File size: 4,069 Bytes
e0703cd
936a9fa
 
e0703cd
936a9fa
 
e0703cd
 
 
936a9fa
8f2fc6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45f44d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0703cd
d26cc0e
b783a4d
 
d26cc0e
 
 
 
 
 
 
 
 
f397d13
 
 
d26cc0e
 
 
 
b783a4d
 
 
d26cc0e
 
 
 
 
 
 
 
 
00213fb
 
 
 
 
 
 
 
 
 
 
 
d26cc0e
9831adc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d26cc0e
 
c34c595
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
---
language:
- en
license: apache-2.0
size_categories:
- 10K<n<100K
task_categories:
- question-answering
- visual-question-answering
pretty_name: Geoperception
tags:
- multi-modal-qa
- math-qa
- figure-qa
- geometry-qa
- math-word-problem
- vqa
- geometry-reasoning
- numeric-common-sense
- scientific-reasoning
- logical-reasoning
- geometry-diagram
- synthetic-scene
- scientific-figure
- function-plot
- abstract-scene
- mathematics
dataset_info:
  features:
  - name: id
    dtype: string
  - name: question
    dtype: string
  - name: answer
    dtype: string
  - name: predicate
    dtype: string
  - name: image
    dtype: image
  splits:
  - name: train
    num_bytes: 294203058.193
    num_examples: 11657
  download_size: 93419701
  dataset_size: 294203058.193
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
---

[Euclid: Supercharging Multimodal LLMs with Synthetic High-Fidelity Visual Descriptions](https://arxiv.org/abs/2412.08737)

# Dataset Card for Geoperception

A Benchmark for Low-level Geometric Perception


## Dataset Details

### Dataset Description

Geoperception is a benchmark focused specifically on accessing model's low-level visual perception ability in 2D geometry.

It is sourced from the Geometry-3K corpus, which offers precise logical forms for geometric diagrams, compiled from popular high-school textbooks.


### Dataset Sources

- **Repository:** https://github.com/euclid-multimodal/Euclid
- **Paper:** https://arxiv.org/abs/2412.08737
- **Demo:** https://euclid-multimodal.github.io/

## Uses

Evaluation of multimodal LLM's ability of low-level visual perception in 2D geometry domain.

## Dataset Structure

### Fields

- **id** identification of each data instance
- **question** question
- **answer** answer
- **predicate** question type, including
  - **PointLiesOnLine**
  - **LineComparison**
  - **PointLiesOnCircle**
  - **AngleClassification**
  - **Parallel**
  - **Perpendicular**
  - **Equal**
- **image** image

## Evaluation Result

| Model                          | POL    | POC    | ALC    | LHC    | PEP    | PRA    | EQL    | Overall |
|--------------------------------|--------|--------|--------|--------|--------|--------|--------|---------|
| **Random Baseline**            |  1.35  |  2.63  | **59.92** | 51.36  |  0.23  |  0.00  |  0.02  | 16.50   |
| **Open Source**                |        |        |        |        |        |        |        |         |
| Molmo-7B-D                     | 11.96  | 35.73  | 56.77  | 16.79  |  1.06  |  0.00  |  0.81  | 17.59   |
| Llama-3.2-11B                  | 16.22  | 37.12  | 59.46  | 52.08  |  8.38  | 22.41  | 49.86  | 35.08   |
| Qwen2-VL-7B                    | 21.89  | 41.60  | 46.60  | 63.27  | 26.41  | 30.19  | 54.37  | 40.62   |
| Cambrian-1-8B                  | 15.14  | 28.68  | 58.05  | 61.48  | 22.96  | 30.74  | 31.04  | 35.44   |
| Pixtral-12B                    | 24.63  | 53.21  | 47.33  | 51.43  | 21.96  | 36.64  | 58.41  | 41.95   |
| **Closed Source**              |        |        |        |        |        |        |        |         |
| GPT-4o-mini                    |  9.80  | 61.19  | 48.84  | 69.51  |  9.80  |  4.25  | 44.74  | 35.45   |
| GPT-4o                         | 16.43  | **71.49** | 55.63  | 74.39  | 24.80  | 60.30  | 44.69  | 49.68   |
| Claude 3.5 Sonnet              | 25.44  | 68.34  | 42.95  | 70.73  | 21.41  | 63.92  | **66.34** | 51.30   |
| Gemini-1.5-Flash               | **29.30** | 67.75  | 49.89  | 76.69  | 29.98  | 63.44  | 66.28  | 54.76   |
| Gemini-1.5-Pro                 | 24.42  | 69.80  | 57.96  | **79.05** | **38.81** | **76.65** | 52.15  | **56.98** |


## Citation

If you find Euclid useful for your research and applications, please cite using this BibTeX:
```bibtex
@article{zhang2024euclid,
  title={Euclid: Supercharging Multimodal LLMs with Synthetic High-Fidelity Visual Descriptions},
  author={Zhang, Jiarui and Liu, Ollie and Yu, Tianyu and Hu, Jinyi and Neiswanger, Willie},
  journal={arXiv preprint arXiv:2412.08737},
  year={2024}
}