Unnamed: 0
int64 0
10k
| repository_name
stringlengths 7
54
| func_path_in_repository
stringlengths 5
223
| func_name
stringlengths 1
134
| whole_func_string
stringlengths 100
30.3k
| language
stringclasses 1
value | func_code_string
stringlengths 100
30.3k
| func_code_tokens
stringlengths 138
33.2k
| func_documentation_string
stringlengths 1
15k
| func_documentation_tokens
stringlengths 5
5.14k
| split_name
stringclasses 1
value | func_code_url
stringlengths 91
315
|
---|---|---|---|---|---|---|---|---|---|---|---|
9,900 | ggaughan/pipe2py | pipe2py/lib/utils.py | get_input | def get_input(context, conf):
"""Gets a user parameter, either from the console or from an outer
submodule/system
Assumes conf has name, default, prompt and debug
"""
name = conf['name']['value']
prompt = conf['prompt']['value']
default = conf['default']['value'] or conf['debug']['value']
if context.submodule or context.inputs:
value = context.inputs.get(name, default)
elif not context.test:
# we skip user interaction during tests
raw = raw_input("%s (default=%s) " % (encode(prompt), encode(default)))
value = raw or default
else:
value = default
return value | python | def get_input(context, conf):
"""Gets a user parameter, either from the console or from an outer
submodule/system
Assumes conf has name, default, prompt and debug
"""
name = conf['name']['value']
prompt = conf['prompt']['value']
default = conf['default']['value'] or conf['debug']['value']
if context.submodule or context.inputs:
value = context.inputs.get(name, default)
elif not context.test:
# we skip user interaction during tests
raw = raw_input("%s (default=%s) " % (encode(prompt), encode(default)))
value = raw or default
else:
value = default
return value | ['def', 'get_input', '(', 'context', ',', 'conf', ')', ':', 'name', '=', 'conf', '[', "'name'", ']', '[', "'value'", ']', 'prompt', '=', 'conf', '[', "'prompt'", ']', '[', "'value'", ']', 'default', '=', 'conf', '[', "'default'", ']', '[', "'value'", ']', 'or', 'conf', '[', "'debug'", ']', '[', "'value'", ']', 'if', 'context', '.', 'submodule', 'or', 'context', '.', 'inputs', ':', 'value', '=', 'context', '.', 'inputs', '.', 'get', '(', 'name', ',', 'default', ')', 'elif', 'not', 'context', '.', 'test', ':', '# we skip user interaction during tests', 'raw', '=', 'raw_input', '(', '"%s (default=%s) "', '%', '(', 'encode', '(', 'prompt', ')', ',', 'encode', '(', 'default', ')', ')', ')', 'value', '=', 'raw', 'or', 'default', 'else', ':', 'value', '=', 'default', 'return', 'value'] | Gets a user parameter, either from the console or from an outer
submodule/system
Assumes conf has name, default, prompt and debug | ['Gets', 'a', 'user', 'parameter', 'either', 'from', 'the', 'console', 'or', 'from', 'an', 'outer', 'submodule', '/', 'system'] | train | https://github.com/ggaughan/pipe2py/blob/4767d6d1fd354d2a35e6528594b8deb8a033eed4/pipe2py/lib/utils.py#L295-L314 |
9,901 | asweigart/pyautogui | pyautogui/_pyautogui_win.py | _scroll | def _scroll(clicks, x=None, y=None):
"""Send the mouse vertical scroll event to Windows by calling the
mouse_event() win32 function.
Args:
clicks (int): The amount of scrolling to do. A positive value is the mouse
wheel moving forward (scrolling up), a negative value is backwards (down).
x (int): The x position of the mouse event.
y (int): The y position of the mouse event.
Returns:
None
"""
startx, starty = _position()
width, height = _size()
if x is None:
x = startx
else:
if x < 0:
x = 0
elif x >= width:
x = width - 1
if y is None:
y = starty
else:
if y < 0:
y = 0
elif y >= height:
y = height - 1
try:
_sendMouseEvent(MOUSEEVENTF_WHEEL, x, y, dwData=clicks)
except (PermissionError, OSError): # TODO: We need to figure out how to prevent these errors, see https://github.com/asweigart/pyautogui/issues/60
pass | python | def _scroll(clicks, x=None, y=None):
"""Send the mouse vertical scroll event to Windows by calling the
mouse_event() win32 function.
Args:
clicks (int): The amount of scrolling to do. A positive value is the mouse
wheel moving forward (scrolling up), a negative value is backwards (down).
x (int): The x position of the mouse event.
y (int): The y position of the mouse event.
Returns:
None
"""
startx, starty = _position()
width, height = _size()
if x is None:
x = startx
else:
if x < 0:
x = 0
elif x >= width:
x = width - 1
if y is None:
y = starty
else:
if y < 0:
y = 0
elif y >= height:
y = height - 1
try:
_sendMouseEvent(MOUSEEVENTF_WHEEL, x, y, dwData=clicks)
except (PermissionError, OSError): # TODO: We need to figure out how to prevent these errors, see https://github.com/asweigart/pyautogui/issues/60
pass | ['def', '_scroll', '(', 'clicks', ',', 'x', '=', 'None', ',', 'y', '=', 'None', ')', ':', 'startx', ',', 'starty', '=', '_position', '(', ')', 'width', ',', 'height', '=', '_size', '(', ')', 'if', 'x', 'is', 'None', ':', 'x', '=', 'startx', 'else', ':', 'if', 'x', '<', '0', ':', 'x', '=', '0', 'elif', 'x', '>=', 'width', ':', 'x', '=', 'width', '-', '1', 'if', 'y', 'is', 'None', ':', 'y', '=', 'starty', 'else', ':', 'if', 'y', '<', '0', ':', 'y', '=', '0', 'elif', 'y', '>=', 'height', ':', 'y', '=', 'height', '-', '1', 'try', ':', '_sendMouseEvent', '(', 'MOUSEEVENTF_WHEEL', ',', 'x', ',', 'y', ',', 'dwData', '=', 'clicks', ')', 'except', '(', 'PermissionError', ',', 'OSError', ')', ':', '# TODO: We need to figure out how to prevent these errors, see https://github.com/asweigart/pyautogui/issues/60', 'pass'] | Send the mouse vertical scroll event to Windows by calling the
mouse_event() win32 function.
Args:
clicks (int): The amount of scrolling to do. A positive value is the mouse
wheel moving forward (scrolling up), a negative value is backwards (down).
x (int): The x position of the mouse event.
y (int): The y position of the mouse event.
Returns:
None | ['Send', 'the', 'mouse', 'vertical', 'scroll', 'event', 'to', 'Windows', 'by', 'calling', 'the', 'mouse_event', '()', 'win32', 'function', '.'] | train | https://github.com/asweigart/pyautogui/blob/77524bd47334a89024013fd48e05151c3ac9289a/pyautogui/_pyautogui_win.py#L520-L554 |
9,902 | deepmind/pysc2 | pysc2/env/lan_sc2_env.py | tcp_client | def tcp_client(tcp_addr):
"""Connect to the tcp server, and return the settings."""
family = socket.AF_INET6 if ":" in tcp_addr.ip else socket.AF_INET
sock = socket.socket(family, socket.SOCK_STREAM, socket.IPPROTO_TCP)
for i in range(300):
logging.info("Connecting to: %s, attempt %d", tcp_addr, i)
try:
sock.connect(tcp_addr)
break
except socket.error:
time.sleep(1)
else:
sock.connect(tcp_addr) # One last try, but don't catch this error.
logging.info("Connected.")
map_data = read_tcp(sock)
settings_str = read_tcp(sock)
if not settings_str:
raise socket.error("Failed to read")
settings = json.loads(settings_str.decode())
logging.info("Got settings. map_name: %s.", settings["map_name"])
logging.debug("settings: %s", settings)
settings["map_data"] = map_data
return sock, settings | python | def tcp_client(tcp_addr):
"""Connect to the tcp server, and return the settings."""
family = socket.AF_INET6 if ":" in tcp_addr.ip else socket.AF_INET
sock = socket.socket(family, socket.SOCK_STREAM, socket.IPPROTO_TCP)
for i in range(300):
logging.info("Connecting to: %s, attempt %d", tcp_addr, i)
try:
sock.connect(tcp_addr)
break
except socket.error:
time.sleep(1)
else:
sock.connect(tcp_addr) # One last try, but don't catch this error.
logging.info("Connected.")
map_data = read_tcp(sock)
settings_str = read_tcp(sock)
if not settings_str:
raise socket.error("Failed to read")
settings = json.loads(settings_str.decode())
logging.info("Got settings. map_name: %s.", settings["map_name"])
logging.debug("settings: %s", settings)
settings["map_data"] = map_data
return sock, settings | ['def', 'tcp_client', '(', 'tcp_addr', ')', ':', 'family', '=', 'socket', '.', 'AF_INET6', 'if', '":"', 'in', 'tcp_addr', '.', 'ip', 'else', 'socket', '.', 'AF_INET', 'sock', '=', 'socket', '.', 'socket', '(', 'family', ',', 'socket', '.', 'SOCK_STREAM', ',', 'socket', '.', 'IPPROTO_TCP', ')', 'for', 'i', 'in', 'range', '(', '300', ')', ':', 'logging', '.', 'info', '(', '"Connecting to: %s, attempt %d"', ',', 'tcp_addr', ',', 'i', ')', 'try', ':', 'sock', '.', 'connect', '(', 'tcp_addr', ')', 'break', 'except', 'socket', '.', 'error', ':', 'time', '.', 'sleep', '(', '1', ')', 'else', ':', 'sock', '.', 'connect', '(', 'tcp_addr', ')', "# One last try, but don't catch this error.", 'logging', '.', 'info', '(', '"Connected."', ')', 'map_data', '=', 'read_tcp', '(', 'sock', ')', 'settings_str', '=', 'read_tcp', '(', 'sock', ')', 'if', 'not', 'settings_str', ':', 'raise', 'socket', '.', 'error', '(', '"Failed to read"', ')', 'settings', '=', 'json', '.', 'loads', '(', 'settings_str', '.', 'decode', '(', ')', ')', 'logging', '.', 'info', '(', '"Got settings. map_name: %s."', ',', 'settings', '[', '"map_name"', ']', ')', 'logging', '.', 'debug', '(', '"settings: %s"', ',', 'settings', ')', 'settings', '[', '"map_data"', ']', '=', 'map_data', 'return', 'sock', ',', 'settings'] | Connect to the tcp server, and return the settings. | ['Connect', 'to', 'the', 'tcp', 'server', 'and', 'return', 'the', 'settings', '.'] | train | https://github.com/deepmind/pysc2/blob/df4cc4b00f07a2242be9ba153d4a7f4ad2017897/pysc2/env/lan_sc2_env.py#L83-L106 |
9,903 | f3at/feat | src/feat/extern/log/log.py | init | def init(envVarName, enableColorOutput=False):
"""
Initialize the logging system and parse the environment variable
of the given name.
Needs to be called before starting the actual application.
"""
global _initialized
if _initialized:
return
global _ENV_VAR_NAME
_ENV_VAR_NAME = envVarName
if enableColorOutput:
_preformatLevels(envVarName + "_NO_COLOR")
else:
_preformatLevels(None)
if envVarName in os.environ:
# install a log handler that uses the value of the environment var
setDebug(os.environ[envVarName])
addLimitedLogHandler(stderrHandler)
_initialized = True | python | def init(envVarName, enableColorOutput=False):
"""
Initialize the logging system and parse the environment variable
of the given name.
Needs to be called before starting the actual application.
"""
global _initialized
if _initialized:
return
global _ENV_VAR_NAME
_ENV_VAR_NAME = envVarName
if enableColorOutput:
_preformatLevels(envVarName + "_NO_COLOR")
else:
_preformatLevels(None)
if envVarName in os.environ:
# install a log handler that uses the value of the environment var
setDebug(os.environ[envVarName])
addLimitedLogHandler(stderrHandler)
_initialized = True | ['def', 'init', '(', 'envVarName', ',', 'enableColorOutput', '=', 'False', ')', ':', 'global', '_initialized', 'if', '_initialized', ':', 'return', 'global', '_ENV_VAR_NAME', '_ENV_VAR_NAME', '=', 'envVarName', 'if', 'enableColorOutput', ':', '_preformatLevels', '(', 'envVarName', '+', '"_NO_COLOR"', ')', 'else', ':', '_preformatLevels', '(', 'None', ')', 'if', 'envVarName', 'in', 'os', '.', 'environ', ':', '# install a log handler that uses the value of the environment var', 'setDebug', '(', 'os', '.', 'environ', '[', 'envVarName', ']', ')', 'addLimitedLogHandler', '(', 'stderrHandler', ')', '_initialized', '=', 'True'] | Initialize the logging system and parse the environment variable
of the given name.
Needs to be called before starting the actual application. | ['Initialize', 'the', 'logging', 'system', 'and', 'parse', 'the', 'environment', 'variable', 'of', 'the', 'given', 'name', '.', 'Needs', 'to', 'be', 'called', 'before', 'starting', 'the', 'actual', 'application', '.'] | train | https://github.com/f3at/feat/blob/15da93fc9d6ec8154f52a9172824e25821195ef8/src/feat/extern/log/log.py#L484-L508 |
9,904 | totalgood/twip | twip/nlp.py | make_named_stemmer | def make_named_stemmer(stem=None, min_len=3):
"""Construct a callable object and a string sufficient to reconstruct it later (unpickling)
>>> make_named_stemmer('str_lower')
('str_lower', <function str_lower at ...>)
>>> make_named_stemmer('Lancaster')
('lancaster', <Stemmer object at ...>)
"""
name, stem = stringify(stem), make_stemmer(stem=stem, min_len=min_len)
if hasattr(stem, '__name__'):
return stem.__name__, stem
if name.strip().lower() in STEMMER_TYPES:
return name.strip().lower(), stem
if hasattr(stem, 'pattern'):
return stem.pattern, stem
return stringify(stem), stem | python | def make_named_stemmer(stem=None, min_len=3):
"""Construct a callable object and a string sufficient to reconstruct it later (unpickling)
>>> make_named_stemmer('str_lower')
('str_lower', <function str_lower at ...>)
>>> make_named_stemmer('Lancaster')
('lancaster', <Stemmer object at ...>)
"""
name, stem = stringify(stem), make_stemmer(stem=stem, min_len=min_len)
if hasattr(stem, '__name__'):
return stem.__name__, stem
if name.strip().lower() in STEMMER_TYPES:
return name.strip().lower(), stem
if hasattr(stem, 'pattern'):
return stem.pattern, stem
return stringify(stem), stem | ['def', 'make_named_stemmer', '(', 'stem', '=', 'None', ',', 'min_len', '=', '3', ')', ':', 'name', ',', 'stem', '=', 'stringify', '(', 'stem', ')', ',', 'make_stemmer', '(', 'stem', '=', 'stem', ',', 'min_len', '=', 'min_len', ')', 'if', 'hasattr', '(', 'stem', ',', "'__name__'", ')', ':', 'return', 'stem', '.', '__name__', ',', 'stem', 'if', 'name', '.', 'strip', '(', ')', '.', 'lower', '(', ')', 'in', 'STEMMER_TYPES', ':', 'return', 'name', '.', 'strip', '(', ')', '.', 'lower', '(', ')', ',', 'stem', 'if', 'hasattr', '(', 'stem', ',', "'pattern'", ')', ':', 'return', 'stem', '.', 'pattern', ',', 'stem', 'return', 'stringify', '(', 'stem', ')', ',', 'stem'] | Construct a callable object and a string sufficient to reconstruct it later (unpickling)
>>> make_named_stemmer('str_lower')
('str_lower', <function str_lower at ...>)
>>> make_named_stemmer('Lancaster')
('lancaster', <Stemmer object at ...>) | ['Construct', 'a', 'callable', 'object', 'and', 'a', 'string', 'sufficient', 'to', 'reconstruct', 'it', 'later', '(', 'unpickling', ')'] | train | https://github.com/totalgood/twip/blob/5c0411d2acfbe5b421841072814c9152591c03f7/twip/nlp.py#L297-L312 |
9,905 | ThreatConnect-Inc/tcex | tcex/tcex_ti_indicator.py | Indicator.data | def data(self):
"""Return Indicator data."""
# add attributes
if self._attributes:
self._indicator_data['attribute'] = []
for attr in self._attributes:
if attr.valid:
self._indicator_data['attribute'].append(attr.data)
# add file actions
if self._file_actions:
self._indicator_data.setdefault('fileAction', {})
self._indicator_data['fileAction'].setdefault('children', [])
for action in self._file_actions:
self._indicator_data['fileAction']['children'].append(action.data)
# add file occurrences
if self._occurrences:
self._indicator_data.setdefault('fileOccurrence', [])
for occurrence in self._occurrences:
self._indicator_data['fileOccurrence'].append(occurrence.data)
# add security labels
if self._labels:
self._indicator_data['securityLabel'] = []
for label in self._labels:
self._indicator_data['securityLabel'].append(label.data)
# add tags
if self._tags:
self._indicator_data['tag'] = []
for tag in self._tags:
if tag.valid:
self._indicator_data['tag'].append(tag.data)
return self._indicator_data | python | def data(self):
"""Return Indicator data."""
# add attributes
if self._attributes:
self._indicator_data['attribute'] = []
for attr in self._attributes:
if attr.valid:
self._indicator_data['attribute'].append(attr.data)
# add file actions
if self._file_actions:
self._indicator_data.setdefault('fileAction', {})
self._indicator_data['fileAction'].setdefault('children', [])
for action in self._file_actions:
self._indicator_data['fileAction']['children'].append(action.data)
# add file occurrences
if self._occurrences:
self._indicator_data.setdefault('fileOccurrence', [])
for occurrence in self._occurrences:
self._indicator_data['fileOccurrence'].append(occurrence.data)
# add security labels
if self._labels:
self._indicator_data['securityLabel'] = []
for label in self._labels:
self._indicator_data['securityLabel'].append(label.data)
# add tags
if self._tags:
self._indicator_data['tag'] = []
for tag in self._tags:
if tag.valid:
self._indicator_data['tag'].append(tag.data)
return self._indicator_data | ['def', 'data', '(', 'self', ')', ':', '# add attributes', 'if', 'self', '.', '_attributes', ':', 'self', '.', '_indicator_data', '[', "'attribute'", ']', '=', '[', ']', 'for', 'attr', 'in', 'self', '.', '_attributes', ':', 'if', 'attr', '.', 'valid', ':', 'self', '.', '_indicator_data', '[', "'attribute'", ']', '.', 'append', '(', 'attr', '.', 'data', ')', '# add file actions', 'if', 'self', '.', '_file_actions', ':', 'self', '.', '_indicator_data', '.', 'setdefault', '(', "'fileAction'", ',', '{', '}', ')', 'self', '.', '_indicator_data', '[', "'fileAction'", ']', '.', 'setdefault', '(', "'children'", ',', '[', ']', ')', 'for', 'action', 'in', 'self', '.', '_file_actions', ':', 'self', '.', '_indicator_data', '[', "'fileAction'", ']', '[', "'children'", ']', '.', 'append', '(', 'action', '.', 'data', ')', '# add file occurrences', 'if', 'self', '.', '_occurrences', ':', 'self', '.', '_indicator_data', '.', 'setdefault', '(', "'fileOccurrence'", ',', '[', ']', ')', 'for', 'occurrence', 'in', 'self', '.', '_occurrences', ':', 'self', '.', '_indicator_data', '[', "'fileOccurrence'", ']', '.', 'append', '(', 'occurrence', '.', 'data', ')', '# add security labels', 'if', 'self', '.', '_labels', ':', 'self', '.', '_indicator_data', '[', "'securityLabel'", ']', '=', '[', ']', 'for', 'label', 'in', 'self', '.', '_labels', ':', 'self', '.', '_indicator_data', '[', "'securityLabel'", ']', '.', 'append', '(', 'label', '.', 'data', ')', '# add tags', 'if', 'self', '.', '_tags', ':', 'self', '.', '_indicator_data', '[', "'tag'", ']', '=', '[', ']', 'for', 'tag', 'in', 'self', '.', '_tags', ':', 'if', 'tag', '.', 'valid', ':', 'self', '.', '_indicator_data', '[', "'tag'", ']', '.', 'append', '(', 'tag', '.', 'data', ')', 'return', 'self', '.', '_indicator_data'] | Return Indicator data. | ['Return', 'Indicator', 'data', '.'] | train | https://github.com/ThreatConnect-Inc/tcex/blob/dd4d7a1ef723af1561687120191886b9a2fd4b47/tcex/tcex_ti_indicator.py#L218-L248 |
9,906 | welbornprod/colr | colr/__main__.py | print_err | def print_err(*args, **kwargs):
""" A wrapper for print() that uses stderr by default. """
if kwargs.get('file', None) is None:
kwargs['file'] = sys.stderr
color = dict_pop_or(kwargs, 'color', True)
# Use color if asked, but only if the file is a tty.
if color and kwargs['file'].isatty():
# Keep any Colr args passed, convert strs into Colrs.
msg = kwargs.get('sep', ' ').join(
str(a) if isinstance(a, C) else str(C(a, 'red'))
for a in args
)
else:
# The file is not a tty anyway, no escape codes.
msg = kwargs.get('sep', ' ').join(
str(a.stripped() if isinstance(a, C) else a)
for a in args
)
newline = dict_pop_or(kwargs, 'newline', False)
if newline:
msg = '\n{}'.format(msg)
print(msg, **kwargs) | python | def print_err(*args, **kwargs):
""" A wrapper for print() that uses stderr by default. """
if kwargs.get('file', None) is None:
kwargs['file'] = sys.stderr
color = dict_pop_or(kwargs, 'color', True)
# Use color if asked, but only if the file is a tty.
if color and kwargs['file'].isatty():
# Keep any Colr args passed, convert strs into Colrs.
msg = kwargs.get('sep', ' ').join(
str(a) if isinstance(a, C) else str(C(a, 'red'))
for a in args
)
else:
# The file is not a tty anyway, no escape codes.
msg = kwargs.get('sep', ' ').join(
str(a.stripped() if isinstance(a, C) else a)
for a in args
)
newline = dict_pop_or(kwargs, 'newline', False)
if newline:
msg = '\n{}'.format(msg)
print(msg, **kwargs) | ['def', 'print_err', '(', '*', 'args', ',', '*', '*', 'kwargs', ')', ':', 'if', 'kwargs', '.', 'get', '(', "'file'", ',', 'None', ')', 'is', 'None', ':', 'kwargs', '[', "'file'", ']', '=', 'sys', '.', 'stderr', 'color', '=', 'dict_pop_or', '(', 'kwargs', ',', "'color'", ',', 'True', ')', '# Use color if asked, but only if the file is a tty.', 'if', 'color', 'and', 'kwargs', '[', "'file'", ']', '.', 'isatty', '(', ')', ':', '# Keep any Colr args passed, convert strs into Colrs.', 'msg', '=', 'kwargs', '.', 'get', '(', "'sep'", ',', "' '", ')', '.', 'join', '(', 'str', '(', 'a', ')', 'if', 'isinstance', '(', 'a', ',', 'C', ')', 'else', 'str', '(', 'C', '(', 'a', ',', "'red'", ')', ')', 'for', 'a', 'in', 'args', ')', 'else', ':', '# The file is not a tty anyway, no escape codes.', 'msg', '=', 'kwargs', '.', 'get', '(', "'sep'", ',', "' '", ')', '.', 'join', '(', 'str', '(', 'a', '.', 'stripped', '(', ')', 'if', 'isinstance', '(', 'a', ',', 'C', ')', 'else', 'a', ')', 'for', 'a', 'in', 'args', ')', 'newline', '=', 'dict_pop_or', '(', 'kwargs', ',', "'newline'", ',', 'False', ')', 'if', 'newline', ':', 'msg', '=', "'\\n{}'", '.', 'format', '(', 'msg', ')', 'print', '(', 'msg', ',', '*', '*', 'kwargs', ')'] | A wrapper for print() that uses stderr by default. | ['A', 'wrapper', 'for', 'print', '()', 'that', 'uses', 'stderr', 'by', 'default', '.'] | train | https://github.com/welbornprod/colr/blob/417117fdbddbc53142096685ac2af006b2bd0220/colr/__main__.py#L425-L447 |
9,907 | bskinn/opan | opan/xyz.py | OpanXYZ.angle_single | def angle_single(self, g_num, at_1, at_2, at_3):
""" Spanning angle among three atoms.
The indices `at_1` and `at_3` can be the same (yielding a
trivial zero angle), but `at_2` must be different from
both `at_1` and `at_3`.
Parameters
----------
g_num
|int| --
Index of the desired geometry
at_1
|int| --
Index of the first atom
at_2
|int| --
Index of the second atom
at_3
|int| --
Index of the third atom
Returns
-------
angle
|npfloat_| --
Spanning angle in degrees between `at_1`-`at_2`-`at_3`, from
geometry `g_num`
Raises
------
~exceptions.IndexError
If an invalid (out-of-range) `g_num` or `at_#` is provided
~exceptions.ValueError
If `at_2` is equal to either `at_1` or `at_3`
"""
# Imports
import numpy as np
from .utils import safe_cast as scast
from .utils.vector import vec_angle
# The below errors are explicitly thrown since they are multiplied by
# three when they are used as an index and thus give non-intuitive
# errors in later code.
# Complain if at_1 is invalid
if not(-self.num_atoms <= at_1 < self.num_atoms):
raise IndexError("Invalid index for 'at_1' ({0})".format(at_1))
# Complain if at_2 is invalid
if not(-self.num_atoms <= at_2 < self.num_atoms):
raise IndexError("Invalid index for 'at_2' ({0})".format(at_2))
# Complain if at_3 is invalid
if not(-self.num_atoms <= at_3 < self.num_atoms):
raise IndexError("Invalid index for 'at_3' ({0})".format(at_3))
# Should never be necessary (save for badly erroneous calling code),
# but coerce the at_x to their floor() values. This is again
# needed since they are multiplied by three in the index expresssions
# below, and can cause funny behavior when truncated by the indexing
at_1 = scast(np.floor(at_1), np.int_)
at_2 = scast(np.floor(at_2), np.int_)
at_3 = scast(np.floor(at_3), np.int_)
# Complain if at_2 is equal to either at_1 or at_3. Must factor in
# the possibility of negative indexing via modulo arithmetic.
if (at_2 % self.num_atoms) == (at_1 % self.num_atoms):
raise ValueError("'at_1' and 'at_2' must be different")
if (at_2 % self.num_atoms) == (at_3 % self.num_atoms):
raise ValueError("'at_2' and 'at_3' must be different")
# Trivial return if at_1 and at_3 are the same
if (at_1 % self.num_atoms) == (at_3 % self.num_atoms):
# Angle is identically zero in this case
return 0.0
## end if
# Store the displacement vectors from at_2 to at_1 and to at_3
# The np.float64 type should be retained through the displ_single call.
vec_2_1 = self.displ_single(g_num, at_2, at_1)
vec_2_3 = self.displ_single(g_num, at_2, at_3)
# Compute and return the calculated angle, in degrees
# v1 {dot} v2 == |v1||v2| * cos(theta)
angle = vec_angle(vec_2_1, vec_2_3)
return angle | python | def angle_single(self, g_num, at_1, at_2, at_3):
""" Spanning angle among three atoms.
The indices `at_1` and `at_3` can be the same (yielding a
trivial zero angle), but `at_2` must be different from
both `at_1` and `at_3`.
Parameters
----------
g_num
|int| --
Index of the desired geometry
at_1
|int| --
Index of the first atom
at_2
|int| --
Index of the second atom
at_3
|int| --
Index of the third atom
Returns
-------
angle
|npfloat_| --
Spanning angle in degrees between `at_1`-`at_2`-`at_3`, from
geometry `g_num`
Raises
------
~exceptions.IndexError
If an invalid (out-of-range) `g_num` or `at_#` is provided
~exceptions.ValueError
If `at_2` is equal to either `at_1` or `at_3`
"""
# Imports
import numpy as np
from .utils import safe_cast as scast
from .utils.vector import vec_angle
# The below errors are explicitly thrown since they are multiplied by
# three when they are used as an index and thus give non-intuitive
# errors in later code.
# Complain if at_1 is invalid
if not(-self.num_atoms <= at_1 < self.num_atoms):
raise IndexError("Invalid index for 'at_1' ({0})".format(at_1))
# Complain if at_2 is invalid
if not(-self.num_atoms <= at_2 < self.num_atoms):
raise IndexError("Invalid index for 'at_2' ({0})".format(at_2))
# Complain if at_3 is invalid
if not(-self.num_atoms <= at_3 < self.num_atoms):
raise IndexError("Invalid index for 'at_3' ({0})".format(at_3))
# Should never be necessary (save for badly erroneous calling code),
# but coerce the at_x to their floor() values. This is again
# needed since they are multiplied by three in the index expresssions
# below, and can cause funny behavior when truncated by the indexing
at_1 = scast(np.floor(at_1), np.int_)
at_2 = scast(np.floor(at_2), np.int_)
at_3 = scast(np.floor(at_3), np.int_)
# Complain if at_2 is equal to either at_1 or at_3. Must factor in
# the possibility of negative indexing via modulo arithmetic.
if (at_2 % self.num_atoms) == (at_1 % self.num_atoms):
raise ValueError("'at_1' and 'at_2' must be different")
if (at_2 % self.num_atoms) == (at_3 % self.num_atoms):
raise ValueError("'at_2' and 'at_3' must be different")
# Trivial return if at_1 and at_3 are the same
if (at_1 % self.num_atoms) == (at_3 % self.num_atoms):
# Angle is identically zero in this case
return 0.0
## end if
# Store the displacement vectors from at_2 to at_1 and to at_3
# The np.float64 type should be retained through the displ_single call.
vec_2_1 = self.displ_single(g_num, at_2, at_1)
vec_2_3 = self.displ_single(g_num, at_2, at_3)
# Compute and return the calculated angle, in degrees
# v1 {dot} v2 == |v1||v2| * cos(theta)
angle = vec_angle(vec_2_1, vec_2_3)
return angle | ['def', 'angle_single', '(', 'self', ',', 'g_num', ',', 'at_1', ',', 'at_2', ',', 'at_3', ')', ':', '# Imports', 'import', 'numpy', 'as', 'np', 'from', '.', 'utils', 'import', 'safe_cast', 'as', 'scast', 'from', '.', 'utils', '.', 'vector', 'import', 'vec_angle', '# The below errors are explicitly thrown since they are multiplied by', '# three when they are used as an index and thus give non-intuitive', '# errors in later code.', '# Complain if at_1 is invalid', 'if', 'not', '(', '-', 'self', '.', 'num_atoms', '<=', 'at_1', '<', 'self', '.', 'num_atoms', ')', ':', 'raise', 'IndexError', '(', '"Invalid index for \'at_1\' ({0})"', '.', 'format', '(', 'at_1', ')', ')', '# Complain if at_2 is invalid', 'if', 'not', '(', '-', 'self', '.', 'num_atoms', '<=', 'at_2', '<', 'self', '.', 'num_atoms', ')', ':', 'raise', 'IndexError', '(', '"Invalid index for \'at_2\' ({0})"', '.', 'format', '(', 'at_2', ')', ')', '# Complain if at_3 is invalid', 'if', 'not', '(', '-', 'self', '.', 'num_atoms', '<=', 'at_3', '<', 'self', '.', 'num_atoms', ')', ':', 'raise', 'IndexError', '(', '"Invalid index for \'at_3\' ({0})"', '.', 'format', '(', 'at_3', ')', ')', '# Should never be necessary (save for badly erroneous calling code),', '# but coerce the at_x to their floor() values. This is again', '# needed since they are multiplied by three in the index expresssions', '# below, and can cause funny behavior when truncated by the indexing', 'at_1', '=', 'scast', '(', 'np', '.', 'floor', '(', 'at_1', ')', ',', 'np', '.', 'int_', ')', 'at_2', '=', 'scast', '(', 'np', '.', 'floor', '(', 'at_2', ')', ',', 'np', '.', 'int_', ')', 'at_3', '=', 'scast', '(', 'np', '.', 'floor', '(', 'at_3', ')', ',', 'np', '.', 'int_', ')', '# Complain if at_2 is equal to either at_1 or at_3. Must factor in', '# the possibility of negative indexing via modulo arithmetic.', 'if', '(', 'at_2', '%', 'self', '.', 'num_atoms', ')', '==', '(', 'at_1', '%', 'self', '.', 'num_atoms', ')', ':', 'raise', 'ValueError', '(', '"\'at_1\' and \'at_2\' must be different"', ')', 'if', '(', 'at_2', '%', 'self', '.', 'num_atoms', ')', '==', '(', 'at_3', '%', 'self', '.', 'num_atoms', ')', ':', 'raise', 'ValueError', '(', '"\'at_2\' and \'at_3\' must be different"', ')', '# Trivial return if at_1 and at_3 are the same', 'if', '(', 'at_1', '%', 'self', '.', 'num_atoms', ')', '==', '(', 'at_3', '%', 'self', '.', 'num_atoms', ')', ':', '# Angle is identically zero in this case', 'return', '0.0', '## end if', '# Store the displacement vectors from at_2 to at_1 and to at_3', '# The np.float64 type should be retained through the displ_single call.', 'vec_2_1', '=', 'self', '.', 'displ_single', '(', 'g_num', ',', 'at_2', ',', 'at_1', ')', 'vec_2_3', '=', 'self', '.', 'displ_single', '(', 'g_num', ',', 'at_2', ',', 'at_3', ')', '# Compute and return the calculated angle, in degrees', '# v1 {dot} v2 == |v1||v2| * cos(theta)', 'angle', '=', 'vec_angle', '(', 'vec_2_1', ',', 'vec_2_3', ')', 'return', 'angle'] | Spanning angle among three atoms.
The indices `at_1` and `at_3` can be the same (yielding a
trivial zero angle), but `at_2` must be different from
both `at_1` and `at_3`.
Parameters
----------
g_num
|int| --
Index of the desired geometry
at_1
|int| --
Index of the first atom
at_2
|int| --
Index of the second atom
at_3
|int| --
Index of the third atom
Returns
-------
angle
|npfloat_| --
Spanning angle in degrees between `at_1`-`at_2`-`at_3`, from
geometry `g_num`
Raises
------
~exceptions.IndexError
If an invalid (out-of-range) `g_num` or `at_#` is provided
~exceptions.ValueError
If `at_2` is equal to either `at_1` or `at_3` | ['Spanning', 'angle', 'among', 'three', 'atoms', '.'] | train | https://github.com/bskinn/opan/blob/0b1b21662df6abc971407a9386db21a8796fbfe5/opan/xyz.py#L919-L1010 |
9,908 | awslabs/sockeye | sockeye/data_io.py | ParallelDataSet.load | def load(fname: str) -> 'ParallelDataSet':
"""
Loads a dataset from a binary .npy file.
"""
data = mx.nd.load(fname)
n = len(data) // 3
source = data[:n]
target = data[n:2 * n]
label = data[2 * n:]
assert len(source) == len(target) == len(label)
return ParallelDataSet(source, target, label) | python | def load(fname: str) -> 'ParallelDataSet':
"""
Loads a dataset from a binary .npy file.
"""
data = mx.nd.load(fname)
n = len(data) // 3
source = data[:n]
target = data[n:2 * n]
label = data[2 * n:]
assert len(source) == len(target) == len(label)
return ParallelDataSet(source, target, label) | ['def', 'load', '(', 'fname', ':', 'str', ')', '->', "'ParallelDataSet'", ':', 'data', '=', 'mx', '.', 'nd', '.', 'load', '(', 'fname', ')', 'n', '=', 'len', '(', 'data', ')', '//', '3', 'source', '=', 'data', '[', ':', 'n', ']', 'target', '=', 'data', '[', 'n', ':', '2', '*', 'n', ']', 'label', '=', 'data', '[', '2', '*', 'n', ':', ']', 'assert', 'len', '(', 'source', ')', '==', 'len', '(', 'target', ')', '==', 'len', '(', 'label', ')', 'return', 'ParallelDataSet', '(', 'source', ',', 'target', ',', 'label', ')'] | Loads a dataset from a binary .npy file. | ['Loads', 'a', 'dataset', 'from', 'a', 'binary', '.', 'npy', 'file', '.'] | train | https://github.com/awslabs/sockeye/blob/5d64a1ee1ef3cbba17c6d1d94bc061020c43f6ab/sockeye/data_io.py#L1373-L1383 |
9,909 | Microsoft/azure-devops-python-api | azure-devops/azure/devops/v5_1/work_item_tracking/work_item_tracking_client.py | WorkItemTrackingClient.delete_field | def delete_field(self, field_name_or_ref_name, project=None):
"""DeleteField.
[Preview API] Deletes the field.
:param str field_name_or_ref_name: Field simple name or reference name
:param str project: Project ID or project name
"""
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
if field_name_or_ref_name is not None:
route_values['fieldNameOrRefName'] = self._serialize.url('field_name_or_ref_name', field_name_or_ref_name, 'str')
self._send(http_method='DELETE',
location_id='b51fd764-e5c2-4b9b-aaf7-3395cf4bdd94',
version='5.1-preview.2',
route_values=route_values) | python | def delete_field(self, field_name_or_ref_name, project=None):
"""DeleteField.
[Preview API] Deletes the field.
:param str field_name_or_ref_name: Field simple name or reference name
:param str project: Project ID or project name
"""
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
if field_name_or_ref_name is not None:
route_values['fieldNameOrRefName'] = self._serialize.url('field_name_or_ref_name', field_name_or_ref_name, 'str')
self._send(http_method='DELETE',
location_id='b51fd764-e5c2-4b9b-aaf7-3395cf4bdd94',
version='5.1-preview.2',
route_values=route_values) | ['def', 'delete_field', '(', 'self', ',', 'field_name_or_ref_name', ',', 'project', '=', 'None', ')', ':', 'route_values', '=', '{', '}', 'if', 'project', 'is', 'not', 'None', ':', 'route_values', '[', "'project'", ']', '=', 'self', '.', '_serialize', '.', 'url', '(', "'project'", ',', 'project', ',', "'str'", ')', 'if', 'field_name_or_ref_name', 'is', 'not', 'None', ':', 'route_values', '[', "'fieldNameOrRefName'", ']', '=', 'self', '.', '_serialize', '.', 'url', '(', "'field_name_or_ref_name'", ',', 'field_name_or_ref_name', ',', "'str'", ')', 'self', '.', '_send', '(', 'http_method', '=', "'DELETE'", ',', 'location_id', '=', "'b51fd764-e5c2-4b9b-aaf7-3395cf4bdd94'", ',', 'version', '=', "'5.1-preview.2'", ',', 'route_values', '=', 'route_values', ')'] | DeleteField.
[Preview API] Deletes the field.
:param str field_name_or_ref_name: Field simple name or reference name
:param str project: Project ID or project name | ['DeleteField', '.', '[', 'Preview', 'API', ']', 'Deletes', 'the', 'field', '.', ':', 'param', 'str', 'field_name_or_ref_name', ':', 'Field', 'simple', 'name', 'or', 'reference', 'name', ':', 'param', 'str', 'project', ':', 'Project', 'ID', 'or', 'project', 'name'] | train | https://github.com/Microsoft/azure-devops-python-api/blob/4777ffda2f5052fabbaddb2abe9cb434e0cf1aa8/azure-devops/azure/devops/v5_1/work_item_tracking/work_item_tracking_client.py#L626-L640 |
9,910 | brndnmtthws/dragon-rest | dragon_rest/dragons.py | DragonAPI.auth | def auth(self):
"""Authenticate with the miner and obtain a JSON web token (JWT)."""
response = requests.post(
parse.urljoin(self.base_url, '/api/auth'),
timeout=self.timeout,
data={'username': self.username, 'password': self.password})
response.raise_for_status()
json = response.json()
if 'jwt' not in json:
raise ValueError("Not authorized: didn't receive token, check username or password.")
self.jwt = json['jwt']
return json | python | def auth(self):
"""Authenticate with the miner and obtain a JSON web token (JWT)."""
response = requests.post(
parse.urljoin(self.base_url, '/api/auth'),
timeout=self.timeout,
data={'username': self.username, 'password': self.password})
response.raise_for_status()
json = response.json()
if 'jwt' not in json:
raise ValueError("Not authorized: didn't receive token, check username or password.")
self.jwt = json['jwt']
return json | ['def', 'auth', '(', 'self', ')', ':', 'response', '=', 'requests', '.', 'post', '(', 'parse', '.', 'urljoin', '(', 'self', '.', 'base_url', ',', "'/api/auth'", ')', ',', 'timeout', '=', 'self', '.', 'timeout', ',', 'data', '=', '{', "'username'", ':', 'self', '.', 'username', ',', "'password'", ':', 'self', '.', 'password', '}', ')', 'response', '.', 'raise_for_status', '(', ')', 'json', '=', 'response', '.', 'json', '(', ')', 'if', "'jwt'", 'not', 'in', 'json', ':', 'raise', 'ValueError', '(', '"Not authorized: didn\'t receive token, check username or password."', ')', 'self', '.', 'jwt', '=', 'json', '[', "'jwt'", ']', 'return', 'json'] | Authenticate with the miner and obtain a JSON web token (JWT). | ['Authenticate', 'with', 'the', 'miner', 'and', 'obtain', 'a', 'JSON', 'web', 'token', '(', 'JWT', ')', '.'] | train | https://github.com/brndnmtthws/dragon-rest/blob/10ea09a6203c0cbfeeeb854702764bd778769887/dragon_rest/dragons.py#L118-L129 |
9,911 | peo3/cgroup-utils | cgutils/cgroup.py | walk_cgroups | def walk_cgroups(cgroup, action, opaque):
"""
The function applies the action function with the opaque object
to each control group under the cgroup recursively.
"""
action(cgroup, opaque)
for child in cgroup.childs:
walk_cgroups(child, action, opaque) | python | def walk_cgroups(cgroup, action, opaque):
"""
The function applies the action function with the opaque object
to each control group under the cgroup recursively.
"""
action(cgroup, opaque)
for child in cgroup.childs:
walk_cgroups(child, action, opaque) | ['def', 'walk_cgroups', '(', 'cgroup', ',', 'action', ',', 'opaque', ')', ':', 'action', '(', 'cgroup', ',', 'opaque', ')', 'for', 'child', 'in', 'cgroup', '.', 'childs', ':', 'walk_cgroups', '(', 'child', ',', 'action', ',', 'opaque', ')'] | The function applies the action function with the opaque object
to each control group under the cgroup recursively. | ['The', 'function', 'applies', 'the', 'action', 'function', 'with', 'the', 'opaque', 'object', 'to', 'each', 'control', 'group', 'under', 'the', 'cgroup', 'recursively', '.'] | train | https://github.com/peo3/cgroup-utils/blob/fd7e99f438ce334bac5669fba0d08a6502fd7a82/cgutils/cgroup.py#L938-L945 |
9,912 | glue-viz/glue-vispy-viewers | glue_vispy_viewers/extern/vispy/scene/widgets/console.py | ConsoleVisual.write | def write(self, text='', wrap=True):
"""Write text and scroll
Parameters
----------
text : str
Text to write. ``''`` can be used for a blank line, as a newline
is automatically added to the end of each line.
wrap : str
If True, long messages will be wrapped to span multiple lines.
"""
# Clear line
if not isinstance(text, string_types):
raise TypeError('text must be a string')
# ensure we only have ASCII chars
text = text.encode('utf-8').decode('ascii', errors='replace')
self._pending_writes.append((text, wrap))
self.update() | python | def write(self, text='', wrap=True):
"""Write text and scroll
Parameters
----------
text : str
Text to write. ``''`` can be used for a blank line, as a newline
is automatically added to the end of each line.
wrap : str
If True, long messages will be wrapped to span multiple lines.
"""
# Clear line
if not isinstance(text, string_types):
raise TypeError('text must be a string')
# ensure we only have ASCII chars
text = text.encode('utf-8').decode('ascii', errors='replace')
self._pending_writes.append((text, wrap))
self.update() | ['def', 'write', '(', 'self', ',', 'text', '=', "''", ',', 'wrap', '=', 'True', ')', ':', '# Clear line', 'if', 'not', 'isinstance', '(', 'text', ',', 'string_types', ')', ':', 'raise', 'TypeError', '(', "'text must be a string'", ')', '# ensure we only have ASCII chars', 'text', '=', 'text', '.', 'encode', '(', "'utf-8'", ')', '.', 'decode', '(', "'ascii'", ',', 'errors', '=', "'replace'", ')', 'self', '.', '_pending_writes', '.', 'append', '(', '(', 'text', ',', 'wrap', ')', ')', 'self', '.', 'update', '(', ')'] | Write text and scroll
Parameters
----------
text : str
Text to write. ``''`` can be used for a blank line, as a newline
is automatically added to the end of each line.
wrap : str
If True, long messages will be wrapped to span multiple lines. | ['Write', 'text', 'and', 'scroll'] | train | https://github.com/glue-viz/glue-vispy-viewers/blob/54a4351d98c1f90dfb1a557d1b447c1f57470eea/glue_vispy_viewers/extern/vispy/scene/widgets/console.py#L300-L317 |
9,913 | ThreatConnect-Inc/tcex | tcex/tcex.py | TcEx._logger_api | def _logger_api(self):
"""Add API logging handler."""
from .tcex_logger import TcExLogHandler, TcExLogFormatter
api = TcExLogHandler(self.session)
api.set_name('api')
api.setLevel(logging.DEBUG)
api.setFormatter(TcExLogFormatter())
self.log.addHandler(api) | python | def _logger_api(self):
"""Add API logging handler."""
from .tcex_logger import TcExLogHandler, TcExLogFormatter
api = TcExLogHandler(self.session)
api.set_name('api')
api.setLevel(logging.DEBUG)
api.setFormatter(TcExLogFormatter())
self.log.addHandler(api) | ['def', '_logger_api', '(', 'self', ')', ':', 'from', '.', 'tcex_logger', 'import', 'TcExLogHandler', ',', 'TcExLogFormatter', 'api', '=', 'TcExLogHandler', '(', 'self', '.', 'session', ')', 'api', '.', 'set_name', '(', "'api'", ')', 'api', '.', 'setLevel', '(', 'logging', '.', 'DEBUG', ')', 'api', '.', 'setFormatter', '(', 'TcExLogFormatter', '(', ')', ')', 'self', '.', 'log', '.', 'addHandler', '(', 'api', ')'] | Add API logging handler. | ['Add', 'API', 'logging', 'handler', '.'] | train | https://github.com/ThreatConnect-Inc/tcex/blob/dd4d7a1ef723af1561687120191886b9a2fd4b47/tcex/tcex.py#L186-L194 |
9,914 | linuxsoftware/ls.joyous | ls/joyous/models/events.py | RecurringEventPage._getFromTime | def _getFromTime(self, atDate=None):
"""
What was the time of this event? Due to time zones that depends what
day we are talking about. If no day is given, assume today.
"""
if atDate is None:
atDate = timezone.localdate(timezone=self.tz)
return getLocalTime(atDate, self.time_from, self.tz) | python | def _getFromTime(self, atDate=None):
"""
What was the time of this event? Due to time zones that depends what
day we are talking about. If no day is given, assume today.
"""
if atDate is None:
atDate = timezone.localdate(timezone=self.tz)
return getLocalTime(atDate, self.time_from, self.tz) | ['def', '_getFromTime', '(', 'self', ',', 'atDate', '=', 'None', ')', ':', 'if', 'atDate', 'is', 'None', ':', 'atDate', '=', 'timezone', '.', 'localdate', '(', 'timezone', '=', 'self', '.', 'tz', ')', 'return', 'getLocalTime', '(', 'atDate', ',', 'self', '.', 'time_from', ',', 'self', '.', 'tz', ')'] | What was the time of this event? Due to time zones that depends what
day we are talking about. If no day is given, assume today. | ['What', 'was', 'the', 'time', 'of', 'this', 'event?', 'Due', 'to', 'time', 'zones', 'that', 'depends', 'what', 'day', 'we', 'are', 'talking', 'about', '.', 'If', 'no', 'day', 'is', 'given', 'assume', 'today', '.'] | train | https://github.com/linuxsoftware/ls.joyous/blob/316283140ca5171a68ad3170a5964fdc89be0b56/ls/joyous/models/events.py#L1074-L1081 |
9,915 | ssato/python-anyconfig | src/anyconfig/processors.py | find_by_type_or_id | def find_by_type_or_id(type_or_id, prs):
"""
:param type_or_id: Type of the data to process or ID of the processor class
:param prs: A list of :class:`anyconfig.models.processor.Processor` classes
:return:
A list of processor classes to process files of given data type or
processor 'type_or_id' found by its ID
:raises: UnknownProcessorTypeError
"""
def pred(pcls):
"""Predicate"""
return pcls.cid() == type_or_id or pcls.type() == type_or_id
pclss = findall_with_pred(pred, prs)
if not pclss:
raise UnknownProcessorTypeError(type_or_id)
return pclss | python | def find_by_type_or_id(type_or_id, prs):
"""
:param type_or_id: Type of the data to process or ID of the processor class
:param prs: A list of :class:`anyconfig.models.processor.Processor` classes
:return:
A list of processor classes to process files of given data type or
processor 'type_or_id' found by its ID
:raises: UnknownProcessorTypeError
"""
def pred(pcls):
"""Predicate"""
return pcls.cid() == type_or_id or pcls.type() == type_or_id
pclss = findall_with_pred(pred, prs)
if not pclss:
raise UnknownProcessorTypeError(type_or_id)
return pclss | ['def', 'find_by_type_or_id', '(', 'type_or_id', ',', 'prs', ')', ':', 'def', 'pred', '(', 'pcls', ')', ':', '"""Predicate"""', 'return', 'pcls', '.', 'cid', '(', ')', '==', 'type_or_id', 'or', 'pcls', '.', 'type', '(', ')', '==', 'type_or_id', 'pclss', '=', 'findall_with_pred', '(', 'pred', ',', 'prs', ')', 'if', 'not', 'pclss', ':', 'raise', 'UnknownProcessorTypeError', '(', 'type_or_id', ')', 'return', 'pclss'] | :param type_or_id: Type of the data to process or ID of the processor class
:param prs: A list of :class:`anyconfig.models.processor.Processor` classes
:return:
A list of processor classes to process files of given data type or
processor 'type_or_id' found by its ID
:raises: UnknownProcessorTypeError | [':', 'param', 'type_or_id', ':', 'Type', 'of', 'the', 'data', 'to', 'process', 'or', 'ID', 'of', 'the', 'processor', 'class', ':', 'param', 'prs', ':', 'A', 'list', 'of', ':', 'class', ':', 'anyconfig', '.', 'models', '.', 'processor', '.', 'Processor', 'classes', ':', 'return', ':', 'A', 'list', 'of', 'processor', 'classes', 'to', 'process', 'files', 'of', 'given', 'data', 'type', 'or', 'processor', 'type_or_id', 'found', 'by', 'its', 'ID', ':', 'raises', ':', 'UnknownProcessorTypeError'] | train | https://github.com/ssato/python-anyconfig/blob/f2f4fb8d8e232aadea866c202e1dd7a5967e2877/src/anyconfig/processors.py#L122-L139 |
9,916 | trailofbits/protofuzz | protofuzz/gen.py | Permuter._resolve_child | def _resolve_child(self, path):
'Return a member generator by a dot-delimited path'
obj = self
for component in path.split('.'):
ptr = obj
if not isinstance(ptr, Permuter):
raise self.MessageNotFound("Bad element path [wrong type]")
# pylint: disable=protected-access
found_gen = (_ for _ in ptr._generators if _.name() == component)
obj = next(found_gen, None)
if not obj:
raise self.MessageNotFound("Path '{}' unresolved to member."
.format(path))
return ptr, obj | python | def _resolve_child(self, path):
'Return a member generator by a dot-delimited path'
obj = self
for component in path.split('.'):
ptr = obj
if not isinstance(ptr, Permuter):
raise self.MessageNotFound("Bad element path [wrong type]")
# pylint: disable=protected-access
found_gen = (_ for _ in ptr._generators if _.name() == component)
obj = next(found_gen, None)
if not obj:
raise self.MessageNotFound("Path '{}' unresolved to member."
.format(path))
return ptr, obj | ['def', '_resolve_child', '(', 'self', ',', 'path', ')', ':', 'obj', '=', 'self', 'for', 'component', 'in', 'path', '.', 'split', '(', "'.'", ')', ':', 'ptr', '=', 'obj', 'if', 'not', 'isinstance', '(', 'ptr', ',', 'Permuter', ')', ':', 'raise', 'self', '.', 'MessageNotFound', '(', '"Bad element path [wrong type]"', ')', '# pylint: disable=protected-access', 'found_gen', '=', '(', '_', 'for', '_', 'in', 'ptr', '.', '_generators', 'if', '_', '.', 'name', '(', ')', '==', 'component', ')', 'obj', '=', 'next', '(', 'found_gen', ',', 'None', ')', 'if', 'not', 'obj', ':', 'raise', 'self', '.', 'MessageNotFound', '(', '"Path \'{}\' unresolved to member."', '.', 'format', '(', 'path', ')', ')', 'return', 'ptr', ',', 'obj'] | Return a member generator by a dot-delimited path | ['Return', 'a', 'member', 'generator', 'by', 'a', 'dot', '-', 'delimited', 'path'] | train | https://github.com/trailofbits/protofuzz/blob/589492d34de9a0da6cc5554094e2588b893b2fd8/protofuzz/gen.py#L111-L128 |
9,917 | elehcimd/pynb | pynb/notebook.py | Notebook.process | def process(self, uid, add_footer=False, no_exec=False, disable_cache=False, ignore_cache=False):
"""
Execute notebook
:return: self
"""
self.exec_begin = time.perf_counter()
self.exec_begin_dt = datetime.datetime.now()
ep = CachedExecutePreprocessor(timeout=None, kernel_name='python3')
ep.disable_cache = disable_cache
ep.ignore_cache = ignore_cache
ep.uid = uid
# Execute the notebook
if not no_exec:
with warnings.catch_warnings():
# On MacOS, annoying warning "RuntimeWarning: Failed to set sticky bit on"
# Let's suppress it.
warnings.simplefilter("ignore")
ep.preprocess(self.nb, {'metadata': {'path': '.'}})
self.exec_time = time.perf_counter() - self.exec_begin
if add_footer:
self.add_cell_footer()
if not no_exec:
logging.info('Execution time: {0:.2f}s'.format(self.exec_time))
return self | python | def process(self, uid, add_footer=False, no_exec=False, disable_cache=False, ignore_cache=False):
"""
Execute notebook
:return: self
"""
self.exec_begin = time.perf_counter()
self.exec_begin_dt = datetime.datetime.now()
ep = CachedExecutePreprocessor(timeout=None, kernel_name='python3')
ep.disable_cache = disable_cache
ep.ignore_cache = ignore_cache
ep.uid = uid
# Execute the notebook
if not no_exec:
with warnings.catch_warnings():
# On MacOS, annoying warning "RuntimeWarning: Failed to set sticky bit on"
# Let's suppress it.
warnings.simplefilter("ignore")
ep.preprocess(self.nb, {'metadata': {'path': '.'}})
self.exec_time = time.perf_counter() - self.exec_begin
if add_footer:
self.add_cell_footer()
if not no_exec:
logging.info('Execution time: {0:.2f}s'.format(self.exec_time))
return self | ['def', 'process', '(', 'self', ',', 'uid', ',', 'add_footer', '=', 'False', ',', 'no_exec', '=', 'False', ',', 'disable_cache', '=', 'False', ',', 'ignore_cache', '=', 'False', ')', ':', 'self', '.', 'exec_begin', '=', 'time', '.', 'perf_counter', '(', ')', 'self', '.', 'exec_begin_dt', '=', 'datetime', '.', 'datetime', '.', 'now', '(', ')', 'ep', '=', 'CachedExecutePreprocessor', '(', 'timeout', '=', 'None', ',', 'kernel_name', '=', "'python3'", ')', 'ep', '.', 'disable_cache', '=', 'disable_cache', 'ep', '.', 'ignore_cache', '=', 'ignore_cache', 'ep', '.', 'uid', '=', 'uid', '# Execute the notebook', 'if', 'not', 'no_exec', ':', 'with', 'warnings', '.', 'catch_warnings', '(', ')', ':', '# On MacOS, annoying warning "RuntimeWarning: Failed to set sticky bit on"', "# Let's suppress it.", 'warnings', '.', 'simplefilter', '(', '"ignore"', ')', 'ep', '.', 'preprocess', '(', 'self', '.', 'nb', ',', '{', "'metadata'", ':', '{', "'path'", ':', "'.'", '}', '}', ')', 'self', '.', 'exec_time', '=', 'time', '.', 'perf_counter', '(', ')', '-', 'self', '.', 'exec_begin', 'if', 'add_footer', ':', 'self', '.', 'add_cell_footer', '(', ')', 'if', 'not', 'no_exec', ':', 'logging', '.', 'info', '(', "'Execution time: {0:.2f}s'", '.', 'format', '(', 'self', '.', 'exec_time', ')', ')', 'return', 'self'] | Execute notebook
:return: self | ['Execute', 'notebook', ':', 'return', ':', 'self'] | train | https://github.com/elehcimd/pynb/blob/a32af1f0e574f880eccda4a46aede6d65151f8c9/pynb/notebook.py#L340-L371 |
9,918 | dswah/pyGAM | pygam/pygam.py | LogisticGAM.accuracy | def accuracy(self, X=None, y=None, mu=None):
"""
computes the accuracy of the LogisticGAM
Parameters
----------
note: X or mu must be defined. defaults to mu
X : array-like of shape (n_samples, m_features), optional (default=None)
containing input data
y : array-like of shape (n,)
containing target data
mu : array-like of shape (n_samples,), optional (default=None
expected value of the targets given the model and inputs
Returns
-------
float in [0, 1]
"""
if not self._is_fitted:
raise AttributeError('GAM has not been fitted. Call fit first.')
y = check_y(y, self.link, self.distribution, verbose=self.verbose)
if X is not None:
X = check_X(X, n_feats=self.statistics_['m_features'],
edge_knots=self.edge_knots_, dtypes=self.dtype,
features=self.feature, verbose=self.verbose)
if mu is None:
mu = self.predict_mu(X)
check_X_y(mu, y)
return ((mu > 0.5).astype(int) == y).mean() | python | def accuracy(self, X=None, y=None, mu=None):
"""
computes the accuracy of the LogisticGAM
Parameters
----------
note: X or mu must be defined. defaults to mu
X : array-like of shape (n_samples, m_features), optional (default=None)
containing input data
y : array-like of shape (n,)
containing target data
mu : array-like of shape (n_samples,), optional (default=None
expected value of the targets given the model and inputs
Returns
-------
float in [0, 1]
"""
if not self._is_fitted:
raise AttributeError('GAM has not been fitted. Call fit first.')
y = check_y(y, self.link, self.distribution, verbose=self.verbose)
if X is not None:
X = check_X(X, n_feats=self.statistics_['m_features'],
edge_knots=self.edge_knots_, dtypes=self.dtype,
features=self.feature, verbose=self.verbose)
if mu is None:
mu = self.predict_mu(X)
check_X_y(mu, y)
return ((mu > 0.5).astype(int) == y).mean() | ['def', 'accuracy', '(', 'self', ',', 'X', '=', 'None', ',', 'y', '=', 'None', ',', 'mu', '=', 'None', ')', ':', 'if', 'not', 'self', '.', '_is_fitted', ':', 'raise', 'AttributeError', '(', "'GAM has not been fitted. Call fit first.'", ')', 'y', '=', 'check_y', '(', 'y', ',', 'self', '.', 'link', ',', 'self', '.', 'distribution', ',', 'verbose', '=', 'self', '.', 'verbose', ')', 'if', 'X', 'is', 'not', 'None', ':', 'X', '=', 'check_X', '(', 'X', ',', 'n_feats', '=', 'self', '.', 'statistics_', '[', "'m_features'", ']', ',', 'edge_knots', '=', 'self', '.', 'edge_knots_', ',', 'dtypes', '=', 'self', '.', 'dtype', ',', 'features', '=', 'self', '.', 'feature', ',', 'verbose', '=', 'self', '.', 'verbose', ')', 'if', 'mu', 'is', 'None', ':', 'mu', '=', 'self', '.', 'predict_mu', '(', 'X', ')', 'check_X_y', '(', 'mu', ',', 'y', ')', 'return', '(', '(', 'mu', '>', '0.5', ')', '.', 'astype', '(', 'int', ')', '==', 'y', ')', '.', 'mean', '(', ')'] | computes the accuracy of the LogisticGAM
Parameters
----------
note: X or mu must be defined. defaults to mu
X : array-like of shape (n_samples, m_features), optional (default=None)
containing input data
y : array-like of shape (n,)
containing target data
mu : array-like of shape (n_samples,), optional (default=None
expected value of the targets given the model and inputs
Returns
-------
float in [0, 1] | ['computes', 'the', 'accuracy', 'of', 'the', 'LogisticGAM'] | train | https://github.com/dswah/pyGAM/blob/b3e5c3cd580f0a3ad69f9372861624f67760c325/pygam/pygam.py#L2395-L2426 |
9,919 | glue-viz/glue-vispy-viewers | glue_vispy_viewers/extern/vispy/visuals/isocurve.py | IsocurveVisual._compute_iso_line | def _compute_iso_line(self):
""" compute LineVisual vertices, connects and color-index
"""
level_index = []
connects = []
verts = []
# calculate which level are within data range
# this works for now and the existing examples, but should be tested
# thoroughly also with the data-sanity check in set_data-function
choice = np.nonzero((self.levels > self._data.min()) &
(self._levels < self._data.max()))
levels_to_calc = np.array(self.levels)[choice]
# save minimum level index
self._level_min = choice[0][0]
for level in levels_to_calc:
# if we use matplotlib isoline algorithm we need to add half a
# pixel in both (x,y) dimensions because isolines are aligned to
# pixel centers
if _HAS_MPL:
nlist = self._iso.trace(level, level, 0)
paths = nlist[:len(nlist)//2]
v, c = self._get_verts_and_connect(paths)
v += np.array([0.5, 0.5])
else:
paths = isocurve(self._data.astype(float).T, level,
extend_to_edge=True, connected=True)
v, c = self._get_verts_and_connect(paths)
level_index.append(v.shape[0])
connects.append(np.hstack((c, [False])))
verts.append(v)
self._li = np.hstack(level_index)
self._connect = np.hstack(connects)
self._verts = np.vstack(verts) | python | def _compute_iso_line(self):
""" compute LineVisual vertices, connects and color-index
"""
level_index = []
connects = []
verts = []
# calculate which level are within data range
# this works for now and the existing examples, but should be tested
# thoroughly also with the data-sanity check in set_data-function
choice = np.nonzero((self.levels > self._data.min()) &
(self._levels < self._data.max()))
levels_to_calc = np.array(self.levels)[choice]
# save minimum level index
self._level_min = choice[0][0]
for level in levels_to_calc:
# if we use matplotlib isoline algorithm we need to add half a
# pixel in both (x,y) dimensions because isolines are aligned to
# pixel centers
if _HAS_MPL:
nlist = self._iso.trace(level, level, 0)
paths = nlist[:len(nlist)//2]
v, c = self._get_verts_and_connect(paths)
v += np.array([0.5, 0.5])
else:
paths = isocurve(self._data.astype(float).T, level,
extend_to_edge=True, connected=True)
v, c = self._get_verts_and_connect(paths)
level_index.append(v.shape[0])
connects.append(np.hstack((c, [False])))
verts.append(v)
self._li = np.hstack(level_index)
self._connect = np.hstack(connects)
self._verts = np.vstack(verts) | ['def', '_compute_iso_line', '(', 'self', ')', ':', 'level_index', '=', '[', ']', 'connects', '=', '[', ']', 'verts', '=', '[', ']', '# calculate which level are within data range', '# this works for now and the existing examples, but should be tested', '# thoroughly also with the data-sanity check in set_data-function', 'choice', '=', 'np', '.', 'nonzero', '(', '(', 'self', '.', 'levels', '>', 'self', '.', '_data', '.', 'min', '(', ')', ')', '&', '(', 'self', '.', '_levels', '<', 'self', '.', '_data', '.', 'max', '(', ')', ')', ')', 'levels_to_calc', '=', 'np', '.', 'array', '(', 'self', '.', 'levels', ')', '[', 'choice', ']', '# save minimum level index', 'self', '.', '_level_min', '=', 'choice', '[', '0', ']', '[', '0', ']', 'for', 'level', 'in', 'levels_to_calc', ':', '# if we use matplotlib isoline algorithm we need to add half a', '# pixel in both (x,y) dimensions because isolines are aligned to', '# pixel centers', 'if', '_HAS_MPL', ':', 'nlist', '=', 'self', '.', '_iso', '.', 'trace', '(', 'level', ',', 'level', ',', '0', ')', 'paths', '=', 'nlist', '[', ':', 'len', '(', 'nlist', ')', '//', '2', ']', 'v', ',', 'c', '=', 'self', '.', '_get_verts_and_connect', '(', 'paths', ')', 'v', '+=', 'np', '.', 'array', '(', '[', '0.5', ',', '0.5', ']', ')', 'else', ':', 'paths', '=', 'isocurve', '(', 'self', '.', '_data', '.', 'astype', '(', 'float', ')', '.', 'T', ',', 'level', ',', 'extend_to_edge', '=', 'True', ',', 'connected', '=', 'True', ')', 'v', ',', 'c', '=', 'self', '.', '_get_verts_and_connect', '(', 'paths', ')', 'level_index', '.', 'append', '(', 'v', '.', 'shape', '[', '0', ']', ')', 'connects', '.', 'append', '(', 'np', '.', 'hstack', '(', '(', 'c', ',', '[', 'False', ']', ')', ')', ')', 'verts', '.', 'append', '(', 'v', ')', 'self', '.', '_li', '=', 'np', '.', 'hstack', '(', 'level_index', ')', 'self', '.', '_connect', '=', 'np', '.', 'hstack', '(', 'connects', ')', 'self', '.', '_verts', '=', 'np', '.', 'vstack', '(', 'verts', ')'] | compute LineVisual vertices, connects and color-index | ['compute', 'LineVisual', 'vertices', 'connects', 'and', 'color', '-', 'index'] | train | https://github.com/glue-viz/glue-vispy-viewers/blob/54a4351d98c1f90dfb1a557d1b447c1f57470eea/glue_vispy_viewers/extern/vispy/visuals/isocurve.py#L138-L175 |
9,920 | tanghaibao/goatools | goatools/grouper/aart_geneproducts_one.py | AArtGeneProductSetsOne.prt_report_grp1 | def prt_report_grp1(self, prt=sys.stdout, **kws_grp):
"""Print full GO/gene report with grouping."""
summaryline = self.str_summaryline()
# Print grouped GO IDs
prt.write("{SUMMARY}\n".format(SUMMARY=summaryline))
self.prt_gos_grouped(prt, **kws_grp)
# genes
genes = sorted(self.gene2gos.keys())
prt.write("\n\n{SUMMARY}\n\n".format(SUMMARY=summaryline))
self.prt_section_key(prt)
self.prt_gene_aart(genes, prt)
# Sort genes
prt.write("\n\n{SUMMARY}\n\n".format(SUMMARY=summaryline))
self.prt_gene_aart_details(genes, prt)
return (self.name, self.get_section_marks()) | python | def prt_report_grp1(self, prt=sys.stdout, **kws_grp):
"""Print full GO/gene report with grouping."""
summaryline = self.str_summaryline()
# Print grouped GO IDs
prt.write("{SUMMARY}\n".format(SUMMARY=summaryline))
self.prt_gos_grouped(prt, **kws_grp)
# genes
genes = sorted(self.gene2gos.keys())
prt.write("\n\n{SUMMARY}\n\n".format(SUMMARY=summaryline))
self.prt_section_key(prt)
self.prt_gene_aart(genes, prt)
# Sort genes
prt.write("\n\n{SUMMARY}\n\n".format(SUMMARY=summaryline))
self.prt_gene_aart_details(genes, prt)
return (self.name, self.get_section_marks()) | ['def', 'prt_report_grp1', '(', 'self', ',', 'prt', '=', 'sys', '.', 'stdout', ',', '*', '*', 'kws_grp', ')', ':', 'summaryline', '=', 'self', '.', 'str_summaryline', '(', ')', '# Print grouped GO IDs', 'prt', '.', 'write', '(', '"{SUMMARY}\\n"', '.', 'format', '(', 'SUMMARY', '=', 'summaryline', ')', ')', 'self', '.', 'prt_gos_grouped', '(', 'prt', ',', '*', '*', 'kws_grp', ')', '# genes', 'genes', '=', 'sorted', '(', 'self', '.', 'gene2gos', '.', 'keys', '(', ')', ')', 'prt', '.', 'write', '(', '"\\n\\n{SUMMARY}\\n\\n"', '.', 'format', '(', 'SUMMARY', '=', 'summaryline', ')', ')', 'self', '.', 'prt_section_key', '(', 'prt', ')', 'self', '.', 'prt_gene_aart', '(', 'genes', ',', 'prt', ')', '# Sort genes', 'prt', '.', 'write', '(', '"\\n\\n{SUMMARY}\\n\\n"', '.', 'format', '(', 'SUMMARY', '=', 'summaryline', ')', ')', 'self', '.', 'prt_gene_aart_details', '(', 'genes', ',', 'prt', ')', 'return', '(', 'self', '.', 'name', ',', 'self', '.', 'get_section_marks', '(', ')', ')'] | Print full GO/gene report with grouping. | ['Print', 'full', 'GO', '/', 'gene', 'report', 'with', 'grouping', '.'] | train | https://github.com/tanghaibao/goatools/blob/407682e573a108864a79031f8ca19ee3bf377626/goatools/grouper/aart_geneproducts_one.py#L52-L66 |
9,921 | synw/dataswim | dataswim/data/clean.py | Clean.fill_nan | def fill_nan(self, val: str, *cols):
"""
Fill NaN values with new values in the main dataframe
:param val: new value
:type val: str
:param \*cols: names of the colums
:type \*cols: str, at least one
:example: ``ds.fill_nan("new value", "mycol1", "mycol2")``
"""
df = self._fill_nan(val, *cols)
if df is not None:
self.df = df
else:
self.err("Can not fill nan values") | python | def fill_nan(self, val: str, *cols):
"""
Fill NaN values with new values in the main dataframe
:param val: new value
:type val: str
:param \*cols: names of the colums
:type \*cols: str, at least one
:example: ``ds.fill_nan("new value", "mycol1", "mycol2")``
"""
df = self._fill_nan(val, *cols)
if df is not None:
self.df = df
else:
self.err("Can not fill nan values") | ['def', 'fill_nan', '(', 'self', ',', 'val', ':', 'str', ',', '*', 'cols', ')', ':', 'df', '=', 'self', '.', '_fill_nan', '(', 'val', ',', '*', 'cols', ')', 'if', 'df', 'is', 'not', 'None', ':', 'self', '.', 'df', '=', 'df', 'else', ':', 'self', '.', 'err', '(', '"Can not fill nan values"', ')'] | Fill NaN values with new values in the main dataframe
:param val: new value
:type val: str
:param \*cols: names of the colums
:type \*cols: str, at least one
:example: ``ds.fill_nan("new value", "mycol1", "mycol2")`` | ['Fill', 'NaN', 'values', 'with', 'new', 'values', 'in', 'the', 'main', 'dataframe'] | train | https://github.com/synw/dataswim/blob/4a4a53f80daa7cd8e8409d76a19ce07296269da2/dataswim/data/clean.py#L88-L103 |
9,922 | nornir-automation/nornir | nornir/core/inventory.py | Host.get_connection_state | def get_connection_state(self, connection: str) -> Dict[str, Any]:
"""
For an already established connection return its state.
"""
if connection not in self.connections:
raise ConnectionNotOpen(connection)
return self.connections[connection].state | python | def get_connection_state(self, connection: str) -> Dict[str, Any]:
"""
For an already established connection return its state.
"""
if connection not in self.connections:
raise ConnectionNotOpen(connection)
return self.connections[connection].state | ['def', 'get_connection_state', '(', 'self', ',', 'connection', ':', 'str', ')', '->', 'Dict', '[', 'str', ',', 'Any', ']', ':', 'if', 'connection', 'not', 'in', 'self', '.', 'connections', ':', 'raise', 'ConnectionNotOpen', '(', 'connection', ')', 'return', 'self', '.', 'connections', '[', 'connection', ']', '.', 'state'] | For an already established connection return its state. | ['For', 'an', 'already', 'established', 'connection', 'return', 'its', 'state', '.'] | train | https://github.com/nornir-automation/nornir/blob/3425c47fd870db896cb80f619bae23bd98d50c74/nornir/core/inventory.py#L306-L313 |
9,923 | geophysics-ubonn/crtomo_tools | lib/crtomo/tdManager.py | tdMan.invert | def invert(self, output_directory=None, catch_output=True, **kwargs):
"""Invert this instance, and import the result files
No directories/files will be overwritten. Raise an IOError if the
output directory exists.
Parameters
----------
output_directory: string, optional
use this directory as output directory for the generated tomodir.
If None, then a temporary directory will be used that is deleted
after import.
catch_output: bool, optional
Do not show CRTomo output
cores: int, optional
how many cores to use for CRTomo
Returns
-------
return_code: bool
Return 0 if the inversion completed successfully. Return 1 if no
measurements are present.
"""
self._check_state()
if self.can_invert:
if output_directory is not None:
if not os.path.isdir(output_directory):
os.makedirs(output_directory)
tempdir = output_directory
self._invert(tempdir, catch_output, **kwargs)
else:
raise IOError(
'output directory already exists: {0}'.format(
output_directory
)
)
else:
with tempfile.TemporaryDirectory(dir=self.tempdir) as tempdir:
self._invert(tempdir, catch_output, **kwargs)
return 0
else:
print(
'Sorry, no measurements present, cannot model yet'
)
return 1 | python | def invert(self, output_directory=None, catch_output=True, **kwargs):
"""Invert this instance, and import the result files
No directories/files will be overwritten. Raise an IOError if the
output directory exists.
Parameters
----------
output_directory: string, optional
use this directory as output directory for the generated tomodir.
If None, then a temporary directory will be used that is deleted
after import.
catch_output: bool, optional
Do not show CRTomo output
cores: int, optional
how many cores to use for CRTomo
Returns
-------
return_code: bool
Return 0 if the inversion completed successfully. Return 1 if no
measurements are present.
"""
self._check_state()
if self.can_invert:
if output_directory is not None:
if not os.path.isdir(output_directory):
os.makedirs(output_directory)
tempdir = output_directory
self._invert(tempdir, catch_output, **kwargs)
else:
raise IOError(
'output directory already exists: {0}'.format(
output_directory
)
)
else:
with tempfile.TemporaryDirectory(dir=self.tempdir) as tempdir:
self._invert(tempdir, catch_output, **kwargs)
return 0
else:
print(
'Sorry, no measurements present, cannot model yet'
)
return 1 | ['def', 'invert', '(', 'self', ',', 'output_directory', '=', 'None', ',', 'catch_output', '=', 'True', ',', '*', '*', 'kwargs', ')', ':', 'self', '.', '_check_state', '(', ')', 'if', 'self', '.', 'can_invert', ':', 'if', 'output_directory', 'is', 'not', 'None', ':', 'if', 'not', 'os', '.', 'path', '.', 'isdir', '(', 'output_directory', ')', ':', 'os', '.', 'makedirs', '(', 'output_directory', ')', 'tempdir', '=', 'output_directory', 'self', '.', '_invert', '(', 'tempdir', ',', 'catch_output', ',', '*', '*', 'kwargs', ')', 'else', ':', 'raise', 'IOError', '(', "'output directory already exists: {0}'", '.', 'format', '(', 'output_directory', ')', ')', 'else', ':', 'with', 'tempfile', '.', 'TemporaryDirectory', '(', 'dir', '=', 'self', '.', 'tempdir', ')', 'as', 'tempdir', ':', 'self', '.', '_invert', '(', 'tempdir', ',', 'catch_output', ',', '*', '*', 'kwargs', ')', 'return', '0', 'else', ':', 'print', '(', "'Sorry, no measurements present, cannot model yet'", ')', 'return', '1'] | Invert this instance, and import the result files
No directories/files will be overwritten. Raise an IOError if the
output directory exists.
Parameters
----------
output_directory: string, optional
use this directory as output directory for the generated tomodir.
If None, then a temporary directory will be used that is deleted
after import.
catch_output: bool, optional
Do not show CRTomo output
cores: int, optional
how many cores to use for CRTomo
Returns
-------
return_code: bool
Return 0 if the inversion completed successfully. Return 1 if no
measurements are present. | ['Invert', 'this', 'instance', 'and', 'import', 'the', 'result', 'files'] | train | https://github.com/geophysics-ubonn/crtomo_tools/blob/27c3e21a557f8df1c12455b96c4c2e00e08a5b4a/lib/crtomo/tdManager.py#L956-L1001 |
9,924 | google/grr | grr/core/grr_response_core/lib/config_lib.py | ParseConfigCommandLine | def ParseConfigCommandLine():
"""Parse all the command line options which control the config system."""
# The user may specify the primary config file on the command line.
if flags.FLAGS.config:
_CONFIG.Initialize(filename=flags.FLAGS.config, must_exist=True)
else:
raise RuntimeError("A config file is not specified.")
# Allow secondary configuration files to be specified.
if flags.FLAGS.secondary_configs:
for config_file in flags.FLAGS.secondary_configs:
_CONFIG.LoadSecondaryConfig(config_file)
# Allow individual options to be specified as global overrides.
for statement in flags.FLAGS.parameter:
if "=" not in statement:
raise RuntimeError("statement %s on command line not valid." % statement)
name, value = statement.split("=", 1)
_CONFIG.global_override[name] = value
# Load additional contexts from the command line.
for context in flags.FLAGS.context:
if context:
_CONFIG.AddContext(context)
if _CONFIG["Config.writeback"]:
_CONFIG.SetWriteBack(_CONFIG["Config.writeback"])
# Does the user want to dump help? We do this after the config system is
# initialized so the user can examine what we think the value of all the
# parameters are.
if flags.FLAGS.config_help:
print("Configuration overview.")
_CONFIG.PrintHelp()
sys.exit(0) | python | def ParseConfigCommandLine():
"""Parse all the command line options which control the config system."""
# The user may specify the primary config file on the command line.
if flags.FLAGS.config:
_CONFIG.Initialize(filename=flags.FLAGS.config, must_exist=True)
else:
raise RuntimeError("A config file is not specified.")
# Allow secondary configuration files to be specified.
if flags.FLAGS.secondary_configs:
for config_file in flags.FLAGS.secondary_configs:
_CONFIG.LoadSecondaryConfig(config_file)
# Allow individual options to be specified as global overrides.
for statement in flags.FLAGS.parameter:
if "=" not in statement:
raise RuntimeError("statement %s on command line not valid." % statement)
name, value = statement.split("=", 1)
_CONFIG.global_override[name] = value
# Load additional contexts from the command line.
for context in flags.FLAGS.context:
if context:
_CONFIG.AddContext(context)
if _CONFIG["Config.writeback"]:
_CONFIG.SetWriteBack(_CONFIG["Config.writeback"])
# Does the user want to dump help? We do this after the config system is
# initialized so the user can examine what we think the value of all the
# parameters are.
if flags.FLAGS.config_help:
print("Configuration overview.")
_CONFIG.PrintHelp()
sys.exit(0) | ['def', 'ParseConfigCommandLine', '(', ')', ':', '# The user may specify the primary config file on the command line.', 'if', 'flags', '.', 'FLAGS', '.', 'config', ':', '_CONFIG', '.', 'Initialize', '(', 'filename', '=', 'flags', '.', 'FLAGS', '.', 'config', ',', 'must_exist', '=', 'True', ')', 'else', ':', 'raise', 'RuntimeError', '(', '"A config file is not specified."', ')', '# Allow secondary configuration files to be specified.', 'if', 'flags', '.', 'FLAGS', '.', 'secondary_configs', ':', 'for', 'config_file', 'in', 'flags', '.', 'FLAGS', '.', 'secondary_configs', ':', '_CONFIG', '.', 'LoadSecondaryConfig', '(', 'config_file', ')', '# Allow individual options to be specified as global overrides.', 'for', 'statement', 'in', 'flags', '.', 'FLAGS', '.', 'parameter', ':', 'if', '"="', 'not', 'in', 'statement', ':', 'raise', 'RuntimeError', '(', '"statement %s on command line not valid."', '%', 'statement', ')', 'name', ',', 'value', '=', 'statement', '.', 'split', '(', '"="', ',', '1', ')', '_CONFIG', '.', 'global_override', '[', 'name', ']', '=', 'value', '# Load additional contexts from the command line.', 'for', 'context', 'in', 'flags', '.', 'FLAGS', '.', 'context', ':', 'if', 'context', ':', '_CONFIG', '.', 'AddContext', '(', 'context', ')', 'if', '_CONFIG', '[', '"Config.writeback"', ']', ':', '_CONFIG', '.', 'SetWriteBack', '(', '_CONFIG', '[', '"Config.writeback"', ']', ')', '# Does the user want to dump help? We do this after the config system is', '# initialized so the user can examine what we think the value of all the', '# parameters are.', 'if', 'flags', '.', 'FLAGS', '.', 'config_help', ':', 'print', '(', '"Configuration overview."', ')', '_CONFIG', '.', 'PrintHelp', '(', ')', 'sys', '.', 'exit', '(', '0', ')'] | Parse all the command line options which control the config system. | ['Parse', 'all', 'the', 'command', 'line', 'options', 'which', 'control', 'the', 'config', 'system', '.'] | train | https://github.com/google/grr/blob/5cef4e8e2f0d5df43ea4877e9c798e0bf60bfe74/grr/core/grr_response_core/lib/config_lib.py#L1704-L1740 |
9,925 | senaite/senaite.core | bika/lims/exportimport/instruments/shimadzu/nexera/LC2040C.py | TSVParser.parse_TSVline | def parse_TSVline(self, line):
""" Parses result lines
"""
split_row = [token.strip() for token in line.split('\t')]
_results = {'DefaultResult': 'Conc.'}
# ID# 1
if split_row[0] == 'ID#':
return 0
# Name CBDV - cannabidivarin
elif split_row[0] == 'Name':
if split_row[1]:
self._currentanalysiskw = split_row[1]
return 0
else:
self.warn("Analysis Keyword not found or empty",
numline=self._numline, line=line)
# Data Filename Sample Name Sample ID Sample Type Level#
elif 'Sample ID' in split_row:
split_row.insert(0, '#')
self._currentresultsheader = split_row
return 0
# 1 QC PREP A_QC PREP A_009.lcd QC PREP
elif split_row[0].isdigit():
_results.update(dict(zip(self._currentresultsheader, split_row)))
# 10/17/2016 7:55:06 PM
try:
da = datetime.strptime(
_results['Date Acquired'], "%m/%d/%Y %I:%M:%S %p")
self._header['Output Date'] = da
self._header['Output Time'] = da
except ValueError:
self.err("Invalid Output Time format",
numline=self._numline, line=line)
result = _results[_results['DefaultResult']]
column_name = _results['DefaultResult']
result = self.zeroValueDefaultInstrumentResults(
column_name, result, line)
_results[_results['DefaultResult']] = result
self._addRawResult(_results['Sample ID'],
values={self._currentanalysiskw: _results},
override=False) | python | def parse_TSVline(self, line):
""" Parses result lines
"""
split_row = [token.strip() for token in line.split('\t')]
_results = {'DefaultResult': 'Conc.'}
# ID# 1
if split_row[0] == 'ID#':
return 0
# Name CBDV - cannabidivarin
elif split_row[0] == 'Name':
if split_row[1]:
self._currentanalysiskw = split_row[1]
return 0
else:
self.warn("Analysis Keyword not found or empty",
numline=self._numline, line=line)
# Data Filename Sample Name Sample ID Sample Type Level#
elif 'Sample ID' in split_row:
split_row.insert(0, '#')
self._currentresultsheader = split_row
return 0
# 1 QC PREP A_QC PREP A_009.lcd QC PREP
elif split_row[0].isdigit():
_results.update(dict(zip(self._currentresultsheader, split_row)))
# 10/17/2016 7:55:06 PM
try:
da = datetime.strptime(
_results['Date Acquired'], "%m/%d/%Y %I:%M:%S %p")
self._header['Output Date'] = da
self._header['Output Time'] = da
except ValueError:
self.err("Invalid Output Time format",
numline=self._numline, line=line)
result = _results[_results['DefaultResult']]
column_name = _results['DefaultResult']
result = self.zeroValueDefaultInstrumentResults(
column_name, result, line)
_results[_results['DefaultResult']] = result
self._addRawResult(_results['Sample ID'],
values={self._currentanalysiskw: _results},
override=False) | ['def', 'parse_TSVline', '(', 'self', ',', 'line', ')', ':', 'split_row', '=', '[', 'token', '.', 'strip', '(', ')', 'for', 'token', 'in', 'line', '.', 'split', '(', "'\\t'", ')', ']', '_results', '=', '{', "'DefaultResult'", ':', "'Conc.'", '}', '# ID# 1', 'if', 'split_row', '[', '0', ']', '==', "'ID#'", ':', 'return', '0', '# Name\tCBDV - cannabidivarin', 'elif', 'split_row', '[', '0', ']', '==', "'Name'", ':', 'if', 'split_row', '[', '1', ']', ':', 'self', '.', '_currentanalysiskw', '=', 'split_row', '[', '1', ']', 'return', '0', 'else', ':', 'self', '.', 'warn', '(', '"Analysis Keyword not found or empty"', ',', 'numline', '=', 'self', '.', '_numline', ',', 'line', '=', 'line', ')', '# Data Filename\tSample Name\tSample ID\tSample Type\tLevel#', 'elif', "'Sample ID'", 'in', 'split_row', ':', 'split_row', '.', 'insert', '(', '0', ',', "'#'", ')', 'self', '.', '_currentresultsheader', '=', 'split_row', 'return', '0', '# 1\tQC PREP A_QC PREP A_009.lcd\tQC PREP', 'elif', 'split_row', '[', '0', ']', '.', 'isdigit', '(', ')', ':', '_results', '.', 'update', '(', 'dict', '(', 'zip', '(', 'self', '.', '_currentresultsheader', ',', 'split_row', ')', ')', ')', '# 10/17/2016 7:55:06 PM', 'try', ':', 'da', '=', 'datetime', '.', 'strptime', '(', '_results', '[', "'Date Acquired'", ']', ',', '"%m/%d/%Y %I:%M:%S %p"', ')', 'self', '.', '_header', '[', "'Output Date'", ']', '=', 'da', 'self', '.', '_header', '[', "'Output Time'", ']', '=', 'da', 'except', 'ValueError', ':', 'self', '.', 'err', '(', '"Invalid Output Time format"', ',', 'numline', '=', 'self', '.', '_numline', ',', 'line', '=', 'line', ')', 'result', '=', '_results', '[', '_results', '[', "'DefaultResult'", ']', ']', 'column_name', '=', '_results', '[', "'DefaultResult'", ']', 'result', '=', 'self', '.', 'zeroValueDefaultInstrumentResults', '(', 'column_name', ',', 'result', ',', 'line', ')', '_results', '[', '_results', '[', "'DefaultResult'", ']', ']', '=', 'result', 'self', '.', '_addRawResult', '(', '_results', '[', "'Sample ID'", ']', ',', 'values', '=', '{', 'self', '.', '_currentanalysiskw', ':', '_results', '}', ',', 'override', '=', 'False', ')'] | Parses result lines | ['Parses', 'result', 'lines'] | train | https://github.com/senaite/senaite.core/blob/7602ce2ea2f9e81eb34e20ce17b98a3e70713f85/bika/lims/exportimport/instruments/shimadzu/nexera/LC2040C.py#L101-L146 |
9,926 | evhub/coconut | coconut/compiler/grammar.py | subscriptgroup_handle | def subscriptgroup_handle(tokens):
"""Process subscriptgroups."""
internal_assert(0 < len(tokens) <= 3, "invalid slice args", tokens)
args = []
for arg in tokens:
if not arg:
arg = "None"
args.append(arg)
if len(args) == 1:
return args[0]
else:
return "_coconut.slice(" + ", ".join(args) + ")" | python | def subscriptgroup_handle(tokens):
"""Process subscriptgroups."""
internal_assert(0 < len(tokens) <= 3, "invalid slice args", tokens)
args = []
for arg in tokens:
if not arg:
arg = "None"
args.append(arg)
if len(args) == 1:
return args[0]
else:
return "_coconut.slice(" + ", ".join(args) + ")" | ['def', 'subscriptgroup_handle', '(', 'tokens', ')', ':', 'internal_assert', '(', '0', '<', 'len', '(', 'tokens', ')', '<=', '3', ',', '"invalid slice args"', ',', 'tokens', ')', 'args', '=', '[', ']', 'for', 'arg', 'in', 'tokens', ':', 'if', 'not', 'arg', ':', 'arg', '=', '"None"', 'args', '.', 'append', '(', 'arg', ')', 'if', 'len', '(', 'args', ')', '==', '1', ':', 'return', 'args', '[', '0', ']', 'else', ':', 'return', '"_coconut.slice("', '+', '", "', '.', 'join', '(', 'args', ')', '+', '")"'] | Process subscriptgroups. | ['Process', 'subscriptgroups', '.'] | train | https://github.com/evhub/coconut/blob/ff97177344e7604e89a0a98a977a87ed2a56fc6d/coconut/compiler/grammar.py#L563-L574 |
9,927 | ANTsX/ANTsPy | ants/utils/invariant_image_similarity.py | invariant_image_similarity | def invariant_image_similarity(image1, image2,
local_search_iterations=0, metric='MI',
thetas=np.linspace(0,360,5),
thetas2=np.linspace(0,360,5),
thetas3=np.linspace(0,360,5),
scale_image=1, do_reflection=False,
txfn=None, transform='Affine'):
"""
Similarity metrics between two images as a function of geometry
Compute similarity metric between two images as image is rotated about its
center w/ or w/o optimization
ANTsR function: `invariantImageSimilarity`
Arguments
---------
image1 : ANTsImage
reference image
image2 : ANTsImage
moving image
local_search_iterations : integer
integer controlling local search in multistart
metric : string
which metric to use
MI
GC
thetas : 1D-ndarray/list/tuple
numeric vector of search angles in degrees
thetas2 : 1D-ndarray/list/tuple
numeric vector of search angles in degrees around principal axis 2 (3D)
thetas3 : 1D-ndarray/list/tuple
numeric vector of search angles in degrees around principal axis 3 (3D)
scale_image : scalar
global scale
do_reflection : boolean
whether to reflect image about principal axis
txfn : string (optional)
if present, write optimal tx to .mat file
transform : string
type of transform to use
Rigid
Similarity
Affine
Returns
-------
pd.DataFrame
dataframe with metric values and transformation parameters
Example
-------
>>> import ants
>>> img1 = ants.image_read(ants.get_ants_data('r16'))
>>> img2 = ants.image_read(ants.get_ants_data('r64'))
>>> metric = ants.invariant_image_similarity(img1,img2)
"""
if transform not in {'Rigid', 'Similarity', 'Affine'}:
raise ValueError('transform must be one of Rigid/Similarity/Affine')
if image1.pixeltype != 'float':
image1 = image1.clone('float')
if image2.pixeltype != 'float':
image2 = image2.clone('float')
if txfn is None:
txfn = mktemp(suffix='.mat')
# convert thetas to radians
thetain = (thetas * math.pi) / 180.
thetain2 = (thetas2 * math.pi) / 180.
thetain3 = (thetas3 * math.pi) / 180.
image1 = utils.iMath(image1, 'Normalize')
image2 = utils.iMath(image2, 'Normalize')
idim = image1.dimension
fpname = ['FixedParam%i'%i for i in range(1,idim+1)]
if not do_reflection:
libfn = utils.get_lib_fn('invariantImageSimilarity_%s%iD' % (transform, idim))
r1 = libfn(image1.pointer,
image2.pointer,
list(thetain),
list(thetain2),
list(thetain3),
local_search_iterations,
metric,
scale_image,
int(do_reflection),
txfn)
r1 = np.asarray(r1)
pnames = ['Param%i'%i for i in range(1,r1.shape[1])]
pnames[(len(pnames)-idim):len(pnames)] = fpname
r1 = pd.DataFrame(r1, columns=['MetricValue']+pnames)
return r1, txfn
else:
txfn1 = mktemp(suffix='.mat')
txfn2 = mktemp(suffix='.mat')
txfn3 = mktemp(suffix='.mat')
txfn4 = mktemp(suffix='.mat')
libfn = utils.get_lib_fn('invariantImageSimilarity_%s%iD' % (transform, idim))
## R1 ##
r1 = libfn(image1.pointer,
image2.pointer,
list(thetain),
list(thetain2),
list(thetain3),
local_search_iterations,
metric,
scale_image,
0,
txfn1)
r1 = np.asarray(r1)
pnames = ['Param%i'%i for i in range(1,r1.shape[1])]
pnames[(len(pnames)-idim):len(pnames)] = fpname
r1 = pd.DataFrame(r1, columns=['MetricValue']+pnames)
## R2 ##
r2 = libfn(image1.pointer,
image2.pointer,
list(thetain),
list(thetain2),
list(thetain3),
local_search_iterations,
metric,
scale_image,
1,
txfn2)
r2 = np.asarray(r2)
r2 = pd.DataFrame(r2, columns=['MetricValue']+pnames)
## R3 ##
r3 = libfn(image1.pointer,
image2.pointer,
list(thetain),
list(thetain2),
list(thetain3),
local_search_iterations,
metric,
scale_image,
2,
txfn3)
r3 = np.asarray(r3)
r3 = pd.DataFrame(r3, columns=['MetricValue']+pnames)
## R4 ##
r4 = libfn(image1.pointer,
image2.pointer,
list(thetain),
list(thetain2),
list(thetain3),
local_search_iterations,
metric,
scale_image,
3,
txfn4)
r4 = np.asarray(r4)
r4 = pd.DataFrame(r4, columns=['MetricValue']+pnames)
rmins = [np.min(r1.iloc[:,0]), np.min(r2.iloc[:,0]), np.min(r3.iloc[:,0]), np.min(r4.iloc[:,0])]
ww = np.argmin(rmins)
if ww == 0:
return r1, txfn1
elif ww == 1:
return r2, txfn2
elif ww == 2:
return r3, txfn3
elif ww == 3:
return r4, txfn4 | python | def invariant_image_similarity(image1, image2,
local_search_iterations=0, metric='MI',
thetas=np.linspace(0,360,5),
thetas2=np.linspace(0,360,5),
thetas3=np.linspace(0,360,5),
scale_image=1, do_reflection=False,
txfn=None, transform='Affine'):
"""
Similarity metrics between two images as a function of geometry
Compute similarity metric between two images as image is rotated about its
center w/ or w/o optimization
ANTsR function: `invariantImageSimilarity`
Arguments
---------
image1 : ANTsImage
reference image
image2 : ANTsImage
moving image
local_search_iterations : integer
integer controlling local search in multistart
metric : string
which metric to use
MI
GC
thetas : 1D-ndarray/list/tuple
numeric vector of search angles in degrees
thetas2 : 1D-ndarray/list/tuple
numeric vector of search angles in degrees around principal axis 2 (3D)
thetas3 : 1D-ndarray/list/tuple
numeric vector of search angles in degrees around principal axis 3 (3D)
scale_image : scalar
global scale
do_reflection : boolean
whether to reflect image about principal axis
txfn : string (optional)
if present, write optimal tx to .mat file
transform : string
type of transform to use
Rigid
Similarity
Affine
Returns
-------
pd.DataFrame
dataframe with metric values and transformation parameters
Example
-------
>>> import ants
>>> img1 = ants.image_read(ants.get_ants_data('r16'))
>>> img2 = ants.image_read(ants.get_ants_data('r64'))
>>> metric = ants.invariant_image_similarity(img1,img2)
"""
if transform not in {'Rigid', 'Similarity', 'Affine'}:
raise ValueError('transform must be one of Rigid/Similarity/Affine')
if image1.pixeltype != 'float':
image1 = image1.clone('float')
if image2.pixeltype != 'float':
image2 = image2.clone('float')
if txfn is None:
txfn = mktemp(suffix='.mat')
# convert thetas to radians
thetain = (thetas * math.pi) / 180.
thetain2 = (thetas2 * math.pi) / 180.
thetain3 = (thetas3 * math.pi) / 180.
image1 = utils.iMath(image1, 'Normalize')
image2 = utils.iMath(image2, 'Normalize')
idim = image1.dimension
fpname = ['FixedParam%i'%i for i in range(1,idim+1)]
if not do_reflection:
libfn = utils.get_lib_fn('invariantImageSimilarity_%s%iD' % (transform, idim))
r1 = libfn(image1.pointer,
image2.pointer,
list(thetain),
list(thetain2),
list(thetain3),
local_search_iterations,
metric,
scale_image,
int(do_reflection),
txfn)
r1 = np.asarray(r1)
pnames = ['Param%i'%i for i in range(1,r1.shape[1])]
pnames[(len(pnames)-idim):len(pnames)] = fpname
r1 = pd.DataFrame(r1, columns=['MetricValue']+pnames)
return r1, txfn
else:
txfn1 = mktemp(suffix='.mat')
txfn2 = mktemp(suffix='.mat')
txfn3 = mktemp(suffix='.mat')
txfn4 = mktemp(suffix='.mat')
libfn = utils.get_lib_fn('invariantImageSimilarity_%s%iD' % (transform, idim))
## R1 ##
r1 = libfn(image1.pointer,
image2.pointer,
list(thetain),
list(thetain2),
list(thetain3),
local_search_iterations,
metric,
scale_image,
0,
txfn1)
r1 = np.asarray(r1)
pnames = ['Param%i'%i for i in range(1,r1.shape[1])]
pnames[(len(pnames)-idim):len(pnames)] = fpname
r1 = pd.DataFrame(r1, columns=['MetricValue']+pnames)
## R2 ##
r2 = libfn(image1.pointer,
image2.pointer,
list(thetain),
list(thetain2),
list(thetain3),
local_search_iterations,
metric,
scale_image,
1,
txfn2)
r2 = np.asarray(r2)
r2 = pd.DataFrame(r2, columns=['MetricValue']+pnames)
## R3 ##
r3 = libfn(image1.pointer,
image2.pointer,
list(thetain),
list(thetain2),
list(thetain3),
local_search_iterations,
metric,
scale_image,
2,
txfn3)
r3 = np.asarray(r3)
r3 = pd.DataFrame(r3, columns=['MetricValue']+pnames)
## R4 ##
r4 = libfn(image1.pointer,
image2.pointer,
list(thetain),
list(thetain2),
list(thetain3),
local_search_iterations,
metric,
scale_image,
3,
txfn4)
r4 = np.asarray(r4)
r4 = pd.DataFrame(r4, columns=['MetricValue']+pnames)
rmins = [np.min(r1.iloc[:,0]), np.min(r2.iloc[:,0]), np.min(r3.iloc[:,0]), np.min(r4.iloc[:,0])]
ww = np.argmin(rmins)
if ww == 0:
return r1, txfn1
elif ww == 1:
return r2, txfn2
elif ww == 2:
return r3, txfn3
elif ww == 3:
return r4, txfn4 | ['def', 'invariant_image_similarity', '(', 'image1', ',', 'image2', ',', 'local_search_iterations', '=', '0', ',', 'metric', '=', "'MI'", ',', 'thetas', '=', 'np', '.', 'linspace', '(', '0', ',', '360', ',', '5', ')', ',', 'thetas2', '=', 'np', '.', 'linspace', '(', '0', ',', '360', ',', '5', ')', ',', 'thetas3', '=', 'np', '.', 'linspace', '(', '0', ',', '360', ',', '5', ')', ',', 'scale_image', '=', '1', ',', 'do_reflection', '=', 'False', ',', 'txfn', '=', 'None', ',', 'transform', '=', "'Affine'", ')', ':', 'if', 'transform', 'not', 'in', '{', "'Rigid'", ',', "'Similarity'", ',', "'Affine'", '}', ':', 'raise', 'ValueError', '(', "'transform must be one of Rigid/Similarity/Affine'", ')', 'if', 'image1', '.', 'pixeltype', '!=', "'float'", ':', 'image1', '=', 'image1', '.', 'clone', '(', "'float'", ')', 'if', 'image2', '.', 'pixeltype', '!=', "'float'", ':', 'image2', '=', 'image2', '.', 'clone', '(', "'float'", ')', 'if', 'txfn', 'is', 'None', ':', 'txfn', '=', 'mktemp', '(', 'suffix', '=', "'.mat'", ')', '# convert thetas to radians', 'thetain', '=', '(', 'thetas', '*', 'math', '.', 'pi', ')', '/', '180.', 'thetain2', '=', '(', 'thetas2', '*', 'math', '.', 'pi', ')', '/', '180.', 'thetain3', '=', '(', 'thetas3', '*', 'math', '.', 'pi', ')', '/', '180.', 'image1', '=', 'utils', '.', 'iMath', '(', 'image1', ',', "'Normalize'", ')', 'image2', '=', 'utils', '.', 'iMath', '(', 'image2', ',', "'Normalize'", ')', 'idim', '=', 'image1', '.', 'dimension', 'fpname', '=', '[', "'FixedParam%i'", '%', 'i', 'for', 'i', 'in', 'range', '(', '1', ',', 'idim', '+', '1', ')', ']', 'if', 'not', 'do_reflection', ':', 'libfn', '=', 'utils', '.', 'get_lib_fn', '(', "'invariantImageSimilarity_%s%iD'", '%', '(', 'transform', ',', 'idim', ')', ')', 'r1', '=', 'libfn', '(', 'image1', '.', 'pointer', ',', 'image2', '.', 'pointer', ',', 'list', '(', 'thetain', ')', ',', 'list', '(', 'thetain2', ')', ',', 'list', '(', 'thetain3', ')', ',', 'local_search_iterations', ',', 'metric', ',', 'scale_image', ',', 'int', '(', 'do_reflection', ')', ',', 'txfn', ')', 'r1', '=', 'np', '.', 'asarray', '(', 'r1', ')', 'pnames', '=', '[', "'Param%i'", '%', 'i', 'for', 'i', 'in', 'range', '(', '1', ',', 'r1', '.', 'shape', '[', '1', ']', ')', ']', 'pnames', '[', '(', 'len', '(', 'pnames', ')', '-', 'idim', ')', ':', 'len', '(', 'pnames', ')', ']', '=', 'fpname', 'r1', '=', 'pd', '.', 'DataFrame', '(', 'r1', ',', 'columns', '=', '[', "'MetricValue'", ']', '+', 'pnames', ')', 'return', 'r1', ',', 'txfn', 'else', ':', 'txfn1', '=', 'mktemp', '(', 'suffix', '=', "'.mat'", ')', 'txfn2', '=', 'mktemp', '(', 'suffix', '=', "'.mat'", ')', 'txfn3', '=', 'mktemp', '(', 'suffix', '=', "'.mat'", ')', 'txfn4', '=', 'mktemp', '(', 'suffix', '=', "'.mat'", ')', 'libfn', '=', 'utils', '.', 'get_lib_fn', '(', "'invariantImageSimilarity_%s%iD'", '%', '(', 'transform', ',', 'idim', ')', ')', '## R1 ##', 'r1', '=', 'libfn', '(', 'image1', '.', 'pointer', ',', 'image2', '.', 'pointer', ',', 'list', '(', 'thetain', ')', ',', 'list', '(', 'thetain2', ')', ',', 'list', '(', 'thetain3', ')', ',', 'local_search_iterations', ',', 'metric', ',', 'scale_image', ',', '0', ',', 'txfn1', ')', 'r1', '=', 'np', '.', 'asarray', '(', 'r1', ')', 'pnames', '=', '[', "'Param%i'", '%', 'i', 'for', 'i', 'in', 'range', '(', '1', ',', 'r1', '.', 'shape', '[', '1', ']', ')', ']', 'pnames', '[', '(', 'len', '(', 'pnames', ')', '-', 'idim', ')', ':', 'len', '(', 'pnames', ')', ']', '=', 'fpname', 'r1', '=', 'pd', '.', 'DataFrame', '(', 'r1', ',', 'columns', '=', '[', "'MetricValue'", ']', '+', 'pnames', ')', '## R2 ##', 'r2', '=', 'libfn', '(', 'image1', '.', 'pointer', ',', 'image2', '.', 'pointer', ',', 'list', '(', 'thetain', ')', ',', 'list', '(', 'thetain2', ')', ',', 'list', '(', 'thetain3', ')', ',', 'local_search_iterations', ',', 'metric', ',', 'scale_image', ',', '1', ',', 'txfn2', ')', 'r2', '=', 'np', '.', 'asarray', '(', 'r2', ')', 'r2', '=', 'pd', '.', 'DataFrame', '(', 'r2', ',', 'columns', '=', '[', "'MetricValue'", ']', '+', 'pnames', ')', '## R3 ##', 'r3', '=', 'libfn', '(', 'image1', '.', 'pointer', ',', 'image2', '.', 'pointer', ',', 'list', '(', 'thetain', ')', ',', 'list', '(', 'thetain2', ')', ',', 'list', '(', 'thetain3', ')', ',', 'local_search_iterations', ',', 'metric', ',', 'scale_image', ',', '2', ',', 'txfn3', ')', 'r3', '=', 'np', '.', 'asarray', '(', 'r3', ')', 'r3', '=', 'pd', '.', 'DataFrame', '(', 'r3', ',', 'columns', '=', '[', "'MetricValue'", ']', '+', 'pnames', ')', '## R4 ##', 'r4', '=', 'libfn', '(', 'image1', '.', 'pointer', ',', 'image2', '.', 'pointer', ',', 'list', '(', 'thetain', ')', ',', 'list', '(', 'thetain2', ')', ',', 'list', '(', 'thetain3', ')', ',', 'local_search_iterations', ',', 'metric', ',', 'scale_image', ',', '3', ',', 'txfn4', ')', 'r4', '=', 'np', '.', 'asarray', '(', 'r4', ')', 'r4', '=', 'pd', '.', 'DataFrame', '(', 'r4', ',', 'columns', '=', '[', "'MetricValue'", ']', '+', 'pnames', ')', 'rmins', '=', '[', 'np', '.', 'min', '(', 'r1', '.', 'iloc', '[', ':', ',', '0', ']', ')', ',', 'np', '.', 'min', '(', 'r2', '.', 'iloc', '[', ':', ',', '0', ']', ')', ',', 'np', '.', 'min', '(', 'r3', '.', 'iloc', '[', ':', ',', '0', ']', ')', ',', 'np', '.', 'min', '(', 'r4', '.', 'iloc', '[', ':', ',', '0', ']', ')', ']', 'ww', '=', 'np', '.', 'argmin', '(', 'rmins', ')', 'if', 'ww', '==', '0', ':', 'return', 'r1', ',', 'txfn1', 'elif', 'ww', '==', '1', ':', 'return', 'r2', ',', 'txfn2', 'elif', 'ww', '==', '2', ':', 'return', 'r3', ',', 'txfn3', 'elif', 'ww', '==', '3', ':', 'return', 'r4', ',', 'txfn4'] | Similarity metrics between two images as a function of geometry
Compute similarity metric between two images as image is rotated about its
center w/ or w/o optimization
ANTsR function: `invariantImageSimilarity`
Arguments
---------
image1 : ANTsImage
reference image
image2 : ANTsImage
moving image
local_search_iterations : integer
integer controlling local search in multistart
metric : string
which metric to use
MI
GC
thetas : 1D-ndarray/list/tuple
numeric vector of search angles in degrees
thetas2 : 1D-ndarray/list/tuple
numeric vector of search angles in degrees around principal axis 2 (3D)
thetas3 : 1D-ndarray/list/tuple
numeric vector of search angles in degrees around principal axis 3 (3D)
scale_image : scalar
global scale
do_reflection : boolean
whether to reflect image about principal axis
txfn : string (optional)
if present, write optimal tx to .mat file
transform : string
type of transform to use
Rigid
Similarity
Affine
Returns
-------
pd.DataFrame
dataframe with metric values and transformation parameters
Example
-------
>>> import ants
>>> img1 = ants.image_read(ants.get_ants_data('r16'))
>>> img2 = ants.image_read(ants.get_ants_data('r64'))
>>> metric = ants.invariant_image_similarity(img1,img2) | ['Similarity', 'metrics', 'between', 'two', 'images', 'as', 'a', 'function', 'of', 'geometry'] | train | https://github.com/ANTsX/ANTsPy/blob/638020af2cdfc5ff4bdb9809ffe67aa505727a3b/ants/utils/invariant_image_similarity.py#L15-L197 |
9,928 | bigchaindb/bigchaindb-driver | bigchaindb_driver/driver.py | TransactionsEndpoint.prepare | def prepare(*, operation='CREATE', signers=None,
recipients=None, asset=None, metadata=None, inputs=None):
"""Prepares a transaction payload, ready to be fulfilled.
Args:
operation (str): The operation to perform. Must be ``'CREATE'``
or ``'TRANSFER'``. Case insensitive. Defaults to ``'CREATE'``.
signers (:obj:`list` | :obj:`tuple` | :obj:`str`, optional):
One or more public keys representing the issuer(s) of
the asset being created. Only applies for ``'CREATE'``
operations. Defaults to ``None``.
recipients (:obj:`list` | :obj:`tuple` | :obj:`str`, optional):
One or more public keys representing the new recipients(s)
of the asset being created or transferred.
Defaults to ``None``.
asset (:obj:`dict`, optional): The asset to be created or
transferred. MUST be supplied for ``'TRANSFER'`` operations.
Defaults to ``None``.
metadata (:obj:`dict`, optional): Metadata associated with the
transaction. Defaults to ``None``.
inputs (:obj:`dict` | :obj:`list` | :obj:`tuple`, optional):
One or more inputs holding the condition(s) that this
transaction intends to fulfill. Each input is expected to
be a :obj:`dict`. Only applies to, and MUST be supplied for,
``'TRANSFER'`` operations.
Returns:
dict: The prepared transaction.
Raises:
:class:`~.exceptions.BigchaindbException`: If ``operation`` is
not ``'CREATE'`` or ``'TRANSFER'``.
.. important::
**CREATE operations**
* ``signers`` MUST be set.
* ``recipients``, ``asset``, and ``metadata`` MAY be set.
* If ``asset`` is set, it MUST be in the form of::
{
'data': {
...
}
}
* The argument ``inputs`` is ignored.
* If ``recipients`` is not given, or evaluates to
``False``, it will be set equal to ``signers``::
if not recipients:
recipients = signers
**TRANSFER operations**
* ``recipients``, ``asset``, and ``inputs`` MUST be set.
* ``asset`` MUST be in the form of::
{
'id': '<Asset ID (i.e. TX ID of its CREATE transaction)>'
}
* ``metadata`` MAY be set.
* The argument ``signers`` is ignored.
"""
return prepare_transaction(
operation=operation,
signers=signers,
recipients=recipients,
asset=asset,
metadata=metadata,
inputs=inputs,
) | python | def prepare(*, operation='CREATE', signers=None,
recipients=None, asset=None, metadata=None, inputs=None):
"""Prepares a transaction payload, ready to be fulfilled.
Args:
operation (str): The operation to perform. Must be ``'CREATE'``
or ``'TRANSFER'``. Case insensitive. Defaults to ``'CREATE'``.
signers (:obj:`list` | :obj:`tuple` | :obj:`str`, optional):
One or more public keys representing the issuer(s) of
the asset being created. Only applies for ``'CREATE'``
operations. Defaults to ``None``.
recipients (:obj:`list` | :obj:`tuple` | :obj:`str`, optional):
One or more public keys representing the new recipients(s)
of the asset being created or transferred.
Defaults to ``None``.
asset (:obj:`dict`, optional): The asset to be created or
transferred. MUST be supplied for ``'TRANSFER'`` operations.
Defaults to ``None``.
metadata (:obj:`dict`, optional): Metadata associated with the
transaction. Defaults to ``None``.
inputs (:obj:`dict` | :obj:`list` | :obj:`tuple`, optional):
One or more inputs holding the condition(s) that this
transaction intends to fulfill. Each input is expected to
be a :obj:`dict`. Only applies to, and MUST be supplied for,
``'TRANSFER'`` operations.
Returns:
dict: The prepared transaction.
Raises:
:class:`~.exceptions.BigchaindbException`: If ``operation`` is
not ``'CREATE'`` or ``'TRANSFER'``.
.. important::
**CREATE operations**
* ``signers`` MUST be set.
* ``recipients``, ``asset``, and ``metadata`` MAY be set.
* If ``asset`` is set, it MUST be in the form of::
{
'data': {
...
}
}
* The argument ``inputs`` is ignored.
* If ``recipients`` is not given, or evaluates to
``False``, it will be set equal to ``signers``::
if not recipients:
recipients = signers
**TRANSFER operations**
* ``recipients``, ``asset``, and ``inputs`` MUST be set.
* ``asset`` MUST be in the form of::
{
'id': '<Asset ID (i.e. TX ID of its CREATE transaction)>'
}
* ``metadata`` MAY be set.
* The argument ``signers`` is ignored.
"""
return prepare_transaction(
operation=operation,
signers=signers,
recipients=recipients,
asset=asset,
metadata=metadata,
inputs=inputs,
) | ['def', 'prepare', '(', '*', ',', 'operation', '=', "'CREATE'", ',', 'signers', '=', 'None', ',', 'recipients', '=', 'None', ',', 'asset', '=', 'None', ',', 'metadata', '=', 'None', ',', 'inputs', '=', 'None', ')', ':', 'return', 'prepare_transaction', '(', 'operation', '=', 'operation', ',', 'signers', '=', 'signers', ',', 'recipients', '=', 'recipients', ',', 'asset', '=', 'asset', ',', 'metadata', '=', 'metadata', ',', 'inputs', '=', 'inputs', ',', ')'] | Prepares a transaction payload, ready to be fulfilled.
Args:
operation (str): The operation to perform. Must be ``'CREATE'``
or ``'TRANSFER'``. Case insensitive. Defaults to ``'CREATE'``.
signers (:obj:`list` | :obj:`tuple` | :obj:`str`, optional):
One or more public keys representing the issuer(s) of
the asset being created. Only applies for ``'CREATE'``
operations. Defaults to ``None``.
recipients (:obj:`list` | :obj:`tuple` | :obj:`str`, optional):
One or more public keys representing the new recipients(s)
of the asset being created or transferred.
Defaults to ``None``.
asset (:obj:`dict`, optional): The asset to be created or
transferred. MUST be supplied for ``'TRANSFER'`` operations.
Defaults to ``None``.
metadata (:obj:`dict`, optional): Metadata associated with the
transaction. Defaults to ``None``.
inputs (:obj:`dict` | :obj:`list` | :obj:`tuple`, optional):
One or more inputs holding the condition(s) that this
transaction intends to fulfill. Each input is expected to
be a :obj:`dict`. Only applies to, and MUST be supplied for,
``'TRANSFER'`` operations.
Returns:
dict: The prepared transaction.
Raises:
:class:`~.exceptions.BigchaindbException`: If ``operation`` is
not ``'CREATE'`` or ``'TRANSFER'``.
.. important::
**CREATE operations**
* ``signers`` MUST be set.
* ``recipients``, ``asset``, and ``metadata`` MAY be set.
* If ``asset`` is set, it MUST be in the form of::
{
'data': {
...
}
}
* The argument ``inputs`` is ignored.
* If ``recipients`` is not given, or evaluates to
``False``, it will be set equal to ``signers``::
if not recipients:
recipients = signers
**TRANSFER operations**
* ``recipients``, ``asset``, and ``inputs`` MUST be set.
* ``asset`` MUST be in the form of::
{
'id': '<Asset ID (i.e. TX ID of its CREATE transaction)>'
}
* ``metadata`` MAY be set.
* The argument ``signers`` is ignored. | ['Prepares', 'a', 'transaction', 'payload', 'ready', 'to', 'be', 'fulfilled', '.'] | train | https://github.com/bigchaindb/bigchaindb-driver/blob/c294a535f0696bd19483ae11a4882b74e6fc061e/bigchaindb_driver/driver.py#L181-L255 |
9,929 | mishbahr/django-usersettings2 | usersettings/context_processors.py | usersettings | def usersettings(request):
"""
Returns the current ``UserSettings`` based on
the SITE_ID in the project's settings as context variables
If there is no 'usersettings' attribute in the request, fetches the
current UserSettings (from usersettings.shortcuts.get_current_usersettings).
"""
if hasattr(request, 'usersettings'):
usersettings = request.usersettings
else:
from .shortcuts import get_current_usersettings
usersettings = get_current_usersettings()
return {
'usersettings': usersettings
} | python | def usersettings(request):
"""
Returns the current ``UserSettings`` based on
the SITE_ID in the project's settings as context variables
If there is no 'usersettings' attribute in the request, fetches the
current UserSettings (from usersettings.shortcuts.get_current_usersettings).
"""
if hasattr(request, 'usersettings'):
usersettings = request.usersettings
else:
from .shortcuts import get_current_usersettings
usersettings = get_current_usersettings()
return {
'usersettings': usersettings
} | ['def', 'usersettings', '(', 'request', ')', ':', 'if', 'hasattr', '(', 'request', ',', "'usersettings'", ')', ':', 'usersettings', '=', 'request', '.', 'usersettings', 'else', ':', 'from', '.', 'shortcuts', 'import', 'get_current_usersettings', 'usersettings', '=', 'get_current_usersettings', '(', ')', 'return', '{', "'usersettings'", ':', 'usersettings', '}'] | Returns the current ``UserSettings`` based on
the SITE_ID in the project's settings as context variables
If there is no 'usersettings' attribute in the request, fetches the
current UserSettings (from usersettings.shortcuts.get_current_usersettings). | ['Returns', 'the', 'current', 'UserSettings', 'based', 'on', 'the', 'SITE_ID', 'in', 'the', 'project', 's', 'settings', 'as', 'context', 'variables'] | train | https://github.com/mishbahr/django-usersettings2/blob/cbc2f4b2e01d5401bec8a3fa39151730cd2dcd2a/usersettings/context_processors.py#L2-L18 |
9,930 | shaunduncan/helga-facts | helga_facts.py | term_regex | def term_regex(term):
"""
Returns a case-insensitive regex for searching terms
"""
return re.compile(r'^{0}$'.format(re.escape(term)), re.IGNORECASE) | python | def term_regex(term):
"""
Returns a case-insensitive regex for searching terms
"""
return re.compile(r'^{0}$'.format(re.escape(term)), re.IGNORECASE) | ['def', 'term_regex', '(', 'term', ')', ':', 'return', 're', '.', 'compile', '(', "r'^{0}$'", '.', 'format', '(', 're', '.', 'escape', '(', 'term', ')', ')', ',', 're', '.', 'IGNORECASE', ')'] | Returns a case-insensitive regex for searching terms | ['Returns', 'a', 'case', '-', 'insensitive', 'regex', 'for', 'searching', 'terms'] | train | https://github.com/shaunduncan/helga-facts/blob/956b1d93abccdaaf318d7cac4451edc7e73bf5e9/helga_facts.py#L23-L27 |
9,931 | mbj4668/pyang | pyang/plugins/sample-xml-skeleton.py | SampleXMLSkeletonPlugin.leaf | def leaf(self, node, elem, module, path):
"""Create a sample leaf element."""
if node.i_default is None:
nel, newm, path = self.sample_element(node, elem, module, path)
if path is None:
return
if self.annots:
nel.append(etree.Comment(
" type: %s " % node.search_one("type").arg))
elif self.defaults:
nel, newm, path = self.sample_element(node, elem, module, path)
if path is None:
return
nel.text = str(node.i_default_str) | python | def leaf(self, node, elem, module, path):
"""Create a sample leaf element."""
if node.i_default is None:
nel, newm, path = self.sample_element(node, elem, module, path)
if path is None:
return
if self.annots:
nel.append(etree.Comment(
" type: %s " % node.search_one("type").arg))
elif self.defaults:
nel, newm, path = self.sample_element(node, elem, module, path)
if path is None:
return
nel.text = str(node.i_default_str) | ['def', 'leaf', '(', 'self', ',', 'node', ',', 'elem', ',', 'module', ',', 'path', ')', ':', 'if', 'node', '.', 'i_default', 'is', 'None', ':', 'nel', ',', 'newm', ',', 'path', '=', 'self', '.', 'sample_element', '(', 'node', ',', 'elem', ',', 'module', ',', 'path', ')', 'if', 'path', 'is', 'None', ':', 'return', 'if', 'self', '.', 'annots', ':', 'nel', '.', 'append', '(', 'etree', '.', 'Comment', '(', '" type: %s "', '%', 'node', '.', 'search_one', '(', '"type"', ')', '.', 'arg', ')', ')', 'elif', 'self', '.', 'defaults', ':', 'nel', ',', 'newm', ',', 'path', '=', 'self', '.', 'sample_element', '(', 'node', ',', 'elem', ',', 'module', ',', 'path', ')', 'if', 'path', 'is', 'None', ':', 'return', 'nel', '.', 'text', '=', 'str', '(', 'node', '.', 'i_default_str', ')'] | Create a sample leaf element. | ['Create', 'a', 'sample', 'leaf', 'element', '.'] | train | https://github.com/mbj4668/pyang/blob/f2a5cc3142162e5b9ee4e18d154568d939ff63dd/pyang/plugins/sample-xml-skeleton.py#L153-L166 |
9,932 | senaite/senaite.core | bika/lims/browser/samplinground/printform.py | PrintForm.pdfFromPOST | def pdfFromPOST(self):
"""
It returns the pdf for the sampling rounds printed
"""
html = self.request.form.get('html')
style = self.request.form.get('style')
reporthtml = "<html><head>%s</head><body><div id='report'>%s</body></html>" % (style, html)
return self.printFromHTML(safe_unicode(reporthtml).encode('utf-8')) | python | def pdfFromPOST(self):
"""
It returns the pdf for the sampling rounds printed
"""
html = self.request.form.get('html')
style = self.request.form.get('style')
reporthtml = "<html><head>%s</head><body><div id='report'>%s</body></html>" % (style, html)
return self.printFromHTML(safe_unicode(reporthtml).encode('utf-8')) | ['def', 'pdfFromPOST', '(', 'self', ')', ':', 'html', '=', 'self', '.', 'request', '.', 'form', '.', 'get', '(', "'html'", ')', 'style', '=', 'self', '.', 'request', '.', 'form', '.', 'get', '(', "'style'", ')', 'reporthtml', '=', '"<html><head>%s</head><body><div id=\'report\'>%s</body></html>"', '%', '(', 'style', ',', 'html', ')', 'return', 'self', '.', 'printFromHTML', '(', 'safe_unicode', '(', 'reporthtml', ')', '.', 'encode', '(', "'utf-8'", ')', ')'] | It returns the pdf for the sampling rounds printed | ['It', 'returns', 'the', 'pdf', 'for', 'the', 'sampling', 'rounds', 'printed'] | train | https://github.com/senaite/senaite.core/blob/7602ce2ea2f9e81eb34e20ce17b98a3e70713f85/bika/lims/browser/samplinground/printform.py#L241-L248 |
9,933 | restran/mountains | mountains/encoding/converter.py | bin2str | def bin2str(b):
"""
Binary to string.
"""
ret = []
for pos in range(0, len(b), 8):
ret.append(chr(int(b[pos:pos + 8], 2)))
return ''.join(ret) | python | def bin2str(b):
"""
Binary to string.
"""
ret = []
for pos in range(0, len(b), 8):
ret.append(chr(int(b[pos:pos + 8], 2)))
return ''.join(ret) | ['def', 'bin2str', '(', 'b', ')', ':', 'ret', '=', '[', ']', 'for', 'pos', 'in', 'range', '(', '0', ',', 'len', '(', 'b', ')', ',', '8', ')', ':', 'ret', '.', 'append', '(', 'chr', '(', 'int', '(', 'b', '[', 'pos', ':', 'pos', '+', '8', ']', ',', '2', ')', ')', ')', 'return', "''", '.', 'join', '(', 'ret', ')'] | Binary to string. | ['Binary', 'to', 'string', '.'] | train | https://github.com/restran/mountains/blob/a97fee568b112f4e10d878f815d0db3dd0a98d74/mountains/encoding/converter.py#L183-L190 |
9,934 | roboogle/gtkmvc3 | gtkmvco/examples/converter/src/models/currencies.py | CurrenciesModel.add | def add(self, model):
"""raises an exception if the model cannot be added"""
def foo(m, p, i):
if m[i][0].name == model.name:
raise ValueError("Model already exists")
return
# checks if already existing
self.foreach(foo)
self.append((model,))
return | python | def add(self, model):
"""raises an exception if the model cannot be added"""
def foo(m, p, i):
if m[i][0].name == model.name:
raise ValueError("Model already exists")
return
# checks if already existing
self.foreach(foo)
self.append((model,))
return | ['def', 'add', '(', 'self', ',', 'model', ')', ':', 'def', 'foo', '(', 'm', ',', 'p', ',', 'i', ')', ':', 'if', 'm', '[', 'i', ']', '[', '0', ']', '.', 'name', '==', 'model', '.', 'name', ':', 'raise', 'ValueError', '(', '"Model already exists"', ')', 'return', '# checks if already existing', 'self', '.', 'foreach', '(', 'foo', ')', 'self', '.', 'append', '(', '(', 'model', ',', ')', ')', 'return'] | raises an exception if the model cannot be added | ['raises', 'an', 'exception', 'if', 'the', 'model', 'cannot', 'be', 'added'] | train | https://github.com/roboogle/gtkmvc3/blob/63405fd8d2056be26af49103b13a8d5e57fe4dff/gtkmvco/examples/converter/src/models/currencies.py#L56-L66 |
9,935 | pantsbuild/pants | src/python/pants/base/deprecated.py | validate_deprecation_semver | def validate_deprecation_semver(version_string, version_description):
"""Validates that version_string is a valid semver.
If so, returns that semver. Raises an error otherwise.
:param str version_string: A pantsbuild.pants version which affects some deprecated entity.
:param str version_description: A string used in exception messages to describe what the
`version_string` represents.
:rtype: `packaging.version.Version`
:raises DeprecationApplicationError: if the version_string parameter is invalid.
"""
if version_string is None:
raise MissingSemanticVersionError('The {} must be provided.'.format(version_description))
if not isinstance(version_string, six.string_types):
raise BadSemanticVersionError('The {} must be a version string.'.format(version_description))
try:
# NB: packaging will see versions like 1.a.0 as 1a0, and are "valid"
# We explicitly want our versions to be of the form x.y.z.
v = Version(version_string)
if len(v.base_version.split('.')) != 3:
raise BadSemanticVersionError('The given {} is not a valid version: '
'{}'.format(version_description, version_string))
if not v.is_prerelease:
raise NonDevSemanticVersionError('The given {} is not a dev version: {}\n'
'Features should generally be removed in the first `dev` release '
'of a release cycle.'.format(version_description, version_string))
return v
except InvalidVersion as e:
raise BadSemanticVersionError('The given {} {} is not a valid version: '
'{}'.format(version_description, version_string, e)) | python | def validate_deprecation_semver(version_string, version_description):
"""Validates that version_string is a valid semver.
If so, returns that semver. Raises an error otherwise.
:param str version_string: A pantsbuild.pants version which affects some deprecated entity.
:param str version_description: A string used in exception messages to describe what the
`version_string` represents.
:rtype: `packaging.version.Version`
:raises DeprecationApplicationError: if the version_string parameter is invalid.
"""
if version_string is None:
raise MissingSemanticVersionError('The {} must be provided.'.format(version_description))
if not isinstance(version_string, six.string_types):
raise BadSemanticVersionError('The {} must be a version string.'.format(version_description))
try:
# NB: packaging will see versions like 1.a.0 as 1a0, and are "valid"
# We explicitly want our versions to be of the form x.y.z.
v = Version(version_string)
if len(v.base_version.split('.')) != 3:
raise BadSemanticVersionError('The given {} is not a valid version: '
'{}'.format(version_description, version_string))
if not v.is_prerelease:
raise NonDevSemanticVersionError('The given {} is not a dev version: {}\n'
'Features should generally be removed in the first `dev` release '
'of a release cycle.'.format(version_description, version_string))
return v
except InvalidVersion as e:
raise BadSemanticVersionError('The given {} {} is not a valid version: '
'{}'.format(version_description, version_string, e)) | ['def', 'validate_deprecation_semver', '(', 'version_string', ',', 'version_description', ')', ':', 'if', 'version_string', 'is', 'None', ':', 'raise', 'MissingSemanticVersionError', '(', "'The {} must be provided.'", '.', 'format', '(', 'version_description', ')', ')', 'if', 'not', 'isinstance', '(', 'version_string', ',', 'six', '.', 'string_types', ')', ':', 'raise', 'BadSemanticVersionError', '(', "'The {} must be a version string.'", '.', 'format', '(', 'version_description', ')', ')', 'try', ':', '# NB: packaging will see versions like 1.a.0 as 1a0, and are "valid"', '# We explicitly want our versions to be of the form x.y.z.', 'v', '=', 'Version', '(', 'version_string', ')', 'if', 'len', '(', 'v', '.', 'base_version', '.', 'split', '(', "'.'", ')', ')', '!=', '3', ':', 'raise', 'BadSemanticVersionError', '(', "'The given {} is not a valid version: '", "'{}'", '.', 'format', '(', 'version_description', ',', 'version_string', ')', ')', 'if', 'not', 'v', '.', 'is_prerelease', ':', 'raise', 'NonDevSemanticVersionError', '(', "'The given {} is not a dev version: {}\\n'", "'Features should generally be removed in the first `dev` release '", "'of a release cycle.'", '.', 'format', '(', 'version_description', ',', 'version_string', ')', ')', 'return', 'v', 'except', 'InvalidVersion', 'as', 'e', ':', 'raise', 'BadSemanticVersionError', '(', "'The given {} {} is not a valid version: '", "'{}'", '.', 'format', '(', 'version_description', ',', 'version_string', ',', 'e', ')', ')'] | Validates that version_string is a valid semver.
If so, returns that semver. Raises an error otherwise.
:param str version_string: A pantsbuild.pants version which affects some deprecated entity.
:param str version_description: A string used in exception messages to describe what the
`version_string` represents.
:rtype: `packaging.version.Version`
:raises DeprecationApplicationError: if the version_string parameter is invalid. | ['Validates', 'that', 'version_string', 'is', 'a', 'valid', 'semver', '.'] | train | https://github.com/pantsbuild/pants/blob/b72e650da0df685824ffdcc71988b8c282d0962d/src/python/pants/base/deprecated.py#L61-L90 |
9,936 | crocs-muni/roca | roca/detect.py | RocaFingerprinter.process_ssh | def process_ssh(self, data, name):
"""
Processes SSH keys
:param data:
:param name:
:return:
"""
if data is None or len(data) == 0:
return
ret = []
try:
lines = [x.strip() for x in data.split(b'\n')]
for idx, line in enumerate(lines):
ret.append(self.process_ssh_line(line, name, idx))
except Exception as e:
logger.debug('Exception in processing SSH public key %s : %s' % (name, e))
self.trace_logger.log(e)
return ret | python | def process_ssh(self, data, name):
"""
Processes SSH keys
:param data:
:param name:
:return:
"""
if data is None or len(data) == 0:
return
ret = []
try:
lines = [x.strip() for x in data.split(b'\n')]
for idx, line in enumerate(lines):
ret.append(self.process_ssh_line(line, name, idx))
except Exception as e:
logger.debug('Exception in processing SSH public key %s : %s' % (name, e))
self.trace_logger.log(e)
return ret | ['def', 'process_ssh', '(', 'self', ',', 'data', ',', 'name', ')', ':', 'if', 'data', 'is', 'None', 'or', 'len', '(', 'data', ')', '==', '0', ':', 'return', 'ret', '=', '[', ']', 'try', ':', 'lines', '=', '[', 'x', '.', 'strip', '(', ')', 'for', 'x', 'in', 'data', '.', 'split', '(', "b'\\n'", ')', ']', 'for', 'idx', ',', 'line', 'in', 'enumerate', '(', 'lines', ')', ':', 'ret', '.', 'append', '(', 'self', '.', 'process_ssh_line', '(', 'line', ',', 'name', ',', 'idx', ')', ')', 'except', 'Exception', 'as', 'e', ':', 'logger', '.', 'debug', '(', "'Exception in processing SSH public key %s : %s'", '%', '(', 'name', ',', 'e', ')', ')', 'self', '.', 'trace_logger', '.', 'log', '(', 'e', ')', 'return', 'ret'] | Processes SSH keys
:param data:
:param name:
:return: | ['Processes', 'SSH', 'keys', ':', 'param', 'data', ':', ':', 'param', 'name', ':', ':', 'return', ':'] | train | https://github.com/crocs-muni/roca/blob/74ad6ce63c428d83dcffce9c5e26ef7b9e30faa5/roca/detect.py#L1605-L1624 |
9,937 | openvax/varcode | varcode/common.py | groupby_field | def groupby_field(records, field_name, skip_none=True):
"""
Given a list of objects, group them into a dictionary by
the unique values of a given field name.
"""
return apply_groupby(
records,
lambda obj: getattr(obj, field_name),
skip_none=skip_none) | python | def groupby_field(records, field_name, skip_none=True):
"""
Given a list of objects, group them into a dictionary by
the unique values of a given field name.
"""
return apply_groupby(
records,
lambda obj: getattr(obj, field_name),
skip_none=skip_none) | ['def', 'groupby_field', '(', 'records', ',', 'field_name', ',', 'skip_none', '=', 'True', ')', ':', 'return', 'apply_groupby', '(', 'records', ',', 'lambda', 'obj', ':', 'getattr', '(', 'obj', ',', 'field_name', ')', ',', 'skip_none', '=', 'skip_none', ')'] | Given a list of objects, group them into a dictionary by
the unique values of a given field name. | ['Given', 'a', 'list', 'of', 'objects', 'group', 'them', 'into', 'a', 'dictionary', 'by', 'the', 'unique', 'values', 'of', 'a', 'given', 'field', 'name', '.'] | train | https://github.com/openvax/varcode/blob/981633db45ca2b31f76c06894a7360ea5d70a9b8/varcode/common.py#L49-L57 |
9,938 | Hypex/hyppy | hyppy/hapi.py | HAPIResponse.parse | def parse(response):
"""Parse a postdata-style response format from the API into usable data"""
"""Split a a=1b=2c=3 string into a dictionary of pairs"""
tokens = {r[0]: r[1] for r in [r.split('=') for r in response.split("&")]}
# The odd dummy parameter is of no use to us
if 'dummy' in tokens:
del tokens['dummy']
"""
If we have key names that end in digits, these indicate the result set contains multiple sets
For example, planet0=Hoth&x=1&y=-10&planet1=Naboo&x=9&y=13 is actually data for two planets
Elements that end in digits (like tag0, tag1 for planets) are formatted like (tag0_1, tag1_1), so we rstrip
underscores afterwards.
"""
if re.match('\D\d+$', tokens.keys()[0]):
# Produce a list of dictionaries
set_tokens = []
for key, value in tokens:
key = re.match('^(.+\D)(\d+)$', key)
# If the key isn't in the format (i.e. a failsafe), skip it
if key is not None:
if key.group(1) not in set_tokens:
set_tokens[key.group(1)] = {}
set_tokens[key.group(1)][key.group(0).rstrip('_')] = value
tokens = set_tokens
return tokens | python | def parse(response):
"""Parse a postdata-style response format from the API into usable data"""
"""Split a a=1b=2c=3 string into a dictionary of pairs"""
tokens = {r[0]: r[1] for r in [r.split('=') for r in response.split("&")]}
# The odd dummy parameter is of no use to us
if 'dummy' in tokens:
del tokens['dummy']
"""
If we have key names that end in digits, these indicate the result set contains multiple sets
For example, planet0=Hoth&x=1&y=-10&planet1=Naboo&x=9&y=13 is actually data for two planets
Elements that end in digits (like tag0, tag1 for planets) are formatted like (tag0_1, tag1_1), so we rstrip
underscores afterwards.
"""
if re.match('\D\d+$', tokens.keys()[0]):
# Produce a list of dictionaries
set_tokens = []
for key, value in tokens:
key = re.match('^(.+\D)(\d+)$', key)
# If the key isn't in the format (i.e. a failsafe), skip it
if key is not None:
if key.group(1) not in set_tokens:
set_tokens[key.group(1)] = {}
set_tokens[key.group(1)][key.group(0).rstrip('_')] = value
tokens = set_tokens
return tokens | ['def', 'parse', '(', 'response', ')', ':', '"""Split a a=1b=2c=3 string into a dictionary of pairs"""', 'tokens', '=', '{', 'r', '[', '0', ']', ':', 'r', '[', '1', ']', 'for', 'r', 'in', '[', 'r', '.', 'split', '(', "'='", ')', 'for', 'r', 'in', 'response', '.', 'split', '(', '"&"', ')', ']', '}', '# The odd dummy parameter is of no use to us', 'if', "'dummy'", 'in', 'tokens', ':', 'del', 'tokens', '[', "'dummy'", ']', '"""\n If we have key names that end in digits, these indicate the result set contains multiple sets\n For example, planet0=Hoth&x=1&y=-10&planet1=Naboo&x=9&y=13 is actually data for two planets\n\n Elements that end in digits (like tag0, tag1 for planets) are formatted like (tag0_1, tag1_1), so we rstrip\n underscores afterwards.\n """', 'if', 're', '.', 'match', '(', "'\\D\\d+$'", ',', 'tokens', '.', 'keys', '(', ')', '[', '0', ']', ')', ':', '# Produce a list of dictionaries', 'set_tokens', '=', '[', ']', 'for', 'key', ',', 'value', 'in', 'tokens', ':', 'key', '=', 're', '.', 'match', '(', "'^(.+\\D)(\\d+)$'", ',', 'key', ')', "# If the key isn't in the format (i.e. a failsafe), skip it", 'if', 'key', 'is', 'not', 'None', ':', 'if', 'key', '.', 'group', '(', '1', ')', 'not', 'in', 'set_tokens', ':', 'set_tokens', '[', 'key', '.', 'group', '(', '1', ')', ']', '=', '{', '}', 'set_tokens', '[', 'key', '.', 'group', '(', '1', ')', ']', '[', 'key', '.', 'group', '(', '0', ')', '.', 'rstrip', '(', "'_'", ')', ']', '=', 'value', 'tokens', '=', 'set_tokens', 'return', 'tokens'] | Parse a postdata-style response format from the API into usable data | ['Parse', 'a', 'postdata', '-', 'style', 'response', 'format', 'from', 'the', 'API', 'into', 'usable', 'data'] | train | https://github.com/Hypex/hyppy/blob/a425619c2a102b0e598fd6cac8aa0f6b766f542d/hyppy/hapi.py#L204-L234 |
9,939 | ryanvarley/ExoData | exodata/astroclasses.py | _createMagConversionDict | def _createMagConversionDict():
""" loads magnitude_conversion.dat which is table A% 1995ApJS..101..117K
"""
magnitude_conversion_filepath = resource_stream(__name__, 'data/magnitude_conversion.dat')
raw_table = np.loadtxt(magnitude_conversion_filepath, '|S5')
magDict = {}
for row in raw_table:
if sys.hexversion >= 0x03000000:
starClass = row[1].decode("utf-8") # otherwise we get byte ints or b' caused by 2to3
tableData = [x.decode("utf-8") for x in row[3:]]
else:
starClass = row[1]
tableData = row[3:]
magDict[starClass] = tableData
return magDict | python | def _createMagConversionDict():
""" loads magnitude_conversion.dat which is table A% 1995ApJS..101..117K
"""
magnitude_conversion_filepath = resource_stream(__name__, 'data/magnitude_conversion.dat')
raw_table = np.loadtxt(magnitude_conversion_filepath, '|S5')
magDict = {}
for row in raw_table:
if sys.hexversion >= 0x03000000:
starClass = row[1].decode("utf-8") # otherwise we get byte ints or b' caused by 2to3
tableData = [x.decode("utf-8") for x in row[3:]]
else:
starClass = row[1]
tableData = row[3:]
magDict[starClass] = tableData
return magDict | ['def', '_createMagConversionDict', '(', ')', ':', 'magnitude_conversion_filepath', '=', 'resource_stream', '(', '__name__', ',', "'data/magnitude_conversion.dat'", ')', 'raw_table', '=', 'np', '.', 'loadtxt', '(', 'magnitude_conversion_filepath', ',', "'|S5'", ')', 'magDict', '=', '{', '}', 'for', 'row', 'in', 'raw_table', ':', 'if', 'sys', '.', 'hexversion', '>=', '0x03000000', ':', 'starClass', '=', 'row', '[', '1', ']', '.', 'decode', '(', '"utf-8"', ')', "# otherwise we get byte ints or b' caused by 2to3", 'tableData', '=', '[', 'x', '.', 'decode', '(', '"utf-8"', ')', 'for', 'x', 'in', 'row', '[', '3', ':', ']', ']', 'else', ':', 'starClass', '=', 'row', '[', '1', ']', 'tableData', '=', 'row', '[', '3', ':', ']', 'magDict', '[', 'starClass', ']', '=', 'tableData', 'return', 'magDict'] | loads magnitude_conversion.dat which is table A% 1995ApJS..101..117K | ['loads', 'magnitude_conversion', '.', 'dat', 'which', 'is', 'table', 'A%', '1995ApJS', '..', '101', '..', '117K'] | train | https://github.com/ryanvarley/ExoData/blob/e0d3652117214d2377a707d6778f93b7eb201a41/exodata/astroclasses.py#L1253-L1269 |
9,940 | spyder-ide/spyder | spyder/plugins/ipythonconsole/widgets/shell.py | ShellWidget.set_backend_for_mayavi | def set_backend_for_mayavi(self, command):
"""
Mayavi plots require the Qt backend, so we try to detect if one is
generated to change backends
"""
calling_mayavi = False
lines = command.splitlines()
for l in lines:
if not l.startswith('#'):
if 'import mayavi' in l or 'from mayavi' in l:
calling_mayavi = True
break
if calling_mayavi:
message = _("Changing backend to Qt for Mayavi")
self._append_plain_text(message + '\n')
self.silent_execute("%gui inline\n%gui qt") | python | def set_backend_for_mayavi(self, command):
"""
Mayavi plots require the Qt backend, so we try to detect if one is
generated to change backends
"""
calling_mayavi = False
lines = command.splitlines()
for l in lines:
if not l.startswith('#'):
if 'import mayavi' in l or 'from mayavi' in l:
calling_mayavi = True
break
if calling_mayavi:
message = _("Changing backend to Qt for Mayavi")
self._append_plain_text(message + '\n')
self.silent_execute("%gui inline\n%gui qt") | ['def', 'set_backend_for_mayavi', '(', 'self', ',', 'command', ')', ':', 'calling_mayavi', '=', 'False', 'lines', '=', 'command', '.', 'splitlines', '(', ')', 'for', 'l', 'in', 'lines', ':', 'if', 'not', 'l', '.', 'startswith', '(', "'#'", ')', ':', 'if', "'import mayavi'", 'in', 'l', 'or', "'from mayavi'", 'in', 'l', ':', 'calling_mayavi', '=', 'True', 'break', 'if', 'calling_mayavi', ':', 'message', '=', '_', '(', '"Changing backend to Qt for Mayavi"', ')', 'self', '.', '_append_plain_text', '(', 'message', '+', "'\\n'", ')', 'self', '.', 'silent_execute', '(', '"%gui inline\\n%gui qt"', ')'] | Mayavi plots require the Qt backend, so we try to detect if one is
generated to change backends | ['Mayavi', 'plots', 'require', 'the', 'Qt', 'backend', 'so', 'we', 'try', 'to', 'detect', 'if', 'one', 'is', 'generated', 'to', 'change', 'backends'] | train | https://github.com/spyder-ide/spyder/blob/f76836ce1b924bcc4efd3f74f2960d26a4e528e0/spyder/plugins/ipythonconsole/widgets/shell.py#L435-L450 |
9,941 | biosustain/optlang | optlang/gurobi_interface.py | _constraint_lb_and_ub_to_gurobi_sense_rhs_and_range_value | def _constraint_lb_and_ub_to_gurobi_sense_rhs_and_range_value(lb, ub):
"""Helper function used by Constraint and Model"""
if lb is None and ub is None:
raise Exception("Free constraint ...")
elif lb is None:
sense = '<'
rhs = float(ub)
range_value = 0.
elif ub is None:
sense = '>'
rhs = float(lb)
range_value = 0.
elif lb == ub:
sense = '='
rhs = float(lb)
range_value = 0.
elif lb > ub:
raise ValueError("Lower bound is larger than upper bound.")
else:
sense = '='
rhs = float(lb)
range_value = float(ub - lb)
return sense, rhs, range_value | python | def _constraint_lb_and_ub_to_gurobi_sense_rhs_and_range_value(lb, ub):
"""Helper function used by Constraint and Model"""
if lb is None and ub is None:
raise Exception("Free constraint ...")
elif lb is None:
sense = '<'
rhs = float(ub)
range_value = 0.
elif ub is None:
sense = '>'
rhs = float(lb)
range_value = 0.
elif lb == ub:
sense = '='
rhs = float(lb)
range_value = 0.
elif lb > ub:
raise ValueError("Lower bound is larger than upper bound.")
else:
sense = '='
rhs = float(lb)
range_value = float(ub - lb)
return sense, rhs, range_value | ['def', '_constraint_lb_and_ub_to_gurobi_sense_rhs_and_range_value', '(', 'lb', ',', 'ub', ')', ':', 'if', 'lb', 'is', 'None', 'and', 'ub', 'is', 'None', ':', 'raise', 'Exception', '(', '"Free constraint ..."', ')', 'elif', 'lb', 'is', 'None', ':', 'sense', '=', "'<'", 'rhs', '=', 'float', '(', 'ub', ')', 'range_value', '=', '0.', 'elif', 'ub', 'is', 'None', ':', 'sense', '=', "'>'", 'rhs', '=', 'float', '(', 'lb', ')', 'range_value', '=', '0.', 'elif', 'lb', '==', 'ub', ':', 'sense', '=', "'='", 'rhs', '=', 'float', '(', 'lb', ')', 'range_value', '=', '0.', 'elif', 'lb', '>', 'ub', ':', 'raise', 'ValueError', '(', '"Lower bound is larger than upper bound."', ')', 'else', ':', 'sense', '=', "'='", 'rhs', '=', 'float', '(', 'lb', ')', 'range_value', '=', 'float', '(', 'ub', '-', 'lb', ')', 'return', 'sense', ',', 'rhs', ',', 'range_value'] | Helper function used by Constraint and Model | ['Helper', 'function', 'used', 'by', 'Constraint', 'and', 'Model'] | train | https://github.com/biosustain/optlang/blob/13673ac26f6b3ba37a2ef392489722c52e3c5ff1/optlang/gurobi_interface.py#L65-L87 |
9,942 | eumis/pyviews | pyviews/rendering/modifiers.py | call | def call(node: Node, key: str, value: Any):
"""Calls node or node instance method"""
value = _to_list(value)
if not value or not isinstance(value[-1], dict):
value.append({})
args = value[0:-1]
kwargs = value[-1]
node.__dict__[key](*args, **kwargs) | python | def call(node: Node, key: str, value: Any):
"""Calls node or node instance method"""
value = _to_list(value)
if not value or not isinstance(value[-1], dict):
value.append({})
args = value[0:-1]
kwargs = value[-1]
node.__dict__[key](*args, **kwargs) | ['def', 'call', '(', 'node', ':', 'Node', ',', 'key', ':', 'str', ',', 'value', ':', 'Any', ')', ':', 'value', '=', '_to_list', '(', 'value', ')', 'if', 'not', 'value', 'or', 'not', 'isinstance', '(', 'value', '[', '-', '1', ']', ',', 'dict', ')', ':', 'value', '.', 'append', '(', '{', '}', ')', 'args', '=', 'value', '[', '0', ':', '-', '1', ']', 'kwargs', '=', 'value', '[', '-', '1', ']', 'node', '.', '__dict__', '[', 'key', ']', '(', '*', 'args', ',', '*', '*', 'kwargs', ')'] | Calls node or node instance method | ['Calls', 'node', 'or', 'node', 'instance', 'method'] | train | https://github.com/eumis/pyviews/blob/80a868242ee9cdc6f4ded594b3e0544cc238ed55/pyviews/rendering/modifiers.py#L24-L31 |
9,943 | RJT1990/pyflux | pyflux/families/t.py | t.second_order_score | def second_order_score(y, mean, scale, shape, skewness):
""" GAS t Update term potentially using second-order information - native Python function
Parameters
----------
y : float
datapoint for the time series
mean : float
location parameter for the t distribution
scale : float
scale parameter for the t distribution
shape : float
tail thickness parameter for the t distribution
skewness : float
skewness parameter for the t distribution
Returns
----------
- Adjusted score of the t family
"""
return ((shape+1)/shape)*(y-mean)/(np.power(scale,2) + (np.power(y-mean,2)/shape))/((shape+1)*((np.power(scale,2)*shape) - np.power(y-mean,2))/np.power((np.power(scale,2)*shape) + np.power(y-mean,2),2)) | python | def second_order_score(y, mean, scale, shape, skewness):
""" GAS t Update term potentially using second-order information - native Python function
Parameters
----------
y : float
datapoint for the time series
mean : float
location parameter for the t distribution
scale : float
scale parameter for the t distribution
shape : float
tail thickness parameter for the t distribution
skewness : float
skewness parameter for the t distribution
Returns
----------
- Adjusted score of the t family
"""
return ((shape+1)/shape)*(y-mean)/(np.power(scale,2) + (np.power(y-mean,2)/shape))/((shape+1)*((np.power(scale,2)*shape) - np.power(y-mean,2))/np.power((np.power(scale,2)*shape) + np.power(y-mean,2),2)) | ['def', 'second_order_score', '(', 'y', ',', 'mean', ',', 'scale', ',', 'shape', ',', 'skewness', ')', ':', 'return', '(', '(', 'shape', '+', '1', ')', '/', 'shape', ')', '*', '(', 'y', '-', 'mean', ')', '/', '(', 'np', '.', 'power', '(', 'scale', ',', '2', ')', '+', '(', 'np', '.', 'power', '(', 'y', '-', 'mean', ',', '2', ')', '/', 'shape', ')', ')', '/', '(', '(', 'shape', '+', '1', ')', '*', '(', '(', 'np', '.', 'power', '(', 'scale', ',', '2', ')', '*', 'shape', ')', '-', 'np', '.', 'power', '(', 'y', '-', 'mean', ',', '2', ')', ')', '/', 'np', '.', 'power', '(', '(', 'np', '.', 'power', '(', 'scale', ',', '2', ')', '*', 'shape', ')', '+', 'np', '.', 'power', '(', 'y', '-', 'mean', ',', '2', ')', ',', '2', ')', ')'] | GAS t Update term potentially using second-order information - native Python function
Parameters
----------
y : float
datapoint for the time series
mean : float
location parameter for the t distribution
scale : float
scale parameter for the t distribution
shape : float
tail thickness parameter for the t distribution
skewness : float
skewness parameter for the t distribution
Returns
----------
- Adjusted score of the t family | ['GAS', 't', 'Update', 'term', 'potentially', 'using', 'second', '-', 'order', 'information', '-', 'native', 'Python', 'function'] | train | https://github.com/RJT1990/pyflux/blob/297f2afc2095acd97c12e827dd500e8ea5da0c0f/pyflux/families/t.py#L330-L354 |
9,944 | ecordell/pymacaroons | pymacaroons/serializers/json_serializer.py | JsonSerializer._deserialize_v1 | def _deserialize_v1(self, deserialized):
'''Deserialize a JSON macaroon in v1 format.
@param serialized the macaroon in v1 JSON format.
@return the macaroon object.
'''
from pymacaroons.macaroon import Macaroon, MACAROON_V1
from pymacaroons.caveat import Caveat
caveats = []
for c in deserialized.get('caveats', []):
caveat = Caveat(
caveat_id=c['cid'],
verification_key_id=(
utils.raw_b64decode(c['vid']) if c.get('vid')
else None
),
location=(
c['cl'] if c.get('cl') else None
),
version=MACAROON_V1
)
caveats.append(caveat)
return Macaroon(
location=deserialized.get('location'),
identifier=deserialized['identifier'],
caveats=caveats,
signature=deserialized['signature'],
version=MACAROON_V1
) | python | def _deserialize_v1(self, deserialized):
'''Deserialize a JSON macaroon in v1 format.
@param serialized the macaroon in v1 JSON format.
@return the macaroon object.
'''
from pymacaroons.macaroon import Macaroon, MACAROON_V1
from pymacaroons.caveat import Caveat
caveats = []
for c in deserialized.get('caveats', []):
caveat = Caveat(
caveat_id=c['cid'],
verification_key_id=(
utils.raw_b64decode(c['vid']) if c.get('vid')
else None
),
location=(
c['cl'] if c.get('cl') else None
),
version=MACAROON_V1
)
caveats.append(caveat)
return Macaroon(
location=deserialized.get('location'),
identifier=deserialized['identifier'],
caveats=caveats,
signature=deserialized['signature'],
version=MACAROON_V1
) | ['def', '_deserialize_v1', '(', 'self', ',', 'deserialized', ')', ':', 'from', 'pymacaroons', '.', 'macaroon', 'import', 'Macaroon', ',', 'MACAROON_V1', 'from', 'pymacaroons', '.', 'caveat', 'import', 'Caveat', 'caveats', '=', '[', ']', 'for', 'c', 'in', 'deserialized', '.', 'get', '(', "'caveats'", ',', '[', ']', ')', ':', 'caveat', '=', 'Caveat', '(', 'caveat_id', '=', 'c', '[', "'cid'", ']', ',', 'verification_key_id', '=', '(', 'utils', '.', 'raw_b64decode', '(', 'c', '[', "'vid'", ']', ')', 'if', 'c', '.', 'get', '(', "'vid'", ')', 'else', 'None', ')', ',', 'location', '=', '(', 'c', '[', "'cl'", ']', 'if', 'c', '.', 'get', '(', "'cl'", ')', 'else', 'None', ')', ',', 'version', '=', 'MACAROON_V1', ')', 'caveats', '.', 'append', '(', 'caveat', ')', 'return', 'Macaroon', '(', 'location', '=', 'deserialized', '.', 'get', '(', "'location'", ')', ',', 'identifier', '=', 'deserialized', '[', "'identifier'", ']', ',', 'caveats', '=', 'caveats', ',', 'signature', '=', 'deserialized', '[', "'signature'", ']', ',', 'version', '=', 'MACAROON_V1', ')'] | Deserialize a JSON macaroon in v1 format.
@param serialized the macaroon in v1 JSON format.
@return the macaroon object. | ['Deserialize', 'a', 'JSON', 'macaroon', 'in', 'v1', 'format', '.'] | train | https://github.com/ecordell/pymacaroons/blob/c941614df15fe732ea432a62788e45410bcb868d/pymacaroons/serializers/json_serializer.py#L69-L99 |
9,945 | ladybug-tools/ladybug | ladybug/euclid.py | Vector2.angle | def angle(self, other):
"""Return the angle to the vector other"""
return math.acos(self.dot(other) / (self.magnitude() * other.magnitude())) | python | def angle(self, other):
"""Return the angle to the vector other"""
return math.acos(self.dot(other) / (self.magnitude() * other.magnitude())) | ['def', 'angle', '(', 'self', ',', 'other', ')', ':', 'return', 'math', '.', 'acos', '(', 'self', '.', 'dot', '(', 'other', ')', '/', '(', 'self', '.', 'magnitude', '(', ')', '*', 'other', '.', 'magnitude', '(', ')', ')', ')'] | Return the angle to the vector other | ['Return', 'the', 'angle', 'to', 'the', 'vector', 'other'] | train | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/euclid.py#L298-L300 |
9,946 | xgfs/NetLSD | netlsd/util.py | mat_to_laplacian | def mat_to_laplacian(mat, normalized):
"""
Converts a sparse or dence adjacency matrix to Laplacian.
Parameters
----------
mat : obj
Input adjacency matrix. If it is a Laplacian matrix already, return it.
normalized : bool
Whether to use normalized Laplacian.
Normalized and unnormalized Laplacians capture different properties of graphs, e.g. normalized Laplacian spectrum can determine whether a graph is bipartite, but not the number of its edges. We recommend using normalized Laplacian.
Returns
-------
obj
Laplacian of the input adjacency matrix
Examples
--------
>>> mat_to_laplacian(numpy.array([[0, 1, 1], [1, 0, 1], [1, 1, 0]]), False)
[[ 2, -1, -1], [-1, 2, -1], [-1, -1, 2]]
"""
if sps.issparse(mat):
if np.all(mat.diagonal()>=0): # Check diagonal
if np.all((mat-sps.diags(mat.diagonal())).data <= 0): # Check off-diagonal elements
return mat
else:
if np.all(np.diag(mat)>=0): # Check diagonal
if np.all(mat - np.diag(mat) <= 0): # Check off-diagonal elements
return mat
deg = np.squeeze(np.asarray(mat.sum(axis=1)))
if sps.issparse(mat):
L = sps.diags(deg) - mat
else:
L = np.diag(deg) - mat
if not normalized:
return L
with np.errstate(divide='ignore'):
sqrt_deg = 1.0 / np.sqrt(deg)
sqrt_deg[sqrt_deg==np.inf] = 0
if sps.issparse(mat):
sqrt_deg_mat = sps.diags(sqrt_deg)
else:
sqrt_deg_mat = np.diag(sqrt_deg)
return sqrt_deg_mat.dot(L).dot(sqrt_deg_mat) | python | def mat_to_laplacian(mat, normalized):
"""
Converts a sparse or dence adjacency matrix to Laplacian.
Parameters
----------
mat : obj
Input adjacency matrix. If it is a Laplacian matrix already, return it.
normalized : bool
Whether to use normalized Laplacian.
Normalized and unnormalized Laplacians capture different properties of graphs, e.g. normalized Laplacian spectrum can determine whether a graph is bipartite, but not the number of its edges. We recommend using normalized Laplacian.
Returns
-------
obj
Laplacian of the input adjacency matrix
Examples
--------
>>> mat_to_laplacian(numpy.array([[0, 1, 1], [1, 0, 1], [1, 1, 0]]), False)
[[ 2, -1, -1], [-1, 2, -1], [-1, -1, 2]]
"""
if sps.issparse(mat):
if np.all(mat.diagonal()>=0): # Check diagonal
if np.all((mat-sps.diags(mat.diagonal())).data <= 0): # Check off-diagonal elements
return mat
else:
if np.all(np.diag(mat)>=0): # Check diagonal
if np.all(mat - np.diag(mat) <= 0): # Check off-diagonal elements
return mat
deg = np.squeeze(np.asarray(mat.sum(axis=1)))
if sps.issparse(mat):
L = sps.diags(deg) - mat
else:
L = np.diag(deg) - mat
if not normalized:
return L
with np.errstate(divide='ignore'):
sqrt_deg = 1.0 / np.sqrt(deg)
sqrt_deg[sqrt_deg==np.inf] = 0
if sps.issparse(mat):
sqrt_deg_mat = sps.diags(sqrt_deg)
else:
sqrt_deg_mat = np.diag(sqrt_deg)
return sqrt_deg_mat.dot(L).dot(sqrt_deg_mat) | ['def', 'mat_to_laplacian', '(', 'mat', ',', 'normalized', ')', ':', 'if', 'sps', '.', 'issparse', '(', 'mat', ')', ':', 'if', 'np', '.', 'all', '(', 'mat', '.', 'diagonal', '(', ')', '>=', '0', ')', ':', '# Check diagonal', 'if', 'np', '.', 'all', '(', '(', 'mat', '-', 'sps', '.', 'diags', '(', 'mat', '.', 'diagonal', '(', ')', ')', ')', '.', 'data', '<=', '0', ')', ':', '# Check off-diagonal elements', 'return', 'mat', 'else', ':', 'if', 'np', '.', 'all', '(', 'np', '.', 'diag', '(', 'mat', ')', '>=', '0', ')', ':', '# Check diagonal', 'if', 'np', '.', 'all', '(', 'mat', '-', 'np', '.', 'diag', '(', 'mat', ')', '<=', '0', ')', ':', '# Check off-diagonal elements', 'return', 'mat', 'deg', '=', 'np', '.', 'squeeze', '(', 'np', '.', 'asarray', '(', 'mat', '.', 'sum', '(', 'axis', '=', '1', ')', ')', ')', 'if', 'sps', '.', 'issparse', '(', 'mat', ')', ':', 'L', '=', 'sps', '.', 'diags', '(', 'deg', ')', '-', 'mat', 'else', ':', 'L', '=', 'np', '.', 'diag', '(', 'deg', ')', '-', 'mat', 'if', 'not', 'normalized', ':', 'return', 'L', 'with', 'np', '.', 'errstate', '(', 'divide', '=', "'ignore'", ')', ':', 'sqrt_deg', '=', '1.0', '/', 'np', '.', 'sqrt', '(', 'deg', ')', 'sqrt_deg', '[', 'sqrt_deg', '==', 'np', '.', 'inf', ']', '=', '0', 'if', 'sps', '.', 'issparse', '(', 'mat', ')', ':', 'sqrt_deg_mat', '=', 'sps', '.', 'diags', '(', 'sqrt_deg', ')', 'else', ':', 'sqrt_deg_mat', '=', 'np', '.', 'diag', '(', 'sqrt_deg', ')', 'return', 'sqrt_deg_mat', '.', 'dot', '(', 'L', ')', '.', 'dot', '(', 'sqrt_deg_mat', ')'] | Converts a sparse or dence adjacency matrix to Laplacian.
Parameters
----------
mat : obj
Input adjacency matrix. If it is a Laplacian matrix already, return it.
normalized : bool
Whether to use normalized Laplacian.
Normalized and unnormalized Laplacians capture different properties of graphs, e.g. normalized Laplacian spectrum can determine whether a graph is bipartite, but not the number of its edges. We recommend using normalized Laplacian.
Returns
-------
obj
Laplacian of the input adjacency matrix
Examples
--------
>>> mat_to_laplacian(numpy.array([[0, 1, 1], [1, 0, 1], [1, 1, 0]]), False)
[[ 2, -1, -1], [-1, 2, -1], [-1, -1, 2]] | ['Converts', 'a', 'sparse', 'or', 'dence', 'adjacency', 'matrix', 'to', 'Laplacian', '.', 'Parameters', '----------', 'mat', ':', 'obj', 'Input', 'adjacency', 'matrix', '.', 'If', 'it', 'is', 'a', 'Laplacian', 'matrix', 'already', 'return', 'it', '.', 'normalized', ':', 'bool', 'Whether', 'to', 'use', 'normalized', 'Laplacian', '.', 'Normalized', 'and', 'unnormalized', 'Laplacians', 'capture', 'different', 'properties', 'of', 'graphs', 'e', '.', 'g', '.', 'normalized', 'Laplacian', 'spectrum', 'can', 'determine', 'whether', 'a', 'graph', 'is', 'bipartite', 'but', 'not', 'the', 'number', 'of', 'its', 'edges', '.', 'We', 'recommend', 'using', 'normalized', 'Laplacian', '.'] | train | https://github.com/xgfs/NetLSD/blob/54820b3669a94852bd9653be23b09e126e901ab3/netlsd/util.py#L129-L174 |
9,947 | scanny/python-pptx | pptx/text/layout.py | TextFitter._break_line | def _break_line(self, line_source, point_size):
"""
Return a (line, remainder) pair where *line* is the longest line in
*line_source* that will fit in this fitter's width and *remainder* is
a |_LineSource| object containing the text following the break point.
"""
lines = _BinarySearchTree.from_ordered_sequence(line_source)
predicate = self._fits_in_width_predicate(point_size)
return lines.find_max(predicate) | python | def _break_line(self, line_source, point_size):
"""
Return a (line, remainder) pair where *line* is the longest line in
*line_source* that will fit in this fitter's width and *remainder* is
a |_LineSource| object containing the text following the break point.
"""
lines = _BinarySearchTree.from_ordered_sequence(line_source)
predicate = self._fits_in_width_predicate(point_size)
return lines.find_max(predicate) | ['def', '_break_line', '(', 'self', ',', 'line_source', ',', 'point_size', ')', ':', 'lines', '=', '_BinarySearchTree', '.', 'from_ordered_sequence', '(', 'line_source', ')', 'predicate', '=', 'self', '.', '_fits_in_width_predicate', '(', 'point_size', ')', 'return', 'lines', '.', 'find_max', '(', 'predicate', ')'] | Return a (line, remainder) pair where *line* is the longest line in
*line_source* that will fit in this fitter's width and *remainder* is
a |_LineSource| object containing the text following the break point. | ['Return', 'a', '(', 'line', 'remainder', ')', 'pair', 'where', '*', 'line', '*', 'is', 'the', 'longest', 'line', 'in', '*', 'line_source', '*', 'that', 'will', 'fit', 'in', 'this', 'fitter', 's', 'width', 'and', '*', 'remainder', '*', 'is', 'a', '|_LineSource|', 'object', 'containing', 'the', 'text', 'following', 'the', 'break', 'point', '.'] | train | https://github.com/scanny/python-pptx/blob/d6ab8234f8b03953d2f831ff9394b1852db34130/pptx/text/layout.py#L42-L50 |
9,948 | Stranger6667/postmarker | postmarker/models/stats.py | StatsManager.emailclients | def emailclients(self, tag=None, fromdate=None, todate=None):
"""
Gets an overview of the email clients used to open your emails.
This is only recorded when open tracking is enabled for that email.
"""
return self.call("GET", "/stats/outbound/opens/emailclients", tag=tag, fromdate=fromdate, todate=todate) | python | def emailclients(self, tag=None, fromdate=None, todate=None):
"""
Gets an overview of the email clients used to open your emails.
This is only recorded when open tracking is enabled for that email.
"""
return self.call("GET", "/stats/outbound/opens/emailclients", tag=tag, fromdate=fromdate, todate=todate) | ['def', 'emailclients', '(', 'self', ',', 'tag', '=', 'None', ',', 'fromdate', '=', 'None', ',', 'todate', '=', 'None', ')', ':', 'return', 'self', '.', 'call', '(', '"GET"', ',', '"/stats/outbound/opens/emailclients"', ',', 'tag', '=', 'tag', ',', 'fromdate', '=', 'fromdate', ',', 'todate', '=', 'todate', ')'] | Gets an overview of the email clients used to open your emails.
This is only recorded when open tracking is enabled for that email. | ['Gets', 'an', 'overview', 'of', 'the', 'email', 'clients', 'used', 'to', 'open', 'your', 'emails', '.', 'This', 'is', 'only', 'recorded', 'when', 'open', 'tracking', 'is', 'enabled', 'for', 'that', 'email', '.'] | train | https://github.com/Stranger6667/postmarker/blob/013224ab1761e95c488c7d2701e6fa83f3108d94/postmarker/models/stats.py#L52-L57 |
9,949 | jciskey/pygraph | pygraph/functions/planarity/kocay_algorithm.py | __insert_frond_LF | def __insert_frond_LF(d_w, d_u, dfs_data):
"""Encapsulates the process of inserting a frond uw into the left side frond group."""
# --Add the frond to the left side
dfs_data['LF'].append( (d_w, d_u) )
dfs_data['FG']['l'] += 1
dfs_data['last_inserted_side'] = 'LF' | python | def __insert_frond_LF(d_w, d_u, dfs_data):
"""Encapsulates the process of inserting a frond uw into the left side frond group."""
# --Add the frond to the left side
dfs_data['LF'].append( (d_w, d_u) )
dfs_data['FG']['l'] += 1
dfs_data['last_inserted_side'] = 'LF' | ['def', '__insert_frond_LF', '(', 'd_w', ',', 'd_u', ',', 'dfs_data', ')', ':', '# --Add the frond to the left side', 'dfs_data', '[', "'LF'", ']', '.', 'append', '(', '(', 'd_w', ',', 'd_u', ')', ')', 'dfs_data', '[', "'FG'", ']', '[', "'l'", ']', '+=', '1', 'dfs_data', '[', "'last_inserted_side'", ']', '=', "'LF'"] | Encapsulates the process of inserting a frond uw into the left side frond group. | ['Encapsulates', 'the', 'process', 'of', 'inserting', 'a', 'frond', 'uw', 'into', 'the', 'left', 'side', 'frond', 'group', '.'] | train | https://github.com/jciskey/pygraph/blob/037bb2f32503fecb60d62921f9766d54109f15e2/pygraph/functions/planarity/kocay_algorithm.py#L481-L487 |
9,950 | quantmind/pulsar | pulsar/apps/http/stream.py | HttpStream.read | async def read(self, n=None):
"""Read all content
"""
if self._streamed:
return b''
buffer = []
async for body in self:
buffer.append(body)
return b''.join(buffer) | python | async def read(self, n=None):
"""Read all content
"""
if self._streamed:
return b''
buffer = []
async for body in self:
buffer.append(body)
return b''.join(buffer) | ['async', 'def', 'read', '(', 'self', ',', 'n', '=', 'None', ')', ':', 'if', 'self', '.', '_streamed', ':', 'return', "b''", 'buffer', '=', '[', ']', 'async', 'for', 'body', 'in', 'self', ':', 'buffer', '.', 'append', '(', 'body', ')', 'return', "b''", '.', 'join', '(', 'buffer', ')'] | Read all content | ['Read', 'all', 'content'] | train | https://github.com/quantmind/pulsar/blob/fee44e871954aa6ca36d00bb5a3739abfdb89b26/pulsar/apps/http/stream.py#L27-L35 |
9,951 | pkgw/pwkit | pwkit/environments/casa/dftphotom.py | dftphotom | def dftphotom(cfg):
"""Run the discrete-Fourier-transform photometry algorithm.
See the module-level documentation and the output of ``casatask dftphotom
--help`` for help. All of the algorithm configuration is specified in the
*cfg* argument, which is an instance of :class:`Config`.
"""
tb = util.tools.table()
ms = util.tools.ms()
me = util.tools.measures()
# Read stuff in. Even if the weight values don't have their
# absolute scale set correctly, we can still use them to set the
# relative weighting of the data points.
#
# datacol is (ncorr, nchan, nchunk)
# flag is (ncorr, nchan, nchunk)
# weight is (ncorr, nchunk)
# uvw is (3, nchunk)
# time is (nchunk)
# axis_info.corr_axis is (ncorr)
# axis_info.freq_axis.chan_freq is (nchan, 1) [for now?]
#
# Note that we apply msselect() again when reading the data because
# selectinit() is broken, but the invocation here is good because it
# affects the results from ms.range() and friends.
if ':' in (cfg.spw or ''):
warn('it looks like you are attempting to select channels within one or more spws')
warn('this is NOT IMPLEMENTED; I will average over the whole spw instead')
ms.open(b(cfg.vis))
totrows = ms.nrow()
ms_sels = dict((n, cfg.get(n)) for n in util.msselect_keys
if cfg.get(n) is not None)
ms.msselect(b(ms_sels))
rangeinfo = ms.range(b'data_desc_id field_id'.split())
ddids = rangeinfo['data_desc_id']
fields = rangeinfo['field_id']
colnames = [cfg.datacol] + 'flag weight time axis_info'.split()
rephase = (cfg.rephase is not None)
if fields.size != 1:
# I feel comfortable making this a fatal error, even if we're
# not rephasing.
die('selected data should contain precisely one field; got %d', fields.size)
if rephase:
fieldid = fields[0]
tb.open(b(os.path.join(cfg.vis, 'FIELD')))
phdirinfo = tb.getcell(b'PHASE_DIR', fieldid)
tb.close()
if phdirinfo.shape[1] != 1:
die('trying to rephase but target field (#%d) has a '
'time-variable phase center, which I can\'t handle', fieldid)
ra0, dec0 = phdirinfo[:,0] # in radians.
# based on intflib/pwflux.py, which was copied from
# hex/hex-lib-calcgainerr:
dra = cfg.rephase[0] - ra0
dec = cfg.rephase[1]
l = np.sin(dra) * np.cos(dec)
m = np.sin(dec) * np.cos(dec0) - np.cos(dra) * np.cos(dec) * np.sin(dec0)
n = np.sin(dec) * np.sin(dec0) + np.cos(dra) * np.cos(dec) * np.cos(dec0)
n -= 1 # makes the work below easier
lmn = np.asarray([l, m, n])
colnames.append('uvw')
# Also need this although 99% of the time `ddid` and `spwid` are the same
tb.open(b(os.path.join(cfg.vis, 'DATA_DESCRIPTION')))
ddspws = np.asarray(tb.getcol(b'SPECTRAL_WINDOW_ID'))
tb.close()
tbins = {}
colnames = b(colnames)
for ddindex, ddid in enumerate(ddids):
# Starting in CASA 4.6, selectinit(ddid) stopped actually filtering
# your data to match the specified DDID! What garbage. Work around
# with our own filtering.
ms_sels['taql'] = 'DATA_DESC_ID == %d' % ddid
ms.msselect(b(ms_sels))
ms.selectinit(ddid)
if cfg.polarization is not None:
ms.selectpolarization(b(cfg.polarization.split(',')))
ms.iterinit(maxrows=4096)
ms.iterorigin()
while True:
cols = ms.getdata(items=colnames)
if rephase:
# With appropriate spw/DDID selection, `freqs` has shape
# (nchan, 1). Convert to m^-1 so we can multiply against UVW
# directly.
freqs = cols['axis_info']['freq_axis']['chan_freq']
assert freqs.shape[1] == 1, 'internal inconsistency, chan_freq??'
freqs = freqs[:,0] * util.INVERSE_C_MS
for i in range(cols['time'].size): # all records
time = cols['time'][i]
# get out of UTC as fast as we can! For some reason
# giving 'unit=s' below doesn't do what one might hope it would.
# CASA can convert to a variety of timescales; TAI is probably
# the safest conversion in terms of being helpful while remaining
# close to the fundamental data, but TT is possible and should
# be perfectly precise for standard applications.
mq = me.epoch(b'utc', b({'value': time / 86400., 'unit': 'd'}))
mjdtt = me.measure(b(mq), b'tt')['m0']['value']
tdata = tbins.get(mjdtt, None)
if tdata is None:
tdata = tbins[mjdtt] = [0., 0., 0., 0., 0]
if rephase:
uvw = cols['uvw'][:,i]
ph = np.exp((0-2j) * np.pi * np.dot(lmn, uvw) * freqs)
for j in range(cols['flag'].shape[0]): # all polns
# We just average together all polarizations right now!
# (Not actively, but passively by just iterating over them.)
data = cols[cfg.datacol][j,:,i]
flags = cols['flag'][j,:,i]
# XXXXX casacore is currently (ca. 2012) broken and
# returns the raw weights from the dataset rather than
# applying the polarization selection. Fortunately all of
# our weights are the same, and you can never fetch more
# pol types than the dataset has, so this bit works
# despite the bug.
w = np.where(~flags)[0]
if not w.size:
continue # all flagged
if rephase:
data *= ph
d = data[w].mean()
# account for flagged parts. 90% sure this is the
# right thing to do:
wt = cols['weight'][j,i] * w.size / data.size
wd = wt * d
# note a little bit of a hack here to encode real^2 and
# imag^2 separately:
wd2 = wt * (d.real**2 + (1j) * d.imag**2)
tdata[0] += wd
tdata[1] += wd2
tdata[2] += wt
tdata[3] += wt**2
tdata[4] += 1
if not ms.iternext():
break
ms.reset() # reset selection filter so we can get next DDID
ms.close()
# Could gain some efficiency by using a better data structure than a dict().
smjd = sorted(six.iterkeys(tbins))
cfg.format.header(cfg)
for mjd in smjd:
wd, wd2, wt, wt2, n = tbins[mjd]
if n < 3: # not enough data for meaningful statistics
continue
dtmin = 1440 * (mjd - smjd[0])
r_sc = wd.real / wt * cfg.datascale
i_sc = wd.imag / wt * cfg.datascale
r2_sc = wd2.real / wt * cfg.datascale**2
i2_sc = wd2.imag / wt * cfg.datascale**2
if cfg.believeweights:
ru_sc = wt**-0.5 * cfg.datascale
iu_sc = wt**-0.5 * cfg.datascale
else:
rv_sc = r2_sc - r_sc**2 # variance among real/imag msmts
iv_sc = i2_sc - i_sc**2
ru_sc = np.sqrt(rv_sc * wt2) / wt # uncert in mean real/img values
iu_sc = np.sqrt(iv_sc * wt2) / wt
mag = np.sqrt(r_sc**2 + i_sc**2)
umag = np.sqrt(r_sc**2 * ru_sc**2 + i_sc**2 * iu_sc**2) / mag
cfg.format.row(cfg, mjd, dtmin, r_sc, ru_sc, i_sc, iu_sc, mag, umag, n) | python | def dftphotom(cfg):
"""Run the discrete-Fourier-transform photometry algorithm.
See the module-level documentation and the output of ``casatask dftphotom
--help`` for help. All of the algorithm configuration is specified in the
*cfg* argument, which is an instance of :class:`Config`.
"""
tb = util.tools.table()
ms = util.tools.ms()
me = util.tools.measures()
# Read stuff in. Even if the weight values don't have their
# absolute scale set correctly, we can still use them to set the
# relative weighting of the data points.
#
# datacol is (ncorr, nchan, nchunk)
# flag is (ncorr, nchan, nchunk)
# weight is (ncorr, nchunk)
# uvw is (3, nchunk)
# time is (nchunk)
# axis_info.corr_axis is (ncorr)
# axis_info.freq_axis.chan_freq is (nchan, 1) [for now?]
#
# Note that we apply msselect() again when reading the data because
# selectinit() is broken, but the invocation here is good because it
# affects the results from ms.range() and friends.
if ':' in (cfg.spw or ''):
warn('it looks like you are attempting to select channels within one or more spws')
warn('this is NOT IMPLEMENTED; I will average over the whole spw instead')
ms.open(b(cfg.vis))
totrows = ms.nrow()
ms_sels = dict((n, cfg.get(n)) for n in util.msselect_keys
if cfg.get(n) is not None)
ms.msselect(b(ms_sels))
rangeinfo = ms.range(b'data_desc_id field_id'.split())
ddids = rangeinfo['data_desc_id']
fields = rangeinfo['field_id']
colnames = [cfg.datacol] + 'flag weight time axis_info'.split()
rephase = (cfg.rephase is not None)
if fields.size != 1:
# I feel comfortable making this a fatal error, even if we're
# not rephasing.
die('selected data should contain precisely one field; got %d', fields.size)
if rephase:
fieldid = fields[0]
tb.open(b(os.path.join(cfg.vis, 'FIELD')))
phdirinfo = tb.getcell(b'PHASE_DIR', fieldid)
tb.close()
if phdirinfo.shape[1] != 1:
die('trying to rephase but target field (#%d) has a '
'time-variable phase center, which I can\'t handle', fieldid)
ra0, dec0 = phdirinfo[:,0] # in radians.
# based on intflib/pwflux.py, which was copied from
# hex/hex-lib-calcgainerr:
dra = cfg.rephase[0] - ra0
dec = cfg.rephase[1]
l = np.sin(dra) * np.cos(dec)
m = np.sin(dec) * np.cos(dec0) - np.cos(dra) * np.cos(dec) * np.sin(dec0)
n = np.sin(dec) * np.sin(dec0) + np.cos(dra) * np.cos(dec) * np.cos(dec0)
n -= 1 # makes the work below easier
lmn = np.asarray([l, m, n])
colnames.append('uvw')
# Also need this although 99% of the time `ddid` and `spwid` are the same
tb.open(b(os.path.join(cfg.vis, 'DATA_DESCRIPTION')))
ddspws = np.asarray(tb.getcol(b'SPECTRAL_WINDOW_ID'))
tb.close()
tbins = {}
colnames = b(colnames)
for ddindex, ddid in enumerate(ddids):
# Starting in CASA 4.6, selectinit(ddid) stopped actually filtering
# your data to match the specified DDID! What garbage. Work around
# with our own filtering.
ms_sels['taql'] = 'DATA_DESC_ID == %d' % ddid
ms.msselect(b(ms_sels))
ms.selectinit(ddid)
if cfg.polarization is not None:
ms.selectpolarization(b(cfg.polarization.split(',')))
ms.iterinit(maxrows=4096)
ms.iterorigin()
while True:
cols = ms.getdata(items=colnames)
if rephase:
# With appropriate spw/DDID selection, `freqs` has shape
# (nchan, 1). Convert to m^-1 so we can multiply against UVW
# directly.
freqs = cols['axis_info']['freq_axis']['chan_freq']
assert freqs.shape[1] == 1, 'internal inconsistency, chan_freq??'
freqs = freqs[:,0] * util.INVERSE_C_MS
for i in range(cols['time'].size): # all records
time = cols['time'][i]
# get out of UTC as fast as we can! For some reason
# giving 'unit=s' below doesn't do what one might hope it would.
# CASA can convert to a variety of timescales; TAI is probably
# the safest conversion in terms of being helpful while remaining
# close to the fundamental data, but TT is possible and should
# be perfectly precise for standard applications.
mq = me.epoch(b'utc', b({'value': time / 86400., 'unit': 'd'}))
mjdtt = me.measure(b(mq), b'tt')['m0']['value']
tdata = tbins.get(mjdtt, None)
if tdata is None:
tdata = tbins[mjdtt] = [0., 0., 0., 0., 0]
if rephase:
uvw = cols['uvw'][:,i]
ph = np.exp((0-2j) * np.pi * np.dot(lmn, uvw) * freqs)
for j in range(cols['flag'].shape[0]): # all polns
# We just average together all polarizations right now!
# (Not actively, but passively by just iterating over them.)
data = cols[cfg.datacol][j,:,i]
flags = cols['flag'][j,:,i]
# XXXXX casacore is currently (ca. 2012) broken and
# returns the raw weights from the dataset rather than
# applying the polarization selection. Fortunately all of
# our weights are the same, and you can never fetch more
# pol types than the dataset has, so this bit works
# despite the bug.
w = np.where(~flags)[0]
if not w.size:
continue # all flagged
if rephase:
data *= ph
d = data[w].mean()
# account for flagged parts. 90% sure this is the
# right thing to do:
wt = cols['weight'][j,i] * w.size / data.size
wd = wt * d
# note a little bit of a hack here to encode real^2 and
# imag^2 separately:
wd2 = wt * (d.real**2 + (1j) * d.imag**2)
tdata[0] += wd
tdata[1] += wd2
tdata[2] += wt
tdata[3] += wt**2
tdata[4] += 1
if not ms.iternext():
break
ms.reset() # reset selection filter so we can get next DDID
ms.close()
# Could gain some efficiency by using a better data structure than a dict().
smjd = sorted(six.iterkeys(tbins))
cfg.format.header(cfg)
for mjd in smjd:
wd, wd2, wt, wt2, n = tbins[mjd]
if n < 3: # not enough data for meaningful statistics
continue
dtmin = 1440 * (mjd - smjd[0])
r_sc = wd.real / wt * cfg.datascale
i_sc = wd.imag / wt * cfg.datascale
r2_sc = wd2.real / wt * cfg.datascale**2
i2_sc = wd2.imag / wt * cfg.datascale**2
if cfg.believeweights:
ru_sc = wt**-0.5 * cfg.datascale
iu_sc = wt**-0.5 * cfg.datascale
else:
rv_sc = r2_sc - r_sc**2 # variance among real/imag msmts
iv_sc = i2_sc - i_sc**2
ru_sc = np.sqrt(rv_sc * wt2) / wt # uncert in mean real/img values
iu_sc = np.sqrt(iv_sc * wt2) / wt
mag = np.sqrt(r_sc**2 + i_sc**2)
umag = np.sqrt(r_sc**2 * ru_sc**2 + i_sc**2 * iu_sc**2) / mag
cfg.format.row(cfg, mjd, dtmin, r_sc, ru_sc, i_sc, iu_sc, mag, umag, n) | ['def', 'dftphotom', '(', 'cfg', ')', ':', 'tb', '=', 'util', '.', 'tools', '.', 'table', '(', ')', 'ms', '=', 'util', '.', 'tools', '.', 'ms', '(', ')', 'me', '=', 'util', '.', 'tools', '.', 'measures', '(', ')', "# Read stuff in. Even if the weight values don't have their", '# absolute scale set correctly, we can still use them to set the', '# relative weighting of the data points.', '#', '# datacol is (ncorr, nchan, nchunk)', '# flag is (ncorr, nchan, nchunk)', '# weight is (ncorr, nchunk)', '# uvw is (3, nchunk)', '# time is (nchunk)', '# axis_info.corr_axis is (ncorr)', '# axis_info.freq_axis.chan_freq is (nchan, 1) [for now?]', '#', '# Note that we apply msselect() again when reading the data because', '# selectinit() is broken, but the invocation here is good because it', '# affects the results from ms.range() and friends.', 'if', "':'", 'in', '(', 'cfg', '.', 'spw', 'or', "''", ')', ':', 'warn', '(', "'it looks like you are attempting to select channels within one or more spws'", ')', 'warn', '(', "'this is NOT IMPLEMENTED; I will average over the whole spw instead'", ')', 'ms', '.', 'open', '(', 'b', '(', 'cfg', '.', 'vis', ')', ')', 'totrows', '=', 'ms', '.', 'nrow', '(', ')', 'ms_sels', '=', 'dict', '(', '(', 'n', ',', 'cfg', '.', 'get', '(', 'n', ')', ')', 'for', 'n', 'in', 'util', '.', 'msselect_keys', 'if', 'cfg', '.', 'get', '(', 'n', ')', 'is', 'not', 'None', ')', 'ms', '.', 'msselect', '(', 'b', '(', 'ms_sels', ')', ')', 'rangeinfo', '=', 'ms', '.', 'range', '(', "b'data_desc_id field_id'", '.', 'split', '(', ')', ')', 'ddids', '=', 'rangeinfo', '[', "'data_desc_id'", ']', 'fields', '=', 'rangeinfo', '[', "'field_id'", ']', 'colnames', '=', '[', 'cfg', '.', 'datacol', ']', '+', "'flag weight time axis_info'", '.', 'split', '(', ')', 'rephase', '=', '(', 'cfg', '.', 'rephase', 'is', 'not', 'None', ')', 'if', 'fields', '.', 'size', '!=', '1', ':', "# I feel comfortable making this a fatal error, even if we're", '# not rephasing.', 'die', '(', "'selected data should contain precisely one field; got %d'", ',', 'fields', '.', 'size', ')', 'if', 'rephase', ':', 'fieldid', '=', 'fields', '[', '0', ']', 'tb', '.', 'open', '(', 'b', '(', 'os', '.', 'path', '.', 'join', '(', 'cfg', '.', 'vis', ',', "'FIELD'", ')', ')', ')', 'phdirinfo', '=', 'tb', '.', 'getcell', '(', "b'PHASE_DIR'", ',', 'fieldid', ')', 'tb', '.', 'close', '(', ')', 'if', 'phdirinfo', '.', 'shape', '[', '1', ']', '!=', '1', ':', 'die', '(', "'trying to rephase but target field (#%d) has a '", "'time-variable phase center, which I can\\'t handle'", ',', 'fieldid', ')', 'ra0', ',', 'dec0', '=', 'phdirinfo', '[', ':', ',', '0', ']', '# in radians.', '# based on intflib/pwflux.py, which was copied from', '# hex/hex-lib-calcgainerr:', 'dra', '=', 'cfg', '.', 'rephase', '[', '0', ']', '-', 'ra0', 'dec', '=', 'cfg', '.', 'rephase', '[', '1', ']', 'l', '=', 'np', '.', 'sin', '(', 'dra', ')', '*', 'np', '.', 'cos', '(', 'dec', ')', 'm', '=', 'np', '.', 'sin', '(', 'dec', ')', '*', 'np', '.', 'cos', '(', 'dec0', ')', '-', 'np', '.', 'cos', '(', 'dra', ')', '*', 'np', '.', 'cos', '(', 'dec', ')', '*', 'np', '.', 'sin', '(', 'dec0', ')', 'n', '=', 'np', '.', 'sin', '(', 'dec', ')', '*', 'np', '.', 'sin', '(', 'dec0', ')', '+', 'np', '.', 'cos', '(', 'dra', ')', '*', 'np', '.', 'cos', '(', 'dec', ')', '*', 'np', '.', 'cos', '(', 'dec0', ')', 'n', '-=', '1', '# makes the work below easier', 'lmn', '=', 'np', '.', 'asarray', '(', '[', 'l', ',', 'm', ',', 'n', ']', ')', 'colnames', '.', 'append', '(', "'uvw'", ')', '# Also need this although 99% of the time `ddid` and `spwid` are the same', 'tb', '.', 'open', '(', 'b', '(', 'os', '.', 'path', '.', 'join', '(', 'cfg', '.', 'vis', ',', "'DATA_DESCRIPTION'", ')', ')', ')', 'ddspws', '=', 'np', '.', 'asarray', '(', 'tb', '.', 'getcol', '(', "b'SPECTRAL_WINDOW_ID'", ')', ')', 'tb', '.', 'close', '(', ')', 'tbins', '=', '{', '}', 'colnames', '=', 'b', '(', 'colnames', ')', 'for', 'ddindex', ',', 'ddid', 'in', 'enumerate', '(', 'ddids', ')', ':', '# Starting in CASA 4.6, selectinit(ddid) stopped actually filtering', '# your data to match the specified DDID! What garbage. Work around', '# with our own filtering.', 'ms_sels', '[', "'taql'", ']', '=', "'DATA_DESC_ID == %d'", '%', 'ddid', 'ms', '.', 'msselect', '(', 'b', '(', 'ms_sels', ')', ')', 'ms', '.', 'selectinit', '(', 'ddid', ')', 'if', 'cfg', '.', 'polarization', 'is', 'not', 'None', ':', 'ms', '.', 'selectpolarization', '(', 'b', '(', 'cfg', '.', 'polarization', '.', 'split', '(', "','", ')', ')', ')', 'ms', '.', 'iterinit', '(', 'maxrows', '=', '4096', ')', 'ms', '.', 'iterorigin', '(', ')', 'while', 'True', ':', 'cols', '=', 'ms', '.', 'getdata', '(', 'items', '=', 'colnames', ')', 'if', 'rephase', ':', '# With appropriate spw/DDID selection, `freqs` has shape', '# (nchan, 1). Convert to m^-1 so we can multiply against UVW', '# directly.', 'freqs', '=', 'cols', '[', "'axis_info'", ']', '[', "'freq_axis'", ']', '[', "'chan_freq'", ']', 'assert', 'freqs', '.', 'shape', '[', '1', ']', '==', '1', ',', "'internal inconsistency, chan_freq??'", 'freqs', '=', 'freqs', '[', ':', ',', '0', ']', '*', 'util', '.', 'INVERSE_C_MS', 'for', 'i', 'in', 'range', '(', 'cols', '[', "'time'", ']', '.', 'size', ')', ':', '# all records', 'time', '=', 'cols', '[', "'time'", ']', '[', 'i', ']', '# get out of UTC as fast as we can! For some reason', "# giving 'unit=s' below doesn't do what one might hope it would.", '# CASA can convert to a variety of timescales; TAI is probably', '# the safest conversion in terms of being helpful while remaining', '# close to the fundamental data, but TT is possible and should', '# be perfectly precise for standard applications.', 'mq', '=', 'me', '.', 'epoch', '(', "b'utc'", ',', 'b', '(', '{', "'value'", ':', 'time', '/', '86400.', ',', "'unit'", ':', "'d'", '}', ')', ')', 'mjdtt', '=', 'me', '.', 'measure', '(', 'b', '(', 'mq', ')', ',', "b'tt'", ')', '[', "'m0'", ']', '[', "'value'", ']', 'tdata', '=', 'tbins', '.', 'get', '(', 'mjdtt', ',', 'None', ')', 'if', 'tdata', 'is', 'None', ':', 'tdata', '=', 'tbins', '[', 'mjdtt', ']', '=', '[', '0.', ',', '0.', ',', '0.', ',', '0.', ',', '0', ']', 'if', 'rephase', ':', 'uvw', '=', 'cols', '[', "'uvw'", ']', '[', ':', ',', 'i', ']', 'ph', '=', 'np', '.', 'exp', '(', '(', '0', '-', '2j', ')', '*', 'np', '.', 'pi', '*', 'np', '.', 'dot', '(', 'lmn', ',', 'uvw', ')', '*', 'freqs', ')', 'for', 'j', 'in', 'range', '(', 'cols', '[', "'flag'", ']', '.', 'shape', '[', '0', ']', ')', ':', '# all polns', '# We just average together all polarizations right now!', '# (Not actively, but passively by just iterating over them.)', 'data', '=', 'cols', '[', 'cfg', '.', 'datacol', ']', '[', 'j', ',', ':', ',', 'i', ']', 'flags', '=', 'cols', '[', "'flag'", ']', '[', 'j', ',', ':', ',', 'i', ']', '# XXXXX casacore is currently (ca. 2012) broken and', '# returns the raw weights from the dataset rather than', '# applying the polarization selection. Fortunately all of', '# our weights are the same, and you can never fetch more', '# pol types than the dataset has, so this bit works', '# despite the bug.', 'w', '=', 'np', '.', 'where', '(', '~', 'flags', ')', '[', '0', ']', 'if', 'not', 'w', '.', 'size', ':', 'continue', '# all flagged', 'if', 'rephase', ':', 'data', '*=', 'ph', 'd', '=', 'data', '[', 'w', ']', '.', 'mean', '(', ')', '# account for flagged parts. 90% sure this is the', '# right thing to do:', 'wt', '=', 'cols', '[', "'weight'", ']', '[', 'j', ',', 'i', ']', '*', 'w', '.', 'size', '/', 'data', '.', 'size', 'wd', '=', 'wt', '*', 'd', '# note a little bit of a hack here to encode real^2 and', '# imag^2 separately:', 'wd2', '=', 'wt', '*', '(', 'd', '.', 'real', '**', '2', '+', '(', '1j', ')', '*', 'd', '.', 'imag', '**', '2', ')', 'tdata', '[', '0', ']', '+=', 'wd', 'tdata', '[', '1', ']', '+=', 'wd2', 'tdata', '[', '2', ']', '+=', 'wt', 'tdata', '[', '3', ']', '+=', 'wt', '**', '2', 'tdata', '[', '4', ']', '+=', '1', 'if', 'not', 'ms', '.', 'iternext', '(', ')', ':', 'break', 'ms', '.', 'reset', '(', ')', '# reset selection filter so we can get next DDID', 'ms', '.', 'close', '(', ')', '# Could gain some efficiency by using a better data structure than a dict().', 'smjd', '=', 'sorted', '(', 'six', '.', 'iterkeys', '(', 'tbins', ')', ')', 'cfg', '.', 'format', '.', 'header', '(', 'cfg', ')', 'for', 'mjd', 'in', 'smjd', ':', 'wd', ',', 'wd2', ',', 'wt', ',', 'wt2', ',', 'n', '=', 'tbins', '[', 'mjd', ']', 'if', 'n', '<', '3', ':', '# not enough data for meaningful statistics', 'continue', 'dtmin', '=', '1440', '*', '(', 'mjd', '-', 'smjd', '[', '0', ']', ')', 'r_sc', '=', 'wd', '.', 'real', '/', 'wt', '*', 'cfg', '.', 'datascale', 'i_sc', '=', 'wd', '.', 'imag', '/', 'wt', '*', 'cfg', '.', 'datascale', 'r2_sc', '=', 'wd2', '.', 'real', '/', 'wt', '*', 'cfg', '.', 'datascale', '**', '2', 'i2_sc', '=', 'wd2', '.', 'imag', '/', 'wt', '*', 'cfg', '.', 'datascale', '**', '2', 'if', 'cfg', '.', 'believeweights', ':', 'ru_sc', '=', 'wt', '**', '-', '0.5', '*', 'cfg', '.', 'datascale', 'iu_sc', '=', 'wt', '**', '-', '0.5', '*', 'cfg', '.', 'datascale', 'else', ':', 'rv_sc', '=', 'r2_sc', '-', 'r_sc', '**', '2', '# variance among real/imag msmts', 'iv_sc', '=', 'i2_sc', '-', 'i_sc', '**', '2', 'ru_sc', '=', 'np', '.', 'sqrt', '(', 'rv_sc', '*', 'wt2', ')', '/', 'wt', '# uncert in mean real/img values', 'iu_sc', '=', 'np', '.', 'sqrt', '(', 'iv_sc', '*', 'wt2', ')', '/', 'wt', 'mag', '=', 'np', '.', 'sqrt', '(', 'r_sc', '**', '2', '+', 'i_sc', '**', '2', ')', 'umag', '=', 'np', '.', 'sqrt', '(', 'r_sc', '**', '2', '*', 'ru_sc', '**', '2', '+', 'i_sc', '**', '2', '*', 'iu_sc', '**', '2', ')', '/', 'mag', 'cfg', '.', 'format', '.', 'row', '(', 'cfg', ',', 'mjd', ',', 'dtmin', ',', 'r_sc', ',', 'ru_sc', ',', 'i_sc', ',', 'iu_sc', ',', 'mag', ',', 'umag', ',', 'n', ')'] | Run the discrete-Fourier-transform photometry algorithm.
See the module-level documentation and the output of ``casatask dftphotom
--help`` for help. All of the algorithm configuration is specified in the
*cfg* argument, which is an instance of :class:`Config`. | ['Run', 'the', 'discrete', '-', 'Fourier', '-', 'transform', 'photometry', 'algorithm', '.'] | train | https://github.com/pkgw/pwkit/blob/d40957a1c3d2ea34e7ceac2267ee9635135f2793/pwkit/environments/casa/dftphotom.py#L190-L381 |
9,952 | cuihantao/andes | andes/models/base.py | ModelBase.on_bus | def on_bus(self, bus_idx):
"""
Return the indices of elements on the given buses for shunt-connected
elements
:param bus_idx: idx of the buses to which the elements are connected
:return: idx of elements connected to bus_idx
"""
assert hasattr(self, 'bus')
ret = []
if isinstance(bus_idx, (int, float, str)):
bus_idx = [bus_idx]
for item in bus_idx:
idx = []
for e, b in enumerate(self.bus):
if b == item:
idx.append(self.idx[e])
if len(idx) == 1:
idx = idx[0]
elif len(idx) == 0:
idx = None
ret.append(idx)
if len(ret) == 1:
ret = ret[0]
return ret | python | def on_bus(self, bus_idx):
"""
Return the indices of elements on the given buses for shunt-connected
elements
:param bus_idx: idx of the buses to which the elements are connected
:return: idx of elements connected to bus_idx
"""
assert hasattr(self, 'bus')
ret = []
if isinstance(bus_idx, (int, float, str)):
bus_idx = [bus_idx]
for item in bus_idx:
idx = []
for e, b in enumerate(self.bus):
if b == item:
idx.append(self.idx[e])
if len(idx) == 1:
idx = idx[0]
elif len(idx) == 0:
idx = None
ret.append(idx)
if len(ret) == 1:
ret = ret[0]
return ret | ['def', 'on_bus', '(', 'self', ',', 'bus_idx', ')', ':', 'assert', 'hasattr', '(', 'self', ',', "'bus'", ')', 'ret', '=', '[', ']', 'if', 'isinstance', '(', 'bus_idx', ',', '(', 'int', ',', 'float', ',', 'str', ')', ')', ':', 'bus_idx', '=', '[', 'bus_idx', ']', 'for', 'item', 'in', 'bus_idx', ':', 'idx', '=', '[', ']', 'for', 'e', ',', 'b', 'in', 'enumerate', '(', 'self', '.', 'bus', ')', ':', 'if', 'b', '==', 'item', ':', 'idx', '.', 'append', '(', 'self', '.', 'idx', '[', 'e', ']', ')', 'if', 'len', '(', 'idx', ')', '==', '1', ':', 'idx', '=', 'idx', '[', '0', ']', 'elif', 'len', '(', 'idx', ')', '==', '0', ':', 'idx', '=', 'None', 'ret', '.', 'append', '(', 'idx', ')', 'if', 'len', '(', 'ret', ')', '==', '1', ':', 'ret', '=', 'ret', '[', '0', ']', 'return', 'ret'] | Return the indices of elements on the given buses for shunt-connected
elements
:param bus_idx: idx of the buses to which the elements are connected
:return: idx of elements connected to bus_idx | ['Return', 'the', 'indices', 'of', 'elements', 'on', 'the', 'given', 'buses', 'for', 'shunt', '-', 'connected', 'elements'] | train | https://github.com/cuihantao/andes/blob/7067898d4f26ce7534e968b8486c4aa8fe3a511a/andes/models/base.py#L1366-L1396 |
9,953 | nkavaldj/myhdl_lib | myhdl_lib/fifo.py | fifo | def fifo(rst, clk, full, we, din, empty, re, dout, afull=None, aempty=None, afull_th=None, aempty_th=None, ovf=None, udf=None, count=None, count_max=None, depth=None, width=None):
""" Synchronous FIFO
Input interface: full, we, din
Output interface: empty, re, dout
It s possible to set din and dout to None. Then the fifo width will be 0 and the fifo will contain no storage.
Extra interface:
afull (o) - almost full flag, asserted when the number of empty cells <= afull_th
aempty (o) - almost empty flag, asserted when the number of full cells <= aempty_th
afull_th (i) - almost full threshold, in terms of fifo cells; signal or constant; Optional, default depth/2
aempty_th (i) - almost empty threshold, in terms of fifo cells; signal or constant; Optional, default depth/2
count (o) - number of occupied fifo cells
count_max (o) - max number of occupied fifo cells reached since the last reset
ovf (o) - overflow flag, set at the first write in a full fifo, cleared at reset
udf (o) - underflow flag, set at the first read from an empty fifo, cleared at reset
Parameters:
depth - fifo depth, must be >= 1; if not set or set to `None` default value 2 is used
width - data width in bits, must be >= 0; if not set or set to `None` the `din` width is used
"""
if (width == None):
width = 0
if din is not None:
width = len(din)
if (depth == None):
depth = 2
full_flg = Signal(bool(1))
empty_flg = Signal(bool(1))
we_safe = Signal(bool(0))
re_safe = Signal(bool(0))
rd_ptr = Signal(intbv(0, min=0, max=depth))
rd_ptr_new = Signal(intbv(0, min=0, max=depth))
wr_ptr = Signal(intbv(0, min=0, max=depth))
wr_ptr_new = Signal(intbv(0, min=0, max=depth))
@always_comb
def safe_read_write():
full.next = full_flg
empty.next = empty_flg
we_safe.next = we and not full_flg
re_safe.next = re and not empty_flg
#===========================================================================
# Write, Read, Full, Empty
#===========================================================================
@always_comb
def ptrs_new():
rd_ptr_new.next = ((rd_ptr + 1) % depth)
wr_ptr_new.next = ((wr_ptr + 1) % depth)
@always(clk.posedge)
def state_main():
if (rst):
wr_ptr.next = 0
rd_ptr.next = 0
full_flg.next = 0
empty_flg.next = 1
else:
# Write pointer
if (we_safe): wr_ptr.next = wr_ptr_new
# Read pointer
if (re_safe): rd_ptr.next = rd_ptr_new
# Empty flag
if (we_safe):
empty_flg.next = 0
elif (re_safe and (rd_ptr_new == wr_ptr)):
empty_flg.next = 1
# Full flag
if (re_safe):
full_flg.next = 0
elif (we_safe and (wr_ptr_new == rd_ptr)):
full_flg.next = 1
#===========================================================================
# Count, CountMax
#===========================================================================
''' Count '''
if (count != None) or (count_max != None) or (afull != None) or (aempty != None):
count_r = Signal(intbv(0, min=0, max=depth+1))
count_new = Signal(intbv(0, min=-1, max=depth+2))
if (count != None):
assert count.max > depth
@always_comb
def count_out():
count.next = count_r
@always_comb
def count_comb():
if (we_safe and not re_safe):
count_new.next = count_r + 1
elif (not we_safe and re_safe):
count_new.next = count_r - 1
else:
count_new.next = count_r
@always(clk.posedge)
def count_proc():
if (rst):
count_r.next = 0
else:
count_r.next = count_new
''' Count max '''
if (count_max != None):
assert count_max.max > depth
count_max_r = Signal(intbv(0, min=0,max=count_max.max))
@always(clk.posedge)
def count_max_proc():
if (rst):
count_max_r.next = 0
else:
if (count_max_r < count_new):
count_max_r.next = count_new
@always_comb
def count_max_out():
count_max.next = count_max_r
#===========================================================================
# AlmostFull, AlmostEmpty
#===========================================================================
''' AlmostFull flag '''
if (afull != None):
if (afull_th == None):
afull_th = depth//2
@always(clk.posedge)
def afull_proc():
if (rst):
afull.next = 0
else:
afull.next = (count_new >= depth-afull_th)
''' AlmostEmpty flag '''
if (aempty != None):
if (aempty_th == None):
aempty_th = depth//2
@always(clk.posedge)
def aempty_proc():
if (rst):
aempty.next = 1
else:
aempty.next = (count_new <= aempty_th)
#===========================================================================
# Overflow, Underflow
#===========================================================================
''' Overflow flag '''
if (ovf != None):
@always(clk.posedge)
def ovf_proc():
if (rst):
ovf.next = 0
else:
if (we and full_flg ):
ovf.next = 1
''' Underflow flag '''
if (udf != None):
@always(clk.posedge)
def udf_proc():
if (rst):
udf.next = 0
else:
if (re and empty_flg):
udf.next = 1
if width>0:
#===========================================================================
# Memory instance
#===========================================================================
mem_we = Signal(bool(0))
mem_addrw = Signal(intbv(0, min=0, max=depth))
mem_addrr = Signal(intbv(0, min=0, max=depth))
mem_di = Signal(intbv(0)[width:0])
mem_do = Signal(intbv(0)[width:0])
# RAM: Simple-Dual-Port, Asynchronous read
mem = ram_sdp_ar( clk = clk,
we = mem_we,
addrw = mem_addrw,
addrr = mem_addrr,
di = mem_di,
do = mem_do )
@always_comb
def mem_connect():
mem_we.next = we_safe
mem_addrw.next = wr_ptr
mem_addrr.next = rd_ptr
mem_di.next = din
dout.next = mem_do
return instances() | python | def fifo(rst, clk, full, we, din, empty, re, dout, afull=None, aempty=None, afull_th=None, aempty_th=None, ovf=None, udf=None, count=None, count_max=None, depth=None, width=None):
""" Synchronous FIFO
Input interface: full, we, din
Output interface: empty, re, dout
It s possible to set din and dout to None. Then the fifo width will be 0 and the fifo will contain no storage.
Extra interface:
afull (o) - almost full flag, asserted when the number of empty cells <= afull_th
aempty (o) - almost empty flag, asserted when the number of full cells <= aempty_th
afull_th (i) - almost full threshold, in terms of fifo cells; signal or constant; Optional, default depth/2
aempty_th (i) - almost empty threshold, in terms of fifo cells; signal or constant; Optional, default depth/2
count (o) - number of occupied fifo cells
count_max (o) - max number of occupied fifo cells reached since the last reset
ovf (o) - overflow flag, set at the first write in a full fifo, cleared at reset
udf (o) - underflow flag, set at the first read from an empty fifo, cleared at reset
Parameters:
depth - fifo depth, must be >= 1; if not set or set to `None` default value 2 is used
width - data width in bits, must be >= 0; if not set or set to `None` the `din` width is used
"""
if (width == None):
width = 0
if din is not None:
width = len(din)
if (depth == None):
depth = 2
full_flg = Signal(bool(1))
empty_flg = Signal(bool(1))
we_safe = Signal(bool(0))
re_safe = Signal(bool(0))
rd_ptr = Signal(intbv(0, min=0, max=depth))
rd_ptr_new = Signal(intbv(0, min=0, max=depth))
wr_ptr = Signal(intbv(0, min=0, max=depth))
wr_ptr_new = Signal(intbv(0, min=0, max=depth))
@always_comb
def safe_read_write():
full.next = full_flg
empty.next = empty_flg
we_safe.next = we and not full_flg
re_safe.next = re and not empty_flg
#===========================================================================
# Write, Read, Full, Empty
#===========================================================================
@always_comb
def ptrs_new():
rd_ptr_new.next = ((rd_ptr + 1) % depth)
wr_ptr_new.next = ((wr_ptr + 1) % depth)
@always(clk.posedge)
def state_main():
if (rst):
wr_ptr.next = 0
rd_ptr.next = 0
full_flg.next = 0
empty_flg.next = 1
else:
# Write pointer
if (we_safe): wr_ptr.next = wr_ptr_new
# Read pointer
if (re_safe): rd_ptr.next = rd_ptr_new
# Empty flag
if (we_safe):
empty_flg.next = 0
elif (re_safe and (rd_ptr_new == wr_ptr)):
empty_flg.next = 1
# Full flag
if (re_safe):
full_flg.next = 0
elif (we_safe and (wr_ptr_new == rd_ptr)):
full_flg.next = 1
#===========================================================================
# Count, CountMax
#===========================================================================
''' Count '''
if (count != None) or (count_max != None) or (afull != None) or (aempty != None):
count_r = Signal(intbv(0, min=0, max=depth+1))
count_new = Signal(intbv(0, min=-1, max=depth+2))
if (count != None):
assert count.max > depth
@always_comb
def count_out():
count.next = count_r
@always_comb
def count_comb():
if (we_safe and not re_safe):
count_new.next = count_r + 1
elif (not we_safe and re_safe):
count_new.next = count_r - 1
else:
count_new.next = count_r
@always(clk.posedge)
def count_proc():
if (rst):
count_r.next = 0
else:
count_r.next = count_new
''' Count max '''
if (count_max != None):
assert count_max.max > depth
count_max_r = Signal(intbv(0, min=0,max=count_max.max))
@always(clk.posedge)
def count_max_proc():
if (rst):
count_max_r.next = 0
else:
if (count_max_r < count_new):
count_max_r.next = count_new
@always_comb
def count_max_out():
count_max.next = count_max_r
#===========================================================================
# AlmostFull, AlmostEmpty
#===========================================================================
''' AlmostFull flag '''
if (afull != None):
if (afull_th == None):
afull_th = depth//2
@always(clk.posedge)
def afull_proc():
if (rst):
afull.next = 0
else:
afull.next = (count_new >= depth-afull_th)
''' AlmostEmpty flag '''
if (aempty != None):
if (aempty_th == None):
aempty_th = depth//2
@always(clk.posedge)
def aempty_proc():
if (rst):
aempty.next = 1
else:
aempty.next = (count_new <= aempty_th)
#===========================================================================
# Overflow, Underflow
#===========================================================================
''' Overflow flag '''
if (ovf != None):
@always(clk.posedge)
def ovf_proc():
if (rst):
ovf.next = 0
else:
if (we and full_flg ):
ovf.next = 1
''' Underflow flag '''
if (udf != None):
@always(clk.posedge)
def udf_proc():
if (rst):
udf.next = 0
else:
if (re and empty_flg):
udf.next = 1
if width>0:
#===========================================================================
# Memory instance
#===========================================================================
mem_we = Signal(bool(0))
mem_addrw = Signal(intbv(0, min=0, max=depth))
mem_addrr = Signal(intbv(0, min=0, max=depth))
mem_di = Signal(intbv(0)[width:0])
mem_do = Signal(intbv(0)[width:0])
# RAM: Simple-Dual-Port, Asynchronous read
mem = ram_sdp_ar( clk = clk,
we = mem_we,
addrw = mem_addrw,
addrr = mem_addrr,
di = mem_di,
do = mem_do )
@always_comb
def mem_connect():
mem_we.next = we_safe
mem_addrw.next = wr_ptr
mem_addrr.next = rd_ptr
mem_di.next = din
dout.next = mem_do
return instances() | ['def', 'fifo', '(', 'rst', ',', 'clk', ',', 'full', ',', 'we', ',', 'din', ',', 'empty', ',', 're', ',', 'dout', ',', 'afull', '=', 'None', ',', 'aempty', '=', 'None', ',', 'afull_th', '=', 'None', ',', 'aempty_th', '=', 'None', ',', 'ovf', '=', 'None', ',', 'udf', '=', 'None', ',', 'count', '=', 'None', ',', 'count_max', '=', 'None', ',', 'depth', '=', 'None', ',', 'width', '=', 'None', ')', ':', 'if', '(', 'width', '==', 'None', ')', ':', 'width', '=', '0', 'if', 'din', 'is', 'not', 'None', ':', 'width', '=', 'len', '(', 'din', ')', 'if', '(', 'depth', '==', 'None', ')', ':', 'depth', '=', '2', 'full_flg', '=', 'Signal', '(', 'bool', '(', '1', ')', ')', 'empty_flg', '=', 'Signal', '(', 'bool', '(', '1', ')', ')', 'we_safe', '=', 'Signal', '(', 'bool', '(', '0', ')', ')', 're_safe', '=', 'Signal', '(', 'bool', '(', '0', ')', ')', 'rd_ptr', '=', 'Signal', '(', 'intbv', '(', '0', ',', 'min', '=', '0', ',', 'max', '=', 'depth', ')', ')', 'rd_ptr_new', '=', 'Signal', '(', 'intbv', '(', '0', ',', 'min', '=', '0', ',', 'max', '=', 'depth', ')', ')', 'wr_ptr', '=', 'Signal', '(', 'intbv', '(', '0', ',', 'min', '=', '0', ',', 'max', '=', 'depth', ')', ')', 'wr_ptr_new', '=', 'Signal', '(', 'intbv', '(', '0', ',', 'min', '=', '0', ',', 'max', '=', 'depth', ')', ')', '@', 'always_comb', 'def', 'safe_read_write', '(', ')', ':', 'full', '.', 'next', '=', 'full_flg', 'empty', '.', 'next', '=', 'empty_flg', 'we_safe', '.', 'next', '=', 'we', 'and', 'not', 'full_flg', 're_safe', '.', 'next', '=', 're', 'and', 'not', 'empty_flg', '#===========================================================================', '# Write, Read, Full, Empty', '#===========================================================================', '@', 'always_comb', 'def', 'ptrs_new', '(', ')', ':', 'rd_ptr_new', '.', 'next', '=', '(', '(', 'rd_ptr', '+', '1', ')', '%', 'depth', ')', 'wr_ptr_new', '.', 'next', '=', '(', '(', 'wr_ptr', '+', '1', ')', '%', 'depth', ')', '@', 'always', '(', 'clk', '.', 'posedge', ')', 'def', 'state_main', '(', ')', ':', 'if', '(', 'rst', ')', ':', 'wr_ptr', '.', 'next', '=', '0', 'rd_ptr', '.', 'next', '=', '0', 'full_flg', '.', 'next', '=', '0', 'empty_flg', '.', 'next', '=', '1', 'else', ':', '# Write pointer', 'if', '(', 'we_safe', ')', ':', 'wr_ptr', '.', 'next', '=', 'wr_ptr_new', '# Read pointer', 'if', '(', 're_safe', ')', ':', 'rd_ptr', '.', 'next', '=', 'rd_ptr_new', '# Empty flag', 'if', '(', 'we_safe', ')', ':', 'empty_flg', '.', 'next', '=', '0', 'elif', '(', 're_safe', 'and', '(', 'rd_ptr_new', '==', 'wr_ptr', ')', ')', ':', 'empty_flg', '.', 'next', '=', '1', '# Full flag', 'if', '(', 're_safe', ')', ':', 'full_flg', '.', 'next', '=', '0', 'elif', '(', 'we_safe', 'and', '(', 'wr_ptr_new', '==', 'rd_ptr', ')', ')', ':', 'full_flg', '.', 'next', '=', '1', '#===========================================================================', '# Count, CountMax', '#===========================================================================', "''' Count '''", 'if', '(', 'count', '!=', 'None', ')', 'or', '(', 'count_max', '!=', 'None', ')', 'or', '(', 'afull', '!=', 'None', ')', 'or', '(', 'aempty', '!=', 'None', ')', ':', 'count_r', '=', 'Signal', '(', 'intbv', '(', '0', ',', 'min', '=', '0', ',', 'max', '=', 'depth', '+', '1', ')', ')', 'count_new', '=', 'Signal', '(', 'intbv', '(', '0', ',', 'min', '=', '-', '1', ',', 'max', '=', 'depth', '+', '2', ')', ')', 'if', '(', 'count', '!=', 'None', ')', ':', 'assert', 'count', '.', 'max', '>', 'depth', '@', 'always_comb', 'def', 'count_out', '(', ')', ':', 'count', '.', 'next', '=', 'count_r', '@', 'always_comb', 'def', 'count_comb', '(', ')', ':', 'if', '(', 'we_safe', 'and', 'not', 're_safe', ')', ':', 'count_new', '.', 'next', '=', 'count_r', '+', '1', 'elif', '(', 'not', 'we_safe', 'and', 're_safe', ')', ':', 'count_new', '.', 'next', '=', 'count_r', '-', '1', 'else', ':', 'count_new', '.', 'next', '=', 'count_r', '@', 'always', '(', 'clk', '.', 'posedge', ')', 'def', 'count_proc', '(', ')', ':', 'if', '(', 'rst', ')', ':', 'count_r', '.', 'next', '=', '0', 'else', ':', 'count_r', '.', 'next', '=', 'count_new', "''' Count max '''", 'if', '(', 'count_max', '!=', 'None', ')', ':', 'assert', 'count_max', '.', 'max', '>', 'depth', 'count_max_r', '=', 'Signal', '(', 'intbv', '(', '0', ',', 'min', '=', '0', ',', 'max', '=', 'count_max', '.', 'max', ')', ')', '@', 'always', '(', 'clk', '.', 'posedge', ')', 'def', 'count_max_proc', '(', ')', ':', 'if', '(', 'rst', ')', ':', 'count_max_r', '.', 'next', '=', '0', 'else', ':', 'if', '(', 'count_max_r', '<', 'count_new', ')', ':', 'count_max_r', '.', 'next', '=', 'count_new', '@', 'always_comb', 'def', 'count_max_out', '(', ')', ':', 'count_max', '.', 'next', '=', 'count_max_r', '#===========================================================================', '# AlmostFull, AlmostEmpty', '#===========================================================================', "''' AlmostFull flag '''", 'if', '(', 'afull', '!=', 'None', ')', ':', 'if', '(', 'afull_th', '==', 'None', ')', ':', 'afull_th', '=', 'depth', '//', '2', '@', 'always', '(', 'clk', '.', 'posedge', ')', 'def', 'afull_proc', '(', ')', ':', 'if', '(', 'rst', ')', ':', 'afull', '.', 'next', '=', '0', 'else', ':', 'afull', '.', 'next', '=', '(', 'count_new', '>=', 'depth', '-', 'afull_th', ')', "''' AlmostEmpty flag '''", 'if', '(', 'aempty', '!=', 'None', ')', ':', 'if', '(', 'aempty_th', '==', 'None', ')', ':', 'aempty_th', '=', 'depth', '//', '2', '@', 'always', '(', 'clk', '.', 'posedge', ')', 'def', 'aempty_proc', '(', ')', ':', 'if', '(', 'rst', ')', ':', 'aempty', '.', 'next', '=', '1', 'else', ':', 'aempty', '.', 'next', '=', '(', 'count_new', '<=', 'aempty_th', ')', '#===========================================================================', '# Overflow, Underflow', '#===========================================================================', "''' Overflow flag '''", 'if', '(', 'ovf', '!=', 'None', ')', ':', '@', 'always', '(', 'clk', '.', 'posedge', ')', 'def', 'ovf_proc', '(', ')', ':', 'if', '(', 'rst', ')', ':', 'ovf', '.', 'next', '=', '0', 'else', ':', 'if', '(', 'we', 'and', 'full_flg', ')', ':', 'ovf', '.', 'next', '=', '1', "''' Underflow flag '''", 'if', '(', 'udf', '!=', 'None', ')', ':', '@', 'always', '(', 'clk', '.', 'posedge', ')', 'def', 'udf_proc', '(', ')', ':', 'if', '(', 'rst', ')', ':', 'udf', '.', 'next', '=', '0', 'else', ':', 'if', '(', 're', 'and', 'empty_flg', ')', ':', 'udf', '.', 'next', '=', '1', 'if', 'width', '>', '0', ':', '#===========================================================================', '# Memory instance', '#===========================================================================', 'mem_we', '=', 'Signal', '(', 'bool', '(', '0', ')', ')', 'mem_addrw', '=', 'Signal', '(', 'intbv', '(', '0', ',', 'min', '=', '0', ',', 'max', '=', 'depth', ')', ')', 'mem_addrr', '=', 'Signal', '(', 'intbv', '(', '0', ',', 'min', '=', '0', ',', 'max', '=', 'depth', ')', ')', 'mem_di', '=', 'Signal', '(', 'intbv', '(', '0', ')', '[', 'width', ':', '0', ']', ')', 'mem_do', '=', 'Signal', '(', 'intbv', '(', '0', ')', '[', 'width', ':', '0', ']', ')', '# RAM: Simple-Dual-Port, Asynchronous read', 'mem', '=', 'ram_sdp_ar', '(', 'clk', '=', 'clk', ',', 'we', '=', 'mem_we', ',', 'addrw', '=', 'mem_addrw', ',', 'addrr', '=', 'mem_addrr', ',', 'di', '=', 'mem_di', ',', 'do', '=', 'mem_do', ')', '@', 'always_comb', 'def', 'mem_connect', '(', ')', ':', 'mem_we', '.', 'next', '=', 'we_safe', 'mem_addrw', '.', 'next', '=', 'wr_ptr', 'mem_addrr', '.', 'next', '=', 'rd_ptr', 'mem_di', '.', 'next', '=', 'din', 'dout', '.', 'next', '=', 'mem_do', 'return', 'instances', '(', ')'] | Synchronous FIFO
Input interface: full, we, din
Output interface: empty, re, dout
It s possible to set din and dout to None. Then the fifo width will be 0 and the fifo will contain no storage.
Extra interface:
afull (o) - almost full flag, asserted when the number of empty cells <= afull_th
aempty (o) - almost empty flag, asserted when the number of full cells <= aempty_th
afull_th (i) - almost full threshold, in terms of fifo cells; signal or constant; Optional, default depth/2
aempty_th (i) - almost empty threshold, in terms of fifo cells; signal or constant; Optional, default depth/2
count (o) - number of occupied fifo cells
count_max (o) - max number of occupied fifo cells reached since the last reset
ovf (o) - overflow flag, set at the first write in a full fifo, cleared at reset
udf (o) - underflow flag, set at the first read from an empty fifo, cleared at reset
Parameters:
depth - fifo depth, must be >= 1; if not set or set to `None` default value 2 is used
width - data width in bits, must be >= 0; if not set or set to `None` the `din` width is used | ['Synchronous', 'FIFO'] | train | https://github.com/nkavaldj/myhdl_lib/blob/9902afd2031e7847373f692821b2135fd0810aa8/myhdl_lib/fifo.py#L6-L210 |
9,954 | chemlab/chemlab | chemlab/mviewer/api/appeareance.py | change_color | def change_color(color):
"""Change the color of the currently selected objects. *color* is
represented as a string. Otherwise color can be passed as an rgba
tuple of values between 0, 255
Reset the color by passing *color=None*.
You can call this function interactively by using::
change_color.interactive()
A new dialog will popup with a color chooser.
"""
rep = current_representation()
# Let's parse the color first
if isinstance(color, str):
# The color should be a string
col = color_from_string(color)
if isinstance(color, tuple):
col = color
if color is None:
col = None
# Color array
rep.change_color(rep.selection_state, col) | python | def change_color(color):
"""Change the color of the currently selected objects. *color* is
represented as a string. Otherwise color can be passed as an rgba
tuple of values between 0, 255
Reset the color by passing *color=None*.
You can call this function interactively by using::
change_color.interactive()
A new dialog will popup with a color chooser.
"""
rep = current_representation()
# Let's parse the color first
if isinstance(color, str):
# The color should be a string
col = color_from_string(color)
if isinstance(color, tuple):
col = color
if color is None:
col = None
# Color array
rep.change_color(rep.selection_state, col) | ['def', 'change_color', '(', 'color', ')', ':', 'rep', '=', 'current_representation', '(', ')', "# Let's parse the color first", 'if', 'isinstance', '(', 'color', ',', 'str', ')', ':', '# The color should be a string', 'col', '=', 'color_from_string', '(', 'color', ')', 'if', 'isinstance', '(', 'color', ',', 'tuple', ')', ':', 'col', '=', 'color', 'if', 'color', 'is', 'None', ':', 'col', '=', 'None', '# Color array', 'rep', '.', 'change_color', '(', 'rep', '.', 'selection_state', ',', 'col', ')'] | Change the color of the currently selected objects. *color* is
represented as a string. Otherwise color can be passed as an rgba
tuple of values between 0, 255
Reset the color by passing *color=None*.
You can call this function interactively by using::
change_color.interactive()
A new dialog will popup with a color chooser. | ['Change', 'the', 'color', 'of', 'the', 'currently', 'selected', 'objects', '.', '*', 'color', '*', 'is', 'represented', 'as', 'a', 'string', '.', 'Otherwise', 'color', 'can', 'be', 'passed', 'as', 'an', 'rgba', 'tuple', 'of', 'values', 'between', '0', '255'] | train | https://github.com/chemlab/chemlab/blob/c8730966316d101e24f39ac3b96b51282aba0abe/chemlab/mviewer/api/appeareance.py#L85-L113 |
9,955 | thiagopbueno/rddl2tf | rddl2tf/fluent.py | TensorFluent.stop_gradient | def stop_gradient(cls, x: 'TensorFluent') -> 'TensorFluent':
'''Returns a copy of the input fluent with stop_gradient at tensor level.
Args:
x: The input fluent.
Returns:
A TensorFluent that stops backpropagation of gradient computations.
'''
scope = x.scope.as_list()
batch = x.batch
return TensorFluent(tf.stop_gradient(x.tensor), scope, batch) | python | def stop_gradient(cls, x: 'TensorFluent') -> 'TensorFluent':
'''Returns a copy of the input fluent with stop_gradient at tensor level.
Args:
x: The input fluent.
Returns:
A TensorFluent that stops backpropagation of gradient computations.
'''
scope = x.scope.as_list()
batch = x.batch
return TensorFluent(tf.stop_gradient(x.tensor), scope, batch) | ['def', 'stop_gradient', '(', 'cls', ',', 'x', ':', "'TensorFluent'", ')', '->', "'TensorFluent'", ':', 'scope', '=', 'x', '.', 'scope', '.', 'as_list', '(', ')', 'batch', '=', 'x', '.', 'batch', 'return', 'TensorFluent', '(', 'tf', '.', 'stop_gradient', '(', 'x', '.', 'tensor', ')', ',', 'scope', ',', 'batch', ')'] | Returns a copy of the input fluent with stop_gradient at tensor level.
Args:
x: The input fluent.
Returns:
A TensorFluent that stops backpropagation of gradient computations. | ['Returns', 'a', 'copy', 'of', 'the', 'input', 'fluent', 'with', 'stop_gradient', 'at', 'tensor', 'level', '.'] | train | https://github.com/thiagopbueno/rddl2tf/blob/f7c03d3a74d2663807c1e23e04eeed2e85166b71/rddl2tf/fluent.py#L256-L267 |
9,956 | priestc/moneywagon | moneywagon/tx.py | Transaction.select_inputs | def select_inputs(self, amount):
'''Maximize transaction priority. Select the oldest inputs,
that are sufficient to cover the spent amount. Then,
remove any unneeded inputs, starting with
the smallest in value.
Returns sum of amounts of inputs selected'''
sorted_txin = sorted(self.ins, key=lambda x:-x['input']['confirmations'])
total_amount = 0
for (idx, tx_in) in enumerate(sorted_txin):
total_amount += tx_in['input']['amount']
if (total_amount >= amount):
break
sorted_txin = sorted(sorted_txin[:idx+1], key=lambda x:x['input']['amount'])
for (idx, tx_in) in enumerate(sorted_txin):
value = tx_in['input']['amount']
if (total_amount - value < amount):
break
else:
total_amount -= value
self.ins = sorted_txin[idx:]
return total_amount | python | def select_inputs(self, amount):
'''Maximize transaction priority. Select the oldest inputs,
that are sufficient to cover the spent amount. Then,
remove any unneeded inputs, starting with
the smallest in value.
Returns sum of amounts of inputs selected'''
sorted_txin = sorted(self.ins, key=lambda x:-x['input']['confirmations'])
total_amount = 0
for (idx, tx_in) in enumerate(sorted_txin):
total_amount += tx_in['input']['amount']
if (total_amount >= amount):
break
sorted_txin = sorted(sorted_txin[:idx+1], key=lambda x:x['input']['amount'])
for (idx, tx_in) in enumerate(sorted_txin):
value = tx_in['input']['amount']
if (total_amount - value < amount):
break
else:
total_amount -= value
self.ins = sorted_txin[idx:]
return total_amount | ['def', 'select_inputs', '(', 'self', ',', 'amount', ')', ':', 'sorted_txin', '=', 'sorted', '(', 'self', '.', 'ins', ',', 'key', '=', 'lambda', 'x', ':', '-', 'x', '[', "'input'", ']', '[', "'confirmations'", ']', ')', 'total_amount', '=', '0', 'for', '(', 'idx', ',', 'tx_in', ')', 'in', 'enumerate', '(', 'sorted_txin', ')', ':', 'total_amount', '+=', 'tx_in', '[', "'input'", ']', '[', "'amount'", ']', 'if', '(', 'total_amount', '>=', 'amount', ')', ':', 'break', 'sorted_txin', '=', 'sorted', '(', 'sorted_txin', '[', ':', 'idx', '+', '1', ']', ',', 'key', '=', 'lambda', 'x', ':', 'x', '[', "'input'", ']', '[', "'amount'", ']', ')', 'for', '(', 'idx', ',', 'tx_in', ')', 'in', 'enumerate', '(', 'sorted_txin', ')', ':', 'value', '=', 'tx_in', '[', "'input'", ']', '[', "'amount'", ']', 'if', '(', 'total_amount', '-', 'value', '<', 'amount', ')', ':', 'break', 'else', ':', 'total_amount', '-=', 'value', 'self', '.', 'ins', '=', 'sorted_txin', '[', 'idx', ':', ']', 'return', 'total_amount'] | Maximize transaction priority. Select the oldest inputs,
that are sufficient to cover the spent amount. Then,
remove any unneeded inputs, starting with
the smallest in value.
Returns sum of amounts of inputs selected | ['Maximize', 'transaction', 'priority', '.', 'Select', 'the', 'oldest', 'inputs', 'that', 'are', 'sufficient', 'to', 'cover', 'the', 'spent', 'amount', '.', 'Then', 'remove', 'any', 'unneeded', 'inputs', 'starting', 'with', 'the', 'smallest', 'in', 'value', '.', 'Returns', 'sum', 'of', 'amounts', 'of', 'inputs', 'selected'] | train | https://github.com/priestc/moneywagon/blob/00518f1f557dcca8b3031f46d3564c2baa0227a3/moneywagon/tx.py#L123-L143 |
9,957 | Bogdanp/dramatiq | dramatiq/rate_limits/rate_limiter.py | RateLimiter.acquire | def acquire(self, *, raise_on_failure=True):
"""Attempt to acquire a slot under this rate limiter.
Parameters:
raise_on_failure(bool): Whether or not failures should raise an
exception. If this is false, the context manager will instead
return a boolean value representing whether or not the rate
limit slot was acquired.
Returns:
bool: Whether or not the slot could be acquired.
"""
acquired = False
try:
acquired = self._acquire()
if raise_on_failure and not acquired:
raise RateLimitExceeded("rate limit exceeded for key %(key)r" % vars(self))
yield acquired
finally:
if acquired:
self._release() | python | def acquire(self, *, raise_on_failure=True):
"""Attempt to acquire a slot under this rate limiter.
Parameters:
raise_on_failure(bool): Whether or not failures should raise an
exception. If this is false, the context manager will instead
return a boolean value representing whether or not the rate
limit slot was acquired.
Returns:
bool: Whether or not the slot could be acquired.
"""
acquired = False
try:
acquired = self._acquire()
if raise_on_failure and not acquired:
raise RateLimitExceeded("rate limit exceeded for key %(key)r" % vars(self))
yield acquired
finally:
if acquired:
self._release() | ['def', 'acquire', '(', 'self', ',', '*', ',', 'raise_on_failure', '=', 'True', ')', ':', 'acquired', '=', 'False', 'try', ':', 'acquired', '=', 'self', '.', '_acquire', '(', ')', 'if', 'raise_on_failure', 'and', 'not', 'acquired', ':', 'raise', 'RateLimitExceeded', '(', '"rate limit exceeded for key %(key)r"', '%', 'vars', '(', 'self', ')', ')', 'yield', 'acquired', 'finally', ':', 'if', 'acquired', ':', 'self', '.', '_release', '(', ')'] | Attempt to acquire a slot under this rate limiter.
Parameters:
raise_on_failure(bool): Whether or not failures should raise an
exception. If this is false, the context manager will instead
return a boolean value representing whether or not the rate
limit slot was acquired.
Returns:
bool: Whether or not the slot could be acquired. | ['Attempt', 'to', 'acquire', 'a', 'slot', 'under', 'this', 'rate', 'limiter', '.'] | train | https://github.com/Bogdanp/dramatiq/blob/a8cc2728478e794952a5a50c3fb19ec455fe91b6/dramatiq/rate_limits/rate_limiter.py#L56-L78 |
9,958 | HDI-Project/ballet | ballet/project.py | Project.pr_num | def pr_num(self):
"""Return the PR number or None if not on a PR"""
result = get_pr_num(repo=self.repo)
if result is None:
result = get_travis_pr_num()
return result | python | def pr_num(self):
"""Return the PR number or None if not on a PR"""
result = get_pr_num(repo=self.repo)
if result is None:
result = get_travis_pr_num()
return result | ['def', 'pr_num', '(', 'self', ')', ':', 'result', '=', 'get_pr_num', '(', 'repo', '=', 'self', '.', 'repo', ')', 'if', 'result', 'is', 'None', ':', 'result', '=', 'get_travis_pr_num', '(', ')', 'return', 'result'] | Return the PR number or None if not on a PR | ['Return', 'the', 'PR', 'number', 'or', 'None', 'if', 'not', 'on', 'a', 'PR'] | train | https://github.com/HDI-Project/ballet/blob/6f4d4b87b8234cb6bb38b9e9484a58ef8fe8fdb2/ballet/project.py#L165-L170 |
9,959 | JdeRobot/base | src/drivers/MAVLinkServer/MAVProxy/pymavlink/dialects/v20/ardupilotmega.py | MAVLink.data64_send | def data64_send(self, type, len, data, force_mavlink1=False):
'''
Data packet, size 64
type : data type (uint8_t)
len : data length (uint8_t)
data : raw data (uint8_t)
'''
return self.send(self.data64_encode(type, len, data), force_mavlink1=force_mavlink1) | python | def data64_send(self, type, len, data, force_mavlink1=False):
'''
Data packet, size 64
type : data type (uint8_t)
len : data length (uint8_t)
data : raw data (uint8_t)
'''
return self.send(self.data64_encode(type, len, data), force_mavlink1=force_mavlink1) | ['def', 'data64_send', '(', 'self', ',', 'type', ',', 'len', ',', 'data', ',', 'force_mavlink1', '=', 'False', ')', ':', 'return', 'self', '.', 'send', '(', 'self', '.', 'data64_encode', '(', 'type', ',', 'len', ',', 'data', ')', ',', 'force_mavlink1', '=', 'force_mavlink1', ')'] | Data packet, size 64
type : data type (uint8_t)
len : data length (uint8_t)
data : raw data (uint8_t) | ['Data', 'packet', 'size', '64'] | train | https://github.com/JdeRobot/base/blob/303b18992785b2fe802212f2d758a60873007f1f/src/drivers/MAVLinkServer/MAVProxy/pymavlink/dialects/v20/ardupilotmega.py#L10273-L10282 |
9,960 | titusjan/argos | argos/widgets/argostreeview.py | ArgosTreeView.expandPath | def expandPath(self, path):
""" Follows the path and expand all nodes along the way.
Returns (item, index) tuple of the last node in the path (the leaf node). This can be
reused e.g. to select it.
"""
iiPath = self.model().findItemAndIndexPath(path)
for (item, index) in iiPath[1:]: # skip invisible root
assert index.isValid(), "Sanity check: invalid index in path for item: {}".format(item)
self.expand(index)
leaf = iiPath[-1]
return leaf | python | def expandPath(self, path):
""" Follows the path and expand all nodes along the way.
Returns (item, index) tuple of the last node in the path (the leaf node). This can be
reused e.g. to select it.
"""
iiPath = self.model().findItemAndIndexPath(path)
for (item, index) in iiPath[1:]: # skip invisible root
assert index.isValid(), "Sanity check: invalid index in path for item: {}".format(item)
self.expand(index)
leaf = iiPath[-1]
return leaf | ['def', 'expandPath', '(', 'self', ',', 'path', ')', ':', 'iiPath', '=', 'self', '.', 'model', '(', ')', '.', 'findItemAndIndexPath', '(', 'path', ')', 'for', '(', 'item', ',', 'index', ')', 'in', 'iiPath', '[', '1', ':', ']', ':', '# skip invisible root', 'assert', 'index', '.', 'isValid', '(', ')', ',', '"Sanity check: invalid index in path for item: {}"', '.', 'format', '(', 'item', ')', 'self', '.', 'expand', '(', 'index', ')', 'leaf', '=', 'iiPath', '[', '-', '1', ']', 'return', 'leaf'] | Follows the path and expand all nodes along the way.
Returns (item, index) tuple of the last node in the path (the leaf node). This can be
reused e.g. to select it. | ['Follows', 'the', 'path', 'and', 'expand', 'all', 'nodes', 'along', 'the', 'way', '.', 'Returns', '(', 'item', 'index', ')', 'tuple', 'of', 'the', 'last', 'node', 'in', 'the', 'path', '(', 'the', 'leaf', 'node', ')', '.', 'This', 'can', 'be', 'reused', 'e', '.', 'g', '.', 'to', 'select', 'it', '.'] | train | https://github.com/titusjan/argos/blob/20d0a3cae26c36ea789a5d219c02ca7df21279dd/argos/widgets/argostreeview.py#L126-L137 |
9,961 | allenai/allennlp | allennlp/models/semantic_parsing/wikitables/wikitables_semantic_parser.py | WikiTablesSemanticParser.decode | def decode(self, output_dict: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
"""
This method overrides ``Model.decode``, which gets called after ``Model.forward``, at test
time, to finalize predictions. This is (confusingly) a separate notion from the "decoder"
in "encoder/decoder", where that decoder logic lives in the ``TransitionFunction``.
This method trims the output predictions to the first end symbol, replaces indices with
corresponding tokens, and adds a field called ``predicted_tokens`` to the ``output_dict``.
"""
action_mapping = output_dict['action_mapping']
best_actions = output_dict["best_action_sequence"]
debug_infos = output_dict['debug_info']
batch_action_info = []
for batch_index, (predicted_actions, debug_info) in enumerate(zip(best_actions, debug_infos)):
instance_action_info = []
for predicted_action, action_debug_info in zip(predicted_actions, debug_info):
action_info = {}
action_info['predicted_action'] = predicted_action
considered_actions = action_debug_info['considered_actions']
probabilities = action_debug_info['probabilities']
actions = []
for action, probability in zip(considered_actions, probabilities):
if action != -1:
actions.append((action_mapping[(batch_index, action)], probability))
actions.sort()
considered_actions, probabilities = zip(*actions)
action_info['considered_actions'] = considered_actions
action_info['action_probabilities'] = probabilities
action_info['question_attention'] = action_debug_info.get('question_attention', [])
instance_action_info.append(action_info)
batch_action_info.append(instance_action_info)
output_dict["predicted_actions"] = batch_action_info
return output_dict | python | def decode(self, output_dict: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
"""
This method overrides ``Model.decode``, which gets called after ``Model.forward``, at test
time, to finalize predictions. This is (confusingly) a separate notion from the "decoder"
in "encoder/decoder", where that decoder logic lives in the ``TransitionFunction``.
This method trims the output predictions to the first end symbol, replaces indices with
corresponding tokens, and adds a field called ``predicted_tokens`` to the ``output_dict``.
"""
action_mapping = output_dict['action_mapping']
best_actions = output_dict["best_action_sequence"]
debug_infos = output_dict['debug_info']
batch_action_info = []
for batch_index, (predicted_actions, debug_info) in enumerate(zip(best_actions, debug_infos)):
instance_action_info = []
for predicted_action, action_debug_info in zip(predicted_actions, debug_info):
action_info = {}
action_info['predicted_action'] = predicted_action
considered_actions = action_debug_info['considered_actions']
probabilities = action_debug_info['probabilities']
actions = []
for action, probability in zip(considered_actions, probabilities):
if action != -1:
actions.append((action_mapping[(batch_index, action)], probability))
actions.sort()
considered_actions, probabilities = zip(*actions)
action_info['considered_actions'] = considered_actions
action_info['action_probabilities'] = probabilities
action_info['question_attention'] = action_debug_info.get('question_attention', [])
instance_action_info.append(action_info)
batch_action_info.append(instance_action_info)
output_dict["predicted_actions"] = batch_action_info
return output_dict | ['def', 'decode', '(', 'self', ',', 'output_dict', ':', 'Dict', '[', 'str', ',', 'torch', '.', 'Tensor', ']', ')', '->', 'Dict', '[', 'str', ',', 'torch', '.', 'Tensor', ']', ':', 'action_mapping', '=', 'output_dict', '[', "'action_mapping'", ']', 'best_actions', '=', 'output_dict', '[', '"best_action_sequence"', ']', 'debug_infos', '=', 'output_dict', '[', "'debug_info'", ']', 'batch_action_info', '=', '[', ']', 'for', 'batch_index', ',', '(', 'predicted_actions', ',', 'debug_info', ')', 'in', 'enumerate', '(', 'zip', '(', 'best_actions', ',', 'debug_infos', ')', ')', ':', 'instance_action_info', '=', '[', ']', 'for', 'predicted_action', ',', 'action_debug_info', 'in', 'zip', '(', 'predicted_actions', ',', 'debug_info', ')', ':', 'action_info', '=', '{', '}', 'action_info', '[', "'predicted_action'", ']', '=', 'predicted_action', 'considered_actions', '=', 'action_debug_info', '[', "'considered_actions'", ']', 'probabilities', '=', 'action_debug_info', '[', "'probabilities'", ']', 'actions', '=', '[', ']', 'for', 'action', ',', 'probability', 'in', 'zip', '(', 'considered_actions', ',', 'probabilities', ')', ':', 'if', 'action', '!=', '-', '1', ':', 'actions', '.', 'append', '(', '(', 'action_mapping', '[', '(', 'batch_index', ',', 'action', ')', ']', ',', 'probability', ')', ')', 'actions', '.', 'sort', '(', ')', 'considered_actions', ',', 'probabilities', '=', 'zip', '(', '*', 'actions', ')', 'action_info', '[', "'considered_actions'", ']', '=', 'considered_actions', 'action_info', '[', "'action_probabilities'", ']', '=', 'probabilities', 'action_info', '[', "'question_attention'", ']', '=', 'action_debug_info', '.', 'get', '(', "'question_attention'", ',', '[', ']', ')', 'instance_action_info', '.', 'append', '(', 'action_info', ')', 'batch_action_info', '.', 'append', '(', 'instance_action_info', ')', 'output_dict', '[', '"predicted_actions"', ']', '=', 'batch_action_info', 'return', 'output_dict'] | This method overrides ``Model.decode``, which gets called after ``Model.forward``, at test
time, to finalize predictions. This is (confusingly) a separate notion from the "decoder"
in "encoder/decoder", where that decoder logic lives in the ``TransitionFunction``.
This method trims the output predictions to the first end symbol, replaces indices with
corresponding tokens, and adds a field called ``predicted_tokens`` to the ``output_dict``. | ['This', 'method', 'overrides', 'Model', '.', 'decode', 'which', 'gets', 'called', 'after', 'Model', '.', 'forward', 'at', 'test', 'time', 'to', 'finalize', 'predictions', '.', 'This', 'is', '(', 'confusingly', ')', 'a', 'separate', 'notion', 'from', 'the', 'decoder', 'in', 'encoder', '/', 'decoder', 'where', 'that', 'decoder', 'logic', 'lives', 'in', 'the', 'TransitionFunction', '.'] | train | https://github.com/allenai/allennlp/blob/648a36f77db7e45784c047176074f98534c76636/allennlp/models/semantic_parsing/wikitables/wikitables_semantic_parser.py#L676-L708 |
9,962 | flowersteam/explauto | explauto/sensorimotor_model/inverse/cma.py | CMADataLogger.register | def register(self, es, append=None, modulo=None):
"""register a `CMAEvolutionStrategy` instance for logging,
``append=True`` appends to previous data logged under the same name,
by default previous data are overwritten.
"""
if not isinstance(es, CMAEvolutionStrategy):
raise TypeError("only class CMAEvolutionStrategy can be " +
"registered for logging")
self.es = es
if append is not None:
self.append = append
if modulo is not None:
self.modulo = modulo
self.registered = True
return self | python | def register(self, es, append=None, modulo=None):
"""register a `CMAEvolutionStrategy` instance for logging,
``append=True`` appends to previous data logged under the same name,
by default previous data are overwritten.
"""
if not isinstance(es, CMAEvolutionStrategy):
raise TypeError("only class CMAEvolutionStrategy can be " +
"registered for logging")
self.es = es
if append is not None:
self.append = append
if modulo is not None:
self.modulo = modulo
self.registered = True
return self | ['def', 'register', '(', 'self', ',', 'es', ',', 'append', '=', 'None', ',', 'modulo', '=', 'None', ')', ':', 'if', 'not', 'isinstance', '(', 'es', ',', 'CMAEvolutionStrategy', ')', ':', 'raise', 'TypeError', '(', '"only class CMAEvolutionStrategy can be "', '+', '"registered for logging"', ')', 'self', '.', 'es', '=', 'es', 'if', 'append', 'is', 'not', 'None', ':', 'self', '.', 'append', '=', 'append', 'if', 'modulo', 'is', 'not', 'None', ':', 'self', '.', 'modulo', '=', 'modulo', 'self', '.', 'registered', '=', 'True', 'return', 'self'] | register a `CMAEvolutionStrategy` instance for logging,
``append=True`` appends to previous data logged under the same name,
by default previous data are overwritten. | ['register', 'a', 'CMAEvolutionStrategy', 'instance', 'for', 'logging', 'append', '=', 'True', 'appends', 'to', 'previous', 'data', 'logged', 'under', 'the', 'same', 'name', 'by', 'default', 'previous', 'data', 'are', 'overwritten', '.'] | train | https://github.com/flowersteam/explauto/blob/cf0f81ecb9f6412f7276a95bd27359000e1e26b6/explauto/sensorimotor_model/inverse/cma.py#L5722-L5737 |
9,963 | glomex/gcdt | gcdt/ramuda_core.py | cleanup_bundle | def cleanup_bundle():
"""Deletes files used for creating bundle.
* vendored/*
* bundle.zip
"""
paths = ['./vendored', './bundle.zip']
for path in paths:
if os.path.exists(path):
log.debug("Deleting %s..." % path)
if os.path.isdir(path):
shutil.rmtree(path)
else:
os.remove(path) | python | def cleanup_bundle():
"""Deletes files used for creating bundle.
* vendored/*
* bundle.zip
"""
paths = ['./vendored', './bundle.zip']
for path in paths:
if os.path.exists(path):
log.debug("Deleting %s..." % path)
if os.path.isdir(path):
shutil.rmtree(path)
else:
os.remove(path) | ['def', 'cleanup_bundle', '(', ')', ':', 'paths', '=', '[', "'./vendored'", ',', "'./bundle.zip'", ']', 'for', 'path', 'in', 'paths', ':', 'if', 'os', '.', 'path', '.', 'exists', '(', 'path', ')', ':', 'log', '.', 'debug', '(', '"Deleting %s..."', '%', 'path', ')', 'if', 'os', '.', 'path', '.', 'isdir', '(', 'path', ')', ':', 'shutil', '.', 'rmtree', '(', 'path', ')', 'else', ':', 'os', '.', 'remove', '(', 'path', ')'] | Deletes files used for creating bundle.
* vendored/*
* bundle.zip | ['Deletes', 'files', 'used', 'for', 'creating', 'bundle', '.', '*', 'vendored', '/', '*', '*', 'bundle', '.', 'zip'] | train | https://github.com/glomex/gcdt/blob/cd67cf416371337b83cb9ca3f696277125703339/gcdt/ramuda_core.py#L623-L635 |
9,964 | datastax/python-driver | cassandra/metadata.py | NetworkTopologyStrategy.export_for_schema | def export_for_schema(self):
"""
Returns a string version of these replication options which are
suitable for use in a CREATE KEYSPACE statement.
"""
ret = "{'class': 'NetworkTopologyStrategy'"
for dc, repl_factor in sorted(self.dc_replication_factors.items()):
ret += ", '%s': '%d'" % (dc, repl_factor)
return ret + "}" | python | def export_for_schema(self):
"""
Returns a string version of these replication options which are
suitable for use in a CREATE KEYSPACE statement.
"""
ret = "{'class': 'NetworkTopologyStrategy'"
for dc, repl_factor in sorted(self.dc_replication_factors.items()):
ret += ", '%s': '%d'" % (dc, repl_factor)
return ret + "}" | ['def', 'export_for_schema', '(', 'self', ')', ':', 'ret', '=', '"{\'class\': \'NetworkTopologyStrategy\'"', 'for', 'dc', ',', 'repl_factor', 'in', 'sorted', '(', 'self', '.', 'dc_replication_factors', '.', 'items', '(', ')', ')', ':', 'ret', '+=', '", \'%s\': \'%d\'"', '%', '(', 'dc', ',', 'repl_factor', ')', 'return', 'ret', '+', '"}"'] | Returns a string version of these replication options which are
suitable for use in a CREATE KEYSPACE statement. | ['Returns', 'a', 'string', 'version', 'of', 'these', 'replication', 'options', 'which', 'are', 'suitable', 'for', 'use', 'in', 'a', 'CREATE', 'KEYSPACE', 'statement', '.'] | train | https://github.com/datastax/python-driver/blob/30a80d0b798b1f45f8cb77163b1fa791f3e3ca29/cassandra/metadata.py#L565-L573 |
9,965 | Laufire/ec | ec/modules/config.py | task | def task(__decorated__=None, **Config):
r"""A decorator to make tasks out of functions.
Config:
* name (str): The name of the task. Defaults to __decorated__.__name__.
* desc (str): The description of the task (optional).
* alias (str): The alias for the task (optional).
"""
if isinstance(__decorated__, tuple): # the task has some args
_Task = Task(__decorated__[0], __decorated__[1], Config=Config)
else:
_Task = Task(__decorated__, [], Config)
state.ActiveModuleMemberQ.insert(0, _Task)
return _Task.Underlying | python | def task(__decorated__=None, **Config):
r"""A decorator to make tasks out of functions.
Config:
* name (str): The name of the task. Defaults to __decorated__.__name__.
* desc (str): The description of the task (optional).
* alias (str): The alias for the task (optional).
"""
if isinstance(__decorated__, tuple): # the task has some args
_Task = Task(__decorated__[0], __decorated__[1], Config=Config)
else:
_Task = Task(__decorated__, [], Config)
state.ActiveModuleMemberQ.insert(0, _Task)
return _Task.Underlying | ['def', 'task', '(', '__decorated__', '=', 'None', ',', '*', '*', 'Config', ')', ':', 'if', 'isinstance', '(', '__decorated__', ',', 'tuple', ')', ':', '# the task has some args', '_Task', '=', 'Task', '(', '__decorated__', '[', '0', ']', ',', '__decorated__', '[', '1', ']', ',', 'Config', '=', 'Config', ')', 'else', ':', '_Task', '=', 'Task', '(', '__decorated__', ',', '[', ']', ',', 'Config', ')', 'state', '.', 'ActiveModuleMemberQ', '.', 'insert', '(', '0', ',', '_Task', ')', 'return', '_Task', '.', 'Underlying'] | r"""A decorator to make tasks out of functions.
Config:
* name (str): The name of the task. Defaults to __decorated__.__name__.
* desc (str): The description of the task (optional).
* alias (str): The alias for the task (optional). | ['r', 'A', 'decorator', 'to', 'make', 'tasks', 'out', 'of', 'functions', '.'] | train | https://github.com/Laufire/ec/blob/63e84a1daef9234487d7de538e5da233a7d13071/ec/modules/config.py#L37-L53 |
9,966 | theonion/django-bulbs | bulbs/content/serializers.py | ContentTypeField.to_internal_value | def to_internal_value(self, value):
"""Convert to integer id."""
natural_key = value.split("_")
content_type = ContentType.objects.get_by_natural_key(*natural_key)
return content_type.id | python | def to_internal_value(self, value):
"""Convert to integer id."""
natural_key = value.split("_")
content_type = ContentType.objects.get_by_natural_key(*natural_key)
return content_type.id | ['def', 'to_internal_value', '(', 'self', ',', 'value', ')', ':', 'natural_key', '=', 'value', '.', 'split', '(', '"_"', ')', 'content_type', '=', 'ContentType', '.', 'objects', '.', 'get_by_natural_key', '(', '*', 'natural_key', ')', 'return', 'content_type', '.', 'id'] | Convert to integer id. | ['Convert', 'to', 'integer', 'id', '.'] | train | https://github.com/theonion/django-bulbs/blob/0c0e6e3127a7dc487b96677fab95cacd2b3806da/bulbs/content/serializers.py#L24-L28 |
9,967 | TriOptima/tri.table | lib/tri/table/__init__.py | prepare_headers | def prepare_headers(table, bound_columns):
"""
:type bound_columns: list of BoundColumn
"""
if table.request is None:
return
for column in bound_columns:
if column.sortable:
params = table.request.GET.copy()
param_path = _with_path_prefix(table, 'order')
order = table.request.GET.get(param_path, None)
start_sort_desc = column.sort_default_desc
params[param_path] = column.name if not start_sort_desc else '-' + column.name
column.is_sorting = False
if order is not None:
is_desc = order.startswith('-')
order_field = order if not is_desc else order[1:]
if order_field == column.name:
new_order = order_field if is_desc else ('-' + order_field)
params[param_path] = new_order
column.sort_direction = DESCENDING if is_desc else ASCENDING
column.is_sorting = True
column.url = "?" + params.urlencode()
else:
column.is_sorting = False | python | def prepare_headers(table, bound_columns):
"""
:type bound_columns: list of BoundColumn
"""
if table.request is None:
return
for column in bound_columns:
if column.sortable:
params = table.request.GET.copy()
param_path = _with_path_prefix(table, 'order')
order = table.request.GET.get(param_path, None)
start_sort_desc = column.sort_default_desc
params[param_path] = column.name if not start_sort_desc else '-' + column.name
column.is_sorting = False
if order is not None:
is_desc = order.startswith('-')
order_field = order if not is_desc else order[1:]
if order_field == column.name:
new_order = order_field if is_desc else ('-' + order_field)
params[param_path] = new_order
column.sort_direction = DESCENDING if is_desc else ASCENDING
column.is_sorting = True
column.url = "?" + params.urlencode()
else:
column.is_sorting = False | ['def', 'prepare_headers', '(', 'table', ',', 'bound_columns', ')', ':', 'if', 'table', '.', 'request', 'is', 'None', ':', 'return', 'for', 'column', 'in', 'bound_columns', ':', 'if', 'column', '.', 'sortable', ':', 'params', '=', 'table', '.', 'request', '.', 'GET', '.', 'copy', '(', ')', 'param_path', '=', '_with_path_prefix', '(', 'table', ',', "'order'", ')', 'order', '=', 'table', '.', 'request', '.', 'GET', '.', 'get', '(', 'param_path', ',', 'None', ')', 'start_sort_desc', '=', 'column', '.', 'sort_default_desc', 'params', '[', 'param_path', ']', '=', 'column', '.', 'name', 'if', 'not', 'start_sort_desc', 'else', "'-'", '+', 'column', '.', 'name', 'column', '.', 'is_sorting', '=', 'False', 'if', 'order', 'is', 'not', 'None', ':', 'is_desc', '=', 'order', '.', 'startswith', '(', "'-'", ')', 'order_field', '=', 'order', 'if', 'not', 'is_desc', 'else', 'order', '[', '1', ':', ']', 'if', 'order_field', '==', 'column', '.', 'name', ':', 'new_order', '=', 'order_field', 'if', 'is_desc', 'else', '(', "'-'", '+', 'order_field', ')', 'params', '[', 'param_path', ']', '=', 'new_order', 'column', '.', 'sort_direction', '=', 'DESCENDING', 'if', 'is_desc', 'else', 'ASCENDING', 'column', '.', 'is_sorting', '=', 'True', 'column', '.', 'url', '=', '"?"', '+', 'params', '.', 'urlencode', '(', ')', 'else', ':', 'column', '.', 'is_sorting', '=', 'False'] | :type bound_columns: list of BoundColumn | [':', 'type', 'bound_columns', ':', 'list', 'of', 'BoundColumn'] | train | https://github.com/TriOptima/tri.table/blob/fc38c02098a80a3fb336ac4cf502954d74e31484/lib/tri/table/__init__.py#L112-L138 |
9,968 | glenfant/openxmllib | openxmllib/document.py | Document.mimeType | def mimeType(self):
"""The official MIME type for this document, guessed from the extensions
of the :py:attr:`openxmllib.document.Document.filename` attribute, as
opposed to the :py:attr:`openxmllib.document.Document.mime_type`
attribute.
:return: ``application/xxx`` for this file
"""
if self.mime_type:
# Supposed validated by the factory
return self.mime_type
for pattern, mime_type in self._extpattern_to_mime.items():
if fnmatch.fnmatch(self.filename, pattern):
return mime_type | python | def mimeType(self):
"""The official MIME type for this document, guessed from the extensions
of the :py:attr:`openxmllib.document.Document.filename` attribute, as
opposed to the :py:attr:`openxmllib.document.Document.mime_type`
attribute.
:return: ``application/xxx`` for this file
"""
if self.mime_type:
# Supposed validated by the factory
return self.mime_type
for pattern, mime_type in self._extpattern_to_mime.items():
if fnmatch.fnmatch(self.filename, pattern):
return mime_type | ['def', 'mimeType', '(', 'self', ')', ':', 'if', 'self', '.', 'mime_type', ':', '# Supposed validated by the factory', 'return', 'self', '.', 'mime_type', 'for', 'pattern', ',', 'mime_type', 'in', 'self', '.', '_extpattern_to_mime', '.', 'items', '(', ')', ':', 'if', 'fnmatch', '.', 'fnmatch', '(', 'self', '.', 'filename', ',', 'pattern', ')', ':', 'return', 'mime_type'] | The official MIME type for this document, guessed from the extensions
of the :py:attr:`openxmllib.document.Document.filename` attribute, as
opposed to the :py:attr:`openxmllib.document.Document.mime_type`
attribute.
:return: ``application/xxx`` for this file | ['The', 'official', 'MIME', 'type', 'for', 'this', 'document', 'guessed', 'from', 'the', 'extensions', 'of', 'the', ':', 'py', ':', 'attr', ':', 'openxmllib', '.', 'document', '.', 'Document', '.', 'filename', 'attribute', 'as', 'opposed', 'to', 'the', ':', 'py', ':', 'attr', ':', 'openxmllib', '.', 'document', '.', 'Document', '.', 'mime_type', 'attribute', '.'] | train | https://github.com/glenfant/openxmllib/blob/c8208f8ecd9fc3ef1e73c1db68081a65361afb3f/openxmllib/document.py#L89-L102 |
9,969 | Accelize/pycosio | pycosio/storage/azure_file.py | _AzureFileSystem._make_dir | def _make_dir(self, client_kwargs):
"""
Make a directory.
args:
client_kwargs (dict): Client arguments.
"""
with _handle_azure_exception():
# Directory
if 'directory_name' in client_kwargs:
return self.client.create_directory(
share_name=client_kwargs['share_name'],
directory_name=client_kwargs['directory_name'])
# Share
return self.client.create_share(**client_kwargs) | python | def _make_dir(self, client_kwargs):
"""
Make a directory.
args:
client_kwargs (dict): Client arguments.
"""
with _handle_azure_exception():
# Directory
if 'directory_name' in client_kwargs:
return self.client.create_directory(
share_name=client_kwargs['share_name'],
directory_name=client_kwargs['directory_name'])
# Share
return self.client.create_share(**client_kwargs) | ['def', '_make_dir', '(', 'self', ',', 'client_kwargs', ')', ':', 'with', '_handle_azure_exception', '(', ')', ':', '# Directory', 'if', "'directory_name'", 'in', 'client_kwargs', ':', 'return', 'self', '.', 'client', '.', 'create_directory', '(', 'share_name', '=', 'client_kwargs', '[', "'share_name'", ']', ',', 'directory_name', '=', 'client_kwargs', '[', "'directory_name'", ']', ')', '# Share', 'return', 'self', '.', 'client', '.', 'create_share', '(', '*', '*', 'client_kwargs', ')'] | Make a directory.
args:
client_kwargs (dict): Client arguments. | ['Make', 'a', 'directory', '.'] | train | https://github.com/Accelize/pycosio/blob/1cc1f8fdf5394d92918b7bae2bfa682169ccc48c/pycosio/storage/azure_file.py#L169-L184 |
9,970 | dmlc/gluon-nlp | scripts/machine_translation/bleu.py | _bpe_to_words | def _bpe_to_words(sentence, delimiter='@@'):
"""Convert a sequence of bpe words into sentence."""
words = []
word = ''
delimiter_len = len(delimiter)
for subwords in sentence:
if len(subwords) >= delimiter_len and subwords[-delimiter_len:] == delimiter:
word += subwords[:-delimiter_len]
else:
word += subwords
words.append(word)
word = ''
return words | python | def _bpe_to_words(sentence, delimiter='@@'):
"""Convert a sequence of bpe words into sentence."""
words = []
word = ''
delimiter_len = len(delimiter)
for subwords in sentence:
if len(subwords) >= delimiter_len and subwords[-delimiter_len:] == delimiter:
word += subwords[:-delimiter_len]
else:
word += subwords
words.append(word)
word = ''
return words | ['def', '_bpe_to_words', '(', 'sentence', ',', 'delimiter', '=', "'@@'", ')', ':', 'words', '=', '[', ']', 'word', '=', "''", 'delimiter_len', '=', 'len', '(', 'delimiter', ')', 'for', 'subwords', 'in', 'sentence', ':', 'if', 'len', '(', 'subwords', ')', '>=', 'delimiter_len', 'and', 'subwords', '[', '-', 'delimiter_len', ':', ']', '==', 'delimiter', ':', 'word', '+=', 'subwords', '[', ':', '-', 'delimiter_len', ']', 'else', ':', 'word', '+=', 'subwords', 'words', '.', 'append', '(', 'word', ')', 'word', '=', "''", 'return', 'words'] | Convert a sequence of bpe words into sentence. | ['Convert', 'a', 'sequence', 'of', 'bpe', 'words', 'into', 'sentence', '.'] | train | https://github.com/dmlc/gluon-nlp/blob/4b83eb6bcc8881e5f1081a3675adaa19fac5c0ba/scripts/machine_translation/bleu.py#L61-L73 |
9,971 | StackStorm/pybind | pybind/nos/v6_0_2f/brocade_xstp_ext_rpc/get_stp_brief_info/output/spanning_tree_info/__init__.py | spanning_tree_info._set_stp | def _set_stp(self, v, load=False):
"""
Setter method for stp, mapped from YANG variable /brocade_xstp_ext_rpc/get_stp_brief_info/output/spanning_tree_info/stp (container)
If this variable is read-only (config: false) in the
source YANG file, then _set_stp is considered as a private
method. Backends looking to populate this variable should
do so via calling thisObj._set_stp() directly.
"""
if hasattr(v, "_utype"):
v = v._utype(v)
try:
t = YANGDynClass(v,base=stp.stp, is_container='container', presence=False, yang_name="stp", rest_name="stp", parent=self, choice=(u'spanning-tree-mode', u'stp'), path_helper=self._path_helper, extmethods=self._extmethods, register_paths=False, extensions=None, namespace='urn:brocade.com:mgmt:brocade-xstp-ext', defining_module='brocade-xstp-ext', yang_type='container', is_config=True)
except (TypeError, ValueError):
raise ValueError({
'error-string': """stp must be of a type compatible with container""",
'defined-type': "container",
'generated-type': """YANGDynClass(base=stp.stp, is_container='container', presence=False, yang_name="stp", rest_name="stp", parent=self, choice=(u'spanning-tree-mode', u'stp'), path_helper=self._path_helper, extmethods=self._extmethods, register_paths=False, extensions=None, namespace='urn:brocade.com:mgmt:brocade-xstp-ext', defining_module='brocade-xstp-ext', yang_type='container', is_config=True)""",
})
self.__stp = t
if hasattr(self, '_set'):
self._set() | python | def _set_stp(self, v, load=False):
"""
Setter method for stp, mapped from YANG variable /brocade_xstp_ext_rpc/get_stp_brief_info/output/spanning_tree_info/stp (container)
If this variable is read-only (config: false) in the
source YANG file, then _set_stp is considered as a private
method. Backends looking to populate this variable should
do so via calling thisObj._set_stp() directly.
"""
if hasattr(v, "_utype"):
v = v._utype(v)
try:
t = YANGDynClass(v,base=stp.stp, is_container='container', presence=False, yang_name="stp", rest_name="stp", parent=self, choice=(u'spanning-tree-mode', u'stp'), path_helper=self._path_helper, extmethods=self._extmethods, register_paths=False, extensions=None, namespace='urn:brocade.com:mgmt:brocade-xstp-ext', defining_module='brocade-xstp-ext', yang_type='container', is_config=True)
except (TypeError, ValueError):
raise ValueError({
'error-string': """stp must be of a type compatible with container""",
'defined-type': "container",
'generated-type': """YANGDynClass(base=stp.stp, is_container='container', presence=False, yang_name="stp", rest_name="stp", parent=self, choice=(u'spanning-tree-mode', u'stp'), path_helper=self._path_helper, extmethods=self._extmethods, register_paths=False, extensions=None, namespace='urn:brocade.com:mgmt:brocade-xstp-ext', defining_module='brocade-xstp-ext', yang_type='container', is_config=True)""",
})
self.__stp = t
if hasattr(self, '_set'):
self._set() | ['def', '_set_stp', '(', 'self', ',', 'v', ',', 'load', '=', 'False', ')', ':', 'if', 'hasattr', '(', 'v', ',', '"_utype"', ')', ':', 'v', '=', 'v', '.', '_utype', '(', 'v', ')', 'try', ':', 't', '=', 'YANGDynClass', '(', 'v', ',', 'base', '=', 'stp', '.', 'stp', ',', 'is_container', '=', "'container'", ',', 'presence', '=', 'False', ',', 'yang_name', '=', '"stp"', ',', 'rest_name', '=', '"stp"', ',', 'parent', '=', 'self', ',', 'choice', '=', '(', "u'spanning-tree-mode'", ',', "u'stp'", ')', ',', 'path_helper', '=', 'self', '.', '_path_helper', ',', 'extmethods', '=', 'self', '.', '_extmethods', ',', 'register_paths', '=', 'False', ',', 'extensions', '=', 'None', ',', 'namespace', '=', "'urn:brocade.com:mgmt:brocade-xstp-ext'", ',', 'defining_module', '=', "'brocade-xstp-ext'", ',', 'yang_type', '=', "'container'", ',', 'is_config', '=', 'True', ')', 'except', '(', 'TypeError', ',', 'ValueError', ')', ':', 'raise', 'ValueError', '(', '{', "'error-string'", ':', '"""stp must be of a type compatible with container"""', ',', "'defined-type'", ':', '"container"', ',', "'generated-type'", ':', '"""YANGDynClass(base=stp.stp, is_container=\'container\', presence=False, yang_name="stp", rest_name="stp", parent=self, choice=(u\'spanning-tree-mode\', u\'stp\'), path_helper=self._path_helper, extmethods=self._extmethods, register_paths=False, extensions=None, namespace=\'urn:brocade.com:mgmt:brocade-xstp-ext\', defining_module=\'brocade-xstp-ext\', yang_type=\'container\', is_config=True)"""', ',', '}', ')', 'self', '.', '__stp', '=', 't', 'if', 'hasattr', '(', 'self', ',', "'_set'", ')', ':', 'self', '.', '_set', '(', ')'] | Setter method for stp, mapped from YANG variable /brocade_xstp_ext_rpc/get_stp_brief_info/output/spanning_tree_info/stp (container)
If this variable is read-only (config: false) in the
source YANG file, then _set_stp is considered as a private
method. Backends looking to populate this variable should
do so via calling thisObj._set_stp() directly. | ['Setter', 'method', 'for', 'stp', 'mapped', 'from', 'YANG', 'variable', '/', 'brocade_xstp_ext_rpc', '/', 'get_stp_brief_info', '/', 'output', '/', 'spanning_tree_info', '/', 'stp', '(', 'container', ')', 'If', 'this', 'variable', 'is', 'read', '-', 'only', '(', 'config', ':', 'false', ')', 'in', 'the', 'source', 'YANG', 'file', 'then', '_set_stp', 'is', 'considered', 'as', 'a', 'private', 'method', '.', 'Backends', 'looking', 'to', 'populate', 'this', 'variable', 'should', 'do', 'so', 'via', 'calling', 'thisObj', '.', '_set_stp', '()', 'directly', '.'] | train | https://github.com/StackStorm/pybind/blob/44c467e71b2b425be63867aba6e6fa28b2cfe7fb/pybind/nos/v6_0_2f/brocade_xstp_ext_rpc/get_stp_brief_info/output/spanning_tree_info/__init__.py#L140-L161 |
9,972 | Cog-Creators/Red-Lavalink | lavalink/player_manager.py | Player.handle_player_update | async def handle_player_update(self, state: "node.PlayerState"):
"""
Handles player updates from lavalink.
Parameters
----------
state : websocket.PlayerState
"""
if state.position > self.position:
self._is_playing = True
self.position = state.position | python | async def handle_player_update(self, state: "node.PlayerState"):
"""
Handles player updates from lavalink.
Parameters
----------
state : websocket.PlayerState
"""
if state.position > self.position:
self._is_playing = True
self.position = state.position | ['async', 'def', 'handle_player_update', '(', 'self', ',', 'state', ':', '"node.PlayerState"', ')', ':', 'if', 'state', '.', 'position', '>', 'self', '.', 'position', ':', 'self', '.', '_is_playing', '=', 'True', 'self', '.', 'position', '=', 'state', '.', 'position'] | Handles player updates from lavalink.
Parameters
----------
state : websocket.PlayerState | ['Handles', 'player', 'updates', 'from', 'lavalink', '.'] | train | https://github.com/Cog-Creators/Red-Lavalink/blob/5b3fc6eb31ee5db8bd2b633a523cf69749957111/lavalink/player_manager.py#L214-L224 |
9,973 | bruth/django-preserialize | preserialize/utils.py | ModelFieldResolver._get_local_fields | def _get_local_fields(self, model):
"Return the names of all locally defined fields on the model class."
local = [f for f in model._meta.fields]
m2m = [f for f in model._meta.many_to_many]
fields = local + m2m
names = tuple([x.name for x in fields])
return {
':local': dict(list(zip(names, fields))),
} | python | def _get_local_fields(self, model):
"Return the names of all locally defined fields on the model class."
local = [f for f in model._meta.fields]
m2m = [f for f in model._meta.many_to_many]
fields = local + m2m
names = tuple([x.name for x in fields])
return {
':local': dict(list(zip(names, fields))),
} | ['def', '_get_local_fields', '(', 'self', ',', 'model', ')', ':', 'local', '=', '[', 'f', 'for', 'f', 'in', 'model', '.', '_meta', '.', 'fields', ']', 'm2m', '=', '[', 'f', 'for', 'f', 'in', 'model', '.', '_meta', '.', 'many_to_many', ']', 'fields', '=', 'local', '+', 'm2m', 'names', '=', 'tuple', '(', '[', 'x', '.', 'name', 'for', 'x', 'in', 'fields', ']', ')', 'return', '{', "':local'", ':', 'dict', '(', 'list', '(', 'zip', '(', 'names', ',', 'fields', ')', ')', ')', ',', '}'] | Return the names of all locally defined fields on the model class. | ['Return', 'the', 'names', 'of', 'all', 'locally', 'defined', 'fields', 'on', 'the', 'model', 'class', '.'] | train | https://github.com/bruth/django-preserialize/blob/d772c224bd8c2c9e9ff997d82c54fe6ebb9444b6/preserialize/utils.py#L42-L51 |
9,974 | totalgood/nlpia | src/nlpia/book/examples/ch04_sklearn_pca_source.py | _fit_full | def _fit_full(self=self, X=X, n_components=6):
"""Fit the model by computing full SVD on X"""
n_samples, n_features = X.shape
# Center data
self.mean_ = np.mean(X, axis=0)
print(self.mean_)
X -= self.mean_
print(X.round(2))
U, S, V = linalg.svd(X, full_matrices=False)
print(V.round(2))
# flip eigenvectors' sign to enforce deterministic output
U, V = svd_flip(U, V)
components_ = V
print(components_.round(2))
# Get variance explained by singular values
explained_variance_ = (S ** 2) / (n_samples - 1)
total_var = explained_variance_.sum()
explained_variance_ratio_ = explained_variance_ / total_var
singular_values_ = S.copy() # Store the singular values.
# Postprocess the number of components required
if n_components == 'mle':
n_components = \
_infer_dimension_(explained_variance_, n_samples, n_features)
elif 0 < n_components < 1.0:
# number of components for which the cumulated explained
# variance percentage is superior to the desired threshold
ratio_cumsum = stable_cumsum(explained_variance_ratio_)
n_components = np.searchsorted(ratio_cumsum, n_components) + 1
# Compute noise covariance using Probabilistic PCA model
# The sigma2 maximum likelihood (cf. eq. 12.46)
if n_components < min(n_features, n_samples):
self.noise_variance_ = explained_variance_[n_components:].mean()
else:
self.noise_variance_ = 0.
self.n_samples_, self.n_features_ = n_samples, n_features
self.components_ = components_[:n_components]
print(self.components_.round(2))
self.n_components_ = n_components
self.explained_variance_ = explained_variance_[:n_components]
self.explained_variance_ratio_ = \
explained_variance_ratio_[:n_components]
self.singular_values_ = singular_values_[:n_components]
return U, S, V | python | def _fit_full(self=self, X=X, n_components=6):
"""Fit the model by computing full SVD on X"""
n_samples, n_features = X.shape
# Center data
self.mean_ = np.mean(X, axis=0)
print(self.mean_)
X -= self.mean_
print(X.round(2))
U, S, V = linalg.svd(X, full_matrices=False)
print(V.round(2))
# flip eigenvectors' sign to enforce deterministic output
U, V = svd_flip(U, V)
components_ = V
print(components_.round(2))
# Get variance explained by singular values
explained_variance_ = (S ** 2) / (n_samples - 1)
total_var = explained_variance_.sum()
explained_variance_ratio_ = explained_variance_ / total_var
singular_values_ = S.copy() # Store the singular values.
# Postprocess the number of components required
if n_components == 'mle':
n_components = \
_infer_dimension_(explained_variance_, n_samples, n_features)
elif 0 < n_components < 1.0:
# number of components for which the cumulated explained
# variance percentage is superior to the desired threshold
ratio_cumsum = stable_cumsum(explained_variance_ratio_)
n_components = np.searchsorted(ratio_cumsum, n_components) + 1
# Compute noise covariance using Probabilistic PCA model
# The sigma2 maximum likelihood (cf. eq. 12.46)
if n_components < min(n_features, n_samples):
self.noise_variance_ = explained_variance_[n_components:].mean()
else:
self.noise_variance_ = 0.
self.n_samples_, self.n_features_ = n_samples, n_features
self.components_ = components_[:n_components]
print(self.components_.round(2))
self.n_components_ = n_components
self.explained_variance_ = explained_variance_[:n_components]
self.explained_variance_ratio_ = \
explained_variance_ratio_[:n_components]
self.singular_values_ = singular_values_[:n_components]
return U, S, V | ['def', '_fit_full', '(', 'self', '=', 'self', ',', 'X', '=', 'X', ',', 'n_components', '=', '6', ')', ':', 'n_samples', ',', 'n_features', '=', 'X', '.', 'shape', '# Center data', 'self', '.', 'mean_', '=', 'np', '.', 'mean', '(', 'X', ',', 'axis', '=', '0', ')', 'print', '(', 'self', '.', 'mean_', ')', 'X', '-=', 'self', '.', 'mean_', 'print', '(', 'X', '.', 'round', '(', '2', ')', ')', 'U', ',', 'S', ',', 'V', '=', 'linalg', '.', 'svd', '(', 'X', ',', 'full_matrices', '=', 'False', ')', 'print', '(', 'V', '.', 'round', '(', '2', ')', ')', "# flip eigenvectors' sign to enforce deterministic output", 'U', ',', 'V', '=', 'svd_flip', '(', 'U', ',', 'V', ')', 'components_', '=', 'V', 'print', '(', 'components_', '.', 'round', '(', '2', ')', ')', '# Get variance explained by singular values', 'explained_variance_', '=', '(', 'S', '**', '2', ')', '/', '(', 'n_samples', '-', '1', ')', 'total_var', '=', 'explained_variance_', '.', 'sum', '(', ')', 'explained_variance_ratio_', '=', 'explained_variance_', '/', 'total_var', 'singular_values_', '=', 'S', '.', 'copy', '(', ')', '# Store the singular values.', '# Postprocess the number of components required', 'if', 'n_components', '==', "'mle'", ':', 'n_components', '=', '_infer_dimension_', '(', 'explained_variance_', ',', 'n_samples', ',', 'n_features', ')', 'elif', '0', '<', 'n_components', '<', '1.0', ':', '# number of components for which the cumulated explained', '# variance percentage is superior to the desired threshold', 'ratio_cumsum', '=', 'stable_cumsum', '(', 'explained_variance_ratio_', ')', 'n_components', '=', 'np', '.', 'searchsorted', '(', 'ratio_cumsum', ',', 'n_components', ')', '+', '1', '# Compute noise covariance using Probabilistic PCA model', '# The sigma2 maximum likelihood (cf. eq. 12.46)', 'if', 'n_components', '<', 'min', '(', 'n_features', ',', 'n_samples', ')', ':', 'self', '.', 'noise_variance_', '=', 'explained_variance_', '[', 'n_components', ':', ']', '.', 'mean', '(', ')', 'else', ':', 'self', '.', 'noise_variance_', '=', '0.', 'self', '.', 'n_samples_', ',', 'self', '.', 'n_features_', '=', 'n_samples', ',', 'n_features', 'self', '.', 'components_', '=', 'components_', '[', ':', 'n_components', ']', 'print', '(', 'self', '.', 'components_', '.', 'round', '(', '2', ')', ')', 'self', '.', 'n_components_', '=', 'n_components', 'self', '.', 'explained_variance_', '=', 'explained_variance_', '[', ':', 'n_components', ']', 'self', '.', 'explained_variance_ratio_', '=', 'explained_variance_ratio_', '[', ':', 'n_components', ']', 'self', '.', 'singular_values_', '=', 'singular_values_', '[', ':', 'n_components', ']', 'return', 'U', ',', 'S', ',', 'V'] | Fit the model by computing full SVD on X | ['Fit', 'the', 'model', 'by', 'computing', 'full', 'SVD', 'on', 'X'] | train | https://github.com/totalgood/nlpia/blob/efa01126275e9cd3c3a5151a644f1c798a9ec53f/src/nlpia/book/examples/ch04_sklearn_pca_source.py#L136-L186 |
9,975 | pypa/setuptools | setuptools/command/easy_install.py | ScriptWriter.best | def best(cls):
"""
Select the best ScriptWriter for this environment.
"""
if sys.platform == 'win32' or (os.name == 'java' and os._name == 'nt'):
return WindowsScriptWriter.best()
else:
return cls | python | def best(cls):
"""
Select the best ScriptWriter for this environment.
"""
if sys.platform == 'win32' or (os.name == 'java' and os._name == 'nt'):
return WindowsScriptWriter.best()
else:
return cls | ['def', 'best', '(', 'cls', ')', ':', 'if', 'sys', '.', 'platform', '==', "'win32'", 'or', '(', 'os', '.', 'name', '==', "'java'", 'and', 'os', '.', '_name', '==', "'nt'", ')', ':', 'return', 'WindowsScriptWriter', '.', 'best', '(', ')', 'else', ':', 'return', 'cls'] | Select the best ScriptWriter for this environment. | ['Select', 'the', 'best', 'ScriptWriter', 'for', 'this', 'environment', '.'] | train | https://github.com/pypa/setuptools/blob/83c667e0b2a98193851c07115d1af65011ed0fb6/setuptools/command/easy_install.py#L2130-L2137 |
9,976 | saltstack/salt | salt/modules/macdefaults.py | write | def write(domain, key, value, type='string', user=None):
'''
Write a default to the system
CLI Example:
.. code-block:: bash
salt '*' macdefaults.write com.apple.CrashReporter DialogType Server
salt '*' macdefaults.write NSGlobalDomain ApplePersistence True type=bool
domain
The name of the domain to write to
key
The key of the given domain to write to
value
The value to write to the given key
type
The type of value to be written, valid types are string, data, int[eger],
float, bool[ean], date, array, array-add, dict, dict-add
user
The user to write the defaults to
'''
if type == 'bool' or type == 'boolean':
if value is True:
value = 'TRUE'
elif value is False:
value = 'FALSE'
cmd = 'defaults write "{0}" "{1}" -{2} "{3}"'.format(domain, key, type, value)
return __salt__['cmd.run_all'](cmd, runas=user) | python | def write(domain, key, value, type='string', user=None):
'''
Write a default to the system
CLI Example:
.. code-block:: bash
salt '*' macdefaults.write com.apple.CrashReporter DialogType Server
salt '*' macdefaults.write NSGlobalDomain ApplePersistence True type=bool
domain
The name of the domain to write to
key
The key of the given domain to write to
value
The value to write to the given key
type
The type of value to be written, valid types are string, data, int[eger],
float, bool[ean], date, array, array-add, dict, dict-add
user
The user to write the defaults to
'''
if type == 'bool' or type == 'boolean':
if value is True:
value = 'TRUE'
elif value is False:
value = 'FALSE'
cmd = 'defaults write "{0}" "{1}" -{2} "{3}"'.format(domain, key, type, value)
return __salt__['cmd.run_all'](cmd, runas=user) | ['def', 'write', '(', 'domain', ',', 'key', ',', 'value', ',', 'type', '=', "'string'", ',', 'user', '=', 'None', ')', ':', 'if', 'type', '==', "'bool'", 'or', 'type', '==', "'boolean'", ':', 'if', 'value', 'is', 'True', ':', 'value', '=', "'TRUE'", 'elif', 'value', 'is', 'False', ':', 'value', '=', "'FALSE'", 'cmd', '=', '\'defaults write "{0}" "{1}" -{2} "{3}"\'', '.', 'format', '(', 'domain', ',', 'key', ',', 'type', ',', 'value', ')', 'return', '__salt__', '[', "'cmd.run_all'", ']', '(', 'cmd', ',', 'runas', '=', 'user', ')'] | Write a default to the system
CLI Example:
.. code-block:: bash
salt '*' macdefaults.write com.apple.CrashReporter DialogType Server
salt '*' macdefaults.write NSGlobalDomain ApplePersistence True type=bool
domain
The name of the domain to write to
key
The key of the given domain to write to
value
The value to write to the given key
type
The type of value to be written, valid types are string, data, int[eger],
float, bool[ean], date, array, array-add, dict, dict-add
user
The user to write the defaults to | ['Write', 'a', 'default', 'to', 'the', 'system'] | train | https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/modules/macdefaults.py#L27-L64 |
9,977 | askedrelic/libgreader | libgreader/auth.py | ClientAuthMethod.post | def post(self, url, postParameters=None, urlParameters=None):
"""
Convenience method for requesting to google with proper cookies/params.
"""
if urlParameters:
url = url + "?" + self.getParameters(urlParameters)
headers = {'Authorization':'GoogleLogin auth=%s' % self.auth_token,
'Content-Type': 'application/x-www-form-urlencoded'
}
postString = self.postParameters(postParameters)
req = requests.post(url, data=postString, headers=headers)
return req.text | python | def post(self, url, postParameters=None, urlParameters=None):
"""
Convenience method for requesting to google with proper cookies/params.
"""
if urlParameters:
url = url + "?" + self.getParameters(urlParameters)
headers = {'Authorization':'GoogleLogin auth=%s' % self.auth_token,
'Content-Type': 'application/x-www-form-urlencoded'
}
postString = self.postParameters(postParameters)
req = requests.post(url, data=postString, headers=headers)
return req.text | ['def', 'post', '(', 'self', ',', 'url', ',', 'postParameters', '=', 'None', ',', 'urlParameters', '=', 'None', ')', ':', 'if', 'urlParameters', ':', 'url', '=', 'url', '+', '"?"', '+', 'self', '.', 'getParameters', '(', 'urlParameters', ')', 'headers', '=', '{', "'Authorization'", ':', "'GoogleLogin auth=%s'", '%', 'self', '.', 'auth_token', ',', "'Content-Type'", ':', "'application/x-www-form-urlencoded'", '}', 'postString', '=', 'self', '.', 'postParameters', '(', 'postParameters', ')', 'req', '=', 'requests', '.', 'post', '(', 'url', ',', 'data', '=', 'postString', ',', 'headers', '=', 'headers', ')', 'return', 'req', '.', 'text'] | Convenience method for requesting to google with proper cookies/params. | ['Convenience', 'method', 'for', 'requesting', 'to', 'google', 'with', 'proper', 'cookies', '/', 'params', '.'] | train | https://github.com/askedrelic/libgreader/blob/7b668ee291c2464ea172ef44393100c369efa970/libgreader/auth.py#L83-L94 |
9,978 | phoebe-project/phoebe2 | phoebe/frontend/bundle.py | Bundle._add_history | def _add_history(self, redo_func, redo_kwargs, undo_func, undo_kwargs,
**kwargs):
"""
Add a new log (undo/redoable) to this history context
:parameter str redo_func: function to redo the action, must be a
method of :class:`Bundle`
:parameter dict redo_kwargs: kwargs to pass to the redo_func. Each
item must be serializable (float or str, not objects)
:parameter str undo_func: function to undo the action, must be a
method of :class:`Bundle`
:parameter dict undo_kwargs: kwargs to pass to the undo_func. Each
item must be serializable (float or str, not objects)
:parameter str history: label of the history parameter
:raises ValueError: if the label for this history item is forbidden or
already exists
"""
if not self.history_enabled:
return
param = HistoryParameter(self, redo_func, redo_kwargs,
undo_func, undo_kwargs)
metawargs = {'context': 'history',
'history': kwargs.get('history', self._default_label('hist', **{'context': 'history'}))}
self._check_label(metawargs['history'])
self._attach_params([param], **metawargs) | python | def _add_history(self, redo_func, redo_kwargs, undo_func, undo_kwargs,
**kwargs):
"""
Add a new log (undo/redoable) to this history context
:parameter str redo_func: function to redo the action, must be a
method of :class:`Bundle`
:parameter dict redo_kwargs: kwargs to pass to the redo_func. Each
item must be serializable (float or str, not objects)
:parameter str undo_func: function to undo the action, must be a
method of :class:`Bundle`
:parameter dict undo_kwargs: kwargs to pass to the undo_func. Each
item must be serializable (float or str, not objects)
:parameter str history: label of the history parameter
:raises ValueError: if the label for this history item is forbidden or
already exists
"""
if not self.history_enabled:
return
param = HistoryParameter(self, redo_func, redo_kwargs,
undo_func, undo_kwargs)
metawargs = {'context': 'history',
'history': kwargs.get('history', self._default_label('hist', **{'context': 'history'}))}
self._check_label(metawargs['history'])
self._attach_params([param], **metawargs) | ['def', '_add_history', '(', 'self', ',', 'redo_func', ',', 'redo_kwargs', ',', 'undo_func', ',', 'undo_kwargs', ',', '*', '*', 'kwargs', ')', ':', 'if', 'not', 'self', '.', 'history_enabled', ':', 'return', 'param', '=', 'HistoryParameter', '(', 'self', ',', 'redo_func', ',', 'redo_kwargs', ',', 'undo_func', ',', 'undo_kwargs', ')', 'metawargs', '=', '{', "'context'", ':', "'history'", ',', "'history'", ':', 'kwargs', '.', 'get', '(', "'history'", ',', 'self', '.', '_default_label', '(', "'hist'", ',', '*', '*', '{', "'context'", ':', "'history'", '}', ')', ')', '}', 'self', '.', '_check_label', '(', 'metawargs', '[', "'history'", ']', ')', 'self', '.', '_attach_params', '(', '[', 'param', ']', ',', '*', '*', 'metawargs', ')'] | Add a new log (undo/redoable) to this history context
:parameter str redo_func: function to redo the action, must be a
method of :class:`Bundle`
:parameter dict redo_kwargs: kwargs to pass to the redo_func. Each
item must be serializable (float or str, not objects)
:parameter str undo_func: function to undo the action, must be a
method of :class:`Bundle`
:parameter dict undo_kwargs: kwargs to pass to the undo_func. Each
item must be serializable (float or str, not objects)
:parameter str history: label of the history parameter
:raises ValueError: if the label for this history item is forbidden or
already exists | ['Add', 'a', 'new', 'log', '(', 'undo', '/', 'redoable', ')', 'to', 'this', 'history', 'context'] | train | https://github.com/phoebe-project/phoebe2/blob/e64b8be683977064e2d55dd1b3ac400f64c3e379/phoebe/frontend/bundle.py#L811-L839 |
9,979 | openstack/hacking | hacking/checks/docstrings.py | is_docstring | def is_docstring(tokens, previous_logical):
"""Return found docstring
'A docstring is a string literal that occurs as the first statement in a
module, function, class,'
http://www.python.org/dev/peps/pep-0257/#what-is-a-docstring
"""
for token_type, text, start, _, _ in tokens:
if token_type == tokenize.STRING:
break
elif token_type != tokenize.INDENT:
return False
else:
return False
line = text.lstrip()
start, start_triple = _find_first_of(line, START_DOCSTRING_TRIPLE)
if (previous_logical.startswith("def ") or
previous_logical.startswith("class ")):
if start == 0:
return text | python | def is_docstring(tokens, previous_logical):
"""Return found docstring
'A docstring is a string literal that occurs as the first statement in a
module, function, class,'
http://www.python.org/dev/peps/pep-0257/#what-is-a-docstring
"""
for token_type, text, start, _, _ in tokens:
if token_type == tokenize.STRING:
break
elif token_type != tokenize.INDENT:
return False
else:
return False
line = text.lstrip()
start, start_triple = _find_first_of(line, START_DOCSTRING_TRIPLE)
if (previous_logical.startswith("def ") or
previous_logical.startswith("class ")):
if start == 0:
return text | ['def', 'is_docstring', '(', 'tokens', ',', 'previous_logical', ')', ':', 'for', 'token_type', ',', 'text', ',', 'start', ',', '_', ',', '_', 'in', 'tokens', ':', 'if', 'token_type', '==', 'tokenize', '.', 'STRING', ':', 'break', 'elif', 'token_type', '!=', 'tokenize', '.', 'INDENT', ':', 'return', 'False', 'else', ':', 'return', 'False', 'line', '=', 'text', '.', 'lstrip', '(', ')', 'start', ',', 'start_triple', '=', '_find_first_of', '(', 'line', ',', 'START_DOCSTRING_TRIPLE', ')', 'if', '(', 'previous_logical', '.', 'startswith', '(', '"def "', ')', 'or', 'previous_logical', '.', 'startswith', '(', '"class "', ')', ')', ':', 'if', 'start', '==', '0', ':', 'return', 'text'] | Return found docstring
'A docstring is a string literal that occurs as the first statement in a
module, function, class,'
http://www.python.org/dev/peps/pep-0257/#what-is-a-docstring | ['Return', 'found', 'docstring'] | train | https://github.com/openstack/hacking/blob/10e58f907181cac91d3b2af422c2458b04a1ec79/hacking/checks/docstrings.py#L128-L147 |
9,980 | jantman/pypi-download-stats | pypi_download_stats/dataquery.py | DataQuery._query_by_installer | def _query_by_installer(self, table_name):
"""
Query for download data broken down by installer, for one day.
:param table_name: table name to query against
:type table_name: str
:return: dict of download information by installer; keys are project
name, values are a dict of installer names to dicts of installer
version to download count.
:rtype: dict
"""
logger.info('Querying for downloads by installer in table %s',
table_name)
q = "SELECT file.project, details.installer.name, " \
"details.installer.version, COUNT(*) as dl_count " \
"%s " \
"%s " \
"GROUP BY file.project, details.installer.name, " \
"details.installer.version;" % (
self._from_for_table(table_name),
self._where_for_projects
)
res = self._run_query(q)
result = self._dict_for_projects()
# iterate through results
for row in res:
# pointer to the per-project result dict
proj = result[row['file_project']]
# grab the name and version; change None to 'unknown'
iname = row['details_installer_name']
iver = row['details_installer_version']
if iname not in proj:
proj[iname] = {}
if iver not in proj[iname]:
proj[iname][iver] = 0
proj[iname][iver] += int(row['dl_count'])
return result | python | def _query_by_installer(self, table_name):
"""
Query for download data broken down by installer, for one day.
:param table_name: table name to query against
:type table_name: str
:return: dict of download information by installer; keys are project
name, values are a dict of installer names to dicts of installer
version to download count.
:rtype: dict
"""
logger.info('Querying for downloads by installer in table %s',
table_name)
q = "SELECT file.project, details.installer.name, " \
"details.installer.version, COUNT(*) as dl_count " \
"%s " \
"%s " \
"GROUP BY file.project, details.installer.name, " \
"details.installer.version;" % (
self._from_for_table(table_name),
self._where_for_projects
)
res = self._run_query(q)
result = self._dict_for_projects()
# iterate through results
for row in res:
# pointer to the per-project result dict
proj = result[row['file_project']]
# grab the name and version; change None to 'unknown'
iname = row['details_installer_name']
iver = row['details_installer_version']
if iname not in proj:
proj[iname] = {}
if iver not in proj[iname]:
proj[iname][iver] = 0
proj[iname][iver] += int(row['dl_count'])
return result | ['def', '_query_by_installer', '(', 'self', ',', 'table_name', ')', ':', 'logger', '.', 'info', '(', "'Querying for downloads by installer in table %s'", ',', 'table_name', ')', 'q', '=', '"SELECT file.project, details.installer.name, "', '"details.installer.version, COUNT(*) as dl_count "', '"%s "', '"%s "', '"GROUP BY file.project, details.installer.name, "', '"details.installer.version;"', '%', '(', 'self', '.', '_from_for_table', '(', 'table_name', ')', ',', 'self', '.', '_where_for_projects', ')', 'res', '=', 'self', '.', '_run_query', '(', 'q', ')', 'result', '=', 'self', '.', '_dict_for_projects', '(', ')', '# iterate through results', 'for', 'row', 'in', 'res', ':', '# pointer to the per-project result dict', 'proj', '=', 'result', '[', 'row', '[', "'file_project'", ']', ']', "# grab the name and version; change None to 'unknown'", 'iname', '=', 'row', '[', "'details_installer_name'", ']', 'iver', '=', 'row', '[', "'details_installer_version'", ']', 'if', 'iname', 'not', 'in', 'proj', ':', 'proj', '[', 'iname', ']', '=', '{', '}', 'if', 'iver', 'not', 'in', 'proj', '[', 'iname', ']', ':', 'proj', '[', 'iname', ']', '[', 'iver', ']', '=', '0', 'proj', '[', 'iname', ']', '[', 'iver', ']', '+=', 'int', '(', 'row', '[', "'dl_count'", ']', ')', 'return', 'result'] | Query for download data broken down by installer, for one day.
:param table_name: table name to query against
:type table_name: str
:return: dict of download information by installer; keys are project
name, values are a dict of installer names to dicts of installer
version to download count.
:rtype: dict | ['Query', 'for', 'download', 'data', 'broken', 'down', 'by', 'installer', 'for', 'one', 'day', '.'] | train | https://github.com/jantman/pypi-download-stats/blob/44a7a6bbcd61a9e7f02bd02c52584a98183f80c5/pypi_download_stats/dataquery.py#L320-L356 |
9,981 | axltxl/m2bk | m2bk/config.py | set_entry | def set_entry(key, value):
"""
Set a configuration entry
:param key: key name
:param value: value for this key
:raises KeyError: if key is not str
"""
if type(key) != str:
raise KeyError('key must be str')
_config[key] = value | python | def set_entry(key, value):
"""
Set a configuration entry
:param key: key name
:param value: value for this key
:raises KeyError: if key is not str
"""
if type(key) != str:
raise KeyError('key must be str')
_config[key] = value | ['def', 'set_entry', '(', 'key', ',', 'value', ')', ':', 'if', 'type', '(', 'key', ')', '!=', 'str', ':', 'raise', 'KeyError', '(', "'key must be str'", ')', '_config', '[', 'key', ']', '=', 'value'] | Set a configuration entry
:param key: key name
:param value: value for this key
:raises KeyError: if key is not str | ['Set', 'a', 'configuration', 'entry'] | train | https://github.com/axltxl/m2bk/blob/980083dfd17e6e783753a946e9aa809714551141/m2bk/config.py#L62-L72 |
9,982 | dmlc/gluon-nlp | src/gluonnlp/data/transforms.py | BERTBasicTokenizer._is_control | def _is_control(self, char):
"""Checks whether `chars` is a control character."""
# These are technically control characters but we count them as whitespace
# characters.
if char in ['\t', '\n', '\r']:
return False
cat = unicodedata.category(char)
if cat.startswith('C'):
return True
return False | python | def _is_control(self, char):
"""Checks whether `chars` is a control character."""
# These are technically control characters but we count them as whitespace
# characters.
if char in ['\t', '\n', '\r']:
return False
cat = unicodedata.category(char)
if cat.startswith('C'):
return True
return False | ['def', '_is_control', '(', 'self', ',', 'char', ')', ':', '# These are technically control characters but we count them as whitespace', '# characters.', 'if', 'char', 'in', '[', "'\\t'", ',', "'\\n'", ',', "'\\r'", ']', ':', 'return', 'False', 'cat', '=', 'unicodedata', '.', 'category', '(', 'char', ')', 'if', 'cat', '.', 'startswith', '(', "'C'", ')', ':', 'return', 'True', 'return', 'False'] | Checks whether `chars` is a control character. | ['Checks', 'whether', 'chars', 'is', 'a', 'control', 'character', '.'] | train | https://github.com/dmlc/gluon-nlp/blob/4b83eb6bcc8881e5f1081a3675adaa19fac5c0ba/src/gluonnlp/data/transforms.py#L793-L802 |
9,983 | johnnoone/aioconsul | aioconsul/client/query_endpoint.py | QueryEndpoint.items | async def items(self, *, dc=None, watch=None, consistency=None):
"""Provides a listing of all prepared queries
Parameters:
dc (str): Specify datacenter that will be used.
Defaults to the agent's local datacenter.
watch (Blocking): Do a blocking query
consistency (Consistency): Force consistency
Returns:
Collection: List of prepared queries
This returns a list of prepared queries, which looks like::
[
{
"ID": "8f246b77-f3e1-ff88-5b48-8ec93abf3e05",
"Name": "my-query",
"Session": "adf4238a-882b-9ddc-4a9d-5b6758e4159e",
"Token": "<hidden>",
"Service": {
"Service": "redis",
"Failover": {
"NearestN": 3,
"Datacenters": ["dc1", "dc2"]
},
"OnlyPassing": False,
"Tags": ["master", "!experimental"]
},
"DNS": {
"TTL": timedelta(seconds=10)
},
"RaftIndex": {
"CreateIndex": 23,
"ModifyIndex": 42
}
}
]
"""
response = await self._api.get("/v1/query", params={"dc": dc})
return response.body | python | async def items(self, *, dc=None, watch=None, consistency=None):
"""Provides a listing of all prepared queries
Parameters:
dc (str): Specify datacenter that will be used.
Defaults to the agent's local datacenter.
watch (Blocking): Do a blocking query
consistency (Consistency): Force consistency
Returns:
Collection: List of prepared queries
This returns a list of prepared queries, which looks like::
[
{
"ID": "8f246b77-f3e1-ff88-5b48-8ec93abf3e05",
"Name": "my-query",
"Session": "adf4238a-882b-9ddc-4a9d-5b6758e4159e",
"Token": "<hidden>",
"Service": {
"Service": "redis",
"Failover": {
"NearestN": 3,
"Datacenters": ["dc1", "dc2"]
},
"OnlyPassing": False,
"Tags": ["master", "!experimental"]
},
"DNS": {
"TTL": timedelta(seconds=10)
},
"RaftIndex": {
"CreateIndex": 23,
"ModifyIndex": 42
}
}
]
"""
response = await self._api.get("/v1/query", params={"dc": dc})
return response.body | ['async', 'def', 'items', '(', 'self', ',', '*', ',', 'dc', '=', 'None', ',', 'watch', '=', 'None', ',', 'consistency', '=', 'None', ')', ':', 'response', '=', 'await', 'self', '.', '_api', '.', 'get', '(', '"/v1/query"', ',', 'params', '=', '{', '"dc"', ':', 'dc', '}', ')', 'return', 'response', '.', 'body'] | Provides a listing of all prepared queries
Parameters:
dc (str): Specify datacenter that will be used.
Defaults to the agent's local datacenter.
watch (Blocking): Do a blocking query
consistency (Consistency): Force consistency
Returns:
Collection: List of prepared queries
This returns a list of prepared queries, which looks like::
[
{
"ID": "8f246b77-f3e1-ff88-5b48-8ec93abf3e05",
"Name": "my-query",
"Session": "adf4238a-882b-9ddc-4a9d-5b6758e4159e",
"Token": "<hidden>",
"Service": {
"Service": "redis",
"Failover": {
"NearestN": 3,
"Datacenters": ["dc1", "dc2"]
},
"OnlyPassing": False,
"Tags": ["master", "!experimental"]
},
"DNS": {
"TTL": timedelta(seconds=10)
},
"RaftIndex": {
"CreateIndex": 23,
"ModifyIndex": 42
}
}
] | ['Provides', 'a', 'listing', 'of', 'all', 'prepared', 'queries'] | train | https://github.com/johnnoone/aioconsul/blob/02f7a529d7dc2e49bed942111067aa5faf320e90/aioconsul/client/query_endpoint.py#L15-L54 |
9,984 | saltstack/salt | salt/modules/boto_kms.py | decrypt | def decrypt(ciphertext_blob, encryption_context=None, grant_tokens=None,
region=None, key=None, keyid=None, profile=None):
'''
Decrypt ciphertext.
CLI example::
salt myminion boto_kms.decrypt encrypted_ciphertext
'''
conn = _get_conn(region=region, key=key, keyid=keyid, profile=profile)
r = {}
try:
plaintext = conn.decrypt(
ciphertext_blob,
encryption_context=encryption_context,
grant_tokens=grant_tokens
)
r['plaintext'] = plaintext['Plaintext']
except boto.exception.BotoServerError as e:
r['error'] = __utils__['boto.get_error'](e)
return r | python | def decrypt(ciphertext_blob, encryption_context=None, grant_tokens=None,
region=None, key=None, keyid=None, profile=None):
'''
Decrypt ciphertext.
CLI example::
salt myminion boto_kms.decrypt encrypted_ciphertext
'''
conn = _get_conn(region=region, key=key, keyid=keyid, profile=profile)
r = {}
try:
plaintext = conn.decrypt(
ciphertext_blob,
encryption_context=encryption_context,
grant_tokens=grant_tokens
)
r['plaintext'] = plaintext['Plaintext']
except boto.exception.BotoServerError as e:
r['error'] = __utils__['boto.get_error'](e)
return r | ['def', 'decrypt', '(', 'ciphertext_blob', ',', 'encryption_context', '=', 'None', ',', 'grant_tokens', '=', 'None', ',', 'region', '=', 'None', ',', 'key', '=', 'None', ',', 'keyid', '=', 'None', ',', 'profile', '=', 'None', ')', ':', 'conn', '=', '_get_conn', '(', 'region', '=', 'region', ',', 'key', '=', 'key', ',', 'keyid', '=', 'keyid', ',', 'profile', '=', 'profile', ')', 'r', '=', '{', '}', 'try', ':', 'plaintext', '=', 'conn', '.', 'decrypt', '(', 'ciphertext_blob', ',', 'encryption_context', '=', 'encryption_context', ',', 'grant_tokens', '=', 'grant_tokens', ')', 'r', '[', "'plaintext'", ']', '=', 'plaintext', '[', "'Plaintext'", ']', 'except', 'boto', '.', 'exception', '.', 'BotoServerError', 'as', 'e', ':', 'r', '[', "'error'", ']', '=', '__utils__', '[', "'boto.get_error'", ']', '(', 'e', ')', 'return', 'r'] | Decrypt ciphertext.
CLI example::
salt myminion boto_kms.decrypt encrypted_ciphertext | ['Decrypt', 'ciphertext', '.'] | train | https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/modules/boto_kms.py#L156-L177 |
9,985 | kallimachos/chios | chios/remoteinclude/__init__.py | setup | def setup(app):
"""
Setup for Sphinx extension.
:param app: Sphinx application context.
"""
app.info('adding remote-include directive...', nonl=True)
app.add_directive('remote-include', RemoteInclude)
app.info(' done')
return {
'version': __version__,
'parallel_read_safe': True,
'parallel_write_safe': True,
} | python | def setup(app):
"""
Setup for Sphinx extension.
:param app: Sphinx application context.
"""
app.info('adding remote-include directive...', nonl=True)
app.add_directive('remote-include', RemoteInclude)
app.info(' done')
return {
'version': __version__,
'parallel_read_safe': True,
'parallel_write_safe': True,
} | ['def', 'setup', '(', 'app', ')', ':', 'app', '.', 'info', '(', "'adding remote-include directive...'", ',', 'nonl', '=', 'True', ')', 'app', '.', 'add_directive', '(', "'remote-include'", ',', 'RemoteInclude', ')', 'app', '.', 'info', '(', "' done'", ')', 'return', '{', "'version'", ':', '__version__', ',', "'parallel_read_safe'", ':', 'True', ',', "'parallel_write_safe'", ':', 'True', ',', '}'] | Setup for Sphinx extension.
:param app: Sphinx application context. | ['Setup', 'for', 'Sphinx', 'extension', '.'] | train | https://github.com/kallimachos/chios/blob/e14044e4019d57089c625d4ad2f73ccb66b8b7b8/chios/remoteinclude/__init__.py#L60-L73 |
9,986 | HDI-Project/BTB | btb/selection/pure.py | PureBestKVelocity.compute_rewards | def compute_rewards(self, scores):
"""
Compute the "velocity" of (average distance between) the k+1 best
scores. Return a list with those k velocities padded out with zeros so
that the count remains the same.
"""
# get the k + 1 best scores in descending order
best_scores = sorted(scores, reverse=True)[:self.k + 1]
velocities = [best_scores[i] - best_scores[i + 1]
for i in range(len(best_scores) - 1)]
# pad the list out with zeros to maintain the length of the list
zeros = (len(scores) - self.k) * [0]
return velocities + zeros | python | def compute_rewards(self, scores):
"""
Compute the "velocity" of (average distance between) the k+1 best
scores. Return a list with those k velocities padded out with zeros so
that the count remains the same.
"""
# get the k + 1 best scores in descending order
best_scores = sorted(scores, reverse=True)[:self.k + 1]
velocities = [best_scores[i] - best_scores[i + 1]
for i in range(len(best_scores) - 1)]
# pad the list out with zeros to maintain the length of the list
zeros = (len(scores) - self.k) * [0]
return velocities + zeros | ['def', 'compute_rewards', '(', 'self', ',', 'scores', ')', ':', '# get the k + 1 best scores in descending order', 'best_scores', '=', 'sorted', '(', 'scores', ',', 'reverse', '=', 'True', ')', '[', ':', 'self', '.', 'k', '+', '1', ']', 'velocities', '=', '[', 'best_scores', '[', 'i', ']', '-', 'best_scores', '[', 'i', '+', '1', ']', 'for', 'i', 'in', 'range', '(', 'len', '(', 'best_scores', ')', '-', '1', ')', ']', '# pad the list out with zeros to maintain the length of the list', 'zeros', '=', '(', 'len', '(', 'scores', ')', '-', 'self', '.', 'k', ')', '*', '[', '0', ']', 'return', 'velocities', '+', 'zeros'] | Compute the "velocity" of (average distance between) the k+1 best
scores. Return a list with those k velocities padded out with zeros so
that the count remains the same. | ['Compute', 'the', 'velocity', 'of', '(', 'average', 'distance', 'between', ')', 'the', 'k', '+', '1', 'best', 'scores', '.', 'Return', 'a', 'list', 'with', 'those', 'k', 'velocities', 'padded', 'out', 'with', 'zeros', 'so', 'that', 'the', 'count', 'remains', 'the', 'same', '.'] | train | https://github.com/HDI-Project/BTB/blob/7f489ebc5591bd0886652ef743098c022d7f7460/btb/selection/pure.py#L23-L36 |
9,987 | python-gitlab/python-gitlab | gitlab/mixins.py | UpdateMixin.update | def update(self, id=None, new_data={}, **kwargs):
"""Update an object on the server.
Args:
id: ID of the object to update (can be None if not required)
new_data: the update data for the object
**kwargs: Extra options to send to the server (e.g. sudo)
Returns:
dict: The new object data (*not* a RESTObject)
Raises:
GitlabAuthenticationError: If authentication is not correct
GitlabUpdateError: If the server cannot perform the request
"""
if id is None:
path = self.path
else:
path = '%s/%s' % (self.path, id)
self._check_missing_update_attrs(new_data)
files = {}
# We get the attributes that need some special transformation
types = getattr(self, '_types', {})
if types:
# Duplicate data to avoid messing with what the user sent us
new_data = new_data.copy()
for attr_name, type_cls in types.items():
if attr_name in new_data.keys():
type_obj = type_cls(new_data[attr_name])
# if the type if FileAttribute we need to pass the data as
# file
if issubclass(type_cls, g_types.FileAttribute):
k = type_obj.get_file_name(attr_name)
files[attr_name] = (k, new_data.pop(attr_name))
else:
new_data[attr_name] = type_obj.get_for_api()
http_method = self._get_update_method()
return http_method(path, post_data=new_data, files=files, **kwargs) | python | def update(self, id=None, new_data={}, **kwargs):
"""Update an object on the server.
Args:
id: ID of the object to update (can be None if not required)
new_data: the update data for the object
**kwargs: Extra options to send to the server (e.g. sudo)
Returns:
dict: The new object data (*not* a RESTObject)
Raises:
GitlabAuthenticationError: If authentication is not correct
GitlabUpdateError: If the server cannot perform the request
"""
if id is None:
path = self.path
else:
path = '%s/%s' % (self.path, id)
self._check_missing_update_attrs(new_data)
files = {}
# We get the attributes that need some special transformation
types = getattr(self, '_types', {})
if types:
# Duplicate data to avoid messing with what the user sent us
new_data = new_data.copy()
for attr_name, type_cls in types.items():
if attr_name in new_data.keys():
type_obj = type_cls(new_data[attr_name])
# if the type if FileAttribute we need to pass the data as
# file
if issubclass(type_cls, g_types.FileAttribute):
k = type_obj.get_file_name(attr_name)
files[attr_name] = (k, new_data.pop(attr_name))
else:
new_data[attr_name] = type_obj.get_for_api()
http_method = self._get_update_method()
return http_method(path, post_data=new_data, files=files, **kwargs) | ['def', 'update', '(', 'self', ',', 'id', '=', 'None', ',', 'new_data', '=', '{', '}', ',', '*', '*', 'kwargs', ')', ':', 'if', 'id', 'is', 'None', ':', 'path', '=', 'self', '.', 'path', 'else', ':', 'path', '=', "'%s/%s'", '%', '(', 'self', '.', 'path', ',', 'id', ')', 'self', '.', '_check_missing_update_attrs', '(', 'new_data', ')', 'files', '=', '{', '}', '# We get the attributes that need some special transformation', 'types', '=', 'getattr', '(', 'self', ',', "'_types'", ',', '{', '}', ')', 'if', 'types', ':', '# Duplicate data to avoid messing with what the user sent us', 'new_data', '=', 'new_data', '.', 'copy', '(', ')', 'for', 'attr_name', ',', 'type_cls', 'in', 'types', '.', 'items', '(', ')', ':', 'if', 'attr_name', 'in', 'new_data', '.', 'keys', '(', ')', ':', 'type_obj', '=', 'type_cls', '(', 'new_data', '[', 'attr_name', ']', ')', '# if the type if FileAttribute we need to pass the data as', '# file', 'if', 'issubclass', '(', 'type_cls', ',', 'g_types', '.', 'FileAttribute', ')', ':', 'k', '=', 'type_obj', '.', 'get_file_name', '(', 'attr_name', ')', 'files', '[', 'attr_name', ']', '=', '(', 'k', ',', 'new_data', '.', 'pop', '(', 'attr_name', ')', ')', 'else', ':', 'new_data', '[', 'attr_name', ']', '=', 'type_obj', '.', 'get_for_api', '(', ')', 'http_method', '=', 'self', '.', '_get_update_method', '(', ')', 'return', 'http_method', '(', 'path', ',', 'post_data', '=', 'new_data', ',', 'files', '=', 'files', ',', '*', '*', 'kwargs', ')'] | Update an object on the server.
Args:
id: ID of the object to update (can be None if not required)
new_data: the update data for the object
**kwargs: Extra options to send to the server (e.g. sudo)
Returns:
dict: The new object data (*not* a RESTObject)
Raises:
GitlabAuthenticationError: If authentication is not correct
GitlabUpdateError: If the server cannot perform the request | ['Update', 'an', 'object', 'on', 'the', 'server', '.'] | train | https://github.com/python-gitlab/python-gitlab/blob/16de1b03fde3dbbe8f851614dd1d8c09de102fe5/gitlab/mixins.py#L241-L283 |
9,988 | ml4ai/delphi | delphi/GrFN/networks.py | GroundedFunctionNetwork.to_FIB | def to_FIB(self, other):
""" Creates a ForwardInfluenceBlanket object representing the
intersection of this model with the other input model.
Args:
other: The GroundedFunctionNetwork object to compare this model to.
Returns:
A ForwardInfluenceBlanket object to use for model comparison.
"""
if not isinstance(other, GroundedFunctionNetwork):
raise TypeError(
f"Expected GroundedFunctionNetwork, but got {type(other)}"
)
def shortname(var):
return var[var.find("::") + 2 : var.rfind("_")]
def shortname_vars(graph, shortname):
return [v for v in graph.nodes() if shortname in v]
this_var_nodes = [
shortname(n)
for (n, d) in self.nodes(data=True)
if d["type"] == "variable"
]
other_var_nodes = [
shortname(n)
for (n, d) in other.nodes(data=True)
if d["type"] == "variable"
]
shared_vars = set(this_var_nodes).intersection(set(other_var_nodes))
full_shared_vars = {
full_var
for shared_var in shared_vars
for full_var in shortname_vars(self, shared_var)
}
return ForwardInfluenceBlanket(self, full_shared_vars) | python | def to_FIB(self, other):
""" Creates a ForwardInfluenceBlanket object representing the
intersection of this model with the other input model.
Args:
other: The GroundedFunctionNetwork object to compare this model to.
Returns:
A ForwardInfluenceBlanket object to use for model comparison.
"""
if not isinstance(other, GroundedFunctionNetwork):
raise TypeError(
f"Expected GroundedFunctionNetwork, but got {type(other)}"
)
def shortname(var):
return var[var.find("::") + 2 : var.rfind("_")]
def shortname_vars(graph, shortname):
return [v for v in graph.nodes() if shortname in v]
this_var_nodes = [
shortname(n)
for (n, d) in self.nodes(data=True)
if d["type"] == "variable"
]
other_var_nodes = [
shortname(n)
for (n, d) in other.nodes(data=True)
if d["type"] == "variable"
]
shared_vars = set(this_var_nodes).intersection(set(other_var_nodes))
full_shared_vars = {
full_var
for shared_var in shared_vars
for full_var in shortname_vars(self, shared_var)
}
return ForwardInfluenceBlanket(self, full_shared_vars) | ['def', 'to_FIB', '(', 'self', ',', 'other', ')', ':', 'if', 'not', 'isinstance', '(', 'other', ',', 'GroundedFunctionNetwork', ')', ':', 'raise', 'TypeError', '(', 'f"Expected GroundedFunctionNetwork, but got {type(other)}"', ')', 'def', 'shortname', '(', 'var', ')', ':', 'return', 'var', '[', 'var', '.', 'find', '(', '"::"', ')', '+', '2', ':', 'var', '.', 'rfind', '(', '"_"', ')', ']', 'def', 'shortname_vars', '(', 'graph', ',', 'shortname', ')', ':', 'return', '[', 'v', 'for', 'v', 'in', 'graph', '.', 'nodes', '(', ')', 'if', 'shortname', 'in', 'v', ']', 'this_var_nodes', '=', '[', 'shortname', '(', 'n', ')', 'for', '(', 'n', ',', 'd', ')', 'in', 'self', '.', 'nodes', '(', 'data', '=', 'True', ')', 'if', 'd', '[', '"type"', ']', '==', '"variable"', ']', 'other_var_nodes', '=', '[', 'shortname', '(', 'n', ')', 'for', '(', 'n', ',', 'd', ')', 'in', 'other', '.', 'nodes', '(', 'data', '=', 'True', ')', 'if', 'd', '[', '"type"', ']', '==', '"variable"', ']', 'shared_vars', '=', 'set', '(', 'this_var_nodes', ')', '.', 'intersection', '(', 'set', '(', 'other_var_nodes', ')', ')', 'full_shared_vars', '=', '{', 'full_var', 'for', 'shared_var', 'in', 'shared_vars', 'for', 'full_var', 'in', 'shortname_vars', '(', 'self', ',', 'shared_var', ')', '}', 'return', 'ForwardInfluenceBlanket', '(', 'self', ',', 'full_shared_vars', ')'] | Creates a ForwardInfluenceBlanket object representing the
intersection of this model with the other input model.
Args:
other: The GroundedFunctionNetwork object to compare this model to.
Returns:
A ForwardInfluenceBlanket object to use for model comparison. | ['Creates', 'a', 'ForwardInfluenceBlanket', 'object', 'representing', 'the', 'intersection', 'of', 'this', 'model', 'with', 'the', 'other', 'input', 'model', '.'] | train | https://github.com/ml4ai/delphi/blob/6d03d8aafeab99610387c51b89c99738ff2abbe3/delphi/GrFN/networks.py#L550-L590 |
9,989 | TaurusOlson/fntools | fntools/fntools.py | valueof | def valueof(records, key):
"""Extract the value corresponding to the given key in all the dictionaries
>>> bands = [{'name': 'Led Zeppelin', 'singer': 'Robert Plant', 'guitarist': 'Jimmy Page'},
... {'name': 'Metallica', 'singer': 'James Hetfield', 'guitarist': 'Kirk Hammet'}]
>>> valueof(bands, 'singer')
['Robert Plant', 'James Hetfield']
"""
if isinstance(records, dict):
records = [records]
return map(operator.itemgetter(key), records) | python | def valueof(records, key):
"""Extract the value corresponding to the given key in all the dictionaries
>>> bands = [{'name': 'Led Zeppelin', 'singer': 'Robert Plant', 'guitarist': 'Jimmy Page'},
... {'name': 'Metallica', 'singer': 'James Hetfield', 'guitarist': 'Kirk Hammet'}]
>>> valueof(bands, 'singer')
['Robert Plant', 'James Hetfield']
"""
if isinstance(records, dict):
records = [records]
return map(operator.itemgetter(key), records) | ['def', 'valueof', '(', 'records', ',', 'key', ')', ':', 'if', 'isinstance', '(', 'records', ',', 'dict', ')', ':', 'records', '=', '[', 'records', ']', 'return', 'map', '(', 'operator', '.', 'itemgetter', '(', 'key', ')', ',', 'records', ')'] | Extract the value corresponding to the given key in all the dictionaries
>>> bands = [{'name': 'Led Zeppelin', 'singer': 'Robert Plant', 'guitarist': 'Jimmy Page'},
... {'name': 'Metallica', 'singer': 'James Hetfield', 'guitarist': 'Kirk Hammet'}]
>>> valueof(bands, 'singer')
['Robert Plant', 'James Hetfield'] | ['Extract', 'the', 'value', 'corresponding', 'to', 'the', 'given', 'key', 'in', 'all', 'the', 'dictionaries'] | train | https://github.com/TaurusOlson/fntools/blob/316080c7b5bfdd88c9f3fac4a67deb5be3c319e5/fntools/fntools.py#L553-L564 |
9,990 | log2timeline/plaso | plaso/multi_processing/base_process.py | MultiProcessBaseProcess._StartProfiling | def _StartProfiling(self, configuration):
"""Starts profiling.
Args:
configuration (ProfilingConfiguration): profiling configuration.
"""
if not configuration:
return
if configuration.HaveProfileMemoryGuppy():
self._guppy_memory_profiler = profilers.GuppyMemoryProfiler(
self._name, configuration)
self._guppy_memory_profiler.Start()
if configuration.HaveProfileMemory():
self._memory_profiler = profilers.MemoryProfiler(
self._name, configuration)
self._memory_profiler.Start()
if configuration.HaveProfileProcessing():
identifier = '{0:s}-processing'.format(self._name)
self._processing_profiler = profilers.ProcessingProfiler(
identifier, configuration)
self._processing_profiler.Start()
if configuration.HaveProfileSerializers():
identifier = '{0:s}-serializers'.format(self._name)
self._serializers_profiler = profilers.SerializersProfiler(
identifier, configuration)
self._serializers_profiler.Start()
if configuration.HaveProfileStorage():
self._storage_profiler = profilers.StorageProfiler(
self._name, configuration)
self._storage_profiler.Start()
if configuration.HaveProfileTasks():
self._tasks_profiler = profilers.TasksProfiler(self._name, configuration)
self._tasks_profiler.Start() | python | def _StartProfiling(self, configuration):
"""Starts profiling.
Args:
configuration (ProfilingConfiguration): profiling configuration.
"""
if not configuration:
return
if configuration.HaveProfileMemoryGuppy():
self._guppy_memory_profiler = profilers.GuppyMemoryProfiler(
self._name, configuration)
self._guppy_memory_profiler.Start()
if configuration.HaveProfileMemory():
self._memory_profiler = profilers.MemoryProfiler(
self._name, configuration)
self._memory_profiler.Start()
if configuration.HaveProfileProcessing():
identifier = '{0:s}-processing'.format(self._name)
self._processing_profiler = profilers.ProcessingProfiler(
identifier, configuration)
self._processing_profiler.Start()
if configuration.HaveProfileSerializers():
identifier = '{0:s}-serializers'.format(self._name)
self._serializers_profiler = profilers.SerializersProfiler(
identifier, configuration)
self._serializers_profiler.Start()
if configuration.HaveProfileStorage():
self._storage_profiler = profilers.StorageProfiler(
self._name, configuration)
self._storage_profiler.Start()
if configuration.HaveProfileTasks():
self._tasks_profiler = profilers.TasksProfiler(self._name, configuration)
self._tasks_profiler.Start() | ['def', '_StartProfiling', '(', 'self', ',', 'configuration', ')', ':', 'if', 'not', 'configuration', ':', 'return', 'if', 'configuration', '.', 'HaveProfileMemoryGuppy', '(', ')', ':', 'self', '.', '_guppy_memory_profiler', '=', 'profilers', '.', 'GuppyMemoryProfiler', '(', 'self', '.', '_name', ',', 'configuration', ')', 'self', '.', '_guppy_memory_profiler', '.', 'Start', '(', ')', 'if', 'configuration', '.', 'HaveProfileMemory', '(', ')', ':', 'self', '.', '_memory_profiler', '=', 'profilers', '.', 'MemoryProfiler', '(', 'self', '.', '_name', ',', 'configuration', ')', 'self', '.', '_memory_profiler', '.', 'Start', '(', ')', 'if', 'configuration', '.', 'HaveProfileProcessing', '(', ')', ':', 'identifier', '=', "'{0:s}-processing'", '.', 'format', '(', 'self', '.', '_name', ')', 'self', '.', '_processing_profiler', '=', 'profilers', '.', 'ProcessingProfiler', '(', 'identifier', ',', 'configuration', ')', 'self', '.', '_processing_profiler', '.', 'Start', '(', ')', 'if', 'configuration', '.', 'HaveProfileSerializers', '(', ')', ':', 'identifier', '=', "'{0:s}-serializers'", '.', 'format', '(', 'self', '.', '_name', ')', 'self', '.', '_serializers_profiler', '=', 'profilers', '.', 'SerializersProfiler', '(', 'identifier', ',', 'configuration', ')', 'self', '.', '_serializers_profiler', '.', 'Start', '(', ')', 'if', 'configuration', '.', 'HaveProfileStorage', '(', ')', ':', 'self', '.', '_storage_profiler', '=', 'profilers', '.', 'StorageProfiler', '(', 'self', '.', '_name', ',', 'configuration', ')', 'self', '.', '_storage_profiler', '.', 'Start', '(', ')', 'if', 'configuration', '.', 'HaveProfileTasks', '(', ')', ':', 'self', '.', '_tasks_profiler', '=', 'profilers', '.', 'TasksProfiler', '(', 'self', '.', '_name', ',', 'configuration', ')', 'self', '.', '_tasks_profiler', '.', 'Start', '(', ')'] | Starts profiling.
Args:
configuration (ProfilingConfiguration): profiling configuration. | ['Starts', 'profiling', '.'] | train | https://github.com/log2timeline/plaso/blob/9c564698d2da3ffbe23607a3c54c0582ea18a6cc/plaso/multi_processing/base_process.py#L175-L213 |
9,991 | dariusbakunas/rawdisk | rawdisk/plugins/filesystems/ntfs/ntfs.py | Ntfs.detect | def detect(self, filename, offset, standalone=False):
"""Verifies NTFS filesystem signature.
Returns:
bool: True if filesystem signature at offset 0x03 \
matches 'NTFS ', False otherwise.
"""
r = RawStruct(
filename=filename,
offset=offset + SIG_OFFSET,
length=SIG_SIZE)
oem_id = r.data
if oem_id == b"NTFS ":
return True
return False | python | def detect(self, filename, offset, standalone=False):
"""Verifies NTFS filesystem signature.
Returns:
bool: True if filesystem signature at offset 0x03 \
matches 'NTFS ', False otherwise.
"""
r = RawStruct(
filename=filename,
offset=offset + SIG_OFFSET,
length=SIG_SIZE)
oem_id = r.data
if oem_id == b"NTFS ":
return True
return False | ['def', 'detect', '(', 'self', ',', 'filename', ',', 'offset', ',', 'standalone', '=', 'False', ')', ':', 'r', '=', 'RawStruct', '(', 'filename', '=', 'filename', ',', 'offset', '=', 'offset', '+', 'SIG_OFFSET', ',', 'length', '=', 'SIG_SIZE', ')', 'oem_id', '=', 'r', '.', 'data', 'if', 'oem_id', '==', 'b"NTFS "', ':', 'return', 'True', 'return', 'False'] | Verifies NTFS filesystem signature.
Returns:
bool: True if filesystem signature at offset 0x03 \
matches 'NTFS ', False otherwise. | ['Verifies', 'NTFS', 'filesystem', 'signature', '.'] | train | https://github.com/dariusbakunas/rawdisk/blob/1dc9d0b377fe5da3c406ccec4abc238c54167403/rawdisk/plugins/filesystems/ntfs/ntfs.py#L27-L44 |
9,992 | Azure/azure-python-devtools | src/azure_devtools/ci_tools/bot_framework.py | build_from_issue_comment | def build_from_issue_comment(gh_token, body):
"""Create a WebhookMetadata from a comment added to an issue.
"""
if body["action"] in ["created", "edited"]:
github_con = Github(gh_token)
repo = github_con.get_repo(body['repository']['full_name'])
issue = repo.get_issue(body['issue']['number'])
text = body['comment']['body']
try:
comment = issue.get_comment(body['comment']['id'])
except UnknownObjectException:
# If the comment has already disapeared, skip the command
return None
return WebhookMetadata(repo, issue, text, comment)
return None | python | def build_from_issue_comment(gh_token, body):
"""Create a WebhookMetadata from a comment added to an issue.
"""
if body["action"] in ["created", "edited"]:
github_con = Github(gh_token)
repo = github_con.get_repo(body['repository']['full_name'])
issue = repo.get_issue(body['issue']['number'])
text = body['comment']['body']
try:
comment = issue.get_comment(body['comment']['id'])
except UnknownObjectException:
# If the comment has already disapeared, skip the command
return None
return WebhookMetadata(repo, issue, text, comment)
return None | ['def', 'build_from_issue_comment', '(', 'gh_token', ',', 'body', ')', ':', 'if', 'body', '[', '"action"', ']', 'in', '[', '"created"', ',', '"edited"', ']', ':', 'github_con', '=', 'Github', '(', 'gh_token', ')', 'repo', '=', 'github_con', '.', 'get_repo', '(', 'body', '[', "'repository'", ']', '[', "'full_name'", ']', ')', 'issue', '=', 'repo', '.', 'get_issue', '(', 'body', '[', "'issue'", ']', '[', "'number'", ']', ')', 'text', '=', 'body', '[', "'comment'", ']', '[', "'body'", ']', 'try', ':', 'comment', '=', 'issue', '.', 'get_comment', '(', 'body', '[', "'comment'", ']', '[', "'id'", ']', ')', 'except', 'UnknownObjectException', ':', '# If the comment has already disapeared, skip the command', 'return', 'None', 'return', 'WebhookMetadata', '(', 'repo', ',', 'issue', ',', 'text', ',', 'comment', ')', 'return', 'None'] | Create a WebhookMetadata from a comment added to an issue. | ['Create', 'a', 'WebhookMetadata', 'from', 'a', 'comment', 'added', 'to', 'an', 'issue', '.'] | train | https://github.com/Azure/azure-python-devtools/blob/2bf87b1f3cedd2b26fb2e4fd47a9baf435dcf936/src/azure_devtools/ci_tools/bot_framework.py#L25-L39 |
9,993 | xmunoz/sodapy | sodapy/__init__.py | Socrata.upsert | def upsert(self, dataset_identifier, payload, content_type="json"):
'''
Insert, update or delete data to/from an existing dataset. Currently
supports json and csv file objects. See here for the upsert
documentation:
http://dev.socrata.com/publishers/upsert.html
'''
resource = _format_new_api_request(dataid=dataset_identifier, content_type=content_type)
return self._perform_update("post", resource, payload) | python | def upsert(self, dataset_identifier, payload, content_type="json"):
'''
Insert, update or delete data to/from an existing dataset. Currently
supports json and csv file objects. See here for the upsert
documentation:
http://dev.socrata.com/publishers/upsert.html
'''
resource = _format_new_api_request(dataid=dataset_identifier, content_type=content_type)
return self._perform_update("post", resource, payload) | ['def', 'upsert', '(', 'self', ',', 'dataset_identifier', ',', 'payload', ',', 'content_type', '=', '"json"', ')', ':', 'resource', '=', '_format_new_api_request', '(', 'dataid', '=', 'dataset_identifier', ',', 'content_type', '=', 'content_type', ')', 'return', 'self', '.', '_perform_update', '(', '"post"', ',', 'resource', ',', 'payload', ')'] | Insert, update or delete data to/from an existing dataset. Currently
supports json and csv file objects. See here for the upsert
documentation:
http://dev.socrata.com/publishers/upsert.html | ['Insert', 'update', 'or', 'delete', 'data', 'to', '/', 'from', 'an', 'existing', 'dataset', '.', 'Currently', 'supports', 'json', 'and', 'csv', 'file', 'objects', '.', 'See', 'here', 'for', 'the', 'upsert', 'documentation', ':', 'http', ':', '//', 'dev', '.', 'socrata', '.', 'com', '/', 'publishers', '/', 'upsert', '.', 'html'] | train | https://github.com/xmunoz/sodapy/blob/dad2ca9560cde0acb03bdb4423260e891ca40d7b/sodapy/__init__.py#L365-L374 |
9,994 | androguard/androguard | androguard/decompiler/dad/control_flow.py | derived_sequence | def derived_sequence(graph):
"""
Compute the derived sequence of the graph G
The intervals of G are collapsed into nodes, intervals of these nodes are
built, and the process is repeated iteratively until we obtain a single
node (if the graph is not irreducible)
"""
deriv_seq = [graph]
deriv_interv = []
single_node = False
while not single_node:
interv_graph, interv_heads = intervals(graph)
deriv_interv.append(interv_heads)
single_node = len(interv_graph) == 1
if not single_node:
deriv_seq.append(interv_graph)
graph = interv_graph
graph.compute_rpo()
return deriv_seq, deriv_interv | python | def derived_sequence(graph):
"""
Compute the derived sequence of the graph G
The intervals of G are collapsed into nodes, intervals of these nodes are
built, and the process is repeated iteratively until we obtain a single
node (if the graph is not irreducible)
"""
deriv_seq = [graph]
deriv_interv = []
single_node = False
while not single_node:
interv_graph, interv_heads = intervals(graph)
deriv_interv.append(interv_heads)
single_node = len(interv_graph) == 1
if not single_node:
deriv_seq.append(interv_graph)
graph = interv_graph
graph.compute_rpo()
return deriv_seq, deriv_interv | ['def', 'derived_sequence', '(', 'graph', ')', ':', 'deriv_seq', '=', '[', 'graph', ']', 'deriv_interv', '=', '[', ']', 'single_node', '=', 'False', 'while', 'not', 'single_node', ':', 'interv_graph', ',', 'interv_heads', '=', 'intervals', '(', 'graph', ')', 'deriv_interv', '.', 'append', '(', 'interv_heads', ')', 'single_node', '=', 'len', '(', 'interv_graph', ')', '==', '1', 'if', 'not', 'single_node', ':', 'deriv_seq', '.', 'append', '(', 'interv_graph', ')', 'graph', '=', 'interv_graph', 'graph', '.', 'compute_rpo', '(', ')', 'return', 'deriv_seq', ',', 'deriv_interv'] | Compute the derived sequence of the graph G
The intervals of G are collapsed into nodes, intervals of these nodes are
built, and the process is repeated iteratively until we obtain a single
node (if the graph is not irreducible) | ['Compute', 'the', 'derived', 'sequence', 'of', 'the', 'graph', 'G', 'The', 'intervals', 'of', 'G', 'are', 'collapsed', 'into', 'nodes', 'intervals', 'of', 'these', 'nodes', 'are', 'built', 'and', 'the', 'process', 'is', 'repeated', 'iteratively', 'until', 'we', 'obtain', 'a', 'single', 'node', '(', 'if', 'the', 'graph', 'is', 'not', 'irreducible', ')'] | train | https://github.com/androguard/androguard/blob/984c0d981be2950cf0451e484f7b0d4d53bc4911/androguard/decompiler/dad/control_flow.py#L86-L109 |
9,995 | croscon/fleaker | fleaker/config.py | MultiStageConfigurableApp.configure | def configure(self, *args, **kwargs):
"""Configure the Application through a varied number of sources of
different types.
This function chains multiple possible configuration methods together
in order to just "make it work". You can pass multiple configuration
sources in to the method and each one will be tried in a sane fashion.
Later sources will override earlier sources if keys collide. For
example:
.. code:: python
from application import default_config
app.configure(default_config, os.environ, '.secrets')
In the above example, values stored in ``default_config`` will be
loaded first, then overwritten by those in ``os.environ``, and so on.
An endless number of configuration sources may be passed.
Configuration sources are type checked and processed according to the
following rules:
* ``string`` - if the source is a ``str``, we will assume it is a file
or module that should be loaded. If the file ends in ``.json``, then
:meth:`flask.Config.from_json` is used; if the file ends in ``.py``
or ``.cfg``, then :meth:`flask.Config.from_pyfile` is used; if the
module has any other extension we assume it is an import path, import
the module and pass that to :meth:`flask.Config.from_object`. See
below for a few more semantics on module loading.
* ``dict-like`` - if the source is ``dict-like``, then
:meth:`flask.Config.from_mapping` will be used. ``dict-like`` is
defined as anything implementing an ``items`` method that returns
a tuple of ``key``, ``val``.
* ``class`` or ``module`` - if the source is an uninstantiated
``class`` or ``module``, then :meth:`flask.Config.from_object` will
be used.
Just like Flask's standard configuration, only uppercased keys will be
loaded into the config.
If the item we are passed is a ``string`` and it is determined to be
a possible Python module, then a leading ``.`` is relevant. If
a leading ``.`` is provided, we assume that the module to import is
located in the current package and operate as such; if it begins with
anything else we assume the import path provided is absolute. This
allows you to source configuration stored in a module in your package,
or in another package.
Args:
*args (object):
Any object you want us to try to configure from.
Keyword Args:
whitelist_keys_from_mappings (bool):
Should we whitelist the keys we pull from mappings? Very useful
if you're passing in an entire OS ``environ`` and you want to
omit things like ``LESSPIPE``. If no whitelist is provided, we
use the pre-existing config keys as a whitelist.
whitelist (list[str]):
An explicit list of keys that should be allowed. If provided
and ``whitelist_keys`` is ``True``, we will use that as our
whitelist instead of pre-existing app config keys.
"""
whitelist_keys_from_mappings = kwargs.get(
'whitelist_keys_from_mappings', False
)
whitelist = kwargs.get('whitelist')
for item in args:
if isinstance(item, string_types):
_, ext = splitext(item)
if ext == '.json':
self._configure_from_json(item)
elif ext in ('.cfg', '.py'):
self._configure_from_pyfile(item)
else:
self._configure_from_module(item)
elif isinstance(item, (types.ModuleType, type)):
self._configure_from_object(item)
elif hasattr(item, 'items'):
# assume everything else is a mapping like object; ``.items()``
# is what Flask uses under the hood for this method
# @TODO: This doesn't handle the edge case of using a tuple of
# two element tuples to config; but Flask does that. IMO, if
# you do that, you're a monster.
self._configure_from_mapping(
item,
whitelist_keys=whitelist_keys_from_mappings,
whitelist=whitelist
)
else:
raise TypeError("Could not determine a valid type for this"
" configuration object: `{}`!".format(item))
# we just finished here, run the post configure callbacks
self._run_post_configure_callbacks(args) | python | def configure(self, *args, **kwargs):
"""Configure the Application through a varied number of sources of
different types.
This function chains multiple possible configuration methods together
in order to just "make it work". You can pass multiple configuration
sources in to the method and each one will be tried in a sane fashion.
Later sources will override earlier sources if keys collide. For
example:
.. code:: python
from application import default_config
app.configure(default_config, os.environ, '.secrets')
In the above example, values stored in ``default_config`` will be
loaded first, then overwritten by those in ``os.environ``, and so on.
An endless number of configuration sources may be passed.
Configuration sources are type checked and processed according to the
following rules:
* ``string`` - if the source is a ``str``, we will assume it is a file
or module that should be loaded. If the file ends in ``.json``, then
:meth:`flask.Config.from_json` is used; if the file ends in ``.py``
or ``.cfg``, then :meth:`flask.Config.from_pyfile` is used; if the
module has any other extension we assume it is an import path, import
the module and pass that to :meth:`flask.Config.from_object`. See
below for a few more semantics on module loading.
* ``dict-like`` - if the source is ``dict-like``, then
:meth:`flask.Config.from_mapping` will be used. ``dict-like`` is
defined as anything implementing an ``items`` method that returns
a tuple of ``key``, ``val``.
* ``class`` or ``module`` - if the source is an uninstantiated
``class`` or ``module``, then :meth:`flask.Config.from_object` will
be used.
Just like Flask's standard configuration, only uppercased keys will be
loaded into the config.
If the item we are passed is a ``string`` and it is determined to be
a possible Python module, then a leading ``.`` is relevant. If
a leading ``.`` is provided, we assume that the module to import is
located in the current package and operate as such; if it begins with
anything else we assume the import path provided is absolute. This
allows you to source configuration stored in a module in your package,
or in another package.
Args:
*args (object):
Any object you want us to try to configure from.
Keyword Args:
whitelist_keys_from_mappings (bool):
Should we whitelist the keys we pull from mappings? Very useful
if you're passing in an entire OS ``environ`` and you want to
omit things like ``LESSPIPE``. If no whitelist is provided, we
use the pre-existing config keys as a whitelist.
whitelist (list[str]):
An explicit list of keys that should be allowed. If provided
and ``whitelist_keys`` is ``True``, we will use that as our
whitelist instead of pre-existing app config keys.
"""
whitelist_keys_from_mappings = kwargs.get(
'whitelist_keys_from_mappings', False
)
whitelist = kwargs.get('whitelist')
for item in args:
if isinstance(item, string_types):
_, ext = splitext(item)
if ext == '.json':
self._configure_from_json(item)
elif ext in ('.cfg', '.py'):
self._configure_from_pyfile(item)
else:
self._configure_from_module(item)
elif isinstance(item, (types.ModuleType, type)):
self._configure_from_object(item)
elif hasattr(item, 'items'):
# assume everything else is a mapping like object; ``.items()``
# is what Flask uses under the hood for this method
# @TODO: This doesn't handle the edge case of using a tuple of
# two element tuples to config; but Flask does that. IMO, if
# you do that, you're a monster.
self._configure_from_mapping(
item,
whitelist_keys=whitelist_keys_from_mappings,
whitelist=whitelist
)
else:
raise TypeError("Could not determine a valid type for this"
" configuration object: `{}`!".format(item))
# we just finished here, run the post configure callbacks
self._run_post_configure_callbacks(args) | ['def', 'configure', '(', 'self', ',', '*', 'args', ',', '*', '*', 'kwargs', ')', ':', 'whitelist_keys_from_mappings', '=', 'kwargs', '.', 'get', '(', "'whitelist_keys_from_mappings'", ',', 'False', ')', 'whitelist', '=', 'kwargs', '.', 'get', '(', "'whitelist'", ')', 'for', 'item', 'in', 'args', ':', 'if', 'isinstance', '(', 'item', ',', 'string_types', ')', ':', '_', ',', 'ext', '=', 'splitext', '(', 'item', ')', 'if', 'ext', '==', "'.json'", ':', 'self', '.', '_configure_from_json', '(', 'item', ')', 'elif', 'ext', 'in', '(', "'.cfg'", ',', "'.py'", ')', ':', 'self', '.', '_configure_from_pyfile', '(', 'item', ')', 'else', ':', 'self', '.', '_configure_from_module', '(', 'item', ')', 'elif', 'isinstance', '(', 'item', ',', '(', 'types', '.', 'ModuleType', ',', 'type', ')', ')', ':', 'self', '.', '_configure_from_object', '(', 'item', ')', 'elif', 'hasattr', '(', 'item', ',', "'items'", ')', ':', '# assume everything else is a mapping like object; ``.items()``', '# is what Flask uses under the hood for this method', "# @TODO: This doesn't handle the edge case of using a tuple of", '# two element tuples to config; but Flask does that. IMO, if', "# you do that, you're a monster.", 'self', '.', '_configure_from_mapping', '(', 'item', ',', 'whitelist_keys', '=', 'whitelist_keys_from_mappings', ',', 'whitelist', '=', 'whitelist', ')', 'else', ':', 'raise', 'TypeError', '(', '"Could not determine a valid type for this"', '" configuration object: `{}`!"', '.', 'format', '(', 'item', ')', ')', '# we just finished here, run the post configure callbacks', 'self', '.', '_run_post_configure_callbacks', '(', 'args', ')'] | Configure the Application through a varied number of sources of
different types.
This function chains multiple possible configuration methods together
in order to just "make it work". You can pass multiple configuration
sources in to the method and each one will be tried in a sane fashion.
Later sources will override earlier sources if keys collide. For
example:
.. code:: python
from application import default_config
app.configure(default_config, os.environ, '.secrets')
In the above example, values stored in ``default_config`` will be
loaded first, then overwritten by those in ``os.environ``, and so on.
An endless number of configuration sources may be passed.
Configuration sources are type checked and processed according to the
following rules:
* ``string`` - if the source is a ``str``, we will assume it is a file
or module that should be loaded. If the file ends in ``.json``, then
:meth:`flask.Config.from_json` is used; if the file ends in ``.py``
or ``.cfg``, then :meth:`flask.Config.from_pyfile` is used; if the
module has any other extension we assume it is an import path, import
the module and pass that to :meth:`flask.Config.from_object`. See
below for a few more semantics on module loading.
* ``dict-like`` - if the source is ``dict-like``, then
:meth:`flask.Config.from_mapping` will be used. ``dict-like`` is
defined as anything implementing an ``items`` method that returns
a tuple of ``key``, ``val``.
* ``class`` or ``module`` - if the source is an uninstantiated
``class`` or ``module``, then :meth:`flask.Config.from_object` will
be used.
Just like Flask's standard configuration, only uppercased keys will be
loaded into the config.
If the item we are passed is a ``string`` and it is determined to be
a possible Python module, then a leading ``.`` is relevant. If
a leading ``.`` is provided, we assume that the module to import is
located in the current package and operate as such; if it begins with
anything else we assume the import path provided is absolute. This
allows you to source configuration stored in a module in your package,
or in another package.
Args:
*args (object):
Any object you want us to try to configure from.
Keyword Args:
whitelist_keys_from_mappings (bool):
Should we whitelist the keys we pull from mappings? Very useful
if you're passing in an entire OS ``environ`` and you want to
omit things like ``LESSPIPE``. If no whitelist is provided, we
use the pre-existing config keys as a whitelist.
whitelist (list[str]):
An explicit list of keys that should be allowed. If provided
and ``whitelist_keys`` is ``True``, we will use that as our
whitelist instead of pre-existing app config keys. | ['Configure', 'the', 'Application', 'through', 'a', 'varied', 'number', 'of', 'sources', 'of', 'different', 'types', '.'] | train | https://github.com/croscon/fleaker/blob/046b026b79c9912bceebb17114bc0c5d2d02e3c7/fleaker/config.py#L56-L156 |
9,996 | rapidpro/expressions | python/temba_expressions/functions/excel.py | datedif | def datedif(ctx, start_date, end_date, unit):
"""
Calculates the number of days, months, or years between two dates.
"""
start_date = conversions.to_date(start_date, ctx)
end_date = conversions.to_date(end_date, ctx)
unit = conversions.to_string(unit, ctx).lower()
if start_date > end_date:
raise ValueError("Start date cannot be after end date")
if unit == 'y':
return relativedelta(end_date, start_date).years
elif unit == 'm':
delta = relativedelta(end_date, start_date)
return 12 * delta.years + delta.months
elif unit == 'd':
return (end_date - start_date).days
elif unit == 'md':
return relativedelta(end_date, start_date).days
elif unit == 'ym':
return relativedelta(end_date, start_date).months
elif unit == 'yd':
return (end_date - start_date.replace(year=end_date.year)).days
raise ValueError("Invalid unit value: %s" % unit) | python | def datedif(ctx, start_date, end_date, unit):
"""
Calculates the number of days, months, or years between two dates.
"""
start_date = conversions.to_date(start_date, ctx)
end_date = conversions.to_date(end_date, ctx)
unit = conversions.to_string(unit, ctx).lower()
if start_date > end_date:
raise ValueError("Start date cannot be after end date")
if unit == 'y':
return relativedelta(end_date, start_date).years
elif unit == 'm':
delta = relativedelta(end_date, start_date)
return 12 * delta.years + delta.months
elif unit == 'd':
return (end_date - start_date).days
elif unit == 'md':
return relativedelta(end_date, start_date).days
elif unit == 'ym':
return relativedelta(end_date, start_date).months
elif unit == 'yd':
return (end_date - start_date.replace(year=end_date.year)).days
raise ValueError("Invalid unit value: %s" % unit) | ['def', 'datedif', '(', 'ctx', ',', 'start_date', ',', 'end_date', ',', 'unit', ')', ':', 'start_date', '=', 'conversions', '.', 'to_date', '(', 'start_date', ',', 'ctx', ')', 'end_date', '=', 'conversions', '.', 'to_date', '(', 'end_date', ',', 'ctx', ')', 'unit', '=', 'conversions', '.', 'to_string', '(', 'unit', ',', 'ctx', ')', '.', 'lower', '(', ')', 'if', 'start_date', '>', 'end_date', ':', 'raise', 'ValueError', '(', '"Start date cannot be after end date"', ')', 'if', 'unit', '==', "'y'", ':', 'return', 'relativedelta', '(', 'end_date', ',', 'start_date', ')', '.', 'years', 'elif', 'unit', '==', "'m'", ':', 'delta', '=', 'relativedelta', '(', 'end_date', ',', 'start_date', ')', 'return', '12', '*', 'delta', '.', 'years', '+', 'delta', '.', 'months', 'elif', 'unit', '==', "'d'", ':', 'return', '(', 'end_date', '-', 'start_date', ')', '.', 'days', 'elif', 'unit', '==', "'md'", ':', 'return', 'relativedelta', '(', 'end_date', ',', 'start_date', ')', '.', 'days', 'elif', 'unit', '==', "'ym'", ':', 'return', 'relativedelta', '(', 'end_date', ',', 'start_date', ')', '.', 'months', 'elif', 'unit', '==', "'yd'", ':', 'return', '(', 'end_date', '-', 'start_date', '.', 'replace', '(', 'year', '=', 'end_date', '.', 'year', ')', ')', '.', 'days', 'raise', 'ValueError', '(', '"Invalid unit value: %s"', '%', 'unit', ')'] | Calculates the number of days, months, or years between two dates. | ['Calculates', 'the', 'number', 'of', 'days', 'months', 'or', 'years', 'between', 'two', 'dates', '.'] | train | https://github.com/rapidpro/expressions/blob/b03d91ec58fc328960bce90ecb5fa49dcf467627/python/temba_expressions/functions/excel.py#L164-L189 |
9,997 | gagneurlab/concise | concise/utils/plot.py | add_letter_to_axis | def add_letter_to_axis(ax, let, col, x, y, height):
"""Add 'let' with position x,y and height height to matplotlib axis 'ax'.
"""
if len(let) == 2:
colors = [col, "white"]
elif len(let) == 1:
colors = [col]
else:
raise ValueError("3 or more Polygons are not supported")
for polygon, color in zip(let, colors):
new_polygon = affinity.scale(
polygon, yfact=height, origin=(0, 0, 0))
new_polygon = affinity.translate(
new_polygon, xoff=x, yoff=y)
patch = PolygonPatch(
new_polygon, edgecolor=color, facecolor=color)
ax.add_patch(patch)
return | python | def add_letter_to_axis(ax, let, col, x, y, height):
"""Add 'let' with position x,y and height height to matplotlib axis 'ax'.
"""
if len(let) == 2:
colors = [col, "white"]
elif len(let) == 1:
colors = [col]
else:
raise ValueError("3 or more Polygons are not supported")
for polygon, color in zip(let, colors):
new_polygon = affinity.scale(
polygon, yfact=height, origin=(0, 0, 0))
new_polygon = affinity.translate(
new_polygon, xoff=x, yoff=y)
patch = PolygonPatch(
new_polygon, edgecolor=color, facecolor=color)
ax.add_patch(patch)
return | ['def', 'add_letter_to_axis', '(', 'ax', ',', 'let', ',', 'col', ',', 'x', ',', 'y', ',', 'height', ')', ':', 'if', 'len', '(', 'let', ')', '==', '2', ':', 'colors', '=', '[', 'col', ',', '"white"', ']', 'elif', 'len', '(', 'let', ')', '==', '1', ':', 'colors', '=', '[', 'col', ']', 'else', ':', 'raise', 'ValueError', '(', '"3 or more Polygons are not supported"', ')', 'for', 'polygon', ',', 'color', 'in', 'zip', '(', 'let', ',', 'colors', ')', ':', 'new_polygon', '=', 'affinity', '.', 'scale', '(', 'polygon', ',', 'yfact', '=', 'height', ',', 'origin', '=', '(', '0', ',', '0', ',', '0', ')', ')', 'new_polygon', '=', 'affinity', '.', 'translate', '(', 'new_polygon', ',', 'xoff', '=', 'x', ',', 'yoff', '=', 'y', ')', 'patch', '=', 'PolygonPatch', '(', 'new_polygon', ',', 'edgecolor', '=', 'color', ',', 'facecolor', '=', 'color', ')', 'ax', '.', 'add_patch', '(', 'patch', ')', 'return'] | Add 'let' with position x,y and height height to matplotlib axis 'ax'. | ['Add', 'let', 'with', 'position', 'x', 'y', 'and', 'height', 'height', 'to', 'matplotlib', 'axis', 'ax', '.'] | train | https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/utils/plot.py#L174-L192 |
9,998 | jtwhite79/pyemu | pyemu/plot/plot_utils.py | res_phi_pie | def res_phi_pie(pst,logger=None, **kwargs):
"""plot current phi components as a pie chart.
Parameters
----------
pst : pyemu.Pst
logger : pyemu.Logger
kwargs : dict
accepts 'include_zero' as a flag to include phi groups with
only zero-weight obs (not sure why anyone would do this, but
whatevs).
Returns
-------
ax : matplotlib.Axis
"""
if logger is None:
logger=Logger('Default_Loggger.log',echo=False)
logger.log("plot res_phi_pie")
if "ensemble" in kwargs:
try:
res=pst_utils.res_from_en(pst,kwargs['ensemble'])
except:
logger.statement("res_1to1: could not find ensemble file {0}".format(kwargs['ensemble']))
else:
try:
res = pst.res
except:
logger.lraise("res_phi_pie: pst.res is None, couldn't find residuals file")
obs = pst.observation_data
phi = pst.phi
phi_comps = pst.phi_components
norm_phi_comps = pst.phi_components_normalized
keys = list(phi_comps.keys())
if "include_zero" not in kwargs or kwargs["include_zero"] is True:
phi_comps = {k:phi_comps[k] for k in keys if phi_comps[k] > 0.0}
keys = list(phi_comps.keys())
norm_phi_comps = {k:norm_phi_comps[k] for k in keys}
if "ax" in kwargs:
ax = kwargs["ax"]
else:
fig = plt.figure(figsize=figsize)
ax = plt.subplot(1,1,1,aspect="equal")
labels = ["{0}\n{1:4G}\n({2:3.1f}%)".format(k,phi_comps[k],100. * (phi_comps[k] / phi)) for k in keys]
ax.pie([float(norm_phi_comps[k]) for k in keys],labels=labels)
logger.log("plot res_phi_pie")
if "filename" in kwargs:
plt.savefig(kwargs["filename"])
return ax | python | def res_phi_pie(pst,logger=None, **kwargs):
"""plot current phi components as a pie chart.
Parameters
----------
pst : pyemu.Pst
logger : pyemu.Logger
kwargs : dict
accepts 'include_zero' as a flag to include phi groups with
only zero-weight obs (not sure why anyone would do this, but
whatevs).
Returns
-------
ax : matplotlib.Axis
"""
if logger is None:
logger=Logger('Default_Loggger.log',echo=False)
logger.log("plot res_phi_pie")
if "ensemble" in kwargs:
try:
res=pst_utils.res_from_en(pst,kwargs['ensemble'])
except:
logger.statement("res_1to1: could not find ensemble file {0}".format(kwargs['ensemble']))
else:
try:
res = pst.res
except:
logger.lraise("res_phi_pie: pst.res is None, couldn't find residuals file")
obs = pst.observation_data
phi = pst.phi
phi_comps = pst.phi_components
norm_phi_comps = pst.phi_components_normalized
keys = list(phi_comps.keys())
if "include_zero" not in kwargs or kwargs["include_zero"] is True:
phi_comps = {k:phi_comps[k] for k in keys if phi_comps[k] > 0.0}
keys = list(phi_comps.keys())
norm_phi_comps = {k:norm_phi_comps[k] for k in keys}
if "ax" in kwargs:
ax = kwargs["ax"]
else:
fig = plt.figure(figsize=figsize)
ax = plt.subplot(1,1,1,aspect="equal")
labels = ["{0}\n{1:4G}\n({2:3.1f}%)".format(k,phi_comps[k],100. * (phi_comps[k] / phi)) for k in keys]
ax.pie([float(norm_phi_comps[k]) for k in keys],labels=labels)
logger.log("plot res_phi_pie")
if "filename" in kwargs:
plt.savefig(kwargs["filename"])
return ax | ['def', 'res_phi_pie', '(', 'pst', ',', 'logger', '=', 'None', ',', '*', '*', 'kwargs', ')', ':', 'if', 'logger', 'is', 'None', ':', 'logger', '=', 'Logger', '(', "'Default_Loggger.log'", ',', 'echo', '=', 'False', ')', 'logger', '.', 'log', '(', '"plot res_phi_pie"', ')', 'if', '"ensemble"', 'in', 'kwargs', ':', 'try', ':', 'res', '=', 'pst_utils', '.', 'res_from_en', '(', 'pst', ',', 'kwargs', '[', "'ensemble'", ']', ')', 'except', ':', 'logger', '.', 'statement', '(', '"res_1to1: could not find ensemble file {0}"', '.', 'format', '(', 'kwargs', '[', "'ensemble'", ']', ')', ')', 'else', ':', 'try', ':', 'res', '=', 'pst', '.', 'res', 'except', ':', 'logger', '.', 'lraise', '(', '"res_phi_pie: pst.res is None, couldn\'t find residuals file"', ')', 'obs', '=', 'pst', '.', 'observation_data', 'phi', '=', 'pst', '.', 'phi', 'phi_comps', '=', 'pst', '.', 'phi_components', 'norm_phi_comps', '=', 'pst', '.', 'phi_components_normalized', 'keys', '=', 'list', '(', 'phi_comps', '.', 'keys', '(', ')', ')', 'if', '"include_zero"', 'not', 'in', 'kwargs', 'or', 'kwargs', '[', '"include_zero"', ']', 'is', 'True', ':', 'phi_comps', '=', '{', 'k', ':', 'phi_comps', '[', 'k', ']', 'for', 'k', 'in', 'keys', 'if', 'phi_comps', '[', 'k', ']', '>', '0.0', '}', 'keys', '=', 'list', '(', 'phi_comps', '.', 'keys', '(', ')', ')', 'norm_phi_comps', '=', '{', 'k', ':', 'norm_phi_comps', '[', 'k', ']', 'for', 'k', 'in', 'keys', '}', 'if', '"ax"', 'in', 'kwargs', ':', 'ax', '=', 'kwargs', '[', '"ax"', ']', 'else', ':', 'fig', '=', 'plt', '.', 'figure', '(', 'figsize', '=', 'figsize', ')', 'ax', '=', 'plt', '.', 'subplot', '(', '1', ',', '1', ',', '1', ',', 'aspect', '=', '"equal"', ')', 'labels', '=', '[', '"{0}\\n{1:4G}\\n({2:3.1f}%)"', '.', 'format', '(', 'k', ',', 'phi_comps', '[', 'k', ']', ',', '100.', '*', '(', 'phi_comps', '[', 'k', ']', '/', 'phi', ')', ')', 'for', 'k', 'in', 'keys', ']', 'ax', '.', 'pie', '(', '[', 'float', '(', 'norm_phi_comps', '[', 'k', ']', ')', 'for', 'k', 'in', 'keys', ']', ',', 'labels', '=', 'labels', ')', 'logger', '.', 'log', '(', '"plot res_phi_pie"', ')', 'if', '"filename"', 'in', 'kwargs', ':', 'plt', '.', 'savefig', '(', 'kwargs', '[', '"filename"', ']', ')', 'return', 'ax'] | plot current phi components as a pie chart.
Parameters
----------
pst : pyemu.Pst
logger : pyemu.Logger
kwargs : dict
accepts 'include_zero' as a flag to include phi groups with
only zero-weight obs (not sure why anyone would do this, but
whatevs).
Returns
-------
ax : matplotlib.Axis | ['plot', 'current', 'phi', 'components', 'as', 'a', 'pie', 'chart', '.'] | train | https://github.com/jtwhite79/pyemu/blob/c504d8e7a4097cec07655a6318d275739bd8148a/pyemu/plot/plot_utils.py#L609-L660 |
9,999 | inasafe/inasafe | safe/report/processors/default.py | atlas_renderer | def atlas_renderer(layout, coverage_layer, output_path, file_format):
"""Extract composition using atlas generation.
:param layout: QGIS Print Layout object used for producing the report.
:type layout: qgis.core.QgsPrintLayout
:param coverage_layer: Coverage Layer used for atlas map.
:type coverage_layer: QgsMapLayer
:param output_path: The output path of the product.
:type output_path: str
:param file_format: File format of map output, 'pdf' or 'png'.
:type file_format: str
:return: Generated output path(s).
:rtype: str, list
"""
# set the composer map to be atlas driven
composer_map = layout_item(
layout, 'impact-map', QgsLayoutItemMap)
composer_map.setAtlasDriven(True)
composer_map.setAtlasScalingMode(QgsLayoutItemMap.Auto)
# setup the atlas composition and composition atlas mode
atlas_composition = layout.atlas()
atlas_composition.setCoverageLayer(coverage_layer)
atlas_on_single_file = layout.customProperty('singleFile', True)
if file_format == QgisComposerComponentsMetadata.OutputFormat.PDF:
if not atlas_composition.filenameExpression():
atlas_composition.setFilenameExpression(
"'output_'||@atlas_featurenumber")
output_directory = os.path.dirname(output_path)
# we need to set the predefined scales for atlas
project_scales = []
scales = QgsProject.instance().readListEntry(
"Scales", "/ScalesList")[0]
has_project_scales = QgsProject.instance().readBoolEntry(
"Scales", "/useProjectScales")[0]
if not has_project_scales or not scales:
scales_string = str(general_setting("Map/scales", PROJECT_SCALES))
scales = scales_string.split(',')
for scale in scales:
parts = scale.split(':')
if len(parts) == 2:
project_scales.append(float(parts[1]))
layout.reportContext().setPredefinedScales(project_scales)
settings = QgsLayoutExporter.PdfExportSettings()
LOGGER.info('Exporting Atlas')
atlas_output = []
if atlas_on_single_file:
res, error = QgsLayoutExporter.exportToPdf(
atlas_composition, output_path, settings)
atlas_output.append(output_path)
else:
res, error = QgsLayoutExporter.exportToPdfs(
atlas_composition, output_directory, settings)
if res != QgsLayoutExporter.Success:
LOGGER.error(error)
return atlas_output | python | def atlas_renderer(layout, coverage_layer, output_path, file_format):
"""Extract composition using atlas generation.
:param layout: QGIS Print Layout object used for producing the report.
:type layout: qgis.core.QgsPrintLayout
:param coverage_layer: Coverage Layer used for atlas map.
:type coverage_layer: QgsMapLayer
:param output_path: The output path of the product.
:type output_path: str
:param file_format: File format of map output, 'pdf' or 'png'.
:type file_format: str
:return: Generated output path(s).
:rtype: str, list
"""
# set the composer map to be atlas driven
composer_map = layout_item(
layout, 'impact-map', QgsLayoutItemMap)
composer_map.setAtlasDriven(True)
composer_map.setAtlasScalingMode(QgsLayoutItemMap.Auto)
# setup the atlas composition and composition atlas mode
atlas_composition = layout.atlas()
atlas_composition.setCoverageLayer(coverage_layer)
atlas_on_single_file = layout.customProperty('singleFile', True)
if file_format == QgisComposerComponentsMetadata.OutputFormat.PDF:
if not atlas_composition.filenameExpression():
atlas_composition.setFilenameExpression(
"'output_'||@atlas_featurenumber")
output_directory = os.path.dirname(output_path)
# we need to set the predefined scales for atlas
project_scales = []
scales = QgsProject.instance().readListEntry(
"Scales", "/ScalesList")[0]
has_project_scales = QgsProject.instance().readBoolEntry(
"Scales", "/useProjectScales")[0]
if not has_project_scales or not scales:
scales_string = str(general_setting("Map/scales", PROJECT_SCALES))
scales = scales_string.split(',')
for scale in scales:
parts = scale.split(':')
if len(parts) == 2:
project_scales.append(float(parts[1]))
layout.reportContext().setPredefinedScales(project_scales)
settings = QgsLayoutExporter.PdfExportSettings()
LOGGER.info('Exporting Atlas')
atlas_output = []
if atlas_on_single_file:
res, error = QgsLayoutExporter.exportToPdf(
atlas_composition, output_path, settings)
atlas_output.append(output_path)
else:
res, error = QgsLayoutExporter.exportToPdfs(
atlas_composition, output_directory, settings)
if res != QgsLayoutExporter.Success:
LOGGER.error(error)
return atlas_output | ['def', 'atlas_renderer', '(', 'layout', ',', 'coverage_layer', ',', 'output_path', ',', 'file_format', ')', ':', '# set the composer map to be atlas driven', 'composer_map', '=', 'layout_item', '(', 'layout', ',', "'impact-map'", ',', 'QgsLayoutItemMap', ')', 'composer_map', '.', 'setAtlasDriven', '(', 'True', ')', 'composer_map', '.', 'setAtlasScalingMode', '(', 'QgsLayoutItemMap', '.', 'Auto', ')', '# setup the atlas composition and composition atlas mode', 'atlas_composition', '=', 'layout', '.', 'atlas', '(', ')', 'atlas_composition', '.', 'setCoverageLayer', '(', 'coverage_layer', ')', 'atlas_on_single_file', '=', 'layout', '.', 'customProperty', '(', "'singleFile'", ',', 'True', ')', 'if', 'file_format', '==', 'QgisComposerComponentsMetadata', '.', 'OutputFormat', '.', 'PDF', ':', 'if', 'not', 'atlas_composition', '.', 'filenameExpression', '(', ')', ':', 'atlas_composition', '.', 'setFilenameExpression', '(', '"\'output_\'||@atlas_featurenumber"', ')', 'output_directory', '=', 'os', '.', 'path', '.', 'dirname', '(', 'output_path', ')', '# we need to set the predefined scales for atlas', 'project_scales', '=', '[', ']', 'scales', '=', 'QgsProject', '.', 'instance', '(', ')', '.', 'readListEntry', '(', '"Scales"', ',', '"/ScalesList"', ')', '[', '0', ']', 'has_project_scales', '=', 'QgsProject', '.', 'instance', '(', ')', '.', 'readBoolEntry', '(', '"Scales"', ',', '"/useProjectScales"', ')', '[', '0', ']', 'if', 'not', 'has_project_scales', 'or', 'not', 'scales', ':', 'scales_string', '=', 'str', '(', 'general_setting', '(', '"Map/scales"', ',', 'PROJECT_SCALES', ')', ')', 'scales', '=', 'scales_string', '.', 'split', '(', "','", ')', 'for', 'scale', 'in', 'scales', ':', 'parts', '=', 'scale', '.', 'split', '(', "':'", ')', 'if', 'len', '(', 'parts', ')', '==', '2', ':', 'project_scales', '.', 'append', '(', 'float', '(', 'parts', '[', '1', ']', ')', ')', 'layout', '.', 'reportContext', '(', ')', '.', 'setPredefinedScales', '(', 'project_scales', ')', 'settings', '=', 'QgsLayoutExporter', '.', 'PdfExportSettings', '(', ')', 'LOGGER', '.', 'info', '(', "'Exporting Atlas'", ')', 'atlas_output', '=', '[', ']', 'if', 'atlas_on_single_file', ':', 'res', ',', 'error', '=', 'QgsLayoutExporter', '.', 'exportToPdf', '(', 'atlas_composition', ',', 'output_path', ',', 'settings', ')', 'atlas_output', '.', 'append', '(', 'output_path', ')', 'else', ':', 'res', ',', 'error', '=', 'QgsLayoutExporter', '.', 'exportToPdfs', '(', 'atlas_composition', ',', 'output_directory', ',', 'settings', ')', 'if', 'res', '!=', 'QgsLayoutExporter', '.', 'Success', ':', 'LOGGER', '.', 'error', '(', 'error', ')', 'return', 'atlas_output'] | Extract composition using atlas generation.
:param layout: QGIS Print Layout object used for producing the report.
:type layout: qgis.core.QgsPrintLayout
:param coverage_layer: Coverage Layer used for atlas map.
:type coverage_layer: QgsMapLayer
:param output_path: The output path of the product.
:type output_path: str
:param file_format: File format of map output, 'pdf' or 'png'.
:type file_format: str
:return: Generated output path(s).
:rtype: str, list | ['Extract', 'composition', 'using', 'atlas', 'generation', '.'] | train | https://github.com/inasafe/inasafe/blob/831d60abba919f6d481dc94a8d988cc205130724/safe/report/processors/default.py#L716-L781 |