name"', ']', 'current_lab', '.', 'country_code', '=', 'country', '.', 'raw', '[', '"address"', ']', '[', '"country_code"', ']', 'current_lab', '.', 'county', '=', 'country', '.', 'raw', '[', '"address"', ']', '[', '"state_district"', ']', 'current_lab', '.', 'city', '=', 'country', '.', 'raw', '[', '"address"', ']', '[', '"city"', ']', 'current_lab', '.', 'postal_code', '=', 'country', '.', 'raw', '[', '"address"', ']', '[', '"postcode"', ']', 'else', ':', '# For labs without a location or coordinates', '# add 0,0 as coordinates', 'current_lab', '.', 'latitude', '=', '0.0', 'current_lab', '.', 'longitude', '=', '0.0', '# Add the lab', 'hackerspaces', '[', 'i', '[', '"name"', ']', ']', '=', 'current_lab', '# Return a dictiornary / json', 'if', 'format', '.', 'lower', '(', ')', '==', '"dict"', 'or', 'format', '.', 'lower', '(', ')', '==', '"json"', ':', 'output', '=', '{', '}', 'for', 'j', 'in', 'hackerspaces', ':', 'output', '[', 'j', ']', '=', 'hackerspaces', '[', 'j', ']', '.', '__dict__', '# Return a geojson', 'elif', 'format', '.', 'lower', '(', ')', '==', '"geojson"', 'or', 'format', '.', 'lower', '(', ')', '==', '"geo"', ':', 'labs_list', '=', '[', ']', 'for', 'l', 'in', 'hackerspaces', ':', 'single', '=', 'hackerspaces', '[', 'l', ']', '.', '__dict__', 'single_lab', '=', 'Feature', '(', 'type', '=', '"Feature"', ',', 'geometry', '=', 'Point', '(', '(', 'single', '[', '"latitude"', ']', ',', 'single', '[', '"longitude"', ']', ')', ')', ',', 'properties', '=', 'single', ')', 'labs_list', '.', 'append', '(', 'single_lab', ')', 'output', '=', 'dumps', '(', 'FeatureCollection', '(', 'labs_list', ')', ')', '# Return a Pandas DataFrame', 'elif', 'format', '.', 'lower', '(', ')', '==', '"pandas"', 'or', 'format', '.', 'lower', '(', ')', '==', '"dataframe"', ':', 'output', '=', '{', '}', 'for', 'j', 'in', 'hackerspaces', ':', 'output', '[', 'j', ']', '=', 'hackerspaces', '[', 'j', ']', '.', '__dict__', '# Transform the dict into a Pandas DataFrame', 'output', '=', 'pd', '.', 'DataFrame', '.', 'from_dict', '(', 'output', ')', 'output', '=', 'output', '.', 'transpose', '(', ')', '# Return an object', 'elif', 'format', '.', 'lower', '(', ')', '==', '"object"', 'or', 'format', '.', 'lower', '(', ')', '==', '"obj"', ':', 'output', '=', 'hackerspaces', '# Default: return an oject', 'else', ':', 'output', '=', 'hackerspaces', '# Return a proper json', 'if', 'format', '.', 'lower', '(', ')', '==', '"json"', ':', 'output', '=', 'json', '.', 'dumps', '(', 'output', ')', 'return', 'output'] | Gets Hackerspaces data from hackaday.io. | ['Gets', 'Hackerspaces', 'data', 'from', 'hackaday', '.', 'io', '.'] | train | https://github.com/openp2pdesign/makerlabs/blob/b5838440174f10d370abb671358db9a99d7739fd/makerlabs/hackaday_io.py#L57-L137 |
31 | Azure/blobxfer | cli/cli.py | upload | def upload(ctx):
"""Upload files to Azure Storage"""
settings.add_cli_options(ctx.cli_options, settings.TransferAction.Upload)
ctx.initialize(settings.TransferAction.Upload)
specs = settings.create_upload_specifications(
ctx.cli_options, ctx.config)
del ctx.cli_options
for spec in specs:
blobxfer.api.Uploader(
ctx.general_options, ctx.credentials, spec
).start() | python | def upload(ctx):
"""Upload files to Azure Storage"""
settings.add_cli_options(ctx.cli_options, settings.TransferAction.Upload)
ctx.initialize(settings.TransferAction.Upload)
specs = settings.create_upload_specifications(
ctx.cli_options, ctx.config)
del ctx.cli_options
for spec in specs:
blobxfer.api.Uploader(
ctx.general_options, ctx.credentials, spec
).start() | ['def', 'upload', '(', 'ctx', ')', ':', 'settings', '.', 'add_cli_options', '(', 'ctx', '.', 'cli_options', ',', 'settings', '.', 'TransferAction', '.', 'Upload', ')', 'ctx', '.', 'initialize', '(', 'settings', '.', 'TransferAction', '.', 'Upload', ')', 'specs', '=', 'settings', '.', 'create_upload_specifications', '(', 'ctx', '.', 'cli_options', ',', 'ctx', '.', 'config', ')', 'del', 'ctx', '.', 'cli_options', 'for', 'spec', 'in', 'specs', ':', 'blobxfer', '.', 'api', '.', 'Uploader', '(', 'ctx', '.', 'general_options', ',', 'ctx', '.', 'credentials', ',', 'spec', ')', '.', 'start', '(', ')'] | Upload files to Azure Storage | ['Upload', 'files', 'to', 'Azure', 'Storage'] | train | https://github.com/Azure/blobxfer/blob/3eccbe7530cc6a20ab2d30f9e034b6f021817f34/cli/cli.py#L1106-L1116 |
32 | mitsei/dlkit | dlkit/json_/resource/sessions.py | ResourceBinAssignmentSession.get_assignable_bin_ids | def get_assignable_bin_ids(self, bin_id):
"""Gets a list of bins including and under the given bin node in which any resource can be assigned.
arg: bin_id (osid.id.Id): the ``Id`` of the ``Bin``
return: (osid.id.IdList) - list of assignable bin ``Ids``
raise: NullArgument - ``bin_id`` is ``null``
raise: OperationFailed - unable to complete request
*compliance: mandatory -- This method must be implemented.*
"""
# Implemented from template for
# osid.resource.ResourceBinAssignmentSession.get_assignable_bin_ids
# This will likely be overridden by an authorization adapter
mgr = self._get_provider_manager('RESOURCE', local=True)
lookup_session = mgr.get_bin_lookup_session(proxy=self._proxy)
bins = lookup_session.get_bins()
id_list = []
for bin in bins:
id_list.append(bin.get_id())
return IdList(id_list) | python | def get_assignable_bin_ids(self, bin_id):
"""Gets a list of bins including and under the given bin node in which any resource can be assigned.
arg: bin_id (osid.id.Id): the ``Id`` of the ``Bin``
return: (osid.id.IdList) - list of assignable bin ``Ids``
raise: NullArgument - ``bin_id`` is ``null``
raise: OperationFailed - unable to complete request
*compliance: mandatory -- This method must be implemented.*
"""
# Implemented from template for
# osid.resource.ResourceBinAssignmentSession.get_assignable_bin_ids
# This will likely be overridden by an authorization adapter
mgr = self._get_provider_manager('RESOURCE', local=True)
lookup_session = mgr.get_bin_lookup_session(proxy=self._proxy)
bins = lookup_session.get_bins()
id_list = []
for bin in bins:
id_list.append(bin.get_id())
return IdList(id_list) | ['def', 'get_assignable_bin_ids', '(', 'self', ',', 'bin_id', ')', ':', '# Implemented from template for', '# osid.resource.ResourceBinAssignmentSession.get_assignable_bin_ids', '# This will likely be overridden by an authorization adapter', 'mgr', '=', 'self', '.', '_get_provider_manager', '(', "'RESOURCE'", ',', 'local', '=', 'True', ')', 'lookup_session', '=', 'mgr', '.', 'get_bin_lookup_session', '(', 'proxy', '=', 'self', '.', '_proxy', ')', 'bins', '=', 'lookup_session', '.', 'get_bins', '(', ')', 'id_list', '=', '[', ']', 'for', 'bin', 'in', 'bins', ':', 'id_list', '.', 'append', '(', 'bin', '.', 'get_id', '(', ')', ')', 'return', 'IdList', '(', 'id_list', ')'] | Gets a list of bins including and under the given bin node in which any resource can be assigned.
arg: bin_id (osid.id.Id): the ``Id`` of the ``Bin``
return: (osid.id.IdList) - list of assignable bin ``Ids``
raise: NullArgument - ``bin_id`` is ``null``
raise: OperationFailed - unable to complete request
*compliance: mandatory -- This method must be implemented.* | ['Gets', 'a', 'list', 'of', 'bins', 'including', 'and', 'under', 'the', 'given', 'bin', 'node', 'in', 'which', 'any', 'resource', 'can', 'be', 'assigned', '.'] | train | https://github.com/mitsei/dlkit/blob/445f968a175d61c8d92c0f617a3c17dc1dc7c584/dlkit/json_/resource/sessions.py#L1562-L1581 |
33 | sbusard/wagoner | wagoner/table.py | Table.check | def check(self):
"""
Check that this table is complete, that is, every character of this
table can be followed by a new character.
:return: True if the table is complete, False otherwise.
"""
for character, followers in self.items():
for follower in followers:
if follower not in self:
return False
return True | python | def check(self):
"""
Check that this table is complete, that is, every character of this
table can be followed by a new character.
:return: True if the table is complete, False otherwise.
"""
for character, followers in self.items():
for follower in followers:
if follower not in self:
return False
return True | ['def', 'check', '(', 'self', ')', ':', 'for', 'character', ',', 'followers', 'in', 'self', '.', 'items', '(', ')', ':', 'for', 'follower', 'in', 'followers', ':', 'if', 'follower', 'not', 'in', 'self', ':', 'return', 'False', 'return', 'True'] | Check that this table is complete, that is, every character of this
table can be followed by a new character.
:return: True if the table is complete, False otherwise. | ['Check', 'that', 'this', 'table', 'is', 'complete', 'that', 'is', 'every', 'character', 'of', 'this', 'table', 'can', 'be', 'followed', 'by', 'a', 'new', 'character', '.'] | train | https://github.com/sbusard/wagoner/blob/7f83d66bbd0e009e4d4232ffdf319bd5a2a5683b/wagoner/table.py#L81-L92 |
34 | DataDog/integrations-core | openstack/datadog_checks/openstack/openstack.py | KeystoneCatalog.get_neutron_endpoint | def get_neutron_endpoint(cls, json_resp):
"""
Parse the service catalog returned by the Identity API for an endpoint matching the Neutron service
Sends a CRITICAL service check when none are found registered in the Catalog
"""
catalog = json_resp.get('token', {}).get('catalog', [])
match = 'neutron'
neutron_endpoint = None
for entry in catalog:
if entry['name'] == match or 'Networking' in entry['name']:
valid_endpoints = {}
for ep in entry['endpoints']:
interface = ep.get('interface', '')
if interface in ['public', 'internal']:
valid_endpoints[interface] = ep['url']
if valid_endpoints:
# Favor public endpoints over internal
neutron_endpoint = valid_endpoints.get("public", valid_endpoints.get("internal"))
break
else:
raise MissingNeutronEndpoint()
return neutron_endpoint | python | def get_neutron_endpoint(cls, json_resp):
"""
Parse the service catalog returned by the Identity API for an endpoint matching the Neutron service
Sends a CRITICAL service check when none are found registered in the Catalog
"""
catalog = json_resp.get('token', {}).get('catalog', [])
match = 'neutron'
neutron_endpoint = None
for entry in catalog:
if entry['name'] == match or 'Networking' in entry['name']:
valid_endpoints = {}
for ep in entry['endpoints']:
interface = ep.get('interface', '')
if interface in ['public', 'internal']:
valid_endpoints[interface] = ep['url']
if valid_endpoints:
# Favor public endpoints over internal
neutron_endpoint = valid_endpoints.get("public", valid_endpoints.get("internal"))
break
else:
raise MissingNeutronEndpoint()
return neutron_endpoint | ['def', 'get_neutron_endpoint', '(', 'cls', ',', 'json_resp', ')', ':', 'catalog', '=', 'json_resp', '.', 'get', '(', "'token'", ',', '{', '}', ')', '.', 'get', '(', "'catalog'", ',', '[', ']', ')', 'match', '=', "'neutron'", 'neutron_endpoint', '=', 'None', 'for', 'entry', 'in', 'catalog', ':', 'if', 'entry', '[', "'name'", ']', '==', 'match', 'or', "'Networking'", 'in', 'entry', '[', "'name'", ']', ':', 'valid_endpoints', '=', '{', '}', 'for', 'ep', 'in', 'entry', '[', "'endpoints'", ']', ':', 'interface', '=', 'ep', '.', 'get', '(', "'interface'", ',', "''", ')', 'if', 'interface', 'in', '[', "'public'", ',', "'internal'", ']', ':', 'valid_endpoints', '[', 'interface', ']', '=', 'ep', '[', "'url'", ']', 'if', 'valid_endpoints', ':', '# Favor public endpoints over internal', 'neutron_endpoint', '=', 'valid_endpoints', '.', 'get', '(', '"public"', ',', 'valid_endpoints', '.', 'get', '(', '"internal"', ')', ')', 'break', 'else', ':', 'raise', 'MissingNeutronEndpoint', '(', ')', 'return', 'neutron_endpoint'] | Parse the service catalog returned by the Identity API for an endpoint matching the Neutron service
Sends a CRITICAL service check when none are found registered in the Catalog | ['Parse', 'the', 'service', 'catalog', 'returned', 'by', 'the', 'Identity', 'API', 'for', 'an', 'endpoint', 'matching', 'the', 'Neutron', 'service', 'Sends', 'a', 'CRITICAL', 'service', 'check', 'when', 'none', 'are', 'found', 'registered', 'in', 'the', 'Catalog'] | train | https://github.com/DataDog/integrations-core/blob/ebd41c873cf9f97a8c51bf9459bc6a7536af8acd/openstack/datadog_checks/openstack/openstack.py#L455-L479 |
35 | materialsproject/pymatgen | pymatgen/io/abinit/flows.py | Flow.validate_json_schema | def validate_json_schema(self):
"""Validate the JSON schema. Return list of errors."""
errors = []
for work in self:
for task in work:
if not task.get_results().validate_json_schema():
errors.append(task)
if not work.get_results().validate_json_schema():
errors.append(work)
if not self.get_results().validate_json_schema():
errors.append(self)
return errors | python | def validate_json_schema(self):
"""Validate the JSON schema. Return list of errors."""
errors = []
for work in self:
for task in work:
if not task.get_results().validate_json_schema():
errors.append(task)
if not work.get_results().validate_json_schema():
errors.append(work)
if not self.get_results().validate_json_schema():
errors.append(self)
return errors | ['def', 'validate_json_schema', '(', 'self', ')', ':', 'errors', '=', '[', ']', 'for', 'work', 'in', 'self', ':', 'for', 'task', 'in', 'work', ':', 'if', 'not', 'task', '.', 'get_results', '(', ')', '.', 'validate_json_schema', '(', ')', ':', 'errors', '.', 'append', '(', 'task', ')', 'if', 'not', 'work', '.', 'get_results', '(', ')', '.', 'validate_json_schema', '(', ')', ':', 'errors', '.', 'append', '(', 'work', ')', 'if', 'not', 'self', '.', 'get_results', '(', ')', '.', 'validate_json_schema', '(', ')', ':', 'errors', '.', 'append', '(', 'self', ')', 'return', 'errors'] | Validate the JSON schema. Return list of errors. | ['Validate', 'the', 'JSON', 'schema', '.', 'Return', 'list', 'of', 'errors', '.'] | train | https://github.com/materialsproject/pymatgen/blob/4ca558cf72f8d5f8a1f21dfdfc0181a971c186da/pymatgen/io/abinit/flows.py#L426-L439 |
36 | ga4gh/ga4gh-server | ga4gh/server/datamodel/datasets.py | Dataset.getRnaQuantificationSetByName | def getRnaQuantificationSetByName(self, name):
"""
Returns the RnaQuantification set with the specified name, or raises
an exception otherwise.
"""
if name not in self._rnaQuantificationSetNameMap:
raise exceptions.RnaQuantificationSetNameNotFoundException(name)
return self._rnaQuantificationSetNameMap[name] | python | def getRnaQuantificationSetByName(self, name):
"""
Returns the RnaQuantification set with the specified name, or raises
an exception otherwise.
"""
if name not in self._rnaQuantificationSetNameMap:
raise exceptions.RnaQuantificationSetNameNotFoundException(name)
return self._rnaQuantificationSetNameMap[name] | ['def', 'getRnaQuantificationSetByName', '(', 'self', ',', 'name', ')', ':', 'if', 'name', 'not', 'in', 'self', '.', '_rnaQuantificationSetNameMap', ':', 'raise', 'exceptions', '.', 'RnaQuantificationSetNameNotFoundException', '(', 'name', ')', 'return', 'self', '.', '_rnaQuantificationSetNameMap', '[', 'name', ']'] | Returns the RnaQuantification set with the specified name, or raises
an exception otherwise. | ['Returns', 'the', 'RnaQuantification', 'set', 'with', 'the', 'specified', 'name', 'or', 'raises', 'an', 'exception', 'otherwise', '.'] | train | https://github.com/ga4gh/ga4gh-server/blob/1aa18922ef136db8604f6f098cb1732cba6f2a76/ga4gh/server/datamodel/datasets.py#L402-L409 |
37 | dpnova/python-xprintidle | xprintidle.py | _create_modulename | def _create_modulename(cdef_sources, source, sys_version):
"""
This is the same as CFFI's create modulename except we don't include the
CFFI version.
"""
key = '\x00'.join([sys_version[:3], source, cdef_sources])
key = key.encode('utf-8')
k1 = hex(binascii.crc32(key[0::2]) & 0xffffffff)
k1 = k1.lstrip('0x').rstrip('L')
k2 = hex(binascii.crc32(key[1::2]) & 0xffffffff)
k2 = k2.lstrip('0').rstrip('L')
return '_xprintidle_cffi_{0}{1}'.format(k1, k2) | python | def _create_modulename(cdef_sources, source, sys_version):
"""
This is the same as CFFI's create modulename except we don't include the
CFFI version.
"""
key = '\x00'.join([sys_version[:3], source, cdef_sources])
key = key.encode('utf-8')
k1 = hex(binascii.crc32(key[0::2]) & 0xffffffff)
k1 = k1.lstrip('0x').rstrip('L')
k2 = hex(binascii.crc32(key[1::2]) & 0xffffffff)
k2 = k2.lstrip('0').rstrip('L')
return '_xprintidle_cffi_{0}{1}'.format(k1, k2) | ['def', '_create_modulename', '(', 'cdef_sources', ',', 'source', ',', 'sys_version', ')', ':', 'key', '=', "'\\x00'", '.', 'join', '(', '[', 'sys_version', '[', ':', '3', ']', ',', 'source', ',', 'cdef_sources', ']', ')', 'key', '=', 'key', '.', 'encode', '(', "'utf-8'", ')', 'k1', '=', 'hex', '(', 'binascii', '.', 'crc32', '(', 'key', '[', '0', ':', ':', '2', ']', ')', '&', '0xffffffff', ')', 'k1', '=', 'k1', '.', 'lstrip', '(', "'0x'", ')', '.', 'rstrip', '(', "'L'", ')', 'k2', '=', 'hex', '(', 'binascii', '.', 'crc32', '(', 'key', '[', '1', ':', ':', '2', ']', ')', '&', '0xffffffff', ')', 'k2', '=', 'k2', '.', 'lstrip', '(', "'0'", ')', '.', 'rstrip', '(', "'L'", ')', 'return', "'_xprintidle_cffi_{0}{1}'", '.', 'format', '(', 'k1', ',', 'k2', ')'] | This is the same as CFFI's create modulename except we don't include the
CFFI version. | ['This', 'is', 'the', 'same', 'as', 'CFFI', 's', 'create', 'modulename', 'except', 'we', 'don', 't', 'include', 'the', 'CFFI', 'version', '.'] | train | https://github.com/dpnova/python-xprintidle/blob/cc8f3c13a5dd578073d20f3d42208fcb8e1983b8/xprintidle.py#L10-L21 |
38 | inasafe/inasafe | safe/gui/tools/batch/batch_dialog.py | BatchDialog.populate_table | def populate_table(self, scenario_directory):
""" Populate table with files from scenario_directory directory.
:param scenario_directory: Path where .txt & .py reside.
:type scenario_directory: QString
"""
parsed_files = []
unparsed_files = []
self.table.clearContents()
# Block signal to allow update checking only when the table is ready
self.table.blockSignals(True)
# NOTE(gigih): need this line to remove existing rows
self.table.setRowCount(0)
if not os.path.exists(scenario_directory):
# LOGGER.info('Scenario directory does not exist: %s' % path)
return
# only support .py and .txt files
for current_path in os.listdir(scenario_directory):
extension = os.path.splitext(current_path)[1]
absolute_path = os.path.join(scenario_directory, current_path)
if extension == '.py':
append_row(self.table, current_path, absolute_path)
elif extension == '.txt':
# insert scenarios from file into table widget
try:
scenarios = read_scenarios(absolute_path)
validate_scenario(scenarios, scenario_directory)
for key, value in list(scenarios.items()):
append_row(self.table, key, value)
parsed_files.append(current_path)
except Error:
unparsed_files.append(current_path)
# unblock signal
self.table.blockSignals(False) | python | def populate_table(self, scenario_directory):
""" Populate table with files from scenario_directory directory.
:param scenario_directory: Path where .txt & .py reside.
:type scenario_directory: QString
"""
parsed_files = []
unparsed_files = []
self.table.clearContents()
# Block signal to allow update checking only when the table is ready
self.table.blockSignals(True)
# NOTE(gigih): need this line to remove existing rows
self.table.setRowCount(0)
if not os.path.exists(scenario_directory):
# LOGGER.info('Scenario directory does not exist: %s' % path)
return
# only support .py and .txt files
for current_path in os.listdir(scenario_directory):
extension = os.path.splitext(current_path)[1]
absolute_path = os.path.join(scenario_directory, current_path)
if extension == '.py':
append_row(self.table, current_path, absolute_path)
elif extension == '.txt':
# insert scenarios from file into table widget
try:
scenarios = read_scenarios(absolute_path)
validate_scenario(scenarios, scenario_directory)
for key, value in list(scenarios.items()):
append_row(self.table, key, value)
parsed_files.append(current_path)
except Error:
unparsed_files.append(current_path)
# unblock signal
self.table.blockSignals(False) | ['def', 'populate_table', '(', 'self', ',', 'scenario_directory', ')', ':', 'parsed_files', '=', '[', ']', 'unparsed_files', '=', '[', ']', 'self', '.', 'table', '.', 'clearContents', '(', ')', '# Block signal to allow update checking only when the table is ready', 'self', '.', 'table', '.', 'blockSignals', '(', 'True', ')', '# NOTE(gigih): need this line to remove existing rows', 'self', '.', 'table', '.', 'setRowCount', '(', '0', ')', 'if', 'not', 'os', '.', 'path', '.', 'exists', '(', 'scenario_directory', ')', ':', "# LOGGER.info('Scenario directory does not exist: %s' % path)", 'return', '# only support .py and .txt files', 'for', 'current_path', 'in', 'os', '.', 'listdir', '(', 'scenario_directory', ')', ':', 'extension', '=', 'os', '.', 'path', '.', 'splitext', '(', 'current_path', ')', '[', '1', ']', 'absolute_path', '=', 'os', '.', 'path', '.', 'join', '(', 'scenario_directory', ',', 'current_path', ')', 'if', 'extension', '==', "'.py'", ':', 'append_row', '(', 'self', '.', 'table', ',', 'current_path', ',', 'absolute_path', ')', 'elif', 'extension', '==', "'.txt'", ':', '# insert scenarios from file into table widget', 'try', ':', 'scenarios', '=', 'read_scenarios', '(', 'absolute_path', ')', 'validate_scenario', '(', 'scenarios', ',', 'scenario_directory', ')', 'for', 'key', ',', 'value', 'in', 'list', '(', 'scenarios', '.', 'items', '(', ')', ')', ':', 'append_row', '(', 'self', '.', 'table', ',', 'key', ',', 'value', ')', 'parsed_files', '.', 'append', '(', 'current_path', ')', 'except', 'Error', ':', 'unparsed_files', '.', 'append', '(', 'current_path', ')', '# unblock signal', 'self', '.', 'table', '.', 'blockSignals', '(', 'False', ')'] | Populate table with files from scenario_directory directory.
:param scenario_directory: Path where .txt & .py reside.
:type scenario_directory: QString | ['Populate', 'table', 'with', 'files', 'from', 'scenario_directory', 'directory', '.'] | train | https://github.com/inasafe/inasafe/blob/831d60abba919f6d481dc94a8d988cc205130724/safe/gui/tools/batch/batch_dialog.py#L213-L251 |
39 | sibirrer/lenstronomy | lenstronomy/Sampling/likelihood.py | LikelihoodModule.logL | def logL(self, args):
"""
routine to compute X2 given variable parameters for a MCMC/PSO chain
"""
#extract parameters
kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps, kwargs_cosmo = self.param.args2kwargs(args)
#generate image and computes likelihood
self._reset_point_source_cache(bool=True)
logL = 0
if self._check_bounds is True:
penalty, bound_hit = self.check_bounds(args, self._lower_limit, self._upper_limit)
logL -= penalty
if bound_hit:
return logL, None
if self._image_likelihood is True:
logL += self.image_likelihood.logL(kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps)
if self._time_delay_likelihood is True:
logL += self.time_delay_likelihood.logL(kwargs_lens, kwargs_ps, kwargs_cosmo)
if self._check_positive_flux is True:
bool = self.param.check_positive_flux(kwargs_source, kwargs_lens_light, kwargs_ps)
if bool is False:
logL -= 10**10
if self._flux_ratio_likelihood is True:
logL += self.flux_ratio_likelihood.logL(kwargs_lens, kwargs_ps, kwargs_cosmo)
logL += self._position_likelihood.logL(kwargs_lens, kwargs_ps, kwargs_cosmo)
logL += self._prior_likelihood.logL(kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps, kwargs_cosmo)
self._reset_point_source_cache(bool=False)
return logL, None | python | def logL(self, args):
"""
routine to compute X2 given variable parameters for a MCMC/PSO chain
"""
#extract parameters
kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps, kwargs_cosmo = self.param.args2kwargs(args)
#generate image and computes likelihood
self._reset_point_source_cache(bool=True)
logL = 0
if self._check_bounds is True:
penalty, bound_hit = self.check_bounds(args, self._lower_limit, self._upper_limit)
logL -= penalty
if bound_hit:
return logL, None
if self._image_likelihood is True:
logL += self.image_likelihood.logL(kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps)
if self._time_delay_likelihood is True:
logL += self.time_delay_likelihood.logL(kwargs_lens, kwargs_ps, kwargs_cosmo)
if self._check_positive_flux is True:
bool = self.param.check_positive_flux(kwargs_source, kwargs_lens_light, kwargs_ps)
if bool is False:
logL -= 10**10
if self._flux_ratio_likelihood is True:
logL += self.flux_ratio_likelihood.logL(kwargs_lens, kwargs_ps, kwargs_cosmo)
logL += self._position_likelihood.logL(kwargs_lens, kwargs_ps, kwargs_cosmo)
logL += self._prior_likelihood.logL(kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps, kwargs_cosmo)
self._reset_point_source_cache(bool=False)
return logL, None | ['def', 'logL', '(', 'self', ',', 'args', ')', ':', '#extract parameters', 'kwargs_lens', ',', 'kwargs_source', ',', 'kwargs_lens_light', ',', 'kwargs_ps', ',', 'kwargs_cosmo', '=', 'self', '.', 'param', '.', 'args2kwargs', '(', 'args', ')', '#generate image and computes likelihood', 'self', '.', '_reset_point_source_cache', '(', 'bool', '=', 'True', ')', 'logL', '=', '0', 'if', 'self', '.', '_check_bounds', 'is', 'True', ':', 'penalty', ',', 'bound_hit', '=', 'self', '.', 'check_bounds', '(', 'args', ',', 'self', '.', '_lower_limit', ',', 'self', '.', '_upper_limit', ')', 'logL', '-=', 'penalty', 'if', 'bound_hit', ':', 'return', 'logL', ',', 'None', 'if', 'self', '.', '_image_likelihood', 'is', 'True', ':', 'logL', '+=', 'self', '.', 'image_likelihood', '.', 'logL', '(', 'kwargs_lens', ',', 'kwargs_source', ',', 'kwargs_lens_light', ',', 'kwargs_ps', ')', 'if', 'self', '.', '_time_delay_likelihood', 'is', 'True', ':', 'logL', '+=', 'self', '.', 'time_delay_likelihood', '.', 'logL', '(', 'kwargs_lens', ',', 'kwargs_ps', ',', 'kwargs_cosmo', ')', 'if', 'self', '.', '_check_positive_flux', 'is', 'True', ':', 'bool', '=', 'self', '.', 'param', '.', 'check_positive_flux', '(', 'kwargs_source', ',', 'kwargs_lens_light', ',', 'kwargs_ps', ')', 'if', 'bool', 'is', 'False', ':', 'logL', '-=', '10', '**', '10', 'if', 'self', '.', '_flux_ratio_likelihood', 'is', 'True', ':', 'logL', '+=', 'self', '.', 'flux_ratio_likelihood', '.', 'logL', '(', 'kwargs_lens', ',', 'kwargs_ps', ',', 'kwargs_cosmo', ')', 'logL', '+=', 'self', '.', '_position_likelihood', '.', 'logL', '(', 'kwargs_lens', ',', 'kwargs_ps', ',', 'kwargs_cosmo', ')', 'logL', '+=', 'self', '.', '_prior_likelihood', '.', 'logL', '(', 'kwargs_lens', ',', 'kwargs_source', ',', 'kwargs_lens_light', ',', 'kwargs_ps', ',', 'kwargs_cosmo', ')', 'self', '.', '_reset_point_source_cache', '(', 'bool', '=', 'False', ')', 'return', 'logL', ',', 'None'] | routine to compute X2 given variable parameters for a MCMC/PSO chain | ['routine', 'to', 'compute', 'X2', 'given', 'variable', 'parameters', 'for', 'a', 'MCMC', '/', 'PSO', 'chain'] | train | https://github.com/sibirrer/lenstronomy/blob/4edb100a4f3f4fdc4fac9b0032d2b0283d0aa1d6/lenstronomy/Sampling/likelihood.py#L96-L123 |
40 | wandb/client | wandb/__init__.py | log | def log(row=None, commit=True, *args, **kargs):
"""Log a dict to the global run's history. If commit is false, enables multiple calls before commiting.
Eg.
wandb.log({'train-loss': 0.5, 'accuracy': 0.9})
"""
if run is None:
raise ValueError(
"You must call `wandb.init` in the same process before calling log")
if row is None:
row = {}
if commit:
run.history.add(row, *args, **kargs)
else:
run.history.update(row, *args, **kargs) | python | def log(row=None, commit=True, *args, **kargs):
"""Log a dict to the global run's history. If commit is false, enables multiple calls before commiting.
Eg.
wandb.log({'train-loss': 0.5, 'accuracy': 0.9})
"""
if run is None:
raise ValueError(
"You must call `wandb.init` in the same process before calling log")
if row is None:
row = {}
if commit:
run.history.add(row, *args, **kargs)
else:
run.history.update(row, *args, **kargs) | ['def', 'log', '(', 'row', '=', 'None', ',', 'commit', '=', 'True', ',', '*', 'args', ',', '*', '*', 'kargs', ')', ':', 'if', 'run', 'is', 'None', ':', 'raise', 'ValueError', '(', '"You must call `wandb.init` in the same process before calling log"', ')', 'if', 'row', 'is', 'None', ':', 'row', '=', '{', '}', 'if', 'commit', ':', 'run', '.', 'history', '.', 'add', '(', 'row', ',', '*', 'args', ',', '*', '*', 'kargs', ')', 'else', ':', 'run', '.', 'history', '.', 'update', '(', 'row', ',', '*', 'args', ',', '*', '*', 'kargs', ')'] | Log a dict to the global run's history. If commit is false, enables multiple calls before commiting.
Eg.
wandb.log({'train-loss': 0.5, 'accuracy': 0.9}) | ['Log', 'a', 'dict', 'to', 'the', 'global', 'run', 's', 'history', '.', 'If', 'commit', 'is', 'false', 'enables', 'multiple', 'calls', 'before', 'commiting', '.'] | train | https://github.com/wandb/client/blob/7d08954ed5674fee223cd85ed0d8518fe47266b2/wandb/__init__.py#L465-L481 |
41 | aras7/deployr-python-client | deployr_connection.py | DeployRConnection.login | def login(self, username, password, disableautosave=True, print_response=True):
"""
:param username:
:param password:
:param disableautosave: boolean
:param print_response: print log if required
:return: status code, response data
"""
if type(username) != str:
return False, "Username must be string"
if type(password) != str:
return False, "Password must be string"
if type(disableautosave) != bool:
return False, "Disableautosave must be boolean"
data = {"username": username, "password": password, "disableautosave": disableautosave}
status_response, response = self.call_api("r/user/login/", data, print_response=print_response)
# Store httpcookie if possible
if status_response and "deployr" in response:
if "response" in response["deployr"]:
if "httpcookie" in response["deployr"]["response"]:
self.JSESSIONID = response["deployr"]["response"]["httpcookie"]
return status_response, response | python | def login(self, username, password, disableautosave=True, print_response=True):
"""
:param username:
:param password:
:param disableautosave: boolean
:param print_response: print log if required
:return: status code, response data
"""
if type(username) != str:
return False, "Username must be string"
if type(password) != str:
return False, "Password must be string"
if type(disableautosave) != bool:
return False, "Disableautosave must be boolean"
data = {"username": username, "password": password, "disableautosave": disableautosave}
status_response, response = self.call_api("r/user/login/", data, print_response=print_response)
# Store httpcookie if possible
if status_response and "deployr" in response:
if "response" in response["deployr"]:
if "httpcookie" in response["deployr"]["response"]:
self.JSESSIONID = response["deployr"]["response"]["httpcookie"]
return status_response, response | ['def', 'login', '(', 'self', ',', 'username', ',', 'password', ',', 'disableautosave', '=', 'True', ',', 'print_response', '=', 'True', ')', ':', 'if', 'type', '(', 'username', ')', '!=', 'str', ':', 'return', 'False', ',', '"Username must be string"', 'if', 'type', '(', 'password', ')', '!=', 'str', ':', 'return', 'False', ',', '"Password must be string"', 'if', 'type', '(', 'disableautosave', ')', '!=', 'bool', ':', 'return', 'False', ',', '"Disableautosave must be boolean"', 'data', '=', '{', '"username"', ':', 'username', ',', '"password"', ':', 'password', ',', '"disableautosave"', ':', 'disableautosave', '}', 'status_response', ',', 'response', '=', 'self', '.', 'call_api', '(', '"r/user/login/"', ',', 'data', ',', 'print_response', '=', 'print_response', ')', '# Store httpcookie if possible', 'if', 'status_response', 'and', '"deployr"', 'in', 'response', ':', 'if', '"response"', 'in', 'response', '[', '"deployr"', ']', ':', 'if', '"httpcookie"', 'in', 'response', '[', '"deployr"', ']', '[', '"response"', ']', ':', 'self', '.', 'JSESSIONID', '=', 'response', '[', '"deployr"', ']', '[', '"response"', ']', '[', '"httpcookie"', ']', 'return', 'status_response', ',', 'response'] | :param username:
:param password:
:param disableautosave: boolean
:param print_response: print log if required
:return: status code, response data | [':', 'param', 'username', ':', ':', 'param', 'password', ':', ':', 'param', 'disableautosave', ':', 'boolean', ':', 'param', 'print_response', ':', 'print', 'log', 'if', 'required', ':', 'return', ':', 'status', 'code', 'response', 'data'] | train | https://github.com/aras7/deployr-python-client/blob/3ca517ff38e9a7dd1e21fcc88d54537546b9e7e5/deployr_connection.py#L28-L55 |
42 | saltstack/salt | salt/states/zone.py | detached | def detached(name):
'''
Ensure zone is detached
name : string
name of the zone
'''
ret = {'name': name,
'changes': {},
'result': None,
'comment': ''}
zones = __salt__['zoneadm.list'](installed=True, configured=True)
if name in zones:
if zones[name]['state'] != 'configured':
if __opts__['test']:
res_detach = {'status': True}
else:
res_detach = __salt__['zoneadm.detach'](name)
ret['result'] = res_detach['status']
if ret['result']:
ret['changes'][name] = 'detached'
ret['comment'] = 'The zone {0} was detached.'.format(name)
else:
ret['comment'] = []
ret['comment'].append('Failed to detach zone {0}!'.format(name))
if 'message' in res_detach:
ret['comment'].append(res_detach['message'])
ret['comment'] = "\n".join(ret['comment'])
else:
ret['result'] = True
ret['comment'] = 'zone {0} already detached.'.format(name)
else:
## note: a non existing zone is not attached, we do not consider this a failure
ret['result'] = True
ret['comment'] = 'zone {0} is not configured!'.format(name)
return ret | python | def detached(name):
'''
Ensure zone is detached
name : string
name of the zone
'''
ret = {'name': name,
'changes': {},
'result': None,
'comment': ''}
zones = __salt__['zoneadm.list'](installed=True, configured=True)
if name in zones:
if zones[name]['state'] != 'configured':
if __opts__['test']:
res_detach = {'status': True}
else:
res_detach = __salt__['zoneadm.detach'](name)
ret['result'] = res_detach['status']
if ret['result']:
ret['changes'][name] = 'detached'
ret['comment'] = 'The zone {0} was detached.'.format(name)
else:
ret['comment'] = []
ret['comment'].append('Failed to detach zone {0}!'.format(name))
if 'message' in res_detach:
ret['comment'].append(res_detach['message'])
ret['comment'] = "\n".join(ret['comment'])
else:
ret['result'] = True
ret['comment'] = 'zone {0} already detached.'.format(name)
else:
## note: a non existing zone is not attached, we do not consider this a failure
ret['result'] = True
ret['comment'] = 'zone {0} is not configured!'.format(name)
return ret | ['def', 'detached', '(', 'name', ')', ':', 'ret', '=', '{', "'name'", ':', 'name', ',', "'changes'", ':', '{', '}', ',', "'result'", ':', 'None', ',', "'comment'", ':', "''", '}', 'zones', '=', '__salt__', '[', "'zoneadm.list'", ']', '(', 'installed', '=', 'True', ',', 'configured', '=', 'True', ')', 'if', 'name', 'in', 'zones', ':', 'if', 'zones', '[', 'name', ']', '[', "'state'", ']', '!=', "'configured'", ':', 'if', '__opts__', '[', "'test'", ']', ':', 'res_detach', '=', '{', "'status'", ':', 'True', '}', 'else', ':', 'res_detach', '=', '__salt__', '[', "'zoneadm.detach'", ']', '(', 'name', ')', 'ret', '[', "'result'", ']', '=', 'res_detach', '[', "'status'", ']', 'if', 'ret', '[', "'result'", ']', ':', 'ret', '[', "'changes'", ']', '[', 'name', ']', '=', "'detached'", 'ret', '[', "'comment'", ']', '=', "'The zone {0} was detached.'", '.', 'format', '(', 'name', ')', 'else', ':', 'ret', '[', "'comment'", ']', '=', '[', ']', 'ret', '[', "'comment'", ']', '.', 'append', '(', "'Failed to detach zone {0}!'", '.', 'format', '(', 'name', ')', ')', 'if', "'message'", 'in', 'res_detach', ':', 'ret', '[', "'comment'", ']', '.', 'append', '(', 'res_detach', '[', "'message'", ']', ')', 'ret', '[', "'comment'", ']', '=', '"\\n"', '.', 'join', '(', 'ret', '[', "'comment'", ']', ')', 'else', ':', 'ret', '[', "'result'", ']', '=', 'True', 'ret', '[', "'comment'", ']', '=', "'zone {0} already detached.'", '.', 'format', '(', 'name', ')', 'else', ':', '## note: a non existing zone is not attached, we do not consider this a failure', 'ret', '[', "'result'", ']', '=', 'True', 'ret', '[', "'comment'", ']', '=', "'zone {0} is not configured!'", '.', 'format', '(', 'name', ')', 'return', 'ret'] | Ensure zone is detached
name : string
name of the zone | ['Ensure', 'zone', 'is', 'detached'] | train | https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/states/zone.py#L1100-L1138 |
43 | onelogin/python3-saml | src/onelogin/saml2/response.py | OneLogin_Saml2_Response.__query | def __query(self, query, tagid=None):
"""
Extracts nodes that match the query from the Response
:param query: Xpath Expresion
:type query: String
:param tagid: Tag ID
:type query: String
:returns: The queried nodes
:rtype: list
"""
if self.encrypted:
document = self.decrypted_document
else:
document = self.document
return OneLogin_Saml2_XML.query(document, query, None, tagid) | python | def __query(self, query, tagid=None):
"""
Extracts nodes that match the query from the Response
:param query: Xpath Expresion
:type query: String
:param tagid: Tag ID
:type query: String
:returns: The queried nodes
:rtype: list
"""
if self.encrypted:
document = self.decrypted_document
else:
document = self.document
return OneLogin_Saml2_XML.query(document, query, None, tagid) | ['def', '__query', '(', 'self', ',', 'query', ',', 'tagid', '=', 'None', ')', ':', 'if', 'self', '.', 'encrypted', ':', 'document', '=', 'self', '.', 'decrypted_document', 'else', ':', 'document', '=', 'self', '.', 'document', 'return', 'OneLogin_Saml2_XML', '.', 'query', '(', 'document', ',', 'query', ',', 'None', ',', 'tagid', ')'] | Extracts nodes that match the query from the Response
:param query: Xpath Expresion
:type query: String
:param tagid: Tag ID
:type query: String
:returns: The queried nodes
:rtype: list | ['Extracts', 'nodes', 'that', 'match', 'the', 'query', 'from', 'the', 'Response'] | train | https://github.com/onelogin/python3-saml/blob/064b7275fba1e5f39a9116ba1cdcc5d01fc34daa/src/onelogin/saml2/response.py#L760-L777 |
44 | ray-project/ray | python/ray/rllib/env/atari_wrappers.py | wrap_deepmind | def wrap_deepmind(env, dim=84, framestack=True):
"""Configure environment for DeepMind-style Atari.
Note that we assume reward clipping is done outside the wrapper.
Args:
dim (int): Dimension to resize observations to (dim x dim).
framestack (bool): Whether to framestack observations.
"""
env = MonitorEnv(env)
env = NoopResetEnv(env, noop_max=30)
if "NoFrameskip" in env.spec.id:
env = MaxAndSkipEnv(env, skip=4)
env = EpisodicLifeEnv(env)
if "FIRE" in env.unwrapped.get_action_meanings():
env = FireResetEnv(env)
env = WarpFrame(env, dim)
# env = ScaledFloatFrame(env) # TODO: use for dqn?
# env = ClipRewardEnv(env) # reward clipping is handled by policy eval
if framestack:
env = FrameStack(env, 4)
return env | python | def wrap_deepmind(env, dim=84, framestack=True):
"""Configure environment for DeepMind-style Atari.
Note that we assume reward clipping is done outside the wrapper.
Args:
dim (int): Dimension to resize observations to (dim x dim).
framestack (bool): Whether to framestack observations.
"""
env = MonitorEnv(env)
env = NoopResetEnv(env, noop_max=30)
if "NoFrameskip" in env.spec.id:
env = MaxAndSkipEnv(env, skip=4)
env = EpisodicLifeEnv(env)
if "FIRE" in env.unwrapped.get_action_meanings():
env = FireResetEnv(env)
env = WarpFrame(env, dim)
# env = ScaledFloatFrame(env) # TODO: use for dqn?
# env = ClipRewardEnv(env) # reward clipping is handled by policy eval
if framestack:
env = FrameStack(env, 4)
return env | ['def', 'wrap_deepmind', '(', 'env', ',', 'dim', '=', '84', ',', 'framestack', '=', 'True', ')', ':', 'env', '=', 'MonitorEnv', '(', 'env', ')', 'env', '=', 'NoopResetEnv', '(', 'env', ',', 'noop_max', '=', '30', ')', 'if', '"NoFrameskip"', 'in', 'env', '.', 'spec', '.', 'id', ':', 'env', '=', 'MaxAndSkipEnv', '(', 'env', ',', 'skip', '=', '4', ')', 'env', '=', 'EpisodicLifeEnv', '(', 'env', ')', 'if', '"FIRE"', 'in', 'env', '.', 'unwrapped', '.', 'get_action_meanings', '(', ')', ':', 'env', '=', 'FireResetEnv', '(', 'env', ')', 'env', '=', 'WarpFrame', '(', 'env', ',', 'dim', ')', '# env = ScaledFloatFrame(env) # TODO: use for dqn?', '# env = ClipRewardEnv(env) # reward clipping is handled by policy eval', 'if', 'framestack', ':', 'env', '=', 'FrameStack', '(', 'env', ',', '4', ')', 'return', 'env'] | Configure environment for DeepMind-style Atari.
Note that we assume reward clipping is done outside the wrapper.
Args:
dim (int): Dimension to resize observations to (dim x dim).
framestack (bool): Whether to framestack observations. | ['Configure', 'environment', 'for', 'DeepMind', '-', 'style', 'Atari', '.'] | train | https://github.com/ray-project/ray/blob/4eade036a0505e244c976f36aaa2d64386b5129b/python/ray/rllib/env/atari_wrappers.py#L270-L291 |
45 | monarch-initiative/dipper | dipper/sources/Reactome.py | Reactome._parse_reactome_association_file | def _parse_reactome_association_file(
self, file, limit=None, subject_prefix=None, object_prefix=None):
"""
Parse ensembl gene to reactome pathway file
:param file: file path (not handle)
:param limit: limit (int, optional) limit the number of rows processed
:return: None
"""
eco_map = Reactome.get_eco_map(Reactome.map_files['eco_map'])
count = 0
with open(file, 'r') as tsvfile:
reader = csv.reader(tsvfile, delimiter="\t")
for row in reader:
(component, pathway_id, pathway_iri, pathway_label, go_ecode,
species_name) = row
count += 1
self._add_component_pathway_association(
eco_map, component, subject_prefix, pathway_id, object_prefix,
pathway_label, go_ecode)
if limit is not None and count >= limit:
break
return | python | def _parse_reactome_association_file(
self, file, limit=None, subject_prefix=None, object_prefix=None):
"""
Parse ensembl gene to reactome pathway file
:param file: file path (not handle)
:param limit: limit (int, optional) limit the number of rows processed
:return: None
"""
eco_map = Reactome.get_eco_map(Reactome.map_files['eco_map'])
count = 0
with open(file, 'r') as tsvfile:
reader = csv.reader(tsvfile, delimiter="\t")
for row in reader:
(component, pathway_id, pathway_iri, pathway_label, go_ecode,
species_name) = row
count += 1
self._add_component_pathway_association(
eco_map, component, subject_prefix, pathway_id, object_prefix,
pathway_label, go_ecode)
if limit is not None and count >= limit:
break
return | ['def', '_parse_reactome_association_file', '(', 'self', ',', 'file', ',', 'limit', '=', 'None', ',', 'subject_prefix', '=', 'None', ',', 'object_prefix', '=', 'None', ')', ':', 'eco_map', '=', 'Reactome', '.', 'get_eco_map', '(', 'Reactome', '.', 'map_files', '[', "'eco_map'", ']', ')', 'count', '=', '0', 'with', 'open', '(', 'file', ',', "'r'", ')', 'as', 'tsvfile', ':', 'reader', '=', 'csv', '.', 'reader', '(', 'tsvfile', ',', 'delimiter', '=', '"\\t"', ')', 'for', 'row', 'in', 'reader', ':', '(', 'component', ',', 'pathway_id', ',', 'pathway_iri', ',', 'pathway_label', ',', 'go_ecode', ',', 'species_name', ')', '=', 'row', 'count', '+=', '1', 'self', '.', '_add_component_pathway_association', '(', 'eco_map', ',', 'component', ',', 'subject_prefix', ',', 'pathway_id', ',', 'object_prefix', ',', 'pathway_label', ',', 'go_ecode', ')', 'if', 'limit', 'is', 'not', 'None', 'and', 'count', '>=', 'limit', ':', 'break', 'return'] | Parse ensembl gene to reactome pathway file
:param file: file path (not handle)
:param limit: limit (int, optional) limit the number of rows processed
:return: None | ['Parse', 'ensembl', 'gene', 'to', 'reactome', 'pathway', 'file', ':', 'param', 'file', ':', 'file', 'path', '(', 'not', 'handle', ')', ':', 'param', 'limit', ':', 'limit', '(', 'int', 'optional', ')', 'limit', 'the', 'number', 'of', 'rows', 'processed', ':', 'return', ':', 'None'] | train | https://github.com/monarch-initiative/dipper/blob/24cc80db355bbe15776edc5c7b41e0886959ba41/dipper/sources/Reactome.py#L75-L98 |
46 | jtwhite79/pyemu | pyemu/utils/helpers.py | PstFromFlopyModel.build_prior | def build_prior(self, fmt="ascii",filename=None,droptol=None, chunk=None, sparse=False,
sigma_range=6):
""" build a prior parameter covariance matrix.
Parameters
----------
fmt : str
the format to save the cov matrix. Options are "ascii","binary","uncfile", "coo".
default is "ascii"
filename : str
the filename to save the prior cov matrix to. If None, the name is formed using
model nam_file name. Default is None.
droptol : float
tolerance for dropping near-zero values when writing compressed binary.
Default is None
chunk : int
chunk size to write in a single pass - for binary only
sparse : bool
flag to build a pyemu.SparseMatrix format cov matrix. Default is False
sigma_range : float
number of standard deviations represented by the parameter bounds. Default
is 6.
Returns
-------
cov : pyemu.Cov
a full covariance matrix
"""
fmt = fmt.lower()
acc_fmts = ["ascii","binary","uncfile","none","coo"]
if fmt not in acc_fmts:
self.logger.lraise("unrecognized prior save 'fmt':{0}, options are: {1}".
format(fmt,','.join(acc_fmts)))
self.log("building prior covariance matrix")
struct_dict = {}
if self.pp_suffix in self.par_dfs.keys():
pp_df = self.par_dfs[self.pp_suffix]
pp_dfs = []
for pargp in pp_df.pargp.unique():
gp_df = pp_df.loc[pp_df.pargp==pargp,:]
p_df = gp_df.drop_duplicates(subset="parnme")
pp_dfs.append(p_df)
#pp_dfs = [pp_df.loc[pp_df.pargp==pargp,:].copy() for pargp in pp_df.pargp.unique()]
struct_dict[self.pp_geostruct] = pp_dfs
if self.gr_suffix in self.par_dfs.keys():
gr_df = self.par_dfs[self.gr_suffix]
gr_dfs = []
for pargp in gr_df.pargp.unique():
gp_df = gr_df.loc[gr_df.pargp==pargp,:]
p_df = gp_df.drop_duplicates(subset="parnme")
gr_dfs.append(p_df)
#gr_dfs = [gr_df.loc[gr_df.pargp==pargp,:].copy() for pargp in gr_df.pargp.unique()]
struct_dict[self.grid_geostruct] = gr_dfs
if "temporal_list" in self.par_dfs.keys():
bc_df = self.par_dfs["temporal_list"]
bc_df.loc[:,"y"] = 0
bc_df.loc[:,"x"] = bc_df.timedelta.apply(lambda x: x.days)
bc_dfs = []
for pargp in bc_df.pargp.unique():
gp_df = bc_df.loc[bc_df.pargp==pargp,:]
p_df = gp_df.drop_duplicates(subset="parnme")
#print(p_df)
bc_dfs.append(p_df)
#bc_dfs = [bc_df.loc[bc_df.pargp==pargp,:].copy() for pargp in bc_df.pargp.unique()]
struct_dict[self.temporal_list_geostruct] = bc_dfs
if "spatial_list" in self.par_dfs.keys():
bc_df = self.par_dfs["spatial_list"]
bc_dfs = []
for pargp in bc_df.pargp.unique():
gp_df = bc_df.loc[bc_df.pargp==pargp,:]
#p_df = gp_df.drop_duplicates(subset="parnme")
#print(p_df)
bc_dfs.append(gp_df)
struct_dict[self.spatial_list_geostruct] = bc_dfs
if "hfb" in self.par_dfs.keys():
if self.spatial_list_geostruct in struct_dict.keys():
struct_dict[self.spatial_list_geostruct].append(self.par_dfs["hfb"])
else:
struct_dict[self.spatial_list_geostruct] = [self.par_dfs["hfb"]]
if "sfr" in self.par_dfs.keys():
self.logger.warn("geospatial prior not implemented for SFR pars")
if len(struct_dict) > 0:
if sparse:
cov = pyemu.helpers.sparse_geostatistical_prior_builder(self.pst,
struct_dict=struct_dict,
sigma_range=sigma_range)
else:
cov = pyemu.helpers.geostatistical_prior_builder(self.pst,
struct_dict=struct_dict,
sigma_range=sigma_range)
else:
cov = pyemu.Cov.from_parameter_data(self.pst,sigma_range=sigma_range)
if filename is None:
filename = os.path.join(self.m.model_ws,self.pst_name+".prior.cov")
if fmt != "none":
self.logger.statement("saving prior covariance matrix to file {0}".format(filename))
if fmt == 'ascii':
cov.to_ascii(filename)
elif fmt == 'binary':
cov.to_binary(filename,droptol=droptol,chunk=chunk)
elif fmt == 'uncfile':
cov.to_uncfile(filename)
elif fmt == 'coo':
cov.to_coo(filename,droptol=droptol,chunk=chunk)
self.log("building prior covariance matrix")
return cov | python | def build_prior(self, fmt="ascii",filename=None,droptol=None, chunk=None, sparse=False,
sigma_range=6):
""" build a prior parameter covariance matrix.
Parameters
----------
fmt : str
the format to save the cov matrix. Options are "ascii","binary","uncfile", "coo".
default is "ascii"
filename : str
the filename to save the prior cov matrix to. If None, the name is formed using
model nam_file name. Default is None.
droptol : float
tolerance for dropping near-zero values when writing compressed binary.
Default is None
chunk : int
chunk size to write in a single pass - for binary only
sparse : bool
flag to build a pyemu.SparseMatrix format cov matrix. Default is False
sigma_range : float
number of standard deviations represented by the parameter bounds. Default
is 6.
Returns
-------
cov : pyemu.Cov
a full covariance matrix
"""
fmt = fmt.lower()
acc_fmts = ["ascii","binary","uncfile","none","coo"]
if fmt not in acc_fmts:
self.logger.lraise("unrecognized prior save 'fmt':{0}, options are: {1}".
format(fmt,','.join(acc_fmts)))
self.log("building prior covariance matrix")
struct_dict = {}
if self.pp_suffix in self.par_dfs.keys():
pp_df = self.par_dfs[self.pp_suffix]
pp_dfs = []
for pargp in pp_df.pargp.unique():
gp_df = pp_df.loc[pp_df.pargp==pargp,:]
p_df = gp_df.drop_duplicates(subset="parnme")
pp_dfs.append(p_df)
#pp_dfs = [pp_df.loc[pp_df.pargp==pargp,:].copy() for pargp in pp_df.pargp.unique()]
struct_dict[self.pp_geostruct] = pp_dfs
if self.gr_suffix in self.par_dfs.keys():
gr_df = self.par_dfs[self.gr_suffix]
gr_dfs = []
for pargp in gr_df.pargp.unique():
gp_df = gr_df.loc[gr_df.pargp==pargp,:]
p_df = gp_df.drop_duplicates(subset="parnme")
gr_dfs.append(p_df)
#gr_dfs = [gr_df.loc[gr_df.pargp==pargp,:].copy() for pargp in gr_df.pargp.unique()]
struct_dict[self.grid_geostruct] = gr_dfs
if "temporal_list" in self.par_dfs.keys():
bc_df = self.par_dfs["temporal_list"]
bc_df.loc[:,"y"] = 0
bc_df.loc[:,"x"] = bc_df.timedelta.apply(lambda x: x.days)
bc_dfs = []
for pargp in bc_df.pargp.unique():
gp_df = bc_df.loc[bc_df.pargp==pargp,:]
p_df = gp_df.drop_duplicates(subset="parnme")
#print(p_df)
bc_dfs.append(p_df)
#bc_dfs = [bc_df.loc[bc_df.pargp==pargp,:].copy() for pargp in bc_df.pargp.unique()]
struct_dict[self.temporal_list_geostruct] = bc_dfs
if "spatial_list" in self.par_dfs.keys():
bc_df = self.par_dfs["spatial_list"]
bc_dfs = []
for pargp in bc_df.pargp.unique():
gp_df = bc_df.loc[bc_df.pargp==pargp,:]
#p_df = gp_df.drop_duplicates(subset="parnme")
#print(p_df)
bc_dfs.append(gp_df)
struct_dict[self.spatial_list_geostruct] = bc_dfs
if "hfb" in self.par_dfs.keys():
if self.spatial_list_geostruct in struct_dict.keys():
struct_dict[self.spatial_list_geostruct].append(self.par_dfs["hfb"])
else:
struct_dict[self.spatial_list_geostruct] = [self.par_dfs["hfb"]]
if "sfr" in self.par_dfs.keys():
self.logger.warn("geospatial prior not implemented for SFR pars")
if len(struct_dict) > 0:
if sparse:
cov = pyemu.helpers.sparse_geostatistical_prior_builder(self.pst,
struct_dict=struct_dict,
sigma_range=sigma_range)
else:
cov = pyemu.helpers.geostatistical_prior_builder(self.pst,
struct_dict=struct_dict,
sigma_range=sigma_range)
else:
cov = pyemu.Cov.from_parameter_data(self.pst,sigma_range=sigma_range)
if filename is None:
filename = os.path.join(self.m.model_ws,self.pst_name+".prior.cov")
if fmt != "none":
self.logger.statement("saving prior covariance matrix to file {0}".format(filename))
if fmt == 'ascii':
cov.to_ascii(filename)
elif fmt == 'binary':
cov.to_binary(filename,droptol=droptol,chunk=chunk)
elif fmt == 'uncfile':
cov.to_uncfile(filename)
elif fmt == 'coo':
cov.to_coo(filename,droptol=droptol,chunk=chunk)
self.log("building prior covariance matrix")
return cov | ['def', 'build_prior', '(', 'self', ',', 'fmt', '=', '"ascii"', ',', 'filename', '=', 'None', ',', 'droptol', '=', 'None', ',', 'chunk', '=', 'None', ',', 'sparse', '=', 'False', ',', 'sigma_range', '=', '6', ')', ':', 'fmt', '=', 'fmt', '.', 'lower', '(', ')', 'acc_fmts', '=', '[', '"ascii"', ',', '"binary"', ',', '"uncfile"', ',', '"none"', ',', '"coo"', ']', 'if', 'fmt', 'not', 'in', 'acc_fmts', ':', 'self', '.', 'logger', '.', 'lraise', '(', '"unrecognized prior save \'fmt\':{0}, options are: {1}"', '.', 'format', '(', 'fmt', ',', "','", '.', 'join', '(', 'acc_fmts', ')', ')', ')', 'self', '.', 'log', '(', '"building prior covariance matrix"', ')', 'struct_dict', '=', '{', '}', 'if', 'self', '.', 'pp_suffix', 'in', 'self', '.', 'par_dfs', '.', 'keys', '(', ')', ':', 'pp_df', '=', 'self', '.', 'par_dfs', '[', 'self', '.', 'pp_suffix', ']', 'pp_dfs', '=', '[', ']', 'for', 'pargp', 'in', 'pp_df', '.', 'pargp', '.', 'unique', '(', ')', ':', 'gp_df', '=', 'pp_df', '.', 'loc', '[', 'pp_df', '.', 'pargp', '==', 'pargp', ',', ':', ']', 'p_df', '=', 'gp_df', '.', 'drop_duplicates', '(', 'subset', '=', '"parnme"', ')', 'pp_dfs', '.', 'append', '(', 'p_df', ')', '#pp_dfs = [pp_df.loc[pp_df.pargp==pargp,:].copy() for pargp in pp_df.pargp.unique()]', 'struct_dict', '[', 'self', '.', 'pp_geostruct', ']', '=', 'pp_dfs', 'if', 'self', '.', 'gr_suffix', 'in', 'self', '.', 'par_dfs', '.', 'keys', '(', ')', ':', 'gr_df', '=', 'self', '.', 'par_dfs', '[', 'self', '.', 'gr_suffix', ']', 'gr_dfs', '=', '[', ']', 'for', 'pargp', 'in', 'gr_df', '.', 'pargp', '.', 'unique', '(', ')', ':', 'gp_df', '=', 'gr_df', '.', 'loc', '[', 'gr_df', '.', 'pargp', '==', 'pargp', ',', ':', ']', 'p_df', '=', 'gp_df', '.', 'drop_duplicates', '(', 'subset', '=', '"parnme"', ')', 'gr_dfs', '.', 'append', '(', 'p_df', ')', '#gr_dfs = [gr_df.loc[gr_df.pargp==pargp,:].copy() for pargp in gr_df.pargp.unique()]', 'struct_dict', '[', 'self', '.', 'grid_geostruct', ']', '=', 'gr_dfs', 'if', '"temporal_list"', 'in', 'self', '.', 'par_dfs', '.', 'keys', '(', ')', ':', 'bc_df', '=', 'self', '.', 'par_dfs', '[', '"temporal_list"', ']', 'bc_df', '.', 'loc', '[', ':', ',', '"y"', ']', '=', '0', 'bc_df', '.', 'loc', '[', ':', ',', '"x"', ']', '=', 'bc_df', '.', 'timedelta', '.', 'apply', '(', 'lambda', 'x', ':', 'x', '.', 'days', ')', 'bc_dfs', '=', '[', ']', 'for', 'pargp', 'in', 'bc_df', '.', 'pargp', '.', 'unique', '(', ')', ':', 'gp_df', '=', 'bc_df', '.', 'loc', '[', 'bc_df', '.', 'pargp', '==', 'pargp', ',', ':', ']', 'p_df', '=', 'gp_df', '.', 'drop_duplicates', '(', 'subset', '=', '"parnme"', ')', '#print(p_df)', 'bc_dfs', '.', 'append', '(', 'p_df', ')', '#bc_dfs = [bc_df.loc[bc_df.pargp==pargp,:].copy() for pargp in bc_df.pargp.unique()]', 'struct_dict', '[', 'self', '.', 'temporal_list_geostruct', ']', '=', 'bc_dfs', 'if', '"spatial_list"', 'in', 'self', '.', 'par_dfs', '.', 'keys', '(', ')', ':', 'bc_df', '=', 'self', '.', 'par_dfs', '[', '"spatial_list"', ']', 'bc_dfs', '=', '[', ']', 'for', 'pargp', 'in', 'bc_df', '.', 'pargp', '.', 'unique', '(', ')', ':', 'gp_df', '=', 'bc_df', '.', 'loc', '[', 'bc_df', '.', 'pargp', '==', 'pargp', ',', ':', ']', '#p_df = gp_df.drop_duplicates(subset="parnme")', '#print(p_df)', 'bc_dfs', '.', 'append', '(', 'gp_df', ')', 'struct_dict', '[', 'self', '.', 'spatial_list_geostruct', ']', '=', 'bc_dfs', 'if', '"hfb"', 'in', 'self', '.', 'par_dfs', '.', 'keys', '(', ')', ':', 'if', 'self', '.', 'spatial_list_geostruct', 'in', 'struct_dict', '.', 'keys', '(', ')', ':', 'struct_dict', '[', 'self', '.', 'spatial_list_geostruct', ']', '.', 'append', '(', 'self', '.', 'par_dfs', '[', '"hfb"', ']', ')', 'else', ':', 'struct_dict', '[', 'self', '.', 'spatial_list_geostruct', ']', '=', '[', 'self', '.', 'par_dfs', '[', '"hfb"', ']', ']', 'if', '"sfr"', 'in', 'self', '.', 'par_dfs', '.', 'keys', '(', ')', ':', 'self', '.', 'logger', '.', 'warn', '(', '"geospatial prior not implemented for SFR pars"', ')', 'if', 'len', '(', 'struct_dict', ')', '>', '0', ':', 'if', 'sparse', ':', 'cov', '=', 'pyemu', '.', 'helpers', '.', 'sparse_geostatistical_prior_builder', '(', 'self', '.', 'pst', ',', 'struct_dict', '=', 'struct_dict', ',', 'sigma_range', '=', 'sigma_range', ')', 'else', ':', 'cov', '=', 'pyemu', '.', 'helpers', '.', 'geostatistical_prior_builder', '(', 'self', '.', 'pst', ',', 'struct_dict', '=', 'struct_dict', ',', 'sigma_range', '=', 'sigma_range', ')', 'else', ':', 'cov', '=', 'pyemu', '.', 'Cov', '.', 'from_parameter_data', '(', 'self', '.', 'pst', ',', 'sigma_range', '=', 'sigma_range', ')', 'if', 'filename', 'is', 'None', ':', 'filename', '=', 'os', '.', 'path', '.', 'join', '(', 'self', '.', 'm', '.', 'model_ws', ',', 'self', '.', 'pst_name', '+', '".prior.cov"', ')', 'if', 'fmt', '!=', '"none"', ':', 'self', '.', 'logger', '.', 'statement', '(', '"saving prior covariance matrix to file {0}"', '.', 'format', '(', 'filename', ')', ')', 'if', 'fmt', '==', "'ascii'", ':', 'cov', '.', 'to_ascii', '(', 'filename', ')', 'elif', 'fmt', '==', "'binary'", ':', 'cov', '.', 'to_binary', '(', 'filename', ',', 'droptol', '=', 'droptol', ',', 'chunk', '=', 'chunk', ')', 'elif', 'fmt', '==', "'uncfile'", ':', 'cov', '.', 'to_uncfile', '(', 'filename', ')', 'elif', 'fmt', '==', "'coo'", ':', 'cov', '.', 'to_coo', '(', 'filename', ',', 'droptol', '=', 'droptol', ',', 'chunk', '=', 'chunk', ')', 'self', '.', 'log', '(', '"building prior covariance matrix"', ')', 'return', 'cov'] | build a prior parameter covariance matrix.
Parameters
----------
fmt : str
the format to save the cov matrix. Options are "ascii","binary","uncfile", "coo".
default is "ascii"
filename : str
the filename to save the prior cov matrix to. If None, the name is formed using
model nam_file name. Default is None.
droptol : float
tolerance for dropping near-zero values when writing compressed binary.
Default is None
chunk : int
chunk size to write in a single pass - for binary only
sparse : bool
flag to build a pyemu.SparseMatrix format cov matrix. Default is False
sigma_range : float
number of standard deviations represented by the parameter bounds. Default
is 6.
Returns
-------
cov : pyemu.Cov
a full covariance matrix | ['build', 'a', 'prior', 'parameter', 'covariance', 'matrix', '.'] | train | https://github.com/jtwhite79/pyemu/blob/c504d8e7a4097cec07655a6318d275739bd8148a/pyemu/utils/helpers.py#L2632-L2744 |
47 | wummel/linkchecker | linkcheck/checker/__init__.py | get_url_from | def get_url_from (base_url, recursion_level, aggregate,
parent_url=None, base_ref=None, line=0, column=0, page=0,
name=u"", parent_content_type=None, extern=None):
"""
Get url data from given base data.
@param base_url: base url from a link tag
@type base_url: string or None
@param recursion_level: current recursion level
@type recursion_level: number
@param aggregate: aggregate object
@type aggregate: aggregate.Consumer
@param parent_url: parent url
@type parent_url: string or None
@param base_ref: base url from <base> tag
@type base_ref string or None
@param line: line number
@type line: number
@param column: column number
@type column: number
@param page: page number
@type page: number
@param name: link name
@type name: string
@param extern: (is_extern, is_strict) or None
@type extern: tuple(int, int) or None
"""
if base_url is not None:
base_url = strformat.unicode_safe(base_url)
# left strip for detection of URL scheme
base_url_stripped = base_url.lstrip()
else:
base_url_stripped = base_url
if parent_url is not None:
parent_url = strformat.unicode_safe(parent_url)
if base_ref is not None:
base_ref = strformat.unicode_safe(base_ref)
name = strformat.unicode_safe(name)
url = absolute_url(base_url_stripped, base_ref, parent_url).lower()
if ":" in url:
scheme = url.split(":", 1)[0].lower()
else:
scheme = None
if not (url or name):
# use filename as base url, with slash as path seperator
name = base_url.replace("\\", "/")
allowed_schemes = aggregate.config["allowedschemes"]
# ignore local PHP files with execution directives
local_php = (parent_content_type == 'application/x-httpd-php' and
'<?' in base_url and '?>' in base_url and scheme == 'file')
if local_php or (allowed_schemes and scheme not in allowed_schemes):
klass = ignoreurl.IgnoreUrl
else:
assume_local_file = (recursion_level == 0)
klass = get_urlclass_from(scheme, assume_local_file=assume_local_file)
log.debug(LOG_CHECK, "%s handles url %s", klass.__name__, base_url)
return klass(base_url, recursion_level, aggregate,
parent_url=parent_url, base_ref=base_ref,
line=line, column=column, page=page, name=name, extern=extern) | python | def get_url_from (base_url, recursion_level, aggregate,
parent_url=None, base_ref=None, line=0, column=0, page=0,
name=u"", parent_content_type=None, extern=None):
"""
Get url data from given base data.
@param base_url: base url from a link tag
@type base_url: string or None
@param recursion_level: current recursion level
@type recursion_level: number
@param aggregate: aggregate object
@type aggregate: aggregate.Consumer
@param parent_url: parent url
@type parent_url: string or None
@param base_ref: base url from <base> tag
@type base_ref string or None
@param line: line number
@type line: number
@param column: column number
@type column: number
@param page: page number
@type page: number
@param name: link name
@type name: string
@param extern: (is_extern, is_strict) or None
@type extern: tuple(int, int) or None
"""
if base_url is not None:
base_url = strformat.unicode_safe(base_url)
# left strip for detection of URL scheme
base_url_stripped = base_url.lstrip()
else:
base_url_stripped = base_url
if parent_url is not None:
parent_url = strformat.unicode_safe(parent_url)
if base_ref is not None:
base_ref = strformat.unicode_safe(base_ref)
name = strformat.unicode_safe(name)
url = absolute_url(base_url_stripped, base_ref, parent_url).lower()
if ":" in url:
scheme = url.split(":", 1)[0].lower()
else:
scheme = None
if not (url or name):
# use filename as base url, with slash as path seperator
name = base_url.replace("\\", "/")
allowed_schemes = aggregate.config["allowedschemes"]
# ignore local PHP files with execution directives
local_php = (parent_content_type == 'application/x-httpd-php' and
'<?' in base_url and '?>' in base_url and scheme == 'file')
if local_php or (allowed_schemes and scheme not in allowed_schemes):
klass = ignoreurl.IgnoreUrl
else:
assume_local_file = (recursion_level == 0)
klass = get_urlclass_from(scheme, assume_local_file=assume_local_file)
log.debug(LOG_CHECK, "%s handles url %s", klass.__name__, base_url)
return klass(base_url, recursion_level, aggregate,
parent_url=parent_url, base_ref=base_ref,
line=line, column=column, page=page, name=name, extern=extern) | ['def', 'get_url_from', '(', 'base_url', ',', 'recursion_level', ',', 'aggregate', ',', 'parent_url', '=', 'None', ',', 'base_ref', '=', 'None', ',', 'line', '=', '0', ',', 'column', '=', '0', ',', 'page', '=', '0', ',', 'name', '=', 'u""', ',', 'parent_content_type', '=', 'None', ',', 'extern', '=', 'None', ')', ':', 'if', 'base_url', 'is', 'not', 'None', ':', 'base_url', '=', 'strformat', '.', 'unicode_safe', '(', 'base_url', ')', '# left strip for detection of URL scheme', 'base_url_stripped', '=', 'base_url', '.', 'lstrip', '(', ')', 'else', ':', 'base_url_stripped', '=', 'base_url', 'if', 'parent_url', 'is', 'not', 'None', ':', 'parent_url', '=', 'strformat', '.', 'unicode_safe', '(', 'parent_url', ')', 'if', 'base_ref', 'is', 'not', 'None', ':', 'base_ref', '=', 'strformat', '.', 'unicode_safe', '(', 'base_ref', ')', 'name', '=', 'strformat', '.', 'unicode_safe', '(', 'name', ')', 'url', '=', 'absolute_url', '(', 'base_url_stripped', ',', 'base_ref', ',', 'parent_url', ')', '.', 'lower', '(', ')', 'if', '":"', 'in', 'url', ':', 'scheme', '=', 'url', '.', 'split', '(', '":"', ',', '1', ')', '[', '0', ']', '.', 'lower', '(', ')', 'else', ':', 'scheme', '=', 'None', 'if', 'not', '(', 'url', 'or', 'name', ')', ':', '# use filename as base url, with slash as path seperator', 'name', '=', 'base_url', '.', 'replace', '(', '"\\\\"', ',', '"/"', ')', 'allowed_schemes', '=', 'aggregate', '.', 'config', '[', '"allowedschemes"', ']', '# ignore local PHP files with execution directives', 'local_php', '=', '(', 'parent_content_type', '==', "'application/x-httpd-php'", 'and', "'<?'", 'in', 'base_url', 'and', "'?>'", 'in', 'base_url', 'and', 'scheme', '==', "'file'", ')', 'if', 'local_php', 'or', '(', 'allowed_schemes', 'and', 'scheme', 'not', 'in', 'allowed_schemes', ')', ':', 'klass', '=', 'ignoreurl', '.', 'IgnoreUrl', 'else', ':', 'assume_local_file', '=', '(', 'recursion_level', '==', '0', ')', 'klass', '=', 'get_urlclass_from', '(', 'scheme', ',', 'assume_local_file', '=', 'assume_local_file', ')', 'log', '.', 'debug', '(', 'LOG_CHECK', ',', '"%s handles url %s"', ',', 'klass', '.', '__name__', ',', 'base_url', ')', 'return', 'klass', '(', 'base_url', ',', 'recursion_level', ',', 'aggregate', ',', 'parent_url', '=', 'parent_url', ',', 'base_ref', '=', 'base_ref', ',', 'line', '=', 'line', ',', 'column', '=', 'column', ',', 'page', '=', 'page', ',', 'name', '=', 'name', ',', 'extern', '=', 'extern', ')'] | Get url data from given base data.
@param base_url: base url from a link tag
@type base_url: string or None
@param recursion_level: current recursion level
@type recursion_level: number
@param aggregate: aggregate object
@type aggregate: aggregate.Consumer
@param parent_url: parent url
@type parent_url: string or None
@param base_ref: base url from <base> tag
@type base_ref string or None
@param line: line number
@type line: number
@param column: column number
@type column: number
@param page: page number
@type page: number
@param name: link name
@type name: string
@param extern: (is_extern, is_strict) or None
@type extern: tuple(int, int) or None | ['Get', 'url', 'data', 'from', 'given', 'base', 'data', '.'] | train | https://github.com/wummel/linkchecker/blob/c2ce810c3fb00b895a841a7be6b2e78c64e7b042/linkcheck/checker/__init__.py#L67-L125 |
48 | peercoin/peercoin_rpc | peercoin_rpc/peercoin_rpc.py | Client.sendtoaddress | def sendtoaddress(self, recv_addr, amount, comment=""):
"""send ammount to address, with optional comment. Returns txid.
sendtoaddress(ADDRESS, AMMOUNT, COMMENT)"""
return self.req("sendtoaddress", [recv_addr, amount, comment]) | python | def sendtoaddress(self, recv_addr, amount, comment=""):
"""send ammount to address, with optional comment. Returns txid.
sendtoaddress(ADDRESS, AMMOUNT, COMMENT)"""
return self.req("sendtoaddress", [recv_addr, amount, comment]) | ['def', 'sendtoaddress', '(', 'self', ',', 'recv_addr', ',', 'amount', ',', 'comment', '=', '""', ')', ':', 'return', 'self', '.', 'req', '(', '"sendtoaddress"', ',', '[', 'recv_addr', ',', 'amount', ',', 'comment', ']', ')'] | send ammount to address, with optional comment. Returns txid.
sendtoaddress(ADDRESS, AMMOUNT, COMMENT) | ['send', 'ammount', 'to', 'address', 'with', 'optional', 'comment', '.', 'Returns', 'txid', '.', 'sendtoaddress', '(', 'ADDRESS', 'AMMOUNT', 'COMMENT', ')'] | train | https://github.com/peercoin/peercoin_rpc/blob/6edd854c7fd607ad9f6f4d5eb8b8b7c7fd8c16cc/peercoin_rpc/peercoin_rpc.py#L182-L185 |
49 | tensorflow/hub | examples/image_retraining/retrain.py | variable_summaries | def variable_summaries(var):
"""Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""
with tf.name_scope('summaries'):
mean = tf.reduce_mean(var)
tf.summary.scalar('mean', mean)
with tf.name_scope('stddev'):
stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
tf.summary.scalar('stddev', stddev)
tf.summary.scalar('max', tf.reduce_max(var))
tf.summary.scalar('min', tf.reduce_min(var))
tf.summary.histogram('histogram', var) | python | def variable_summaries(var):
"""Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""
with tf.name_scope('summaries'):
mean = tf.reduce_mean(var)
tf.summary.scalar('mean', mean)
with tf.name_scope('stddev'):
stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
tf.summary.scalar('stddev', stddev)
tf.summary.scalar('max', tf.reduce_max(var))
tf.summary.scalar('min', tf.reduce_min(var))
tf.summary.histogram('histogram', var) | ['def', 'variable_summaries', '(', 'var', ')', ':', 'with', 'tf', '.', 'name_scope', '(', "'summaries'", ')', ':', 'mean', '=', 'tf', '.', 'reduce_mean', '(', 'var', ')', 'tf', '.', 'summary', '.', 'scalar', '(', "'mean'", ',', 'mean', ')', 'with', 'tf', '.', 'name_scope', '(', "'stddev'", ')', ':', 'stddev', '=', 'tf', '.', 'sqrt', '(', 'tf', '.', 'reduce_mean', '(', 'tf', '.', 'square', '(', 'var', '-', 'mean', ')', ')', ')', 'tf', '.', 'summary', '.', 'scalar', '(', "'stddev'", ',', 'stddev', ')', 'tf', '.', 'summary', '.', 'scalar', '(', "'max'", ',', 'tf', '.', 'reduce_max', '(', 'var', ')', ')', 'tf', '.', 'summary', '.', 'scalar', '(', "'min'", ',', 'tf', '.', 'reduce_min', '(', 'var', ')', ')', 'tf', '.', 'summary', '.', 'histogram', '(', "'histogram'", ',', 'var', ')'] | Attach a lot of summaries to a Tensor (for TensorBoard visualization). | ['Attach', 'a', 'lot', 'of', 'summaries', 'to', 'a', 'Tensor', '(', 'for', 'TensorBoard', 'visualization', ')', '.'] | train | https://github.com/tensorflow/hub/blob/09f45963f6787322967b6fec61459f3ac56fbb27/examples/image_retraining/retrain.py#L709-L719 |
50 | henocdz/workon | workon/script.py | WorkOn._is_unique | def _is_unique(self, name, path):
"""verify if there is a project with given name or path
on the database
"""
project = None
try:
project = Project.select().where(
(Project.name == name) |
(Project.path == path)
)[0]
except:
pass
return project is None | python | def _is_unique(self, name, path):
"""verify if there is a project with given name or path
on the database
"""
project = None
try:
project = Project.select().where(
(Project.name == name) |
(Project.path == path)
)[0]
except:
pass
return project is None | ['def', '_is_unique', '(', 'self', ',', 'name', ',', 'path', ')', ':', 'project', '=', 'None', 'try', ':', 'project', '=', 'Project', '.', 'select', '(', ')', '.', 'where', '(', '(', 'Project', '.', 'name', '==', 'name', ')', '|', '(', 'Project', '.', 'path', '==', 'path', ')', ')', '[', '0', ']', 'except', ':', 'pass', 'return', 'project', 'is', 'None'] | verify if there is a project with given name or path
on the database | ['verify', 'if', 'there', 'is', 'a', 'project', 'with', 'given', 'name', 'or', 'path', 'on', 'the', 'database'] | train | https://github.com/henocdz/workon/blob/46f1f6dc4ea95d8efd10adf93a06737237a6874d/workon/script.py#L34-L47 |
51 | tensorflow/tensor2tensor | tensor2tensor/models/image_transformer.py | imagetransformer_cifar_tpu_range | def imagetransformer_cifar_tpu_range(rhp):
"""Range of hyperparameters for vizier."""
# After starting from base, set intervals for some parameters.
rhp.set_float("learning_rate", 0.01, 1.0, scale=rhp.LOG_SCALE)
rhp.set_discrete("num_decoder_layers", [8, 10, 12, 14, 16])
rhp.set_discrete("hidden_size", [256, 512, 1024])
rhp.set_discrete("block_length", [128, 256, 512])
rhp.set_categorical("dec_attention_type", [
cia.AttentionType.RELATIVE_LOCAL_1D, cia.AttentionType.LOCAL_1D]) | python | def imagetransformer_cifar_tpu_range(rhp):
"""Range of hyperparameters for vizier."""
# After starting from base, set intervals for some parameters.
rhp.set_float("learning_rate", 0.01, 1.0, scale=rhp.LOG_SCALE)
rhp.set_discrete("num_decoder_layers", [8, 10, 12, 14, 16])
rhp.set_discrete("hidden_size", [256, 512, 1024])
rhp.set_discrete("block_length", [128, 256, 512])
rhp.set_categorical("dec_attention_type", [
cia.AttentionType.RELATIVE_LOCAL_1D, cia.AttentionType.LOCAL_1D]) | ['def', 'imagetransformer_cifar_tpu_range', '(', 'rhp', ')', ':', '# After starting from base, set intervals for some parameters.', 'rhp', '.', 'set_float', '(', '"learning_rate"', ',', '0.01', ',', '1.0', ',', 'scale', '=', 'rhp', '.', 'LOG_SCALE', ')', 'rhp', '.', 'set_discrete', '(', '"num_decoder_layers"', ',', '[', '8', ',', '10', ',', '12', ',', '14', ',', '16', ']', ')', 'rhp', '.', 'set_discrete', '(', '"hidden_size"', ',', '[', '256', ',', '512', ',', '1024', ']', ')', 'rhp', '.', 'set_discrete', '(', '"block_length"', ',', '[', '128', ',', '256', ',', '512', ']', ')', 'rhp', '.', 'set_categorical', '(', '"dec_attention_type"', ',', '[', 'cia', '.', 'AttentionType', '.', 'RELATIVE_LOCAL_1D', ',', 'cia', '.', 'AttentionType', '.', 'LOCAL_1D', ']', ')'] | Range of hyperparameters for vizier. | ['Range', 'of', 'hyperparameters', 'for', 'vizier', '.'] | train | https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/image_transformer.py#L1054-L1062 |
52 | sethmlarson/trytravis | trytravis.py | _wait_for_travis_build | def _wait_for_travis_build(url, commit, committed_at):
""" Waits for a Travis build to appear with the given commit SHA """
print('Waiting for a Travis build to appear '
'for `%s` after `%s`...' % (commit, committed_at))
import requests
slug = _slug_from_url(url)
start_time = time.time()
build_id = None
while time.time() - start_time < 60:
with requests.get('https://api.travis-ci.org/repos/%s/builds' % slug,
headers=_travis_headers()) as r:
if not r.ok:
raise RuntimeError('Could not reach the Travis API '
'endpoint. Additional information: '
'%s' % str(r.content))
# Search through all commits and builds to find our build.
commit_to_sha = {}
json = r.json()
for travis_commit in sorted(json['commits'],
key=lambda x: x['committed_at']):
travis_committed_at = datetime.datetime.strptime(
travis_commit['committed_at'], '%Y-%m-%dT%H:%M:%SZ'
).replace(tzinfo=utc)
if travis_committed_at < committed_at:
continue
commit_to_sha[travis_commit['id']] = travis_commit['sha']
for build in json['builds']:
if (build['commit_id'] in commit_to_sha and
commit_to_sha[build['commit_id']] == commit):
build_id = build['id']
print('Travis build id: `%d`' % build_id)
print('Travis build URL: `https://travis-ci.org/'
'%s/builds/%d`' % (slug, build_id))
if build_id is not None:
break
time.sleep(3.0)
else:
raise RuntimeError('Timed out while waiting for a Travis build '
'to start. Is Travis configured for `%s`?' % url)
return build_id | python | def _wait_for_travis_build(url, commit, committed_at):
""" Waits for a Travis build to appear with the given commit SHA """
print('Waiting for a Travis build to appear '
'for `%s` after `%s`...' % (commit, committed_at))
import requests
slug = _slug_from_url(url)
start_time = time.time()
build_id = None
while time.time() - start_time < 60:
with requests.get('https://api.travis-ci.org/repos/%s/builds' % slug,
headers=_travis_headers()) as r:
if not r.ok:
raise RuntimeError('Could not reach the Travis API '
'endpoint. Additional information: '
'%s' % str(r.content))
# Search through all commits and builds to find our build.
commit_to_sha = {}
json = r.json()
for travis_commit in sorted(json['commits'],
key=lambda x: x['committed_at']):
travis_committed_at = datetime.datetime.strptime(
travis_commit['committed_at'], '%Y-%m-%dT%H:%M:%SZ'
).replace(tzinfo=utc)
if travis_committed_at < committed_at:
continue
commit_to_sha[travis_commit['id']] = travis_commit['sha']
for build in json['builds']:
if (build['commit_id'] in commit_to_sha and
commit_to_sha[build['commit_id']] == commit):
build_id = build['id']
print('Travis build id: `%d`' % build_id)
print('Travis build URL: `https://travis-ci.org/'
'%s/builds/%d`' % (slug, build_id))
if build_id is not None:
break
time.sleep(3.0)
else:
raise RuntimeError('Timed out while waiting for a Travis build '
'to start. Is Travis configured for `%s`?' % url)
return build_id | ['def', '_wait_for_travis_build', '(', 'url', ',', 'commit', ',', 'committed_at', ')', ':', 'print', '(', "'Waiting for a Travis build to appear '", "'for `%s` after `%s`...'", '%', '(', 'commit', ',', 'committed_at', ')', ')', 'import', 'requests', 'slug', '=', '_slug_from_url', '(', 'url', ')', 'start_time', '=', 'time', '.', 'time', '(', ')', 'build_id', '=', 'None', 'while', 'time', '.', 'time', '(', ')', '-', 'start_time', '<', '60', ':', 'with', 'requests', '.', 'get', '(', "'https://api.travis-ci.org/repos/%s/builds'", '%', 'slug', ',', 'headers', '=', '_travis_headers', '(', ')', ')', 'as', 'r', ':', 'if', 'not', 'r', '.', 'ok', ':', 'raise', 'RuntimeError', '(', "'Could not reach the Travis API '", "'endpoint. Additional information: '", "'%s'", '%', 'str', '(', 'r', '.', 'content', ')', ')', '# Search through all commits and builds to find our build.', 'commit_to_sha', '=', '{', '}', 'json', '=', 'r', '.', 'json', '(', ')', 'for', 'travis_commit', 'in', 'sorted', '(', 'json', '[', "'commits'", ']', ',', 'key', '=', 'lambda', 'x', ':', 'x', '[', "'committed_at'", ']', ')', ':', 'travis_committed_at', '=', 'datetime', '.', 'datetime', '.', 'strptime', '(', 'travis_commit', '[', "'committed_at'", ']', ',', "'%Y-%m-%dT%H:%M:%SZ'", ')', '.', 'replace', '(', 'tzinfo', '=', 'utc', ')', 'if', 'travis_committed_at', '<', 'committed_at', ':', 'continue', 'commit_to_sha', '[', 'travis_commit', '[', "'id'", ']', ']', '=', 'travis_commit', '[', "'sha'", ']', 'for', 'build', 'in', 'json', '[', "'builds'", ']', ':', 'if', '(', 'build', '[', "'commit_id'", ']', 'in', 'commit_to_sha', 'and', 'commit_to_sha', '[', 'build', '[', "'commit_id'", ']', ']', '==', 'commit', ')', ':', 'build_id', '=', 'build', '[', "'id'", ']', 'print', '(', "'Travis build id: `%d`'", '%', 'build_id', ')', 'print', '(', "'Travis build URL: `https://travis-ci.org/'", "'%s/builds/%d`'", '%', '(', 'slug', ',', 'build_id', ')', ')', 'if', 'build_id', 'is', 'not', 'None', ':', 'break', 'time', '.', 'sleep', '(', '3.0', ')', 'else', ':', 'raise', 'RuntimeError', '(', "'Timed out while waiting for a Travis build '", "'to start. Is Travis configured for `%s`?'", '%', 'url', ')', 'return', 'build_id'] | Waits for a Travis build to appear with the given commit SHA | ['Waits', 'for', 'a', 'Travis', 'build', 'to', 'appear', 'with', 'the', 'given', 'commit', 'SHA'] | train | https://github.com/sethmlarson/trytravis/blob/d92ed708fe71d8db93a6df8077d23ee39ec0364e/trytravis.py#L188-L234 |
53 | nameko/nameko | nameko/cli/shell.py | make_nameko_helper | def make_nameko_helper(config):
"""Create a fake module that provides some convenient access to nameko
standalone functionality for interactive shell usage.
"""
module = ModuleType('nameko')
module.__doc__ = """Nameko shell helper for making rpc calls and dispatching
events.
Usage:
>>> n.rpc.service.method()
"reply"
>>> n.dispatch_event('service', 'event_type', 'event_data')
"""
proxy = ClusterRpcProxy(config)
module.rpc = proxy.start()
module.dispatch_event = event_dispatcher(config)
module.config = config
module.disconnect = proxy.stop
return module | python | def make_nameko_helper(config):
"""Create a fake module that provides some convenient access to nameko
standalone functionality for interactive shell usage.
"""
module = ModuleType('nameko')
module.__doc__ = """Nameko shell helper for making rpc calls and dispatching
events.
Usage:
>>> n.rpc.service.method()
"reply"
>>> n.dispatch_event('service', 'event_type', 'event_data')
"""
proxy = ClusterRpcProxy(config)
module.rpc = proxy.start()
module.dispatch_event = event_dispatcher(config)
module.config = config
module.disconnect = proxy.stop
return module | ['def', 'make_nameko_helper', '(', 'config', ')', ':', 'module', '=', 'ModuleType', '(', "'nameko'", ')', 'module', '.', '__doc__', '=', '"""Nameko shell helper for making rpc calls and dispatching\nevents.\n\nUsage:\n >>> n.rpc.service.method()\n "reply"\n\n >>> n.dispatch_event(\'service\', \'event_type\', \'event_data\')\n"""', 'proxy', '=', 'ClusterRpcProxy', '(', 'config', ')', 'module', '.', 'rpc', '=', 'proxy', '.', 'start', '(', ')', 'module', '.', 'dispatch_event', '=', 'event_dispatcher', '(', 'config', ')', 'module', '.', 'config', '=', 'config', 'module', '.', 'disconnect', '=', 'proxy', '.', 'stop', 'return', 'module'] | Create a fake module that provides some convenient access to nameko
standalone functionality for interactive shell usage. | ['Create', 'a', 'fake', 'module', 'that', 'provides', 'some', 'convenient', 'access', 'to', 'nameko', 'standalone', 'functionality', 'for', 'interactive', 'shell', 'usage', '.'] | train | https://github.com/nameko/nameko/blob/88d7e5211de4fcc1c34cd7f84d7c77f0619c5f5d/nameko/cli/shell.py#L58-L77 |
54 | earwig/mwparserfromhell | mwparserfromhell/nodes/template.py | Template.add | def add(self, name, value, showkey=None, before=None,
preserve_spacing=True):
"""Add a parameter to the template with a given *name* and *value*.
*name* and *value* can be anything parsable by
:func:`.utils.parse_anything`; pipes and equal signs are automatically
escaped from *value* when appropriate.
If *name* is already a parameter in the template, we'll replace its
value.
If *showkey* is given, this will determine whether or not to show the
parameter's name (e.g., ``{{foo|bar}}``'s parameter has a name of
``"1"`` but it is hidden); otherwise, we'll make a safe and intelligent
guess.
If *before* is given (either a :class:`.Parameter` object or a name),
then we will place the parameter immediately before this one.
Otherwise, it will be added at the end. If *before* is a name and
exists multiple times in the template, we will place it before the last
occurrence. If *before* is not in the template, :exc:`ValueError` is
raised. The argument is ignored if *name* is an existing parameter.
If *preserve_spacing* is ``True``, we will try to preserve whitespace
conventions around the parameter, whether it is new or we are updating
an existing value. It is disabled for parameters with hidden keys,
since MediaWiki doesn't strip whitespace in this case.
"""
name, value = parse_anything(name), parse_anything(value)
self._surface_escape(value, "|")
if self.has(name):
self.remove(name, keep_field=True)
existing = self.get(name)
if showkey is not None:
existing.showkey = showkey
if not existing.showkey:
self._surface_escape(value, "=")
nodes = existing.value.nodes
if preserve_spacing and existing.showkey:
for i in range(2): # Ignore empty text nodes
if not nodes[i]:
nodes[i] = None
existing.value = parse_anything([nodes[0], value, nodes[1]])
else:
existing.value = value
return existing
if showkey is None:
if Parameter.can_hide_key(name):
int_name = int(str(name))
int_keys = set()
for param in self.params:
if not param.showkey:
int_keys.add(int(str(param.name)))
expected = min(set(range(1, len(int_keys) + 2)) - int_keys)
if expected == int_name:
showkey = False
else:
showkey = True
else:
showkey = True
if not showkey:
self._surface_escape(value, "=")
if preserve_spacing and showkey:
before_n, after_n = self._get_spacing_conventions(use_names=True)
before_v, after_v = self._get_spacing_conventions(use_names=False)
name = parse_anything([before_n, name, after_n])
value = parse_anything([before_v, value, after_v])
param = Parameter(name, value, showkey)
if before:
if not isinstance(before, Parameter):
before = self.get(before)
self.params.insert(self.params.index(before), param)
else:
self.params.append(param)
return param | python | def add(self, name, value, showkey=None, before=None,
preserve_spacing=True):
"""Add a parameter to the template with a given *name* and *value*.
*name* and *value* can be anything parsable by
:func:`.utils.parse_anything`; pipes and equal signs are automatically
escaped from *value* when appropriate.
If *name* is already a parameter in the template, we'll replace its
value.
If *showkey* is given, this will determine whether or not to show the
parameter's name (e.g., ``{{foo|bar}}``'s parameter has a name of
``"1"`` but it is hidden); otherwise, we'll make a safe and intelligent
guess.
If *before* is given (either a :class:`.Parameter` object or a name),
then we will place the parameter immediately before this one.
Otherwise, it will be added at the end. If *before* is a name and
exists multiple times in the template, we will place it before the last
occurrence. If *before* is not in the template, :exc:`ValueError` is
raised. The argument is ignored if *name* is an existing parameter.
If *preserve_spacing* is ``True``, we will try to preserve whitespace
conventions around the parameter, whether it is new or we are updating
an existing value. It is disabled for parameters with hidden keys,
since MediaWiki doesn't strip whitespace in this case.
"""
name, value = parse_anything(name), parse_anything(value)
self._surface_escape(value, "|")
if self.has(name):
self.remove(name, keep_field=True)
existing = self.get(name)
if showkey is not None:
existing.showkey = showkey
if not existing.showkey:
self._surface_escape(value, "=")
nodes = existing.value.nodes
if preserve_spacing and existing.showkey:
for i in range(2): # Ignore empty text nodes
if not nodes[i]:
nodes[i] = None
existing.value = parse_anything([nodes[0], value, nodes[1]])
else:
existing.value = value
return existing
if showkey is None:
if Parameter.can_hide_key(name):
int_name = int(str(name))
int_keys = set()
for param in self.params:
if not param.showkey:
int_keys.add(int(str(param.name)))
expected = min(set(range(1, len(int_keys) + 2)) - int_keys)
if expected == int_name:
showkey = False
else:
showkey = True
else:
showkey = True
if not showkey:
self._surface_escape(value, "=")
if preserve_spacing and showkey:
before_n, after_n = self._get_spacing_conventions(use_names=True)
before_v, after_v = self._get_spacing_conventions(use_names=False)
name = parse_anything([before_n, name, after_n])
value = parse_anything([before_v, value, after_v])
param = Parameter(name, value, showkey)
if before:
if not isinstance(before, Parameter):
before = self.get(before)
self.params.insert(self.params.index(before), param)
else:
self.params.append(param)
return param | ['def', 'add', '(', 'self', ',', 'name', ',', 'value', ',', 'showkey', '=', 'None', ',', 'before', '=', 'None', ',', 'preserve_spacing', '=', 'True', ')', ':', 'name', ',', 'value', '=', 'parse_anything', '(', 'name', ')', ',', 'parse_anything', '(', 'value', ')', 'self', '.', '_surface_escape', '(', 'value', ',', '"|"', ')', 'if', 'self', '.', 'has', '(', 'name', ')', ':', 'self', '.', 'remove', '(', 'name', ',', 'keep_field', '=', 'True', ')', 'existing', '=', 'self', '.', 'get', '(', 'name', ')', 'if', 'showkey', 'is', 'not', 'None', ':', 'existing', '.', 'showkey', '=', 'showkey', 'if', 'not', 'existing', '.', 'showkey', ':', 'self', '.', '_surface_escape', '(', 'value', ',', '"="', ')', 'nodes', '=', 'existing', '.', 'value', '.', 'nodes', 'if', 'preserve_spacing', 'and', 'existing', '.', 'showkey', ':', 'for', 'i', 'in', 'range', '(', '2', ')', ':', '# Ignore empty text nodes', 'if', 'not', 'nodes', '[', 'i', ']', ':', 'nodes', '[', 'i', ']', '=', 'None', 'existing', '.', 'value', '=', 'parse_anything', '(', '[', 'nodes', '[', '0', ']', ',', 'value', ',', 'nodes', '[', '1', ']', ']', ')', 'else', ':', 'existing', '.', 'value', '=', 'value', 'return', 'existing', 'if', 'showkey', 'is', 'None', ':', 'if', 'Parameter', '.', 'can_hide_key', '(', 'name', ')', ':', 'int_name', '=', 'int', '(', 'str', '(', 'name', ')', ')', 'int_keys', '=', 'set', '(', ')', 'for', 'param', 'in', 'self', '.', 'params', ':', 'if', 'not', 'param', '.', 'showkey', ':', 'int_keys', '.', 'add', '(', 'int', '(', 'str', '(', 'param', '.', 'name', ')', ')', ')', 'expected', '=', 'min', '(', 'set', '(', 'range', '(', '1', ',', 'len', '(', 'int_keys', ')', '+', '2', ')', ')', '-', 'int_keys', ')', 'if', 'expected', '==', 'int_name', ':', 'showkey', '=', 'False', 'else', ':', 'showkey', '=', 'True', 'else', ':', 'showkey', '=', 'True', 'if', 'not', 'showkey', ':', 'self', '.', '_surface_escape', '(', 'value', ',', '"="', ')', 'if', 'preserve_spacing', 'and', 'showkey', ':', 'before_n', ',', 'after_n', '=', 'self', '.', '_get_spacing_conventions', '(', 'use_names', '=', 'True', ')', 'before_v', ',', 'after_v', '=', 'self', '.', '_get_spacing_conventions', '(', 'use_names', '=', 'False', ')', 'name', '=', 'parse_anything', '(', '[', 'before_n', ',', 'name', ',', 'after_n', ']', ')', 'value', '=', 'parse_anything', '(', '[', 'before_v', ',', 'value', ',', 'after_v', ']', ')', 'param', '=', 'Parameter', '(', 'name', ',', 'value', ',', 'showkey', ')', 'if', 'before', ':', 'if', 'not', 'isinstance', '(', 'before', ',', 'Parameter', ')', ':', 'before', '=', 'self', '.', 'get', '(', 'before', ')', 'self', '.', 'params', '.', 'insert', '(', 'self', '.', 'params', '.', 'index', '(', 'before', ')', ',', 'param', ')', 'else', ':', 'self', '.', 'params', '.', 'append', '(', 'param', ')', 'return', 'param'] | Add a parameter to the template with a given *name* and *value*.
*name* and *value* can be anything parsable by
:func:`.utils.parse_anything`; pipes and equal signs are automatically
escaped from *value* when appropriate.
If *name* is already a parameter in the template, we'll replace its
value.
If *showkey* is given, this will determine whether or not to show the
parameter's name (e.g., ``{{foo|bar}}``'s parameter has a name of
``"1"`` but it is hidden); otherwise, we'll make a safe and intelligent
guess.
If *before* is given (either a :class:`.Parameter` object or a name),
then we will place the parameter immediately before this one.
Otherwise, it will be added at the end. If *before* is a name and
exists multiple times in the template, we will place it before the last
occurrence. If *before* is not in the template, :exc:`ValueError` is
raised. The argument is ignored if *name* is an existing parameter.
If *preserve_spacing* is ``True``, we will try to preserve whitespace
conventions around the parameter, whether it is new or we are updating
an existing value. It is disabled for parameters with hidden keys,
since MediaWiki doesn't strip whitespace in this case. | ['Add', 'a', 'parameter', 'to', 'the', 'template', 'with', 'a', 'given', '*', 'name', '*', 'and', '*', 'value', '*', '.'] | train | https://github.com/earwig/mwparserfromhell/blob/98dc30902d35c714a70aca8e6616f49d71cb24cc/mwparserfromhell/nodes/template.py#L232-L310 |
55 | liamw9534/bt-manager | bt_manager/audio.py | SBCAudioCodec.register_transport_ready_event | def register_transport_ready_event(self, user_cb, user_arg):
"""
Register for transport ready events. The `transport ready`
event is raised via a user callback. If the endpoint
is configured as a source, then the user may then
call :py:meth:`write_transport` in order to send data to
the associated sink.
Otherwise, if the endpoint is configured as a sink, then
the user may call :py:meth:`read_transport` to read
from the associated source instead.
:param func user_cb: User defined callback function. It
must take one parameter which is the user's callback
argument.
:param user_arg: User defined callback argument.
:return:
See also: :py:meth:`unregister_transport_ready_event`
"""
self.user_cb = user_cb
self.user_arg = user_arg | python | def register_transport_ready_event(self, user_cb, user_arg):
"""
Register for transport ready events. The `transport ready`
event is raised via a user callback. If the endpoint
is configured as a source, then the user may then
call :py:meth:`write_transport` in order to send data to
the associated sink.
Otherwise, if the endpoint is configured as a sink, then
the user may call :py:meth:`read_transport` to read
from the associated source instead.
:param func user_cb: User defined callback function. It
must take one parameter which is the user's callback
argument.
:param user_arg: User defined callback argument.
:return:
See also: :py:meth:`unregister_transport_ready_event`
"""
self.user_cb = user_cb
self.user_arg = user_arg | ['def', 'register_transport_ready_event', '(', 'self', ',', 'user_cb', ',', 'user_arg', ')', ':', 'self', '.', 'user_cb', '=', 'user_cb', 'self', '.', 'user_arg', '=', 'user_arg'] | Register for transport ready events. The `transport ready`
event is raised via a user callback. If the endpoint
is configured as a source, then the user may then
call :py:meth:`write_transport` in order to send data to
the associated sink.
Otherwise, if the endpoint is configured as a sink, then
the user may call :py:meth:`read_transport` to read
from the associated source instead.
:param func user_cb: User defined callback function. It
must take one parameter which is the user's callback
argument.
:param user_arg: User defined callback argument.
:return:
See also: :py:meth:`unregister_transport_ready_event` | ['Register', 'for', 'transport', 'ready', 'events', '.', 'The', 'transport', 'ready', 'event', 'is', 'raised', 'via', 'a', 'user', 'callback', '.', 'If', 'the', 'endpoint', 'is', 'configured', 'as', 'a', 'source', 'then', 'the', 'user', 'may', 'then', 'call', ':', 'py', ':', 'meth', ':', 'write_transport', 'in', 'order', 'to', 'send', 'data', 'to', 'the', 'associated', 'sink', '.', 'Otherwise', 'if', 'the', 'endpoint', 'is', 'configured', 'as', 'a', 'sink', 'then', 'the', 'user', 'may', 'call', ':', 'py', ':', 'meth', ':', 'read_transport', 'to', 'read', 'from', 'the', 'associated', 'source', 'instead', '.'] | train | https://github.com/liamw9534/bt-manager/blob/51be2919394ce8134c698359649bfad09eedf4ec/bt_manager/audio.py#L207-L227 |
56 | LesPatamechanix/patalib | src/patalib/anomaly.py | Anomaly.generate_anomaly | def generate_anomaly(self, input_word, list_of_dict_words, num):
""" Generate an anomaly. This is done
via a Psuedo-random number generator.
"""
results = []
for i in range(0,num):
index = randint(0,len(list_of_dict_words)-1)
name = list_of_dict_words[index]
if name != input_word and name not in results:
results.append(PataLib().strip_underscore(name))
else:
i = i +1
results = {'input' : input_word, 'results' : results, 'category' : 'anomaly'}
return results | python | def generate_anomaly(self, input_word, list_of_dict_words, num):
""" Generate an anomaly. This is done
via a Psuedo-random number generator.
"""
results = []
for i in range(0,num):
index = randint(0,len(list_of_dict_words)-1)
name = list_of_dict_words[index]
if name != input_word and name not in results:
results.append(PataLib().strip_underscore(name))
else:
i = i +1
results = {'input' : input_word, 'results' : results, 'category' : 'anomaly'}
return results | ['def', 'generate_anomaly', '(', 'self', ',', 'input_word', ',', 'list_of_dict_words', ',', 'num', ')', ':', 'results', '=', '[', ']', 'for', 'i', 'in', 'range', '(', '0', ',', 'num', ')', ':', 'index', '=', 'randint', '(', '0', ',', 'len', '(', 'list_of_dict_words', ')', '-', '1', ')', 'name', '=', 'list_of_dict_words', '[', 'index', ']', 'if', 'name', '!=', 'input_word', 'and', 'name', 'not', 'in', 'results', ':', 'results', '.', 'append', '(', 'PataLib', '(', ')', '.', 'strip_underscore', '(', 'name', ')', ')', 'else', ':', 'i', '=', 'i', '+', '1', 'results', '=', '{', "'input'", ':', 'input_word', ',', "'results'", ':', 'results', ',', "'category'", ':', "'anomaly'", '}', 'return', 'results'] | Generate an anomaly. This is done
via a Psuedo-random number generator. | ['Generate', 'an', 'anomaly', '.', 'This', 'is', 'done', 'via', 'a', 'Psuedo', '-', 'random', 'number', 'generator', '.'] | train | https://github.com/LesPatamechanix/patalib/blob/d88cca409b1750fdeb88cece048b308f2a710955/src/patalib/anomaly.py#L9-L23 |
57 | cqlengine/cqlengine | cqlengine/query.py | AbstractQuerySet.count | def count(self):
""" Returns the number of rows matched by this query """
if self._batch:
raise CQLEngineException("Only inserts, updates, and deletes are available in batch mode")
if self._result_cache is None:
query = self._select_query()
query.count = True
result = self._execute(query)
return result[0]['count']
else:
return len(self._result_cache) | python | def count(self):
""" Returns the number of rows matched by this query """
if self._batch:
raise CQLEngineException("Only inserts, updates, and deletes are available in batch mode")
if self._result_cache is None:
query = self._select_query()
query.count = True
result = self._execute(query)
return result[0]['count']
else:
return len(self._result_cache) | ['def', 'count', '(', 'self', ')', ':', 'if', 'self', '.', '_batch', ':', 'raise', 'CQLEngineException', '(', '"Only inserts, updates, and deletes are available in batch mode"', ')', 'if', 'self', '.', '_result_cache', 'is', 'None', ':', 'query', '=', 'self', '.', '_select_query', '(', ')', 'query', '.', 'count', '=', 'True', 'result', '=', 'self', '.', '_execute', '(', 'query', ')', 'return', 'result', '[', '0', ']', '[', "'count'", ']', 'else', ':', 'return', 'len', '(', 'self', '.', '_result_cache', ')'] | Returns the number of rows matched by this query | ['Returns', 'the', 'number', 'of', 'rows', 'matched', 'by', 'this', 'query'] | train | https://github.com/cqlengine/cqlengine/blob/7079eaf7071cbf5a045e1d1ab57f6d1b5ba3f9dc/cqlengine/query.py#L568-L579 |
58 | chaimleib/intervaltree | intervaltree/intervaltree.py | IntervalTree.remove | def remove(self, interval):
"""
Removes an interval from the tree, if present. If not, raises
ValueError.
Completes in O(log n) time.
"""
#self.verify()
if interval not in self:
#print(self.all_intervals)
raise ValueError
self.top_node = self.top_node.remove(interval)
self.all_intervals.remove(interval)
self._remove_boundaries(interval) | python | def remove(self, interval):
"""
Removes an interval from the tree, if present. If not, raises
ValueError.
Completes in O(log n) time.
"""
#self.verify()
if interval not in self:
#print(self.all_intervals)
raise ValueError
self.top_node = self.top_node.remove(interval)
self.all_intervals.remove(interval)
self._remove_boundaries(interval) | ['def', 'remove', '(', 'self', ',', 'interval', ')', ':', '#self.verify()', 'if', 'interval', 'not', 'in', 'self', ':', '#print(self.all_intervals)', 'raise', 'ValueError', 'self', '.', 'top_node', '=', 'self', '.', 'top_node', '.', 'remove', '(', 'interval', ')', 'self', '.', 'all_intervals', '.', 'remove', '(', 'interval', ')', 'self', '.', '_remove_boundaries', '(', 'interval', ')'] | Removes an interval from the tree, if present. If not, raises
ValueError.
Completes in O(log n) time. | ['Removes', 'an', 'interval', 'from', 'the', 'tree', 'if', 'present', '.', 'If', 'not', 'raises', 'ValueError', '.'] | train | https://github.com/chaimleib/intervaltree/blob/ffb2b1667f8b832e89324a75a175be8440504c9d/intervaltree/intervaltree.py#L356-L369 |
59 | aws/sagemaker-python-sdk | src/sagemaker/predictor.py | RealTimePredictor.delete_model | def delete_model(self):
"""Deletes the Amazon SageMaker models backing this predictor.
"""
request_failed = False
failed_models = []
for model_name in self._model_names:
try:
self.sagemaker_session.delete_model(model_name)
except Exception: # pylint: disable=broad-except
request_failed = True
failed_models.append(model_name)
if request_failed:
raise Exception('One or more models cannot be deleted, please retry. \n'
'Failed models: {}'.format(', '.join(failed_models))) | python | def delete_model(self):
"""Deletes the Amazon SageMaker models backing this predictor.
"""
request_failed = False
failed_models = []
for model_name in self._model_names:
try:
self.sagemaker_session.delete_model(model_name)
except Exception: # pylint: disable=broad-except
request_failed = True
failed_models.append(model_name)
if request_failed:
raise Exception('One or more models cannot be deleted, please retry. \n'
'Failed models: {}'.format(', '.join(failed_models))) | ['def', 'delete_model', '(', 'self', ')', ':', 'request_failed', '=', 'False', 'failed_models', '=', '[', ']', 'for', 'model_name', 'in', 'self', '.', '_model_names', ':', 'try', ':', 'self', '.', 'sagemaker_session', '.', 'delete_model', '(', 'model_name', ')', 'except', 'Exception', ':', '# pylint: disable=broad-except', 'request_failed', '=', 'True', 'failed_models', '.', 'append', '(', 'model_name', ')', 'if', 'request_failed', ':', 'raise', 'Exception', '(', "'One or more models cannot be deleted, please retry. \\n'", "'Failed models: {}'", '.', 'format', '(', "', '", '.', 'join', '(', 'failed_models', ')', ')', ')'] | Deletes the Amazon SageMaker models backing this predictor. | ['Deletes', 'the', 'Amazon', 'SageMaker', 'models', 'backing', 'this', 'predictor', '.'] | train | https://github.com/aws/sagemaker-python-sdk/blob/a9e724c7d3f5572b68c3903548c792a59d99799a/src/sagemaker/predictor.py#L131-L146 |
60 | google/mobly | mobly/asserts.py | assert_raises | def assert_raises(expected_exception, extras=None, *args, **kwargs):
"""Assert that an exception is raised when a function is called.
If no exception is raised, test fail. If an exception is raised but not
of the expected type, the exception is let through.
This should only be used as a context manager:
with assert_raises(Exception):
func()
Args:
expected_exception: An exception class that is expected to be
raised.
extras: An optional field for extra information to be included in
test result.
"""
context = _AssertRaisesContext(expected_exception, extras=extras)
return context | python | def assert_raises(expected_exception, extras=None, *args, **kwargs):
"""Assert that an exception is raised when a function is called.
If no exception is raised, test fail. If an exception is raised but not
of the expected type, the exception is let through.
This should only be used as a context manager:
with assert_raises(Exception):
func()
Args:
expected_exception: An exception class that is expected to be
raised.
extras: An optional field for extra information to be included in
test result.
"""
context = _AssertRaisesContext(expected_exception, extras=extras)
return context | ['def', 'assert_raises', '(', 'expected_exception', ',', 'extras', '=', 'None', ',', '*', 'args', ',', '*', '*', 'kwargs', ')', ':', 'context', '=', '_AssertRaisesContext', '(', 'expected_exception', ',', 'extras', '=', 'extras', ')', 'return', 'context'] | Assert that an exception is raised when a function is called.
If no exception is raised, test fail. If an exception is raised but not
of the expected type, the exception is let through.
This should only be used as a context manager:
with assert_raises(Exception):
func()
Args:
expected_exception: An exception class that is expected to be
raised.
extras: An optional field for extra information to be included in
test result. | ['Assert', 'that', 'an', 'exception', 'is', 'raised', 'when', 'a', 'function', 'is', 'called', '.'] | train | https://github.com/google/mobly/blob/38ba2cf7d29a20e6a2fca1718eecb337df38db26/mobly/asserts.py#L60-L77 |
61 | saltstack/salt | salt/modules/mandrill.py | _http_request | def _http_request(url,
headers=None,
data=None):
'''
Make the HTTP request and return the body as python object.
'''
if not headers:
headers = _get_headers()
session = requests.session()
log.debug('Querying %s', url)
req = session.post(url,
headers=headers,
data=salt.utils.json.dumps(data))
req_body = req.json()
ret = _default_ret()
log.debug('Status code: %d', req.status_code)
log.debug('Response body:')
log.debug(req_body)
if req.status_code != 200:
if req.status_code == 500:
ret['comment'] = req_body.pop('message', '')
ret['out'] = req_body
return ret
ret.update({
'comment': req_body.get('error', '')
})
return ret
ret.update({
'result': True,
'out': req.json()
})
return ret | python | def _http_request(url,
headers=None,
data=None):
'''
Make the HTTP request and return the body as python object.
'''
if not headers:
headers = _get_headers()
session = requests.session()
log.debug('Querying %s', url)
req = session.post(url,
headers=headers,
data=salt.utils.json.dumps(data))
req_body = req.json()
ret = _default_ret()
log.debug('Status code: %d', req.status_code)
log.debug('Response body:')
log.debug(req_body)
if req.status_code != 200:
if req.status_code == 500:
ret['comment'] = req_body.pop('message', '')
ret['out'] = req_body
return ret
ret.update({
'comment': req_body.get('error', '')
})
return ret
ret.update({
'result': True,
'out': req.json()
})
return ret | ['def', '_http_request', '(', 'url', ',', 'headers', '=', 'None', ',', 'data', '=', 'None', ')', ':', 'if', 'not', 'headers', ':', 'headers', '=', '_get_headers', '(', ')', 'session', '=', 'requests', '.', 'session', '(', ')', 'log', '.', 'debug', '(', "'Querying %s'", ',', 'url', ')', 'req', '=', 'session', '.', 'post', '(', 'url', ',', 'headers', '=', 'headers', ',', 'data', '=', 'salt', '.', 'utils', '.', 'json', '.', 'dumps', '(', 'data', ')', ')', 'req_body', '=', 'req', '.', 'json', '(', ')', 'ret', '=', '_default_ret', '(', ')', 'log', '.', 'debug', '(', "'Status code: %d'", ',', 'req', '.', 'status_code', ')', 'log', '.', 'debug', '(', "'Response body:'", ')', 'log', '.', 'debug', '(', 'req_body', ')', 'if', 'req', '.', 'status_code', '!=', '200', ':', 'if', 'req', '.', 'status_code', '==', '500', ':', 'ret', '[', "'comment'", ']', '=', 'req_body', '.', 'pop', '(', "'message'", ',', "''", ')', 'ret', '[', "'out'", ']', '=', 'req_body', 'return', 'ret', 'ret', '.', 'update', '(', '{', "'comment'", ':', 'req_body', '.', 'get', '(', "'error'", ',', "''", ')', '}', ')', 'return', 'ret', 'ret', '.', 'update', '(', '{', "'result'", ':', 'True', ',', "'out'", ':', 'req', '.', 'json', '(', ')', '}', ')', 'return', 'ret'] | Make the HTTP request and return the body as python object. | ['Make', 'the', 'HTTP', 'request', 'and', 'return', 'the', 'body', 'as', 'python', 'object', '.'] | train | https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/modules/mandrill.py#L101-L132 |
62 | saltstack/salt | salt/returners/sqlite3_return.py | save_load | def save_load(jid, load, minions=None):
'''
Save the load to the specified jid
'''
log.debug('sqlite3 returner <save_load> called jid: %s load: %s', jid, load)
conn = _get_conn(ret=None)
cur = conn.cursor()
sql = '''INSERT INTO jids (jid, load) VALUES (:jid, :load)'''
cur.execute(sql,
{'jid': jid,
'load': salt.utils.json.dumps(load)})
_close_conn(conn) | python | def save_load(jid, load, minions=None):
'''
Save the load to the specified jid
'''
log.debug('sqlite3 returner <save_load> called jid: %s load: %s', jid, load)
conn = _get_conn(ret=None)
cur = conn.cursor()
sql = '''INSERT INTO jids (jid, load) VALUES (:jid, :load)'''
cur.execute(sql,
{'jid': jid,
'load': salt.utils.json.dumps(load)})
_close_conn(conn) | ['def', 'save_load', '(', 'jid', ',', 'load', ',', 'minions', '=', 'None', ')', ':', 'log', '.', 'debug', '(', "'sqlite3 returner <save_load> called jid: %s load: %s'", ',', 'jid', ',', 'load', ')', 'conn', '=', '_get_conn', '(', 'ret', '=', 'None', ')', 'cur', '=', 'conn', '.', 'cursor', '(', ')', 'sql', '=', "'''INSERT INTO jids (jid, load) VALUES (:jid, :load)'''", 'cur', '.', 'execute', '(', 'sql', ',', '{', "'jid'", ':', 'jid', ',', "'load'", ':', 'salt', '.', 'utils', '.', 'json', '.', 'dumps', '(', 'load', ')', '}', ')', '_close_conn', '(', 'conn', ')'] | Save the load to the specified jid | ['Save', 'the', 'load', 'to', 'the', 'specified', 'jid'] | train | https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/returners/sqlite3_return.py#L182-L193 |
63 | iotile/coretools | iotilebuild/iotile/build/config/scons-local-3.0.1/SCons/Action.py | CommandGeneratorAction.get_presig | def get_presig(self, target, source, env, executor=None):
"""Return the signature contents of this action's command line.
This strips $(-$) and everything in between the string,
since those parts don't affect signatures.
"""
return self._generate(target, source, env, 1, executor).get_presig(target, source, env) | python | def get_presig(self, target, source, env, executor=None):
"""Return the signature contents of this action's command line.
This strips $(-$) and everything in between the string,
since those parts don't affect signatures.
"""
return self._generate(target, source, env, 1, executor).get_presig(target, source, env) | ['def', 'get_presig', '(', 'self', ',', 'target', ',', 'source', ',', 'env', ',', 'executor', '=', 'None', ')', ':', 'return', 'self', '.', '_generate', '(', 'target', ',', 'source', ',', 'env', ',', '1', ',', 'executor', ')', '.', 'get_presig', '(', 'target', ',', 'source', ',', 'env', ')'] | Return the signature contents of this action's command line.
This strips $(-$) and everything in between the string,
since those parts don't affect signatures. | ['Return', 'the', 'signature', 'contents', 'of', 'this', 'action', 's', 'command', 'line', '.'] | train | https://github.com/iotile/coretools/blob/2d794f5f1346b841b0dcd16c9d284e9bf2f3c6ec/iotilebuild/iotile/build/config/scons-local-3.0.1/SCons/Action.py#L1043-L1049 |
64 | cmbruns/pyopenvr | src/openvr/__init__.py | IVROverlay.getOverlayTransformAbsolute | def getOverlayTransformAbsolute(self, ulOverlayHandle):
"""Gets the transform if it is absolute. Returns an error if the transform is some other type."""
fn = self.function_table.getOverlayTransformAbsolute
peTrackingOrigin = ETrackingUniverseOrigin()
pmatTrackingOriginToOverlayTransform = HmdMatrix34_t()
result = fn(ulOverlayHandle, byref(peTrackingOrigin), byref(pmatTrackingOriginToOverlayTransform))
return result, peTrackingOrigin, pmatTrackingOriginToOverlayTransform | python | def getOverlayTransformAbsolute(self, ulOverlayHandle):
"""Gets the transform if it is absolute. Returns an error if the transform is some other type."""
fn = self.function_table.getOverlayTransformAbsolute
peTrackingOrigin = ETrackingUniverseOrigin()
pmatTrackingOriginToOverlayTransform = HmdMatrix34_t()
result = fn(ulOverlayHandle, byref(peTrackingOrigin), byref(pmatTrackingOriginToOverlayTransform))
return result, peTrackingOrigin, pmatTrackingOriginToOverlayTransform | ['def', 'getOverlayTransformAbsolute', '(', 'self', ',', 'ulOverlayHandle', ')', ':', 'fn', '=', 'self', '.', 'function_table', '.', 'getOverlayTransformAbsolute', 'peTrackingOrigin', '=', 'ETrackingUniverseOrigin', '(', ')', 'pmatTrackingOriginToOverlayTransform', '=', 'HmdMatrix34_t', '(', ')', 'result', '=', 'fn', '(', 'ulOverlayHandle', ',', 'byref', '(', 'peTrackingOrigin', ')', ',', 'byref', '(', 'pmatTrackingOriginToOverlayTransform', ')', ')', 'return', 'result', ',', 'peTrackingOrigin', ',', 'pmatTrackingOriginToOverlayTransform'] | Gets the transform if it is absolute. Returns an error if the transform is some other type. | ['Gets', 'the', 'transform', 'if', 'it', 'is', 'absolute', '.', 'Returns', 'an', 'error', 'if', 'the', 'transform', 'is', 'some', 'other', 'type', '.'] | train | https://github.com/cmbruns/pyopenvr/blob/68395d26bb3df6ab1f0f059c38d441f962938be6/src/openvr/__init__.py#L4852-L4859 |
65 | gem/oq-engine | openquake/hazardlib/geo/geodetic.py | spherical_to_cartesian | def spherical_to_cartesian(lons, lats, depths=None):
"""
Return the position vectors (in Cartesian coordinates) of list of spherical
coordinates.
For equations see: http://mathworld.wolfram.com/SphericalCoordinates.html.
Parameters are components of spherical coordinates in a form of scalars,
lists or numpy arrays. ``depths`` can be ``None`` in which case it's
considered zero for all points.
:returns:
``numpy.array`` of 3d vectors representing points' coordinates in
Cartesian space in km. The array has shape `lons.shape + (3,)`.
In particular, if ``lons`` and ``lats`` are scalars the result is a
3D vector and if they are vectors the result is a matrix of shape
(N, 3).
See also :func:`cartesian_to_spherical`.
"""
phi = numpy.radians(lons)
theta = numpy.radians(lats)
if depths is None:
rr = EARTH_RADIUS
else:
rr = EARTH_RADIUS - numpy.array(depths)
cos_theta_r = rr * numpy.cos(theta)
try:
shape = lons.shape
except AttributeError: # a list/tuple was passed
try:
shape = (len(lons),)
except TypeError: # a scalar was passed
shape = ()
arr = numpy.zeros(shape + (3,))
arr[..., 0] = cos_theta_r * numpy.cos(phi)
arr[..., 1] = cos_theta_r * numpy.sin(phi)
arr[..., 2] = rr * numpy.sin(theta)
return arr | python | def spherical_to_cartesian(lons, lats, depths=None):
"""
Return the position vectors (in Cartesian coordinates) of list of spherical
coordinates.
For equations see: http://mathworld.wolfram.com/SphericalCoordinates.html.
Parameters are components of spherical coordinates in a form of scalars,
lists or numpy arrays. ``depths`` can be ``None`` in which case it's
considered zero for all points.
:returns:
``numpy.array`` of 3d vectors representing points' coordinates in
Cartesian space in km. The array has shape `lons.shape + (3,)`.
In particular, if ``lons`` and ``lats`` are scalars the result is a
3D vector and if they are vectors the result is a matrix of shape
(N, 3).
See also :func:`cartesian_to_spherical`.
"""
phi = numpy.radians(lons)
theta = numpy.radians(lats)
if depths is None:
rr = EARTH_RADIUS
else:
rr = EARTH_RADIUS - numpy.array(depths)
cos_theta_r = rr * numpy.cos(theta)
try:
shape = lons.shape
except AttributeError: # a list/tuple was passed
try:
shape = (len(lons),)
except TypeError: # a scalar was passed
shape = ()
arr = numpy.zeros(shape + (3,))
arr[..., 0] = cos_theta_r * numpy.cos(phi)
arr[..., 1] = cos_theta_r * numpy.sin(phi)
arr[..., 2] = rr * numpy.sin(theta)
return arr | ['def', 'spherical_to_cartesian', '(', 'lons', ',', 'lats', ',', 'depths', '=', 'None', ')', ':', 'phi', '=', 'numpy', '.', 'radians', '(', 'lons', ')', 'theta', '=', 'numpy', '.', 'radians', '(', 'lats', ')', 'if', 'depths', 'is', 'None', ':', 'rr', '=', 'EARTH_RADIUS', 'else', ':', 'rr', '=', 'EARTH_RADIUS', '-', 'numpy', '.', 'array', '(', 'depths', ')', 'cos_theta_r', '=', 'rr', '*', 'numpy', '.', 'cos', '(', 'theta', ')', 'try', ':', 'shape', '=', 'lons', '.', 'shape', 'except', 'AttributeError', ':', '# a list/tuple was passed', 'try', ':', 'shape', '=', '(', 'len', '(', 'lons', ')', ',', ')', 'except', 'TypeError', ':', '# a scalar was passed', 'shape', '=', '(', ')', 'arr', '=', 'numpy', '.', 'zeros', '(', 'shape', '+', '(', '3', ',', ')', ')', 'arr', '[', '...', ',', '0', ']', '=', 'cos_theta_r', '*', 'numpy', '.', 'cos', '(', 'phi', ')', 'arr', '[', '...', ',', '1', ']', '=', 'cos_theta_r', '*', 'numpy', '.', 'sin', '(', 'phi', ')', 'arr', '[', '...', ',', '2', ']', '=', 'rr', '*', 'numpy', '.', 'sin', '(', 'theta', ')', 'return', 'arr'] | Return the position vectors (in Cartesian coordinates) of list of spherical
coordinates.
For equations see: http://mathworld.wolfram.com/SphericalCoordinates.html.
Parameters are components of spherical coordinates in a form of scalars,
lists or numpy arrays. ``depths`` can be ``None`` in which case it's
considered zero for all points.
:returns:
``numpy.array`` of 3d vectors representing points' coordinates in
Cartesian space in km. The array has shape `lons.shape + (3,)`.
In particular, if ``lons`` and ``lats`` are scalars the result is a
3D vector and if they are vectors the result is a matrix of shape
(N, 3).
See also :func:`cartesian_to_spherical`. | ['Return', 'the', 'position', 'vectors', '(', 'in', 'Cartesian', 'coordinates', ')', 'of', 'list', 'of', 'spherical', 'coordinates', '.'] | train | https://github.com/gem/oq-engine/blob/8294553a0b8aba33fd96437a35065d03547d0040/openquake/hazardlib/geo/geodetic.py#L183-L221 |
66 | iterative/dvc | dvc/command/metrics.py | show_metrics | def show_metrics(metrics, all_branches=False, all_tags=False):
"""
Args:
metrics (list): Where each element is either a `list`
if an xpath was specified, otherwise a `str`
"""
for branch, val in metrics.items():
if all_branches or all_tags:
logger.info("{branch}:".format(branch=branch))
for fname, metric in val.items():
lines = metric if type(metric) is list else metric.splitlines()
if len(lines) > 1:
logger.info("\t{fname}:".format(fname=fname))
for line in lines:
logger.info("\t\t{content}".format(content=line))
else:
logger.info("\t{}: {}".format(fname, metric)) | python | def show_metrics(metrics, all_branches=False, all_tags=False):
"""
Args:
metrics (list): Where each element is either a `list`
if an xpath was specified, otherwise a `str`
"""
for branch, val in metrics.items():
if all_branches or all_tags:
logger.info("{branch}:".format(branch=branch))
for fname, metric in val.items():
lines = metric if type(metric) is list else metric.splitlines()
if len(lines) > 1:
logger.info("\t{fname}:".format(fname=fname))
for line in lines:
logger.info("\t\t{content}".format(content=line))
else:
logger.info("\t{}: {}".format(fname, metric)) | ['def', 'show_metrics', '(', 'metrics', ',', 'all_branches', '=', 'False', ',', 'all_tags', '=', 'False', ')', ':', 'for', 'branch', ',', 'val', 'in', 'metrics', '.', 'items', '(', ')', ':', 'if', 'all_branches', 'or', 'all_tags', ':', 'logger', '.', 'info', '(', '"{branch}:"', '.', 'format', '(', 'branch', '=', 'branch', ')', ')', 'for', 'fname', ',', 'metric', 'in', 'val', '.', 'items', '(', ')', ':', 'lines', '=', 'metric', 'if', 'type', '(', 'metric', ')', 'is', 'list', 'else', 'metric', '.', 'splitlines', '(', ')', 'if', 'len', '(', 'lines', ')', '>', '1', ':', 'logger', '.', 'info', '(', '"\\t{fname}:"', '.', 'format', '(', 'fname', '=', 'fname', ')', ')', 'for', 'line', 'in', 'lines', ':', 'logger', '.', 'info', '(', '"\\t\\t{content}"', '.', 'format', '(', 'content', '=', 'line', ')', ')', 'else', ':', 'logger', '.', 'info', '(', '"\\t{}: {}"', '.', 'format', '(', 'fname', ',', 'metric', ')', ')'] | Args:
metrics (list): Where each element is either a `list`
if an xpath was specified, otherwise a `str` | ['Args', ':', 'metrics', '(', 'list', ')', ':', 'Where', 'each', 'element', 'is', 'either', 'a', 'list', 'if', 'an', 'xpath', 'was', 'specified', 'otherwise', 'a', 'str'] | train | https://github.com/iterative/dvc/blob/8bb21261e34c9632453e09090de7ebe50e38d341/dvc/command/metrics.py#L13-L33 |
67 | redbridge/molnctrl | molnctrl/cachemaker.py | monkeycache | def monkeycache(apis):
"""
Feed this a dictionary of api bananas, it spits out processed cache
"""
if isinstance(type(apis), type(None)) or apis is None:
return {}
verbs = set()
cache = {}
cache['count'] = apis['count']
cache['asyncapis'] = []
apilist = apis['api']
if apilist is None:
print("[monkeycache] Server response issue, no apis found")
for api in apilist:
name = getvalue(api, 'name')
verb, subject = splitverbsubject(name)
apidict = {}
apidict['name'] = name
apidict['description'] = getvalue(api, 'description')
apidict['isasync'] = getvalue(api, 'isasync')
if apidict['isasync']:
cache['asyncapis'].append(name)
apidict['related'] = splitcsvstring(getvalue(api, 'related'))
required = []
apiparams = []
for param in getvalue(api, 'params'):
apiparam = {}
apiparam['name'] = getvalue(param, 'name')
apiparam['description'] = getvalue(param, 'description')
apiparam['required'] = (getvalue(param, 'required') is True)
apiparam['length'] = int(getvalue(param, 'length'))
apiparam['type'] = getvalue(param, 'type')
apiparam['related'] = splitcsvstring(getvalue(param, 'related'))
if apiparam['required']:
required.append(apiparam['name'])
apiparams.append(apiparam)
apidict['requiredparams'] = required
apidict['params'] = apiparams
if verb not in cache:
cache[verb] = {}
cache[verb][subject] = apidict
verbs.add(verb)
cache['verbs'] = list(verbs)
return cache | python | def monkeycache(apis):
"""
Feed this a dictionary of api bananas, it spits out processed cache
"""
if isinstance(type(apis), type(None)) or apis is None:
return {}
verbs = set()
cache = {}
cache['count'] = apis['count']
cache['asyncapis'] = []
apilist = apis['api']
if apilist is None:
print("[monkeycache] Server response issue, no apis found")
for api in apilist:
name = getvalue(api, 'name')
verb, subject = splitverbsubject(name)
apidict = {}
apidict['name'] = name
apidict['description'] = getvalue(api, 'description')
apidict['isasync'] = getvalue(api, 'isasync')
if apidict['isasync']:
cache['asyncapis'].append(name)
apidict['related'] = splitcsvstring(getvalue(api, 'related'))
required = []
apiparams = []
for param in getvalue(api, 'params'):
apiparam = {}
apiparam['name'] = getvalue(param, 'name')
apiparam['description'] = getvalue(param, 'description')
apiparam['required'] = (getvalue(param, 'required') is True)
apiparam['length'] = int(getvalue(param, 'length'))
apiparam['type'] = getvalue(param, 'type')
apiparam['related'] = splitcsvstring(getvalue(param, 'related'))
if apiparam['required']:
required.append(apiparam['name'])
apiparams.append(apiparam)
apidict['requiredparams'] = required
apidict['params'] = apiparams
if verb not in cache:
cache[verb] = {}
cache[verb][subject] = apidict
verbs.add(verb)
cache['verbs'] = list(verbs)
return cache | ['def', 'monkeycache', '(', 'apis', ')', ':', 'if', 'isinstance', '(', 'type', '(', 'apis', ')', ',', 'type', '(', 'None', ')', ')', 'or', 'apis', 'is', 'None', ':', 'return', '{', '}', 'verbs', '=', 'set', '(', ')', 'cache', '=', '{', '}', 'cache', '[', "'count'", ']', '=', 'apis', '[', "'count'", ']', 'cache', '[', "'asyncapis'", ']', '=', '[', ']', 'apilist', '=', 'apis', '[', "'api'", ']', 'if', 'apilist', 'is', 'None', ':', 'print', '(', '"[monkeycache] Server response issue, no apis found"', ')', 'for', 'api', 'in', 'apilist', ':', 'name', '=', 'getvalue', '(', 'api', ',', "'name'", ')', 'verb', ',', 'subject', '=', 'splitverbsubject', '(', 'name', ')', 'apidict', '=', '{', '}', 'apidict', '[', "'name'", ']', '=', 'name', 'apidict', '[', "'description'", ']', '=', 'getvalue', '(', 'api', ',', "'description'", ')', 'apidict', '[', "'isasync'", ']', '=', 'getvalue', '(', 'api', ',', "'isasync'", ')', 'if', 'apidict', '[', "'isasync'", ']', ':', 'cache', '[', "'asyncapis'", ']', '.', 'append', '(', 'name', ')', 'apidict', '[', "'related'", ']', '=', 'splitcsvstring', '(', 'getvalue', '(', 'api', ',', "'related'", ')', ')', 'required', '=', '[', ']', 'apiparams', '=', '[', ']', 'for', 'param', 'in', 'getvalue', '(', 'api', ',', "'params'", ')', ':', 'apiparam', '=', '{', '}', 'apiparam', '[', "'name'", ']', '=', 'getvalue', '(', 'param', ',', "'name'", ')', 'apiparam', '[', "'description'", ']', '=', 'getvalue', '(', 'param', ',', "'description'", ')', 'apiparam', '[', "'required'", ']', '=', '(', 'getvalue', '(', 'param', ',', "'required'", ')', 'is', 'True', ')', 'apiparam', '[', "'length'", ']', '=', 'int', '(', 'getvalue', '(', 'param', ',', "'length'", ')', ')', 'apiparam', '[', "'type'", ']', '=', 'getvalue', '(', 'param', ',', "'type'", ')', 'apiparam', '[', "'related'", ']', '=', 'splitcsvstring', '(', 'getvalue', '(', 'param', ',', "'related'", ')', ')', 'if', 'apiparam', '[', "'required'", ']', ':', 'required', '.', 'append', '(', 'apiparam', '[', "'name'", ']', ')', 'apiparams', '.', 'append', '(', 'apiparam', ')', 'apidict', '[', "'requiredparams'", ']', '=', 'required', 'apidict', '[', "'params'", ']', '=', 'apiparams', 'if', 'verb', 'not', 'in', 'cache', ':', 'cache', '[', 'verb', ']', '=', '{', '}', 'cache', '[', 'verb', ']', '[', 'subject', ']', '=', 'apidict', 'verbs', '.', 'add', '(', 'verb', ')', 'cache', '[', "'verbs'", ']', '=', 'list', '(', 'verbs', ')', 'return', 'cache'] | Feed this a dictionary of api bananas, it spits out processed cache | ['Feed', 'this', 'a', 'dictionary', 'of', 'api', 'bananas', 'it', 'spits', 'out', 'processed', 'cache'] | train | https://github.com/redbridge/molnctrl/blob/9990ae7e522ce364bb61a735f774dc28de5f8e60/molnctrl/cachemaker.py#L82-L132 |
68 | portfoliome/foil | foil/ftp.py | download_ftp_url | def download_ftp_url(source_url, target_uri, buffer_size=8192):
"""Uses urllib. thread safe?"""
ensure_file_directory(target_uri)
with urllib.request.urlopen(source_url) as source_file:
with open(target_uri, 'wb') as target_file:
shutil.copyfileobj(source_file, target_file, buffer_size) | python | def download_ftp_url(source_url, target_uri, buffer_size=8192):
"""Uses urllib. thread safe?"""
ensure_file_directory(target_uri)
with urllib.request.urlopen(source_url) as source_file:
with open(target_uri, 'wb') as target_file:
shutil.copyfileobj(source_file, target_file, buffer_size) | ['def', 'download_ftp_url', '(', 'source_url', ',', 'target_uri', ',', 'buffer_size', '=', '8192', ')', ':', 'ensure_file_directory', '(', 'target_uri', ')', 'with', 'urllib', '.', 'request', '.', 'urlopen', '(', 'source_url', ')', 'as', 'source_file', ':', 'with', 'open', '(', 'target_uri', ',', "'wb'", ')', 'as', 'target_file', ':', 'shutil', '.', 'copyfileobj', '(', 'source_file', ',', 'target_file', ',', 'buffer_size', ')'] | Uses urllib. thread safe? | ['Uses', 'urllib', '.', 'thread', 'safe?'] | train | https://github.com/portfoliome/foil/blob/b66d8cf4ab048a387d8c7a033b47e922ed6917d6/foil/ftp.py#L90-L97 |
69 | couchbase/couchbase-python-client | couchbase/bucket.py | Bucket.map_get | def map_get(self, key, mapkey):
"""
Retrieve a value from a map.
:param str key: The document ID
:param str mapkey: Key within the map to retrieve
:return: :class:`~.ValueResult`
:raise: :exc:`IndexError` if the mapkey does not exist
:raise: :cb_exc:`NotFoundError` if the document does not exist.
.. seealso:: :meth:`map_add` for an example
"""
op = SD.get(mapkey)
sdres = self.lookup_in(key, op)
return self._wrap_dsop(sdres, True) | python | def map_get(self, key, mapkey):
"""
Retrieve a value from a map.
:param str key: The document ID
:param str mapkey: Key within the map to retrieve
:return: :class:`~.ValueResult`
:raise: :exc:`IndexError` if the mapkey does not exist
:raise: :cb_exc:`NotFoundError` if the document does not exist.
.. seealso:: :meth:`map_add` for an example
"""
op = SD.get(mapkey)
sdres = self.lookup_in(key, op)
return self._wrap_dsop(sdres, True) | ['def', 'map_get', '(', 'self', ',', 'key', ',', 'mapkey', ')', ':', 'op', '=', 'SD', '.', 'get', '(', 'mapkey', ')', 'sdres', '=', 'self', '.', 'lookup_in', '(', 'key', ',', 'op', ')', 'return', 'self', '.', '_wrap_dsop', '(', 'sdres', ',', 'True', ')'] | Retrieve a value from a map.
:param str key: The document ID
:param str mapkey: Key within the map to retrieve
:return: :class:`~.ValueResult`
:raise: :exc:`IndexError` if the mapkey does not exist
:raise: :cb_exc:`NotFoundError` if the document does not exist.
.. seealso:: :meth:`map_add` for an example | ['Retrieve', 'a', 'value', 'from', 'a', 'map', '.'] | train | https://github.com/couchbase/couchbase-python-client/blob/a7bada167785bf79a29c39f820d932a433a6a535/couchbase/bucket.py#L2147-L2161 |
70 | persandstrom/python-verisure | verisure/session.py | Session.set_lock_state | def set_lock_state(self, code, device_label, state):
""" Lock or unlock
Args:
code (str): Lock code
device_label (str): device label of lock
state (str): 'lock' or 'unlock'
"""
response = None
try:
response = requests.put(
urls.set_lockstate(self._giid, device_label, state),
headers={
'Accept': 'application/json, text/javascript, */*; q=0.01',
'Content-Type': 'application/json',
'Cookie': 'vid={}'.format(self._vid)},
data=json.dumps({"code": str(code)}))
except requests.exceptions.RequestException as ex:
raise RequestError(ex)
_validate_response(response)
return json.loads(response.text) | python | def set_lock_state(self, code, device_label, state):
""" Lock or unlock
Args:
code (str): Lock code
device_label (str): device label of lock
state (str): 'lock' or 'unlock'
"""
response = None
try:
response = requests.put(
urls.set_lockstate(self._giid, device_label, state),
headers={
'Accept': 'application/json, text/javascript, */*; q=0.01',
'Content-Type': 'application/json',
'Cookie': 'vid={}'.format(self._vid)},
data=json.dumps({"code": str(code)}))
except requests.exceptions.RequestException as ex:
raise RequestError(ex)
_validate_response(response)
return json.loads(response.text) | ['def', 'set_lock_state', '(', 'self', ',', 'code', ',', 'device_label', ',', 'state', ')', ':', 'response', '=', 'None', 'try', ':', 'response', '=', 'requests', '.', 'put', '(', 'urls', '.', 'set_lockstate', '(', 'self', '.', '_giid', ',', 'device_label', ',', 'state', ')', ',', 'headers', '=', '{', "'Accept'", ':', "'application/json, text/javascript, */*; q=0.01'", ',', "'Content-Type'", ':', "'application/json'", ',', "'Cookie'", ':', "'vid={}'", '.', 'format', '(', 'self', '.', '_vid', ')', '}', ',', 'data', '=', 'json', '.', 'dumps', '(', '{', '"code"', ':', 'str', '(', 'code', ')', '}', ')', ')', 'except', 'requests', '.', 'exceptions', '.', 'RequestException', 'as', 'ex', ':', 'raise', 'RequestError', '(', 'ex', ')', '_validate_response', '(', 'response', ')', 'return', 'json', '.', 'loads', '(', 'response', '.', 'text', ')'] | Lock or unlock
Args:
code (str): Lock code
device_label (str): device label of lock
state (str): 'lock' or 'unlock' | ['Lock', 'or', 'unlock'] | train | https://github.com/persandstrom/python-verisure/blob/babd25e7f8fb2b24f12e4109dfa8a04041e8dcb8/verisure/session.py#L309-L329 |
71 | Sanji-IO/sanji | sanji/message.py | Message.to_event | def to_event(self):
"""
get rid of id, sign, tunnel and update message type
Notice: this method will return a deepcopy
"""
msg = copy.deepcopy(self)
for _ in ["id", "sign", "tunnel", "query", "param"]:
if not hasattr(msg, _):
continue
delattr(msg, _)
msg._type = Message.get_message_type(msg.__dict__)
return msg | python | def to_event(self):
"""
get rid of id, sign, tunnel and update message type
Notice: this method will return a deepcopy
"""
msg = copy.deepcopy(self)
for _ in ["id", "sign", "tunnel", "query", "param"]:
if not hasattr(msg, _):
continue
delattr(msg, _)
msg._type = Message.get_message_type(msg.__dict__)
return msg | ['def', 'to_event', '(', 'self', ')', ':', 'msg', '=', 'copy', '.', 'deepcopy', '(', 'self', ')', 'for', '_', 'in', '[', '"id"', ',', '"sign"', ',', '"tunnel"', ',', '"query"', ',', '"param"', ']', ':', 'if', 'not', 'hasattr', '(', 'msg', ',', '_', ')', ':', 'continue', 'delattr', '(', 'msg', ',', '_', ')', 'msg', '.', '_type', '=', 'Message', '.', 'get_message_type', '(', 'msg', '.', '__dict__', ')', 'return', 'msg'] | get rid of id, sign, tunnel and update message type
Notice: this method will return a deepcopy | ['get', 'rid', 'of', 'id', 'sign', 'tunnel', 'and', 'update', 'message', 'type', 'Notice', ':', 'this', 'method', 'will', 'return', 'a', 'deepcopy'] | train | https://github.com/Sanji-IO/sanji/blob/5c54cc2772bdfeae3337f785de1957237b828b34/sanji/message.py#L209-L222 |
72 | evhub/coconut | coconut/compiler/compiler.py | Compiler.destructuring_stmt_handle | def destructuring_stmt_handle(self, original, loc, tokens):
"""Process match assign blocks."""
internal_assert(len(tokens) == 2, "invalid destructuring assignment tokens", tokens)
matches, item = tokens
out = match_handle(loc, [matches, "in", item, None])
out += self.pattern_error(original, loc, match_to_var, match_check_var)
return out | python | def destructuring_stmt_handle(self, original, loc, tokens):
"""Process match assign blocks."""
internal_assert(len(tokens) == 2, "invalid destructuring assignment tokens", tokens)
matches, item = tokens
out = match_handle(loc, [matches, "in", item, None])
out += self.pattern_error(original, loc, match_to_var, match_check_var)
return out | ['def', 'destructuring_stmt_handle', '(', 'self', ',', 'original', ',', 'loc', ',', 'tokens', ')', ':', 'internal_assert', '(', 'len', '(', 'tokens', ')', '==', '2', ',', '"invalid destructuring assignment tokens"', ',', 'tokens', ')', 'matches', ',', 'item', '=', 'tokens', 'out', '=', 'match_handle', '(', 'loc', ',', '[', 'matches', ',', '"in"', ',', 'item', ',', 'None', ']', ')', 'out', '+=', 'self', '.', 'pattern_error', '(', 'original', ',', 'loc', ',', 'match_to_var', ',', 'match_check_var', ')', 'return', 'out'] | Process match assign blocks. | ['Process', 'match', 'assign', 'blocks', '.'] | train | https://github.com/evhub/coconut/blob/ff97177344e7604e89a0a98a977a87ed2a56fc6d/coconut/compiler/compiler.py#L1424-L1430 |
73 | Erotemic/utool | utool/util_alg.py | knapsack_iterative_int | def knapsack_iterative_int(items, maxweight):
r"""
Iterative knapsack method
Math:
maximize \sum_{i \in T} v_i
subject to \sum_{i \in T} w_i \leq W
Notes:
dpmat is the dynamic programming memoization matrix.
dpmat[i, w] is the total value of the items with weight at most W
T is idx_subset, the set of indicies in the optimal solution
CommandLine:
python -m utool.util_alg --exec-knapsack_iterative_int --show
Example:
>>> # ENABLE_DOCTEST
>>> from utool.util_alg import * # NOQA
>>> weights = [1, 3, 3, 5, 2, 1] * 2
>>> items = [(w, w, i) for i, w in enumerate(weights)]
>>> maxweight = 10
>>> items = [(.8, 700, 0)]
>>> maxweight = 2000
>>> print('maxweight = %r' % (maxweight,))
>>> print('items = %r' % (items,))
>>> total_value, items_subset = knapsack_iterative_int(items, maxweight)
>>> total_weight = sum([t[1] for t in items_subset])
>>> print('total_weight = %r' % (total_weight,))
>>> print('items_subset = %r' % (items_subset,))
>>> result = 'total_value = %.2f' % (total_value,)
>>> print(result)
total_value = 0.80
Ignore:
DPMAT = [[dpmat[r][c] for c in range(maxweight)] for r in range(len(items))]
KMAT = [[kmat[r][c] for c in range(maxweight)] for r in range(len(items))]
"""
values = [t[0] for t in items]
weights = [t[1] for t in items]
maxsize = maxweight + 1
# Sparse representation seems better
dpmat = defaultdict(lambda: defaultdict(lambda: np.inf))
kmat = defaultdict(lambda: defaultdict(lambda: False))
idx_subset = [] # NOQA
for w in range(maxsize):
dpmat[0][w] = 0
# For each item consider to include it or not
for idx in range(len(items)):
item_val = values[idx]
item_weight = weights[idx]
# consider at each possible bag size
for w in range(maxsize):
valid_item = item_weight <= w
if idx > 0:
prev_val = dpmat[idx - 1][w]
prev_noitem_val = dpmat[idx - 1][w - item_weight]
else:
prev_val = 0
prev_noitem_val = 0
withitem_val = item_val + prev_noitem_val
more_valuable = withitem_val > prev_val
if valid_item and more_valuable:
dpmat[idx][w] = withitem_val
kmat[idx][w] = True
else:
dpmat[idx][w] = prev_val
kmat[idx][w] = False
# Trace backwards to get the items used in the solution
K = maxweight
for idx in reversed(range(len(items))):
if kmat[idx][K]:
idx_subset.append(idx)
K = K - weights[idx]
idx_subset = sorted(idx_subset)
items_subset = [items[i] for i in idx_subset]
total_value = dpmat[len(items) - 1][maxweight]
return total_value, items_subset | python | def knapsack_iterative_int(items, maxweight):
r"""
Iterative knapsack method
Math:
maximize \sum_{i \in T} v_i
subject to \sum_{i \in T} w_i \leq W
Notes:
dpmat is the dynamic programming memoization matrix.
dpmat[i, w] is the total value of the items with weight at most W
T is idx_subset, the set of indicies in the optimal solution
CommandLine:
python -m utool.util_alg --exec-knapsack_iterative_int --show
Example:
>>> # ENABLE_DOCTEST
>>> from utool.util_alg import * # NOQA
>>> weights = [1, 3, 3, 5, 2, 1] * 2
>>> items = [(w, w, i) for i, w in enumerate(weights)]
>>> maxweight = 10
>>> items = [(.8, 700, 0)]
>>> maxweight = 2000
>>> print('maxweight = %r' % (maxweight,))
>>> print('items = %r' % (items,))
>>> total_value, items_subset = knapsack_iterative_int(items, maxweight)
>>> total_weight = sum([t[1] for t in items_subset])
>>> print('total_weight = %r' % (total_weight,))
>>> print('items_subset = %r' % (items_subset,))
>>> result = 'total_value = %.2f' % (total_value,)
>>> print(result)
total_value = 0.80
Ignore:
DPMAT = [[dpmat[r][c] for c in range(maxweight)] for r in range(len(items))]
KMAT = [[kmat[r][c] for c in range(maxweight)] for r in range(len(items))]
"""
values = [t[0] for t in items]
weights = [t[1] for t in items]
maxsize = maxweight + 1
# Sparse representation seems better
dpmat = defaultdict(lambda: defaultdict(lambda: np.inf))
kmat = defaultdict(lambda: defaultdict(lambda: False))
idx_subset = [] # NOQA
for w in range(maxsize):
dpmat[0][w] = 0
# For each item consider to include it or not
for idx in range(len(items)):
item_val = values[idx]
item_weight = weights[idx]
# consider at each possible bag size
for w in range(maxsize):
valid_item = item_weight <= w
if idx > 0:
prev_val = dpmat[idx - 1][w]
prev_noitem_val = dpmat[idx - 1][w - item_weight]
else:
prev_val = 0
prev_noitem_val = 0
withitem_val = item_val + prev_noitem_val
more_valuable = withitem_val > prev_val
if valid_item and more_valuable:
dpmat[idx][w] = withitem_val
kmat[idx][w] = True
else:
dpmat[idx][w] = prev_val
kmat[idx][w] = False
# Trace backwards to get the items used in the solution
K = maxweight
for idx in reversed(range(len(items))):
if kmat[idx][K]:
idx_subset.append(idx)
K = K - weights[idx]
idx_subset = sorted(idx_subset)
items_subset = [items[i] for i in idx_subset]
total_value = dpmat[len(items) - 1][maxweight]
return total_value, items_subset | ['def', 'knapsack_iterative_int', '(', 'items', ',', 'maxweight', ')', ':', 'values', '=', '[', 't', '[', '0', ']', 'for', 't', 'in', 'items', ']', 'weights', '=', '[', 't', '[', '1', ']', 'for', 't', 'in', 'items', ']', 'maxsize', '=', 'maxweight', '+', '1', '# Sparse representation seems better', 'dpmat', '=', 'defaultdict', '(', 'lambda', ':', 'defaultdict', '(', 'lambda', ':', 'np', '.', 'inf', ')', ')', 'kmat', '=', 'defaultdict', '(', 'lambda', ':', 'defaultdict', '(', 'lambda', ':', 'False', ')', ')', 'idx_subset', '=', '[', ']', '# NOQA', 'for', 'w', 'in', 'range', '(', 'maxsize', ')', ':', 'dpmat', '[', '0', ']', '[', 'w', ']', '=', '0', '# For each item consider to include it or not', 'for', 'idx', 'in', 'range', '(', 'len', '(', 'items', ')', ')', ':', 'item_val', '=', 'values', '[', 'idx', ']', 'item_weight', '=', 'weights', '[', 'idx', ']', '# consider at each possible bag size', 'for', 'w', 'in', 'range', '(', 'maxsize', ')', ':', 'valid_item', '=', 'item_weight', '<=', 'w', 'if', 'idx', '>', '0', ':', 'prev_val', '=', 'dpmat', '[', 'idx', '-', '1', ']', '[', 'w', ']', 'prev_noitem_val', '=', 'dpmat', '[', 'idx', '-', '1', ']', '[', 'w', '-', 'item_weight', ']', 'else', ':', 'prev_val', '=', '0', 'prev_noitem_val', '=', '0', 'withitem_val', '=', 'item_val', '+', 'prev_noitem_val', 'more_valuable', '=', 'withitem_val', '>', 'prev_val', 'if', 'valid_item', 'and', 'more_valuable', ':', 'dpmat', '[', 'idx', ']', '[', 'w', ']', '=', 'withitem_val', 'kmat', '[', 'idx', ']', '[', 'w', ']', '=', 'True', 'else', ':', 'dpmat', '[', 'idx', ']', '[', 'w', ']', '=', 'prev_val', 'kmat', '[', 'idx', ']', '[', 'w', ']', '=', 'False', '# Trace backwards to get the items used in the solution', 'K', '=', 'maxweight', 'for', 'idx', 'in', 'reversed', '(', 'range', '(', 'len', '(', 'items', ')', ')', ')', ':', 'if', 'kmat', '[', 'idx', ']', '[', 'K', ']', ':', 'idx_subset', '.', 'append', '(', 'idx', ')', 'K', '=', 'K', '-', 'weights', '[', 'idx', ']', 'idx_subset', '=', 'sorted', '(', 'idx_subset', ')', 'items_subset', '=', '[', 'items', '[', 'i', ']', 'for', 'i', 'in', 'idx_subset', ']', 'total_value', '=', 'dpmat', '[', 'len', '(', 'items', ')', '-', '1', ']', '[', 'maxweight', ']', 'return', 'total_value', ',', 'items_subset'] | r"""
Iterative knapsack method
Math:
maximize \sum_{i \in T} v_i
subject to \sum_{i \in T} w_i \leq W
Notes:
dpmat is the dynamic programming memoization matrix.
dpmat[i, w] is the total value of the items with weight at most W
T is idx_subset, the set of indicies in the optimal solution
CommandLine:
python -m utool.util_alg --exec-knapsack_iterative_int --show
Example:
>>> # ENABLE_DOCTEST
>>> from utool.util_alg import * # NOQA
>>> weights = [1, 3, 3, 5, 2, 1] * 2
>>> items = [(w, w, i) for i, w in enumerate(weights)]
>>> maxweight = 10
>>> items = [(.8, 700, 0)]
>>> maxweight = 2000
>>> print('maxweight = %r' % (maxweight,))
>>> print('items = %r' % (items,))
>>> total_value, items_subset = knapsack_iterative_int(items, maxweight)
>>> total_weight = sum([t[1] for t in items_subset])
>>> print('total_weight = %r' % (total_weight,))
>>> print('items_subset = %r' % (items_subset,))
>>> result = 'total_value = %.2f' % (total_value,)
>>> print(result)
total_value = 0.80
Ignore:
DPMAT = [[dpmat[r][c] for c in range(maxweight)] for r in range(len(items))]
KMAT = [[kmat[r][c] for c in range(maxweight)] for r in range(len(items))] | ['r', 'Iterative', 'knapsack', 'method'] | train | https://github.com/Erotemic/utool/blob/3b27e1f4e6e6fb23cd8744af7b7195b57d99e03a/utool/util_alg.py#L1400-L1477 |
74 | jorgenschaefer/elpy | elpy/server.py | ElpyRPCServer.rpc_get_names | def rpc_get_names(self, filename, source, offset):
"""Get all possible names
"""
source = get_source(source)
if hasattr(self.backend, "rpc_get_names"):
return self.backend.rpc_get_names(filename, source, offset)
else:
raise Fault("get_names not implemented by current backend",
code=400) | python | def rpc_get_names(self, filename, source, offset):
"""Get all possible names
"""
source = get_source(source)
if hasattr(self.backend, "rpc_get_names"):
return self.backend.rpc_get_names(filename, source, offset)
else:
raise Fault("get_names not implemented by current backend",
code=400) | ['def', 'rpc_get_names', '(', 'self', ',', 'filename', ',', 'source', ',', 'offset', ')', ':', 'source', '=', 'get_source', '(', 'source', ')', 'if', 'hasattr', '(', 'self', '.', 'backend', ',', '"rpc_get_names"', ')', ':', 'return', 'self', '.', 'backend', '.', 'rpc_get_names', '(', 'filename', ',', 'source', ',', 'offset', ')', 'else', ':', 'raise', 'Fault', '(', '"get_names not implemented by current backend"', ',', 'code', '=', '400', ')'] | Get all possible names | ['Get', 'all', 'possible', 'names'] | train | https://github.com/jorgenschaefer/elpy/blob/ffd982f829b11e53f2be187c7b770423341f29bc/elpy/server.py#L199-L208 |
75 | praekeltfoundation/seaworthy | seaworthy/helpers.py | fetch_image | def fetch_image(client, name):
"""
Fetch an image if it isn't already present.
This works like ``docker pull`` and will pull the tag ``latest`` if no tag
is specified in the image name.
"""
try:
image = client.images.get(name)
except docker.errors.ImageNotFound:
name, tag = _parse_image_tag(name)
tag = 'latest' if tag is None else tag
log.info("Pulling tag '{}' for image '{}'...".format(tag, name))
image = client.images.pull(name, tag=tag)
log.debug("Found image '{}' for tag '{}'".format(image.id, name))
return image | python | def fetch_image(client, name):
"""
Fetch an image if it isn't already present.
This works like ``docker pull`` and will pull the tag ``latest`` if no tag
is specified in the image name.
"""
try:
image = client.images.get(name)
except docker.errors.ImageNotFound:
name, tag = _parse_image_tag(name)
tag = 'latest' if tag is None else tag
log.info("Pulling tag '{}' for image '{}'...".format(tag, name))
image = client.images.pull(name, tag=tag)
log.debug("Found image '{}' for tag '{}'".format(image.id, name))
return image | ['def', 'fetch_image', '(', 'client', ',', 'name', ')', ':', 'try', ':', 'image', '=', 'client', '.', 'images', '.', 'get', '(', 'name', ')', 'except', 'docker', '.', 'errors', '.', 'ImageNotFound', ':', 'name', ',', 'tag', '=', '_parse_image_tag', '(', 'name', ')', 'tag', '=', "'latest'", 'if', 'tag', 'is', 'None', 'else', 'tag', 'log', '.', 'info', '(', '"Pulling tag \'{}\' for image \'{}\'..."', '.', 'format', '(', 'tag', ',', 'name', ')', ')', 'image', '=', 'client', '.', 'images', '.', 'pull', '(', 'name', ',', 'tag', '=', 'tag', ')', 'log', '.', 'debug', '(', '"Found image \'{}\' for tag \'{}\'"', '.', 'format', '(', 'image', '.', 'id', ',', 'name', ')', ')', 'return', 'image'] | Fetch an image if it isn't already present.
This works like ``docker pull`` and will pull the tag ``latest`` if no tag
is specified in the image name. | ['Fetch', 'an', 'image', 'if', 'it', 'isn', 't', 'already', 'present', '.'] | train | https://github.com/praekeltfoundation/seaworthy/blob/6f10a19b45d4ea1dc3bd0553cc4d0438696c079c/seaworthy/helpers.py#L27-L44 |
76 | F5Networks/f5-common-python | f5/bigip/tm/ltm/pool.py | Members.update | def update(self, **kwargs):
"""Call this to change the configuration of the service on the device.
This method uses HTTP PUT to alter the service state on the device.
The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device. Various edge cases are handled:
* read-only attributes that are unchangeable are removed
* If ``fqdn`` is in the kwargs or set as an attribute, removes the
``autopopulate`` and ``addressFamily`` keys from it.
:param kwargs: keys and associated values to alter on the device
"""
checked = self._check_member_parameters(**kwargs)
return super(Members, self)._update(**checked) | python | def update(self, **kwargs):
"""Call this to change the configuration of the service on the device.
This method uses HTTP PUT to alter the service state on the device.
The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device. Various edge cases are handled:
* read-only attributes that are unchangeable are removed
* If ``fqdn`` is in the kwargs or set as an attribute, removes the
``autopopulate`` and ``addressFamily`` keys from it.
:param kwargs: keys and associated values to alter on the device
"""
checked = self._check_member_parameters(**kwargs)
return super(Members, self)._update(**checked) | ['def', 'update', '(', 'self', ',', '*', '*', 'kwargs', ')', ':', 'checked', '=', 'self', '.', '_check_member_parameters', '(', '*', '*', 'kwargs', ')', 'return', 'super', '(', 'Members', ',', 'self', ')', '.', '_update', '(', '*', '*', 'checked', ')'] | Call this to change the configuration of the service on the device.
This method uses HTTP PUT to alter the service state on the device.
The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device. Various edge cases are handled:
* read-only attributes that are unchangeable are removed
* If ``fqdn`` is in the kwargs or set as an attribute, removes the
``autopopulate`` and ``addressFamily`` keys from it.
:param kwargs: keys and associated values to alter on the device | ['Call', 'this', 'to', 'change', 'the', 'configuration', 'of', 'the', 'service', 'on', 'the', 'device', '.'] | train | https://github.com/F5Networks/f5-common-python/blob/7e67d5acd757a60e3d5f8c88c534bd72208f5494/f5/bigip/tm/ltm/pool.py#L144-L160 |
77 | ethereum/py-evm | eth/estimators/gas.py | binary_gas_search | def binary_gas_search(state: BaseState, transaction: BaseTransaction, tolerance: int=1) -> int:
"""
Run the transaction with various gas limits, progressively
approaching the minimum needed to succeed without an OutOfGas exception.
The starting range of possible estimates is:
[transaction.intrinsic_gas, state.gas_limit].
After the first OutOfGas exception, the range is: (largest_limit_out_of_gas, state.gas_limit].
After the first run not out of gas, the range is: (largest_limit_out_of_gas, smallest_success].
:param int tolerance: When the range of estimates is less than tolerance,
return the top of the range.
:returns int: The smallest confirmed gas to not throw an OutOfGas exception,
subject to tolerance. If OutOfGas is thrown at block limit, return block limit.
:raises VMError: if the computation fails even when given the block gas_limit to complete
"""
if not hasattr(transaction, 'sender'):
raise TypeError(
"Transaction is missing attribute sender.",
"If sending an unsigned transaction, use SpoofTransaction and provide the",
"sender using the 'from' parameter")
minimum_transaction = SpoofTransaction(
transaction,
gas=transaction.intrinsic_gas,
gas_price=0,
)
if _get_computation_error(state, minimum_transaction) is None:
return transaction.intrinsic_gas
maximum_transaction = SpoofTransaction(
transaction,
gas=state.gas_limit,
gas_price=0,
)
error = _get_computation_error(state, maximum_transaction)
if error is not None:
raise error
minimum_viable = state.gas_limit
maximum_out_of_gas = transaction.intrinsic_gas
while minimum_viable - maximum_out_of_gas > tolerance:
midpoint = (minimum_viable + maximum_out_of_gas) // 2
test_transaction = SpoofTransaction(transaction, gas=midpoint)
if _get_computation_error(state, test_transaction) is None:
minimum_viable = midpoint
else:
maximum_out_of_gas = midpoint
return minimum_viable | python | def binary_gas_search(state: BaseState, transaction: BaseTransaction, tolerance: int=1) -> int:
"""
Run the transaction with various gas limits, progressively
approaching the minimum needed to succeed without an OutOfGas exception.
The starting range of possible estimates is:
[transaction.intrinsic_gas, state.gas_limit].
After the first OutOfGas exception, the range is: (largest_limit_out_of_gas, state.gas_limit].
After the first run not out of gas, the range is: (largest_limit_out_of_gas, smallest_success].
:param int tolerance: When the range of estimates is less than tolerance,
return the top of the range.
:returns int: The smallest confirmed gas to not throw an OutOfGas exception,
subject to tolerance. If OutOfGas is thrown at block limit, return block limit.
:raises VMError: if the computation fails even when given the block gas_limit to complete
"""
if not hasattr(transaction, 'sender'):
raise TypeError(
"Transaction is missing attribute sender.",
"If sending an unsigned transaction, use SpoofTransaction and provide the",
"sender using the 'from' parameter")
minimum_transaction = SpoofTransaction(
transaction,
gas=transaction.intrinsic_gas,
gas_price=0,
)
if _get_computation_error(state, minimum_transaction) is None:
return transaction.intrinsic_gas
maximum_transaction = SpoofTransaction(
transaction,
gas=state.gas_limit,
gas_price=0,
)
error = _get_computation_error(state, maximum_transaction)
if error is not None:
raise error
minimum_viable = state.gas_limit
maximum_out_of_gas = transaction.intrinsic_gas
while minimum_viable - maximum_out_of_gas > tolerance:
midpoint = (minimum_viable + maximum_out_of_gas) // 2
test_transaction = SpoofTransaction(transaction, gas=midpoint)
if _get_computation_error(state, test_transaction) is None:
minimum_viable = midpoint
else:
maximum_out_of_gas = midpoint
return minimum_viable | ['def', 'binary_gas_search', '(', 'state', ':', 'BaseState', ',', 'transaction', ':', 'BaseTransaction', ',', 'tolerance', ':', 'int', '=', '1', ')', '->', 'int', ':', 'if', 'not', 'hasattr', '(', 'transaction', ',', "'sender'", ')', ':', 'raise', 'TypeError', '(', '"Transaction is missing attribute sender."', ',', '"If sending an unsigned transaction, use SpoofTransaction and provide the"', ',', '"sender using the \'from\' parameter"', ')', 'minimum_transaction', '=', 'SpoofTransaction', '(', 'transaction', ',', 'gas', '=', 'transaction', '.', 'intrinsic_gas', ',', 'gas_price', '=', '0', ',', ')', 'if', '_get_computation_error', '(', 'state', ',', 'minimum_transaction', ')', 'is', 'None', ':', 'return', 'transaction', '.', 'intrinsic_gas', 'maximum_transaction', '=', 'SpoofTransaction', '(', 'transaction', ',', 'gas', '=', 'state', '.', 'gas_limit', ',', 'gas_price', '=', '0', ',', ')', 'error', '=', '_get_computation_error', '(', 'state', ',', 'maximum_transaction', ')', 'if', 'error', 'is', 'not', 'None', ':', 'raise', 'error', 'minimum_viable', '=', 'state', '.', 'gas_limit', 'maximum_out_of_gas', '=', 'transaction', '.', 'intrinsic_gas', 'while', 'minimum_viable', '-', 'maximum_out_of_gas', '>', 'tolerance', ':', 'midpoint', '=', '(', 'minimum_viable', '+', 'maximum_out_of_gas', ')', '//', '2', 'test_transaction', '=', 'SpoofTransaction', '(', 'transaction', ',', 'gas', '=', 'midpoint', ')', 'if', '_get_computation_error', '(', 'state', ',', 'test_transaction', ')', 'is', 'None', ':', 'minimum_viable', '=', 'midpoint', 'else', ':', 'maximum_out_of_gas', '=', 'midpoint', 'return', 'minimum_viable'] | Run the transaction with various gas limits, progressively
approaching the minimum needed to succeed without an OutOfGas exception.
The starting range of possible estimates is:
[transaction.intrinsic_gas, state.gas_limit].
After the first OutOfGas exception, the range is: (largest_limit_out_of_gas, state.gas_limit].
After the first run not out of gas, the range is: (largest_limit_out_of_gas, smallest_success].
:param int tolerance: When the range of estimates is less than tolerance,
return the top of the range.
:returns int: The smallest confirmed gas to not throw an OutOfGas exception,
subject to tolerance. If OutOfGas is thrown at block limit, return block limit.
:raises VMError: if the computation fails even when given the block gas_limit to complete | ['Run', 'the', 'transaction', 'with', 'various', 'gas', 'limits', 'progressively', 'approaching', 'the', 'minimum', 'needed', 'to', 'succeed', 'without', 'an', 'OutOfGas', 'exception', '.'] | train | https://github.com/ethereum/py-evm/blob/58346848f076116381d3274bbcea96b9e2cfcbdf/eth/estimators/gas.py#L28-L78 |
78 | SatelliteQE/nailgun | nailgun/entities.py | ContentViewPuppetModule.read | def read(self, entity=None, attrs=None, ignore=None, params=None):
"""Provide a default value for ``entity``.
By default, ``nailgun.entity_mixins.EntityReadMixin.read provides a
default value for ``entity`` like so::
entity = type(self)()
However, :class:`ContentViewPuppetModule` requires that an
``content_view`` be provided, so this technique will not work. Do
this instead::
entity = type(self)(content_view=self.content_view.id)
"""
# read() should not change the state of the object it's called on, but
# super() alters the attributes of any entity passed in. Creating a new
# object and passing it to super() lets this one avoid changing state.
if entity is None:
entity = type(self)(
self._server_config,
content_view=self.content_view, # pylint:disable=no-member
)
if ignore is None:
ignore = set()
ignore.add('content_view')
return super(ContentViewPuppetModule, self).read(
entity, attrs, ignore, params) | python | def read(self, entity=None, attrs=None, ignore=None, params=None):
"""Provide a default value for ``entity``.
By default, ``nailgun.entity_mixins.EntityReadMixin.read provides a
default value for ``entity`` like so::
entity = type(self)()
However, :class:`ContentViewPuppetModule` requires that an
``content_view`` be provided, so this technique will not work. Do
this instead::
entity = type(self)(content_view=self.content_view.id)
"""
# read() should not change the state of the object it's called on, but
# super() alters the attributes of any entity passed in. Creating a new
# object and passing it to super() lets this one avoid changing state.
if entity is None:
entity = type(self)(
self._server_config,
content_view=self.content_view, # pylint:disable=no-member
)
if ignore is None:
ignore = set()
ignore.add('content_view')
return super(ContentViewPuppetModule, self).read(
entity, attrs, ignore, params) | ['def', 'read', '(', 'self', ',', 'entity', '=', 'None', ',', 'attrs', '=', 'None', ',', 'ignore', '=', 'None', ',', 'params', '=', 'None', ')', ':', "# read() should not change the state of the object it's called on, but", '# super() alters the attributes of any entity passed in. Creating a new', '# object and passing it to super() lets this one avoid changing state.', 'if', 'entity', 'is', 'None', ':', 'entity', '=', 'type', '(', 'self', ')', '(', 'self', '.', '_server_config', ',', 'content_view', '=', 'self', '.', 'content_view', ',', '# pylint:disable=no-member', ')', 'if', 'ignore', 'is', 'None', ':', 'ignore', '=', 'set', '(', ')', 'ignore', '.', 'add', '(', "'content_view'", ')', 'return', 'super', '(', 'ContentViewPuppetModule', ',', 'self', ')', '.', 'read', '(', 'entity', ',', 'attrs', ',', 'ignore', ',', 'params', ')'] | Provide a default value for ``entity``.
By default, ``nailgun.entity_mixins.EntityReadMixin.read provides a
default value for ``entity`` like so::
entity = type(self)()
However, :class:`ContentViewPuppetModule` requires that an
``content_view`` be provided, so this technique will not work. Do
this instead::
entity = type(self)(content_view=self.content_view.id) | ['Provide', 'a', 'default', 'value', 'for', 'entity', '.'] | train | https://github.com/SatelliteQE/nailgun/blob/c36d8c20862e87bf6975bd48ac1ca40a9e634eaa/nailgun/entities.py#L2453-L2480 |
79 | jordanh/neurio-python | neurio/__init__.py | Client.get_samples_live_last | def get_samples_live_last(self, sensor_id):
"""Get the last sample recorded by the sensor.
Args:
sensor_id (string): hexadecimal id of the sensor to query, e.g.
``0x0013A20040B65FAD``
Returns:
list: dictionary objects containing sample data
"""
url = "https://api.neur.io/v1/samples/live/last"
headers = self.__gen_headers()
headers["Content-Type"] = "application/json"
params = { "sensorId": sensor_id }
url = self.__append_url_params(url, params)
r = requests.get(url, headers=headers)
return r.json() | python | def get_samples_live_last(self, sensor_id):
"""Get the last sample recorded by the sensor.
Args:
sensor_id (string): hexadecimal id of the sensor to query, e.g.
``0x0013A20040B65FAD``
Returns:
list: dictionary objects containing sample data
"""
url = "https://api.neur.io/v1/samples/live/last"
headers = self.__gen_headers()
headers["Content-Type"] = "application/json"
params = { "sensorId": sensor_id }
url = self.__append_url_params(url, params)
r = requests.get(url, headers=headers)
return r.json() | ['def', 'get_samples_live_last', '(', 'self', ',', 'sensor_id', ')', ':', 'url', '=', '"https://api.neur.io/v1/samples/live/last"', 'headers', '=', 'self', '.', '__gen_headers', '(', ')', 'headers', '[', '"Content-Type"', ']', '=', '"application/json"', 'params', '=', '{', '"sensorId"', ':', 'sensor_id', '}', 'url', '=', 'self', '.', '__append_url_params', '(', 'url', ',', 'params', ')', 'r', '=', 'requests', '.', 'get', '(', 'url', ',', 'headers', '=', 'headers', ')', 'return', 'r', '.', 'json', '(', ')'] | Get the last sample recorded by the sensor.
Args:
sensor_id (string): hexadecimal id of the sensor to query, e.g.
``0x0013A20040B65FAD``
Returns:
list: dictionary objects containing sample data | ['Get', 'the', 'last', 'sample', 'recorded', 'by', 'the', 'sensor', '.'] | train | https://github.com/jordanh/neurio-python/blob/3a1bcadadb3bb3ad48f2df41c039d8b828ffd9c8/neurio/__init__.py#L439-L458 |
80 | markovmodel/PyEMMA | pyemma/plots/plots2d.py | plot_contour | def plot_contour(
xall, yall, zall, ax=None, cmap=None,
ncontours=100, vmin=None, vmax=None, levels=None,
cbar=True, cax=None, cbar_label=None,
cbar_orientation='vertical', norm=None, nbins=100,
method='nearest', mask=False, **kwargs):
"""Plot a two-dimensional contour map by interpolating
scattered data on a grid.
Parameters
----------
xall : ndarray(T)
Sample x-coordinates.
yall : ndarray(T)
Sample y-coordinates.
zall : ndarray(T)
Sample z-coordinates.
ax : matplotlib.Axes object, optional, default=None
The ax to plot to; if ax=None, a new ax (and fig) is created.
cmap : matplotlib colormap, optional, default=None
The color map to use.
ncontours : int, optional, default=100
Number of contour levels.
vmin : float, optional, default=None
Lowest z-value to be plotted.
vmax : float, optional, default=None
Highest z-value to be plotted.
levels : iterable of float, optional, default=None
Contour levels to plot; use legacy style calculation
if 'legacy'.
cbar : boolean, optional, default=True
Plot a color bar.
cax : matplotlib.Axes object, optional, default=None
Plot the colorbar into a custom axes object instead of
stealing space from ax.
cbar_label : str, optional, default=None
Colorbar label string; use None to suppress it.
cbar_orientation : str, optional, default='vertical'
Colorbar orientation; choose 'vertical' or 'horizontal'.
norm : matplotlib norm, optional, default=None
Use a norm when coloring the contour plot.
nbins : int, optional, default=100
Number of grid points used in each dimension.
method : str, optional, default='nearest'
Assignment method; scipy.interpolate.griddata supports the
methods 'nearest', 'linear', and 'cubic'.
mask : boolean, optional, default=False
Hide unsampled areas is True.
Optional parameters for contourf (**kwargs)
-------------------------------------------
corner_mask : boolean, optional
Enable/disable corner masking, which only has an effect if
z is a masked array. If False, any quad touching a masked
point is masked out. If True, only the triangular corners
of quads nearest those points are always masked out, other
triangular corners comprising three unmasked points are
contoured as usual.
Defaults to rcParams['contour.corner_mask'], which
defaults to True.
alpha : float
The alpha blending value.
locator : [ None | ticker.Locator subclass ]
If locator is None, the default MaxNLocator is used. The
locator is used to determine the contour levels if they are
not given explicitly via the levels argument.
extend : [ ‘neither’ | ‘both’ | ‘min’ | ‘max’ ]
Unless this is ‘neither’, contour levels are automatically
added to one or both ends of the range so that all data are
included. These added ranges are then mapped to the special
colormap values which default to the ends of the
colormap range, but can be set via
matplotlib.colors.Colormap.set_under() and
matplotlib.colors.Colormap.set_over() methods.
xunits, yunits : [ None | registered units ]
Override axis units by specifying an instance of a
matplotlib.units.ConversionInterface.
antialiased : boolean, optional
Enable antialiasing, overriding the defaults. For filled
contours, the default is True. For line contours, it is
taken from rcParams[‘lines.antialiased’].
nchunk : [ 0 | integer ]
If 0, no subdivision of the domain. Specify a positive
integer to divide the domain into subdomains of nchunk by
nchunk quads. Chunking reduces the maximum length of polygons
generated by the contouring algorithm which reduces the
rendering workload passed on to the backend and also requires
slightly less RAM. It can however introduce rendering
artifacts at chunk boundaries depending on the backend, the
antialiased flag and value of alpha.
hatches :
A list of cross hatch patterns to use on the filled areas.
If None, no hatching will be added to the contour. Hatching
is supported in the PostScript, PDF, SVG and Agg backends
only.
zorder : float
Set the zorder for the artist. Artists with lower zorder
values are drawn first.
Returns
-------
fig : matplotlib.Figure object
The figure in which the used ax resides.
ax : matplotlib.Axes object
The ax in which the map was plotted.
misc : dict
Contains a matplotlib.contour.QuadContourSet 'mappable' and,
if requested, a matplotlib.Colorbar object 'cbar'.
"""
x, y, z = get_grid_data(
xall, yall, zall, nbins=nbins, method=method)
if vmin is None:
vmin = _np.min(zall[zall > -_np.inf])
if vmax is None:
vmax = _np.max(zall[zall < _np.inf])
if levels == 'legacy':
eps = (vmax - vmin) / float(ncontours)
levels = _np.linspace(vmin - eps, vmax + eps)
if mask:
_, _, counts = get_histogram(
xall, yall, nbins=nbins, weights=None,
avoid_zero_count=None)
z = _np.ma.masked_where(counts.T <= 0, z)
return plot_map(
x, y, z, ax=ax, cmap=cmap,
ncontours=ncontours, vmin=vmin, vmax=vmax, levels=levels,
cbar=cbar, cax=cax, cbar_label=cbar_label,
cbar_orientation=cbar_orientation, norm=norm,
**kwargs) | python | def plot_contour(
xall, yall, zall, ax=None, cmap=None,
ncontours=100, vmin=None, vmax=None, levels=None,
cbar=True, cax=None, cbar_label=None,
cbar_orientation='vertical', norm=None, nbins=100,
method='nearest', mask=False, **kwargs):
"""Plot a two-dimensional contour map by interpolating
scattered data on a grid.
Parameters
----------
xall : ndarray(T)
Sample x-coordinates.
yall : ndarray(T)
Sample y-coordinates.
zall : ndarray(T)
Sample z-coordinates.
ax : matplotlib.Axes object, optional, default=None
The ax to plot to; if ax=None, a new ax (and fig) is created.
cmap : matplotlib colormap, optional, default=None
The color map to use.
ncontours : int, optional, default=100
Number of contour levels.
vmin : float, optional, default=None
Lowest z-value to be plotted.
vmax : float, optional, default=None
Highest z-value to be plotted.
levels : iterable of float, optional, default=None
Contour levels to plot; use legacy style calculation
if 'legacy'.
cbar : boolean, optional, default=True
Plot a color bar.
cax : matplotlib.Axes object, optional, default=None
Plot the colorbar into a custom axes object instead of
stealing space from ax.
cbar_label : str, optional, default=None
Colorbar label string; use None to suppress it.
cbar_orientation : str, optional, default='vertical'
Colorbar orientation; choose 'vertical' or 'horizontal'.
norm : matplotlib norm, optional, default=None
Use a norm when coloring the contour plot.
nbins : int, optional, default=100
Number of grid points used in each dimension.
method : str, optional, default='nearest'
Assignment method; scipy.interpolate.griddata supports the
methods 'nearest', 'linear', and 'cubic'.
mask : boolean, optional, default=False
Hide unsampled areas is True.
Optional parameters for contourf (**kwargs)
-------------------------------------------
corner_mask : boolean, optional
Enable/disable corner masking, which only has an effect if
z is a masked array. If False, any quad touching a masked
point is masked out. If True, only the triangular corners
of quads nearest those points are always masked out, other
triangular corners comprising three unmasked points are
contoured as usual.
Defaults to rcParams['contour.corner_mask'], which
defaults to True.
alpha : float
The alpha blending value.
locator : [ None | ticker.Locator subclass ]
If locator is None, the default MaxNLocator is used. The
locator is used to determine the contour levels if they are
not given explicitly via the levels argument.
extend : [ ‘neither’ | ‘both’ | ‘min’ | ‘max’ ]
Unless this is ‘neither’, contour levels are automatically
added to one or both ends of the range so that all data are
included. These added ranges are then mapped to the special
colormap values which default to the ends of the
colormap range, but can be set via
matplotlib.colors.Colormap.set_under() and
matplotlib.colors.Colormap.set_over() methods.
xunits, yunits : [ None | registered units ]
Override axis units by specifying an instance of a
matplotlib.units.ConversionInterface.
antialiased : boolean, optional
Enable antialiasing, overriding the defaults. For filled
contours, the default is True. For line contours, it is
taken from rcParams[‘lines.antialiased’].
nchunk : [ 0 | integer ]
If 0, no subdivision of the domain. Specify a positive
integer to divide the domain into subdomains of nchunk by
nchunk quads. Chunking reduces the maximum length of polygons
generated by the contouring algorithm which reduces the
rendering workload passed on to the backend and also requires
slightly less RAM. It can however introduce rendering
artifacts at chunk boundaries depending on the backend, the
antialiased flag and value of alpha.
hatches :
A list of cross hatch patterns to use on the filled areas.
If None, no hatching will be added to the contour. Hatching
is supported in the PostScript, PDF, SVG and Agg backends
only.
zorder : float
Set the zorder for the artist. Artists with lower zorder
values are drawn first.
Returns
-------
fig : matplotlib.Figure object
The figure in which the used ax resides.
ax : matplotlib.Axes object
The ax in which the map was plotted.
misc : dict
Contains a matplotlib.contour.QuadContourSet 'mappable' and,
if requested, a matplotlib.Colorbar object 'cbar'.
"""
x, y, z = get_grid_data(
xall, yall, zall, nbins=nbins, method=method)
if vmin is None:
vmin = _np.min(zall[zall > -_np.inf])
if vmax is None:
vmax = _np.max(zall[zall < _np.inf])
if levels == 'legacy':
eps = (vmax - vmin) / float(ncontours)
levels = _np.linspace(vmin - eps, vmax + eps)
if mask:
_, _, counts = get_histogram(
xall, yall, nbins=nbins, weights=None,
avoid_zero_count=None)
z = _np.ma.masked_where(counts.T <= 0, z)
return plot_map(
x, y, z, ax=ax, cmap=cmap,
ncontours=ncontours, vmin=vmin, vmax=vmax, levels=levels,
cbar=cbar, cax=cax, cbar_label=cbar_label,
cbar_orientation=cbar_orientation, norm=norm,
**kwargs) | ['def', 'plot_contour', '(', 'xall', ',', 'yall', ',', 'zall', ',', 'ax', '=', 'None', ',', 'cmap', '=', 'None', ',', 'ncontours', '=', '100', ',', 'vmin', '=', 'None', ',', 'vmax', '=', 'None', ',', 'levels', '=', 'None', ',', 'cbar', '=', 'True', ',', 'cax', '=', 'None', ',', 'cbar_label', '=', 'None', ',', 'cbar_orientation', '=', "'vertical'", ',', 'norm', '=', 'None', ',', 'nbins', '=', '100', ',', 'method', '=', "'nearest'", ',', 'mask', '=', 'False', ',', '*', '*', 'kwargs', ')', ':', 'x', ',', 'y', ',', 'z', '=', 'get_grid_data', '(', 'xall', ',', 'yall', ',', 'zall', ',', 'nbins', '=', 'nbins', ',', 'method', '=', 'method', ')', 'if', 'vmin', 'is', 'None', ':', 'vmin', '=', '_np', '.', 'min', '(', 'zall', '[', 'zall', '>', '-', '_np', '.', 'inf', ']', ')', 'if', 'vmax', 'is', 'None', ':', 'vmax', '=', '_np', '.', 'max', '(', 'zall', '[', 'zall', '<', '_np', '.', 'inf', ']', ')', 'if', 'levels', '==', "'legacy'", ':', 'eps', '=', '(', 'vmax', '-', 'vmin', ')', '/', 'float', '(', 'ncontours', ')', 'levels', '=', '_np', '.', 'linspace', '(', 'vmin', '-', 'eps', ',', 'vmax', '+', 'eps', ')', 'if', 'mask', ':', '_', ',', '_', ',', 'counts', '=', 'get_histogram', '(', 'xall', ',', 'yall', ',', 'nbins', '=', 'nbins', ',', 'weights', '=', 'None', ',', 'avoid_zero_count', '=', 'None', ')', 'z', '=', '_np', '.', 'ma', '.', 'masked_where', '(', 'counts', '.', 'T', '<=', '0', ',', 'z', ')', 'return', 'plot_map', '(', 'x', ',', 'y', ',', 'z', ',', 'ax', '=', 'ax', ',', 'cmap', '=', 'cmap', ',', 'ncontours', '=', 'ncontours', ',', 'vmin', '=', 'vmin', ',', 'vmax', '=', 'vmax', ',', 'levels', '=', 'levels', ',', 'cbar', '=', 'cbar', ',', 'cax', '=', 'cax', ',', 'cbar_label', '=', 'cbar_label', ',', 'cbar_orientation', '=', 'cbar_orientation', ',', 'norm', '=', 'norm', ',', '*', '*', 'kwargs', ')'] | Plot a two-dimensional contour map by interpolating
scattered data on a grid.
Parameters
----------
xall : ndarray(T)
Sample x-coordinates.
yall : ndarray(T)
Sample y-coordinates.
zall : ndarray(T)
Sample z-coordinates.
ax : matplotlib.Axes object, optional, default=None
The ax to plot to; if ax=None, a new ax (and fig) is created.
cmap : matplotlib colormap, optional, default=None
The color map to use.
ncontours : int, optional, default=100
Number of contour levels.
vmin : float, optional, default=None
Lowest z-value to be plotted.
vmax : float, optional, default=None
Highest z-value to be plotted.
levels : iterable of float, optional, default=None
Contour levels to plot; use legacy style calculation
if 'legacy'.
cbar : boolean, optional, default=True
Plot a color bar.
cax : matplotlib.Axes object, optional, default=None
Plot the colorbar into a custom axes object instead of
stealing space from ax.
cbar_label : str, optional, default=None
Colorbar label string; use None to suppress it.
cbar_orientation : str, optional, default='vertical'
Colorbar orientation; choose 'vertical' or 'horizontal'.
norm : matplotlib norm, optional, default=None
Use a norm when coloring the contour plot.
nbins : int, optional, default=100
Number of grid points used in each dimension.
method : str, optional, default='nearest'
Assignment method; scipy.interpolate.griddata supports the
methods 'nearest', 'linear', and 'cubic'.
mask : boolean, optional, default=False
Hide unsampled areas is True.
Optional parameters for contourf (**kwargs)
-------------------------------------------
corner_mask : boolean, optional
Enable/disable corner masking, which only has an effect if
z is a masked array. If False, any quad touching a masked
point is masked out. If True, only the triangular corners
of quads nearest those points are always masked out, other
triangular corners comprising three unmasked points are
contoured as usual.
Defaults to rcParams['contour.corner_mask'], which
defaults to True.
alpha : float
The alpha blending value.
locator : [ None | ticker.Locator subclass ]
If locator is None, the default MaxNLocator is used. The
locator is used to determine the contour levels if they are
not given explicitly via the levels argument.
extend : [ ‘neither’ | ‘both’ | ‘min’ | ‘max’ ]
Unless this is ‘neither’, contour levels are automatically
added to one or both ends of the range so that all data are
included. These added ranges are then mapped to the special
colormap values which default to the ends of the
colormap range, but can be set via
matplotlib.colors.Colormap.set_under() and
matplotlib.colors.Colormap.set_over() methods.
xunits, yunits : [ None | registered units ]
Override axis units by specifying an instance of a
matplotlib.units.ConversionInterface.
antialiased : boolean, optional
Enable antialiasing, overriding the defaults. For filled
contours, the default is True. For line contours, it is
taken from rcParams[‘lines.antialiased’].
nchunk : [ 0 | integer ]
If 0, no subdivision of the domain. Specify a positive
integer to divide the domain into subdomains of nchunk by
nchunk quads. Chunking reduces the maximum length of polygons
generated by the contouring algorithm which reduces the
rendering workload passed on to the backend and also requires
slightly less RAM. It can however introduce rendering
artifacts at chunk boundaries depending on the backend, the
antialiased flag and value of alpha.
hatches :
A list of cross hatch patterns to use on the filled areas.
If None, no hatching will be added to the contour. Hatching
is supported in the PostScript, PDF, SVG and Agg backends
only.
zorder : float
Set the zorder for the artist. Artists with lower zorder
values are drawn first.
Returns
-------
fig : matplotlib.Figure object
The figure in which the used ax resides.
ax : matplotlib.Axes object
The ax in which the map was plotted.
misc : dict
Contains a matplotlib.contour.QuadContourSet 'mappable' and,
if requested, a matplotlib.Colorbar object 'cbar'. | ['Plot', 'a', 'two', '-', 'dimensional', 'contour', 'map', 'by', 'interpolating', 'scattered', 'data', 'on', 'a', 'grid', '.'] | train | https://github.com/markovmodel/PyEMMA/blob/5c3124398217de05ba5ce9c8fb01519222481ab8/pyemma/plots/plots2d.py#L686-L815 |
81 | tomturner/django-tenants | django_tenants/clone.py | CloneSchema.clone_schema | def clone_schema(self, base_schema_name, new_schema_name):
"""
Creates a new schema `new_schema_name` as a clone of an existing schema
`old_schema_name`.
"""
connection.set_schema_to_public()
cursor = connection.cursor()
# check if the clone_schema function already exists in the db
try:
cursor.execute("SELECT 'clone_schema'::regproc")
except ProgrammingError:
self._create_clone_schema_function()
transaction.commit()
sql = 'SELECT clone_schema(%(base_schema)s, %(new_schema)s, TRUE)'
cursor.execute(
sql,
{'base_schema': base_schema_name, 'new_schema': new_schema_name}
)
cursor.close() | python | def clone_schema(self, base_schema_name, new_schema_name):
"""
Creates a new schema `new_schema_name` as a clone of an existing schema
`old_schema_name`.
"""
connection.set_schema_to_public()
cursor = connection.cursor()
# check if the clone_schema function already exists in the db
try:
cursor.execute("SELECT 'clone_schema'::regproc")
except ProgrammingError:
self._create_clone_schema_function()
transaction.commit()
sql = 'SELECT clone_schema(%(base_schema)s, %(new_schema)s, TRUE)'
cursor.execute(
sql,
{'base_schema': base_schema_name, 'new_schema': new_schema_name}
)
cursor.close() | ['def', 'clone_schema', '(', 'self', ',', 'base_schema_name', ',', 'new_schema_name', ')', ':', 'connection', '.', 'set_schema_to_public', '(', ')', 'cursor', '=', 'connection', '.', 'cursor', '(', ')', '# check if the clone_schema function already exists in the db', 'try', ':', 'cursor', '.', 'execute', '(', '"SELECT \'clone_schema\'::regproc"', ')', 'except', 'ProgrammingError', ':', 'self', '.', '_create_clone_schema_function', '(', ')', 'transaction', '.', 'commit', '(', ')', 'sql', '=', "'SELECT clone_schema(%(base_schema)s, %(new_schema)s, TRUE)'", 'cursor', '.', 'execute', '(', 'sql', ',', '{', "'base_schema'", ':', 'base_schema_name', ',', "'new_schema'", ':', 'new_schema_name', '}', ')', 'cursor', '.', 'close', '(', ')'] | Creates a new schema `new_schema_name` as a clone of an existing schema
`old_schema_name`. | ['Creates', 'a', 'new', 'schema', 'new_schema_name', 'as', 'a', 'clone', 'of', 'an', 'existing', 'schema', 'old_schema_name', '.'] | train | https://github.com/tomturner/django-tenants/blob/f3e06e2b0facee7ed797e5694bcac433df3e5315/django_tenants/clone.py#L213-L233 |
82 | toumorokoshi/jenks | jenks/utils.py | get_configuration_file | def get_configuration_file():
""" return jenks configuration file """
path = os.path.abspath(os.curdir)
while path != os.sep:
config_path = os.path.join(path, CONFIG_FILE_NAME)
if os.path.exists(config_path):
return config_path
path = os.path.dirname(path)
return None | python | def get_configuration_file():
""" return jenks configuration file """
path = os.path.abspath(os.curdir)
while path != os.sep:
config_path = os.path.join(path, CONFIG_FILE_NAME)
if os.path.exists(config_path):
return config_path
path = os.path.dirname(path)
return None | ['def', 'get_configuration_file', '(', ')', ':', 'path', '=', 'os', '.', 'path', '.', 'abspath', '(', 'os', '.', 'curdir', ')', 'while', 'path', '!=', 'os', '.', 'sep', ':', 'config_path', '=', 'os', '.', 'path', '.', 'join', '(', 'path', ',', 'CONFIG_FILE_NAME', ')', 'if', 'os', '.', 'path', '.', 'exists', '(', 'config_path', ')', ':', 'return', 'config_path', 'path', '=', 'os', '.', 'path', '.', 'dirname', '(', 'path', ')', 'return', 'None'] | return jenks configuration file | ['return', 'jenks', 'configuration', 'file'] | train | https://github.com/toumorokoshi/jenks/blob/d3333a7b86ba290b7185aa5b8da75e76a28124f5/jenks/utils.py#L36-L44 |
83 | mitsei/dlkit | dlkit/json_/repository/sessions.py | AssetAdminSession.get_asset_form_for_create | def get_asset_form_for_create(self, asset_record_types):
"""Gets the asset form for creating new assets.
A new form should be requested for each create transaction.
arg: asset_record_types (osid.type.Type[]): array of asset
record types
return: (osid.repository.AssetForm) - the asset form
raise: NullArgument - ``asset_record_types`` is ``null``
raise: OperationFailed - unable to complete request
raise: PermissionDenied - authorization failure
raise: Unsupported - unable to get form for requested record
types
*compliance: mandatory -- This method must be implemented.*
"""
# Implemented from template for
# osid.resource.ResourceAdminSession.get_resource_form_for_create_template
for arg in asset_record_types:
if not isinstance(arg, ABCType):
raise errors.InvalidArgument('one or more argument array elements is not a valid OSID Type')
if asset_record_types == []:
obj_form = objects.AssetForm(
repository_id=self._catalog_id,
runtime=self._runtime,
effective_agent_id=self.get_effective_agent_id(),
proxy=self._proxy)
else:
obj_form = objects.AssetForm(
repository_id=self._catalog_id,
record_types=asset_record_types,
runtime=self._runtime,
effective_agent_id=self.get_effective_agent_id(),
proxy=self._proxy)
self._forms[obj_form.get_id().get_identifier()] = not CREATED
return obj_form | python | def get_asset_form_for_create(self, asset_record_types):
"""Gets the asset form for creating new assets.
A new form should be requested for each create transaction.
arg: asset_record_types (osid.type.Type[]): array of asset
record types
return: (osid.repository.AssetForm) - the asset form
raise: NullArgument - ``asset_record_types`` is ``null``
raise: OperationFailed - unable to complete request
raise: PermissionDenied - authorization failure
raise: Unsupported - unable to get form for requested record
types
*compliance: mandatory -- This method must be implemented.*
"""
# Implemented from template for
# osid.resource.ResourceAdminSession.get_resource_form_for_create_template
for arg in asset_record_types:
if not isinstance(arg, ABCType):
raise errors.InvalidArgument('one or more argument array elements is not a valid OSID Type')
if asset_record_types == []:
obj_form = objects.AssetForm(
repository_id=self._catalog_id,
runtime=self._runtime,
effective_agent_id=self.get_effective_agent_id(),
proxy=self._proxy)
else:
obj_form = objects.AssetForm(
repository_id=self._catalog_id,
record_types=asset_record_types,
runtime=self._runtime,
effective_agent_id=self.get_effective_agent_id(),
proxy=self._proxy)
self._forms[obj_form.get_id().get_identifier()] = not CREATED
return obj_form | ['def', 'get_asset_form_for_create', '(', 'self', ',', 'asset_record_types', ')', ':', '# Implemented from template for', '# osid.resource.ResourceAdminSession.get_resource_form_for_create_template', 'for', 'arg', 'in', 'asset_record_types', ':', 'if', 'not', 'isinstance', '(', 'arg', ',', 'ABCType', ')', ':', 'raise', 'errors', '.', 'InvalidArgument', '(', "'one or more argument array elements is not a valid OSID Type'", ')', 'if', 'asset_record_types', '==', '[', ']', ':', 'obj_form', '=', 'objects', '.', 'AssetForm', '(', 'repository_id', '=', 'self', '.', '_catalog_id', ',', 'runtime', '=', 'self', '.', '_runtime', ',', 'effective_agent_id', '=', 'self', '.', 'get_effective_agent_id', '(', ')', ',', 'proxy', '=', 'self', '.', '_proxy', ')', 'else', ':', 'obj_form', '=', 'objects', '.', 'AssetForm', '(', 'repository_id', '=', 'self', '.', '_catalog_id', ',', 'record_types', '=', 'asset_record_types', ',', 'runtime', '=', 'self', '.', '_runtime', ',', 'effective_agent_id', '=', 'self', '.', 'get_effective_agent_id', '(', ')', ',', 'proxy', '=', 'self', '.', '_proxy', ')', 'self', '.', '_forms', '[', 'obj_form', '.', 'get_id', '(', ')', '.', 'get_identifier', '(', ')', ']', '=', 'not', 'CREATED', 'return', 'obj_form'] | Gets the asset form for creating new assets.
A new form should be requested for each create transaction.
arg: asset_record_types (osid.type.Type[]): array of asset
record types
return: (osid.repository.AssetForm) - the asset form
raise: NullArgument - ``asset_record_types`` is ``null``
raise: OperationFailed - unable to complete request
raise: PermissionDenied - authorization failure
raise: Unsupported - unable to get form for requested record
types
*compliance: mandatory -- This method must be implemented.* | ['Gets', 'the', 'asset', 'form', 'for', 'creating', 'new', 'assets', '.'] | train | https://github.com/mitsei/dlkit/blob/445f968a175d61c8d92c0f617a3c17dc1dc7c584/dlkit/json_/repository/sessions.py#L1279-L1314 |
84 | martinkosir/neverbounce-python | neverbounce/client.py | NeverBounce.verify | def verify(self, email):
"""
Verify a single email address.
:param str email: Email address to verify.
:return: A VerifiedEmail object.
"""
resp = self._call(endpoint='single', data={'email': email})
return VerifiedEmail(email, resp['result']) | python | def verify(self, email):
"""
Verify a single email address.
:param str email: Email address to verify.
:return: A VerifiedEmail object.
"""
resp = self._call(endpoint='single', data={'email': email})
return VerifiedEmail(email, resp['result']) | ['def', 'verify', '(', 'self', ',', 'email', ')', ':', 'resp', '=', 'self', '.', '_call', '(', 'endpoint', '=', "'single'", ',', 'data', '=', '{', "'email'", ':', 'email', '}', ')', 'return', 'VerifiedEmail', '(', 'email', ',', 'resp', '[', "'result'", ']', ')'] | Verify a single email address.
:param str email: Email address to verify.
:return: A VerifiedEmail object. | ['Verify', 'a', 'single', 'email', 'address', '.', ':', 'param', 'str', 'email', ':', 'Email', 'address', 'to', 'verify', '.', ':', 'return', ':', 'A', 'VerifiedEmail', 'object', '.'] | train | https://github.com/martinkosir/neverbounce-python/blob/8d8b3f381dbff2a753a8770fac0d2bfab80d5bec/neverbounce/client.py#L18-L25 |
85 | JarryShaw/PyPCAPKit | src/protocols/internet/hip.py | HIP._read_para_hip_signature_2 | def _read_para_hip_signature_2(self, code, cbit, clen, *, desc, length, version):
"""Read HIP HIP_SIGNATURE_2 parameter.
Structure of HIP HIP_SIGNATURE_2 parameter [RFC 7401]:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| SIG alg | Signature /
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/ | Padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Octets Bits Name Description
0 0 hip_signature_2.type Parameter Type
1 15 hip_signature_2.critical Critical Bit
2 16 hip_signature_2.length Length of Contents
4 32 hip_signature_2.algorithm SIG Algorithm
6 48 hip_signature_2.signature Signature
? ? - Padding
"""
_algo = self._read_unpack(2)
_sign = self._read_fileng(clen-2)
hip_signature_2 = dict(
type=desc,
critical=cbit,
length=clen,
algorithm=_HI_ALGORITHM.get(_algo, 'Unassigned'),
signature=_sign,
)
_plen = length - clen
if _plen:
self._read_fileng(_plen)
return hip_signature_2 | python | def _read_para_hip_signature_2(self, code, cbit, clen, *, desc, length, version):
"""Read HIP HIP_SIGNATURE_2 parameter.
Structure of HIP HIP_SIGNATURE_2 parameter [RFC 7401]:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| SIG alg | Signature /
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/ | Padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Octets Bits Name Description
0 0 hip_signature_2.type Parameter Type
1 15 hip_signature_2.critical Critical Bit
2 16 hip_signature_2.length Length of Contents
4 32 hip_signature_2.algorithm SIG Algorithm
6 48 hip_signature_2.signature Signature
? ? - Padding
"""
_algo = self._read_unpack(2)
_sign = self._read_fileng(clen-2)
hip_signature_2 = dict(
type=desc,
critical=cbit,
length=clen,
algorithm=_HI_ALGORITHM.get(_algo, 'Unassigned'),
signature=_sign,
)
_plen = length - clen
if _plen:
self._read_fileng(_plen)
return hip_signature_2 | ['def', '_read_para_hip_signature_2', '(', 'self', ',', 'code', ',', 'cbit', ',', 'clen', ',', '*', ',', 'desc', ',', 'length', ',', 'version', ')', ':', '_algo', '=', 'self', '.', '_read_unpack', '(', '2', ')', '_sign', '=', 'self', '.', '_read_fileng', '(', 'clen', '-', '2', ')', 'hip_signature_2', '=', 'dict', '(', 'type', '=', 'desc', ',', 'critical', '=', 'cbit', ',', 'length', '=', 'clen', ',', 'algorithm', '=', '_HI_ALGORITHM', '.', 'get', '(', '_algo', ',', "'Unassigned'", ')', ',', 'signature', '=', '_sign', ',', ')', '_plen', '=', 'length', '-', 'clen', 'if', '_plen', ':', 'self', '.', '_read_fileng', '(', '_plen', ')', 'return', 'hip_signature_2'] | Read HIP HIP_SIGNATURE_2 parameter.
Structure of HIP HIP_SIGNATURE_2 parameter [RFC 7401]:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| SIG alg | Signature /
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/ | Padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Octets Bits Name Description
0 0 hip_signature_2.type Parameter Type
1 15 hip_signature_2.critical Critical Bit
2 16 hip_signature_2.length Length of Contents
4 32 hip_signature_2.algorithm SIG Algorithm
6 48 hip_signature_2.signature Signature
? ? - Padding | ['Read', 'HIP', 'HIP_SIGNATURE_2', 'parameter', '.'] | train | https://github.com/JarryShaw/PyPCAPKit/blob/c7f0da9aebc2cf210bf8f8b912f7d3cbb98ca10e/src/protocols/internet/hip.py#L2023-L2061 |
86 | Preston-Landers/concurrent-log-handler | src/concurrent_log_handler/__init__.py | ConcurrentRotatingFileHandler.emit | def emit(self, record):
"""
Emit a record.
Override from parent class to handle file locking for the duration of rollover and write.
This also does the formatting *before* locks are obtained, in case the format itself does
logging calls from within. Rollover also occurs while the lock is held.
"""
# noinspection PyBroadException
try:
msg = self.format(record)
try:
self._do_lock()
try:
if self.shouldRollover(record):
self.doRollover()
except Exception as e:
self._console_log("Unable to do rollover: %s" % (e,), stack=True)
# Continue on anyway
self.do_write(msg)
finally:
self._do_unlock()
except Exception:
self.handleError(record) | python | def emit(self, record):
"""
Emit a record.
Override from parent class to handle file locking for the duration of rollover and write.
This also does the formatting *before* locks are obtained, in case the format itself does
logging calls from within. Rollover also occurs while the lock is held.
"""
# noinspection PyBroadException
try:
msg = self.format(record)
try:
self._do_lock()
try:
if self.shouldRollover(record):
self.doRollover()
except Exception as e:
self._console_log("Unable to do rollover: %s" % (e,), stack=True)
# Continue on anyway
self.do_write(msg)
finally:
self._do_unlock()
except Exception:
self.handleError(record) | ['def', 'emit', '(', 'self', ',', 'record', ')', ':', '# noinspection PyBroadException', 'try', ':', 'msg', '=', 'self', '.', 'format', '(', 'record', ')', 'try', ':', 'self', '.', '_do_lock', '(', ')', 'try', ':', 'if', 'self', '.', 'shouldRollover', '(', 'record', ')', ':', 'self', '.', 'doRollover', '(', ')', 'except', 'Exception', 'as', 'e', ':', 'self', '.', '_console_log', '(', '"Unable to do rollover: %s"', '%', '(', 'e', ',', ')', ',', 'stack', '=', 'True', ')', '# Continue on anyway', 'self', '.', 'do_write', '(', 'msg', ')', 'finally', ':', 'self', '.', '_do_unlock', '(', ')', 'except', 'Exception', ':', 'self', '.', 'handleError', '(', 'record', ')'] | Emit a record.
Override from parent class to handle file locking for the duration of rollover and write.
This also does the formatting *before* locks are obtained, in case the format itself does
logging calls from within. Rollover also occurs while the lock is held. | ['Emit', 'a', 'record', '.'] | train | https://github.com/Preston-Landers/concurrent-log-handler/blob/8e0b8e28c2b12e854853d723b3c28346a3218914/src/concurrent_log_handler/__init__.py#L298-L324 |
87 | Autodesk/aomi | aomi/vault.py | Client.server_version | def server_version(self):
"""Attempts to determine the version of Vault that a
server is running. Some actions will change on older
Vault deployments."""
health_url = "%s/v1/sys/health" % self.vault_addr
resp = self.session.request('get', health_url, **self._kwargs)
if resp.status_code == 200 or resp.status_code == 429:
blob = resp.json()
if 'version' in blob:
return blob['version']
else:
raise aomi.exceptions.VaultProblem('Health check failed')
return None | python | def server_version(self):
"""Attempts to determine the version of Vault that a
server is running. Some actions will change on older
Vault deployments."""
health_url = "%s/v1/sys/health" % self.vault_addr
resp = self.session.request('get', health_url, **self._kwargs)
if resp.status_code == 200 or resp.status_code == 429:
blob = resp.json()
if 'version' in blob:
return blob['version']
else:
raise aomi.exceptions.VaultProblem('Health check failed')
return None | ['def', 'server_version', '(', 'self', ')', ':', 'health_url', '=', '"%s/v1/sys/health"', '%', 'self', '.', 'vault_addr', 'resp', '=', 'self', '.', 'session', '.', 'request', '(', "'get'", ',', 'health_url', ',', '*', '*', 'self', '.', '_kwargs', ')', 'if', 'resp', '.', 'status_code', '==', '200', 'or', 'resp', '.', 'status_code', '==', '429', ':', 'blob', '=', 'resp', '.', 'json', '(', ')', 'if', "'version'", 'in', 'blob', ':', 'return', 'blob', '[', "'version'", ']', 'else', ':', 'raise', 'aomi', '.', 'exceptions', '.', 'VaultProblem', '(', "'Health check failed'", ')', 'return', 'None'] | Attempts to determine the version of Vault that a
server is running. Some actions will change on older
Vault deployments. | ['Attempts', 'to', 'determine', 'the', 'version', 'of', 'Vault', 'that', 'a', 'server', 'is', 'running', '.', 'Some', 'actions', 'will', 'change', 'on', 'older', 'Vault', 'deployments', '.'] | train | https://github.com/Autodesk/aomi/blob/84da2dfb0424837adf9c4ddc1aa352e942bb7a4a/aomi/vault.py#L191-L204 |
88 | ryanmcgrath/twython | twython/streaming/types.py | TwythonStreamerTypes.site | def site(self, **params):
"""Stream site
Accepted params found at:
https://dev.twitter.com/docs/api/1.1/get/site
"""
url = 'https://sitestream.twitter.com/%s/site.json' \
% self.streamer.api_version
self.streamer._request(url, params=params) | python | def site(self, **params):
"""Stream site
Accepted params found at:
https://dev.twitter.com/docs/api/1.1/get/site
"""
url = 'https://sitestream.twitter.com/%s/site.json' \
% self.streamer.api_version
self.streamer._request(url, params=params) | ['def', 'site', '(', 'self', ',', '*', '*', 'params', ')', ':', 'url', '=', "'https://sitestream.twitter.com/%s/site.json'", '%', 'self', '.', 'streamer', '.', 'api_version', 'self', '.', 'streamer', '.', '_request', '(', 'url', ',', 'params', '=', 'params', ')'] | Stream site
Accepted params found at:
https://dev.twitter.com/docs/api/1.1/get/site | ['Stream', 'site'] | train | https://github.com/ryanmcgrath/twython/blob/7366de80efcbbdfaf615d3f1fea72546196916fc/twython/streaming/types.py#L33-L41 |
89 | rsinger86/drf-flex-fields | rest_flex_fields/serializers.py | FlexFieldsSerializerMixin._get_expand_input | def _get_expand_input(self, passed_settings):
"""
If expand value is explicitliy passed, just return it.
If parsing from request, ensure that the value complies with
the "permitted_expands" list passed into the context from the
FlexFieldsMixin.
"""
value = passed_settings.get("expand")
if len(value) > 0:
return value
if not self._can_access_request:
return []
expand = self._parse_request_list_value("expand")
if "permitted_expands" in self.context:
permitted_expands = self.context["permitted_expands"]
if "~all" in expand or "*" in expand:
return permitted_expands
else:
return list(set(expand) & set(permitted_expands))
return expand | python | def _get_expand_input(self, passed_settings):
"""
If expand value is explicitliy passed, just return it.
If parsing from request, ensure that the value complies with
the "permitted_expands" list passed into the context from the
FlexFieldsMixin.
"""
value = passed_settings.get("expand")
if len(value) > 0:
return value
if not self._can_access_request:
return []
expand = self._parse_request_list_value("expand")
if "permitted_expands" in self.context:
permitted_expands = self.context["permitted_expands"]
if "~all" in expand or "*" in expand:
return permitted_expands
else:
return list(set(expand) & set(permitted_expands))
return expand | ['def', '_get_expand_input', '(', 'self', ',', 'passed_settings', ')', ':', 'value', '=', 'passed_settings', '.', 'get', '(', '"expand"', ')', 'if', 'len', '(', 'value', ')', '>', '0', ':', 'return', 'value', 'if', 'not', 'self', '.', '_can_access_request', ':', 'return', '[', ']', 'expand', '=', 'self', '.', '_parse_request_list_value', '(', '"expand"', ')', 'if', '"permitted_expands"', 'in', 'self', '.', 'context', ':', 'permitted_expands', '=', 'self', '.', 'context', '[', '"permitted_expands"', ']', 'if', '"~all"', 'in', 'expand', 'or', '"*"', 'in', 'expand', ':', 'return', 'permitted_expands', 'else', ':', 'return', 'list', '(', 'set', '(', 'expand', ')', '&', 'set', '(', 'permitted_expands', ')', ')', 'return', 'expand'] | If expand value is explicitliy passed, just return it.
If parsing from request, ensure that the value complies with
the "permitted_expands" list passed into the context from the
FlexFieldsMixin. | ['If', 'expand', 'value', 'is', 'explicitliy', 'passed', 'just', 'return', 'it', '.', 'If', 'parsing', 'from', 'request', 'ensure', 'that', 'the', 'value', 'complies', 'with', 'the', 'permitted_expands', 'list', 'passed', 'into', 'the', 'context', 'from', 'the', 'FlexFieldsMixin', '.'] | train | https://github.com/rsinger86/drf-flex-fields/blob/56495f15977d76697972acac571792e8fd67003d/rest_flex_fields/serializers.py#L196-L221 |
90 | eyurtsev/FlowCytometryTools | FlowCytometryTools/gui/fc_widget.py | BaseVertex.update_coordinates | def update_coordinates(self, new_coordinates):
"""
new_coordinates : dict
"""
for k, v in new_coordinates.items():
if k in self.coordinates:
self.coordinates[k] = v
for svertex in self.spawn_list:
verts = tuple([self.coordinates.get(ch, None) for ch in svertex.channels])
if len(svertex.channels) == 1: # This means a histogram
svertex.update_position(verts[0], None)
else:
svertex.update_position(verts[0], verts[1])
self.callback(Event(Event.BASE_GATE_CHANGED)) | python | def update_coordinates(self, new_coordinates):
"""
new_coordinates : dict
"""
for k, v in new_coordinates.items():
if k in self.coordinates:
self.coordinates[k] = v
for svertex in self.spawn_list:
verts = tuple([self.coordinates.get(ch, None) for ch in svertex.channels])
if len(svertex.channels) == 1: # This means a histogram
svertex.update_position(verts[0], None)
else:
svertex.update_position(verts[0], verts[1])
self.callback(Event(Event.BASE_GATE_CHANGED)) | ['def', 'update_coordinates', '(', 'self', ',', 'new_coordinates', ')', ':', 'for', 'k', ',', 'v', 'in', 'new_coordinates', '.', 'items', '(', ')', ':', 'if', 'k', 'in', 'self', '.', 'coordinates', ':', 'self', '.', 'coordinates', '[', 'k', ']', '=', 'v', 'for', 'svertex', 'in', 'self', '.', 'spawn_list', ':', 'verts', '=', 'tuple', '(', '[', 'self', '.', 'coordinates', '.', 'get', '(', 'ch', ',', 'None', ')', 'for', 'ch', 'in', 'svertex', '.', 'channels', ']', ')', 'if', 'len', '(', 'svertex', '.', 'channels', ')', '==', '1', ':', '# This means a histogram', 'svertex', '.', 'update_position', '(', 'verts', '[', '0', ']', ',', 'None', ')', 'else', ':', 'svertex', '.', 'update_position', '(', 'verts', '[', '0', ']', ',', 'verts', '[', '1', ']', ')', 'self', '.', 'callback', '(', 'Event', '(', 'Event', '.', 'BASE_GATE_CHANGED', ')', ')'] | new_coordinates : dict | ['new_coordinates', ':', 'dict'] | train | https://github.com/eyurtsev/FlowCytometryTools/blob/4355632508b875273d68c7e2972c17668bcf7b40/FlowCytometryTools/gui/fc_widget.py#L150-L165 |
91 | abelcarreras/DynaPhoPy | dynaphopy/analysis/fitting/fitting_functions.py | Gaussian_function._function | def _function(self, x, a, b, c, d):
"""Gaussian PDF function
x: coordinate
a: peak position
b: deviation (sigma)
c: area proportional parameter
d: base line
"""
return c/b*np.sqrt(2*np.pi)*np.exp(-(x-a)**2/(2*b**2))+d | python | def _function(self, x, a, b, c, d):
"""Gaussian PDF function
x: coordinate
a: peak position
b: deviation (sigma)
c: area proportional parameter
d: base line
"""
return c/b*np.sqrt(2*np.pi)*np.exp(-(x-a)**2/(2*b**2))+d | ['def', '_function', '(', 'self', ',', 'x', ',', 'a', ',', 'b', ',', 'c', ',', 'd', ')', ':', 'return', 'c', '/', 'b', '*', 'np', '.', 'sqrt', '(', '2', '*', 'np', '.', 'pi', ')', '*', 'np', '.', 'exp', '(', '-', '(', 'x', '-', 'a', ')', '**', '2', '/', '(', '2', '*', 'b', '**', '2', ')', ')', '+', 'd'] | Gaussian PDF function
x: coordinate
a: peak position
b: deviation (sigma)
c: area proportional parameter
d: base line | ['Gaussian', 'PDF', 'function', 'x', ':', 'coordinate', 'a', ':', 'peak', 'position', 'b', ':', 'deviation', '(', 'sigma', ')', 'c', ':', 'area', 'proportional', 'parameter', 'd', ':', 'base', 'line'] | train | https://github.com/abelcarreras/DynaPhoPy/blob/51e99422228e6be84830d659b88a0ca904d9136f/dynaphopy/analysis/fitting/fitting_functions.py#L302-L310 |
92 | woolfson-group/isambard | isambard/optimisation/evo_optimizers.py | CMAES._initial_individual | def _initial_individual(self):
"""Generates an individual with random parameters within bounds."""
ind = creator.Individual(
[random.uniform(-1, 1)
for _ in range(len(self.value_means))])
return ind | python | def _initial_individual(self):
"""Generates an individual with random parameters within bounds."""
ind = creator.Individual(
[random.uniform(-1, 1)
for _ in range(len(self.value_means))])
return ind | ['def', '_initial_individual', '(', 'self', ')', ':', 'ind', '=', 'creator', '.', 'Individual', '(', '[', 'random', '.', 'uniform', '(', '-', '1', ',', '1', ')', 'for', '_', 'in', 'range', '(', 'len', '(', 'self', '.', 'value_means', ')', ')', ']', ')', 'return', 'ind'] | Generates an individual with random parameters within bounds. | ['Generates', 'an', 'individual', 'with', 'random', 'parameters', 'within', 'bounds', '.'] | train | https://github.com/woolfson-group/isambard/blob/ebc33b48a28ad217e18f93b910dfba46e6e71e07/isambard/optimisation/evo_optimizers.py#L472-L477 |
93 | yfpeng/bioc | bioc/biocxml/encoder.py | BioCXMLDocumentWriter.write_collection_info | def write_collection_info(self, collection: BioCCollection):
"""
Writes the collection information: encoding, version, DTD, source, date, key, infons, etc.
"""
elem = etree.Element('source')
elem.text = collection.source
self.__writer.send(elem)
elem = etree.Element('date')
elem.text = collection.date
self.__writer.send(elem)
elem = etree.Element('key')
elem.text = collection.key
self.__writer.send(elem)
for k, v in collection.infons.items():
elem = etree.Element('infon', {'key': str(k)})
elem.text = str(v)
self.__writer.send(elem) | python | def write_collection_info(self, collection: BioCCollection):
"""
Writes the collection information: encoding, version, DTD, source, date, key, infons, etc.
"""
elem = etree.Element('source')
elem.text = collection.source
self.__writer.send(elem)
elem = etree.Element('date')
elem.text = collection.date
self.__writer.send(elem)
elem = etree.Element('key')
elem.text = collection.key
self.__writer.send(elem)
for k, v in collection.infons.items():
elem = etree.Element('infon', {'key': str(k)})
elem.text = str(v)
self.__writer.send(elem) | ['def', 'write_collection_info', '(', 'self', ',', 'collection', ':', 'BioCCollection', ')', ':', 'elem', '=', 'etree', '.', 'Element', '(', "'source'", ')', 'elem', '.', 'text', '=', 'collection', '.', 'source', 'self', '.', '__writer', '.', 'send', '(', 'elem', ')', 'elem', '=', 'etree', '.', 'Element', '(', "'date'", ')', 'elem', '.', 'text', '=', 'collection', '.', 'date', 'self', '.', '__writer', '.', 'send', '(', 'elem', ')', 'elem', '=', 'etree', '.', 'Element', '(', "'key'", ')', 'elem', '.', 'text', '=', 'collection', '.', 'key', 'self', '.', '__writer', '.', 'send', '(', 'elem', ')', 'for', 'k', ',', 'v', 'in', 'collection', '.', 'infons', '.', 'items', '(', ')', ':', 'elem', '=', 'etree', '.', 'Element', '(', "'infon'", ',', '{', "'key'", ':', 'str', '(', 'k', ')', '}', ')', 'elem', '.', 'text', '=', 'str', '(', 'v', ')', 'self', '.', '__writer', '.', 'send', '(', 'elem', ')'] | Writes the collection information: encoding, version, DTD, source, date, key, infons, etc. | ['Writes', 'the', 'collection', 'information', ':', 'encoding', 'version', 'DTD', 'source', 'date', 'key', 'infons', 'etc', '.'] | train | https://github.com/yfpeng/bioc/blob/47ddaa010960d9ba673aefe068e7bbaf39f0fff4/bioc/biocxml/encoder.py#L185-L204 |
94 | pymc-devs/pymc | pymc/Matplot.py | autocorrelation | def autocorrelation(
data, name, maxlags=100, format='png', reflected=False, suffix='-acf', path='./',
fontmap=None, new=True, last=True, rows=1, columns=1, num=1, verbose=1):
"""
Generate bar plot of the autocorrelation function for a series (usually an MCMC trace).
:Arguments:
data: PyMC object, trace or array
A trace from an MCMC sample or a PyMC object with one or more traces.
name: string
The name of the object.
maxlags (optional): int
The largest discrete value for the autocorrelation to be calculated (defaults to 100).
format (optional): string
Graphic output format (defaults to png).
suffix (optional): string
Filename suffix.
path (optional): string
Specifies location for saving plots (defaults to local directory).
fontmap (optional): dict
Font mapping for plot labels; most users should not specify this.
verbose (optional): int
Level of output verbosity.
"""
# Internal plotting specification for handling nested arrays
if fontmap is None:
fontmap = {1: 10, 2: 8, 3: 6, 4: 5, 5: 4}
# Stand-alone plot or subplot?
standalone = rows == 1 and columns == 1 and num == 1
if standalone:
if verbose > 0:
print_('Plotting', name)
figure()
subplot(rows, columns, num)
if ndim(data) == 1:
maxlags = min(len(data) - 1, maxlags)
try:
acorr(data, detrend=mlab.detrend_mean, maxlags=maxlags)
except:
print_('Cannot plot autocorrelation for %s' % name)
return
# Set axis bounds
ylim(-.1, 1.1)
xlim(-maxlags * reflected or 0, maxlags)
# Plot options
title(
'\n\n %s acorr' %
name,
x=0.,
y=1.,
ha='left',
va='top',
fontsize='small')
# Smaller tick labels
tlabels = gca().get_xticklabels()
setp(tlabels, 'fontsize', fontmap[1])
tlabels = gca().get_yticklabels()
setp(tlabels, 'fontsize', fontmap[1])
elif ndim(data) == 2:
# generate acorr plot for each dimension
rows = data.shape[1]
for j in range(rows):
autocorrelation(
data[:,
j],
'%s_%d' % (name,
j),
maxlags,
fontmap=fontmap,
rows=rows,
columns=1,
num=j + 1)
else:
raise ValueError(
'Only 1- and 2- dimensional functions can be displayed')
if standalone:
if not os.path.exists(path):
os.mkdir(path)
if not path.endswith('/'):
path += '/'
# Save to fiel
savefig("%s%s%s.%s" % (path, name, suffix, format)) | python | def autocorrelation(
data, name, maxlags=100, format='png', reflected=False, suffix='-acf', path='./',
fontmap=None, new=True, last=True, rows=1, columns=1, num=1, verbose=1):
"""
Generate bar plot of the autocorrelation function for a series (usually an MCMC trace).
:Arguments:
data: PyMC object, trace or array
A trace from an MCMC sample or a PyMC object with one or more traces.
name: string
The name of the object.
maxlags (optional): int
The largest discrete value for the autocorrelation to be calculated (defaults to 100).
format (optional): string
Graphic output format (defaults to png).
suffix (optional): string
Filename suffix.
path (optional): string
Specifies location for saving plots (defaults to local directory).
fontmap (optional): dict
Font mapping for plot labels; most users should not specify this.
verbose (optional): int
Level of output verbosity.
"""
# Internal plotting specification for handling nested arrays
if fontmap is None:
fontmap = {1: 10, 2: 8, 3: 6, 4: 5, 5: 4}
# Stand-alone plot or subplot?
standalone = rows == 1 and columns == 1 and num == 1
if standalone:
if verbose > 0:
print_('Plotting', name)
figure()
subplot(rows, columns, num)
if ndim(data) == 1:
maxlags = min(len(data) - 1, maxlags)
try:
acorr(data, detrend=mlab.detrend_mean, maxlags=maxlags)
except:
print_('Cannot plot autocorrelation for %s' % name)
return
# Set axis bounds
ylim(-.1, 1.1)
xlim(-maxlags * reflected or 0, maxlags)
# Plot options
title(
'\n\n %s acorr' %
name,
x=0.,
y=1.,
ha='left',
va='top',
fontsize='small')
# Smaller tick labels
tlabels = gca().get_xticklabels()
setp(tlabels, 'fontsize', fontmap[1])
tlabels = gca().get_yticklabels()
setp(tlabels, 'fontsize', fontmap[1])
elif ndim(data) == 2:
# generate acorr plot for each dimension
rows = data.shape[1]
for j in range(rows):
autocorrelation(
data[:,
j],
'%s_%d' % (name,
j),
maxlags,
fontmap=fontmap,
rows=rows,
columns=1,
num=j + 1)
else:
raise ValueError(
'Only 1- and 2- dimensional functions can be displayed')
if standalone:
if not os.path.exists(path):
os.mkdir(path)
if not path.endswith('/'):
path += '/'
# Save to fiel
savefig("%s%s%s.%s" % (path, name, suffix, format)) | ['def', 'autocorrelation', '(', 'data', ',', 'name', ',', 'maxlags', '=', '100', ',', 'format', '=', "'png'", ',', 'reflected', '=', 'False', ',', 'suffix', '=', "'-acf'", ',', 'path', '=', "'./'", ',', 'fontmap', '=', 'None', ',', 'new', '=', 'True', ',', 'last', '=', 'True', ',', 'rows', '=', '1', ',', 'columns', '=', '1', ',', 'num', '=', '1', ',', 'verbose', '=', '1', ')', ':', '# Internal plotting specification for handling nested arrays', 'if', 'fontmap', 'is', 'None', ':', 'fontmap', '=', '{', '1', ':', '10', ',', '2', ':', '8', ',', '3', ':', '6', ',', '4', ':', '5', ',', '5', ':', '4', '}', '# Stand-alone plot or subplot?', 'standalone', '=', 'rows', '==', '1', 'and', 'columns', '==', '1', 'and', 'num', '==', '1', 'if', 'standalone', ':', 'if', 'verbose', '>', '0', ':', 'print_', '(', "'Plotting'", ',', 'name', ')', 'figure', '(', ')', 'subplot', '(', 'rows', ',', 'columns', ',', 'num', ')', 'if', 'ndim', '(', 'data', ')', '==', '1', ':', 'maxlags', '=', 'min', '(', 'len', '(', 'data', ')', '-', '1', ',', 'maxlags', ')', 'try', ':', 'acorr', '(', 'data', ',', 'detrend', '=', 'mlab', '.', 'detrend_mean', ',', 'maxlags', '=', 'maxlags', ')', 'except', ':', 'print_', '(', "'Cannot plot autocorrelation for %s'", '%', 'name', ')', 'return', '# Set axis bounds', 'ylim', '(', '-', '.1', ',', '1.1', ')', 'xlim', '(', '-', 'maxlags', '*', 'reflected', 'or', '0', ',', 'maxlags', ')', '# Plot options', 'title', '(', "'\\n\\n %s acorr'", '%', 'name', ',', 'x', '=', '0.', ',', 'y', '=', '1.', ',', 'ha', '=', "'left'", ',', 'va', '=', "'top'", ',', 'fontsize', '=', "'small'", ')', '# Smaller tick labels', 'tlabels', '=', 'gca', '(', ')', '.', 'get_xticklabels', '(', ')', 'setp', '(', 'tlabels', ',', "'fontsize'", ',', 'fontmap', '[', '1', ']', ')', 'tlabels', '=', 'gca', '(', ')', '.', 'get_yticklabels', '(', ')', 'setp', '(', 'tlabels', ',', "'fontsize'", ',', 'fontmap', '[', '1', ']', ')', 'elif', 'ndim', '(', 'data', ')', '==', '2', ':', '# generate acorr plot for each dimension', 'rows', '=', 'data', '.', 'shape', '[', '1', ']', 'for', 'j', 'in', 'range', '(', 'rows', ')', ':', 'autocorrelation', '(', 'data', '[', ':', ',', 'j', ']', ',', "'%s_%d'", '%', '(', 'name', ',', 'j', ')', ',', 'maxlags', ',', 'fontmap', '=', 'fontmap', ',', 'rows', '=', 'rows', ',', 'columns', '=', '1', ',', 'num', '=', 'j', '+', '1', ')', 'else', ':', 'raise', 'ValueError', '(', "'Only 1- and 2- dimensional functions can be displayed'", ')', 'if', 'standalone', ':', 'if', 'not', 'os', '.', 'path', '.', 'exists', '(', 'path', ')', ':', 'os', '.', 'mkdir', '(', 'path', ')', 'if', 'not', 'path', '.', 'endswith', '(', "'/'", ')', ':', 'path', '+=', "'/'", '# Save to fiel', 'savefig', '(', '"%s%s%s.%s"', '%', '(', 'path', ',', 'name', ',', 'suffix', ',', 'format', ')', ')'] | Generate bar plot of the autocorrelation function for a series (usually an MCMC trace).
:Arguments:
data: PyMC object, trace or array
A trace from an MCMC sample or a PyMC object with one or more traces.
name: string
The name of the object.
maxlags (optional): int
The largest discrete value for the autocorrelation to be calculated (defaults to 100).
format (optional): string
Graphic output format (defaults to png).
suffix (optional): string
Filename suffix.
path (optional): string
Specifies location for saving plots (defaults to local directory).
fontmap (optional): dict
Font mapping for plot labels; most users should not specify this.
verbose (optional): int
Level of output verbosity. | ['Generate', 'bar', 'plot', 'of', 'the', 'autocorrelation', 'function', 'for', 'a', 'series', '(', 'usually', 'an', 'MCMC', 'trace', ')', '.'] | train | https://github.com/pymc-devs/pymc/blob/c6e530210bff4c0d7189b35b2c971bc53f93f7cd/pymc/Matplot.py#L899-L997 |
95 | pywbem/pywbem | pywbem/cim_obj.py | CIMProperty.tocimxml | def tocimxml(self):
"""
Return the CIM-XML representation of this CIM property,
as an object of an appropriate subclass of :term:`Element`.
The returned CIM-XML representation is a `PROPERTY`,
`PROPERTY.REFERENCE`, or `PROPERTY.ARRAY` element dependent on the
property type, and consistent with :term:`DSP0201`. Note that
array properties cannot be of reference type.
The order of qualifiers in the returned CIM-XML representation is
preserved from the :class:`~pywbem.CIMProperty` object.
Returns:
The CIM-XML representation, as an object of an appropriate subclass
of :term:`Element`.
"""
qualifiers = [q.tocimxml() for q in self.qualifiers.values()]
if self.is_array: # pylint: disable=no-else-return
assert self.type != 'reference'
if self.value is None:
value_xml = None
else:
array_xml = []
for v in self.value:
if v is None:
if SEND_VALUE_NULL:
array_xml.append(cim_xml.VALUE_NULL())
else:
array_xml.append(cim_xml.VALUE(None))
elif self.embedded_object is not None:
assert isinstance(v, (CIMInstance, CIMClass))
array_xml.append(cim_xml.VALUE(v.tocimxml().toxml()))
else:
array_xml.append(cim_xml.VALUE(atomic_to_cim_xml(v)))
value_xml = cim_xml.VALUE_ARRAY(array_xml)
return cim_xml.PROPERTY_ARRAY(
self.name,
self.type,
value_xml,
self.array_size,
self.class_origin,
self.propagated,
embedded_object=self.embedded_object,
qualifiers=qualifiers)
elif self.type == 'reference': # scalar
if self.value is None:
value_xml = None
else:
value_xml = cim_xml.VALUE_REFERENCE(self.value.tocimxml())
return cim_xml.PROPERTY_REFERENCE(
self.name,
value_xml,
reference_class=self.reference_class,
class_origin=self.class_origin,
propagated=self.propagated,
qualifiers=qualifiers)
else: # scalar non-reference
if self.value is None:
value_xml = None
else:
if self.embedded_object is not None:
assert isinstance(self.value, (CIMInstance, CIMClass))
value_xml = cim_xml.VALUE(self.value.tocimxml().toxml())
else:
value_xml = cim_xml.VALUE(atomic_to_cim_xml(self.value))
return cim_xml.PROPERTY(
self.name,
self.type,
value_xml,
class_origin=self.class_origin,
propagated=self.propagated,
embedded_object=self.embedded_object,
qualifiers=qualifiers) | python | def tocimxml(self):
"""
Return the CIM-XML representation of this CIM property,
as an object of an appropriate subclass of :term:`Element`.
The returned CIM-XML representation is a `PROPERTY`,
`PROPERTY.REFERENCE`, or `PROPERTY.ARRAY` element dependent on the
property type, and consistent with :term:`DSP0201`. Note that
array properties cannot be of reference type.
The order of qualifiers in the returned CIM-XML representation is
preserved from the :class:`~pywbem.CIMProperty` object.
Returns:
The CIM-XML representation, as an object of an appropriate subclass
of :term:`Element`.
"""
qualifiers = [q.tocimxml() for q in self.qualifiers.values()]
if self.is_array: # pylint: disable=no-else-return
assert self.type != 'reference'
if self.value is None:
value_xml = None
else:
array_xml = []
for v in self.value:
if v is None:
if SEND_VALUE_NULL:
array_xml.append(cim_xml.VALUE_NULL())
else:
array_xml.append(cim_xml.VALUE(None))
elif self.embedded_object is not None:
assert isinstance(v, (CIMInstance, CIMClass))
array_xml.append(cim_xml.VALUE(v.tocimxml().toxml()))
else:
array_xml.append(cim_xml.VALUE(atomic_to_cim_xml(v)))
value_xml = cim_xml.VALUE_ARRAY(array_xml)
return cim_xml.PROPERTY_ARRAY(
self.name,
self.type,
value_xml,
self.array_size,
self.class_origin,
self.propagated,
embedded_object=self.embedded_object,
qualifiers=qualifiers)
elif self.type == 'reference': # scalar
if self.value is None:
value_xml = None
else:
value_xml = cim_xml.VALUE_REFERENCE(self.value.tocimxml())
return cim_xml.PROPERTY_REFERENCE(
self.name,
value_xml,
reference_class=self.reference_class,
class_origin=self.class_origin,
propagated=self.propagated,
qualifiers=qualifiers)
else: # scalar non-reference
if self.value is None:
value_xml = None
else:
if self.embedded_object is not None:
assert isinstance(self.value, (CIMInstance, CIMClass))
value_xml = cim_xml.VALUE(self.value.tocimxml().toxml())
else:
value_xml = cim_xml.VALUE(atomic_to_cim_xml(self.value))
return cim_xml.PROPERTY(
self.name,
self.type,
value_xml,
class_origin=self.class_origin,
propagated=self.propagated,
embedded_object=self.embedded_object,
qualifiers=qualifiers) | ['def', 'tocimxml', '(', 'self', ')', ':', 'qualifiers', '=', '[', 'q', '.', 'tocimxml', '(', ')', 'for', 'q', 'in', 'self', '.', 'qualifiers', '.', 'values', '(', ')', ']', 'if', 'self', '.', 'is_array', ':', '# pylint: disable=no-else-return', 'assert', 'self', '.', 'type', '!=', "'reference'", 'if', 'self', '.', 'value', 'is', 'None', ':', 'value_xml', '=', 'None', 'else', ':', 'array_xml', '=', '[', ']', 'for', 'v', 'in', 'self', '.', 'value', ':', 'if', 'v', 'is', 'None', ':', 'if', 'SEND_VALUE_NULL', ':', 'array_xml', '.', 'append', '(', 'cim_xml', '.', 'VALUE_NULL', '(', ')', ')', 'else', ':', 'array_xml', '.', 'append', '(', 'cim_xml', '.', 'VALUE', '(', 'None', ')', ')', 'elif', 'self', '.', 'embedded_object', 'is', 'not', 'None', ':', 'assert', 'isinstance', '(', 'v', ',', '(', 'CIMInstance', ',', 'CIMClass', ')', ')', 'array_xml', '.', 'append', '(', 'cim_xml', '.', 'VALUE', '(', 'v', '.', 'tocimxml', '(', ')', '.', 'toxml', '(', ')', ')', ')', 'else', ':', 'array_xml', '.', 'append', '(', 'cim_xml', '.', 'VALUE', '(', 'atomic_to_cim_xml', '(', 'v', ')', ')', ')', 'value_xml', '=', 'cim_xml', '.', 'VALUE_ARRAY', '(', 'array_xml', ')', 'return', 'cim_xml', '.', 'PROPERTY_ARRAY', '(', 'self', '.', 'name', ',', 'self', '.', 'type', ',', 'value_xml', ',', 'self', '.', 'array_size', ',', 'self', '.', 'class_origin', ',', 'self', '.', 'propagated', ',', 'embedded_object', '=', 'self', '.', 'embedded_object', ',', 'qualifiers', '=', 'qualifiers', ')', 'elif', 'self', '.', 'type', '==', "'reference'", ':', '# scalar', 'if', 'self', '.', 'value', 'is', 'None', ':', 'value_xml', '=', 'None', 'else', ':', 'value_xml', '=', 'cim_xml', '.', 'VALUE_REFERENCE', '(', 'self', '.', 'value', '.', 'tocimxml', '(', ')', ')', 'return', 'cim_xml', '.', 'PROPERTY_REFERENCE', '(', 'self', '.', 'name', ',', 'value_xml', ',', 'reference_class', '=', 'self', '.', 'reference_class', ',', 'class_origin', '=', 'self', '.', 'class_origin', ',', 'propagated', '=', 'self', '.', 'propagated', ',', 'qualifiers', '=', 'qualifiers', ')', 'else', ':', '# scalar non-reference', 'if', 'self', '.', 'value', 'is', 'None', ':', 'value_xml', '=', 'None', 'else', ':', 'if', 'self', '.', 'embedded_object', 'is', 'not', 'None', ':', 'assert', 'isinstance', '(', 'self', '.', 'value', ',', '(', 'CIMInstance', ',', 'CIMClass', ')', ')', 'value_xml', '=', 'cim_xml', '.', 'VALUE', '(', 'self', '.', 'value', '.', 'tocimxml', '(', ')', '.', 'toxml', '(', ')', ')', 'else', ':', 'value_xml', '=', 'cim_xml', '.', 'VALUE', '(', 'atomic_to_cim_xml', '(', 'self', '.', 'value', ')', ')', 'return', 'cim_xml', '.', 'PROPERTY', '(', 'self', '.', 'name', ',', 'self', '.', 'type', ',', 'value_xml', ',', 'class_origin', '=', 'self', '.', 'class_origin', ',', 'propagated', '=', 'self', '.', 'propagated', ',', 'embedded_object', '=', 'self', '.', 'embedded_object', ',', 'qualifiers', '=', 'qualifiers', ')'] | Return the CIM-XML representation of this CIM property,
as an object of an appropriate subclass of :term:`Element`.
The returned CIM-XML representation is a `PROPERTY`,
`PROPERTY.REFERENCE`, or `PROPERTY.ARRAY` element dependent on the
property type, and consistent with :term:`DSP0201`. Note that
array properties cannot be of reference type.
The order of qualifiers in the returned CIM-XML representation is
preserved from the :class:`~pywbem.CIMProperty` object.
Returns:
The CIM-XML representation, as an object of an appropriate subclass
of :term:`Element`. | ['Return', 'the', 'CIM', '-', 'XML', 'representation', 'of', 'this', 'CIM', 'property', 'as', 'an', 'object', 'of', 'an', 'appropriate', 'subclass', 'of', ':', 'term', ':', 'Element', '.'] | train | https://github.com/pywbem/pywbem/blob/e54ecb82c2211e289a268567443d60fdd489f1e4/pywbem/cim_obj.py#L4883-L4967 |
96 | rocky/python-spark | spark_parser/spark.py | GenericParser.get_profile_info | def get_profile_info(self):
"""Show the accumulated results of how many times each rule was used"""
return sorted(self.profile_info.items(),
key=lambda kv: kv[1],
reverse=False)
return | python | def get_profile_info(self):
"""Show the accumulated results of how many times each rule was used"""
return sorted(self.profile_info.items(),
key=lambda kv: kv[1],
reverse=False)
return | ['def', 'get_profile_info', '(', 'self', ')', ':', 'return', 'sorted', '(', 'self', '.', 'profile_info', '.', 'items', '(', ')', ',', 'key', '=', 'lambda', 'kv', ':', 'kv', '[', '1', ']', ',', 'reverse', '=', 'False', ')', 'return'] | Show the accumulated results of how many times each rule was used | ['Show', 'the', 'accumulated', 'results', 'of', 'how', 'many', 'times', 'each', 'rule', 'was', 'used'] | train | https://github.com/rocky/python-spark/blob/8899954bcf0e166726841a43e87c23790eb3441f/spark_parser/spark.py#L983-L988 |
97 | scivision/pymap3d | pymap3d/sidereal.py | juliandate | def juliandate(time: datetime) -> float:
"""
Python datetime to Julian time
from D.Vallado Fundamentals of Astrodynamics and Applications p.187
and J. Meeus Astronomical Algorithms 1991 Eqn. 7.1 pg. 61
Parameters
----------
time : datetime.datetime
time to convert
Results
-------
jd : float
Julian date
"""
times = np.atleast_1d(time)
assert times.ndim == 1
jd = np.empty(times.size)
for i, t in enumerate(times):
if t.month < 3:
year = t.year - 1
month = t.month + 12
else:
year = t.year
month = t.month
A = int(year / 100.0)
B = 2 - A + int(A / 4.)
C = ((t.second / 60. + t.minute) / 60. + t.hour) / 24.
jd[i] = (int(365.25 * (year + 4716)) +
int(30.6001 * (month + 1)) + t.day + B - 1524.5 + C)
return jd.squeeze() | python | def juliandate(time: datetime) -> float:
"""
Python datetime to Julian time
from D.Vallado Fundamentals of Astrodynamics and Applications p.187
and J. Meeus Astronomical Algorithms 1991 Eqn. 7.1 pg. 61
Parameters
----------
time : datetime.datetime
time to convert
Results
-------
jd : float
Julian date
"""
times = np.atleast_1d(time)
assert times.ndim == 1
jd = np.empty(times.size)
for i, t in enumerate(times):
if t.month < 3:
year = t.year - 1
month = t.month + 12
else:
year = t.year
month = t.month
A = int(year / 100.0)
B = 2 - A + int(A / 4.)
C = ((t.second / 60. + t.minute) / 60. + t.hour) / 24.
jd[i] = (int(365.25 * (year + 4716)) +
int(30.6001 * (month + 1)) + t.day + B - 1524.5 + C)
return jd.squeeze() | ['def', 'juliandate', '(', 'time', ':', 'datetime', ')', '->', 'float', ':', 'times', '=', 'np', '.', 'atleast_1d', '(', 'time', ')', 'assert', 'times', '.', 'ndim', '==', '1', 'jd', '=', 'np', '.', 'empty', '(', 'times', '.', 'size', ')', 'for', 'i', ',', 't', 'in', 'enumerate', '(', 'times', ')', ':', 'if', 't', '.', 'month', '<', '3', ':', 'year', '=', 't', '.', 'year', '-', '1', 'month', '=', 't', '.', 'month', '+', '12', 'else', ':', 'year', '=', 't', '.', 'year', 'month', '=', 't', '.', 'month', 'A', '=', 'int', '(', 'year', '/', '100.0', ')', 'B', '=', '2', '-', 'A', '+', 'int', '(', 'A', '/', '4.', ')', 'C', '=', '(', '(', 't', '.', 'second', '/', '60.', '+', 't', '.', 'minute', ')', '/', '60.', '+', 't', '.', 'hour', ')', '/', '24.', 'jd', '[', 'i', ']', '=', '(', 'int', '(', '365.25', '*', '(', 'year', '+', '4716', ')', ')', '+', 'int', '(', '30.6001', '*', '(', 'month', '+', '1', ')', ')', '+', 't', '.', 'day', '+', 'B', '-', '1524.5', '+', 'C', ')', 'return', 'jd', '.', 'squeeze', '(', ')'] | Python datetime to Julian time
from D.Vallado Fundamentals of Astrodynamics and Applications p.187
and J. Meeus Astronomical Algorithms 1991 Eqn. 7.1 pg. 61
Parameters
----------
time : datetime.datetime
time to convert
Results
-------
jd : float
Julian date | ['Python', 'datetime', 'to', 'Julian', 'time'] | train | https://github.com/scivision/pymap3d/blob/c9cf676594611cdb52ff7e0eca6388c80ed4f63f/pymap3d/sidereal.py#L58-L97 |
98 | Phylliade/ikpy | contrib/transformations.py | pose_to_list | def pose_to_list(pose):
"""
Convert a Pose or PoseStamped in Python list ((position), (quaternion))
:param pose: geometry_msgs.msg.PoseStamped or geometry_msgs.msg.Pose
:return: the equivalent in list ((position), (quaternion))
"""
if type(pose) == geometry_msgs.msg.PoseStamped:
return [[
pose.pose.position.x, pose.pose.position.y, pose.pose.position.z
], [
pose.pose.orientation.x, pose.pose.orientation.y,
pose.pose.orientation.z, pose.pose.orientation.w
]]
elif type(pose) == geometry_msgs.msg.Pose:
return [[pose.position.x, pose.position.y, pose.position.z], [
pose.orientation.x, pose.orientation.y, pose.orientation.z,
pose.orientation.w
]]
else:
raise Exception("pose_to_list: parameter of type %s unexpected",
str(type(pose))) | python | def pose_to_list(pose):
"""
Convert a Pose or PoseStamped in Python list ((position), (quaternion))
:param pose: geometry_msgs.msg.PoseStamped or geometry_msgs.msg.Pose
:return: the equivalent in list ((position), (quaternion))
"""
if type(pose) == geometry_msgs.msg.PoseStamped:
return [[
pose.pose.position.x, pose.pose.position.y, pose.pose.position.z
], [
pose.pose.orientation.x, pose.pose.orientation.y,
pose.pose.orientation.z, pose.pose.orientation.w
]]
elif type(pose) == geometry_msgs.msg.Pose:
return [[pose.position.x, pose.position.y, pose.position.z], [
pose.orientation.x, pose.orientation.y, pose.orientation.z,
pose.orientation.w
]]
else:
raise Exception("pose_to_list: parameter of type %s unexpected",
str(type(pose))) | ['def', 'pose_to_list', '(', 'pose', ')', ':', 'if', 'type', '(', 'pose', ')', '==', 'geometry_msgs', '.', 'msg', '.', 'PoseStamped', ':', 'return', '[', '[', 'pose', '.', 'pose', '.', 'position', '.', 'x', ',', 'pose', '.', 'pose', '.', 'position', '.', 'y', ',', 'pose', '.', 'pose', '.', 'position', '.', 'z', ']', ',', '[', 'pose', '.', 'pose', '.', 'orientation', '.', 'x', ',', 'pose', '.', 'pose', '.', 'orientation', '.', 'y', ',', 'pose', '.', 'pose', '.', 'orientation', '.', 'z', ',', 'pose', '.', 'pose', '.', 'orientation', '.', 'w', ']', ']', 'elif', 'type', '(', 'pose', ')', '==', 'geometry_msgs', '.', 'msg', '.', 'Pose', ':', 'return', '[', '[', 'pose', '.', 'position', '.', 'x', ',', 'pose', '.', 'position', '.', 'y', ',', 'pose', '.', 'position', '.', 'z', ']', ',', '[', 'pose', '.', 'orientation', '.', 'x', ',', 'pose', '.', 'orientation', '.', 'y', ',', 'pose', '.', 'orientation', '.', 'z', ',', 'pose', '.', 'orientation', '.', 'w', ']', ']', 'else', ':', 'raise', 'Exception', '(', '"pose_to_list: parameter of type %s unexpected"', ',', 'str', '(', 'type', '(', 'pose', ')', ')', ')'] | Convert a Pose or PoseStamped in Python list ((position), (quaternion))
:param pose: geometry_msgs.msg.PoseStamped or geometry_msgs.msg.Pose
:return: the equivalent in list ((position), (quaternion)) | ['Convert', 'a', 'Pose', 'or', 'PoseStamped', 'in', 'Python', 'list', '((', 'position', ')', '(', 'quaternion', '))', ':', 'param', 'pose', ':', 'geometry_msgs', '.', 'msg', '.', 'PoseStamped', 'or', 'geometry_msgs', '.', 'msg', '.', 'Pose', ':', 'return', ':', 'the', 'equivalent', 'in', 'list', '((', 'position', ')', '(', 'quaternion', '))'] | train | https://github.com/Phylliade/ikpy/blob/60e36d6163136942bf520d952db17123c658d0b6/contrib/transformations.py#L48-L68 |
99 | ARMmbed/mbed-cloud-sdk-python | src/mbed_cloud/device_directory/device_directory.py | DeviceDirectoryAPI.list_device_events | def list_device_events(self, **kwargs):
"""List all device logs.
:param int limit: The number of logs to retrieve.
:param str order: The ordering direction, ascending (asc) or
descending (desc)
:param str after: Get logs after/starting at given `device_event_id`
:param dict filters: Dictionary of filters to apply.
:return: list of :py:class:`DeviceEvent` objects
:rtype: PaginatedResponse
"""
kwargs = self._verify_sort_options(kwargs)
kwargs = self._verify_filters(kwargs, DeviceEvent, True)
api = self._get_api(device_directory.DefaultApi)
return PaginatedResponse(api.device_log_list, lwrap_type=DeviceEvent, **kwargs) | python | def list_device_events(self, **kwargs):
"""List all device logs.
:param int limit: The number of logs to retrieve.
:param str order: The ordering direction, ascending (asc) or
descending (desc)
:param str after: Get logs after/starting at given `device_event_id`
:param dict filters: Dictionary of filters to apply.
:return: list of :py:class:`DeviceEvent` objects
:rtype: PaginatedResponse
"""
kwargs = self._verify_sort_options(kwargs)
kwargs = self._verify_filters(kwargs, DeviceEvent, True)
api = self._get_api(device_directory.DefaultApi)
return PaginatedResponse(api.device_log_list, lwrap_type=DeviceEvent, **kwargs) | ['def', 'list_device_events', '(', 'self', ',', '*', '*', 'kwargs', ')', ':', 'kwargs', '=', 'self', '.', '_verify_sort_options', '(', 'kwargs', ')', 'kwargs', '=', 'self', '.', '_verify_filters', '(', 'kwargs', ',', 'DeviceEvent', ',', 'True', ')', 'api', '=', 'self', '.', '_get_api', '(', 'device_directory', '.', 'DefaultApi', ')', 'return', 'PaginatedResponse', '(', 'api', '.', 'device_log_list', ',', 'lwrap_type', '=', 'DeviceEvent', ',', '*', '*', 'kwargs', ')'] | List all device logs.
:param int limit: The number of logs to retrieve.
:param str order: The ordering direction, ascending (asc) or
descending (desc)
:param str after: Get logs after/starting at given `device_event_id`
:param dict filters: Dictionary of filters to apply.
:return: list of :py:class:`DeviceEvent` objects
:rtype: PaginatedResponse | ['List', 'all', 'device', 'logs', '.'] | train | https://github.com/ARMmbed/mbed-cloud-sdk-python/blob/c0af86fb2cdd4dc7ed26f236139241067d293509/src/mbed_cloud/device_directory/device_directory.py#L290-L305 |