File size: 12,822 Bytes
667c6d3 fb574f0 667c6d3 2aace14 667c6d3 2aace14 667c6d3 2aace14 667c6d3 2aace14 667c6d3 2aace14 667c6d3 2aace14 667c6d3 2aace14 667c6d3 2aace14 667c6d3 2aace14 667c6d3 2aace14 667c6d3 2aace14 667c6d3 fb574f0 667c6d3 2aace14 667c6d3 2aace14 667c6d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""KILT tasks training and evaluation data"""
import json
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@inproceedings{fb_kilt,
author = {Fabio Petroni and
Aleksandra Piktus and
Angela Fan and
Patrick Lewis and
Majid Yazdani and
Nicola De Cao and
James Thorne and
Yacine Jernite and
Vassilis Plachouras and
Tim Rockt\"aschel and
Sebastian Riedel},
title = {{KILT:} a {B}enchmark for {K}nowledge {I}ntensive {L}anguage {T}asks},
journal = {CoRR},
archivePrefix = {arXiv},
year = {2020},
"""
_DESCRIPTION = """\
KILT tasks training and evaluation data.
- [FEVER](https://fever.ai) | Fact Checking | fever
- [AIDA CoNLL-YAGO](https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/ambiverse-nlu/aida/downloads) | Entity Linking | aidayago2
- [WNED-WIKI](https://github.com/U-Alberta/wned) | Entity Linking | wned
- [WNED-CWEB](https://github.com/U-Alberta/wned) | Entity Linking | cweb
- [T-REx](https://hadyelsahar.github.io/t-rex) | Slot Filling | trex
- [Zero-Shot RE](http://nlp.cs.washington.edu/zeroshot) | Slot Filling | structured_zeroshot
- [Natural Questions](https://ai.google.com/research/NaturalQuestions) | Open Domain QA | nq
- [HotpotQA](https://hotpotqa.github.io) | Open Domain QA | hotpotqa
- [TriviaQA](http://nlp.cs.washington.edu/triviaqa) | Open Domain QA | triviaqa
- [ELI5](https://facebookresearch.github.io/ELI5/explore.html) | Open Domain QA | eli5
- [Wizard of Wikipedia](https://parl.ai/projects/wizard_of_wikipedia) | Dialogue | wow
To finish linking TriviaQA questions to the IDs provided, follow the instructions [here](http://github.com/huggingface/datasets/datasets/kilt_tasks/README.md).
"""
_DATA_URLS = {
"fever": {
"train": "http://dl.fbaipublicfiles.com/KILT/fever-train-kilt.jsonl",
"validation": "http://dl.fbaipublicfiles.com/KILT/fever-dev-kilt.jsonl",
"test": "http://dl.fbaipublicfiles.com/KILT/fever-test_without_answers-kilt.jsonl",
},
"aidayago2": {
"train": "http://dl.fbaipublicfiles.com/KILT/aidayago2-train-kilt.jsonl",
"validation": "http://dl.fbaipublicfiles.com/KILT/aidayago2-dev-kilt.jsonl",
"test": "http://dl.fbaipublicfiles.com/KILT/aidayago2-test_without_answers-kilt.jsonl",
},
"wned": {
"validation": "http://dl.fbaipublicfiles.com/KILT/wned-dev-kilt.jsonl",
"test": "http://dl.fbaipublicfiles.com/KILT/wned-test_without_answers-kilt.jsonl",
},
"cweb": {
"validation": "http://dl.fbaipublicfiles.com/KILT/cweb-dev-kilt.jsonl",
"test": "http://dl.fbaipublicfiles.com/KILT/cweb-test_without_answers-kilt.jsonl",
},
"trex": {
"train": "http://dl.fbaipublicfiles.com/KILT/trex-train-kilt.jsonl",
"validation": "http://dl.fbaipublicfiles.com/KILT/trex-dev-kilt.jsonl",
"test": "http://dl.fbaipublicfiles.com/KILT/trex-test_without_answers-kilt.jsonl",
},
"structured_zeroshot": {
"train": "http://dl.fbaipublicfiles.com/KILT/structured_zeroshot-train-kilt.jsonl",
"validation": "http://dl.fbaipublicfiles.com/KILT/structured_zeroshot-dev-kilt.jsonl",
"test": "http://dl.fbaipublicfiles.com/KILT/structured_zeroshot-test_without_answers-kilt.jsonl",
},
"nq": {
"train": "http://dl.fbaipublicfiles.com/KILT/nq-train-kilt.jsonl",
"validation": "http://dl.fbaipublicfiles.com/KILT/nq-dev-kilt.jsonl",
"test": "http://dl.fbaipublicfiles.com/KILT/nq-test_without_answers-kilt.jsonl",
},
"hotpotqa": {
"train": "http://dl.fbaipublicfiles.com/KILT/hotpotqa-train-kilt.jsonl",
"validation": "http://dl.fbaipublicfiles.com/KILT/hotpotqa-dev-kilt.jsonl",
"test": "http://dl.fbaipublicfiles.com/KILT/hotpotqa-test_without_answers-kilt.jsonl",
},
"triviaqa_support_only": {
"train": "http://dl.fbaipublicfiles.com/KILT/triviaqa-train_id-kilt.jsonl",
"validation": "http://dl.fbaipublicfiles.com/KILT/triviaqa-dev_id-kilt.jsonl",
"test": "http://dl.fbaipublicfiles.com/KILT/triviaqa-test_id_without_answers-kilt.jsonl",
},
"eli5": {
"train": "http://dl.fbaipublicfiles.com/KILT/eli5-train-kilt.jsonl",
"validation": "http://dl.fbaipublicfiles.com/KILT/eli5-dev-kilt.jsonl",
"test": "http://dl.fbaipublicfiles.com/KILT/eli5-test_without_answers-kilt.jsonl",
},
"wow": {
"train": "http://dl.fbaipublicfiles.com/KILT/wow-train-kilt.jsonl",
"validation": "http://dl.fbaipublicfiles.com/KILT/wow-dev-kilt.jsonl",
"test": "http://dl.fbaipublicfiles.com/KILT/wow-test_without_answers-kilt.jsonl",
},
}
class KiltTasks(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="triviaqa_support_only",
version=datasets.Version("1.0.0"),
description="Supporting paragraphs information for the TriviaQA task",
)
] + [
datasets.BuilderConfig(
name=k, version=datasets.Version("1.0.0"), description=f"Task data and supporting paragraphs for {k}"
)
for k in _DATA_URLS
if k != "triviaqa_support_only"
]
DEFAULT_CONFIG_NAME = "nq"
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"input": datasets.Value("string"),
"meta": {
"left_context": datasets.Value("string"),
"mention": datasets.Value("string"),
"right_context": datasets.Value("string"),
"partial_evidence": [
{
"start_paragraph_id": datasets.Value("int32"),
"end_paragraph_id": datasets.Value("int32"),
"title": datasets.Value("string"),
"section": datasets.Value("string"),
"wikipedia_id": datasets.Value("string"),
"meta": {"evidence_span": [datasets.Value("string")]},
}
],
"obj_surface": [datasets.Value("string")],
"sub_surface": [datasets.Value("string")],
"subj_aliases": [datasets.Value("string")],
"template_questions": [datasets.Value("string")],
},
"output": [
{
"answer": datasets.Value("string"),
"meta": {"score": datasets.Value("int32")},
"provenance": [
{
"bleu_score": datasets.Value("float32"),
"start_character": datasets.Value("int32"),
"start_paragraph_id": datasets.Value("int32"),
"end_character": datasets.Value("int32"),
"end_paragraph_id": datasets.Value("int32"),
"meta": {
"fever_page_id": datasets.Value("string"),
"fever_sentence_id": datasets.Value("int32"),
"annotation_id": datasets.Value("string"), # int runs into overflow issues
"yes_no_answer": datasets.Value("string"),
"evidence_span": [datasets.Value("string")],
},
"section": datasets.Value("string"),
"title": datasets.Value("string"),
"wikipedia_id": datasets.Value("string"),
}
],
}
],
}
),
supervised_keys=None,
homepage="https://github.com/facebookresearch/KILT",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
file_paths = dl_manager.download_and_extract(_DATA_URLS[self.config.name])
return [
datasets.SplitGenerator(name=split, gen_kwargs={"filepath": downloaded_path})
for split, downloaded_path in file_paths.items()
]
def _generate_examples(self, filepath):
logger.info("generating examples from = %s", filepath)
with open(filepath, encoding="utf-8") as f:
for idx, line in enumerate(f):
article = json.loads(line.strip())
article["input"] = article.get("input", "")
# meta
article["meta"] = article.get("meta", {})
for k in ["left_context", "mention", "right_context"]:
article["meta"][k] = article["meta"].get(k, "")
for k in ["obj_surface", "sub_surface", "subj_aliases", "template_questions"]:
article["meta"][k] = article["meta"].get(k, [])
# partial evidence
article["meta"]["partial_evidence"] = [
{
"start_paragraph_id": partial.get("start_paragraph_id", -1),
"end_paragraph_id": partial.get("end_paragraph_id", -1),
"title": partial.get("title", ""),
"section": partial.get("section", ""),
"wikipedia_id": partial.get("wikipedia_id", ""),
"meta": {"evidence_span": partial.get("meta", {}).get("evidence_span", [])},
}
for partial in article["meta"].get("partial_evidence", [])
]
# output
article["output"] = [
{
"answer": output.get("answer", ""),
"meta": output.get("meta", {"score": -1}),
"provenance": [
{
"bleu_score": provenance.get("bleu_score", -1.0),
"start_character": provenance.get("start_character", -1),
"start_paragraph_id": provenance.get("start_paragraph_id", -1),
"end_character": provenance.get("end_character", -1),
"end_paragraph_id": provenance.get("end_paragraph_id", -1),
"meta": {
"fever_page_id": provenance.get("meta", {}).get("fever_page_id", ""),
"fever_sentence_id": provenance.get("meta", {}).get("fever_sentence_id", -1),
"annotation_id": str(
provenance.get("meta", {}).get("annotation_id", -1)
), # int runs into overflow issues
"yes_no_answer": provenance.get("meta", {}).get("yes_no_answer", ""),
"evidence_span": provenance.get("meta", {}).get("evidence_span", []),
},
"section": provenance.get("section", ""),
"title": provenance.get("title", ""),
"wikipedia_id": provenance.get("wikipedia_id", ""),
}
for provenance in output.get("provenance", [])
],
}
for output in article.get("output", [])
]
yield idx, article
|