Dataset Viewer
The dataset viewer is not available for this dataset.
Unexpected token '<', "<html> <h"... is not valid JSON

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

Euclid: Supercharging Multimodal LLMs with Synthetic High-Fidelity Visual Descriptions

Dataset Card for Geoperception

A Benchmark for Low-level Geometric Perception

Dataset Details

Dataset Description

Geoperception is a benchmark focused specifically on accessing model's low-level visual perception ability in 2D geometry.

It is sourced from the Geometry-3K corpus, which offers precise logical forms for geometric diagrams, compiled from popular high-school textbooks.

Dataset Sources

Uses

Evaluation of multimodal LLM's ability of low-level visual perception in 2D geometry domain.

Dataset Structure

Fields

  • id identification of each data instance
  • question question
  • answer answer
  • predicate question type, including
    • PointLiesOnLine
    • LineComparison
    • PointLiesOnCircle
    • AngleClassification
    • Parallel
    • Perpendicular
    • Equal
  • image image

Evaluation Result

Model POL POC ALC LHC PEP PRA EQL Overall
Random Baseline 1.35 2.63 59.92 51.36 0.23 0.00 0.02 16.50
Open Source
Molmo-7B-D 11.96 35.73 56.77 16.79 1.06 0.00 0.81 17.59
Llama-3.2-11B 16.22 37.12 59.46 52.08 8.38 22.41 49.86 35.08
Qwen2-VL-7B 21.89 41.60 46.60 63.27 26.41 30.19 54.37 40.62
Cambrian-1-8B 15.14 28.68 58.05 61.48 22.96 30.74 31.04 35.44
Pixtral-12B 24.63 53.21 47.33 51.43 21.96 36.64 58.41 41.95
Closed Source
GPT-4o-mini 9.80 61.19 48.84 69.51 9.80 4.25 44.74 35.45
GPT-4o 16.43 71.49 55.63 74.39 24.80 60.30 44.69 49.68
Claude 3.5 Sonnet 25.44 68.34 42.95 70.73 21.41 63.92 66.34 51.30
Gemini-1.5-Flash 29.30 67.75 49.89 76.69 29.98 63.44 66.28 54.76
Gemini-1.5-Pro 24.42 69.80 57.96 79.05 38.81 76.65 52.15 56.98

Citation

If you find Euclid useful for your research and applications, please cite using this BibTeX:

@article{zhang2024euclid,
  title={Euclid: Supercharging Multimodal LLMs with Synthetic High-Fidelity Visual Descriptions},
  author={Zhang, Jiarui and Liu, Ollie and Yu, Tianyu and Hu, Jinyi and Neiswanger, Willie},
  journal={arXiv preprint arXiv:2412.08737},
  year={2024}
}
Downloads last month
250