Enrich model cards with statistics and tts use

#10
by ylacombe HF staff - opened
Files changed (1) hide show
  1. README.md +47 -5
README.md CHANGED
@@ -24,6 +24,8 @@ source_datasets:
24
  - original
25
  task_categories:
26
  - automatic-speech-recognition
 
 
27
  ---
28
 
29
  # Dataset Card for MultiLingual LibriSpeech
@@ -66,11 +68,12 @@ This is a streamable version of the Multilingual LibriSpeech (MLS) dataset.
66
  The data archives were restructured from the original ones from [OpenSLR](http://www.openslr.org/94) to make it easier to stream.
67
 
68
  MLS dataset is a large multilingual corpus suitable for speech research. The dataset is derived from read audiobooks from LibriVox and consists of
69
- 8 languages - English, German, Dutch, Spanish, French, Italian, Portuguese, Polish.
70
 
71
  ### Supported Tasks and Leaderboards
72
 
73
  - `automatic-speech-recognition`, `speaker-identification`: The dataset can be used to train a model for Automatic Speech Recognition (ASR). The model is presented with an audio file and asked to transcribe the audio file to written text. The most common evaluation metric is the word error rate (WER). The task has an active leaderboard which can be found at https://paperswithcode.com/dataset/multilingual-librispeech and ranks models based on their WER.
 
74
 
75
  ### Languages
76
 
@@ -160,7 +163,7 @@ A typical data point comprises the path to the audio file, usually called `file`
160
 
161
  ### Data Splits
162
 
163
- | | Train | Train.9h | Train.1h | Dev | Test |
164
  | ----- | ------ | ----- | ---- | ---- | ---- |
165
  | german | 469942 | 2194 | 241 | 3469 | 3394 |
166
  | dutch | 374287 | 2153 | 234 | 3095 | 3075 |
@@ -170,8 +173,6 @@ A typical data point comprises the path to the audio file, usually called `file`
170
  | portuguese | 37533 | 2116 | 236 | 826 | 871 |
171
  | polish | 25043 | 2173 | 238 | 512 | 520 |
172
 
173
-
174
-
175
  ## Dataset Creation
176
 
177
  ### Curation Rationale
@@ -238,7 +239,48 @@ Public Domain, Creative Commons Attribution 4.0 International Public License ([C
238
  }
239
  ```
240
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
241
  ### Contributions
242
 
243
  Thanks to [@patrickvonplaten](https://github.com/patrickvonplaten)
244
- and [@polinaeterna](https://github.com/polinaeterna) for adding this dataset.
 
24
  - original
25
  task_categories:
26
  - automatic-speech-recognition
27
+ - text-to-speech
28
+ - text-to-audio
29
  ---
30
 
31
  # Dataset Card for MultiLingual LibriSpeech
 
68
  The data archives were restructured from the original ones from [OpenSLR](http://www.openslr.org/94) to make it easier to stream.
69
 
70
  MLS dataset is a large multilingual corpus suitable for speech research. The dataset is derived from read audiobooks from LibriVox and consists of
71
+ 8 languages - English, German, Dutch, Spanish, French, Italian, Portuguese, Polish. It includes about 44.5K hours of English and a total of about 6K hours for other languages.
72
 
73
  ### Supported Tasks and Leaderboards
74
 
75
  - `automatic-speech-recognition`, `speaker-identification`: The dataset can be used to train a model for Automatic Speech Recognition (ASR). The model is presented with an audio file and asked to transcribe the audio file to written text. The most common evaluation metric is the word error rate (WER). The task has an active leaderboard which can be found at https://paperswithcode.com/dataset/multilingual-librispeech and ranks models based on their WER.
76
+ - `text-to-speech`, `text-to-audio`: The dataset can also be used to train a model for Text-To-Speech (TTS).
77
 
78
  ### Languages
79
 
 
163
 
164
  ### Data Splits
165
 
166
+ | Number of samples | Train | Train.9h | Train.1h | Dev | Test |
167
  | ----- | ------ | ----- | ---- | ---- | ---- |
168
  | german | 469942 | 2194 | 241 | 3469 | 3394 |
169
  | dutch | 374287 | 2153 | 234 | 3095 | 3075 |
 
173
  | portuguese | 37533 | 2116 | 236 | 826 | 871 |
174
  | polish | 25043 | 2173 | 238 | 512 | 520 |
175
 
 
 
176
  ## Dataset Creation
177
 
178
  ### Curation Rationale
 
239
  }
240
  ```
241
 
242
+
243
+ ### Data Statistics
244
+
245
+ | Duration (h) | Train | Dev | Test |
246
+ |--------------|-----------|-------|-------|
247
+ | English | 44,659.74 | 15.75 | 15.55 |
248
+ | German | 1,966.51 | 14.28 | 14.29 |
249
+ | Dutch | 1,554.24 | 12.76 | 12.76 |
250
+ | French | 1,076.58 | 10.07 | 10.07 |
251
+ | Spanish | 917.68 | 9.99 | 10 |
252
+ | Italian | 247.38 | 5.18 | 5.27 |
253
+ | Portuguese | 160.96 | 3.64 | 3.74 |
254
+ | Polish | 103.65 | 2.08 | 2.14 |
255
+
256
+ | # Speakers | Train | | Dev | | Test | |
257
+ |------------|-------|------|-----|----|------|----|
258
+ | Gender | M | F | M | F | M | F |
259
+ | English | 2742 | 2748 | 21 | 21 | 21 | 21 |
260
+ | German | 81 | 95 | 15 | 15 | 15 | 15 |
261
+ | Dutch | 9 | 31 | 3 | 3 | 3 | 3 |
262
+ | French | 62 | 80 | 9 | 9 | 9 | 9 |
263
+ | Spanish | 36 | 50 | 10 | 10 | 10 | 10 |
264
+ | Italian | 22 | 43 | 5 | 5 | 5 | 5 |
265
+ | Portuguese | 26 | 16 | 5 | 5 | 5 | 5 |
266
+ | Polish | 6 | 5 | 2 | 2 | 2 | 2 |
267
+
268
+ | # Hours / Gender | Dev | | Test | |
269
+ |------------------|------|------|------|------|
270
+ | Gender | M | F | M | F |
271
+ | English | 7.76 | 7.99 | 7.62 | 7.93 |
272
+ | German | 7.06 | 7.22 | 7 | 7.29 |
273
+ | Dutch | 6.44 | 6.32 | 6.72 | 6.04 |
274
+ | French | 5.13 | 4.94 | 5.04 | 5.02 |
275
+ | Spanish | 4.91 | 5.08 | 4.78 | 5.23 |
276
+ | Italian | 2.5 | 2.68 | 2.38 | 2.9 |
277
+ | Portuguese | 1.84 | 1.81 | 1.83 | 1.9 |
278
+ | Polish | 1.12 | 0.95 | 1.09 | 1.05 |
279
+
280
+
281
+
282
+
283
  ### Contributions
284
 
285
  Thanks to [@patrickvonplaten](https://github.com/patrickvonplaten)
286
+ and [@polinaeterna](https://github.com/polinaeterna) for adding this dataset.