File size: 166,225 Bytes
c400066
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "175f1599",
   "metadata": {},
   "source": [
    "# **FrodoBots Gaming Dataset**\n",
    "\n",
    "---"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "02a01f1c",
   "metadata": {},
   "source": [
    "## Data Analysis"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0bdbda93",
   "metadata": {},
   "source": [
    "Find all control files in \"data_260523\" file, concat all control files into one table and save as \"combined_control.csv\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "2c7cebdb",
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import pandas as pd\n",
    "\n",
    "combined_control_df = pd.DataFrame()\n",
    "\n",
    "# Path to data_260523 directory\n",
    "data_directory = './data/data_260523'\n",
    "\n",
    "# Iterate through all directories and subdirectories\n",
    "for root, dirs, files in os.walk(data_directory):\n",
    "    for file in files:\n",
    "        # Check if the file is a control file\n",
    "        if file.startswith('control'):\n",
    "            # Full file path\n",
    "            file_path = os.path.join(root, file)\n",
    "            # Read the csv file into a dataframe\n",
    "            try:\n",
    "                df = pd.read_csv(file_path, on_bad_lines='skip')\n",
    "            except Exception as e:\n",
    "                print(f\"Error reading file {file_path}: {e}\")\n",
    "                continue\n",
    "            # Parse directory path to get the robot id and session id\n",
    "            path_parts = root.split('/')\n",
    "            robot_id = path_parts[-2]\n",
    "            session_id = path_parts[-1]\n",
    "            # Add robot id and session id to the dataframe\n",
    "            df['Robot_ID'] = robot_id\n",
    "            df['Session'] = session_id\n",
    "            # Concatenate the dataframe with the combined dataframe\n",
    "            combined_control_df = pd.concat([combined_control_df, df])\n",
    "\n",
    "# Save the combined dataframe as a csv file\n",
    "combined_control_df.to_csv('./data/combined_control.csv', index=False)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "64e6d8be",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>speed</th>\n",
       "      <th>angular</th>\n",
       "      <th>rpm_1</th>\n",
       "      <th>rpm_2</th>\n",
       "      <th>rpm_3</th>\n",
       "      <th>rpm_4</th>\n",
       "      <th>timestamp</th>\n",
       "      <th>Robot_ID</th>\n",
       "      <th>Session</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>0.45</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.680601e+09</td>\n",
       "      <td>frodobot2e6a30</td>\n",
       "      <td>20230404102851</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>0.00</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.680601e+09</td>\n",
       "      <td>frodobot2e6a30</td>\n",
       "      <td>20230404102851</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>0.00</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.680601e+09</td>\n",
       "      <td>frodobot2e6a30</td>\n",
       "      <td>20230404102851</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>0.00</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.680601e+09</td>\n",
       "      <td>frodobot2e6a30</td>\n",
       "      <td>20230404102851</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>0.00</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.680601e+09</td>\n",
       "      <td>frodobot2e6a30</td>\n",
       "      <td>20230404102851</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>8468211</th>\n",
       "      <td>0.00</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.684464e+09</td>\n",
       "      <td>frodobot31cdee</td>\n",
       "      <td>20230519033727</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>8468212</th>\n",
       "      <td>0.00</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.684464e+09</td>\n",
       "      <td>frodobot31cdee</td>\n",
       "      <td>20230519033727</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>8468213</th>\n",
       "      <td>0.00</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.684464e+09</td>\n",
       "      <td>frodobot31cdee</td>\n",
       "      <td>20230519033727</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>8468214</th>\n",
       "      <td>0.00</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.684464e+09</td>\n",
       "      <td>frodobot31cdee</td>\n",
       "      <td>20230519033727</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>8468215</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>frodobot31cdee</td>\n",
       "      <td>20230519033727</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>8468216 rows × 9 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "         speed  angular  rpm_1  rpm_2  rpm_3  rpm_4     timestamp  \\\n",
       "0         0.45      0.0    0.0    0.0    0.0    0.0  1.680601e+09   \n",
       "1         0.00      0.0    0.0    0.0    0.0    0.0  1.680601e+09   \n",
       "2         0.00      0.0    0.0    0.0    0.0    0.0  1.680601e+09   \n",
       "3         0.00      0.0    0.0    0.0    0.0    0.0  1.680601e+09   \n",
       "4         0.00      0.0    0.0    0.0    0.0    0.0  1.680601e+09   \n",
       "...        ...      ...    ...    ...    ...    ...           ...   \n",
       "8468211   0.00      0.0    0.0    0.0    0.0    0.0  1.684464e+09   \n",
       "8468212   0.00      0.0    0.0    0.0    0.0    0.0  1.684464e+09   \n",
       "8468213   0.00      0.0    0.0    0.0    0.0    0.0  1.684464e+09   \n",
       "8468214   0.00      0.0    0.0    0.0    0.0    0.0  1.684464e+09   \n",
       "8468215    NaN      NaN    NaN    NaN    NaN    NaN           NaN   \n",
       "\n",
       "               Robot_ID         Session  \n",
       "0        frodobot2e6a30  20230404102851  \n",
       "1        frodobot2e6a30  20230404102851  \n",
       "2        frodobot2e6a30  20230404102851  \n",
       "3        frodobot2e6a30  20230404102851  \n",
       "4        frodobot2e6a30  20230404102851  \n",
       "...                 ...             ...  \n",
       "8468211  frodobot31cdee  20230519033727  \n",
       "8468212  frodobot31cdee  20230519033727  \n",
       "8468213  frodobot31cdee  20230519033727  \n",
       "8468214  frodobot31cdee  20230519033727  \n",
       "8468215  frodobot31cdee  20230519033727  \n",
       "\n",
       "[8468216 rows x 9 columns]"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# read combined_control_df\n",
    "import pandas as pd\n",
    "\n",
    "combined_control_df = pd.read_csv('./data/combined_control.csv')\n",
    "combined_control_df"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "45338885",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>speed</th>\n",
       "      <th>angular</th>\n",
       "      <th>rpm_1</th>\n",
       "      <th>rpm_2</th>\n",
       "      <th>rpm_3</th>\n",
       "      <th>rpm_4</th>\n",
       "      <th>timestamp</th>\n",
       "      <th>Robot_ID</th>\n",
       "      <th>Session</th>\n",
       "      <th>actual_speed</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>0.45</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.680601e+09</td>\n",
       "      <td>frodobot2e6a30</td>\n",
       "      <td>20230404102851</td>\n",
       "      <td>0.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>0.00</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.680601e+09</td>\n",
       "      <td>frodobot2e6a30</td>\n",
       "      <td>20230404102851</td>\n",
       "      <td>0.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>0.00</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.680601e+09</td>\n",
       "      <td>frodobot2e6a30</td>\n",
       "      <td>20230404102851</td>\n",
       "      <td>0.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>0.00</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.680601e+09</td>\n",
       "      <td>frodobot2e6a30</td>\n",
       "      <td>20230404102851</td>\n",
       "      <td>0.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>0.00</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.680601e+09</td>\n",
       "      <td>frodobot2e6a30</td>\n",
       "      <td>20230404102851</td>\n",
       "      <td>0.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>8468211</th>\n",
       "      <td>0.00</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.684464e+09</td>\n",
       "      <td>frodobot31cdee</td>\n",
       "      <td>20230519033727</td>\n",
       "      <td>0.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>8468212</th>\n",
       "      <td>0.00</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.684464e+09</td>\n",
       "      <td>frodobot31cdee</td>\n",
       "      <td>20230519033727</td>\n",
       "      <td>0.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>8468213</th>\n",
       "      <td>0.00</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.684464e+09</td>\n",
       "      <td>frodobot31cdee</td>\n",
       "      <td>20230519033727</td>\n",
       "      <td>0.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>8468214</th>\n",
       "      <td>0.00</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.684464e+09</td>\n",
       "      <td>frodobot31cdee</td>\n",
       "      <td>20230519033727</td>\n",
       "      <td>0.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>8468215</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>frodobot31cdee</td>\n",
       "      <td>20230519033727</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>8468216 rows × 10 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "         speed  angular  rpm_1  rpm_2  rpm_3  rpm_4     timestamp  \\\n",
       "0         0.45      0.0    0.0    0.0    0.0    0.0  1.680601e+09   \n",
       "1         0.00      0.0    0.0    0.0    0.0    0.0  1.680601e+09   \n",
       "2         0.00      0.0    0.0    0.0    0.0    0.0  1.680601e+09   \n",
       "3         0.00      0.0    0.0    0.0    0.0    0.0  1.680601e+09   \n",
       "4         0.00      0.0    0.0    0.0    0.0    0.0  1.680601e+09   \n",
       "...        ...      ...    ...    ...    ...    ...           ...   \n",
       "8468211   0.00      0.0    0.0    0.0    0.0    0.0  1.684464e+09   \n",
       "8468212   0.00      0.0    0.0    0.0    0.0    0.0  1.684464e+09   \n",
       "8468213   0.00      0.0    0.0    0.0    0.0    0.0  1.684464e+09   \n",
       "8468214   0.00      0.0    0.0    0.0    0.0    0.0  1.684464e+09   \n",
       "8468215    NaN      NaN    NaN    NaN    NaN    NaN           NaN   \n",
       "\n",
       "               Robot_ID         Session  actual_speed  \n",
       "0        frodobot2e6a30  20230404102851           0.0  \n",
       "1        frodobot2e6a30  20230404102851           0.0  \n",
       "2        frodobot2e6a30  20230404102851           0.0  \n",
       "3        frodobot2e6a30  20230404102851           0.0  \n",
       "4        frodobot2e6a30  20230404102851           0.0  \n",
       "...                 ...             ...           ...  \n",
       "8468211  frodobot31cdee  20230519033727           0.0  \n",
       "8468212  frodobot31cdee  20230519033727           0.0  \n",
       "8468213  frodobot31cdee  20230519033727           0.0  \n",
       "8468214  frodobot31cdee  20230519033727           0.0  \n",
       "8468215  frodobot31cdee  20230519033727           NaN  \n",
       "\n",
       "[8468216 rows x 10 columns]"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Calculate \"actual_speed\" and add to \"combined_control_df\"\n",
    "combined_control_df['actual_speed'] = (combined_control_df['rpm_1'] + combined_control_df['rpm_2'] + combined_control_df['rpm_3'] + combined_control_df['rpm_4']) / 4 * 3.14 * 0.125 * 60.0 / 1000.0\n",
    "combined_control_df"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3ccd0427",
   "metadata": {},
   "source": [
    "#### Total Duration for Each City"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "28c756dd",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array(['London', 'Bern', 'Liu Zhou Shi', 'California', 'Madrid',\n",
       "       'Stockholm', 'Vienna', 'Berlin', 'Wuhan', 'Taipei', 'Singapore',\n",
       "       'Belgium', 'San Diego', 'Bobigny', 'Paris'], dtype=object)"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# location data\n",
    "location_df = pd.read_csv('./data/location.csv')\n",
    "location_df['city'].unique()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "64fef66e",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAJpCAYAAACn7APdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABmpklEQVR4nO3deXxM9+L/8fdklSCxRCTRiFhLbVUtpZXEHmptq73ai1raqlqjxe1VdEHrUlqly23tLdrSUr21BCFFbbXVUksUlVBbQhCRnN8f/ZlvRyw5TJyZeD0fj3lcc86Zk/dMXck7n3M+H5thGIYAAAAAALnmYXUAAAAAAHA3FCkAAAAAMIkiBQAAAAAmUaQAAAAAwCSKFAAAAACYRJECAAAAAJMoUgAAAABgEkUKAAAAAEyiSAEAAACASRQpAHACm82Wq8fKlStveq6RI0fq22+/ve08w4cPN5Xb09NTRYsWVY0aNfTCCy9o3bp1t5XBGX744Yfrvo8yZcqoS5cudzTPFfHx8apdu7YKFiwom8122/+9XFGXLl1UqFCh2zpHdna2ZsyYocaNGysoKEje3t4KDg7WY489poULFyo7O1uSdPDgQdlsNk2dOtX+2jVr1mj48OE6c+bMbWUAgLziZXUAAMgP1q5d6/D8zTff1IoVK7R8+XKH7VWqVLnpuUaOHKknnnhCbdu2dWbE63riiScUFxcnwzCUlpamHTt2aPr06frkk0/Up08fTZgw4Y7kuJYffvhBH3744TXL1Pz58xUQEHDHMxmGoQ4dOqhixYpasGCBChYsqEqVKt3xHK7u4sWLatu2rZYsWaKnn35akydPVkhIiP7880/9+OOPevLJJzVnzhy1adNGoaGhWrt2rcqVK2d//Zo1azRixAh16dJFRYoUse6NAMB1UKQAwAnq1q3r8LxEiRLy8PDIsd0VlSxZ0iFns2bN1K9fPz3//PN6//33de+996pnz55O+Vrnz5+Xv7+/U851//33O+U8Zh09elSnTp1Su3bt1KhRI6ec88KFCypQoIBsNptTzucKBgwYoMWLF2vatGnq1KmTw7727dvrlVde0YULFyRJvr6+bvH/FQD4Oy7tA4A75NSpU3rppZdUqlQp+fj4qGzZsnrttdeUkZFhP8Zmsyk9PV3Tpk2zX3IXHR0tSfrzzz/10ksvqUqVKipUqJCCg4PVsGFDrV692ulZPT09NXHiRAUFBWnMmDH27VOnTpXNZtPBgwcdjl+5cmWOSxejo6NVtWpVrVq1SvXq1ZO/v7+6du0qSZozZ46aNm2q0NBQ+fn5qXLlyho8eLDS09Ptr+/SpYs+/PBD++dy5XHla1/r0r5Dhw7p2WefVXBwsHx9fVW5cmWNHTvWfgmZ9H+Xkf3nP//RuHHjFBkZqUKFCunhhx++6eWMw4cP1z333CNJGjRokGw2m8qUKWPfn5iYqEaNGqlw4cLy9/dXvXr1tGjRIodzXPkMlyxZoq5du6pEiRLy9/d3+HtwtbS0NA0cOFCRkZHy8fFRqVKl1K9fP4fPS5I+/PBDNWjQQMHBwSpYsKCqVaumd999V5mZmTnO+eOPP6pRo0YKDAyUv7+/KleurFGjRuU4bt++fWrRooUKFSqk8PBwxcXF3TCrJKWkpOi///2vmjVrlqNEXVGhQgVVr15dUs5L+4YPH65XXnlFkhQZGelwaWy3bt1UrFgxnT9/Psc5GzZsqPvuu++G2QDAWRiRAoA74OLFi4qJidH+/fs1YsQIVa9eXatXr9aoUaO0ZcsW+w/ba9euVcOGDRUTE6OhQ4dKkv3ytVOnTkmShg0bppCQEJ07d07z589XdHS04uPj7YXLWfz8/NS4cWPNnj1bR44csRcIM5KTk/Xss8/q1Vdf1ciRI+Xh8dfv7/bu3asWLVqoX79+KliwoHbv3q133nlH69evt18OOXToUKWnp+vrr792uHQyNDT0ml/rzz//VL169XTp0iW9+eabKlOmjL7//nsNHDhQ+/fv16RJkxyO//DDD3Xvvfdq/Pjx9q/XokULJSUlKTAw8Jpfo3v37qpRo4bat2+v3r17q2PHjvL19ZUkJSQkqEmTJqpevbo+++wz+fr6atKkSWrVqpW+/PJLPfXUUw7n6tq1q1q2bKkZM2YoPT1d3t7e1/ya58+fV1RUlI4cOaJ//etfql69un799Ve9/vrr2r59u5YtW2Yfydq/f786duxoL1xbt27V22+/rd27d+vzzz+3n/Ozzz5Tjx49FBUVpY8++kjBwcH67bfftGPHDoevnZmZqdatW6tbt26Ki4vTqlWr9OabbyowMFCvv/76NfNK0ooVK5SZmXnLl6d2795dp06d0gcffKB58+bZ/5tXqVJFxYoV0+eff64vvvhC3bt3t79m586dWrFihb18A0CeMwAATte5c2ejYMGC9ucfffSRIcmYO3euw3HvvPOOIclYsmSJfVvBggWNzp073/RrXL582cjMzDQaNWpktGvXzmGfJGPYsGE3PYcko1evXtfdP2jQIEOS8fPPPxuGYRhTpkwxJBlJSUkOx61YscKQZKxYscK+LSoqypBkxMfH3zBDdna2kZmZaSQkJBiSjK1bt9r39erVy7jet6qIiAiHz2nw4MEOWa/o2bOnYbPZjD179hiGYRhJSUmGJKNatWrG5cuX7cetX7/ekGR8+eWXN8x75fVjxoxx2F63bl0jODjYOHv2rH3b5cuXjapVqxr33HOPkZ2dbRjG/32GnTp1uuHXuWLUqFGGh4eHsWHDBoftX3/9tSHJ+OGHH675uqysLCMzM9OYPn264enpaZw6dcowDMM4e/asERAQYDzyyCP2TNfSuXPna/6dbdGihVGpUqUbZh49erQhyfjxxx9z8xbtn+mUKVPs28aMGXPNv2uG8dffrZo1azps69mzpxEQEODw+QNAXuLSPgC4A5YvX66CBQvqiSeecNh+5dK0+Pj4XJ3no48+Uq1atVSgQAF5eXnJ29tb8fHx2rVrl7MjS/prYoXbUbRoUTVs2DDH9gMHDqhjx44KCQmRp6envL29FRUVJUm3/F6WL1+uKlWq6KGHHnLY3qVLFxmGkWPij5YtW8rT09P+/MplZr///rvpr52enq6ff/5ZTzzxhMNMd56envrnP/+pI0eOaM+ePQ6vefzxx3N17u+//15Vq1ZVzZo1dfnyZfujWbNmOS6n/OWXX9S6dWsVL17c/rl26tRJWVlZ+u233yT9NYlDWlqaXnrppZvek2Wz2dSqVSuHbdWrV7+lz8iZ+vbtqy1btuinn36S9NeljzNmzFDnzp1ve6ZBAMgtihQA3AEnT55USEhIjh9cg4OD5eXlpZMnT970HOPGjVPPnj1Vp04dffPNN1q3bp02bNig5s2b22/ad7YrPzCHhYXd0uuvdRneuXPn9Oijj+rnn3/WW2+9pZUrV2rDhg2aN2+eJN3yezl58uQ1v96V7Fd/xsWLF3d4fuUSvVv5+qdPn5ZhGKa+/vUuUbzasWPHtG3bNnl7ezs8ChcuLMMwdOLECUl/3R/26KOP6o8//tCECRO0evVqbdiwwX6p25X39eeff0pSri7V9Pf3V4ECBRy2+fr66uLFizd8XenSpSVJSUlJuXqPZrVp00ZlypSxv7epU6cqPT1dvXr1ypOvBwDXwj1SAHAHFC9eXD///LMMw3AoU8ePH9fly5cVFBR003PMnDlT0dHRmjx5ssP2s2fPOj2v9NcP3suWLVO5cuXsP3Rf+aH66skGrvwwf7VrjXgsX75cR48e1cqVK+2jUJJue72g4sWLKzk5Ocf2o0ePSlKuPuNbVbRoUXl4eJj6+rmdoS8oKEh+fn4O9zhdvV+Svv32W6Wnp2vevHmKiIiw79+yZYvD8SVKlJAkHTlyJFdf/1bExMTI29tb3377rV588UWnn9/Dw0O9evXSv/71L40dO1aTJk1So0aNmIYewB3FiBQA3AGNGjXSuXPncizcOn36dPv+K3x9fa85KmKz2eyjJlds27YtxxpWzpCVlaWXX35ZJ0+e1KBBg+zbr8xQt23bNofjFyxYkOtzXykQV7+Xjz/+OMexZkaJGjVqpJ07d2rz5s0O26dPny6bzaaYmJhcZzSrYMGCqlOnjubNm+eQNTs7WzNnztQ999yjihUr3tK5H3vsMe3fv1/FixdX7dq1czyu/De51udqGIY+/fRTh/PVq1dPgYGB+uijj2770s3rCQkJUffu3bV48WL73/Gr7d+/P8ffo7+72X/77t27y8fHR88884z27Nmjl19++faDA4AJjEgBwB3QqVMnffjhh+rcubMOHjyoatWqKTExUSNHjlSLFi3UuHFj+7HVqlXTypUrtXDhQoWGhqpw4cKqVKmSHnvsMb355psaNmyYoqKitGfPHr3xxhuKjIzU5cuXbznbsWPHtG7dOhmGobNnz9oX5N26dav69++vHj162I998MEHValSJQ0cOFCXL19W0aJFNX/+fCUmJub669WrV09FixbViy++qGHDhsnb21uzZs3S1q1bcxxbrVo1SdI777yj2NhYeXp6qnr16vLx8clxbP/+/TV9+nS1bNlSb7zxhiIiIrRo0SJNmjRJPXv2vOUik1ujRo1SkyZNFBMTo4EDB8rHx0eTJk3Sjh079OWXX97yGlH9+vXTN998owYNGqh///6qXr26srOzdejQIS1ZskRxcXGqU6eOmjRpIh8fH/3jH//Qq6++qosXL2ry5Mk6ffq0w/kKFSqksWPHqnv37mrcuLF69OihkiVLat++fdq6dasmTpzojI9D48aN04EDB9SlSxctXrxY7dq1U8mSJXXixAktXbpUU6ZM0ezZs+33pl3tyn/7CRMmqHPnzvL29lalSpVUuHBhSVKRIkXUqVMnTZ48WRERETnu5QKAPGfdPBcAkH9dPWufYRjGyZMnjRdffNEIDQ01vLy8jIiICGPIkCHGxYsXHY7bsmWLUb9+fcPf39+QZERFRRmGYRgZGRnGwIEDjVKlShkFChQwatWqZXz77bdG586djYiICIdzyMSsfVceHh4eRkBAgFGtWjXj+eefN9auXXvN1/z2229G06ZNjYCAAKNEiRJG7969jUWLFl1z1r777rvvmudYs2aN8fDDDxv+/v5GiRIljO7duxubN2/OMXNbRkaG0b17d6NEiRKGzWZzmMXt6ln7DMMwfv/9d6Njx45G8eLFDW9vb6NSpUrGmDFjjKysLPsx15t1L7ef241ev3r1aqNhw4ZGwYIFDT8/P6Nu3brGwoULHY65Mmvf1bPw3ci5c+eMf//730alSpUMHx8fIzAw0KhWrZrRv39/IyUlxX7cwoULjRo1ahgFChQwSpUqZbzyyivG//73vxz/bQzDMH744QcjKirKKFiwoOHv729UqVLFeOedd+z7r/V32DAMY9iwYdedSfFqly9fNqZNm2Y0bNjQKFasmOHl5WWUKFHCiI2NNb744gv7f5drzdpnGIYxZMgQIywszPDw8Ljme1i5cqUhyRg9enSu8gCAM9kMI4/G9QEAAPJQXFycJk+erMOHD+eYPAQA8hqX9gEAALeybt06/fbbb5o0aZJeeOEFShQASzAiBQAA3IrNZpO/v79atGihKVOmsHYUAEswIgUAANwKvwMG4AqY/hwAAAAATKJIAQAAAIBJFCkAAAAAMIl7pPTXyvNHjx5V4cKFb3nBRAAAAADuz/j/C9SHhYXJw+P6404UKUlHjx5VeHi41TEAAAAAuIjDhw/rnnvuue5+ipSkwoULS/rrwwoICLA4DQAAAACrpKWlKTw83N4RrociJdkv5wsICKBIAQAAALjpLT9MNgEAAAAAJlGkAAAAAMAkihQAAAAAmESRAgAAAACTKFIAAAAAYBJFCgAAAABMokgBAAAAgEkUKQAAAAAwiSIFAAAAACZRpAAAAADAJIoUAAAAAJhEkQIAAAAAkyhSAAAAAGASRQoAAAAATKJIAQAAAIBJFCkAAAAAMIkiBQAAAAAmUaQAAAAAwCSKFAAAAACY5GV1gPyszOBFVkfItYOjW1odAQAAAHAbjEgBAAAAgEkUKQAAAAAwiSIFAAAAACZRpAAAAADAJIoUAAAAAJhEkQIAAAAAkyhSAAAAAGASRQoAAAAATKJIAQAAAIBJFCkAAAAAMIkiBQAAAAAmUaQAAAAAwCSKFAAAAACYRJECAAAAAJMoUgAAAABgEkUKAAAAAEyiSAEAAACASRQpAAAAADDJ0iI1atQoPfjggypcuLCCg4PVtm1b7dmzx+EYwzA0fPhwhYWFyc/PT9HR0fr1118djsnIyFDv3r0VFBSkggULqnXr1jpy5MidfCsAAAAA7iKWFqmEhAT16tVL69at09KlS3X58mU1bdpU6enp9mPeffddjRs3ThMnTtSGDRsUEhKiJk2a6OzZs/Zj+vXrp/nz52v27NlKTEzUuXPn9NhjjykrK8uKtwUAAAAgn7MZhmFYHeKKP//8U8HBwUpISFCDBg1kGIbCwsLUr18/DRo0SNJfo08lS5bUO++8oxdeeEGpqakqUaKEZsyYoaeeekqSdPToUYWHh+uHH35Qs2bNcnydjIwMZWRk2J+npaUpPDxcqampCggIcNr7KTN4kdPOldcOjm5pdQQAAADAcmlpaQoMDLxpN3Cpe6RSU1MlScWKFZMkJSUlKSUlRU2bNrUf4+vrq6ioKK1Zs0aStGnTJmVmZjocExYWpqpVq9qPudqoUaMUGBhof4SHh+fVWwIAAACQD7lMkTIMQwMGDNAjjzyiqlWrSpJSUlIkSSVLlnQ4tmTJkvZ9KSkp8vHxUdGiRa97zNWGDBmi1NRU++Pw4cPOfjsAAAAA8jEvqwNc8fLLL2vbtm1KTEzMsc9mszk8Nwwjx7ar3egYX19f+fr63npYAAAAAHc1lxiR6t27txYsWKAVK1bonnvusW8PCQmRpBwjS8ePH7ePUoWEhOjSpUs6ffr0dY8BAAAAAGeytEgZhqGXX35Z8+bN0/LlyxUZGemwPzIyUiEhIVq6dKl926VLl5SQkKB69epJkh544AF5e3s7HJOcnKwdO3bYjwEAAAAAZ7L00r5evXrpiy++0HfffafChQvbR54CAwPl5+cnm82mfv36aeTIkapQoYIqVKigkSNHyt/fXx07drQf261bN8XFxal48eIqVqyYBg4cqGrVqqlx48ZWvj0AAAAA+ZSlRWry5MmSpOjoaIftU6ZMUZcuXSRJr776qi5cuKCXXnpJp0+fVp06dbRkyRIVLlzYfvx7770nLy8vdejQQRcuXFCjRo00depUeXp63qm3AgAAAOAu4lLrSFklt3PFm8U6UgAAAIB7cct1pAAAAADAHVCkAAAAAMAkihQAAAAAmESRAgAAAACTKFIAAAAAYBJFCgAAAABMokgBAAAAgEkUKQAAAAAwiSIFAAAAACZRpAAAAADAJIoUAAAAAJhEkQIAAAAAkyhSAAAAAGASRQoAAAAATKJIAQAAAIBJFCkAAAAAMIkiBQAAAAAmUaQAAAAAwCSKFAAAAACYRJECAAAAAJMoUgAAAABgEkUKAAAAAEyiSAEAAACASRQpAAAAADCJIgUAAAAAJlGkAAAAAMAkihQAAAAAmESRAgAAAACTKFIAAAAAYBJFCgAAAABMokgBAAAAgEkUKQAAAAAwiSIFAAAAACZRpAAAAADAJIoUAAAAAJhEkQIAAAAAkyhSAAAAAGASRQoAAAAATKJIAQAAAIBJFCkAAAAAMIkiBQAAAAAmWVqkVq1apVatWiksLEw2m03ffvutw36bzXbNx5gxY+zHREdH59j/9NNP3+F3AgAAAOBuYmmRSk9PV40aNTRx4sRr7k9OTnZ4fP7557LZbHr88ccdjuvRo4fDcR9//PGdiA8AAADgLuVl5RePjY1VbGzsdfeHhIQ4PP/uu+8UExOjsmXLOmz39/fPcSwAAAAA5BW3uUfq2LFjWrRokbp165Zj36xZsxQUFKT77rtPAwcO1NmzZ294royMDKWlpTk8AAAAACC3LB2RMmPatGkqXLiw2rdv77D9mWeeUWRkpEJCQrRjxw4NGTJEW7du1dKlS697rlGjRmnEiBF5HRkAAABAPuU2Rerzzz/XM888owIFCjhs79Gjh/3PVatWVYUKFVS7dm1t3rxZtWrVuua5hgwZogEDBtifp6WlKTw8PG+CAwAAAMh33KJIrV69Wnv27NGcOXNuemytWrXk7e2tvXv3XrdI+fr6ytfX19kxAQAAANwl3OIeqc8++0wPPPCAatSocdNjf/31V2VmZio0NPQOJAMAAABwN7J0ROrcuXPat2+f/XlSUpK2bNmiYsWKqXTp0pL+uuzuq6++0tixY3O8fv/+/Zo1a5ZatGihoKAg7dy5U3Fxcbr//vtVv379O/Y+AAAAANxdLC1SGzduVExMjP35lfuWOnfurKlTp0qSZs+eLcMw9I9//CPH6318fBQfH68JEybo3LlzCg8PV8uWLTVs2DB5enrekfcAAAAA4O5jMwzDsDqE1dLS0hQYGKjU1FQFBAQ47bxlBi9y2rny2sHRLa2OAAAAAFgut93ALe6RAgAAAABXQpECAAAAAJMoUgAAAABgEkUKAAAAAEyiSAEAAACASRQpAAAAADCJIgUAAAAAJlGkAAAAAMAkihQAAAAAmESRAgAAAACTKFIAAAAAYBJFCgAAAABMokgBAAAAgEkUKQAAAAAwiSIFAAAAACZRpAAAAADAJIoUAAAAAJhEkQIAAAAAkyhSAAAAAGASRQoAAAAATKJIAQAAAIBJFCkAAAAAMIkiBQAAAAAmUaQAAAAAwCSKFAAAAACYRJECAAAAAJMoUgAAAABgEkUKAAAAAEyiSAEAAACASRQpAAAAADCJIgUAAAAAJlGkAAAAAMAkihQAAAAAmESRAgAAAACTKFIAAAAAYBJFCgAAAABMokgBAAAAgEkUKQAAAAAwiSIFAAAAACZRpAAAAADAJIoUAAAAAJhkaZFatWqVWrVqpbCwMNlsNn377bcO+7t06SKbzebwqFu3rsMxGRkZ6t27t4KCglSwYEG1bt1aR44cuYPvAgAAAMDdxtIilZ6erho1amjixInXPaZ58+ZKTk62P3744QeH/f369dP8+fM1e/ZsJSYm6ty5c3rssceUlZWV1/EBAAAA3KW8rPzisbGxio2NveExvr6+CgkJuea+1NRUffbZZ5oxY4YaN24sSZo5c6bCw8O1bNkyNWvWzOmZAQAAAMDl75FauXKlgoODVbFiRfXo0UPHjx+379u0aZMyMzPVtGlT+7awsDBVrVpVa9asue45MzIylJaW5vAAAAAAgNxy6SIVGxurWbNmafny5Ro7dqw2bNighg0bKiMjQ5KUkpIiHx8fFS1a1OF1JUuWVEpKynXPO2rUKAUGBtof4eHhefo+AAAAAOQvll7adzNPPfWU/c9Vq1ZV7dq1FRERoUWLFql9+/bXfZ1hGLLZbNfdP2TIEA0YMMD+PC0tjTIFAAAAINdcekTqaqGhoYqIiNDevXslSSEhIbp06ZJOnz7tcNzx48dVsmTJ657H19dXAQEBDg8AAAAAyC23KlInT57U4cOHFRoaKkl64IEH5O3traVLl9qPSU5O1o4dO1SvXj2rYgIAAADI5yy9tO/cuXPat2+f/XlSUpK2bNmiYsWKqVixYho+fLgef/xxhYaG6uDBg/rXv/6loKAgtWvXTpIUGBiobt26KS4uTsWLF1exYsU0cOBAVatWzT6LHwAAAAA4m6VFauPGjYqJibE/v3LfUufOnTV58mRt375d06dP15kzZxQaGqqYmBjNmTNHhQsXtr/mvffek5eXlzp06KALFy6oUaNGmjp1qjw9Pe/4+wEAAABwd7AZhmFYHcJqaWlpCgwMVGpqqlPvlyozeJHTzpXXDo5uaXUEAAAAwHK57QZudY8UAAAAALgC05f2HTx4UKtXr9bBgwd1/vx5lShRQvfff78efvhhFShQIC8yAgAAAIBLyXWR+uKLL/T+++9r/fr1Cg4OVqlSpeTn56dTp05p//79KlCggJ555hkNGjRIEREReZkZAAAAACyVqyJVq1YteXh4qEuXLpo7d65Kly7tsD8jI0Nr167V7NmzVbt2bU2aNElPPvlkngQGAAAAAKvlqki9+eabatny+pMR+Pr6Kjo6WtHR0XrrrbeUlJTktIAAAAAA4GpyVaRuVKKuFhQUpKCgoFsOBAAAAACuzvSsfZs3b9b27dvtz7/77ju1bdtW//rXv3Tp0iWnhgMAAAAAV2S6SL3wwgv67bffJEkHDhzQ008/LX9/f3311Vd69dVXnR4QAAAAAFyN6SL122+/qWbNmpKkr776Sg0aNNAXX3yhqVOn6ptvvnF2PgAAAABwOaaLlGEYys7OliQtW7ZMLVq0kCSFh4frxIkTzk0HAAAAAC7IdJGqXbu23nrrLc2YMUMJCQn2iSiSkpJUsmRJpwcEAAAAAFdjukiNHz9emzdv1ssvv6zXXntN5cuXlyR9/fXXqlevntMDAgAAAICrydX051dkZWXp9OnTSkhIULFixRz2jRkzRp6enk4NBwAAAACuyNSIlKenp5o1a6bU1NQc+woUKCBvb2+nBQMAAAAAV2X60r5q1arpwIEDeZEFAAAAANyC6SL19ttva+DAgfr++++VnJystLQ0hwcAAAAA5Hem7pGSpObNm0uSWrduLZvNZt9uGIZsNpuysrKclw4AAAAAXJDpIrVixYq8yAEAAAAAbsN0kYqKisqLHAAAAADgNkwXqVWrVt1wf4MGDW45DAAAAAC4A9NFKjo6Ose2v98rxT1SAAAAAPI707P2nT592uFx/Phx/fjjj3rwwQe1ZMmSvMgIAAAAAC7F9IhUYGBgjm1NmjSRr6+v+vfvr02bNjklGAAAAAC4KtMjUtdTokQJ7dmzx1mnAwAAAACXZXpEatu2bQ7PDcNQcnKyRo8erRo1ajgtGAAAAAC4KtNFqmbNmrLZbDIMw2F73bp19fnnnzstGAAAAAC4KtNFKikpyeG5h4eHSpQooQIFCjgtFAAAAAC4MtNFKiIiIi9yAAAAAIDbuKXJJhISEtSqVSuVL19eFSpUUOvWrbV69WpnZwMAAAAAl2S6SM2cOVONGzeWv7+/+vTpo5dffll+fn5q1KiRvvjii7zICAAAAAAuxWZcPWvETVSuXFnPP/+8+vfv77B93Lhx+vTTT7Vr1y6nBrwT0tLSFBgYqNTUVAUEBDjtvGUGL3LaufLawdEtrY4AAAAAWC633cD0iNSBAwfUqlWrHNtbt26dYyIKAAAAAMiPTBep8PBwxcfH59geHx+v8PBwp4QCAAAAAFdmeta+uLg49enTR1u2bFG9evVks9mUmJioqVOnasKECXmREQAAAABciuki1bNnT4WEhGjs2LGaO3eupL/um5ozZ47atGnj9IAAAAAA4GpMFylJateundq1a+fsLAAAAADgFm6pSEnSpUuXdPz4cWVnZztsL1269G2HAgAAAABXZrpI7d27V127dtWaNWscthuGIZvNpqysLKeFAwAAAABXZLpIdenSRV5eXvr+++8VGhoqm82WF7kAAAAAwGWZLlJbtmzRpk2bdO+99+ZFHgAAAABweabXkapSpYpOnDiRF1kAAAAAwC3kqkilpaXZH++8845effVVrVy5UidPnnTYl5aWZuqLr1q1Sq1atVJYWJhsNpu+/fZb+77MzEwNGjRI1apVU8GCBRUWFqZOnTrp6NGjDueIjo6WzWZzeDz99NOmcgAAAACAGbm6tK9IkSIO90IZhqFGjRo5HHMrk02kp6erRo0aeu655/T444877Dt//rw2b96soUOHqkaNGjp9+rT69eun1q1ba+PGjQ7H9ujRQ2+88Yb9uZ+fX64zAAAAAIBZuSpSK1asyJMvHhsbq9jY2GvuCwwM1NKlSx22ffDBB3rooYd06NAhh2nW/f39FRISkicZAQAAAOBquSpSUVFReZ0jV1JTU2Wz2VSkSBGH7bNmzdLMmTNVsmRJxcbGatiwYSpcuPB1z5ORkaGMjAz7c7OXJAIAAAC4u+XqHqlDhw6ZOukff/xxS2Fu5OLFixo8eLA6duyogIAA+/ZnnnlGX375pVauXKmhQ4fqm2++Ufv27W94rlGjRikwMND+CA8Pd3peAAAAAPlXrorUgw8+qB49emj9+vXXPSY1NVWffvqpqlatqnnz5jktoPTXxBNPP/20srOzNWnSJId9PXr0UOPGjVW1alU9/fTT+vrrr7Vs2TJt3rz5uucbMmSIUlNT7Y/Dhw87NS8AAACA/C1Xl/bt2rVLI0eOVPPmzeXt7a3atWsrLCxMBQoU0OnTp7Vz5079+uuvql27tsaMGXPd+55uRWZmpjp06KCkpCQtX77cYTTqWmrVqiVvb2/t3btXtWrVuuYxvr6+8vX1dVpGAAAAAHeXXI1IFStWTP/5z3909OhRTZ48WRUrVtSJEye0d+9eSX9dXrdp0yb99NNPeVKi9u7dq2XLlql48eI3fc2vv/6qzMxMhYaGOi0HAAAAAPxdrkakrihQoIDat29/03uQcuvcuXPat2+f/XlSUpK2bNmiYsWKKSwsTE888YQ2b96s77//XllZWUpJSZH0V7Hz8fHR/v37NWvWLLVo0UJBQUHauXOn4uLidP/996t+/fpOyQgAAAAAVzNVpJxt48aNiomJsT8fMGCAJKlz584aPny4FixYIEmqWbOmw+tWrFih6Oho+fj4KD4+XhMmTNC5c+cUHh6uli1batiwYfL09Lxj7wMAAADA3cXSIhUdHS3DMK67/0b7JCk8PFwJCQnOjgUAAAAAN5Sre6QAAAAAAP+HIgUAAAAAJlGkAAAAAMCkW7pH6rffftPKlSt1/PhxZWdnO+x7/fXXnRIMAAAAAFyV6SL16aefqmfPngoKClJISIhsNpt9n81mo0gBAAAAyPdMF6m33npLb7/9tgYNGpQXeQAAAADA5Zm+R+r06dN68skn8yILAAAAALgF00XqySef1JIlS/IiCwAAAAC4BdOX9pUvX15Dhw7VunXrVK1aNXl7ezvs79Onj9PCAQAAAIArshmGYZh5QWRk5PVPZrPpwIEDtx3qTktLS1NgYKBSU1MVEBDgtPOWGbzIaefKawdHt7Q6AgAAAGC53HYD0yNSSUlJtxUMAAAAANzdbS3IaxiGTA5oAQAAAIDbu6UiNX36dFWrVk1+fn7y8/NT9erVNWPGDGdnAwAAAACXZPrSvnHjxmno0KF6+eWXVb9+fRmGoZ9++kkvvviiTpw4of79++dFTgAAAABwGaaL1AcffKDJkyerU6dO9m1t2rTRfffdp+HDh1OkAAAAAOR7pi/tS05OVr169XJsr1evnpKTk50SCgAAAABcmekiVb58ec2dOzfH9jlz5qhChQpOCQUAAAAArsz0pX0jRozQU089pVWrVql+/fqy2WxKTExUfHz8NQsWAAAAAOQ3pkekHn/8cf38888KCgrSt99+q3nz5ikoKEjr169Xu3bt8iIjAAAAALgU0yNSkvTAAw9o5syZzs4CAAAAAG4hV0UqLS1NAQEB9j/fyJXjAAAAACC/ylWRKlq0qJKTkxUcHKwiRYrIZrPlOMYwDNlsNmVlZTk9JAAAAAC4klwVqeXLl6tYsWKSpBUrVuRpIAAAAABwdbkqUlFRUfY/R0ZGKjw8PMeolGEYOnz4sHPTAQAAAIALMj1rX2RkpP78888c20+dOqXIyEinhAIAAAAAV2a6SF25F+pq586dU4ECBZwSCgAAAABcWa6nPx8wYIAkyWazaejQofL397fvy8rK0s8//6yaNWs6PSAAAAAAuJpcF6lffvlF0l8jUtu3b5ePj499n4+Pj2rUqKGBAwc6PyEAAAAAuJhcF6krs/U999xzmjBhAutFAQAAALhr5bpIXTFlypS8yAEAAAAAbsN0kZKkDRs26KuvvtKhQ4d06dIlh33z5s1zSjAAAAAAcFWmZ+2bPXu26tevr507d2r+/PnKzMzUzp07tXz5cgUGBuZFRgAAAABwKaaL1MiRI/Xee+/p+++/l4+PjyZMmKBdu3apQ4cOKl26dF5kBAAAAACXYrpI7d+/Xy1btpQk+fr6Kj09XTabTf3799cnn3zi9IAAAAAA4GpMF6lixYrp7NmzkqRSpUppx44dkqQzZ87o/Pnzzk0HAAAAAC7I9GQTjz76qJYuXapq1aqpQ4cO6tu3r5YvX66lS5eqUaNGeZERAAAAAFyK6SI1ceJEXbx4UZI0ZMgQeXt7KzExUe3bt9fQoUOdHhAAAAAAXI2pInX58mUtXLhQzZo1kyR5eHjo1Vdf1auvvpon4QAAAADAFZm6R8rLy0s9e/ZURkZGXuUBAAAAAJdnerKJOnXq6JdffsmLLAAAAADgFkzfI/XSSy8pLi5OR44c0QMPPKCCBQs67K9evbrTwgEAAACAKzI9IvXUU08pKSlJffr0Uf369VWzZk3df//99v81Y9WqVWrVqpXCwsJks9n07bffOuw3DEPDhw9XWFiY/Pz8FB0drV9//dXhmIyMDPXu3VtBQUEqWLCgWrdurSNHjph9WwAAAACQa6aLVFJSUo7HgQMH7P9rRnp6umrUqKGJEydec/+7776rcePGaeLEidqwYYNCQkLUpEkT+zpWktSvXz/Nnz9fs2fPVmJios6dO6fHHntMWVlZZt8aAAAAAOSK6Uv7IiIinPbFY2NjFRsbe819hmFo/Pjxeu2119S+fXtJ0rRp01SyZEl98cUXeuGFF5SamqrPPvtMM2bMUOPGjSVJM2fOVHh4uJYtW2afXRAAAAAAnMl0kZo+ffoN93fq1OmWw/xdUlKSUlJS1LRpU/s2X19fRUVFac2aNXrhhRe0adMmZWZmOhwTFhamqlWras2aNdctUhkZGQ4zD6alpTklMwAAAIC7g+ki1bdvX4fnmZmZOn/+vHx8fOTv7++0IpWSkiJJKlmypMP2kiVL6vfff7cf4+Pjo6JFi+Y45srrr2XUqFEaMWKEU3ICAAAAuPuYvkfq9OnTDo9z585pz549euSRR/Tll186PaDNZnN4bhhGjm1Xu9kxQ4YMUWpqqv1x+PBhp2QFAAAAcHcwXaSupUKFCho9enSO0arbERISIkk5RpaOHz9uH6UKCQnRpUuXdPr06esecy2+vr4KCAhweAAAAABAbjmlSEmSp6enjh496qzTKTIyUiEhIVq6dKl926VLl5SQkKB69epJkh544AF5e3s7HJOcnKwdO3bYjwEAAAAAZzN9j9SCBQscnhuGoeTkZE2cOFH169c3da5z585p37599udJSUnasmWLihUrptKlS6tfv34aOXKkKlSooAoVKmjkyJHy9/dXx44dJUmBgYHq1q2b4uLiVLx4cRUrVkwDBw5UtWrV7LP4AQAAAICzmS5Sbdu2dXhus9lUokQJNWzYUGPHjjV1ro0bNyomJsb+fMCAAZKkzp07a+rUqXr11Vd14cIFvfTSSzp9+rTq1KmjJUuWqHDhwvbXvPfee/Ly8lKHDh104cIFNWrUSFOnTpWnp6fZtwYAAAAAuWIzDMOwOoTV0tLSFBgYqNTUVKfeL1Vm8CKnnSuvHRzd0uoIAAAAgOVy2w2cdo8UAAAAANwtTBWp9PR0vf7666pataoKFSqkwoULq3r16nrjjTd0/vz5vMoIAAAAAC4l1/dIXbp0SVFRUdqxY4diY2PVqlUrGYahXbt26e2339b//vc/rVq1St7e3nmZFwAAAAAsl+siNXnyZB05ckRbt25VpUqVHPbt3r1b0dHR+uijj9S7d2+nhwQAAAAAV5LrS/vmzZunoUOH5ihRknTvvffqtdde09dff+3UcAAAAADginJdpHbu3Kno6Ojr7o+JidHOnTudkQkAAAAAXFqui9SZM2dUvHjx6+4vXry4UlNTnRIKAAAAAFxZrotUdnb2DRe59fDwUFZWllNCAQAAAIAry/VkE4ZhqFGjRvLyuvZLLl++7LRQAAAAAODKcl2khg0bdtNjHn/88dsKAwAAAADuwKlFCgAAAADuBrm+RwoAAAAA8BeKFAAAAACYRJECAAAAAJMoUgAAAABgEkUKAAAAAEzK1ax977//fq5P2KdPn1sOAwAAAADuIFdF6r333svVyWw2G0UKAAAAQL6XqyKVlJSU1zkAAAAAwG1wjxQAAAAAmJSrEamrHTlyRAsWLNChQ4d06dIlh33jxo1zSjAAAAAAcFWmi1R8fLxat26tyMhI7dmzR1WrVtXBgwdlGIZq1aqVFxkBAAAAwKWYvrRvyJAhiouL044dO1SgQAF98803Onz4sKKiovTkk0/mRUYAAAAAcCmmi9SuXbvUuXNnSZKXl5cuXLigQoUK6Y033tA777zj9IAAAAAA4GpMF6mCBQsqIyNDkhQWFqb9+/fb9504ccJ5yQAAAADARZm+R6pu3br66aefVKVKFbVs2VJxcXHavn275s2bp7p16+ZFRgAAAABwKaaL1Lhx43Tu3DlJ0vDhw3Xu3DnNmTNH5cuXz/XCvQAAAADgzkwXqbJly9r/7O/vr0mTJjk1EAAAAAC4OtP3SJUtW1YnT57Msf3MmTMOJQsAAAAA8ivTRergwYPKysrKsT0jI0N//PGHU0IBAAAAgCvL9aV9CxYssP958eLFCgwMtD/PyspSfHy8ypQp49RwAAAAAOCKcl2k2rZtK0my2Wz2daSu8Pb2VpkyZTR27FinhgMAAAAAV5TrIpWdnS1JioyM1IYNGxQUFJRnoQAAAADAlZmetS8pKSkvcgAAAACA2zA92YQkJSQkqFWrVipfvrwqVKig1q1ba/Xq1c7OBgAAAAAuyXSRmjlzpho3bix/f3/16dNHL7/8svz8/NSoUSN98cUXeZERAAAAAFyKzTAMw8wLKleurOeff179+/d32D5u3Dh9+umn2rVrl1MD3glpaWkKDAxUamqqAgICnHbeMoMXOe1cee3g6JZWRwAAAAAsl9tuYHpE6sCBA2rVqlWO7a1bt+b+KQAAAAB3BdNFKjw8XPHx8Tm2x8fHKzw83CmhAAAAAMCV5XrWvq5du2rChAmKi4tTnz59tGXLFtWrV082m02JiYmaOnWqJkyYkJdZAQAAAMAl5LpITZs2TaNHj1bPnj0VEhKisWPHau7cuZL+um9qzpw5atOmTZ4FBQAAAABXketL+/4+J0W7du2UmJiokydP6uTJk0pMTMyzElWmTBnZbLYcj169ekmSunTpkmNf3bp18yQLAAAAAEgmF+S12Wx5leO6NmzYoKysLPvzHTt2qEmTJnryySft25o3b64pU6bYn/v4+NzRjAAAAADuLqaKVMWKFW9apk6dOnVbga5WokQJh+ejR49WuXLlFBUVZd/m6+urkJAQp35dAAAAALgeU0VqxIgRCgwMzKssN3Xp0iXNnDlTAwYMcCh0K1euVHBwsIoUKaKoqCi9/fbbCg4Ovu55MjIylJGRYX+elpaWp7kBAAAA5C+mitTTTz99w4KS17799ludOXNGXbp0sW+LjY3Vk08+qYiICCUlJWno0KFq2LChNm3aJF9f32ueZ9SoURoxYsQdSg0AAAAgv7EZf59F4gY8PT2VnJxsaZFq1qyZfHx8tHDhwusek5ycrIiICM2ePVvt27e/5jHXGpEKDw+/6erFZpUZvMhp58prB0e3tDoCAAAAYLm0tDQFBgbetBvkekQql30rz/z+++9atmyZ5s2bd8PjQkNDFRERob179173GF9f3+uOVgEAAADAzeS6SGVnZ+dljpuaMmWKgoOD1bLljUdOTp48qcOHDys0NPQOJQMAAABwt8n1OlJWys7O1pQpU9S5c2d5ef1f9zt37pwGDhyotWvX6uDBg1q5cqVatWqloKAgtWvXzsLEAAAAAPIzU5NNWGXZsmU6dOiQunbt6rDd09NT27dv1/Tp03XmzBmFhoYqJiZGc+bMUeHChS1KCwAAACC/c4si1bRp02veo+Xn56fFixdbkAgAAADA3cwtLu0DAAAAAFdCkQIAAAAAkyhSAAAAAGASRQoAAAAATKJIAQAAAIBJFCkAAAAAMIkiBQAAAAAmUaQAAAAAwCSKFAAAAACYRJECAAAAAJMoUgAAAABgEkUKAAAAAEyiSAEAAACASRQpAAAAADCJIgUAAAAAJlGkAAAAAMAkihQAAAAAmESRAgAAAACTKFIAAAAAYBJFCgAAAABMokgBAAAAgEkUKQAAAAAwiSIFAAAAACZRpAAAAADAJIoUAAAAAJhEkQIAAAAAkyhSAAAAAGASRQoAAAAATKJIAQAAAIBJFCkAAAAAMIkiBQAAAAAmUaQAAAAAwCSKFAAAAACYRJECAAAAAJMoUgAAAABgEkUKAAAAAEyiSAEAAACASRQpAAAAADCJIgUAAAAAJlGkAAAAAMAkihQAAAAAmESRAgAAAACTXLpIDR8+XDabzeEREhJi328YhoYPH66wsDD5+fkpOjpav/76q4WJAQAAANwNXLpISdJ9992n5ORk+2P79u32fe+++67GjRuniRMnasOGDQoJCVGTJk109uxZCxMDAAAAyO+8rA5wM15eXg6jUFcYhqHx48frtddeU/v27SVJ06ZNU8mSJfXFF1/ohRdeuO45MzIylJGRYX+elpbm/OAAAAAA8i2XH5Hau3evwsLCFBkZqaeffloHDhyQJCUlJSklJUVNmza1H+vr66uoqCitWbPmhuccNWqUAgMD7Y/w8PA8fQ8AAAAA8heXLlJ16tTR9OnTtXjxYn366adKSUlRvXr1dPLkSaWkpEiSSpYs6fCakiVL2vddz5AhQ5Sammp/HD58OM/eAwAAAID8x6Uv7YuNjbX/uVq1anr44YdVrlw5TZs2TXXr1pUk2Ww2h9cYhpFj29V8fX3l6+vr/MAAAAAA7gouPSJ1tYIFC6patWrau3ev/b6pq0efjh8/nmOUCgAAAACcya2KVEZGhnbt2qXQ0FBFRkYqJCRES5cute+/dOmSEhISVK9ePQtTAgAAAMjvXPrSvoEDB6pVq1YqXbq0jh8/rrfeektpaWnq3LmzbDab+vXrp5EjR6pChQqqUKGCRo4cKX9/f3Xs2NHq6MhjZQYvsjpCrh0c3dLqCAAAAHAyly5SR44c0T/+8Q+dOHFCJUqUUN26dbVu3TpFRERIkl599VVduHBBL730kk6fPq06depoyZIlKly4sMXJAQAAAORnLl2kZs+efcP9NptNw4cP1/Dhw+9MIAAAAACQm90jBQAAAACugCIFAAAAACZRpAAAAADAJIoUAAAAAJhEkQIAAAAAkyhSAAAAAGASRQoAAAAATKJIAQAAAIBJFCkAAAAAMIkiBQAAAAAmUaQAAAAAwCSKFAAAAACYRJECAAAAAJMoUgAAAABgEkUKAAAAAEyiSAEAAACASRQpAAAAADCJIgUAAAAAJlGkAAAAAMAkihQAAAAAmESRAgAAAACTKFIAAAAAYBJFCgAAAABMokgBAAAAgEkUKQAAAAAwiSIFAAAAACZRpAAAAADAJIoUAAAAAJhEkQIAAAAAkyhSAAAAAGASRQoAAAAATKJIAQAAAIBJFCkAAAAAMIkiBQAAAAAmUaQAAAAAwCSKFAAAAACYRJECAAAAAJMoUgAAAABgEkUKAAAAAEyiSAEAAACASRQpAAAAADDJpYvUqFGj9OCDD6pw4cIKDg5W27ZttWfPHodjunTpIpvN5vCoW7euRYkBAAAA3A1cukglJCSoV69eWrdunZYuXarLly+radOmSk9PdziuefPmSk5Otj9++OEHixIDAAAAuBt4WR3gRn788UeH51OmTFFwcLA2bdqkBg0a2Lf7+voqJCTkTscD8p0ygxdZHSHXDo5uaXUEAABwF3PpEamrpaamSpKKFSvmsH3lypUKDg5WxYoV1aNHDx0/fvyG58nIyFBaWprDAwAAAAByy22KlGEYGjBggB555BFVrVrVvj02NlazZs3S8uXLNXbsWG3YsEENGzZURkbGdc81atQoBQYG2h/h4eF34i0AAAAAyCdc+tK+v3v55Ze1bds2JSYmOmx/6qmn7H+uWrWqateurYiICC1atEjt27e/5rmGDBmiAQMG2J+npaVRpgAAAADkmlsUqd69e2vBggVatWqV7rnnnhseGxoaqoiICO3du/e6x/j6+srX19fZMQEAAADcJVy6SBmGod69e2v+/PlauXKlIiMjb/qakydP6vDhwwoNDb0DCQEAAADcjVz6HqlevXpp5syZ+uKLL1S4cGGlpKQoJSVFFy5ckCSdO3dOAwcO1Nq1a3Xw4EGtXLlSrVq1UlBQkNq1a2dxegAAAAD5lUuPSE2ePFmSFB0d7bB9ypQp6tKlizw9PbV9+3ZNnz5dZ86cUWhoqGJiYjRnzhwVLlzYgsQAAAAA7gYuXaQMw7jhfj8/Py1evPgOpQEAAACAv7j0pX0AAAAA4IooUgAAAABgEkUKAAAAAExy6XukACA/KDN4kdURcu3g6JZWRwAAwC0wIgUAAAAAJlGkAAAAAMAkihQAAAAAmESRAgAAAACTKFIAAAAAYBJFCgAAAABMokgBAAAAgEkUKQAAAAAwiSIFAAAAACZRpAAAAADAJIoUAAAAAJhEkQIAAAAAk7ysDgAAwK0oM3iR1RFy7eDollZHAAA4GSNSAAAAAGASI1IAAMCOkT4AyB1GpAAAAADAJIoUAAAAAJhEkQIAAAAAkyhSAAAAAGASRQoAAAAATKJIAQAAAIBJFCkAAAAAMIkiBQAAAAAmUaQAAAAAwCQvqwMAAADkd2UGL7I6Qq4dHN3S6giAW2BECgAAAABMokgBAAAAgEkUKQAAAAAwiSIFAAAAACZRpAAAAADAJIoUAAAAAJhEkQIAAAAAkyhSAAAAAGASRQoAAAAATPKyOgAAAABwK8oMXmR1hFw7OLql1RHgZIxIAQAAAIBJjEgBAAAAsGOkL3fyzYjUpEmTFBkZqQIFCuiBBx7Q6tWrrY4EAAAAIJ/KF0Vqzpw56tevn1577TX98ssvevTRRxUbG6tDhw5ZHQ0AAABAPpQvitS4cePUrVs3de/eXZUrV9b48eMVHh6uyZMnWx0NAAAAQD7k9vdIXbp0SZs2bdLgwYMdtjdt2lRr1qy55msyMjKUkZFhf56amipJSktLc2q27IzzTj1fXnL2e89rfLZ5g881b/C55g0+17zB55o3+FzzBp9r3rjbP9cr5zQM44bH2YybHeHijh49qlKlSumnn35SvXr17NtHjhypadOmac+ePTleM3z4cI0YMeJOxgQAAADgRg4fPqx77rnnuvvdfkTqCpvN5vDcMIwc264YMmSIBgwYYH+enZ2tU6dOqXjx4td9jatIS0tTeHi4Dh8+rICAAKvj5Bt8rnmDzzVv8LnmDT7XvMNnmzf4XPMGn2vecKfP1TAMnT17VmFhYTc8zu2LVFBQkDw9PZWSkuKw/fjx4ypZsuQ1X+Pr6ytfX1+HbUWKFMmriHkiICDA5f8SuiM+17zB55o3+FzzBp9r3uGzzRt8rnmDzzVvuMvnGhgYeNNj3H6yCR8fHz3wwANaunSpw/alS5c6XOoHAAAAAM7i9iNSkjRgwAD985//VO3atfXwww/rk08+0aFDh/Tiiy9aHQ0AAABAPpQvitRTTz2lkydP6o033lBycrKqVq2qH374QREREVZHczpfX18NGzYsx6WJuD18rnmDzzVv8LnmDT7XvMNnmzf4XPMGn2veyI+fq9vP2gcAAAAAd5rb3yMFAAAAAHcaRQoAAAAATKJIAQAAAIBJFCkAAAAAMIkiBQAAAAAm5Yvpz/Ob9u3ba+rUqQoICFD79u1veOy8efPuUCoAAOAqLly4oMzMTIdtAQEBFqUB7k4UKRcUGBgom81m/zPyRnp6uhISEnTo0CFdunTJYV+fPn0sSpV/ZGdna9++fTp+/Liys7Md9jVo0MCiVADuhJMnT+r111/XihUrrvlvwKlTpyxK5t7Onz+vV199VXPnztXJkydz7M/KyrIgVf7B9y3nOnbsmAYOHKj4+HgdP35cV6+4lB/+vrKOFO5Kv/zyi1q0aKHz588rPT1dxYoV04kTJ+Tv76/g4GAdOHDA6ohubd26derYsaN+//33HP9w2my2fPGPpxWysrI0depU+zelq7/RL1++3KJk7udmo/1/x8i/ebGxsdq/f7+6deumkiVL2n85eEXnzp0tSubeevXqpRUrVuiNN95Qp06d9OGHH+qPP/7Qxx9/rNGjR+uZZ56xOqLb4vuW88XGxurQoUN6+eWXFRoamuPfgTZt2liUzHkYkcJdqX///mrVqpUmT56sIkWKaN26dfL29tazzz6rvn37Wh3P7b344ouqXbu2Fi1adM1/PHFr+vbtq6lTp6ply5aqWrUqn+tt+Ptov2EYmj9/vgIDA1W7dm1J0qZNm3TmzBlThQv/JzExUYmJiapRo4bVUfKVhQsXavr06YqOjlbXrl316KOPqnz58oqIiNCsWbMoUreB71vOl5iYqNWrV6tmzZpWR8kzFCkXdzcMi1phy5Yt+vjjj+Xp6SlPT09lZGSobNmyevfdd9W5c2d+eLpNe/fu1ddff63y5ctbHSVfmT17tubOnasWLVpYHcXtTZkyxf7nQYMGqUOHDvroo4/k6ekp6a9/W1966SXuOblF9957ry5cuGB1jHzn1KlTioyMlPTX/VBXLpF85JFH1LNnTyujuT2+bzlfeHh4jp9b8xuKlIvr0qWLDh06pKFDh/IbEify9va2f5YlS5bUoUOHVLlyZQUGBurQoUMWp3N/derU0b59+/iG5GQ+Pj58pnng888/V2Jior1ESZKnp6cGDBigevXqacyYMRamc0+TJk3S4MGD9frrr6tq1ary9vZ22E9BvTVly5bVwYMHFRERoSpVqmju3Ll66KGHtHDhQhUpUsTqeG6N71vON378eA0ePFgff/yxypQpY3WcPEGRcnF3w7CoFe6//35t3LhRFStWVExMjF5//XWdOHFCM2bMULVq1ayO5/Z69+6tuLg4paSkqFq1ajl+iKpevbpFydxbXFycJkyYoIkTJ/JLFSe6fPmydu3apUqVKjls37VrV4770JA7RYoUUWpqqho2bOiw3TAM7je5Dc8995y2bt2qqKgoDRkyRC1bttQHH3ygy5cva9y4cVbHc2t833K+p556SufPn1e5cuXk7++f4zPND5POMNmEi6tSpYpmzZql+++/3+oo+crGjRt19uxZxcTE6M8//1Tnzp2VmJio8uXLa8qUKVzXf5s8PHIuUWez2fgh6ja1a9dOK1asULFixXTffffl+KbEpAi3ZsCAAZo6dar+9a9/qW7dupL+uvF89OjR6tSpEz+g3oKHHnpIXl5e6tu37zUnm4iKirIoWf5y6NAhbdy4UeXKleP71m3i+5bzTZs27Yb788OkMxQpF7dkyRKNHTs2Xw+LIv/5/fffb7g/IiLiDiXJX5577rkb7v/7fT/IvezsbP3nP//RhAkTlJycLEkKDQ1V3759FRcX53DJH3LH399fv/zyS45RPsBV8X0Lt4Ii5YKKFi3q8Nu79PR0Xb58Od8OiwKAq0hLS5PEPTy3q0GDBnr99dfVuHFjq6O4vffff1/PP/+8ChQooPfff/+Gx7IG4q3JzMxUpUqV9P3336tKlSpWx8mX8usC0hQpF3SzodC/yw/DolZgNkTnW7BggWJjY+Xt7a0FCxbc8NjWrVvfoVT5059//qk9e/bIZrOpYsWKKlGihNWRAAdfffWVhg8frldeeYX7TW5TZGSkNm7cqOLFi9tn7LsWm83GGoi3oVSpUlq2bJkqV65sdZR8Iz09XYMGDcrXC0hTpHBXuhsWibvTPDw8lJKSouDg4Gtea34F15rfuvT0dPXu3VvTp0+3T4Lg6empTp066YMPPpC/v7/FCd1HrVq1FB8fr6JFi+r++++/4eQdmzdvvoPJ8gfuN4G7GT16tHbv3q3//ve/8vJiLjZnuBsWkOZviovKzs5Wdna2w/+Zjx07po8++kjp6elq3bq1HnnkEQsTujdmQ3S+v89uxkxneWPAgAFKSEjQwoULVb9+fUl//V3u06eP4uLiNHnyZIsTuo82bdrI19dXktS2bVtrw+RDSUlJVkcATPn5558VHx+vJUuWqFq1aipYsKDDfibzMe9uWECaESkX9dxzz8nb21uffPKJJOns2bO67777dPHiRYWGhmrnzp367rvvWJjzFjEbItxRUFCQvv76a0VHRztsX7FihTp06KA///zTmmBuLCsrS4mJiapevbqKFi1qdRzghrKysjR16lT7ZelX/9Jq+fLlFiVzf0zm43yFChXSr7/+qoiICN1zzz2aN2+eHnroISUlJalatWo6d+6c1RFvGyNSLuqnn37SxIkT7c+nT5+uy5cva+/evQoMDNSgQYM0ZswYitQtuhsWibvTbnYT9N9xQ/StOX/+vEqWLJlje3BwsM6fP29BIvfn6empZs2aadeuXRSp23SzeyP/jvskb03fvn01depUtWzZUlWrVmU9OSeiKDnf3bCANCNSLqpgwYLasWOH/cbS9u3bq1SpUvrggw8kSTt37lR0dLSOHz9uZUy3VbRoUZ0/f57ZEJ3oRjdB/x03RN+6Ro0aqXjx4po+fboKFCgg6a+ZkDp37qxTp05p2bJlFid0Tw8++KBGjx6tRo0aWR3Frd3o3si/4x6pWxcUFKTp06fzS9Q8cvnyZa1cuVL79+9Xx44dVbhwYR09elQBAQEqVKiQ1fHcznvvvSdPT0/16dNHK1asUMuWLZWVlWVfQLpv375WR7xtjEi5qAIFCujChQv25+vWrdOYMWMc9ueHIVGrjB8/3uoI+Q73ROS9CRMmqHnz5rrnnntUo0YN2Ww2bdmyRQUKFNDixYutjue23n77bQ0cOFBvvvmmHnjggRz3RuSHKXrvBO6NzHs+Pj4qX7681THypd9//13NmzfXoUOHlJGRoSZNmqhw4cJ69913dfHiRX300UdWR3Q7/fv3t/85JiZGu3fvzncLSDMi5aIaNmyoOnXqaNSoUVq9erWio6N15MgRhYaGSpKWLl2qnj17at++fRYnBRyxHkfeunDhgmbOnKndu3fLMAxVqVJFzzzzjPz8/KyO5rb+PpLy90ulmGEOrmbs2LE6cOCAJk6cyGV9Tta2bVsVLlxYn332mYoXL66tW7eqbNmySkhIUPfu3bV3716rI8IFMSLlooYOHaoWLVpo7ty5Sk5OVpcuXewlSpLmz59vn7ULtyY7O1v79u275g27DRo0sCiV+/P29lZGRgbf5POIn5+fevToYXWMfGXFihVWR8iXEhIS9J///Ee7du2SzWZT5cqV9corr+jRRx+1OprbSkxM1IoVK/S///1P9913X47L0plZ7tYlJibqp59+ko+Pj8P2iIgI/fHHHxalcn/x8fHXnRzl888/tyiV81CkXFRMTIw2bdqkpUuXKiQkRE8++aTD/po1a+qhhx6yKJ37W7dunTp27Kjff/89x2K8/Ab69vXu3VvvvPMO63E4ATfw572oqCirI+Q7M2fO1HPPPaf27durT58+MgxDa9asUaNGjTR16lR17NjR6ohuqUiRImrXrp3VMfKl7Ozsa37vP3LkiAoXLmxBIvc3YsQIvfHGG6pdu/Y11+zMD7i0D3elmjVrqmLFihoxYsQ1/88dGBhoUbL8oV27doqPj1ehQoVYj+M2XX0D/5VFTa/eJuWPVeLvlG3btuX62OrVq+dhkvypcuXKev755x3ukZCkcePG6dNPP9WuXbssSua+Ll++rFmzZqlZs2YKCQmxOk6+89RTTykwMFCffPKJChcurG3btqlEiRJq06aNSpcuzax+tyA0NFTvvvuu/vnPf1odJc9QpHBXKliwoLZu3cpNu3mE9TjyxrJlyzRo0CCNHDlSDz/8sGw2m9asWaN///vfGjlypJo0aWJ1RLfh4eFhL6U3+y0pBdU8X19f/frrrzn+jd23b5+qVq2qixcvWpTMvfn7+2vXrl2KiIiwOkq+c/ToUcXExMjT01N79+5V7dq1tXfvXhUvXlyrV69WcHCw1RHdTvHixbV+/XqVK1fO6ih5hmtucFeqU6eO9u3bR5HKIxSlvNGvXz999NFHeuSRR+zbmjVrJn9/fz3//PP8lt+Ev88y+csvv2jgwIF65ZVX9PDDD0uS1q5dq7Fjx+rdd9+1KqJbCw8PV3x8fI5/Y+Pj4xUeHm5RKvdXp04d/fLLLxSpPBAWFqYtW7boyy+/1ObNm5Wdna1u3boxmc9t6N69u7744gsNHTrU6ih5hiKFu1Lv3r0VFxenlJQUVatWLccNu1zKc/tYj8P59u/ff83LTgMDA3Xw4ME7H8iN/f0H0SeffFLvv/++w9o81atXV3h4uIYOHaq2bdtakNC9xcXFqU+fPtqyZYvq1asnm82mxMRETZ06VRMmTLA6ntt66aWXFBcXpyNHjlxzqn6+d926kydPqnjx4uratasaN26s//73v9qzZ482btzIBCkmDBgwwP7n7OxsffLJJ1q2bJmqV6+e42etcePG3el4TselfbgrXWvhyL9f5sOlPLfn6vU4fvvtN5UtW1b9+vVjPY7b0KBBA3l7e2vmzJn2WTxTUlL0z3/+U5cuXVJCQoLFCd2Tn5+fNm/erMqVKzts37Vrl2rVquWwph9yb/78+Ro7dqx9pPTKrH1t2rSxOJn74nuX823fvl2tWrXS4cOHVaFCBc2ePVvNmzdXenq6PDw8lJ6erq+//ppfqORSTExMro6z2Wxavnx5HqfJexQp3JV+//33G+7nsonbw3oceWPfvn1q166d9uzZo9KlS0uSDh06pIoVK+rbb7/lUtVbVKtWLVWuXFmfffaZChQoIEnKyMhQ165dtWvXLm3evNnihMBf+N7lfLGxsfLy8tKgQYM0c+ZMff/992ratKn++9//SvrrCpZNmzZp3bp1FieFK6JIubgrN0RfD799gisKCgrSTz/9pEqVKqlw4cL2InXw4EFVqVJF58+ftzqi2zIMQ0uXLnVYkLdx48b5clrZO2X9+vVq1aqVsrOzVaNGDUnS1q1bZbPZ9P3337PUxG24dOnSNdePufKLAMBqQUFBWr58uapXr65z584pICBA69evV+3atSVJu3fvVt26dXXmzBlrg8IlcY+Ui5s/f77D88zMTP3yyy+aNm2aRowYYVGq/GHGjBn66KOPlJSUpLVr1yoiIkLjx49XZGQkl57cJtbjyDs2m01NmzZV06ZNrY6Sbzz00ENKSkrSzJkz7QX1qaeeUseOHXPcg4Lc2bt3r7p27ao1a9Y4bOcStNu3f/9+jR8/3mGh4759++brmdHy0qlTp+zTyRcqVEgFCxZUsWLF7PuLFi2qs2fPWhXPrcXExNzwl3z54dI+ipSLu9YP9E888YTuu+8+zZkzR926dbMglfubPHmyXn/9dfXr109vv/22/Zt6kSJFNH78eIrUbWrSpInGjx+vTz75RNJfP/yfO3dOw4YNc7ihH+bl91XirXJl5kM4R5cuXeTl5aXvv/8+3y7EaYXFixerdevWqlmzpurXr29f6Pi+++7TwoULWQLhFl3995O/r85Rs2ZNh+eZmZnasmWLduzYoc6dO1sTysm4tM9N7d+/X9WrV1d6errVUdxSlSpVNHLkSPu9PFcuPduxY4eio6N14sQJqyO6NdbjyBs3WyX+6hFsmLNz504dOnRIly5dctjeunVrixK5r4IFC2rTpk269957rY6Sr9x///1q1qyZRo8e7bB98ODBWrJkCffz3QIPDw/FxsbK19dXkrRw4UI1bNjQPhqdkZGhH3/8kVFUJxo+fLjOnTun//znP1ZHuW0UKTd04cIFDRkyRP/73/+0Z88eq+O4JT8/P+3evVsREREORWrv3r2qXr06s3Q5wYULFxzW46hVqxbrcdymu2GVeCscOHBA7dq10/bt2+0zoEn/91tpfoAy78EHH9R7773nsOYZbl+BAgW0fft2VahQwWH7b7/9purVq7PQ8S242QLyV7A+ovPs27dPDz30kE6dOmV1lNvGpX0urmjRog6/dTYMQ2fPnpW/v79mzpxpYTL3FhkZqS1btuSY4eh///ufqlSpYlGq/IP1OPLGpUuXVK9ePatj5Dt9+/ZVZGSkli1bprJly2r9+vU6efKk4uLi8sVvTO+UtLQ0+5/feecdvfrqqxo5cuQ11+oLCAi40/HyhRIlSmjLli05itSWLVsY6b9FFKQ7b+3atfYZUt0dRcrFjR8/3uG5h4eHSpQooTp16qho0aLWhMoHXnnlFfXq1UsXL16UYRhav369vvzyS40aNco+5SnMu9l6HO+99x7rcdyGu2GVeCusXbtWy5cvV4kSJeTh4SEPDw898sgjGjVqlPr06aNffvnF6ohuoUiRIjl+8deoUSOHY5hs4vb06NFDzz//vA4cOOCw0PE777yjuLg4q+MBDtq1a5fj34Tk5GRt3Lgx33wf49I+3LU+/fRTvfXWWzp8+LAkqVSpUho+fDgTeNwG1uPIW3379tX06dNVvXr1fLtKvBWKFi2qTZs2qWzZsipXrpz++9//KiYmRvv371e1atWYrj+XzCwIHRUVlYdJ8i/DMDR+/HiNHTtWR48elSSFhYXplVdeUZ8+fZgkAS5h3759Kl++fI7LJq8MBjRs2DDfzDxLkXIDZ86c0WeffWaf6rRKlSrq2rWrAgMDrY6WL5w4cULZ2dlcFuEErMeRt260Ynx+WSXeCo8++qji4uLUtm1bdezYUadPn9a///1vffLJJ9q0aZN27NhhdUS3c+nSJfn4+Fxz34kTJxQUFHSHE7mvBQsWKDY2NscvTq5Myc2SEnA1Hh4eKlWqlGJiYuyPMmXKWB0rT1CkXNzGjRvVrFkz+fn56aGHHpJhGNq4caMuXLigJUuWqFatWlZHBOw8PDyUkpJiL6V/n8hDko4dO6awsDAu64FLWbx4sdLT09W+fXsdOHBAjz32mHbv3q3ixYtr9uzZOS5Pw821bdtW8+bNk4eHh8P2Y8eOqVGjRpRTEzw9PZWSkqISJUrI09NTycnJ/OIPLm316tVKSEjQypUrtXbtWl28eFGlS5dWw4YN1bBhQ0VHR6tUqVJWx3QKipSLe/TRR1W+fHl9+umn8vL665a2y5cvq3v37jpw4IBWrVplcUL3UatWLcXHx6to0aK6//77b3gJBFPI3hoPDw8dO3ZMJUqUkPRXkdq2bZsiIyMlUaSc6ciRI7LZbPnmm5GrOXXqVI7JfpB7derUUZUqVRxu5E9OTlbDhg1133336euvv7YwnXsJCQnRp59+qlatWuX4NxZwdZmZmVq7dq1WrlyplStXat26dcrIyFD58uXzxczTTDbh4jZu3OhQoiTJy8tLr776qv1yKeROmzZttHPnTtWvX5/JDvJQly5d7OtxXLx4US+++KLDehy4ddnZ2Xrrrbc0duxYnTt3TtJfZTUuLk6vvfZajt/+48a6du2aq+NY6Ni8H374QQ0aNFD//v313nvv6Y8//lDDhg1Vo0YNzZ492+p4buXFF19UmzZtZLPZZLPZFBISct1j+SUVXI23t7caNGigBx98UA8//LAWL16sTz/9VPv27bM6mlNQpFxcQECADh06lGNRw8OHD3NdtEnDhg2Th4eH7r//fnXr1k3PPPMM95k52dUrlT/77LM5junUqdOdipPvvPbaa/rss880evRo1a9fX4Zh6KefftLw4cN18eJFvf3221ZHdCtTp05VRESE7r//fnFxhnMVL15cixcvtq8jtWjRItWqVUuzZs2i8Js0fPhwPf3009q3b59at26tKVOmqEiRIlbHAm7o4sWLWrNmjVasWKGVK1dqw4YNioyMVFRUlCZPnpxvJpzh0j4X16dPH82fP1//+c9/HKY6feWVV/T444/nmB4dN7Z27Vp9/vnnmjt3rjIzM/X444+ra9euN7yJH3AVYWFh+uijj9S6dWuH7d99951eeukl/fHHHxYlc08vvfSSZs+erdKlS6tr16569tlnVaxYMatj5St79+7VI488oiZNmmjGjBlcKnmbRowYoVdeeUX+/v5WRwGuKyoqShs2bFC5cuXUoEEDRUVFKSoqSiVLlrQ6mtNRpFzcpUuX9Morr+ijjz7S5cuXJf01TNqzZ0+NHj3afgkVzLlw4YLmzp2rKVOmaPXq1SpTpoy6du2qzp0765577rE6HnBNBQoU0LZt21SxYkWH7Xv27FHNmjV14cIFi5K5r4yMDM2bN0+ff/651qxZo5YtW6pbt25q2rQpP/SbdL17ys6fPy9fX195enrat506depORgNwB3l7eys0NFRt27ZVdHS0GjRokG9n6qRIuYnz589r//79MgxD5cuX57dRTrR//35NmTJF06dPV3Jyspo0aaIffvjB6lhADnXq1FGdOnX0/vvvO2zv3bu31q9fr59//tmiZPnD77//rqlTp2r69OnKzMzUzp07VahQIatjuY1p06bl+tirLwPG9TFREtxNenq6Vq9erZUrV2rFihXasmWLKlasqKioKEVHRysqKirfTJjCPVJuwt/fX9WqVbM6Rr5Urlw5DR48WOHh4frXv/6lxYsXWx0JuKZ3331XLVu21LJly/Twww/LZrNpzZo1Onz4MOXfCa7czG8YhrKzs62O43YoR3mjTZs29qtPmCgJ7qBgwYJq3ry5mjdvLumvNc8SExO1YsUKvfvuu3rmmWdUoUKFfLEMAiNSLi49PV2jR49WfHy8jh8/nuOb+4EDByxKlj8kJCTo888/1zfffCNPT0916NBB3bp1U926da2OBlzT0aNH9eGHH2r37t0yDENVqlTR888/r+HDhzO73C34+6V9iYmJeuyxx/Tcc8+pefPmTIpwG3744Qd5enqqWbNmDtuXLFmirKwsxcbGWpQMwJ2WnZ2tDRs2aMWKFVqxYoUSExN18eLFfDHLJEXKxf3jH/9QQkKC/vnPfyo0NDTHkH7fvn0tSua+Dh8+rKlTp2rq1KlKSkpSvXr11K1bN3Xo0ME+TTfgTrZu3apatWrli29Kd9LfJ5t47rnn9Oyzz6p48eJWx8oXqlevrtGjR6tFixYO23/88UcNGjRIW7dutSgZgLyWnZ2tjRs32i/t++mnn5Senq5SpUopJibG/oiIiLA66m2jSLm4IkWKaNGiRapfv77VUfKFJk2aaMWKFSpRooQ6deqkrl27qlKlSlbHAm4LRerWeHh4qHTp0je972TevHl3MFX+4Ofnp127dqlMmTIO2w8ePKj77rtP6enp1gRzQ2YWhmYSD7iCgIAApaenKzQ0VNHR0YqOjlZMTIzKlStndTSn4x4pF1e0aFGm43UiPz8/ffPNN3rsscccZpACcPfp1KkTM/PlkcDAQB04cCBHkdq3bx8j/yaxzAnczZgxYxQTE5Njhtn8iBEpFzdz5kx99913mjZtGjP1AbgmRqTgap5//nmtW7dO8+fPt/8Wet++fXr88cf14IMP6r///a/FCQHg9lGkXNDVl5ns27dPhmGoTJky8vb2djiWqU6B/K99+/Y33H/mzBklJCRQpOAyUlNT1bx5c23cuNG+Nt+RI0f06KOPat68eSpSpIi1AfOBCxcuKDMz02FbQECARWmAuxOX9rkgpjcF8HeBgYE33d+pU6c7lAa4ucDAQK1Zs0ZLly7V1q1b5efnp+rVq6tBgwZWR3Nr6enpGjRokObOnauTJ0/m2M8vU4A7ixEpAAAAN9CrVy+tWLFCb7zxhjp16qQPP/xQf/zxhz7++GONHj1azzzzjNURgbsKi2S4qDfffPOGa0SlpaWpa9eudzARAAC5l5CQoFatWql8+fKqUKGCWrdurdWrV1sdy60tXLhQkyZN0hNPPCEvLy89+uij+ve//62RI0dq1qxZVscD7joUKRc1bNgwPfjgg1q2bNk191+4cEHTpk27w6kAALi5mTNnqnHjxvL391efPn308ssvy8/PT40aNdIXX3xhdTy3derUKUVGRkr6636oK9OdP/LII1q1apWV0YC7EkXKhbVp00YtWrTQe++9Z3UUAABy7e2339a7776rOXPmqE+fPurbt6/mzJmj0aNH680337Q6ntsqW7asDh48KEmqUqWK5s6dK+mvkSom8ADuPO6RclGenp5KTk7W0qVL9fzzz+uJJ57Qp59+Kh8fH0nSsWPHFBYWxo2lAACX4+vrq19//VXly5d32L5v3z5VrVpVFy9etCiZe3vvvffk6empPn36aMWKFWrZsqWysrKUmZmp9957T3379rU6InBXYdY+F3Wl3z7zzDO699571b59ezVo0EDz589XaGioxekAALi+8PBwxcfH5yhS8fHxCg8PtyiV++vfv7/9zzExMdq9e7c2btyo8uXLq3r16hYmA+5OXNrnBh544AFt2LBBPj4+euCBB/Tzzz9bHQkAgOuKi4tTnz591LNnT82YMUMzZ87Uiy++qL59+2rgwIFWx3M7y5cvV5UqVZSWluawvXTp0mrUqJH+8Y9/MJEHYAFGpFzU3xfklaTg4GAtX75cvXv3VnR0tF5//XWLkgEAcGM9e/ZUSEiIxo4da7+Pp3LlypozZ47atGljcTr3M378ePXo0eOaC+4GBgbqhRde0Lhx4/Too49akA64e3GPlIvy8PBQSkqKgoODc+z75JNP1KdPH2VmZnKPFAAA+VxERIR+/PFHVa5c+Zr7d+/eraZNm+rQoUN3OBlwd+PSPhc1bNgwFSpU6Jr7nn/+ecXHx6tz5853OBUAADdXtmxZnTx5Msf2M2fOqGzZshYkcm/Hjh2Tt7f3dfd7eXnpzz//vIOJAEhc2ueyhg0bdsP99evXV/369e9QGgAAcu/gwYPXvGIiIyNDf/zxhwWJ3FupUqW0ffv2HJN3XLFt2zYmogIsQJECAABOsWDBAvufFy9erMDAQPvzrKwsxcfHq0yZMhYkc28tWrTQ66+/rtjYWBUoUMBh34ULFzRs2DA99thjFqUD7l7cIwUAAJzCw+OvOwZsNpuu/vHC29tbZcqU0dixY/mh36Rjx46pVq1a8vT01Msvv6xKlSrJZrNp165d+vDDD5WVlaXNmzerZMmSVkcF7ioUKQAA4FSRkZHasGGDgoKCrI6Sb/z+++/q2bOnFi9ebC+pNptNzZo106RJkxjpAyxAkQIAAE7x888/69SpU4qNjbVvmz59uoYNG6b09HS1bdtWH3zwgXx9fS1M6d5Onz6tffv2yTAMVahQQUWLFrU6EnDXoki5uJtNZVq6dOk7lAQAgBtr3ry5YmJiNGjQIEnS9u3bVatWLXXp0kWVK1fWmDFj9MILL2j48OHWBgUAJ6BIuTgPD48ci/P+HetIAQBcRWhoqBYuXKjatWtLkl577TUlJCQoMTFRkvTVV19p2LBh2rlzp5UxAcApmLXPxf3yyy8OzzMzM/XLL79o3Lhxevvtty1KBQBATqdPn3aY8CAhIUHNmze3P3/wwQd1+PBhK6IBgNNRpFxcjRo1cmyrXbu2wsLCNGbMGLVv396CVAAA5FSyZEklJSUpPDxcly5d0ubNmzVixAj7/rNnz95wYVkAcCceVgfAralYsaI2bNhgdQwAAOyaN2+uwYMHa/Xq1RoyZIj8/f316KOP2vdv27ZN5cqVszAhADgPI1IuLi0tzeG5YRhKTk7W8OHDVaFCBYtSAQCQ01tvvaX27dsrKipKhQoV0rRp0+Tj42Pf//nnn6tp06YWJgQA52GyCRd3rckmDMNQeHi4Zs+erYcfftiiZAAAXFtqaqoKFSokT09Ph+2nTp1SoUKFHMoVALgripSLS0hIcHju4eGhEiVKqHz58vLyYkARAAAAsAJFCgAAAABMYkjDBS1YsECxsbHy9vbWggULbnhs69at71AqAAAAAFcwIuWCPDw8lJKSouDgYHl4XH9iRZvNxoK8AAAAgAUoUgAAAABgEutIuanDhw+ra9euVscAAAAA7kqMSLmprVu3qlatWlzaBwAAAFiAESkAAAAAMIkiBQAAAAAmUaQAAAAAwCTWkXJR7du3v+H+M2fO3JkgAAAAAHKgSLmowMDAm+7v1KnTHUoDAAAA4O+YtQ8AAAAATOIeKQAAAAAwiSIFAAAAACZRpAAAAADAJIoUAAAAAJhEkQIAAAAAkyhSAIC7ms1m07fffmt1DACAm6FIAQDytZSUFPXu3Vtly5aVr6+vwsPD1apVK8XHx0uSkpOTFRsbK0k6ePCgbDabtmzZYmFiAIA7YEFeAEC+dfDgQdWvX19FihTRu+++q+rVqyszM1OLFy9Wr169tHv3boWEhFgdEwDghliQFwCQb7Vo0ULbtm3Tnj17VLBgQYd9Z86cUZEiRWSz2TR//ny1bdtWNpvN4ZioqCi98cYbatSokQ4fPuxQuuLi4rRhwwatWrXqjrwXAIBr4dI+AEC+dOrUKf3444/q1atXjhIlSUWKFMmxbf369ZKkZcuWKTk5WfPmzVODBg1UtmxZzZgxw37c5cuXNXPmTD333HN5lh8A4NooUgCAfGnfvn0yDEP33ntvrl9TokQJSVLx4sUVEhKiYsWKSZK6deumKVOm2I9btGiRzp8/rw4dOjg3NADAbVCkAAD50pUr16++XO9WdOnSRfv27dO6deskSZ9//rk6dOhwzZEuAMDdgSIFAMiXKlSoIJvNpl27dt32uYKDg9WqVStNmTJFx48f1w8//KCuXbs6ISUAwF1RpAAA+VKxYsXUrFkzffjhh0pPT8+x/8yZMzm2+fj4SJKysrJy7Ovevbtmz56tjz/+WOXKlVP9+vWdnhkA4D4oUgCAfGvSpEnKysrSQw89pG+++UZ79+7Vrl279P777+vhhx/OcXxwcLD8/Pz0448/6tixY0pNTbXva9asmQIDA/XWW28xyQQAgCIFAMi/IiMjtXnzZsXExCguLk5Vq1ZVkyZNFB8fr8mTJ+c43svLS++//74+/vhjhYWFqU2bNvZ9Hh4e6tKli7KystSpU6c7+TYAAC6IdaQAAMilHj166NixY1qwYIHVUQAAFvOyOgAAAK4uNTVVGzZs0KxZs/Tdd99ZHQcA4AIoUgAA3ESbNm20fv16vfDCC2rSpInVcQAALoBL+wAAAADAJCabAAAAAACTKFIAAAAAYBJFCgAAAABMokgBAAAAgEkUKQAAAAAwiSIFAAAAACZRpAAAAADAJIoUAAAAAJj0/wDlpNgXWnIxfAAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 1000x600 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "import matplotlib.pyplot as plt\n",
    "\n",
    "# Create a new DataFrame that records the start and end time of each unique session\n",
    "session_df = combined_control_df.groupby('Session').agg({'timestamp': ['min', 'max'], 'Robot_ID': 'first'})\n",
    "\n",
    "# Flatten the MultiIndex in columns\n",
    "session_df.columns = ['_'.join(col).strip() for col in session_df.columns.values]\n",
    "\n",
    "# Reset the index\n",
    "session_df.reset_index(inplace=True)\n",
    "\n",
    "# Convert the 'timestamp_min' and 'timestamp_max' columns to datetime format\n",
    "session_df['timestamp_min'] = pd.to_datetime(session_df['timestamp_min'], unit='s')\n",
    "session_df['timestamp_max'] = pd.to_datetime(session_df['timestamp_max'], unit='s')\n",
    "\n",
    "# Calculate the duration for each of these unique sessions\n",
    "session_df['session_hours'] = (session_df['timestamp_max'] - session_df['timestamp_min']).dt.total_seconds() / 3600  # convert seconds to hours\n",
    "\n",
    "# Merge session data with location data\n",
    "merged_df = pd.merge(session_df, location_df, left_on='Robot_ID_first', right_on='bot_id', how='left')\n",
    "\n",
    "# Group by city and sum the session_hours\n",
    "total_duration_per_city = merged_df.groupby('city')['session_hours'].sum()\n",
    "\n",
    "# Sort the cities by total duration\n",
    "total_duration_per_city_sorted = total_duration_per_city.sort_values(ascending=False)\n",
    "\n",
    "# Create a bar plot of total duration per city\n",
    "total_duration_per_city_sorted.plot(kind='bar', figsize=(10, 6))\n",
    "plt.xlabel('City')\n",
    "plt.ylabel('Total Duration (hours)')\n",
    "plt.title('Total Duration for each City')\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3281202e",
   "metadata": {},
   "source": [
    "#### Session Duration"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "377283ae",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Total number of sessions: 1864\n",
      "Total duration in hours: 344.5340849968355\n"
     ]
    }
   ],
   "source": [
    "# calculate session duration\n",
    "combined_control_df['timestamp'] = pd.to_datetime(combined_control_df['timestamp'], unit='s')  # convert unix timestamp to datetime\n",
    "grouped = combined_control_df.groupby('Session')\n",
    "session_duration = grouped['timestamp'].max() - grouped['timestamp'].min()\n",
    "\n",
    "# convert duration to seconds for easier analysis and comparison\n",
    "session_duration_in_seconds = session_duration.dt.total_seconds()\n",
    "# convert duration to minutes for easier analysis and comparison\n",
    "session_duration_in_minutes = session_duration.dt.total_seconds() / 60\n",
    "\n",
    "# convert Series to DataFrame and rename the column\n",
    "session_duration_df = session_duration_in_minutes.to_frame().reset_index()\n",
    "session_duration_df.columns = ['Session', 'Session Minutes']\n",
    "\n",
    "# Calculate the total number of sessions\n",
    "total_sessions = len(session_duration_df)\n",
    "\n",
    "# Calculate the total number of hours\n",
    "total_hours = session_duration_df['Session Minutes'].sum() / 60\n",
    "\n",
    "print(f'Total number of sessions: {total_sessions}')\n",
    "print(f'Total duration in hours: {total_hours}')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "4c5b7962",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABNYAAAIhCAYAAACCMjckAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABwTUlEQVR4nO3de5zM9f////vs7tgD67C77IHFxjqfQgm9I4dFFqWiN4pSlHi3yCnvsrwLqVCKVEJ8Nr17R8e3Y85vbzkX2uQdOe4mrPPaXbuv3x9+O19jTzMvu/Y13K6Xi8vbvOY5r7k/ZtZ7uPd6zctmGIYhAAAAAAAAAG7xKu4AAAAAAAAAgCeiWAMAAAAAAABMoFgDAAAAAAAATKBYAwAAAAAAAEygWAMAAAAAAABMoFgDAAAAAAAATKBYAwAAAAAAAEygWAMAAAAAAABMoFgDAAAAAAAATKBYAwAAmjdvnmw2m7Zt25br/bGxsapatarTtqpVq6pfv35uPc+mTZsUHx+vM2fOmAt6G/rss89Ut25d+fv7y2azadeuXXmuTUxM1OOPP6477rhDfn5+CgkJUePGjTV48GCdO3fu5oW+jpmflcKwdu1a2Ww2x68SJUqofPnyatmypcaOHatDhw7d9EzXmzlzpubNm5dj+++//y6bzZbrfQAAwDp8ijsAAADwTEuWLFHp0qXdesymTZs0fvx49evXT2XLli2aYLeQP//8U48//rg6duyomTNnytfXVzVq1Mh17c6dO9WyZUvVrl1br7zyiqpWraqTJ0/qxx9/1KJFi/Tiiy+6/X4VFjM/K4Vp4sSJuv/++5WZmalTp07phx9+0Mcff6xp06bpww8/VO/evYst28yZMxUSEpKjeAwPD9d///tfVatWrXiCAQAAl1CsAQAAU+68887ijuC2jIwM2Ww2+fh4xl+Bfv31V2VkZKhPnz5q1apVvmunT58uLy8vrV27VoGBgY7tjzzyiP7xj3/IMIyijpun4v5ZiY6O1j333OO43bVrVw0fPlzt2rVTv3791KBBA9WvX/+Gn8cwDF2+fFn+/v43vC9fX1+nzAAAwJo4FRQAAJhy/el9WVlZevXVV1WzZk35+/urbNmyatCggd5++21JUnx8vEaMGCFJioqKcpyet3btWsfjp0yZolq1asnX11cVKlTQE088oaNHjzo9r2EYmjhxoqpUqSI/Pz81bdpUK1euVOvWrdW6dWvHuuzTABcsWKDhw4erYsWK8vX11f/+9z/9+eefGjRokOrUqaNSpUqpQoUKatOmjTZs2OD0XNmn473xxht6/fXXVbVqVfn7+6t169aO0mv06NGKiIhQmTJl9NBDD+nEiRMuvX5ff/21mjdvroCAAAUGBqp9+/b673//67i/X79+uvfeeyVJPXv2lM1mc5rveqdOnVLp0qVVqlSpXO+32WxOt1etWqW2bduqdOnSCggIUMuWLfX99987rfnzzz81YMAARUZGytfX13Ea5apVqxxrdu7cqdjYWFWoUEG+vr6KiIhQ586dnd633E4FPXz4sPr06eN4XO3atfXWW28pKyvLsSb79X/zzTc1depURUVFqVSpUmrevLk2b96c52vhiqCgIM2ePVtXrlzRtGnTHNv79euX47Rn6erP7/Wvoc1m0+DBg/X++++rdu3a8vX11fz58yVJ48ePV7NmzRQUFKTSpUurcePGmjNnjlPBWbVqVe3du1fr1q1z/HnIfu68TgXduHGj2rZtq8DAQAUEBKhFixb67rvvnNZkn9q9Zs0aPffccwoJCVFwcLC6d++u48ePO61dvXq1WrdureDgYPn7+6ty5cp6+OGHdenSJXdfUgAAbkue8Z9rAQDATZGZmakrV67k2O7K0U5TpkxRfHy8/v73v+u+++5TRkaGfvnlF8f3qT399NM6ffq0ZsyYocWLFys8PFySVKdOHUnSc889pw8++ECDBw9WbGysfv/9d7388stau3atduzYoZCQEEnS2LFjNWnSJA0YMEDdu3fXkSNH9PTTTysjIyPX0yTHjBmj5s2b6/3335eXl5cqVKigP//8U5I0btw4hYWF6cKFC1qyZIlat26t77//PkeB9d5776lBgwZ67733dObMGQ0fPlxdunRRs2bNZLfb9fHHH+vQoUN68cUX9fTTT+vrr7/O97VKSEhQ7969FRMTo08//VRpaWmaMmWK4/nvvfdevfzyy7r77rv1/PPPO05lzO90yubNm+u7775T7969NXDgQN199915Hjm1cOFCPfHEE+rWrZvmz58vu92u2bNnq0OHDlq+fLnatm0rSXr88ce1Y8cOvfbaa6pRo4bOnDmjHTt26NSpU5Kkixcvqn379oqKitJ7772n0NBQJScna82aNTp//nyeWf/880+1aNFC6enp+sc//qGqVavq22+/1YsvvqjffvtNM2fOzPH616pVS9OnT5ckvfzyy3rggQd08OBBlSlTJt/XOj933XWXwsPDtX79etP7+PLLL7Vhwwa98sorCgsLU4UKFSRdLcYGDhyoypUrS5I2b96sIUOG6NixY3rllVckXT1F9pFHHlGZMmUcM/v6+ub5XOvWrVP79u3VoEEDzZkzR76+vpo5c6a6dOmiTz/9VD179nRa//TTT6tz585KSEjQkSNHNGLECPXp00erV692ZOzcubP+8pe/6OOPP1bZsmV17NgxLVu2TOnp6QoICDD9ugAAcNswAADAbW/u3LmGpHx/ValSxekxVapUMfr27eu4HRsbazRq1Cjf53njjTcMScbBgwedticmJhqSjEGDBjlt/+GHHwxJxksvvWQYhmGcPn3a8PX1NXr27Om07r///a8hyWjVqpVj25o1awxJxn333Vfg/FeuXDEyMjKMtm3bGg899JBj+8GDBw1JRsOGDY3MzEzH9unTpxuSjK5duzrtJy4uzpBknD17Ns/nyszMNCIiIoz69es77fP8+fNGhQoVjBYtWuSY4fPPPy9whsuXLxsPPvig4/3y9vY27rzzTmPs2LHGiRMnHOsuXrxoBAUFGV26dMmRq2HDhsbdd9/t2FaqVCkjLi4uz+fctm2bIcn48ssv8812/c/K6NGjDUnGDz/84LTuueeeM2w2m7Fv3z7DMP7f61+/fn3jypUrjnVbtmwxJBmffvppvs/ryuvXrFkzw9/f33G7b9++OX7WDcMwxo0bZ1z/V2dJRpkyZYzTp0/nmyMzM9PIyMgwJkyYYAQHBxtZWVmO++rWrev0c5ste/a5c+c6tt1zzz1GhQoVjPPnzzu2XblyxahXr55RqVIlx36z/zxf/+dpypQphiQjKSnJMAzD+Ne//mVIMnbt2pVvfgAAkDdOBQUAAA6ffPKJtm7dmuNX9imJ+bn77rv1448/atCgQVq+fLlbV6Fcs2aNJOU4XfDuu+9W7dq1Hacobt68WWlpaerRo4fTunvuuSfX0/ck6eGHH851+/vvv6/GjRvLz89PPj4+stvt+v7775WYmJhj7QMPPCAvr//316batWtLkjp37uy0Lnv74cOH85hU2rdvn44fP67HH3/caZ+lSpXSww8/rM2bN5s6Dc/X11dLlizRzz//rGnTpumxxx7Tn3/+qddee021a9fWvn37JF29gMTp06fVt29fXblyxfErKytLHTt21NatW3Xx4kVJV1//efPm6dVXX9XmzZuVkZHh9JzVq1dXuXLlNGrUKL3//vv6+eefXcq6evVq1alTR3fffbfT9n79+skwDMcRVdk6d+4sb29vx+0GDRpIUqFc1dO4we+ea9OmjcqVK5dj++rVq9WuXTuVKVNG3t7estvteuWVV3Tq1CmXTxe+1sWLF/XDDz/okUcecTrd19vbW48//riOHj3qeI+zde3a1en29a9bo0aNVKJECQ0YMEDz58/XgQMH3M4FAMDtjmINAAA41K5dW02bNs3xy5XT7caMGaM333xTmzdvVqdOnRQcHKy2bdtq27ZtBT42+9TC7NNDrxUREeG4P/t/Q0NDc6zLbVte+5w6daqee+45NWvWTF988YU2b96srVu3qmPHjkpNTc2xPigoyOl2iRIl8t1++fLlXLNcO0Nes2ZlZSklJSXPxxekdu3aiouL08KFC3X48GFNnTpVp06d0ssvvyxJ+uOPPyRdvaiB3W53+vX666/LMAydPn1akvTZZ5+pb9+++uijj9S8eXMFBQXpiSeeUHJysiSpTJkyWrdunRo1aqSXXnpJdevWVUREhMaNG5ejhLv+Nchr/mtfo2zBwcFOt7NPl8ztvXLX4cOHHc9rRm5zbNmyRTExMZKkDz/8UP/5z3+0detWjR07VpK53CkpKTIMo1Bft2rVqmnVqlWqUKGCnn/+eVWrVk3VqlVzfC8iAAAoGN+xBgAACoWPj4+GDRumYcOG6cyZM1q1apVeeukldejQQUeOHMn3+5qyC4CkpCRVqlTJ6b7jx487vl8te112OXSt5OTkXI9au/4L56Wr3zHWunVrzZo1y2l7ft8LVliunfV6x48fl5eXV65HQJlhs9k0dOhQTZgwQXv27JEkx2s5Y8aMPK86mV1ShoSEaPr06Zo+fboOHz6sr7/+WqNHj9aJEye0bNkySVL9+vW1aNEiGYahn376SfPmzdOECRPk7++v0aNH57r/4ODgPOe/NmNR27Jli5KTk9W/f3/HNj8/P6WlpeVYe/LkyVz3kdvP16JFi2S32/Xtt9/Kz8/Psf3LL780nbVcuXLy8vIq9NftL3/5i/7yl78oMzNT27Zt04wZMxQXF6fQ0FA99thjpvMCAHC74Ig1AABQ6MqWLatHHnlEzz//vE6fPq3ff/9dUt5HGrVp00bS1cLrWlu3blViYqLjy/SbNWsmX19fffbZZ07rNm/e7NZpgTabLceXxP/0009OV+UsKjVr1lTFihWVkJDgdBrixYsX9cUXXziuFOqu3AoX6Wrpcu7cOcdRTS1btlTZsmX1888/53p0YtOmTR1H3l2rcuXKGjx4sNq3b68dO3bkuN9ms6lhw4aaNm2aypYtm+uabG3bttXPP/+cY80nn3wim82m+++/353RTTl9+rSeffZZ2e12DR061LG9atWqOnHihFN5m56eruXLl7u8b5vNJh8fH6fTV1NTU7VgwYIca319fV06gq1kyZJq1qyZFi9e7LQ+KytLCxcuVKVKlXK9eIervL291axZM7333nuSlO/7BwAA/h+OWAMAAIWiS5cuqlevnpo2bary5cvr0KFDmj59uqpUqaLo6GhJV49ukqS3335bffv2ld1uV82aNVWzZk0NGDBAM2bMkJeXlzp16uS4KmhkZKSj+AgKCtKwYcM0adIklStXTg899JCOHj2q8ePHKzw83Ok7y/ITGxurf/zjHxo3bpxatWqlffv2acKECYqKisr1qqiFycvLS1OmTFHv3r0VGxurgQMHKi0tTW+88YbOnDmjyZMnm9rvgAEDdObMGT388MOqV6+evL299csvv2jatGny8vLSqFGjJF39LrcZM2aob9++On36tB555BHHlVJ//PFH/fnnn5o1a5bOnj2r+++/X7169VKtWrUUGBiorVu3atmyZerevbsk6dtvv9XMmTP14IMP6o477pBhGFq8eLHOnDmj9u3b55l16NCh+uSTT9S5c2dNmDBBVapU0XfffaeZM2fqueeeu6GCKDf79+/X5s2blZWVpVOnTumHH37QnDlzdO7cOX3yySeqW7euY23Pnj31yiuv6LHHHtOIESN0+fJlvfPOO8rMzHT5+Tp37qypU6eqV69eGjBggE6dOqU333wz1yt+Zh/x99lnn+mOO+6Qn5+f48/J9SZNmqT27dvr/vvv14svvqgSJUpo5syZ2rNnjz799NNcj57Lz/vvv6/Vq1erc+fOqly5si5fvqyPP/5YktSuXTu39gUAwO2KYg0AABSK+++/X1988YU++ugjnTt3TmFhYWrfvr1efvll2e12SVLr1q01ZswYzZ8/Xx9++KGysrK0Zs0ax2mZ1apV05w5c/Tee++pTJky6tixoyZNmuT0XVGvvfaaSpYsqffff19z585VrVq1NGvWLI0dO1Zly5Z1KevYsWN16dIlzZkzR1OmTFGdOnX0/vvva8mSJVq7dm0RvDrOevXqpZIlS2rSpEnq2bOnvL29dc8992jNmjVq0aKFqX0OGTJEn332mT788EMdO3ZMFy9eVPny5dW8eXN98sknTqd99unTR5UrV9aUKVM0cOBAnT9/XhUqVFCjRo0cF5Dw8/NTs2bNtGDBAv3+++/KyMhQ5cqVNWrUKI0cOVKSFB0drbJly2rKlCk6fvy4SpQooZo1a2revHnq27dvnlnLly+vTZs2acyYMRozZozOnTunO+64Q1OmTNGwYcNMzZ+fl156SdLV05XLlCmjGjVq6KmnntKAAQNUpUoVp7VRUVH66quv9NJLL+mRRx5ReHi4hg0bpj///FPjx4936fnatGmjjz/+WK+//rq6dOmiihUr6plnnlGFChWcTjuVpPHjxyspKUnPPPOMzp8/rypVqjiO8Lxeq1attHr1ao0bN079+vVTVlaWGjZsqK+//lqxsbFuvy6NGjXSihUrNG7cOCUnJ6tUqVKqV6+evv76a8d3xAEAgPzZjBu9FBIAAEAxO3jwoGrVqqVx48Y5ShQAAACgqFGsAQAAj/Ljjz/q008/VYsWLVS6dGnt27dPU6ZM0blz57Rnz548rw4KAAAAFDZOBQUAAB6lZMmS2rZtm+bMmaMzZ86oTJkyat26tV577TVKNQAAANxUHLEGAAAAAAAAmODapbMAAAAAAAAAOKFYAwAAAAAAAEygWAMAAAAAAABM4OIFkrKysnT8+HEFBgbKZrMVdxwAAAAAAAAUE8MwdP78eUVERMjLK/9j0ijWJB0/flyRkZHFHQMAAAAAAAAWceTIEVWqVCnfNRRrkgIDAyVdfcFKly5dzGkKR0ZGhlasWKGYmBjZ7fbijuM2T88vMYMVeHp+iRmswtNn8PT8EjNYgafnl5jBCjw9v8QMVuDp+SVmsAJPzy8xQ1E6d+6cIiMjHX1RfijWJMfpn6VLl76lirWAgACVLl3aUj+crvL0/BIzWIGn55eYwSo8fQZPzy8xgxV4en6JGazA0/NLzGAFnp5fYgYr8PT8EjPcDK58XRgXLwAAAAAAAABMoFgDAAAAAAAATKBYAwAAAAAAAEygWAMAAAAAAABMoFgDAAAAAAAATKBYAwAAAAAAAEygWAMAAAAAAABMoFgDAAAAAAAATKBYAwAAAAAAAEygWAMAAAAAAABMoFgDAAAAAAAATKBYAwAAAAAAAEygWAMAAAAAAABMoFgDAAAAAAAATKBYAwAAAAAAAEygWAMAAAAAAABMoFgDAAAAAAAATKBYAwAAAAAAAEzwKe4AKFo//vijvLzy709DQkJUuXLlm5QIAAAAAADg1kCxdos6evSoJOm+++5Tampqvmv9/AO075dEyjUAAAAAAAA3UKzdok6dOiVJCuo4RJmlI/Jcl3HqiE59+5ZOnjxJsQYAAAAAAOAGirVbnD2oonxCqhV3DAAAAAAAgFsOFy8AAAAAAAAATKBYAwAAAAAAAEygWAMAAAAAAABMoFgDAAAAAAAATKBYAwAAAAAAAEygWAMAAAAAAABMoFgDAAAAAAAATKBYAwAAAAAAAEygWAMAAAAAAABMoFgDAAAAAAAATCj2Yu3YsWPq06ePgoODFRAQoEaNGmn79u2O+w3DUHx8vCIiIuTv76/WrVtr7969TvtIS0vTkCFDFBISopIlS6pr1646evTozR4FAAAAAAAAt5FiLdZSUlLUsmVL2e12LV26VD///LPeeustlS1b1rFmypQpmjp1qt59911t3bpVYWFhat++vc6fP+9YExcXpyVLlmjRokXauHGjLly4oNjYWGVmZhbDVAAAAAAAALgd+BTnk7/++uuKjIzU3LlzHduqVq3q+L1hGJo+fbrGjh2r7t27S5Lmz5+v0NBQJSQkaODAgTp79qzmzJmjBQsWqF27dpKkhQsXKjIyUqtWrVKHDh1u6kwAAAAAAAC4PRRrsfb111+rQ4cOevTRR7Vu3TpVrFhRgwYN0jPPPCNJOnjwoJKTkxUTE+N4jK+vr1q1aqVNmzZp4MCB2r59uzIyMpzWREREqF69etq0aVOuxVpaWprS0tIct8+dOydJysjIUEZGRlGNe1NlZWVJknx9bDK8jTzX2Xxs8vf3V1ZWlqVmz85ipUzuYobi5+n5JWawCk+fwdPzS8xgBZ6eX2IGK/D0/BIzWIGn55eYwQo8Pb/EDEXJnTw2wzDybl2KmJ+fnyRp2LBhevTRR7VlyxbFxcVp9uzZeuKJJ7Rp0ya1bNlSx44dU0REhONxAwYM0KFDh7R8+XIlJCToySefdCrKJCkmJkZRUVGaPXt2jueNj4/X+PHjc2xPSEhQQEBAIU8JAAAAAAAAT3Hp0iX16tVLZ8+eVenSpfNdW6xHrGVlZalp06aaOHGiJOnOO+/U3r17NWvWLD3xxBOOdTabzelxhmHk2Ha9/NaMGTNGw4YNc9w+d+6cIiMjFRMTU+AL5il27typpKQkjVp6WEZwVJ7r0v84oD8SRmv9+vVq2LDhTUyYv4yMDK1cuVLt27eX3W4v7jimMEPx8/T8EjNYhafP4On5JWawAk/PLzGDFXh6fokZrMDT80vMYAWenl9ihqKUfWajK4q1WAsPD1edOnWcttWuXVtffPGFJCksLEySlJycrPDwcMeaEydOKDQ01LEmPT1dKSkpKleunNOaFi1a5Pq8vr6+8vX1zbHdbrdb6o28EV5eV69LkXbFkJGZdwmZdsVQamqqvLy8LDn7rfCeMEPx8/T8EjNYhafP4On5JWawAk/PLzGDFXh6fokZrMDT80vMYAWenl9ihqLgTpZivSpoy5YttW/fPqdtv/76q6pUqSJJioqKUlhYmFauXOm4Pz09XevWrXOUZk2aNJHdbndak5SUpD179uRZrAEAAAAAAAA3qliPWBs6dKhatGihiRMnqkePHtqyZYs++OADffDBB5KungIaFxeniRMnKjo6WtHR0Zo4caICAgLUq1cvSVKZMmXUv39/DR8+XMHBwQoKCtKLL76o+vXrO64SCgAAAAAAABS2Yi3W7rrrLi1ZskRjxozRhAkTFBUVpenTp6t3796ONSNHjlRqaqoGDRqklJQUNWvWTCtWrFBgYKBjzbRp0+Tj46MePXooNTVVbdu21bx58+Tt7V0cYwEAAAAAAOA2UKzFmiTFxsYqNjY2z/ttNpvi4+MVHx+f5xo/Pz/NmDFDM2bMKIKEAAAAAAAAQE7F+h1rAAAAAAAAgKeiWAMAAAAAAABMoFgDAAAAAAAATKBYAwAAAAAAAEygWAMAAAAAAABMoFgDAAAAAAAATKBYAwAAAAAAAEygWAMAAAAAAABMoFgDAAAAAAAATKBYAwAAAAAAAEygWAMAAAAAAABMoFgDAAAAAAAATKBYAwAAAAAAAEygWAMAAAAAAABMoFgDAAAAAAAATKBYAwAAAAAAAEygWAMAAAAAAABMoFgDAAAAAAAATKBYAwAAAAAAAEygWAMAAAAAAABMoFgDAAAAAAAATKBYAwAAAAAAAEygWAMAAAAAAABMoFgDAAAAAAAATKBYAwAAAAAAAEygWAMAAAAAAABMoFgDAAAAAAAATKBYAwAAAAAAAEygWAMAAAAAAABMoFgDAAAAAAAATKBYAwAAAAAAAEygWAMAAAAAAABMoFgDAAAAAAAATKBYAwAAAAAAAEygWAMAAAAAAABMoFgDAAAAAAAATKBYAwAAAAAAAEygWAMAAAAAAABMoFgDAAAAAAAATKBYAwAAAAAAAEygWAMAAAAAAABMoFgDAAAAAAAATKBYAwAAAAAAAEygWAMAAAAAAABMoFgDAAAAAAAATKBYAwAAAAAAAEygWAMAAAAAAABMoFgDAAAAAAAATKBYAwAAAAAAAEygWAMAAAAAAABMoFgDAAAAAAAATKBYAwAAAAAAAEygWAMAAAAAAABMoFgDAAAAAAAATKBYAwAAAAAAAEygWAMAAAAAAABMoFgDAAAAAAAATKBYAwAAAAAAAEygWAMAAAAAAABMKNZiLT4+XjabzelXWFiY437DMBQfH6+IiAj5+/urdevW2rt3r9M+0tLSNGTIEIWEhKhkyZLq2rWrjh49erNHAQAAAAAAwG2m2I9Yq1u3rpKSkhy/du/e7bhvypQpmjp1qt59911t3bpVYWFhat++vc6fP+9YExcXpyVLlmjRokXauHGjLly4oNjYWGVmZhbHOAAAAAAAALhN+BR7AB8fp6PUshmGoenTp2vs2LHq3r27JGn+/PkKDQ1VQkKCBg4cqLNnz2rOnDlasGCB2rVrJ0lauHChIiMjtWrVKnXo0OGmzgIAAAAAAIDbR7EXa/v371dERIR8fX3VrFkzTZw4UXfccYcOHjyo5ORkxcTEONb6+vqqVatW2rRpkwYOHKjt27crIyPDaU1ERITq1aunTZs25VmspaWlKS0tzXH73LlzkqSMjAxlZGQU0aQ3V1ZWliTJ18cmw9vIc53NxyZ/f39lZWVZavbsLFbK5C5mKH6enl9iBqvw9Bk8Pb/EDFbg6fklZrACT88vMYMVeHp+iRmswNPzS8xQlNzJYzMMI+/WpYgtXbpUly5dUo0aNfTHH3/o1Vdf1S+//KK9e/dq3759atmypY4dO6aIiAjHYwYMGKBDhw5p+fLlSkhI0JNPPulUkklSTEyMoqKiNHv27FyfNz4+XuPHj8+xPSEhQQEBAYU7JAAAAAAAADzGpUuX1KtXL509e1alS5fOd22xHrHWqVMnx+/r16+v5s2bq1q1apo/f77uueceSZLNZnN6jGEYObZdr6A1Y8aM0bBhwxy3z507p8jISMXExBT4gnmKnTt3KikpSaOWHpYRHJXnuvQ/DuiPhNFav369GjZseBMT5i8jI0MrV65U+/btZbfbizuOKcxQ/Dw9v8QMVuHpM3h6fokZrMDT80vMYAWenl9iBivw9PwSM1iBp+eXmKEoZZ/Z6IpiPxX0WiVLllT9+vW1f/9+Pfjgg5Kk5ORkhYeHO9acOHFCoaGhkqSwsDClp6crJSVF5cqVc1rTokWLPJ/H19dXvr6+Obbb7XZLvZE3wsvr6nUp0q4YMjLzLhnTrhhKTU2Vl5eXJWe/Fd4TZih+np5fYgar8PQZPD2/xAxW4On5JWawAk/PLzGDFXh6fokZrMDT80vMUBTcyVLsVwW9VlpamhITExUeHq6oqCiFhYVp5cqVjvvT09O1bt06R2nWpEkT2e12pzVJSUnas2dPvsUaAAAAAAAAcKOK9Yi1F198UV26dFHlypV14sQJvfrqqzp37pz69u0rm82muLg4TZw4UdHR0YqOjtbEiRMVEBCgXr16SZLKlCmj/v37a/jw4QoODlZQUJBefPFF1a9f33GVUAAAAAAAAKAoFGuxdvToUf31r3/VyZMnVb58ed1zzz3avHmzqlSpIkkaOXKkUlNTNWjQIKWkpKhZs2ZasWKFAgMDHfuYNm2afHx81KNHD6Wmpqpt27aaN2+evL29i2ssAAAAAAAA3AaKtVhbtGhRvvfbbDbFx8crPj4+zzV+fn6aMWOGZsyYUcjpAAAAAAAAgLxZ6jvWAAAAAAAAAE9BsQYAAAAAAACYQLEGAAAAAAAAmECxBgAAAAAAAJhAsQYAAAAAAACYQLEGAAAAAAAAmECxBgAAAAAAAJhAsQYAAAAAAACYQLEGAAAAAAAAmECxBgAAAAAAAJhAsQYAAAAAAACYQLEGAAAAAAAAmECxBgAAAAAAAJhAsQYAAAAAAACYQLEGAAAAAAAAmECxBgAAAAAAAJhAsQYAAAAAAACYQLEGAAAAAAAAmECxBgAAAAAAAJhAsQYAAAAAAACYQLEGAAAAAAAAmECxBgAAAAAAAJhAsQYAAAAAAACYQLEGAAAAAAAAmECxBgAAAAAAAJhAsQYAAAAAAACYQLEGAAAAAAAAmECxBgAAAAAAAJhAsQYAAAAAAACYQLEGAAAAAAAAmECxBgAAAAAAAJhAsQYAAAAAAACYQLEGAAAAAAAAmECxBgAAAAAAAJhAsQYAAAAAAACYQLEGAAAAAAAAmECxBgAAAAAAAJhAsQYAAAAAAACYQLEGAAAAAAAAmECxBgAAAAAAAJhAsQYAAAAAAACYQLEGAAAAAAAAmECxBgAAAAAAAJhAsQYAAAAAAACYQLEGAAAAAAAAmECxBgAAAAAAAJhAsQYAAAAAAACYUCjF2pkzZwpjNwAAAAAAAIDHcLtYe/311/XZZ585bvfo0UPBwcGqWLGifvzxx0INBwAAAAAAAFiV28Xa7NmzFRkZKUlauXKlVq5cqaVLl6pTp04aMWJEoQcEAAAAAAAArMjH3QckJSU5irVvv/1WPXr0UExMjKpWrapmzZoVekAAAAAAAADAitw+Yq1cuXI6cuSIJGnZsmVq166dJMkwDGVmZhZuOgAAAAAAAMCi3D5irXv37urVq5eio6N16tQpderUSZK0a9cuVa9evdADAgAAAAAAAFbkdrE2bdo0Va1aVUeOHNGUKVNUqlQpSVdPER00aFChBwQAAAAAAACsyO1izW6368UXX8yxPS4urjDyAAAAAAAAAB7B7WJNkn799VetXbtWJ06cUFZWltN9r7zySqEEAwAAAAAAAKzM7WLtww8/1HPPPaeQkBCFhYXJZrM57rPZbBRrAAAAAAAAuC24Xay9+uqreu211zRq1KiiyAMAAAAAAAB4BC93H5CSkqJHH320KLIAAAAAAAAAHsPtYu3RRx/VihUriiILAAAAAAAA4DHcLtaqV6+ul19+Wf369dNbb72ld955x+mXWZMmTZLNZnO6uqhhGIqPj1dERIT8/f3VunVr7d271+lxaWlpGjJkiEJCQlSyZEl17dpVR48eNZ0DAAAAAAAAcIXb37H2wQcfqFSpUlq3bp3WrVvndJ/NZtPf/vY3t0Ns3bpVH3zwgRo0aOC0fcqUKZo6darmzZunGjVq6NVXX1X79u21b98+BQYGSpLi4uL0zTffaNGiRQoODtbw4cMVGxur7du3y9vb2+0sAAAAAAAAgCvcLtYOHjxYqAEuXLig3r1768MPP9Srr77q2G4YhqZPn66xY8eqe/fukqT58+crNDRUCQkJGjhwoM6ePas5c+ZowYIFateunSRp4cKFioyM1KpVq9ShQ4dCzQoAAAAAAABkc7tYu5ZhGJKuHqlm1vPPP6/OnTurXbt2TsXawYMHlZycrJiYGMc2X19ftWrVSps2bdLAgQO1fft2ZWRkOK2JiIhQvXr1tGnTpjyLtbS0NKWlpTlunzt3TpKUkZGhjIwM07NYSVZWliTJ18cmw9vIc53NxyZ/f39lZWVZavbsLFbK5C5mKH6enl9iBqvw9Bk8Pb/EDFbg6fklZrACT88vMYMVeHp+iRmswNPzS8xQlNzJYzOy2zE3fPLJJ3rjjTe0f/9+SVKNGjU0YsQIPf74427tZ9GiRXrttde0detW+fn5qXXr1mrUqJGmT5+uTZs2qWXLljp27JgiIiIcjxkwYIAOHTqk5cuXKyEhQU8++aRTSSZJMTExioqK0uzZs3N93vj4eI0fPz7H9oSEBAUEBLg1AwAAAAAAAG4dly5dUq9evXT27FmVLl0637VuH7E2depUvfzyyxo8eLBatmwpwzD0n//8R88++6xOnjypoUOHurSfI0eO6IUXXtCKFSvk5+eX57rrj4YzDKPAI+QKWjNmzBgNGzbMcfvcuXOKjIxUTExMgS+Yp9i5c6eSkpI0aulhGcFRea5L/+OA/kgYrfXr16thw4Y3MWH+MjIytHLlSrVv3152u72445jCDMXP0/NLzGAVnj6Dp+eXmMEKPD2/xAxW4On5JWawAk/PLzGDFXh6fokZilL2mY2ucLtYmzFjhmbNmqUnnnjCsa1bt26qW7eu4uPjXS7Wtm/frhMnTqhJkyaObZmZmVq/fr3effdd7du3T5KUnJys8PBwx5oTJ04oNDRUkhQWFqb09HSlpKSoXLlyTmtatGiR53P7+vrK19c3x3a73W6pN/JGeHldveBr2hVDRmbeJWPaFUOpqany8vKy5Oy3wnvCDMXP0/NLzGAVnj6Dp+eXmMEKPD2/xAxW4On5JWawAk/PLzGDFXh6fokZioI7Wbzc3XlSUlKupVWLFi2UlJTk8n7atm2r3bt3a9euXY5fTZs2Ve/evbVr1y7dcccdCgsL08qVKx2PSU9P17p16xzP36RJE9ntdqc1SUlJ2rNnT77FGgAAAAAAAHCj3D5irXr16vrnP/+pl156yWn7Z599pujoaJf3ExgYqHr16jltK1mypIKDgx3b4+LiNHHiREVHRys6OloTJ05UQECAevXqJUkqU6aM+vfvr+HDhys4OFhBQUF68cUXVb9+fcdVQgEAAAAAAICi4HaxNn78ePXs2VPr169Xy5YtZbPZtHHjRn3//ff65z//WajhRo4cqdTUVA0aNEgpKSlq1qyZVqxYocDAQMeaadOmycfHRz169FBqaqratm2refPmydvbu1CzAAAAAAAAANdyu1h7+OGH9cMPP2jatGn68ssvZRiG6tSpoy1btujOO++8oTBr1651um2z2RQfH6/4+Pg8H+Pn56cZM2ZoxowZN/TcAAAAAAAAgDvcLtakq99ttnDhwsLOAgAAAAAAAHgMl4q1c+fOqXTp0o7f5yd7HQAAAAAAAHArc6lYK1eunJKSklShQgWVLVtWNpstxxrDMGSz2ZSZmVnoIQEAAAAAAACrcalYW716tYKCgiRJa9asKdJAAAAAAAAAgCdwqVhr1apVrr8HAAAAAAAAblde7j5g2bJl2rhxo+P2e++9p0aNGqlXr15KSUkp1HAAAAAAAACAVbldrI0YMcJxAYPdu3dr2LBheuCBB3TgwAENGzas0AMCAAAAAAAAVuTSqaDXOnjwoOrUqSNJ+uKLL9SlSxdNnDhRO3bs0AMPPFDoAQEAAAAAAAArcvuItRIlSujSpUuSpFWrVikmJkaSFBQU5DiSDQAAAAAAALjVuX3E2r333qthw4apZcuW2rJliz777DNJ0q+//qpKlSoVekAAAAAAAADAitw+Yu3dd9+Vj4+P/vWvf2nWrFmqWLGiJGnp0qXq2LFjoQcEAAAAAAAArMjtI9YqV66sb7/9Nsf2adOmFUogAAAAAAAAwBO4fcTajh07tHv3bsftr776Sg8++KBeeuklpaenF2o4AAAAAAAAwKrcLtYGDhyoX3/9VZJ04MABPfbYYwoICNDnn3+ukSNHFnpAAAAAAAAAwIrcLtZ+/fVXNWrUSJL0+eef67777lNCQoLmzZunL774orDzAQAAAAAAAJbkdrFmGIaysrIkSatWrdIDDzwgSYqMjNTJkycLNx0AAAAAAABgUW4Xa02bNtWrr76qBQsWaN26dercubMk6eDBgwoNDS30gAAAAAAAAIAVuV2sTZ8+XTt27NDgwYM1duxYVa9eXZL0r3/9Sy1atCj0gAAAAAAAAIAV+bj7gAYNGjhdFTTbG2+8IW9v70IJBQAAAAAAAFid20esSdKZM2f00UcfacyYMTp9+rQk6eeff9aJEycKNRwAAAAAAABgVW4fsfbTTz+pbdu2Klu2rH7//Xc988wzCgoK0pIlS3To0CF98sknRZETAAAAAAAAsBS3j1gbNmyYnnzySe3fv19+fn6O7Z06ddL69esLNRwAAAAAAABgVW4Xa1u3btXAgQNzbK9YsaKSk5MLJRQAAAAAAABgdW4Xa35+fjp37lyO7fv27VP58uULJRQAAAAAAABgdW4Xa926ddOECROUkZEhSbLZbDp8+LBGjx6thx9+uNADAgAAAAAAAFbkdrH25ptv6s8//1SFChWUmpqqVq1aqXr16goMDNRrr71WFBkBAAAAAAAAy3H7qqClS5fWxo0btXr1au3YsUNZWVlq3Lix2rVrVxT5AAAAAAAAAEtyu1jL1qZNG7Vp06YwswAAAAAAAAAew+VTQX/44QctXbrUadsnn3yiqKgoVahQQQMGDFBaWlqhBwQAAAAAAACsyOViLT4+Xj/99JPj9u7du9W/f3+1a9dOo0eP1jfffKNJkyYVSUgAAAAAAADAalwu1nbt2qW2bds6bi9atEjNmjXThx9+qGHDhumdd97RP//5zyIJCQAAAAAAAFiNy8VaSkqKQkNDHbfXrVunjh07Om7fddddOnLkSOGmAwAAAAAAACzK5WItNDRUBw8elCSlp6drx44dat68ueP+8+fPy263F35CAAAAAAAAwIJcLtY6duyo0aNHa8OGDRozZowCAgL0l7/8xXH/Tz/9pGrVqhVJSAAAAAAAAMBqfFxd+Oqrr6p79+5q1aqVSpUqpfnz56tEiRKO+z/++GPFxMQUSUgAAAAAAADAalwu1sqXL68NGzbo7NmzKlWqlLy9vZ3u//zzz1WqVKlCDwgAAAAAAABYkcvFWrYyZcrkuj0oKOiGwwAAAAAAAACewuXvWAMAAAAAAADw/1CsAQAAAAAAACZQrAEAAAAAAAAmuFSsNW7cWCkpKZKkCRMm6NKlS0UaCgAAAAAAALA6l4q1xMREXbx4UZI0fvx4XbhwoUhDAQAAAAAAAFbn0lVBGzVqpCeffFL33nuvDMPQm2++qVKlSuW69pVXXinUgAAAAAAAAIAVuVSszZs3T+PGjdO3334rm82mpUuXyscn50NtNhvFGgAAAAAAAG4LLhVrNWvW1KJFiyRJXl5e+v7771WhQoUiDQYAAAAAAABYmUvF2rWysrKKIgcAAAAAAADgUdwu1iTpt99+0/Tp05WYmCibzabatWvrhRdeULVq1Qo7HwAAAAAAAGBJLl0V9FrLly9XnTp1tGXLFjVo0ED16tXTDz/8oLp162rlypVFkREAAAAAAACwHLePWBs9erSGDh2qyZMn59g+atQotW/fvtDCAQAAAAAAAFbl9hFriYmJ6t+/f47tTz31lH7++edCCQUAAAAAAABYndvFWvny5bVr164c23ft2sWVQgEAAAAAAHDbcPtU0GeeeUYDBgzQgQMH1KJFC9lsNm3cuFGvv/66hg8fXhQZAQAAAAAAAMtxu1h7+eWXFRgYqLfeektjxoyRJEVERCg+Pl5/+9vfCj0gAAAAAAAAYEVuF2s2m01Dhw7V0KFDdf78eUlSYGBgoQcDAAAAAAAArMztYu1aFGoAAAAAAAC4Xbl98QIAAAAAAAAAFGsAAAAAAACAKRRrAAAAAAAAgAluFWsZGRm6//779euvvxZVHgAAAAAAAMAjuFWs2e127dmzRzabrVCefNasWWrQoIFKly6t0qVLq3nz5lq6dKnjfsMwFB8fr4iICPn7+6t169bau3ev0z7S0tI0ZMgQhYSEqGTJkuratauOHj1aKPkAAAAAAACAvLh9KugTTzyhOXPmFMqTV6pUSZMnT9a2bdu0bds2tWnTRt26dXOUZ1OmTNHUqVP17rvvauvWrQoLC1P79u11/vx5xz7i4uK0ZMkSLVq0SBs3btSFCxcUGxurzMzMQskIAAAAAAAA5MbH3Qekp6fro48+0sqVK9W0aVOVLFnS6f6pU6e6vK8uXbo43X7ttdc0a9Ysbd68WXXq1NH06dM1duxYde/eXZI0f/58hYaGKiEhQQMHDtTZs2c1Z84cLViwQO3atZMkLVy4UJGRkVq1apU6dOjg7ngAAAAAAACAS9wu1vbs2aPGjRtLUo7vWruRU0QzMzP1+eef6+LFi2revLkOHjyo5ORkxcTEONb4+vqqVatW2rRpkwYOHKjt27crIyPDaU1ERITq1aunTZs25VmspaWlKS0tzXH73Llzkq5+h1xGRobpGawkKytLkuTrY5PhbeS5zuZjk7+/v7Kysiw1e3YWK2VyFzMUP0/PLzGDVXj6DJ6eX2IGK/D0/BIzWIGn55eYwQo8Pb/EDFbg6fklZihK7uSxGYaRd+tyE+zevVvNmzfX5cuXVapUKSUkJOiBBx7Qpk2b1LJlSx07dkwRERGO9QMGDNChQ4e0fPlyJSQk6Mknn3QqySQpJiZGUVFRmj17dq7PGR8fr/Hjx+fYnpCQoICAgMIdEAAAAAAAAB7j0qVL6tWrl86ePavSpUvnu9btI9ay/e9//9Nvv/2m++67T/7+/jIMw9QRazVr1tSuXbt05swZffHFF+rbt6/WrVvnuP/6fbryPAWtGTNmjIYNG+a4fe7cOUVGRiomJqbAF8xT7Ny5U0lJSRq19LCM4Kg816X/cUB/JIzW+vXr1bBhw5uYMH8ZGRlauXKl2rdvL7vdXtxxTGGG4ufp+SVmsApPn8HT80vMYAWenl9iBivw9PwSM1iBp+eXmMEKPD2/xAxFKfvMRle4XaydOnVKPXr00Jo1a2Sz2bR//37dcccdevrpp1W2bFm99dZbbu2vRIkSql69uiSpadOm2rp1q95++22NGjVKkpScnKzw8HDH+hMnTig0NFSSFBYWpvT0dKWkpKhcuXJOa1q0aJHnc/r6+srX1zfHdrvdbqk38kZ4eV29LkXaFUNGZt4lY9oVQ6mpqfLy8rLk7LfCe8IMxc/T80vMYBWePoOn55eYwQo8Pb/EDFbg6fklZrACT88vMYMVeHp+iRmKgjtZ3L4q6NChQ2W323X48GGn0yZ79uypZcuWubu7HAzDUFpamqKiohQWFqaVK1c67ktPT9e6descpVmTJk1kt9ud1iQlJWnPnj35FmsAAAAAAADAjXL7iLUVK1Zo+fLlqlSpktP26OhoHTp0yK19vfTSS+rUqZMiIyN1/vx5LVq0SGvXrtWyZctks9kUFxeniRMnKjo6WtHR0Zo4caICAgLUq1cvSVKZMmXUv39/DR8+XMHBwQoKCtKLL76o+vXrO64SCgAAAAAAABQFt4u1ixcv5voF/ydPnsz19Mr8/PHHH3r88ceVlJSkMmXKqEGDBlq2bJnat28vSRo5cqRSU1M1aNAgpaSkqFmzZlqxYoUCAwMd+5g2bZp8fHzUo0cPpaamqm3btpo3b568vb3dHQ0AAAAAAABwmdvF2n333adPPvlE//jHPyRdvbhAVlaW3njjDd1///1u7WvOnDn53m+z2RQfH6/4+Pg81/j5+WnGjBmaMWOGW88NAAAAAAAA3Ai3i7U33nhDrVu31rZt25Senq6RI0dq7969On36tP7zn/8URUYAAAAAAADActy+eEGdOnX0008/6e6771b79u118eJFde/eXTt37lS1atWKIiMAAAAAAABgOW4fsSZJYWFhGj9+fGFnAQAAAAAAADyGqWItJSVFc+bMUWJiomw2m2rXrq0nn3xSQUFBhZ0PAAAAAAAAsCS3TwVdt26doqKi9M477yglJUWnT5/WO++8o6ioKK1bt64oMgIAAAAAAACW4/YRa88//7x69OihWbNmydvbW5KUmZmpQYMG6fnnn9eePXsKPSQAAAAAAABgNW4fsfbbb79p+PDhjlJNkry9vTVs2DD99ttvhRoOAAAAAAAAsCq3i7XGjRsrMTExx/bExEQ1atSoMDIBAAAAAAAAlufSqaA//fST4/d/+9vf9MILL+h///uf7rnnHknS5s2b9d5772ny5MlFkxIAAAAAAACwGJeKtUaNGslms8kwDMe2kSNH5ljXq1cv9ezZs/DSAQAAAAAAABblUrF28ODBos4BAAAAAAAAeBSXirUqVaoUdQ4AAAAAAADAo7hUrF3v2LFj+s9//qMTJ04oKyvL6b6//e1vhRIMAAAAAAAAsDK3i7W5c+fq2WefVYkSJRQcHCybzea4z2azUawBAAAAAADgtuB2sfbKK6/olVde0ZgxY+Tl5VUUmQAAAAAAAADLc7sZu3Tpkh577DFKNQAAAAAAANzW3G7H+vfvr88//7wosgAAAAAAAAAew+1TQSdNmqTY2FgtW7ZM9evXl91ud7p/6tSphRYOAAAAAAAAsCq3i7WJEydq+fLlqlmzpiTluHgBPFNiYmK+94eEhKhy5co3KQ0AAAAAAID1uV2sTZ06VR9//LH69etXBHFws2VeSJFsNvXp0yffdX7+Adr3SyLlGgAAAAAAwP/P7WLN19dXLVu2LIosKAZZaRckw1Bw7HDZgyNzXZNx6ohOffuWTp48SbEGAAAAAADw/3O7WHvhhRc0Y8YMvfPOO0WRB8XEHhwp37DqxR0DAAAAAADAY7hdrG3ZskWrV6/Wt99+q7p16+a4eMHixYsLLRwAAAAAAABgVW4Xa2XLllX37t2LIgsAAAAAAADgMdwu1ubOnVsUOQAAAAAAAACP4lXcAQAAAAAAAABP5PYRa1FRUbLZbHnef+DAgRsKBAAAAAAAAHgCt4u1uLg4p9sZGRnauXOnli1bphEjRhRWLgAAAAAAAMDS3C7WXnjhhVy3v/fee9q2bdsNBwIAAAAAAAA8QaF9x1qnTp30xRdfFNbuAAAAAAAAAEsrtGLtX//6l4KCggprdwAAAAAAAICluX0q6J133ul08QLDMJScnKw///xTM2fOLNRwAAAAAAAAgFW5Xaw9+OCDTre9vLxUvnx5tW7dWrVq1SqsXAAAAAAAAICluV2sjRs3rihyAAAAAAAAAB6l0L5jDQAAAAAAALiduHzEmpeXl9N3q+XGZrPpypUrNxwKAAAAAAAAsDqXi7UlS5bked+mTZs0Y8YMGYZRKKEAAAAAAAAAq3O5WOvWrVuObb/88ovGjBmjb775Rr1799Y//vGPQg0HAAAAAAAAWJWp71g7fvy4nnnmGTVo0EBXrlzRrl27NH/+fFWuXLmw8wEAAAAAAACW5FaxdvbsWY0aNUrVq1fX3r179f333+ubb75RvXr1iiofAAAAAAAAYEkunwo6ZcoUvf766woLC9Onn36a66mhAAAAAAAAwO3C5WJt9OjR8vf3V/Xq1TV//nzNnz8/13WLFy8utHAAAAAAAACAVblcrD3xxBOy2WxFmQUAAAAAAADwGC4Xa/PmzSvCGAAAAAAAAIBnMXVVUAAAAAAAAOB2R7EGAAAAAAAAmECxBgAAAAAAAJhAsQYAAAAAAACYQLEGAAAAAAAAmECxBgAAAAAAAJhAsQYAAAAAAACYQLEGAAAAAAAAmECxBgAAAAAAAJhAsQYAAAAAAACYQLEGAAAAAAAAmECxBgAAAAAAAJhAsQYAAAAAAACYQLEGAAAAAAAAmECxBgAAAAAAAJhAsQYAAAAAAACYUKzF2qRJk3TXXXcpMDBQFSpU0IMPPqh9+/Y5rTEMQ/Hx8YqIiJC/v79at26tvXv3Oq1JS0vTkCFDFBISopIlS6pr1646evTozRzltpCYmKgdO3bk++vw4cPFHRMAAAAAAOCm8CnOJ1+3bp2ef/553XXXXbpy5YrGjh2rmJgY/fzzzypZsqQkacqUKZo6darmzZunGjVq6NVXX1X79u21b98+BQYGSpLi4uL0zTffaNGiRQoODtbw4cMVGxur7du3y9vbuzhHvCVkXkiRbDb16dOnwLV+/gHa90uiKleufBOSAQAAAAAAFJ9iLdaWLVvmdHvu3LmqUKGCtm/frvvuu0+GYWj69OkaO3asunfvLkmaP3++QkNDlZCQoIEDB+rs2bOaM2eOFixYoHbt2kmSFi5cqMjISK1atUodOnS46XPdarLSLkiGoeDY4bIHR+a5LuPUEZ369i2dPHmSYg0AAAAAANzyirVYu97Zs2clSUFBQZKkgwcPKjk5WTExMY41vr6+atWqlTZt2qSBAwdq+/btysjIcFoTERGhevXqadOmTbkWa2lpaUpLS3PcPnfunCQpIyNDGRkZRTLbzZaVlSVJ8vWxyfA28lx3xe4tf39/+fnYVCKPddlrAkMrq0ToHXnuK93Hpkv+/srKyrrh1zH78Z78fjBD8fP0/BIzWIWnz+Dp+SVmsAJPzy8xgxV4en6JGazA0/NLzGAFnp5fYoai5E4em2EYebcuN5FhGOrWrZtSUlK0YcMGSdKmTZvUsmVLHTt2TBEREY61AwYM0KFDh7R8+XIlJCToySefdCrKJCkmJkZRUVGaPXt2jueKj4/X+PHjc2xPSEhQQEBAIU8GAAAAAAAAT3Hp0iX16tVLZ8+eVenSpfNda5kj1gYPHqyffvpJGzduzHGfzWZzum0YRo5t18tvzZgxYzRs2DDH7XPnzikyMlIxMTEFvmCeYufOnUpKStKopYdlBEflue5i4gadXjZDob0m53k0mitrJCn9jwP6I2G01q9fr4YNG95Q/oyMDK1cuVLt27eX3W6/oX0VF2Yofp6eX2IGq/D0GTw9v8QMVuDp+SVmsAJPzy8xgxV4en6JGazA0/NLzFCUss9sdIUlirUhQ4bo66+/1vr161WpUiXH9rCwMElScnKywsPDHdtPnDih0NBQx5r09HSlpKSoXLlyTmtatGiR6/P5+vrK19c3x3a73W6pN/JGeHldveBr2hVDRmbeJeTljEylpqbqcj7rXFmT/Vypqany8vIqtNfxVnhPmKH4eXp+iRmswtNn8PT8EjNYgafnl5jBCjw9v8QMVuDp+SVmsAJPzy8xQ1FwJ4tXEeYokGEYGjx4sBYvXqzVq1crKsr5yKqoqCiFhYVp5cqVjm3p6elat26dozRr0qSJ7Ha705qkpCTt2bMnz2INAAAAAAAAuFHFesTa888/r4SEBH311VcKDAxUcnKyJKlMmTLy9/eXzWZTXFycJk6cqOjoaEVHR2vixIkKCAhQr169HGv79++v4cOHKzg4WEFBQXrxxRdVv359x1VCAQAAAAAAgMJWrMXarFmzJEmtW7d22j537lz169dPkjRy5EilpqZq0KBBSklJUbNmzbRixQoFBgY61k+bNk0+Pj7q0aOHUlNT1bZtW82bN0/e3t43axQAAAAAAADcZoq1WHPlgqQ2m03x8fGKj4/Pc42fn59mzJihGTNmFGI6AAAAAAAAIG/F+h1rAAAAAAAAgKeiWAMAAAAAAABMoFgDAAAAAAAATKBYAwAAAAAAAEygWAMAAAAAAABMoFgDAAAAAAAATKBYAwAAAAAAAEygWAMAAAAAAABMoFgDAAAAAAAATKBYAwAAAAAAAEygWAMAAAAAAABMoFgDAAAAAAAATKBYAwAAAAAAAEygWAMAAAAAAABMoFgDAAAAAAAATKBYAwAAAAAAAEygWAMAAAAAAABMoFgDAAAAAAAATKBYAwAAAAAAAEygWAMAAAAAAABMoFgDAAAAAAAATKBYAwAAAAAAAEygWAMAAAAAAABMoFgDAAAAAAAATKBYAwAAAAAAAEygWAMAAAAAAABMoFgDAAAAAAAATKBYAwAAAAAAAEygWAMAAAAAAABMoFgDAAAAAAAATKBYAwAAAAAAAEygWAMAAAAAAABMoFgDAAAAAAAATKBYAwAAAAAAAEygWAMAAAAAAABM8CnuALj1JCYmFrgmJCRElStXvglpAAAAAAAAigbFGgpN5oUUyWZTnz59Clzr5x+gfb8kUq4BAAAAAACPRbGGQpOVdkEyDAXHDpc9ODLPdRmnjujUt2/p5MmTFGsAAAAAAMBjUayh0NmDI+UbVr24YwAAAAAAABQpLl4AAAAAAAAAmECxBgAAAAAAAJhAsQYAAAAAAACYQLEGAAAAAAAAmECxBgAAAAAAAJhAsQYAAAAAAACYQLEGAAAAAAAAmECxBgAAAAAAAJhAsQYAAAAAAACYQLEGAAAAAAAAmECxBgAAAAAAAJhAsQYAAAAAAACYQLEGAAAAAAAAmECxBgAAAAAAAJhAsQYAAAAAAACYQLEGAAAAAAAAmECxBgAAAAAAAJhAsQYAAAAAAACYQLEGAAAAAAAAmECxBgAAAAAAAJhQrMXa+vXr1aVLF0VERMhms+nLL790ut8wDMXHxysiIkL+/v5q3bq19u7d67QmLS1NQ4YMUUhIiEqWLKmuXbvq6NGjN3EKAAAAAAAA3I6KtVi7ePGiGjZsqHfffTfX+6dMmaKpU6fq3Xff1datWxUWFqb27dvr/PnzjjVxcXFasmSJFi1apI0bN+rChQuKjY1VZmbmzRoDAAAAAAAAtyGf4nzyTp06qVOnTrneZxiGpk+frrFjx6p79+6SpPnz5ys0NFQJCQkaOHCgzp49qzlz5mjBggVq166dJGnhwoWKjIzUqlWr1KFDh5s2CwAAAAAAAG4vxVqs5efgwYNKTk5WTEyMY5uvr69atWqlTZs2aeDAgdq+fbsyMjKc1kRERKhevXratGlTnsVaWlqa0tLSHLfPnTsnScrIyFBGRkYRTXRzZWVlSZJ8fWwyvI08112xe8vf319+PjaVyGOdK2vcWWfzscnf319ZWVl5vt7Z2z35/WCG4ufp+SVmsApPn8HT80vMYAWenl9iBivw9PwSM1iBp+eXmMEKPD2/xAxFyZ08NsMw8m5AbiKbzaYlS5bowQcflCRt2rRJLVu21LFjxxQREeFYN2DAAB06dEjLly9XQkKCnnzySaeSTJJiYmIUFRWl2bNn5/pc8fHxGj9+fI7tCQkJCggIKLyhAAAAAAAA4FEuXbqkXr166ezZsypdunS+ay17xFo2m83mdNswjBzbrlfQmjFjxmjYsGGO2+fOnVNkZKRiYmIKfME8xc6dO5WUlKRRSw/LCI7Kc93FxA06vWyGQntNVonQO0yvcWdd+h8H9EfCaK1fv14NGzbMdU1GRoZWrlyp9u3by26357kvK2OG4ufp+SVmsApPn8HT80vMYAWenl9iBivw9PwSM1iBp+eXmMEKPD2/xAxFKfvMRldYtlgLCwuTJCUnJys8PNyx/cSJEwoNDXWsSU9PV0pKisqVK+e0pkWLFnnu29fXV76+vjm22+12S72RN8LL6+p1KdKuGDIy8y4ZL2dkKjU1VZfzWefKGnfWpV0xlJqaKi8vrwJf71vhPWGG4ufp+SVmsApPn8HT80vMYAWenl9iBivw9PwSM1iBp+eXmMEKPD2/xAxFwZ0sxXpV0PxERUUpLCxMK1eudGxLT0/XunXrHKVZkyZNZLfbndYkJSVpz549+RZrAAAAAAAAwI0q1iPWLly4oP/973+O2wcPHtSuXbsUFBSkypUrKy4uThMnTlR0dLSio6M1ceJEBQQEqFevXpKkMmXKqH///ho+fLiCg4MVFBSkF198UfXr13dcJRQAAAAAAAAoCsVarG3btk3333+/43b295717dtX8+bN08iRI5WamqpBgwYpJSVFzZo104oVKxQYGOh4zLRp0+Tj46MePXooNTVVbdu21bx58+Tt7X3T5wEAAAAAAMDto1iLtdatWyu/i5LabDbFx8crPj4+zzV+fn6aMWOGZsyYUQQJUZQSExPzvC8rK0uSdPToUUVF5X3xBQAAAAAAgOJi2YsX4NaVeSFFstnUp0+fPNf4+/vr008/VZOmd2nXzh2qXLnyTUwIAAAAAABQMIo13HRZaRckw1Bw7HDZgyNzXePnc/WqopdTL+nkyZMUawAAAAAAwHIo1lBs7MGR8g2rnut9JbwNSZk3NxAAAAAAAIAbvIo7AAAAAAAAAOCJKNYAAAAAAAAAEyjWAAAAAAAAABMo1gAAAAAAAAATKNYAAAAAAAAAEyjWAAAAAAAAABMo1gAAAAAAAAATKNYAAAAAAAAAEyjWAAAAAAAAABN8ijsAcKMOHz6skydPFrguJCRElStXvgmJAAAAAADA7YBiDR7t8OHDqlmrti6nXipwrZ9/gPb9kki5BgAAAAAACgXFGjzayZMndTn1koJjh8seHJnnuoxTR3Tq27d08uRJijUAAAAAAFAoKNZwS7AHR8o3rHpxxwAAAAAAALcRLl4AAAAAAAAAmECxBgAAAAAAAJhAsQYAAAAAAACYQLEGAAAAAAAAmECxBgAAAAAAAJhAsQYAAAAAAACY4FPcAYCCJCYmmroPAAAAAACgKFGswdpsNvXp06e4UwAAAAAAAORAsQZrMwwFxw6XPTgy17tTD2zT2Q0Lb3IoAAAAAAAAijV4AHtwpHzDqud6X8apIzc5DQAAAAAAwFVcvAAAAAAAAAAwgWINAAAAAAAAMIFiDQAAAAAAADCBYg0AAAAAAAAwgWINAAAAAAAAMIFiDQAAAAAAADCBYg0AAAAAAAAwwae4AwA3U2JiYoFrQkJCVLly5ZuQBgAAAAAAeDKKNdwWMi+kSDab+vTpU+BaX18/ffHFvxQeHp7vOgo4AAAAAABubxRruC1kpV2QDEPBscNlD47Mc93lo3t1ZvVHio2NLXCffv4B2vdLIuUaAAAAAAC3KYo13FbswZHyDaue5/0Zp464VMBlnDqiU9++pZMnT1KsAQAAAABwm6JYA3JRUAHnjqNHjyolJSXfNZxWCgAAAACA56FYA4pYk6Z3KeX0qXzXcFopAAAAAACeh2INuAH5XWU0KytLknQ59VK+p5ZyWikAAAAAAJ6JYg0wwZWrjPr7++vTTz+VVLinlgIAAAAAAGugWANMcOUqo34+tpucCgAAAAAA3EwUa8ANyO9ItBLehqTMmxsIAAAAAADcNF7FHQAAAAAAAADwRByxBtyCDh8+rJMnTxa4LiQkhAsmAAAAAABgEsUacIs5fPiwataqrcuplwpc6+cfoH2/JFKuAQAAAABgAsUaYBGJiYkFrnHlCLOTJ0/qcuqlfC+sIEkZp47o1Ldv6eTJkxRrAAAAAACYQLEGFLPMCymSzaY+ffoUuNadI8zyu7ACAAAAAAC4cRRrQDHLSrsgGQZHmAEAAAAA4GEo1gCLcPUIs4JOGXXllFIAAAAAAHDjKNYAD+HOKaOF7ejRo0pJScl3DVcYBQAAAADcbijWAA/h6imjqQe26eyGhYX63E2a3qWU06fyXcMVRgEAAAAAtxuKNcDDFHTKaMapI4X+nAVdZZTvfwMAAAAA3I4o1oDbXH7fyZaVleX4fWFdZfTw4cM6efJkgetcPbU0v/1l5z969KiioqJuejYAAAAAwK2NYg24TbnynW3+/v769NNPC+05Dx8+rJq1auty6qUC1/r6+umLL/6l8PDwPNckJSXp4UceVdrl1Fzvz87fpOld2rVzR75lmDvZOO0VAAAAACBRrAG3LVe+s83Px+bWPl25YmlBp5VK0uWje3Vm9UeKjY116Xnz2l92/suplwo8TfXkyZMuZeO0VwAAAABANoo14DaX3ymeJbwNSZkF7sPdK5a69D1xblyoIa/9uZrfnWwAAAAAAGSjWANww4rqiqXFcaEGAAAAAABcRbEGoNDcTkVYQae9SlJaWpp8fX0LXOfKxRCOHj2qlJSUQtlXUSjMi0gAAAAAgKegWANwW3Dl+99c4dZprzYvycgqcFl+F2rILqUaN2mqMymnb2hf1yrMAq6gCz+4cxGJouDK1V650isAAAAAM26ZYm3mzJl64403lJSUpLp162r69On6y1/+UtyxAFiBG9//VhB3T3u90Qs1ZJdSaZdTC/WiD65e2dSVUqqgi1K4cxGJwubq1V5vhSu9unLU4I8//qgKFSp49JwAAACAldwSxdpnn32muLg4zZw5Uy1bttTs2bPVqVMn/fzzz/zjAUCxfv/bjV6o4dorsxbWRR9cvbKpq6VUQfmuvYiEK0cGFubRY65c7TX79diwYYNq166d65rsYmrLli3y9/cv8HldncGV4tKV/bl61OB9992nrCzjph/VCFhVYf0ZLOx95be/a4tyLy+vQj8CuTBngDXk9r5e/3Mk8b4CgFm3RLE2depU9e/fX08//bQkafr06Vq+fLlmzZqlSZMmFXM6AFZg9e9/K44rm7pyemxBpZTkRinp4pGDrp7O6sp32GXPmN9r4srpvdnFVPuYDkq9dLGACVybISkpSQ8/8qjSLqfe8P5cPWqwTKt+Sl7+vktHNRb2acWFeUpucfzjv7gKByvNWpSFTnFw5z8eFPTnoTD/PBe0v2uL8tTU1EL7s+rO61HYR/lS6BWdvN7X63+OpFvj6G0A7nH1/38L87ujb0UeX6ylp6dr+/btGj16tNP2mJgYbdq0KdfHpKWlKS0tzXH77NmzkqTTp08rIyOj6MLeROfOndOlS5dkO31IWemX81zndT5Jfn5+sp06KCMrzfSawl6X5SNduhRpyWzMYI1srqxzNf/tNkNW0q/y8/d3/MeI/Pj5+amErsiez/4yvbJcm8HXV6XujJV3YHCe+8o4eUQX936vRx55pMBsrn6HXYGvycn98vP1VWCTrnlm87N769KlS/LzLaFSd3YutBlsksq37FEo+8vvvfLJki5duiT7lYsFzuruDL5+/vpg9vuqUKFCnmtOnDihAQOfLbB0yG9fWVlZunTpkhYvXqyBzz7nWoHhQjZJ8vLycpRGN5Lf1Rk2bNggHx+ffJ+zMJ83W0FzFvSc/v7+eu+99xQTE3O10Cmk19eddTe6r2vfg99++00ysgrtz2Bh/nnOb3/Z/38U2q6/zif9Xmh/Vvfv3+/S65F5/pTOb/9ay5cvV3R0dL7Pmdv7cO174OXlVSw/5ze67voZXN3fzch2vbze12t/ji5nZLr8vhbHDLmtM/seWGkdM9z8da7kL65srq4rzBnc+f9fl//e7e+vdWvXqmLFigXv8/+XkZGhS5cu6dSpU7Lb7S4/rqidP39ekmQYRoFrbYYrqyzs+PHjqlixov7zn/+oRYsWju0TJ07U/PnztW/fvhyPiY+P1/jx429mTAAAAAAAAHiQI0eOqFKlSvmu8fgj1rLZbDan24Zh5NiWbcyYMRo2bJjjdlZWlk6fPq3g4OA8H+Npzp07p8jISB05ckSlS5cu7jhu8/T8EjNYgafnl5jBKjx9Bk/PLzGDFXh6fokZrMDT80vMYAWenl9iBivw9PwSMxQlwzB0/vx5RUREFLjW44u1kJAQeXt7Kzk52Wn7iRMnFBoamutjfH19c5wfXLZs2aKKWKxKly5tqR9Od3l6fokZrMDT80vMYBWePoOn55eYwQo8Pb/EDFbg6fklZrACT88vMYMVeHp+iRmKSpkyZVxa51XwEmsrUaKEmjRpopUrVzptX7lypdOpoQAAAAAAAEBh8vgj1iRp2LBhevzxx9W0aVM1b95cH3zwgQ4fPqxnn322uKMBAAAAAADgFnVLFGs9e/bUqVOnNGHCBCUlJalevXr697//rSpVqhR3tGLj6+urcePGuXRJXCvy9PwSM1iBp+eXmMEqPH0GT88vMYMVeHp+iRmswNPzS8xgBZ6eX2IGK/D0/BIzWIXHXxUUAAAAAAAAKA4e/x1rAAAAAAAAQHGgWAMAAAAAAABMoFgDAAAAAAAATKBYAwAAAAAAAEygWLsFzZw5U1FRUfLz81OTJk20YcOG4o6Up/Xr16tLly6KiIiQzWbTl19+6XS/YRiKj49XRESE/P391bp1a+3du7d4wuZi0qRJuuuuuxQYGKgKFSrowQcf1L59+5zWWH2GWbNmqUGDBipdurRKly6t5s2ba+nSpY77rZ7/epMmTZLNZlNcXJxjm9VniI+Pl81mc/oVFhbmuN/q+bMdO3ZMffr0UXBwsAICAtSoUSNt377dcb/V56hatWqO98Fms+n555+XZP38V65c0d///ndFRUXJ399fd9xxhyZMmKCsrCzHGqvPIEnnz59XXFycqlSpIn9/f7Vo0UJbt2513G+1GQrjcywtLU1DhgxRSEiISpYsqa5du+ro0aOWmWHx4sXq0KGDQkJCZLPZtGvXrhz7KM4Z8sufkZGhUaNGqX79+ipZsqQiIiL0xBNP6Pjx45bJX9AM0tXPiVq1aqlkyZIqV66c2rVrpx9++MGjZrjWwIEDZbPZNH36dKftVv05kqR+/frl+Hy45557LJPflRkkKTExUV27dlWZMmUUGBioe+65R4cPH/aYGXL7nLbZbHrjjTcsMUNB+S9cuKDBgwerUqVK8vf3V+3atTVr1iynNVZ/D/744w/169dPERERCggIUMeOHbV//37LzFBY/z6z+gxW/mwuKL+nfDa7g2LtFvPZZ58pLi5OY8eO1c6dO/WXv/xFnTp1cvrAtJKLFy+qYcOGevfdd3O9f8qUKZo6dareffddbd26VWFhYWrfvr3Onz9/k5Pmbt26dXr++ee1efNmrVy5UleuXFFMTIwuXrzoWGP1GSpVqqTJkydr27Zt2rZtm9q0aaNu3bo5Plysnv9aW7du1QcffKAGDRo4bfeEGerWraukpCTHr927dzvu84T8KSkpatmypex2u5YuXaqff/5Zb731lsqWLetYY/U5tm7d6vQerFy5UpL06KOPSrJ+/tdff13vv/++3n33XSUmJmrKlCl64403NGPGDMcaq88gSU8//bRWrlypBQsWaPfu3YqJiVG7du107NgxSdaboTA+x+Li4rRkyRItWrRIGzdu1IULFxQbG6vMzExLzHDx4kW1bNlSkydPznMfxTlDfvkvXbqkHTt26OWXX9aOHTu0ePFi/frrr+ratatl8hc0gyTVqFFD7777rnbv3q2NGzeqatWqiomJ0Z9//ukxM2T78ssv9cMPPygiIiLHfVb9OcrWsWNHp8+Jf//73073W/09+O2333TvvfeqVq1aWrt2rX788Ue9/PLL8vPz85gZrn39k5KS9PHHH8tms+nhhx+2xAwF5R86dKiWLVumhQsXKjExUUOHDtWQIUP01VdfWSJ/QTMYhqEHH3xQBw4c0FdffaWdO3eqSpUqateundO/f4pzhsL695nVZ7DyZ3NB+T3ls9ktBm4pd999t/Hss886batVq5YxevToYkrkOknGkiVLHLezsrKMsLAwY/LkyY5tly9fNsqUKWO8//77xZCwYCdOnDAkGevWrTMMwzNnMAzDKFeunPHRRx95VP7z588b0dHRxsqVK41WrVoZL7zwgmEYnvEejBs3zmjYsGGu93lCfsMwjFGjRhn33ntvnvd7yhzXeuGFF4xq1aoZWVlZHpG/c+fOxlNPPeW0rXv37kafPn0Mw/CM9+DSpUuGt7e38e233zptb9iwoTF27FjLz2Dmc+zMmTOG3W43Fi1a5Fhz7Ngxw8vLy1i2bNlNy57t+hmudfDgQUOSsXPnTqftVpohv/zZtmzZYkgyDh06ZBiGtfIbhmsznD171pBkrFq1yjAMz5nh6NGjRsWKFY09e/YYVapUMaZNm+a4z0oz5Ja/b9++Rrdu3fJ8jJXyG0buM/Ts2dPxmZAbT5jhet26dTPatGnjuG2lGXLLX7duXWPChAlO2xo3bmz8/e9/NwzDWvkNI+cM+/btMyQZe/bscWy7cuWKERQUZHz44YeGYVhvBjP/PrP6DNfyhM/m/PJns/pnc0E4Yu0Wkp6eru3btysmJsZpe0xMjDZt2lRMqcw7ePCgkpOTnebx9fVVq1atLDvP2bNnJUlBQUGSPG+GzMxMLVq0SBcvXlTz5s09Kv/zzz+vzp07q127dk7bPWWG/fv3KyIiQlFRUXrsscd04MABSZ6T/+uvv1bTpk316KOPqkKFCrrzzjv14YcfOu73lDmypaena+HChXrqqadks9k8Iv+9996r77//Xr/++qsk6ccff9TGjRv1wAMPSPKM9+DKlSvKzMx0OnpCkvz9/bVx40aPmOFaruTdvn27MjIynNZERESoXr16lpwpN542w9mzZ2Wz2RxH1Hpa/vT0dH3wwQcqU6aMGjZsKMkzZsjKytLjjz+uESNGqG7dujnu94QZ1q5dqwoVKqhGjRp65plndOLECcd9Vs+flZWl7777TjVq1FCHDh1UoUIFNWvWzOk0P6vPcL0//vhD3333nfr37+/YZvUZ7r33Xn399dc6duyYDMPQmjVr9Ouvv6pDhw6SrJ8/LS1Nkpw+p729vVWiRAlt3LhRkvVmMPPvM6vP4AorzeBKfk//bKZYu4WcPHlSmZmZCg0NddoeGhqq5OTkYkplXnZmT5nHMAwNGzZM9957r+rVqyfJc2bYvXu3SpUqJV9fXz377LNasmSJ6tSp4zH5Fy1apB07dmjSpEk57vOEGZo1a6ZPPvlEy5cv14cffqjk5GS1aNFCp06d8oj8knTgwAHNmjVL0dHRWr58uZ599ln97W9/0yeffCLJM96Ha3355Zc6c+aM+vXrJ8kz8o8aNUp//etfVatWLdntdt15552Ki4vTX//6V0meMUNgYKCaN2+uf/zjHzp+/LgyMzO1cOFC/fDDD0pKSvKIGa7lSt7k5GSVKFFC5cqVy3ON1XnSDJcvX9bo0aPVq1cvlS5dWpLn5P/2229VqlQp+fn5adq0aVq5cqVCQkIkecYMr7/+unx8fPS3v/0t1/utPkOnTp30f//3f1q9erXeeustbd26VW3atHEUDVbPf+LECV24cEGTJ09Wx44dtWLFCj300EPq3r271q1bJ8n6M1xv/vz5CgwMVPfu3R3brD7DO++8ozp16qhSpUoqUaKEOnbsqJkzZ+ree++VZP38tWrVUpUqVTRmzBilpKQoPT1dkydPVnJyspKSkiRZawaz/z6z+gyusMoMruT35M/mbD7FHQCFz2azOd02DCPHNk/iKfMMHjxYP/30k+O/1lzL6jPUrFlTu3bt0pkzZ/TFF1+ob9++jr9kSdbOf+TIEb3wwgtasWJFjqNcrmXlGTp16uT4ff369dW8eXNVq1ZN8+fPd3wxspXzS1f/S3jTpk01ceJESdKdd96pvXv3atasWXriiScc66w+R7Y5c+aoU6dOOb4DyMr5P/vsMy1cuFAJCQmqW7eudu3apbi4OEVERKhv376OdVaeQZIWLFigp556ShUrVpS3t7caN26sXr16aceOHY41Vp/hembyWn0mV1hthoyMDD322GPKysrSzJkzC1xvtfz333+/du3apZMnT+rDDz9Ujx499MMPP6hChQp5PsYqM2zfvl1vv/22duzY4XYeq8zQs2dPx+/r1aunpk2bqkqVKvruu++cip3rWSV/9oVsunXrpqFDh0qSGjVqpE2bNun9999Xq1at8nysVWa43scff6zevXvn+/e/bFaZ4Z133tHmzZv19ddfq0qVKlq/fr0GDRqk8PDwHGddXMsq+e12u7744gv1799fQUFB8vb2Vrt27Zz+LpuX4pihsP99ZrUZzLjZMxSU39M/m7NxxNotJCQkRN7e3jka3BMnTuRo5D1B9lURPWGeIUOG6Ouvv9aaNWtUqVIlx3ZPmaFEiRKqXr26mjZtqkmTJqlhw4Z6++23PSL/9u3bdeLECTVp0kQ+Pj7y8fHRunXr9M4778jHx8eR08ozXK9kyZKqX7++9u/f7xHvgSSFh4erTp06Tttq167tuHCKp8whSYcOHdKqVav09NNPO7Z5Qv4RI0Zo9OjReuyxx1S/fn09/vjjGjp0qONITk+YQZKqVaumdevW6cKFCzpy5Ii2bNmijIwMRUVFecwM2VzJGxYWpvT0dKWkpOS5xuo8YYaMjAz16NFDBw8e1MqVKx3/RVzyjPzS1c+G6tWr65577tGcOXPk4+OjOXPmSLL+DBs2bNCJEydUuXJlx2f1oUOHNHz4cFWtWlWS9We4Xnh4uKpUqeK4GqLV84eEhMjHx6fAz2orz3CtDRs2aN++fU6f1ZK1Z0hNTdVLL72kqVOnqkuXLmrQoIEGDx6snj176s0335Rk7fzZmjRp4vgP8klJSVq2bJlOnTqlqKgoSdaZ4Ub+fWb1GVxhhRkKyn8rfDZno1i7hZQoUUJNmjRxXMku28qVK9WiRYtiSmVe9j+irp0nPT1d69ats8w8hmFo8ODBWrx4sVavXu34QMnmCTPkxjAMpaWleUT+tm3bavfu3dq1a5fjV9OmTdW7d2/t2rVLd9xxh+VnuF5aWpoSExMVHh7uEe+BJLVs2TLHZcB//fVXValSRZJn/VmYO3euKlSooM6dOzu2eUL+S5cuycvL+WPd29vbcZSCJ8xwrZIlSyo8PFwpKSlavny5unXr5nEzuJK3SZMmstvtTmuSkpK0Z88eS86UG6vPkP0X9/3792vVqlUKDg52ut/q+fOS/VktWX+Gxx9/XD/99JPTZ3VERIRGjBih5cuXS7L+DNc7deqUjhw5ovDwcEnWz1+iRAnddddd+X5WW32Ga82ZM0dNmjRxfM9gNivPkJGRoYyMjHw/q62c/3plypRR+fLltX//fm3btk3dunWTVPwzFMa/z6w+gyuKcwZX8t9yn81Fe20E3GyLFi0y7Ha7MWfOHOPnn3824uLijJIlSxq///57cUfL1fnz542dO3caO3fuNCQZU6dONXbu3Om4GsjkyZONMmXKGIsXLzZ2795t/PWvfzXCw8ONc+fOFXPyq5577jmjTJkyxtq1a42kpCTHr0uXLjnWWH2GMWPGGOvXrzcOHjxo/PTTT8ZLL71keHl5GStWrDAMw/r5c3PtVUENw/ozDB8+3Fi7dq1x4MABY/PmzUZsbKwRGBjo+HNr9fyGcfVKPj4+PsZrr71m7N+/3/i///s/IyAgwFi4cKFjjSfMkZmZaVSuXNkYNWpUjvusnr9v375GxYoVjW+//dY4ePCgsXjxYiMkJMQYOXKkY43VZzAMw1i2bJmxdOlS48CBA8aKFSuMhg0bGnfffbeRnp5uGIb1ZiiMz7Fnn33WqFSpkrFq1Spjx44dRps2bYyGDRsaV65cscQMp06dMnbu3Gl89913hiRj0aJFxs6dO42kpCRLzJBf/oyMDKNr165GpUqVjF27djl9VqelpVkif0EzXLhwwRgzZozx3//+1/j999+N7du3G/379zd8fX2drsxn5Rlyc/1VQQ3Duj9H58+fN4YPH25s2rTJOHjwoLFmzRqjefPmRsWKFT3qz/LixYsNu91ufPDBB8b+/fuNGTNmGN7e3saGDRs8ZgbDuHpV3ICAAGPWrFm57sOqP0eGcfXvqHXr1jXWrFljHDhwwJg7d67h5+dnzJw50xL5XZnhn//8p7FmzRrjt99+M7788kujSpUqRvfu3Z32UZwzFNa/z6w+g5U/mwvK7ymfze6gWLsFvffee0aVKlWMEiVKGI0bN873srbFbc2aNYakHL/69u1rGMbVyyGPGzfOCAsLM3x9fY377rvP2L17d/GGvkZu2SUZc+fOdayx+gxPPfWU4+elfPnyRtu2bR2lmmFYP39uri/WrD5Dz549jfDwcMNutxsRERFG9+7djb179zrut3r+bN98841Rr149w9fX16hVq5bxwQcfON3vCXMsX77ckGTs27cvx31Wz3/u3DnjhRdeMCpXrmz4+fkZd9xxhzF27Finv6BYfQbDMIzPPvvMuOOOO4wSJUoYYWFhxvPPP2+cOXPGcb/VZiiMz7HU1FRj8ODBRlBQkOHv72/ExsYahw8ftswMc+fOzfX+cePGWWKG/PIfPHgwz8/qNWvWWCJ/QTOkpqYaDz30kBEREWGUKFHCCA8PN7p27Wps2bLFaR9WniE3uRVrVv05unTpkhETE2OUL1/esNvtRuXKlY2+ffvmyOYJ78GcOXOM6tWrG35+fkbDhg2NL7/80uNmmD17tuHv7+/02XAtq/4cGYZhJCUlGf369TMiIiIMPz8/o2bNmsZbb71lZGVlWSK/KzO8/fbbRqVKlRx/Fv7+9787/V2juGcorH+fWX0GK382F5TfUz6b3WEzDMMQAAAAAAAAALfwHWsAAAAAAACACRRrAAAAAAAAgAkUawAAAAAAAIAJFGsAAAAAAACACRRrAAAAAAAAgAkUawAAAAAAAIAJFGsAAAAAAACACRRrAAAAAAAAgAkUawAAABY2b948lS1btsifp2rVqpo+fXqRP09xPycAAEBholgDAAC3vX79+slms8lms8lutys0NFTt27fXxx9/rKysrJuWI7eiqWfPnvr111+L/Lm3bt2qAQMG3NA+WrduLZvNpsmTJ+e474EHHpDNZlN8fHyhPuf14uPj1ahRo0LdJwAAQF4o1gAAACR17NhRSUlJ+v3337V06VLdf//9euGFFxQbG6srV66Y3q9hGDf0eH9/f1WoUMH0411Vvnx5BQQE3PB+IiMjNXfuXKdtx48f1+rVqxUeHl4kzwkAAFBcKNYAAAAk+fr6KiwsTBUrVlTjxo310ksv6auvvtLSpUs1b948SdLvv/8um82mXbt2OR535swZ2Ww2rV27VpK0du1a2Ww2LV++XE2bNpWvr682bNig3377Td26dVNoaKhKlSqlu+66S6tWrXLsp3Xr1jp06JCGDh3qOHpOyv1U0FmzZqlatWoqUaKEatasqQULFjjdb7PZ9NFHH+mhhx5SQECAoqOj9fXXX+c7//VHy5nZhyTFxsbq1KlT+s9//uPYNm/ePMXExOQoCN19ztxeiy+//NLptRo/frx+/PFHx2uY/d6dPXtWAwYMUIUKFVS6dGm1adNGP/74o2M/P/74o+6//34FBgaqdOnSatKkibZt21bgvAAA4PZGsQYAAJCHNm3aqGHDhlq8eLHbjx05cqQmTZqkxMRENWjQQBcuXNADDzygVatWaefOnerQoYO6dOmiw4cPS5IWL16sSpUqacKECUpKSlJSUlKu+12yZIleeOEFDR8+XHv27NHAgQP15JNPas2aNU7rxo8frx49euinn37SAw88oN69e+v06dNuzWBmHyVKlFDv3r2djlqbN2+ennrqqSJ7zmw9e/bU8OHDVbduXcdr2LNnTxmGoc6dOys5OVn//ve/tX37djVu3Fht27Z17Lt3796qVKmStm7dqu3bt2v06NGy2+0uPS8AALh9UawBAADko1atWvr999/dftyECRPUvn17VatWTcHBwWrYsKEGDhyo+vXrKzo6Wq+++qruuOMOxxFZQUFB8vb2VmBgoMLCwhQWFpbrft98803169dPgwYNUo0aNTRs2DB1795db775ptO6fv366a9//auqV6+uiRMn6uLFi9qyZYtbM5jdR//+/fXPf/5TFy9e1Pr163X27Fl17ty5SJ9TunrabKlSpeTj4+N4Df39/bVmzRrt3r1bn3/+uZo2baro6Gi9+eabKlu2rP71r39Jkg4fPqx27dqpVq1aio6O1qOPPqqGDRu69LwAAOD2RbEGAACQD8MwHKcauqNp06ZOty9evKiRI0eqTp06Klu2rEqVKqVffvnFccSaqxITE9WyZUunbS1btlRiYqLTtgYNGjh+X7JkSQUGBurEiRNuPZfZfTRo0EDR0dH617/+pY8//liPP/64y0d/FUbu623fvl0XLlxQcHCwSpUq5fh18OBB/fbbb5KkYcOG6emnn1a7du00efJkx3YAAID8+BR3AAAAACtLTExUVFSUJMnL6+p/kzQMw3F/RkZGro8rWbKk0+0RI0Zo+fLlevPNN1W9enX5+/vrkUceUXp6utuZri/6civ/ri+ybDab21c4vZF9PPXUU3rvvff0888/u3WkXH7P6eXl5fTaS3m//tfKyspSeHi443vwrpX9nW3x8fHq1auXvvvuOy1dulTjxo3TokWL9NBDD7mcHQAA3H44Yg0AACAPq1ev1u7du/Xwww9LunoVS0lO33927YUM8rNhwwb169dPDz30kOrXr6+wsLAcp5iWKFFCmZmZ+e6ndu3a2rhxo9O2TZs2qXbt2i7luFl69eql3bt3q169eqpTp06h7LN8+fI6f/68Ll686Nh2/euf22vYuHFjJScny8fHR9WrV3f6FRIS4lhXo0YNDR06VCtWrFD37t1zXN0UAADgehyxBgAAICktLU3JycnKzMzUH3/8oWXLlmnSpEmKjY3VE088Ienqd3jdc889mjx5sqpWraqTJ0/q73//u0v7r169uhYvXqwuXbrIZrPp5ZdfznH0V9WqVbV+/Xo99thj8vX1dSp9so0YMUI9evRwfPn+N998o8WLFztdYdQKypUrp6SkpEK9AECzZs0UEBCgl156SUOGDNGWLVscV/3MVrVqVR08eFC7du1SpUqVFBgYqHbt2ql58+Z68MEH9frrr6tmzZo6fvy4/v3vf+vBBx9U3bp1NWLECD3yyCOKiorS0aNHtXXrVkehCgAAkBeOWAMAAJC0bNkyhYeHq2rVqurYsaPWrFmjd955R1999ZW8vb0d6z7++GNlZGSoadOmeuGFF/Tqq6+6tP9p06apXLlyatGihbp06aIOHTqocePGTmsmTJig33//XdWqVXMcHXe9Bx98UG+//bbeeOMN1a1bV7Nnz9bcuXPVunVr07MXlbJly+Y4JfZGBAUFaeHChfr3v/+t+vXr69NPP1V8fLzTmocfflgdO3bU/fffr/Lly+vTTz+VzWbTv//9b91333166qmnVKNGDT322GP6/fffFRoaKm9vb506dUpPPPGEatSooR49eqhTp04aP358oWUHAAC3Jptx/RdVAAAAAAAAACgQR6wBAAAAAAAAJlCsAQAAAAAAACZQrAEAAAAAAAAmUKwBAAAAAAAAJlCsAQAAAAAAACZQrAEAAAAAAAAmUKwBAAAAAAAAJlCsAQAAAAAAACZQrAEAAAAAAAAmUKwBAAAAAAAAJlCsAQAAAAAAACb8f3xwWNwC2cZNAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 1500x600 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "import numpy as np\n",
    "\n",
    "# Estimate the maximum session duration in minutes\n",
    "max_duration = session_duration_df['Session Minutes'].max()\n",
    "\n",
    "plt.figure(figsize=(15, 6))  # Adjust the figure size\n",
    "\n",
    "# Plot the histogram with one bin per 2 minutes\n",
    "session_duration_df['Session Minutes'].hist(bins=int(max_duration / 2), edgecolor='black')\n",
    "\n",
    "# Add x-axis ticks\n",
    "plt.xticks(np.arange(0, max_duration + 10, 10))  # +10 in max_duration to ensure the last tick is included\n",
    "\n",
    "plt.title(\"Histogram of Session Durations\")\n",
    "plt.xlabel(\"Duration in Minutes\")\n",
    "plt.ylabel(\"Number of Sessions\")\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9d66fbf8",
   "metadata": {},
   "source": [
    "#### Speed"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "46ade2c2",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1sAAAIzCAYAAAD27AOGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABeZklEQVR4nO3dd1xW9f//8ecFMgUnskyRcm/UMjcONA3NsDJHauknSxtEWpqpaIqJZVTuMrXhqBzZMCNzRia5MnPk3mluBZFxfn/44/p6eYECckDhcb/duH0+1/u8zzmvc/HGePI+531ZDMMwBAAAAADIVQ75XQAAAAAAFESELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAFazZ8+WxWLRH3/8keH20NBQVahQwaatQoUK6tOnT7bOExcXp8jISJ07dy5nhRZCCxYsUI0aNeTm5iaLxaItW7bccp+lS5fKYrGodOnSSkpKytF5ExISFBkZqVWrVuVo/+zq06eP3RjLiGEYmj9/vpo1ayZvb2+5urrqnnvuUbt27fTxxx+bX+htslgsioyMzLXjjR49WtWrV1daWprNOa7/KlasmBo3bqx58+bl2nnvFPPnz1fdunXl6uoqf39/hYeH69KlS1ne/80331RoaKjKli0ri8Vy03/T9u3bp7CwMJUoUUIeHh4KCQnRpk2bbPocOHBAFotF77zzTk4vKdsiIiJUp04dSVJkZKQsFov++++/m+6TnJys++67TzExMXlQIVA4EbYA3JbFixdr+PDh2donLi5Oo0aNImxl0alTp/TUU0/pvvvu048//qjffvtNlStXvuV+M2fOlCSdOXNGS5YsydG5ExISNGrUqDwLW1k1dOhQdevWTdWqVdPHH3+sZcuWacyYMfLx8dE333yT3+XlqWPHjik6OlqjR4+Wg4Ptf9Yfe+wx/fbbb4qLi9O0adN04cIFde/eXXPnzs2nanPfF198oW7duun+++/XsmXLNHLkSM2ePVthYWFZPsZ7772n06dPq1OnTnJ2ds6036lTp9SsWTPt3r1bn3zyib788ktduXJFwcHB2rVrV25cTo4tWrRIXbp0ydY+Tk5OGjFihEaPHq3Tp0+bVBlQuBXJ7wIA3N2CgoLyu4RsS05OlsViUZEid8c/gbt371ZycrJ69uypFi1aZGmfEydO6IcfflCrVq0UFxenmTNnqmvXriZXmjcSExMVExOjXr16acaMGTbb+vTpYzO7Uxi8//77KlGiRIbhwsfHRw8++KAkqVGjRmrSpIkqVKig6dOnq3v37nldaq5LTU3V4MGD1bZtW3300UeSpJYtW8rT01M9evTQsmXL1L59+1se5+LFi9ag+tlnn2Xab8KECTp16pTi4uIUEBAgSWratKnuu+8+jRgxQgsWLMiFq8q++Ph4HTx4MNthS5K6deumiIgITZ8+XW+88YYJ1QGFGzNbAG7LjbcRpqWlacyYMapSpYrc3NxUokQJ1a5dW++//76ka7e3DB48WJIUGBhovcUpfeYkLS1N0dHRqlq1qlxcXOTt7a1evXrpyJEjNuc1DENRUVEKCAiQq6urGjRooNjYWAUHBys4ONjab9WqVbJYLPrss8/06quvqmzZsnJxcdGePXt06tQpDRgwQNWrV5eHh4e8vb3VqlUrrV271uZc6bcETZgwQePHj1eFChXk5uam4OBgaxAaMmSI/P39Vbx4cT366KM6efJklt6/pUuXqlGjRnJ3d5enp6dCQkL022+/Wbf36dNHTZs2lSR17dpVFovF5voyM2fOHKWkpOiVV15RWFiYVqxYoYMHD9r1O3funF599VXde++91ve7Q4cO2rlzpw4cOKAyZcpIkkaNGmX9XqV/vzO75S/9FqbrTZ48Wc2bN5e3t7eKFi2qWrVqKTo6WsnJyVl6n653+fJlJSUlyc/PL8Pt18/upH/voqOjNXbsWJUvX946XlasWGG37z///KPu3bvL29tbLi4uqlatmiZPnmzX78KFCxo0aJACAwPl7OyssmXLKjw8XJcvX7br97///U+lS5eWh4eHHnroIe3evdvueKdOndKzzz6rcuXKycXFRWXKlFGTJk30888/3/S9uHr1qmbOnKnu3bvbzWplJCAgQGXKlNG///5r075gwQK1bdtWfn5+cnNzU7Vq1TRkyBC76+nTp488PDy0Z88edejQQR4eHipXrpxeffVVu1tVjxw5oscee0yenp4qUaKEevToofj4eFksFs2ePdum7x9//KFOnTqpVKlScnV1VVBQkL788stbXs/69et1/PhxPf300zbtjz/+uDw8PLR48eJbHkNSlt476dpMfqtWraxBS5KKFSumsLAwffvtt0pJScl03+TkZPXu3VseHh767rvvJP3frdu//PKLdZwUK1ZMvXr10uXLl3XixAk98cQTKlGihPz8/DRo0KAMf2YWLlyoKlWqqEaNGjbt//77r7p166bixYvLx8dHzzzzjM6fP2/Tx9nZWV27dtWMGTNkGEaW3gcAWXd3/FkXQJ5KTU3N8JeGrPyHODo6WpGRkXrzzTfVvHlzJScna+fOndZbBvv166czZ87oww8/1KJFi6y/MFevXl2S9Pzzz2vGjBl64YUXFBoaqgMHDmj48OFatWqVNm3aJC8vL0nSsGHDNG7cOD377LMKCwvT4cOH1a9fPyUnJ2d4i93QoUPVqFEjTZs2TQ4ODvL29tapU6ckSSNHjpSvr68uXbqkxYsXKzg4WCtWrLALNZMnT1bt2rU1efJka0jp2LGjGjZsKCcnJ33yySc6ePCgBg0apH79+mnp0qU3fa/mzp2rHj16qG3btpo3b56SkpIUHR1tPX/Tpk01fPhwPfDAAxo4cKCioqLUsmVLFStW7Jbfh08++UR+fn5q37693NzcNHfuXM2ePVsjR4609rl48aKaNm2qAwcO6PXXX1fDhg116dIlrVmzRsePH1fjxo31448/6qGHHlLfvn3Vr18/SbIGsOzYu3evunfvbg0nW7du1dixY7Vz50598skn2TqWl5eXKlasqClTpljDYZUqVewC3vUmTZqkgIAAxcTEWAN9+/bttXr1ajVq1EiS9Pfff6tx48YqX7683n33Xfn6+mr58uV66aWX9N9//1nfu4SEBLVo0UJHjhzRG2+8odq1a2v79u0aMWKEtm3bpp9//lkWi0WGYahz586Ki4vTiBEjdP/99+vXX3/NcKblqaee0qZNmzR27FhVrlxZ586d06ZNm255a9fvv/+u06dPq2XLlll6786fP68zZ85YZ7vS/fPPP+rQoYPCw8NVtGhR7dy5U+PHj9eGDRv0yy+/2PRNTk5Wp06d1LdvX7366qtas2aN3nrrLRUvXlwjRoyQdC0Qt2zZUmfOnNH48eNVsWJF/fjjjxnOrq5cuVIPPfSQGjZsqGnTpql48eKaP3++unbtqoSEhJs+P/XXX39JkmrXrm3T7uTkpKpVq1q354bExETt3btXjz76qN222rVrKzExUfv27cvw359z584pLCxMO3bs0OrVq1W/fn2b7f369VNYWJjmz5+vzZs364033lBKSop27dqlsLAwPfvss/r55581fvx4+fv7KyIiwmb/hQsX6oknnrA7b5cuXdS1a1f17dtX27Zt09ChQyXJ7mcuODhYU6dO1V9//aVatWpl+70BcBMGAPx/s2bNMiTd9CsgIMBmn4CAAKN3797W16GhoUbdunVvep4JEyYYkoz9+/fbtO/YscOQZAwYMMCm/ffffzckGW+88YZhGIZx5swZw8XFxejatatNv99++82QZLRo0cLatnLlSkOS0bx581tef0pKipGcnGy0bt3aePTRR63t+/fvNyQZderUMVJTU63tMTExhiSjU6dONscJDw83JBnnz5/P9FypqamGv7+/UatWLZtjXrx40fD29jYaN25sdw1fffXVLa/BMAxjzZo1hiRjyJAhhmEYRlpamhEYGGgEBAQYaWlp1n6jR482JBmxsbGZHuvUqVOGJGPkyJF223r37m03HgzDMEaOHGnc7D8vqampRnJysvHpp58ajo6OxpkzZ255zBtt2LDBKF++vHVcenp6GqGhocann35qc43p3zt/f38jMTHR2n7hwgWjVKlSRps2baxt7dq1M+655x6779sLL7xguLq6WuscN26c4eDgYMTHx9v0+/rrrw1Jxg8//GAYhmEsW7bMkGS8//77Nv3Gjh1r9556eHgY4eHht7zuG40fP96QZJw4ccJuW/rPUnJysnH16lVj9+7dRqdOnQxPT0/jjz/+yPSYaWlpRnJysrF69WpDkrF161brtt69exuSjC+//NJmnw4dOhhVqlSxvp48ebIhyVi2bJlNv/79+xuSjFmzZlnbqlatagQFBRnJyck2fUNDQw0/Pz+bn48bpb+Xx48ft9vWtm1bo3Llypnum5miRYva/JuW7ujRo4YkY9y4cXbb5s6da0gy4uLiDMP4v3E3YcIEY//+/Ub16tWN6tWrGwcOHLDZL/3f3BdffNGmvXPnzoYkY+LEiTbtdevWNerVq2fTtmXLFkOSsXHjRmtb+s9gdHS0Td8BAwYYrq6uNj8jhmEY//zzjyHJmDp1aibvCoCc4jZCAHY+/fRTxcfH232l3852Mw888IC2bt2qAQMGaPny5bpw4UKWz7ty5UpJsvtL9gMPPKBq1apZb/tav369kpKS7P6S++CDD2a6kl1mzzJMmzZN9erVk6urq4oUKSInJyetWLFCO3bssOvboUMHm9uNqlWrJkl6+OGHbfqltx86dCiTK5V27dqlY8eO6amnnrI5poeHh7p06aL169crISEh0/1vJn1hjGeeeUaSrLf+HTx40ObWuWXLlqly5cpq06ZNjs6THZs3b1anTp1UunRpOTo6ysnJSb169VJqamqGt9Xdyv333689e/boxx9/1BtvvKFGjRppxYoV6tWrlzp16mQ3CxsWFiZXV1fra09PT3Xs2FFr1qxRamqqrly5ohUrVujRRx+Vu7u7UlJSrF8dOnTQlStXtH79eknSd999p5o1a6pu3bo2/dq1a2dzS2z6eO7Ro4dNLRk9K/XAAw9o9uzZGjNmjNavX5/l2yuPHTsmi8VinfG90ZQpU+Tk5CRnZ2dVrlxZy5Yt07x58+xmVvbt26fu3bvL19fX+v1Jfz7wxp8Fi8Wijh072rTVrl3b5jbV1atXy9PTUw899JBNv27dutm83rNnj3bu3Gl9j258348fP56lhScym9W8vv36Y6ekpOT4lrmbzaDeuG3Tpk168MEH5ePjo19//dXm9sPrhYaG2ry+2b8tN94OvHDhQlWoUEH16tWzO26nTp1sXteuXVtXrlyxu83Z29tbknT06NHMLg1ADhG2ANipVq2aGjRoYPdVvHjxW+47dOhQvfPOO1q/fr3at2+v0qVLq3Xr1pkuJ3+99FumMnoWx9/f37o9/X99fHzs+mXUltkxJ06cqOeff14NGzbUwoULtX79esXHx+uhhx5SYmKiXf9SpUrZvE5ftSyz9itXrmRYy/XXkNm1pqWl6ezZs5nun5mLFy/qq6++0gMPPKAyZcro3LlzOnfunB599FFZLBZrEJOuPSd0zz33ZPsc2XXo0CE1a9ZMR48e1fvvv6+1a9cqPj7e+ixURu91Vjg5Oaldu3YaO3asli9frsOHDys4OFjfffedli1bZtPX19fXbn9fX19dvXpVly5d0unTp5WSkqIPP/xQTk5ONl8dOnSQJOsy2v/++6/+/PNPu36enp4yDMPa7/Tp0ypSpIhKly59y1oWLFig3r176+OPP1ajRo1UqlQp9erVSydOnLjpe5CYmCgnJyc5OjpmuP2JJ55QfHy84uLiNH36dHl6eurJJ5/UP//8Y+1z6dIlNWvWTL///rvGjBmjVatWKT4+XosWLbKe43ru7u42wVWSXFxcbMb76dOns/Tzmf7s2KBBg+zezwEDBkjSTZcvT39vM7rd8syZM9afzQMHDtgdf/Xq1ZkeNyMlS5aUxWLJ9FyS/b8FsbGx+vfff9WvXz+VKFEi02Nn59+WG/9d+frrrzP9Y9KNY8/FxUWS/fc0/fuZ059FAJnjmS0AuapIkSKKiIhQRESEzp07p59//llvvPGG2rVrp8OHD8vd3T3TfdN/MTh+/LhdCDh27Jj1r/fp/W58yF+6tgpfRrNbGf01+vPPP7c+q3C9ixcv3vwic8H113qjY8eOycHBQSVLlsz2cefNm6eEhARt2LAhw/0XL16ss2fPqmTJkipTpozdwiPZ4erqmuHnd934y/GSJUt0+fJlLVq0yOYv+1n5rLDsKF26tMLDw7Vq1Sr99ddf1pAkKcPQcuLECTk7O8vDw8MaWJ566ikNHDgww+MHBgZKuvbMmJubW6bPml0/TlNSUnT69GmbX3ozqsXLy0sxMTGKiYnRoUOHtHTpUg0ZMkQnT57Ujz/+mOk1e3l56erVq7p8+bKKFi1qt71MmTJq0KCBpGurEVarVk0tWrTQK6+8Yl2k4ZdfftGxY8e0atUqm9Uub+ejGUqXLq0NGzbYtd947env1dChQzNdqr1KlSqZnif9+aJt27ZZn/uUrs1i7dy50zqT5u/vr/j4+CwfNyNubm6qWLGitm3bZrdt27ZtcnNz07333mvTPnjwYO3du1e9evVSSkqKevXqla1z3sqOHTu0Y8cOmz+i5ER6WMxshhRAzjGzBcA0JUqU0GOPPaaBAwfqzJkzOnDggKTM/7raqlUrSddC0PXi4+O1Y8cOtW7dWpLUsGFDubi42C2zvH79+gxX3MuMxWKx1pLuzz//tFkN0CxVqlRR2bJlNXfuXJvbmS5fvqyFCxdaVyjMrpkzZ8rT01MrVqzQypUrbb4mTJigpKQkffHFF5Kk9u3ba/fu3XYLIFwvs++VdG0lypMnT9qE3qtXr2r58uU2/dKD7vXvtWEY1qW6sys5OTnThSPSb3nz9/e3aV+0aJHNjMDFixf17bffqlmzZnJ0dJS7u7tatmypzZs3q3bt2hnO7KYHptDQUO3du1elS5fOsF962E9ftCL9/U53q8+4Kl++vF544YUMPyz3RlWrVpV0bQGSrGjWrJl69eql77//3jrOM/r+SNL06dOzdMyMtGjRQhcvXrSbYZw/f77N6ypVqqhSpUraunVrhu9lgwYN5Onpmel5GjZsKD8/P7vVDb/++mtdunTJGuCcnZ2zddzMPProo/rll190+PBha9vFixe1aNEiderUye7jJBwcHDR9+nS9/PLL6tOnj90fdm7XwoUL5e/vb7fgSXbt27dPkmwCK4DcwcwWgFzVsWNH1axZUw0aNFCZMmV08OBBxcTEKCAgQJUqVZL0f3+Nfv/999W7d285OTmpSpUqqlKlip599ll9+OGHcnBwUPv27a2rEZYrV06vvPKKpGu31kRERGjcuHEqWbKkHn30UR05ckSjRo2Sn59flpdxDg0N1VtvvaWRI0eqRYsW2rVrl0aPHq3AwMCbLuGcGxwcHBQdHa0ePXooNDRU/fv3V1JSkiZMmKBz587p7bffzvYx//rrL23YsEHPP/+8Nbher0mTJnr33Xc1c+ZMvfDCCwoPD9eCBQv0yCOPaMiQIXrggQeUmJio1atXKzQ01Pp5RQEBAfrmm2/UunVrlSpVSl5eXqpQoYK6du2qESNG6Mknn9TgwYN15coVffDBB0pNTbU5b0hIiJydndWtWze99tprunLliqZOnZqj2ySlayvqVahQQY8//rjatGmjcuXK6dKlS1q1apXef/99VatWzW6WxNHRUSEhIYqIiFBaWprGjx+vCxcuaNSoUdY+77//vpo2bapmzZrp+eefV4UKFXTx4kXt2bNH3377rTWUhoeHa+HChWrevLleeeUV1a5dW2lpaTp06JB++uknvfrqq2rYsKHatm2r5s2b67XXXtPly5fVoEED/frrr3af43T+/Hm1bNlS3bt3V9WqVeXp6an4+Hj9+OOPt/xg3vQVM9evX2+3Il9m3nrrLS1YsEDDhw/Xzz//rMaNG6tkyZJ67rnnNHLkSDk5OemLL77Q1q1bs3S8jPTu3VvvvfeeevbsqTFjxqhixYpatmyZNYhf/zM6ffp0tW/fXu3atVOfPn1UtmxZnTlzRjt27NCmTZv01VdfZXoeR0dHRUdH66mnnlL//v3VrVs3/fPPP3rttdcUEhJi98xYZlavXm1dnTQ1NVUHDx7U119/LelacExfgXPQoEH67LPP9PDDD2v06NFycXHR22+/rStXrigyMjLT47/77rvy9PTUgAEDdOnSJevHX9yur7/+WmFhYTd9jiwr1q9fL0dHRzVv3jxX6gJwnXxdngPAHSV9ZawbV1lL9/DDD99yNcJ3333XaNy4seHl5WU4Ozsb5cuXN/r27Wu3CtfQoUMNf39/w8HBwZBkrFy50jCMayvVjR8/3qhcubLh5ORkeHl5GT179jQOHz5ss39aWpoxZswY45577jGcnZ2N2rVrG999951Rp04dm5UEb7aSX1JSkjFo0CCjbNmyhqurq1GvXj1jyZIldiviXb+y2PUyO/at3sfrLVmyxGjYsKHh6upqFC1a1GjdurXx66+/Zuk8N0pfBXHLli2Z9hkyZIjNymVnz541Xn75ZaN8+fKGk5OT4e3tbTz88MPGzp07rfv8/PPPRlBQkOHi4mJIsvl+//DDD0bdunUNNzc349577zUmTZqU4WqE3377rVGnTh3D1dXVKFu2rDF48GDran3p33vDyNpqhElJScY777xjtG/f3ihfvrzh4uJiuLq6GtWqVTNee+014/Tp09a+6d+78ePHG6NGjbKOl6CgIGP58uV2x96/f7/xzDPPGGXLljWcnJyMMmXKGI0bNzbGjBlj0+/SpUvGm2++aVSpUsVwdnY2ihcvbtSqVct45ZVXbFYGPHfunPHMM88YJUqUMNzd3Y2QkBBj586dNqsRXrlyxXjuueeM2rVrG8WKFTPc3NyMKlWqGCNHjjQuX7580/fCMAyjWbNmRocOHezaJRkDBw7McJ/BgwcbkozVq1cbhmEYcXFxRqNGjQx3d3ejTJkyRr9+/YxNmzbZrRzYu3dvo2jRonbHy+h7fujQISMsLMzw8PAwPD09jS5duhg//PCDIcn45ptvbPpu3brVeOKJJwxvb2/DycnJ8PX1NVq1amVMmzbtltdvGNdWA6xdu7bh7Oxs+Pr6Gi+99JJx8eLFLO1rGIbRokWLTFdgvX58GoZh7Nmzx+jcubNRrFgxw93d3WjdurXNSoCGkfm/GekrsY4YMcIwjMz/rUh/P0+dOmXTfv37v2fPngzru9n+6ee7cSXYZs2aGR07drzpewQgZyyGwSfYASgY9u/fr6pVq2rkyJF644038rsc3AEOHDigwMBATZgwQYMGDcrvckyxcOFCde3aVQcPHlTZsmXzu5ybioqK0ptvvqlDhw7lyeIsBVl0dLTeeecdHT9+PNMFUrJi7969qlSpkpYvX66QkJBcrBCAJBG2ANyVtm7dqnnz5qlx48YqVqyYdu3apejoaF24cEF//fVXpqsSonApDGHLMAw1btxY9evX16RJk/K7HKv0WqpWrark5GT98ssv+uCDD9S1a1d9+umn+Vwd0j399NM6cuSIYmNj87sUoEDimS0Ad6WiRYvqjz/+0MyZM3Xu3DkVL15cwcHBGjt2LEELhYrFYtFHH32kpUuXKi0tLcvPLJrN3d1d7733ng4cOKCkpCSVL19er7/+ut588838Lg3/X0pKiu677z4NHTo0v0sBCixmtgAAAADABHfGn78AAAAAoIAhbAFAAWGxWLL0tWrVqlseKyoqSkuWLLntem62HPb1/V544YUMt3399ddZrvlusHHjRg0cOFC1atWSp6enfHx81KZNmww/62zevHlq3ry5fHx85OLiIn9/f3Xs2FFxcXF2ffv166eaNWuqRIkScnNzU+XKlTV48GC7D5jOTExMjMLCwhQYGCiLxWJdUv5W3nzzTVksFtWsWTNL/QGgsOGZLQAoIG78MOa33npLK1eutPtFPisfXBoVFaXHHntMnTt3zs0SC7158+Zpw4YNeuaZZ1SnTh1dvnxZ06ZNU+vWrTVnzhz16tXL2vf06dNq0qSJXn75ZXl5een48eOaOHGimjdvrhUrVqhFixbWvpcvX9azzz6rihUrytXVVX/88YfGjh2rH374QZs3b5azs/NN65o2bZqKFi2qVq1a6dtvv83StWzZskXvvPMOz0gCwE0QtgCggHjwwQdtXpcpU0YODg527bg1wzB05coVubm55epxX3vtNb3zzjs2bR06dFC9evU0evRom7CV0Wxf+/btVaZMGc2cOdMmbM2bN8+mX6tWrawfortu3boMP+T6en///bd1YY2szFKlpKTo6aefVv/+/bV169Ysz6ABQGHDbYQAUIicOXNGAwYMUNmyZeXs7Kx7771Xw4YNU1JSkrWPxWLR5cuXNWfOHOuth+m3lZ06dUoDBgxQ9erV5eHhIW9vb7Vq1Upr167N0+tYunSpGjVqJHd3d3l6eiokJMRuZq9Pnz6qUKGC3b6RkZGyWCw2bem3Mk6bNk3VqlWTi4uL5syZI0maOnWq6tSpIw8PD3l6eqpq1ao5/hw3b29vuzZHR0fVr19fhw8fvuX+np6ecnV1VZEit/5baZkyZSQpS32zu4Lh22+/rTNnzmjs2LHZ2g8AChtmtgCgkLhy5YpatmypvXv3atSoUapdu7bWrl2rcePGacuWLfr+++8lXbsdsVWrVmrZsqWGDx8uSSpWrJika2FNkkaOHClfX19dunRJixcvVnBwsFasWJHlZ31uZBiGUlJS7NrT0tLs2ubOnasePXqobdu2mjdvnpKSkhQdHW2toWnTpjmqYcmSJVq7dq1GjBghX19feXt7a/78+RowYIBefPFFvfPOO3JwcNCePXv0999/2+ybHuoOHDiQ7fOmpKRo7dq1qlGjRobbU1NTlZaWpqNHj2rcuHEyDEMDBw7M9FhJSUnasmWLhg8frqZNm6pJkybZrulm/v77b40ZM0aLFi2Sh4dHrh4bAAoawhYAFBJz5szRn3/+qS+//FKPP/64JCkkJEQeHh56/fXXFRsbq5CQED344INycHBQmTJl7G5BrFKliqZMmWJ9nZqaqnbt2unAgQP64IMPchy2pkyZYnPczKSlpWnw4MGqVauWli1bZp2R6dChg+677z69/vrr+vXXX3NUw6VLl7Rt2zaVLFnS2jZt2jSVKFFCH3zwgbWtdevWdvtmZfYoM5GRkdqzZ0+mC5LUqFFDu3btkiT5+fnpxx9/VP369e36rV+/Xo0aNbK+7tChg+bPny9HR8cc13ajtLQ0PfPMMwoLC1OHDh1y7bgAUFBxGyEAFBK//PKLihYtqscee8ymvU+fPpKkFStWZOk406ZNU7169ay3szk5OWnFihXasWNHjmt74oknFB8fb/c1fvx4m367du3SsWPH9NRTT9nc+ubh4aEuXbpo/fr1SkhIyFENrVq1sglakvTAAw/o3Llz6tatm7755ptMn03as2eP9uzZk+1zfvzxxxo7dqxeffVVPfLIIxn2WbhwoX7//Xd99dVXql69utq3b5/h6oy1atVSfHy8Vq9erffff1+bN29WSEhIjt+PjEycOFH//POPYmJicu2YAFCQMbMFAIXE6dOn5evra/e8kre3t4oUKaLTp0/f8hgTJ07Uq6++queee05vvfWWvLy85OjoqOHDh99W2CpTpowaNGhg137jbXnpNfr5+dn19ff3V1pams6ePSt3d/ds15DRMZ966imlpKToo48+UpcuXZSWlqb7779fY8aMUUhISLbPcb1Zs2apf//+evbZZzVhwoRM+6XfXvjAAw+oc+fOCgoK0ssvv6ytW7fa9CtatKj1PWzevLkaNmyoBx98UNOnT9crr7xyW7VK0qFDhzRixAi9/fbbcnZ21rlz5yRdu3UxLS1N586dk4uLS64vKgIAdzNmtgCgkChdurT+/fdfGYZh037y5EmlpKTIy8vrlsf4/PPPFRwcrKlTp+rhhx9Ww4YN1aBBA128eNGssm2ULl1aknT8+HG7bceOHZODg4N1dsrV1dVm4Y90mc1O3RhC0z399NOKi4vT+fPn9f3338swDIWGhurgwYM5vQzNmjVL/fr1U+/evTVt2rRMz32jIkWKqF69etq9e/ct+zZo0EAODg5Z6psV+/btU2Jiol5++WWVLFnS+vXrr79qx44dKlmypIYOHZor5wKAgoKwBQCFROvWrXXp0iW7Z4M+/fRT6/Z0Li4uSkxMtDuGxWKRi4uLTduff/5ptxKgWapUqaKyZctq7ty5NqHx8uXLWrhwoXWFQunaohUnT57Uv//+a+139epVLV++PEfnLlq0qNq3b69hw4bp6tWr2r59e46OM3v2bPXr1089e/bUxx9/nOWgJV1b5GT9+vWqWLHiLfuuXr1aaWlpWeqbFXXr1tXKlSvtvurUqaMKFSpo5cqVmX44NQAUVtxGCACFRK9evTR58mT17t1bBw4cUK1atbRu3TpFRUWpQ4cOatOmjbVvrVq1tGrVKn377bfy8/OTp6enqlSpotDQUL311lsaOXKkWrRooV27dmn06NEKDAzMcDXB3Obg4KDo6Gj16NFDoaGh6t+/v5KSkjRhwgSdO3dOb7/9trVv165dNWLECD355JMaPHiwrly5og8++ECpqalZPt///vc/ubm5qUmTJvLz89OJEyc0btw4FS9eXPfff7+1X3qgudVzW1999ZX69u2runXrqn///tqwYYPN9qCgIGuYbdy4sTp16qRq1aqpePHiOnDggKZOnaq9e/dq8eLF1n2+++47ffTRR+rUqZMCAgKUnJysP/74QzExMapYsaL69etn7bt69Wq1bt1aI0aM0IgRI6ztf/zxh/WWzQsXLsgwDH399deSpPvvv18BAQEqUaJEhguglChRQikpKTleHAUACjLCFgAUEq6urlq5cqWGDRumCRMm6NSpUypbtqwGDRqkkSNH2vR9//33NXDgQD355JNKSEhQixYttGrVKg0bNkwJCQmaOXOmoqOjVb16dU2bNk2LFy/OcNEGM3Tv3l1FixbVuHHj1LVrVzk6OurBBx/UypUr1bhxY2u/wMBAffPNN3rjjTf02GOPyc/PTxERETp16pRGjRqVpXM1a9ZMs2fP1pdffqmzZ8/Ky8tLTZs21aeffmr9HCtJWQ6a33//vdLS0rRp06YMl2Tfv3+/dRn5xo0ba/78+Tpw4IAuX74sLy8vNWrUSO+9957NdVasWFHOzs566623rLN4FSpUUN++fTVkyBAVL17c2tcwDOtS8tebNGmS9XPF0qWvWDlr1izrIioAgOyxGDfevA8AAAAAuG08swUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACPtRYUlpamo4dOyZPT09ZLJb8LgcAAABAPjEMQxcvXpS/v78cHG5vboqwJenYsWMqV65cfpcBAAAA4A5x+PBh3XPPPbd1DMKWJE9PT0nS/v37VapUqXyuBgVZcnKyfvrpJ7Vt21ZOTk75XQ4KMMYa8gpjDXmFsYa8cubMGQUGBlozwu0gbEnWWwc9PT1VrFixfK4GBVlycrLc3d1VrFgx/kMBUzHWkFcYa8grjDXkleTkZEnKlceLWCADAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMUye8C7iTbtm1TsWLFJEleXl4qX758PlcEAAAA4G5F2LpO+/btdeXKFUmSq5u7du3cQeACAAAAkCOEret4Pz5KVx1clHz6sE5/967+++8/whYAAACAHCFsXcfJu4IsRYrmdxkAAAAACgAWyAAAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATJCvYWvNmjXq2LGj/P39ZbFYtGTJEpvthmEoMjJS/v7+cnNzU3BwsLZv327TJykpSS+++KK8vLxUtGhRderUSUeOHMnDqwAAAAAAe/kati5fvqw6depo0qRJGW6Pjo7WxIkTNWnSJMXHx8vX11chISG6ePGitU94eLgWL16s+fPna926dbp06ZJCQ0OVmpqaV5cBAAAAAHaK5OfJ27dvr/bt22e4zTAMxcTEaNiwYQoLC5MkzZkzRz4+Ppo7d6769++v8+fPa+bMmfrss8/Upk0bSdLnn3+ucuXK6eeff1a7du3y7FoAAAAA4Hr5GrZuZv/+/Tpx4oTatm1rbXNxcVGLFi0UFxen/v37a+PGjUpOTrbp4+/vr5o1ayouLi7TsJWUlKSkpCTr6wsXLlw7voMhR0dDliIWubm5KS0tTcnJySZdIQqj9PHEuILZGGvIK4w15BXGGvJKbo6xOzZsnThxQpLk4+Nj0+7j46ODBw9a+zg7O6tkyZJ2fdL3z8i4ceM0atQou/Y3g9Lk7p4qKUDqOE9Hjx7V0aNHb/NKAHuxsbH5XQIKCcYa8gpjDXmFsQazJSQk5Nqx7tiwlc5isdi8NgzDru1Gt+ozdOhQRUREWF9fuHBB5cqV05jNDkpxctTVf/fp37lDtGbNGtWpU+f2LgC4TnJysmJjYxUSEiInJ6f8LgcFGGMNeYWxhrzCWENeOX36dK4d644NW76+vpKuzV75+flZ20+ePGmd7fL19dXVq1d19uxZm9mtkydPqnHjxpke28XFRS4uLnbtSWkWpaRalJRiKDExUQ4ODvwwwxROTk6MLeQJxhryCmMNeYWxBrPl5vi6Yz9nKzAwUL6+vjZTxVevXtXq1autQap+/fpycnKy6XP8+HH99ddfNw1bAAAAAGC2fJ3ZunTpkvbs2WN9vX//fm3ZskWlSpVS+fLlFR4erqioKFWqVEmVKlVSVFSU3N3d1b17d0lS8eLF1bdvX7366qsqXbq0SpUqpUGDBqlWrVrW1QkBAAAAID/ka9j6448/1LJlS+vr9OeoevfurdmzZ+u1115TYmKiBgwYoLNnz6phw4b66aef5Onpad3nvffeU5EiRfTEE08oMTFRrVu31uzZs+Xo6Jjn1wMAAAAA6fI1bAUHB8swjEy3WywWRUZGKjIyMtM+rq6u+vDDD/Xhhx+aUCEAAAAA5Mwd+8wWAAAAANzNCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGCCOzpspaSk6M0331RgYKDc3Nx07733avTo0UpLS7P2MQxDkZGR8vf3l5ubm4KDg7V9+/Z8rBoAAAAA7vCwNX78eE2bNk2TJk3Sjh07FB0drQkTJujDDz+09omOjtbEiRM1adIkxcfHy9fXVyEhIbp48WI+Vg4AAACgsLujw9Zvv/2mRx55RA8//LAqVKigxx57TG3bttUff/wh6dqsVkxMjIYNG6awsDDVrFlTc+bMUUJCgubOnZvP1QMAAAAozO7osNW0aVOtWLFCu3fvliRt3bpV69atU4cOHSRJ+/fv14kTJ9S2bVvrPi4uLmrRooXi4uLypWYAAAAAkKQi+V3Azbz++us6f/68qlatKkdHR6Wmpmrs2LHq1q2bJOnEiROSJB8fH5v9fHx8dPDgwUyPm5SUpKSkJOvrCxcuSJJcHAw5OhqyFLHIzc1NaWlpSk5Ozu3LQiGWPp4YVzAbYw15hbGGvMJYQ17JzTF2R4etBQsW6PPPP9fcuXNVo0YNbdmyReHh4fL391fv3r2t/SwWi81+hmHYtV1v3LhxGjVqlF37m0FpcndPlRQgdZyno0eP6ujRo7l2PUC62NjY/C4BhQRjDXmFsYa8wliD2RISEnLtWBbDMIxcO1ouK1eunIYMGaKBAwda28aMGaPPP/9cO3fu1L59+3Tfffdp06ZNCgoKsvZ55JFHVKJECc2ZMyfD42Y0s1WuXDlVHzxfKU5FdfXfffp37hCtWbNGderUMe8CUegkJycrNjZWISEhcnJyyu9yUIAx1pBXGGvIK4w15JXTp0/Lz89P58+fV7FixW7rWHf0zFZCQoIcHGwfK3N0dLQu/R4YGChfX1/FxsZaw9bVq1e1evVqjR8/PtPjuri4yMXFxa49Kc2ilFSLklIMJSYmysHBgR9mmMLJyYmxhTzBWENeYawhrzDWYLbcHF93dNjq2LGjxo4dq/Lly6tGjRravHmzJk6cqGeeeUbStdsHw8PDFRUVpUqVKqlSpUqKioqSu7u7unfvns/VAwAAACjM7uiw9eGHH2r48OEaMGCATp48KX9/f/Xv318jRoyw9nnttdeUmJioAQMG6OzZs2rYsKF++ukneXp65mPlAAAAAAq7OzpseXp6KiYmRjExMZn2sVgsioyMVGRkZJ7VBQAAAAC3ckd/zhYAAAAA3K0IWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACXIUtn788UetW7fO+nry5MmqW7euunfvrrNnz+ZacQAAAABwt8pR2Bo8eLAuXLggSdq2bZteffVVdejQQfv27VNERESuFggAAAAAd6MiOdlp//79ql69uiRp4cKFCg0NVVRUlDZt2qQOHTrkaoEAAAAAcDfK0cyWs7OzEhISJEk///yz2rZtK0kqVaqUdcYLAAAAAAqzHM1sNWnSRBEREWrSpIk2bNigBQsWSJJ2796te+65J1cLBAAAAIC7UY5mtiZPniwnJyd9/fXXmjp1qsqWLStJWrZsmR566KFcLRAAAAAA7kbZntlKSUnRypUrNWPGDPn5+dlse++993KtMAAAAAC4m2V7ZqtIkSJ6/vnndfXqVTPqAQAAAIACIUe3ETZs2FCbN2/O7VoAAAAAoMDI0QIZAwYM0KuvvqojR46ofv36Klq0qM322rVr50pxAAAAAHC3ytHMVteuXbV//3699NJLatKkierWraugoCDr/+amo0ePqmfPnipdurTc3d1Vt25dbdy40brdMAxFRkbK399fbm5uCg4O1vbt23O1BgAAAADIrhx/qHFeOHv2rJo0aaKWLVtq2bJl8vb21t69e1WiRAlrn+joaE2cOFGzZ89W5cqVNWbMGIWEhGjXrl3y9PTMkzoBAAAA4EY5ClsBAQG5XUeGxo8fr3LlymnWrFnWtgoVKlj/v2EYiomJ0bBhwxQWFiZJmjNnjnx8fDR37lz1798/T+oEAAAAgBvlKGx9+umnN93eq1evHBVzo6VLl6pdu3Z6/PHHtXr1apUtW1YDBgzQ//73P0nXZthOnDihtm3bWvdxcXFRixYtFBcXl2nYSkpKUlJSkvX1hQsXru3rYMjR0ZCliEVubm5KS0tTcnJyrlwLIMk6nhhXMBtjDXmFsYa8wlhDXsnNMWYxDMPI7k4lS5a0KyghIUHOzs5yd3fXmTNncqU4V1dXSVJERIQef/xxbdiwQeHh4Zo+fbp69eqluLg4NWnSREePHpW/v791v2effVYHDx7U8uXLMzxuZGSkRo0aZdc+d+5cubu750rtAAAAAO4+CQkJ6t69u86fP69ixYrd1rFyNLN19uxZu7Z//vlHzz//vAYPHnxbBV0vLS1NDRo0UFRUlCQpKChI27dv19SpU21mzywWi81+hmHYtV1v6NChioiIsL6+cOGCypUrpzGbHZTi5Kir/+7Tv3OHaM2aNapTp06uXQ+QnJys2NhYhYSEyMnJKb/LQQHGWENeYawhrzDWkFdOnz6da8fKUdjKSKVKlfT222+rZ8+e2rlzZ64c08/PT9WrV7dpq1atmhYuXChJ8vX1lSSdOHFCfn5+1j4nT56Uj49Ppsd1cXGRi4uLXXtSmkUpqRYlpRhKTEyUg4MDP8wwhZOTE2MLeYKxhrzCWENeYazBbLk5vnK09HtmHB0ddezYsVw7XpMmTbRr1y6btt27d1sX6AgMDJSvr69iY2Ot269evarVq1ercePGuVYHAAAAAGRXjma2li5davPaMAwdP35ckyZNUpMmTXKlMEl65ZVX1LhxY0VFRemJJ57Qhg0bNGPGDM2YMUPStdsHw8PDFRUVpUqVKqlSpUqKioqSu7u7unfvnmt1AAAAAEB25Shsde7c2ea1xWJRmTJl1KpVK7377ru5UZck6f7779fixYs1dOhQjR49WoGBgYqJiVGPHj2sfV577TUlJiZqwIABOnv2rBo2bKiffvqJz9gCAAAAkK9yFLbS0tJyu45MhYaGKjQ0NNPtFotFkZGRioyMzLOaAAAAAOBWbvuZLcMwlIPV4wEAAACgQMtx2Pr0009Vq1Ytubm5yc3NTbVr19Znn32Wm7UBAAAAwF0rR7cRTpw4UcOHD9cLL7ygJk2ayDAM/frrr3ruuef033//6ZVXXsntOgEAAADgrpKjsPXhhx/afbDwI488oho1aigyMpKwBQAAAKDQy9FthMePH8/wc6waN26s48eP33ZRAAAAAHC3y1HYqlixor788ku79gULFqhSpUq3XRQAAAAA3O1ydBvhqFGj1LVrV61Zs0ZNmjSRxWLRunXrtGLFigxDGAAAAAAUNjma2erSpYt+//13eXl5acmSJVq0aJG8vLy0YcMGPfroo7ldIwAAAADcdbI1s3XhwgXr/69UqZKmTJmSYZ9ixYrdfmUAAAAAcBfLVtgqUaKELBbLLfulpqbmuCAAAAAAKAiyFbZWrlxp/f+GYahDhw76+OOPVbZs2VwvDAAAAADuZtkKWy1atLB57ejoqAcffFD33ntvrhYFAAAAAHe7HC2QAQAAAAC4OcIWAAAAAJjgtsNWVhbMAAAAAIDCJlvPbIWFhdm8vnLlip577jkVLVrUpn3RokW3XxkAAAAA3MWyFbaKFy9u87pnz565WgwAAAAAFBTZCluzZs0yqw4AAAAAKFBYIAMAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATHBXha1x48bJYrEoPDzc2mYYhiIjI+Xv7y83NzcFBwdr+/bt+VckAAAAAOguClvx8fGaMWOGateubdMeHR2tiRMnatKkSYqPj5evr69CQkJ08eLFfKoUAAAAAO6SsHXp0iX16NFDH330kUqWLGltNwxDMTExGjZsmMLCwlSzZk3NmTNHCQkJmjt3bj5WDAAAAKCwK5LfBWTFwIED9fDDD6tNmzYaM2aMtX3//v06ceKE2rZta21zcXFRixYtFBcXp/79+2d4vKSkJCUlJVlfX7hw4dq+DoYcHQ1Ziljk5uamtLQ0JScnm3RVKIzSxxPjCmZjrCGvMNaQVxhryCu5Ocbu+LA1f/58bdq0SfHx8XbbTpw4IUny8fGxaffx8dHBgwczPea4ceM0atQou/Y3g9Lk7p4qKUDqOE9Hjx7V0aNHb+8CgAzExsbmdwkoJBhryCuMNeQVxhrMlpCQkGvHuqPD1uHDh/Xyyy/rp59+kqura6b9LBaLzWvDMOzarjd06FBFRERYX1+4cEHlypXTmM0OSnFy1NV/9+nfuUO0Zs0a1alT5/YvBPj/kpOTFRsbq5CQEDk5OeV3OSjAGGvIK4w15BXGGvLK6dOnc+1Yd3TY2rhxo06ePKn69etb21JTU7VmzRpNmjRJu3btknRthsvPz8/a5+TJk3azXddzcXGRi4uLXXtSmkUpqRYlpRhKTEyUg4MDP8wwhZOTE2MLeYKxhrzCWENeYazBbLk5vu7oBTJat26tbdu2acuWLdavBg0aqEePHtqyZYvuvfde+fr62kwnX716VatXr1bjxo3zsXIAAAAAhd0dPbPl6empmjVr2rQVLVpUpUuXtraHh4crKipKlSpVUqVKlRQVFSV3d3d17949P0oGAAAAAEl3eNjKitdee02JiYkaMGCAzp49q4YNG+qnn36Sp6dnfpcGAAAAoBC768LWqlWrbF5bLBZFRkYqMjIyX+oBAAAAgIzc0c9sAQAAAMDdirAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmuKPD1rhx43T//ffL09NT3t7e6ty5s3bt2mXTxzAMRUZGyt/fX25ubgoODtb27dvzqWIAAAAAuOaODlurV6/WwIEDtX79esXGxiolJUVt27bV5cuXrX2io6M1ceJETZo0SfHx8fL19VVISIguXryYj5UDAAAAKOyK5HcBN/Pjjz/avJ41a5a8vb21ceNGNW/eXIZhKCYmRsOGDVNYWJgkac6cOfLx8dHcuXPVv3///CgbAAAAAO7sma0bnT9/XpJUqlQpSdL+/ft14sQJtW3b1trHxcVFLVq0UFxcXL7UCAAAAADSHT6zdT3DMBQREaGmTZuqZs2akqQTJ05Iknx8fGz6+vj46ODBg5keKykpSUlJSdbXFy5ckCS5OBhydDRkKWKRm5ub0tLSlJycnNuXgkIsfTwxrmA2xhryCmMNeYWxhrySm2PsrglbL7zwgv7880+tW7fObpvFYrF5bRiGXdv1xo0bp1GjRtm1vxmUJnf3VEkBUsd5Onr0qI4ePXrbtQM3io2Nze8SUEgw1pBXGGvIK4w1mC0hISHXjnVXhK0XX3xRS5cu1Zo1a3TPPfdY2319fSVdm+Hy8/Oztp88edJutut6Q4cOVUREhPX1hQsXVK5cOY3Z7KAUJ0dd/Xef/p07RGvWrFGdOnVMuCIUVsnJyYqNjVVISIicnJzyuxwUYIw15BXGGvIKYw155fTp07l2rDs6bBmGoRdffFGLFy/WqlWrFBgYaLM9MDBQvr6+io2NVVBQkCTp6tWrWr16tcaPH5/pcV1cXOTi4mLXnpRmUUqqRUkphhITE+Xg4MAPM0zh5OTE2EKeYKwhrzDWkFcYazBbbo6vOzpsDRw4UHPnztU333wjT09P6zNaxYsXl5ubmywWi8LDwxUVFaVKlSqpUqVKioqKkru7u7p3757P1QMAAAAozO7osDV16lRJUnBwsE37rFmz1KdPH0nSa6+9psTERA0YMEBnz55Vw4YN9dNPP8nT0zOPqwUAAACA/3NHhy3DMG7Zx2KxKDIyUpGRkeYXBAAAAABZdFd9zhYAAAAA3C0IWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmKJLfBQB3u0OHDum///7LdHtSUpJcXFwkSWlpaZKkrVu3ysHh2t86vLy8VL58efMLBQAAQJ4ibAG34dChQ6pStZquJCZk3sniIBnXQpabm5vmzZun5s2bKzExUZLk6uauXTt3ELgAAAAKGMIWcBv+++8/XUlMUOnQV+VUupzd9sR9f+j82s+t212LWCRJPt3f1pUUQ8mnD+v0d+9q7dq1qlatWobnYObL3q1mE3nPAADAnYCwBeQCp9Ll5OJb0a49+fRhm+3OjoakVDn73Csj1aLUS2cli0U9e/bM9NjMfNnKymyii4urFi78Wn5+fhluJ4wBAIC8QNgC8lFa0iXJMDKdGUuf+frvv/8IB//frWYTrxzZrnO/fKzQ0NBMj0GABQAAeYGwBdwBMpsZK8wyu1Vwx44dkm4xm0iABQAAdwDCFpAFt/rF32yZned2b4fLzkqK2dmWle03qz1LC4/cwq0C7M2+d9xmCAAAcgNhC7iF3PjFP6du9UzX7dwOl92VFLO1LQvbb/Zc1Y4dOzK9VTB90ZGc4jk5AACQVwhbwC3c7Bmh2/3F/1Zu9kzX7d4Ol92VFLO6LSvbs/JclZTx7FT6oiM5xXNyAAAgrxC2gCwy4xf/2zl3upvdDnezW/my9OxTJttvti3L228SeMwOsTerDQAAILcQtoC7VFZuh7vlrX757FZhDQAA4G5G2ALuUre6HS6rt/ohY2YtSgIAAAoPwhbuGGaujHerX5Bvdu68WnEwp27rVj7YMXNREgAAULgQtm6CpaHzjtkr493sF+T8XG0Qdx4zFyUBAACFC2ErA1l5FuZmy1YTxDJ2q9kjs1bGS/8Fee3atapWrVqOz43ChQU0AADA7SJsZeBWz8LcatlqbjOyl9XZIzNWxsvSQhJZODcAAACQHYStm8jJstW3mkWRbv/5IjOZ9dxUfs4eZXUhCQAAACA3EbZuQ0ZhLDeW477ZLYrS7S0UcbPtx48fV5fHHlfSlcSc1Z6FZcbzc/aImSsAAADkJcJWLrvd5bhvdYuipNsLPFkIRGY8N8XsEQoSFs8BAABZUWDC1pQpUzRhwgQdP35cNWrUUExMjJo1a5Zv9dzWctw5DGtZDTy32m7Gc1PMHqEgyMrM9a2e2bydW3UJcgAA3F0KRNhasGCBwsPDNWXKFDVp0kTTp09X+/bt9ffff9+1v5iYGXgIREDO3Grm+lbPbN7urbrZucU4Le3aMbZu3SoHBwdJhDUAAPJagQhbEydOVN++fdWvXz9JUkxMjJYvX66pU6dq3Lhx+VwdgILmdle+zMnsc3ZvMXZzc9O8efPUvHlzJSZeC3f59TxoVrYTBAEABdFdH7auXr2qjRs3asiQITbtbdu2VVxcXD5VBaAwyuozmzmeuc7GLcauRSySJJ/ub+tKipH/z4PexsJAZge9/AyZZp6bAAsA+e+uD1v//fefUlNT5ePjY9Pu4+OjEydOZLhPUlKSkpKSrK/Pnz8vSTJO7JTh4CqHi8fl6uoqy+n9MtKS7Pa/2fbb2fd2t3PuO//caUWkhIRySjt+WEZK4bnuwnZuZ6XIKYPtqQ5pt33uWx07fXuRNCkhIUFF0q7IOU1KTbksVxcXedbvJEfP0nb7J/+7R5d3rM1w+8225cr2/w7r8vYVeuyxx+y2STI96OVnyDTz3C6ubpoxfZq8vb0z3O7g4GC93TQ7227cnpaWpoSEBK1du9Z6y2p29r+dc+f2ds59Z5+bsca5zTy3j4+P9d/LM2fOSJIMw8i0f1ZZjNw4Sj46duyYypYtq7i4ODVq1MjaPnbsWH322WfauXOn3T6RkZEaNWpUXpYJAAAA4C6yd+9e3Xvvvbd1jLt+ZsvLy0uOjo52s1gnT560m+1KN3ToUEVERFhfnzt3TgEBATp06JCKFy9uar0o3C5cuKBy5crp8OHDKlasWH6XgwKMsYa8wlhDXmGsIa+cP39e5cuXV6lSpW77WHd92HJ2dlb9+vUVGxurRx991NoeGxurRx55JMN9XFxcMrzPvXjx4vzwIk8UK1aMsYY8wVhDXmGsIa8w1pBX0m9XvR13fdiSpIiICD311FNq0KCBGjVqpBkzZujQoUN67rnn8rs0AAAAAIVUgQhbXbt21enTpzV69GgdP35cNWvW1A8//KCAgID8Lg0AAABAIVUgwpYkDRgwQAMGDMjRvi4uLho5cuRNl9AFcgNjDXmFsYa8wlhDXmGsIa/k5li761cjBAAAAIA70e0/9QUAAAAAsEPYAgAAAAATELYAAAAAwASFPmxNmTJFgYGBcnV1Vf369bV27dr8LgkFzLhx43T//ffL09NT3t7e6ty5s3bt2pXfZaEQGDdunCwWi8LDw/O7FBRAR48eVc+ePVW6dGm5u7urbt262rhxY36XhQImJSVFb775pgIDA+Xm5qZ7771Xo0ePVlpaWn6XhgJgzZo16tixo/z9/WWxWLRkyRKb7YZhKDIyUv7+/nJzc1NwcLC2b9+erXMU6rC1YMEChYeHa9iwYdq8ebOaNWum9u3b69ChQ/ldGgqQ1atXa+DAgVq/fr1iY2OVkpKitm3b6vLly/ldGgqw+Ph4zZgxQ7Vr187vUlAAnT17Vk2aNJGTk5OWLVumv//+W++++65KlCiR36WhgBk/frymTZumSZMmaceOHYqOjtaECRP04Ycf5ndpKAAuX76sOnXqaNKkSRluj46O1sSJEzVp0iTFx8fL19dXISEhunjxYpbPUahXI2zYsKHq1aunqVOnWtuqVaumzp07a9y4cflYGQqyU6dOydvbW6tXr1bz5s3zuxwUQJcuXVK9evU0ZcoUjRkzRnXr1lVMTEx+l4UCZMiQIfr111+5GwSmCw0NlY+Pj2bOnGlt69Kli9zd3fXZZ5/lY2UoaCwWixYvXqzOnTtLujar5e/vr/DwcL3++uuSpKSkJPn4+Gj8+PHq379/lo5baGe2rl69qo0bN6pt27Y27W3btlVcXFw+VYXC4Pz585KkUqVK5XMlKKgGDhyohx9+WG3atMnvUlBALV26VA0aNNDjjz8ub29vBQUF6aOPPsrvslAANW3aVCtWrNDu3bslSVu3btW6devUoUOHfK4MBd3+/ft14sQJm6zg4uKiFi1aZCsrFJgPNc6u//77T6mpqfLx8bFp9/Hx0YkTJ/KpKhR0hmEoIiJCTZs2Vc2aNfO7HBRA8+fP16ZNmxQfH5/fpaAA27dvn6ZOnaqIiAi98cYb2rBhg1566SW5uLioV69e+V0eCpDXX39d58+fV9WqVeXo6KjU1FSNHTtW3bp1y+/SUMCl54GMssLBgwezfJxCG7bSWSwWm9eGYdi1AbnlhRde0J9//ql169bldykogA4fPqyXX35ZP/30k1xdXfO7HBRgaWlpatCggaKioiRJQUFB2r59u6ZOnUrYQq5asGCBPv/8c82dO1c1atTQli1bFB4eLn9/f/Xu3Tu/y0MhcLtZodCGLS8vLzk6OtrNYp08edIuwQK54cUXX9TSpUu1Zs0a3XPPPfldDgqgjRs36uTJk6pfv761LTU1VWvWrNGkSZOUlJQkR0fHfKwQBYWfn5+qV69u01atWjUtXLgwnypCQTV48GANGTJETz75pCSpVq1aOnjwoMaNG0fYgql8fX0lXZvh8vPzs7ZnNysU2me2nJ2dVb9+fcXGxtq0x8bGqnHjxvlUFQoiwzD0wgsvaNGiRfrll18UGBiY3yWhgGrdurW2bdumLVu2WL8aNGigHj16aMuWLQQt5JomTZrYfYTF7t27FRAQkE8VoaBKSEiQg4Ptr6uOjo4s/Q7TBQYGytfX1yYrXL16VatXr85WVii0M1uSFBERoaeeekoNGjRQo0aNNGPGDB06dEjPPfdcfpeGAmTgwIGaO3euvvnmG3l6elpnU4sXLy43N7d8rg4Fiaenp92zgEWLFlXp0qV5RhC56pVXXlHjxo0VFRWlJ554Qhs2bNCMGTM0Y8aM/C4NBUzHjh01duxYlS9fXjVq1NDmzZs1ceJEPfPMM/ldGgqAS5cuac+ePdbX+/fv15YtW1SqVCmVL19e4eHhioqKUqVKlVSpUiVFRUXJ3d1d3bt3z/I5CvXS79K1DzWOjo7W8ePHVbNmTb333nssx41cldl9vbNmzVKfPn3ythgUOsHBwSz9DlN89913Gjp0qP755x8FBgYqIiJC//vf//K7LBQwFy9e1PDhw7V48WKdPHlS/v7+6tatm0aMGCFnZ+f8Lg93uVWrVqlly5Z27b1799bs2bNlGIZGjRql6dOn6+zZs2rYsKEmT56crT9gFvqwBQAAAABmKLTPbAEAAACAmQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQDuSBaLRUuWLMnvMnLkwIEDslgs2rJly0377dq1S76+vrp48aIkafbs2SpRosQdUd93332noKAgpaWlmV4PABRUhC0AKOTi4uLk6Oiohx56KNv7VqhQQTExMblfVBacPHlS/fv3V/ny5eXi4iJfX1+1a9dOv/32W77UkxPDhg3TwIED5enpmSfn69Onj4YMGZKlvqGhobJYLJo7d67JVQFAwUXYAoBC7pNPPtGLL76odevW6dChQ/ldTpZ16dJFW7du1Zw5c7R7924tXbpUwcHBOnPmTH6XliVHjhzR0qVL9fTTT+fJ+dLS0vT999/rkUceyfI+Tz/9tD788EMTqwKAgo2wBQCF2OXLl/Xll1/q+eefV2hoqGbPnm3XZ+nSpWrQoIFcXV3l5eWlsLAwSVJwcLAOHjyoV155RRaLRRaLRZIUGRmpunXr2hwjJiZGFSpUsL6Oj49XSEiIvLy8VLx4cbVo0UKbNm3Kct3nzp3TunXrNH78eLVs2VIBAQF64IEHNHToUD388MPWfhaLRVOnTlX79u3l5uamwMBAffXVVzbHOnr0qLp27aqSJUuqdOnSeuSRR3TgwAGbPrNmzVK1atXk6uqqqlWrasqUKTbbN2zYoKCgILm6uqpBgwbavHnzLa/hyy+/VJ06dXTPPfdk2uf06dN64IEH1KlTJ125ckWrVq2SxWLR8uXLFRQUJDc3N7Vq1UonT57UsmXLVK1aNRUrVkzdunVTQkKCzbF+/fVXOTg4qGHDhta2ffv2qWXLlnJ3d1edOnXsZgU7deqkDRs2aN++fbe8HgCAPcIWABRiCxYsUJUqVVSlShX17NlTs2bNkmEY1u3ff/+9wsLC9PDDD2vz5s1asWKFGjRoIElatGiR7rnnHo0ePVrHjx/X8ePHs3zeixcvqnfv3lq7dq3Wr1+vSpUqqUOHDtZnl27Fw8NDHh4eWrJkiZKSkm7ad/jw4dZZsJ49e6pbt27asWOHJCkhIUEtW7aUh4eH1qxZo3Xr1snDw0MPPfSQrl69Kkn66KOPNGzYMI0dO1Y7duxQVFSUhg8frjlz5ki6FlhDQ0NVpUoVbdy4UZGRkRo0aNAtr2HNmjXW9zIjR44cUbNmzVS1alUtWrRIrq6u1m2RkZGaNGmS4uLidPjwYT3xxBOKiYnR3Llz9f333ys2NtZuRmrp0qXq2LGjHBz+7z/9w4YN06BBg7RlyxZVrlxZ3bp1U0pKinV7QECAvL29tXbt2lteDwAgAwYAoNBq3LixERMTYxiGYSQnJxteXl5GbGysdXujRo2MHj16ZLp/QECA8d5779m0jRw50qhTp45N23vvvWcEBARkepyUlBTD09PT+Pbbb61tkozFixdnus/XX39tlCxZ0nB1dTUaN25sDB061Ni6datNH0nGc889Z9PWsGFD4/nnnzcMwzBmzpxpVKlSxUhLS7NuT0pKMtzc3Izly5cbhmEY5cqVM+bOnWtzjLfeesto1KiRYRiGMX36dKNUqVLG5cuXrdunTp1qSDI2b96caf116tQxRo8ebdM2a9Yso3jx4sauXbuM8uXLGy+++KJNbStXrjQkGT///LO1bdy4cYYkY+/evda2/v37G+3atbM5duXKlY2lS5cahmEY+/fvNyQZH3/8sXX79u3bDUnGjh07bPYLCgoyIiMjM70OAEDmmNkCgEJq165d2rBhg5588klJUpEiRdS1a1d98skn1j5btmxR69atc/3cJ0+e1HPPPafKlSurePHiKl68uC5dupStZ8a6dOmiY8eOaenSpWrXrp1WrVqlevXq2d0K2ahRI7vX6TNbGzdu1J49e+Tp6WmdLStVqpSuXLmivXv36tSpUzp8+LD69u1r3e7h4aExY8Zo7969kqQdO3aoTp06cnd3z/ScGUlMTLSZrbq+vWnTpurcubM++OAD6+2Z16tdu7b1//v4+Mjd3V333nuvTdvJkyetr3fs2KEjR46oTZs2mR7Hz89Pkmz2kyQ3Nze7WxIBAFlTJL8LAADkj5kzZyolJUVly5a1thmGIScnJ509e1YlS5aUm5tbto/r4OBgcyuiJCUnJ9u87tOnj06dOqWYmBgFBATIxcVFjRo1st66l1Wurq4KCQlRSEiIRowYoX79+mnkyJHq06fPTfdLDzBpaWmqX7++vvjiC7s+ZcqU0ZUrVyRdu5Xw+medJMnR0VGS7K41q7y8vHT27Fm7dhcXF7Vp00bff/+9Bg8enOEzXU5OTjbXcv3r9Lbrl2xfunSpQkJC7L6fNx5Hkt1S72fOnFGZMmWycWUAgHTMbAFAIZSSkqJPP/1U7777rrZs2WL92rp1qwICAqzho3bt2lqxYkWmx3F2dlZqaqpNW5kyZXTixAmbEHLj5zmtXbtWL730kjp06KAaNWrIxcVF//33321fV/Xq1XX58mWbtvXr19u9rlq1qiSpXr16+ueff+Tt7a2KFSvafBUvXlw+Pj4qW7as9u3bZ7c9MDDQes6tW7cqMTEx03NmJCgoSH///bddu4ODgz777DPVr19frVq10rFjx7L9Ptzom2++UadOnbK9X/oMX1BQ0G3XAACFEWELAAqh7777TmfPnlXfvn1Vs2ZNm6/HHntMM2fOlCSNHDlS8+bN08iRI7Vjxw5t27ZN0dHR1uNUqFBBa9as0dGjR61hKTg4WKdOnVJ0dLT27t2ryZMna9myZTbnr1ixoj777DPt2LFDv//+u3r06JGtWbTTp0+rVatW+vzzz/Xnn39q//79+uqrrxQdHW23tPlXX32lTz75RLt379bIkSO1YcMGvfDCC5KkHj16yMvLS4888ojWrl2r/fv3a/Xq1Xr55Zd15MgRSdcWoxg3bpzef/997d69W9u2bdOsWbM0ceJESVL37t3l4OCgvn376u+//9YPP/ygd95555bXkP6ZYDeGVenarNkXX3yhOnXqqFWrVjpx4kSW35sbnTx5UvHx8QoNDc32vuvXr7fOOgIAso+wBQCF0MyZM9WmTRsVL17cbluXLl20ZcsWbdq0ScHBwfrqq6+0dOlS1a1bV61atdLvv/9u7Tt69GgdOHBA9913n/VWs2rVqmnKlCmaPHmy6tSpow0bNtitzvfJJ5/o7NmzCgoK0lNPPaWXXnpJ3t7eWa7fw8NDDRs21HvvvafmzZurZs2aGj58uP73v/9p0qRJNn1HjRql+fPnq3bt2pozZ46++OILVa9eXZLk7u6uNWvWqHz58goLC1O1atX0zDPPKDExUcWKFZMk9evXTx9//LFmz56tWrVqqUWLFpo9e7Z1ZsvDw0Pffvut/v77bwUFBWnYsGEaP378La+hQ4cOcnJy0s8//5zh9iJFimjevHmqUaOGdXn3nPj222/VsGHDbL2/6ebNm6cePXrYPI8GAMg6i5HTm80BALjDWSwWLV68WJ07d87vUjI0ZcoUffPNN1q+fLlp5+jUqZOaNm2q1157LVv7nTp1SlWrVtUff/xhDZYAgOxhgQwAAPLJs88+q7Nnz+rixYvy9PQ05RxNmzZVt27dsr3f/v37NWXKFIIWANwGZrYAAAXWnT6zBQAo2JjZAgAUWPw9EQCQn1ggAwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAEzw/wA2biJxNWQ5fQAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 1000x600 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Define the number of bins\n",
    "num_bins = 100\n",
    "\n",
    "# Calculate histogram\n",
    "counts, bin_edges = np.histogram(combined_control_df['actual_speed'], bins=num_bins, range=(0, 10))\n",
    "\n",
    "# Convert counts to hours\n",
    "counts_in_hours = (counts * 0.1) / 3600\n",
    "\n",
    "# Calculate total hours\n",
    "total_hours = counts_in_hours.sum()\n",
    "\n",
    "# Plot the histogram\n",
    "plt.figure(figsize=(10, 6))\n",
    "plt.bar(bin_edges[:-1], counts_in_hours, width = 0.1, edgecolor='black')\n",
    "plt.xlabel('Actual Speed (km/h)')\n",
    "plt.ylabel('Hours')\n",
    "plt.title(f'Histogram of Actual Speeds (Range 0-10km/h)\\nTotal Hours: {total_hours:.2f}')\n",
    "plt.grid(True)\n",
    "\n",
    "# Set x-axis range\n",
    "plt.xlim(0, 10)\n",
    "\n",
    "plt.show()\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ec1e8ba4",
   "metadata": {},
   "source": [
    "Range 0.1-10 km/h"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "9a207c87",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0oAAAIzCAYAAAA+gOlQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABiWklEQVR4nO3dd3hUVf7H8c8EJpMEAkhCIGASYJEQQIqgSG8CghERVJYmrLoWUBdBFCwURRBcFJViQ9DVICpFRIEFliZIE0FWA4iUgKAwoacxSc7vDzfzc2bSSTIp79fzzKNzz71nvnPnTsgn595zLcYYIwAAAACAk4+3CwAAAACA4oagBAAAAABuCEoAAAAA4IagBAAAAABuCEoAAAAA4IagBAAAAABuCEoAAAAA4IagBAAAAABuCEoAAAAA4IagBJQQCxYskMVi0a5duzJtj46OVu3atV2W1a5dW8OGDcvT62zdulUTJ07U+fPn81doGbRo0SI1atRI/v7+slgs2rNnT47bLF++XBaLRUFBQUpJScnX6yYmJmrixInasGFDvrbPq2HDhnkcY5kxxuiTTz5R+/btFRISIj8/P1177bXq0aOH3nvvvcIv9CpZLBZNnDixwPp74YUX1LBhQ6Wnp7u8xp8flSpVUps2bbRw4cICe93i4pNPPlGzZs3k5+enmjVrauTIkbp8+XKutp05c6b69u2rOnXqyGKxqFOnTnl67UuXLumpp55S9+7dVa1atRw/2927d+uWW25RxYoVVaVKFfXt21eHDx92WWfDhg2yWCz6/PPP81TL1ejbt6/uuOMOSX98DytWrJjjNufOnVOVKlW0bNmyQq4OKL0ISkAptnTpUj3//PN52mbr1q2aNGkSQSmXzpw5oyFDhugvf/mLVq1apW+//Vb169fPcbt58+ZJks6ePZvvX2QSExM1adKkIgtKuTVu3DgNGDBAUVFReu+997Ry5UpNnjxZ1atX1xdffOHt8orUyZMnNX36dL3wwgvy8XH9J/euu+7St99+q61bt+qtt97SxYsXNXDgQMXExHip2oL38ccfa8CAAbrxxhu1cuVKTZgwQQsWLFDfvn1ztf1bb72lY8eOqUuXLqpWrVqeXz8+Pl7vvPOOUlJS1KdPn2zX3b9/vzp16qQrV67o008/1fvvv6+DBw+qffv2OnPmTJ5fu6AkJCRo1apV6tevX562u+aaa/TEE09ozJgxunLlSiFVB5Ru5b1dAIDC07x5c2+XkGcOh0MWi0Xly5eMH08HDx6Uw+HQ4MGD1bFjx1xt89tvv+nrr79Wly5dtHXrVs2bN0/9+/cv5EqLRlJSkmbOnKl7771X77zzjkvbsGHDXEZVyoLXX3/dOTLhrnr16rr55pslSa1bt1bbtm1Vu3Ztvf322xo4cGBRl1rg0tLSNGbMGHXv3l3vvvuuJKlz584KDAzUoEGDtHLlSvXs2TPbPn766SdnwGzcuHGea4iIiNC5c+dksVhkt9uzHdEcP368bDabVqxYoUqVKkmSWrRooeuuu07//Oc/NW3atDy/fkH4+uuvlZqaqttvvz3P2z788MOaPHmyPv/881JxTAFFjREloBRzP/UuPT1dkydPVmRkpPz9/VWlShU1adJEr7/+uiRp4sSJGjNmjCQ5T3WxWCzOEYv09HRNnz5dDRo0kM1mU0hIiO69916dOHHC5XWNMZoyZYoiIiLk5+enli1bas2aNerUqZPLqTMZp7D861//0ujRo1WrVi3ZbDYdOnRIZ86c0fDhw9WwYUNVrFhRISEh6tKlizZv3uzyWkePHpXFYtErr7yiadOmqXbt2vL391enTp2cIWbs2LGqWbOmKleurDvvvFOnT5/O1f5bvny5WrdurYCAAAUGBqpbt2769ttvne3Dhg1Tu3btJEn9+/fP9alBH3zwgVJTU/XEE0+ob9++WrdunY4dO+ax3vnz5zV69GjVrVvXub979eql/fv36+jRo86/sE+aNMn5WWV83lmdJjdx4kRZLBaXZbNnz1aHDh0UEhKiChUq6Prrr9f06dPlcDhytZ/+LCEhQSkpKQoNDc20/c+jKhmf3fTp0/XSSy8pPDzcebysW7fOY9uff/5ZAwcOVEhIiGw2m6KiojR79myP9S5evKgnn3xSderUka+vr2rVqqWRI0cqISHBY72///3vCgoKUsWKFXXrrbfq4MGDHv2dOXNGDz74oMLCwmSz2VStWjW1bdtWa9euzXZfXLlyRfPmzdPAgQM9RpMyExERoWrVqun33393Wb5o0SJ1795doaGh8vf3V1RUlMaOHevxfjJOyTp06JB69eqlihUrKiwsTKNHj/Y4vfPEiRO66667FBgYqCpVqmjQoEHauXOnLBaLFixY4LLurl271Lt3b1WtWlV+fn5q3ry5Pv300xzfz7Zt23Tq1Cn97W9/c1l+9913q2LFilq6dGmOfeRmv2Un43uRk9TUVK1YsUL9+vVzhiTpj8+kc+fOOdZ68eJF9ejRQ9WrV9eOHTsk/f937YcfftDdd9+typUrq2rVqho1apRSU1N14MAB3XrrrQoMDFTt2rU1ffr0TPtevHixunTpomuuucZleW4+5+rVq6tbt2566623ctwHADyVjD/ZAnBKS0tTamqqx3JjTI7bTp8+XRMnTtRzzz2nDh06yOFwaP/+/c7T7B544AGdPXtWb775ppYsWeL8Zbdhw4aSpEceeUTvvPOOHn30UUVHR+vo0aN6/vnntWHDBu3evVvBwcGSpGeffVZTp07Vgw8+qL59++r48eN64IEH5HA4Mj0tbdy4cWrdurXeeust+fj4KCQkxHmqy4QJE1SjRg1dvnxZS5cuVadOnbRu3TqPQDJ79mw1adJEs2fPdgaM22+/Xa1atZLVatX777+vY8eO6cknn9QDDzyg5cuXZ7uvYmJiNGjQIHXv3l0LFy5USkqKpk+f7nz9du3a6fnnn9dNN92kESNGaMqUKercubPLL1lZef/99xUaGqqePXvK399fMTExWrBggSZMmOBc59KlS2rXrp2OHj2qp59+Wq1atdLly5e1adMmnTp1Sm3atNGqVat066236v7779cDDzwgSfk6PemXX37RwIEDncFi7969eumll7R//369//77eeorODhY9erV05w5c5zBLjIyMttfVmfNmqWIiAjNnDnTGcZ79uypjRs3qnXr1pL+GFlo06aNwsPDNWPGDNWoUUOrV6/W448/Lrvd7tx3iYmJ6tixo06cOKFnnnlGTZo00Y8//qjx48dr3759Wrt2rSwWi4wx6tOnj7Zu3arx48frxhtv1JYtWzId4RgyZIh2796tl156SfXr19f58+e1e/duxcfHZ7svtm/frvj4eHXu3DlX++7ChQs6e/asc5Qpw88//6xevXpp5MiRqlChgvbv369p06Zpx44d+s9//uOyrsPhUO/evXX//fdr9OjR2rRpk1588UVVrlxZ48ePl/RHmO3cubPOnj2radOmqV69elq1alWmo5rr16/XrbfeqlatWumtt95S5cqV9cknn6h///5KTEzM9hrI//73v5KkJk2auCy3Wq1q0KCBs704+OWXX5SUlORRq/RH/WvWrFFycrL8/Pw82k+cOKFevXrpypUr+vbbb1W3bl2X9nvuuUeDBw/WQw89pDVr1jj/CLF27VoNHz5cTz75pGJiYvT000+rXr16LqOPycnJ+uqrr/Tqq6+69JmbzzlDp06dNG7cOJ0/f15VqlS5ir0ElEEGQIkwf/58IynbR0REhMs2ERERZujQoc7n0dHRplmzZtm+ziuvvGIkmSNHjrgsj42NNZLM8OHDXZZv377dSDLPPPOMMcaYs2fPGpvNZvr37++y3rfffmskmY4dOzqXrV+/3kgyHTp0yPH9p6amGofDYbp27WruvPNO5/IjR44YSaZp06YmLS3NuXzmzJlGkundu7dLPyNHjjSSzIULF7J8rbS0NFOzZk1z/fXXu/R56dIlExISYtq0aePxHj777LMc34MxxmzatMlIMmPHjjXGGJOenm7q1KljIiIiTHp6unO9F154wUgya9asybKvM2fOGElmwoQJHm1Dhw71OB6MMWbChAkmux/9aWlpxuFwmA8//NCUK1fOnD17Nsc+3e3YscOEh4c7j8vAwEATHR1tPvzwQ5f3mPHZ1axZ0yQlJTmXX7x40VStWtXccsstzmU9evQw1157rcfn9uijjxo/Pz9nnVOnTjU+Pj5m586dLut9/vnnRpL5+uuvjTHGrFy50kgyr7/+ust6L730ksc+rVixohk5cmSO79vdtGnTjCTz22+/ebRlfJccDoe5cuWKOXjwoOndu7cJDAw0u3btyrLP9PR043A4zMaNG40ks3fvXmfb0KFDjSTz6aefumzTq1cvExkZ6Xw+e/ZsI8msXLnSZb2HHnrISDLz5893LmvQoIFp3ry5cTgcLutGR0eb0NBQl++Hu4x9eerUKY+27t27m/r162e5bWYaNWrk8vMjr7L7vmzZssVIMgsXLvRomzJlipFkTp48aYxx/c5///33pmbNmqZ9+/YmPj7eZbuM79qMGTNcljdr1sxIMkuWLHEuczgcplq1aqZv374u6y5btsyUK1fOnD592rkst59zhjVr1mT6eQPIGafeASXMhx9+qJ07d3o8Mk4By85NN92kvXv3avjw4Vq9erUuXryY69ddv369JHn8Bfmmm25SVFSU81Spbdu2KSUlRffcc4/LejfffHOWM6ZldZHyW2+9pRtuuEF+fn4qX768rFar1q1bp9jYWI91e/Xq5XKaTlRUlCTptttuc1kvY3lcXFwW71Q6cOCATp48qSFDhrj0WbFiRfXr10/btm1TYmJilttnJ2MSh/vuu0+SnKfLHTt2zOV0s5UrV6p+/fq65ZZb8vU6efH999+rd+/eCgoKUrly5WS1WnXvvfcqLS0t01PRcnLjjTfq0KFDWrVqlZ555hm1bt1a69at07333qvevXt7jH727dvX5S/1gYGBuv3227Vp0yalpaUpOTlZ69at05133qmAgAClpqY6H7169VJycrK2bdsmSVqxYoUaN26sZs2auazXo0cPl9NIM47nQYMGudSS2XUcN910kxYsWKDJkydr27ZtuT4l8eTJk7JYLM6RVndz5syR1WqVr6+v6tevr5UrV2rhwoVq0aKFy3qHDx/WwIEDVaNGDefnk3E9nPt3wWKxeFzL0qRJE5dTOzdu3KjAwEDdeuutLusNGDDA5fmhQ4e0f/9+5z5y3++nTp3SgQMHctwPWY0m5uaUuNwwxrjUltmIe25lV5N72+rVq9W+fXt16NBBa9asUdWqVTPdLjo62uV5VFSULBaLy+hl+fLlVa9ePY9TcBcvXqz27dt7jBTn5nPOEBISIkn69ddfs3xvADJHUAJKmKioKLVs2dLjUbly5Ry3HTdunP75z39q27Zt6tmzp4KCgtS1a9cspxz/s4zTjDK79qRmzZrO9oz/Vq9e3WO9zJZl1eerr76qRx55RK1atdLixYu1bds27dy5U7feequSkpI81nf/JcXX1zfb5cnJyZnW8uf3kNV7TU9P17lz57LcPiuXLl3SZ599pptuuknVqlXT+fPndf78ed15552yWCzOECX9cV3Mtddem+fXyKu4uDi1b99ev/76q15//XVt3rxZO3fudF77k9m+zg2r1aoePXropZde0urVq3X8+HF16tRJK1as0MqVK13WrVGjhsf2NWrU0JUrV3T58mXFx8crNTVVb775pqxWq8ujV69ekiS73S5J+v333/XDDz94rBcYGChjjHO9+Ph4lS9fXkFBQTnWsmjRIg0dOlTvvfeeWrdurapVq+ree+/Vb7/9lu0+SEpKktVqVbly5TJtv+eee7Rz505t3bpVb7/9tgIDA/XXv/5VP//8s3Ody5cvq3379tq+fbsmT56sDRs2aOfOnVqyZInzNf4sICDA4/Qwm83mcrzHx8fn6vuZca3Uk08+6bE/hw8fLun/93tmMvZtZqconj17NstgkVcbN270qO/o0aN56iOnWi0Wi8dpa8uWLVNSUpIeeeQR2Wy2LPvO7GdQZp+Tr6+vy+fkcDj05ZdfZvqHpNx8zhky1svvdxkoy7hGCShDypcvr1GjRmnUqFE6f/681q5dq2eeeUY9evTQ8ePHFRAQkOW2Gb9InDp1yuMX+JMnTzr/ap6xnvsF6dIfs71lNqqU2V9xP/roI3Xq1Elz5851WX7p0qXs32QB+PN7dXfy5En5+Ph4XFidGwsXLlRiYqJ27NiR6fZLly7VuXPndM0116hatWoek2TkhZ+fX6b3Z3L/xXbZsmVKSEjQkiVLFBER4Vyem3tB5UVQUJBGjhypDRs26L///a8z4EjKNHD89ttv8vX1VcWKFZ1hY8iQIRoxYkSm/depU0fSH9dI+fv7Z3lt1Z+P09TUVMXHx7uEpcxqCQ4O1syZMzVz5kzFxcVp+fLlGjt2rE6fPq1Vq1Zl+Z6Dg4N15coVJSQkqEKFCh7t1apVU8uWLSX9MetdVFSUOnbsqCeeeEIrVqyQJP3nP//RyZMntWHDBpdZFa9m+v6goCDnhAN/5v7eM/bVuHHjspzOOzIyMsvXuf766yVJ+/btc17nKP0xMrV//36PEaz8atGihXbu3OmyrGbNmnnq4y9/+Yv8/f21b98+j7Z9+/apXr16HsHktdde06JFi9SzZ08tXbpU3bt3z3vx2Vi7dq0uXLigO++886r6OXv2rCRlObIJIGuMKAFlVJUqVXTXXXdpxIgROnv2rPMvsBl/GXX/62OXLl0k/RFg/mznzp2KjY1V165dJUmtWrWSzWbTokWLXNbbtm1bpqeFZMVisXj8lfaHH35wmXWusERGRqpWrVqKiYlxOU0sISFBixcvds6El1fz5s1TYGCg1q1bp/Xr17s8XnnlFaWkpOjjjz+WJPXs2VMHDx70uFj/z7L6rKQ/Zjw8ffq0S2C9cuWKVq9e7bJeRkj98742xjinc84rh8OR5SQHGaeJuf8Su2TJEpe/hF+6dElffvml2rdvr3LlyikgIECdO3fW999/ryZNmmQ6opoRdqKjo/XLL78oKCgo0/UygnrGBAsZ+ztDTvcwCg8P16OPPqpu3bpp9+7d2a7boEEDSX9MFJAb7du317333quvvvrKeZxn9vlI0ttvv52rPjPTsWNHXbp0yWNk75NPPnF5HhkZqeuuu0579+7NdF+2bNlSgYGBWb5Oq1atFBoa6jGL3ueff67Lly/n+l5KOQkMDPSoK2PkOLfKly+v22+/XUuWLHH5Y0xcXJzWr1+faa1+fn5asmSJoqOj1bt37wK/R9jixYt18803q1atWlfVT8YNc/8cVgHkDiNKQBly++23q3HjxmrZsqWqVaumY8eOaebMmYqIiNB1110n6f//Cvz6669r6NChslqtioyMVGRkpB588EG9+eab8vHxUc+ePZ2z3oWFhemJJ56QJOf0t1OnTtU111yjO++8UydOnNCkSZMUGhqa6+l+o6Oj9eKLL2rChAnq2LGjDhw4oBdeeEF16tS5qmsQcsPHx0fTp0/XoEGDFB0drYceekgpKSl65ZVXdP78eb388st57vO///2vduzYoUceecQZOv+sbdu2mjFjhubNm6dHH31UI0eO1KJFi3THHXdo7Nixuummm5SUlKSNGzcqOjraeT+aiIgIffHFF+ratauqVq2q4OBg1a5dW/3799f48eP117/+VWPGjFFycrLeeOMNpaWlubxut27d5OvrqwEDBuipp55ScnKy5s6dm69TC6U/Zm6rXbu27r77bt1yyy0KCwvT5cuXtWHDBr3++uuKiory+KWzXLly6tatm0aNGqX09HRNmzZNFy9e1KRJk5zrvP7662rXrp3at2+vRx55RLVr19alS5d06NAhffnll85AOXLkSC1evFgdOnTQE088oSZNmig9PV1xcXH697//rdGjR6tVq1bq3r27OnTooKeeekoJCQlq2bKltmzZon/9618e76dz584aOHCgGjRooMDAQO3cuVOrVq3K8Rf9jJkZt23blulsapl58cUXtWjRIj3//PNau3at2rRpo2uuuUYPP/ywJkyYIKvVqo8//lh79+7NVX+ZGTp0qF577TUNHjxYkydPVr169bRy5UpniP7zd/Ttt99Wz5491aNHDw0bNky1atXS2bNnFRsbq927d+uzzz7L8nXKlSun6dOna8iQIXrooYc0YMAA/fzzz3rqqafUrVs3l2ukNm7cqK5du2r8+PEus7bt2rXL+Uecixcvyhijzz//XNIf18L9eRQ0KytXrlRCQoIzAP3000/OPnr16uX8o8ekSZN04403Kjo6WmPHjlVycrLGjx+v4OBgjR49OtO+rVarFi5cqAceeEB33XWXPvzwwwIZKUtLS9MXX3yhsWPHXnVf27ZtU1BQkPNnO4A88OZMEgByL2PWO/fZvDLcdtttOc56N2PGDNOmTRsTHBxsfH19TXh4uLn//vvN0aNHXbYbN26cqVmzpvHx8TGSzPr1640xf8yINm3aNFO/fn1jtVpNcHCwGTx4sDl+/LjL9unp6Wby5Mnm2muvNb6+vqZJkyZmxYoVpmnTpi4z1mU3Y1xKSop58sknTa1atYyfn5+54YYbzLJlyzxmXsuYOe2VV15x2T6rvnPaj3+2bNky06pVK+Pn52cqVKhgunbtarZs2ZKr13GXMdvenj17slxn7NixRpL57rvvjDHGnDt3zvzjH/8w4eHhxmq1mpCQEHPbbbeZ/fv3O7dZu3atad68ubHZbEaSy+f99ddfm2bNmhl/f39Tt25dM2vWrExnvfvyyy9N06ZNjZ+fn6lVq5YZM2aMc1a4jM/emNzNepeSkmL++c9/mp49e5rw8HBjs9mMn5+fiYqKMk899ZTLzGAZn920adPMpEmTnMdL8+bNzerVqz36PnLkiLnvvvtMrVq1jNVqNdWqVTNt2rQxkydPdlnv8uXL5rnnnjORkZHG19fXVK5c2Vx//fXmiSeecJmB7vz58+a+++4zVapUMQEBAaZbt25m//79LjOjJScnm4cfftg0adLEVKpUyfj7+5vIyEgzYcIEk5CQkO2+MMaY9u3bm169enksl2RGjBiR6TZjxowxkszGjRuNMcZs3brVtG7d2gQEBJhq1aqZBx54wOzevdtjhrqhQ4eaChUqePSX2WceFxdn+vbtaypWrGgCAwNNv379zNdff20kmS+++MJl3b1795p77rnHhISEGKvVamrUqGG6dOli3nrrrRzfvzHGxMTEmCZNmhhfX19To0YN8/jjj5tLly65rJPxPXKfkS5jhrfMHn9+79mJiIjIsg/32T137dplunbtagICAkylSpVMnz59zKFDhzKt9c/f+fT0dPP4448bHx8f8+677xpj/n+/nzlzxuM9ZfY5dezY0TRq1MgY88f3WpI5fPiwx3p5+ZzT09NNRESEeeyxx7LZQwCyYjEmFzdfAYCrdOTIETVo0EATJkzQM8884+1yUAwcPXpUderU0SuvvKInn3zS2+UUisWLF6t///46duzYVZ9CVdimTJmi5557TnFxcUUykQiyNnz4cG3fvl3ffffdVfWzbt06de/eXT/++KPzVFAAucepdwAK3N69e7Vw4UK1adNGlSpV0oEDBzR9+nRVqlRJ999/v7fLA4pM3759deONN2rq1KmaNWuWt8txyqilQYMGcjgc+s9//qM33nhDgwcPJiQVA3PmzCmQfiZPnqz77ruPkATkE0EJQIGrUKGCdu3apXnz5un8+fOqXLmyOnXqpJdeeinLKcKB0shisejdd9/V8uXLlZ6enutr9ApbQECAXnvtNR09elQpKSkKDw/X008/reeee87bpaGAnDt3Th07dnRO5Q4g7zj1DgAAAADcFI8/bQEAAABAMUJQAgAvs1gsuXps2LAhx76mTJmiZcuWXXU9EydOzNV6jz76aKZtn3/+ea5rLimee+45RUdHq1atWrJYLBo2bFim6/34448aPny4WrdurQoVKmS7Hy5duqTHH39ctWrVks1mU/369TV9+nSPadyzcurUKQ0bNkwhISHy8/NTkyZNNG/ePI/1FixYkOVxldlNdgEAXKMEAF7nfhPdF198UevXr/e42Wxubhg5ZcoU3XXXXerTp09BlghJr732mpo0aaLevXvr/fffz3K9Xbt2admyZWrevLm6du2qL7/8MtP1UlNT1a1bNx08eFAvvvii6tevr1WrVmns2LE6ceKE3njjjWzruXDhgtq1a6crV65o+vTpCg0Ndd7T58KFCxo1apTHNvPnz/e4sD/jZr0AAFcEJQDwsptvvtnlebVq1eTj4+OxHDkzxig5OVn+/v4F3velS5eckzG435j2z4YMGaKhQ4dK+mNkLaug9Pnnn2v79u1avHix8+a13bp10+XLlzV79myNGDFCkZGRWb7O3LlzdfjwYe3atUstWrSQJPXo0UOnTp3S+PHjdd9996lKlSou22TccBoAkDNOvQOAEuDs2bMaPny4atWqJV9fX9WtW1fPPvusUlJSnOtYLBYlJCTogw8+cJ5W1alTJ0nSmTNnNHz4cDVs2FAVK1ZUSEiIunTpos2bNxfp+1i+fLlat26tgIAABQYGqlu3bh4jasOGDVPt2rU9tp04caIsFovLsozT/9566y1FRUXJZrPpgw8+kPRHkGjatKkqVqyowMBANWjQ4Kru4ZXbGetyu96WLVtksVjUs2dPl+XR0dFKT0/X0qVLc9y+evXqzpD05+0TEhK0atWqXNUBAMgcQQkAirnk5GR17txZH374oUaNGqWvvvpKgwcP1vTp050jEdIfp/D5+/urV69e+vbbb/Xtt98678dy9uxZSdKECRP01Vdfaf78+apbt646dep0VdcRGWOUmprq8UhPT/dYNyYmRnfccYcqVaqkhQsXat68eTp37pw6deqkb775Jt81LFu2THPnztX48eO1evVqtW/fXp988omGDx+ujh07aunSpVq2bJmeeOIJJSQkuGxbu3btTENZUbhy5Yp8fHxktVpdlttsNknSDz/8kOP2Gevmdvvo6GiVK1dOVatWVd++ffXf//43v+UDQKnHqXcAUMx98MEH+uGHH/Tpp5/q7rvvlvTHKVoVK1bU008/rTVr1qhbt266+eab5ePjo2rVqnmcthcZGelyE8u0tDT16NFDR48e1RtvvOEcecqrOXPm5OrmmOnp6RozZoyuv/56rVy50jnq0qtXL/3lL3/R008/rS1btuSrhsuXL2vfvn265pprnMveeustValSxeU6n65du3psW7689/4ZbNiwodLS0rRt2za1a9fOuTwjNMbHx+e4/dq1axUXF6fw8PBst69Ro4aeffZZ3XzzzapUqZL27dunl19+WTfffLO2bNmipk2bFuRbA4BSgRElACjm/vOf/6hChQq66667XJZnzLq2bt26XPXz1ltv6YYbbpCfn5/Kly8vq9WqdevWKTY2Nt+13XPPPdq5c6fHY9q0aS7rHThwQCdPntSQIUNcTk2rWLGi+vXrp23btikxMTFfNXTp0sUlJEnSTTfdpPPnz2vAgAH64osvZLfbM9320KFDOnToUL5e92oNGjRIVatW1YMPPqjt27fr/PnzWrhwoTPc5XQK34MPPiir1apBgwbpxx9/VHx8vGbPnq1FixZ5bH/rrbdq8uTJio6OVocOHTRixAht3rxZFotF48ePL7w3CQAlGEEJAIq5+Ph41ahRw+P6nJCQEJUvXz7HkQdJevXVV/XII4+oVatWWrx4sbZt26adO3fq1ltvVVJSUr5rq1atmlq2bOnxqFu3rsd7kKTQ0FCPPmrWrKn09HSdO3cuXzVk1ueQIUP0/vvv69ixY+rXr59CQkLUqlUrrVmzJl+vURiCg4Od1xHdfPPNuuaaa/TYY4/p1VdflSTVqlUr2+2joqK0dOlSHTt2TI0bN1ZwcLCmTZumGTNm5Gr72rVrq127dtq2bVsBvBsAKH0ISgBQzAUFBen333+XMcZl+enTp5Wamqrg4OAc+/joo4/UqVMnzZ07V7fddptatWqlli1b6tKlS4VVtouMKahPnTrl0Xby5En5+Pg4R4X8/PxcJqnIkNWokHuAzPC3v/1NW7du1YULF/TVV1/JGKPo6GgdO3Ysv2+jwN1444366aefdOTIEf33v//VyZMnFRUVJUnq0KFDjtv37NlTx44d08GDB539ZOzr3GxvjMn15BMAUNbw0xEAirmuXbvq8uXLHjeS/fDDD53tGWw2W6YjRBaLxePC/x9++MFjxrnCEhkZqVq1aikmJsYl8CUkJGjx4sXOmfCkP0Y6Tp8+rd9//9253pUrV7R69ep8vXaFChXUs2dPPfvss7py5Yp+/PHHq3szhaB27dpq1KiRrFarZsyYoZo1azqvR8uJxWLRddddp6ioKKWlpen1119Xs2bNcgxKR44c0ZYtW5iGHgCywGQOAFDM3XvvvZo9e7aGDh2qo0eP6vrrr9c333yjKVOmqFevXrrllluc615//fXasGGDvvzyS4WGhiowMFCRkZGKjo7Wiy++qAkTJqhjx446cOCAXnjhBdWpU0epqamF/h58fHw0ffp0DRo0SNHR0XrooYeUkpKiV155RefPn9fLL7/sXLd///4aP368/vrXv2rMmDFKTk7WG2+8obS0tFy/3t///nf5+/urbdu2Cg0N1W+//aapU6eqcuXKuvHGG53r1atXT5JydZ3Sxo0bdebMGUl/TIZx7Ngxff7555Kkjh07qlq1apKkxMREff3115LkPK1t48aNstvtztCW4dlnn9X111+v0NBQxcXF6f3339f27dv11VdfudwLauPGjeratavGjx/vck3RY489pk6dOikoKEiHDx/WG2+8oRMnTmjjxo0utd9yyy3q0KGDmjRp4pzMYfr06bJYLHrxxRdzvV8BoEwxAIBiZejQoaZChQouy+Lj483DDz9sQkNDTfny5U1ERIQZN26cSU5Odllvz549pm3btiYgIMBIMh07djTGGJOSkmKefPJJU6tWLePn52duuOEGs2zZMjN06FATERHh0ockM2HChBzrlGRGjBiRadtnn31mJJn169e7LF+2bJlp1aqV8fPzMxUqVDBdu3Y1W7Zs8dj+66+/Ns2aNTP+/v6mbt26ZtasWWbChAnG/Z+trGr44IMPTOfOnU316tWNr6+vqVmzprnnnnvMDz/84LJeRESEx/vPSseOHY2kTB9/fp9HjhzJcj3313rkkUdMeHi48fX1NcHBwaZfv34eNRpjzPr16zP9XO644w4TGhpqrFarqVGjhhk2bJg5evSox/YjR440DRs2NIGBgaZ8+fKmZs2aZvDgwebAgQO5eu8AUBZZjHE76R0AAAAAyjiuUQIAAAAANwQlAAAAAHBDUAIAAAAANwQlAAAAAHBDUAIAAAAANwQlAAAAAHBDUAIAAAAAN+W9XcDVSE9P18mTJxUYGCiLxeLtcgAAAAB4iTFGly5dUs2aNeXjc/XjQSU6KJ08eVJhYWHeLgMAAABAMXH8+HFde+21V91PiQ5KgYGBkqQjR46oatWqXq4GpZnD4dC///1vde/eXVar1dvloBTjWENR4VhDUeFYQ1E5e/as6tSp48wIV6tEB6WM0+0CAwNVqVIlL1eD0szhcCggIECVKlXihzwKFccaigrHGooKxxqKisPhkKQCuySHyRwAAAAAwI3Xg9Kvv/6qwYMHKygoSAEBAWrWrJm+++47b5cFAAAAoAzz6ql3586dU9u2bdW5c2etXLlSISEh+uWXX1SlShVvlgUAAACgjPNqUJo2bZrCwsI0f/5857LatWt7ryAAAAAAkJdPvVu+fLlatmypu+++WyEhIWrevLneffddb5YEAAAAAN4dUTp8+LDmzp2rUaNG6ZlnntGOHTv0+OOPy2az6d577/VYPyUlRSkpKc7nFy9elPTHDBcZs1wAhSHj+OI4Q2HjWENR4VhDUeFYQ1Ep6GPMYowxBdpjHvj6+qply5baunWrc9njjz+unTt36ttvv/VYf+LEiZo0aZLH8piYGAUEBBRqrQAAAACKr8TERA0cOFAXLlwokFsHeXVEKTQ0VA0bNnRZFhUVpcWLF2e6/rhx4zRq1Cjn84sXLyosLEydO3dWUFBQodaKss3hcGjNmjXq1q0b94BAoeJYQ1HhWENR4VhDUYmPjy/Q/rwalNq2basDBw64LDt48KAiIiIyXd9ms8lms3kst1qtfPFQJDjWUFQ41lBUONZQVDjWUNgK+vjy6mQOTzzxhLZt26YpU6bo0KFDiomJ0TvvvKMRI0Z4sywAAAAAZZxXg9KNN96opUuXauHChWrcuLFefPFFzZw5U4MGDfJmWQAAAADKOK+eeidJ0dHRio6O9nYZAAAAAODk1RElAAAAACiOCEoAAAAA4IagBAAAAABuCEoAAAAA4IagBAAAAABuCEoAAAAA4Mbr04MDxVFcXJzsdrvzeXp6uiRp79698vHxUXBwsMLDw71VHgAAAAoZQQlwExcXp8gGUUpOSnQu8/f318KFC9WhQwclJSXJzz9AB/bHEpYAAABKKYIS4MZutys5KVFB0aNlDQqTJPmVt0iSqg98WZd+j1P8ihmy2+0EJQAAgFKKoARkwRoUJluNepIk33JGUpp8q9eVNdV4tzAAAAAUOiZzAAAAAAA3BCUAAAAAcENQAgAAAAA3BCUAAAAAcENQAgAAAAA3BCUAAAAAcENQAgAAAAA3BCUAAAAAcENQAgAAAAA3BCUAAAAAcFPe2wUA3hAXFye73Z5pW2xsbBFXAwAAgOKGoIQyJy4uTpENopSclOjtUgAAAFBMEZRQ5tjtdiUnJSooerSsQWEe7UmHd+nC5o+8UBkAAACKC4ISyixrUJhsNep5LHfEH/dCNQAAAChOmMwBAAAAANwQlAAAAADADUEJAAAAANwQlAAAAADADUEJAAAAANwQlAAAAADADUEJAAAAANwQlAAAAADADUEJAAAAANwQlAAAAADATXlvFwAAcXFxstvtWbYHBwcrPDy8CCsCAABlHUEJgFfFxcUpskGUkpMSs1zHzz9AB/bHEpYAAECRISgB8Cq73a7kpEQFRY+WNSjMo90Rf1zxK2bIbrcTlAAAQJEhKAEoFqxBYbLVqOftMgAAACQxmQMAAAAAeCAoAQAAAIAbTr0D8ijt8jlJUmxsbKbtzNAGAABQ8hGUgDxIu3hG9i+mSpIGDx6c6TrM0AYAAFDyEZSAPEhLuiSTeoUZ2gAAAEo5ghKQD8zQBgAAULoxmQMAAAAAuCEoAQAAAIAbghIAAAAAuCEoAQAAAIAbghIAAAAAuCEoAQAAAIAbghIAAAAAuCEoAQAAAIAbghIAAAAAuCEoAQAAAIAbghIAAAAAuCEoAQAAAIAbghIAAAAAuCEoAQAAAIAbghIAAAAAuCEoAQAAAIAbghIAAAAAuCEoAQAAAIAbghIAAAAAuCEoAQAAAIAbghIAAAAAuPFqUJo4caIsFovLo0aNGt4sCQAAAABU3tsFNGrUSGvXrnU+L1eunBerAQAAAIBiEJTKly/PKBIAAACAYsXrQennn39WzZo1ZbPZ1KpVK02ZMkV169bNdN2UlBSlpKQ4n1+8eFGS5HA45HA4iqRelHzp6eny9/eXX3mLfMsZj/ZUazmPdpvP//5b3pLttpb/taenp3NM5lJOn0dZ26cZ77EsvFd4F8caigrHGopKQR9jFmOM528mRWTlypVKTExU/fr19fvvv2vy5Mnav3+/fvzxRwUFBXmsP3HiRE2aNMljeUxMjAICAoqiZAAAAADFUGJiogYOHKgLFy6oUqVKV92fV4OSu4SEBP3lL3/RU089pVGjRnm0ZzaiFBYWplOnTmUarIDM7N27Vx06dFD1gS/Lt7rn6GVC7GadXfWmS7vNx+jFlul6emWc4j58Osttr/x+WL/HjNWmTZvUtGnTQn8vpUFOn0dZ26cOh0Nr1qxRt27dZLVavV0OSjGONRQVjjUUlfj4eIWGhhZYUPL6qXd/VqFCBV1//fX6+eefM2232Wyy2Wwey61WK1885JqPj4+SkpKUnGpk0iwe7cmOtCzbU1JNtttmtPv4+HBM5lJOn0dZ3af8XENR4VhDUeFYQ2Er6OOrWN1HKSUlRbGxsQoNDfV2KQAAAADKMK8GpSeffFIbN27UkSNHtH37dt111126ePGihg4d6s2yAAAAAJRxXj317sSJExowYIDsdruqVaumm2++Wdu2bVNERIQ3ywIAAABQxnk1KH3yySfefHkAAAAAyFSxmswBQOkUFxcnu92eaVtsbGwRVwMAAJAzghKAQhUXF6fIBlFKTkr0dikAAAC5RlACUKjsdruSkxIVFD1a1qAwj/akw7t0YfNHXqgMAAAgawQlAEXCGhQmW416Hssd8ce9UA0AAED2itV9lAAAAACgOCAoAQAAAIAbghIAAAAAuCEoAQAAAIAbghIAAAAAuCEoAQAAAIAbghIAAAAAuCEoAQAAAIAbghIAAAAAuCEoAQAAAIAbghIAAAAAuCEoAQAAAIAbghIAAAAAuCEoAQAAAIAbghIAAAAAuCEoAQAAAIAbghIAAAAAuCEoAQAAAIAbghIAAAAAuCEoAQAAAIAbghIAAAAAuCEoAQAAAIAbghIAAAAAuCEoAQAAAIAbghIAAAAAuCEoAQAAAIAbghIAAAAAuCEoAQAAAIAbghIAAAAAuCEoAQAAAIAbghIAAAAAuCEoAQAAAIAbghIAAAAAuCEoAQAAAIAbghIAAAAAuCEoAQAAAICb8t4uAEDpEBcXJ7vd7rE8NjbWC9UAAABcHYISUIpkFVYyBAcHKzw8vFBeN7JBlJKTEgu8bwAAAG8gKAGlRG7Cip9/gA7sj800LF1NyLLb7UpOSlRQ9GhZg8Jc2pIO79KFzR/l8l0AAAAUDwQloJTILqxIkiP+uOJXzJDdbvcIPFcbsjJYg8Jkq1HP43UBAABKGoISUMpkFlZycjUhq6hkda1TYZ1OCAAAyjaCEgCn/ISswpZ2+ZxksWjw4MGZtudmpAsAACCvCEoAirX0lMuSMZmOdhWHkS4AAFA6EZSAQpDdlNicKpY/xXG0CwAAlF4EJaAA5XSamMSpYgAAACUBQQkoQNmdJiZxqhgAAEBJQVACCgGniQEAAJRsPt4uAAAAAACKG4ISAAAAALghKAEAAACAG4ISAAAAALghKAEAAACAG2a9A5BrWd1IN7sb7AIAAJREBCUAOcrNjXQBAABKE4ISgBzldCPdpMO7dGHzR16oDAAAoHAQlADkWlY30nXEH/dCNQAAAIWHyRwAAAAAwA1BCQAAAADccOodUILExcXJbrdn2sbMcwAAAAWHoASUEHFxcYpsEKXkpERvlwIAAFDqFZugNHXqVD3zzDP6xz/+oZkzZ3q7HKDYsdvtSk5KZOY5AACAIlAsgtLOnTv1zjvvqEmTJt4uBSj2mHkOAACg8Hl9MofLly9r0KBBevfdd3XNNdd4uxwAAAAA8P6I0ogRI3Tbbbfplltu0eTJk71dDkoJJj0AAADA1fBqUPrkk0+0e/du7dy5M1frp6SkKCUlxfn84sWLkiSHwyGHw1EoNaLkOXHihFq0vDHbSQ/8/f3lV94i33LGoy3VWs6j3ebzv/+Wt+R52z+z/G/79PT0PB+z6enphfbaV9t3du1Xs21O7VezP4urjPdRWt4Pii+ONRQVjjUUlYI+xizGGM/fTIrA8ePH1bJlS/373/9W06ZNJUmdOnVSs2bNspzMYeLEiZo0aZLH8piYGAUEBBRmuQAAAACKscTERA0cOFAXLlxQpUqVrro/rwWlZcuW6c4771S5cuWcy9LS0mSxWOTj46OUlBSXNinzEaWwsDCdOnVKQUFBRVY7ire9e/eqQ4cOqj7wZflWr+vRnhC7WWdXvZmndpuP0Yst0/X0yjjFffh0vvu+8vth/R4zVps2bXL+gaCo3ld2r10Y+6wgts2p/Wr2Z3HlcDi0Zs0adevWTVar1dvloBTjWENR4VhDUYmPj1doaGiBBSWvnXrXtWtX7du3z2XZ3/72NzVo0EBPP/20R0iSJJvNJpvN5rHcarXyxYOTj4+PkpKSlJxqZNIsHu3JjrR8t6ekmqvqO2N7Hx+fPB+zV/u+snvtwtxnV7NtTu1Xsz+LO36uoahwrKGocKyhsBX08eW1oBQYGKjGjRu7LKtQoYKCgoI8lgMAAABAUfL69OAAAAAAUNx4fXrwP9uwYYO3SwAAAACA4hWUABS+zO4jxb2lAAAAXBGUgDIi7fI5yWLR4MGDvV0KAABAsUdQAsqI9JTLkjEKih4ta1CYS1vS4V26sPkjL1UGAABQ/BCUgDLGGhQmW416Lssc8ce9VA0AAEDxxKx3AAAAAOCGoAQAAAAAbghKAAAAAOCGoAQAAAAAbghKAAAAAOCGoAQAAAAAbghKAAAAAOCGoAQAAAAAbghKAAAAAOCGoAQAAAAAbghKAAAAAOCGoAQAAAAAbghKAAAAAOCGoAQAAAAAbsp7uwCgLIqNjc2yLTg4WOHh4UVYDQAAANwRlIAilHb5nGSxaPDgwVmu4+cfoAP7YwlLeUDwBAAABY2gBBSh9JTLkjEKih4ta1CYR7sj/rjiV8yQ3W7nl/tcIHgCAIDCQlACvMAaFCZbjXreLqPEI3gCAIDCQlACUOIRPAEAQEFj1jsAAAAAcENQAgAAAAA3BCUAAAAAcENQAgAAAAA3BCUAAAAAcENQAgAAAAA3BCUAAAAAcENQAgAAAAA3BCUAAAAAcENQAgAAAAA3BCUAAAAAcENQAgAAAAA3BCUAAAAAcFPe2wUA+H9pl89JkmJjYz3aMlsGAACAwkFQAoqJ1IunZf9iqiRp8ODBXq4GAACgbCMoAcVEWuJFmdQrCooeLWtQmEd70uFdurD5Iy9UBgAAUPYQlIBixhoUJluNeh7LHfHHvVANAABA2cRkDgAAAADghqAEAAAAAG4ISgAAAADghqAEAAAAAG4ISgAAAADghqAEAAAAAG4ISgAAAADghqAEAAAAAG7yFZRWrVqlb775xvl89uzZatasmQYOHKhz584VWHEAAAAA4A35CkpjxozRxYsXJUn79u3T6NGj1atXLx0+fFijRo0q0AIBAAAAoKiVz89GR44cUcOGDSVJixcvVnR0tKZMmaLdu3erV69eBVogAAAAABS1fI0o+fr6KjExUZK0du1ade/eXZJUtWpV50gTAAAAAJRU+RpRatu2rUaNGqW2bdtqx44dWrRokSTp4MGDuvbaawu0QAAAAAAoavkaUZo9e7asVqs+//xzzZ07V7Vq1ZIkrVy5UrfeemuBFggAAAAARS3PI0qpqalav3693nnnHYWGhrq0vfbaawVWGAAAAAB4S55HlMqXL69HHnlEV65cKYx6AAAAAMDr8nXqXatWrfT9998XdC0AAAAAUCzkazKH4cOHa/To0Tpx4oRatGihChUquLQ3adKkQIoDAAAAAG/IV1Dq37+/JOnxxx93LrNYLDLGyGKxKC0trWCqAwAAAAAvyPcNZwEAAACgtMpXUIqIiCjoOgAAAACg2MhXUPrwww+zbb/33nvzVQwAAAAAFAf5Ckr/+Mc/XJ47HA4lJibK19dXAQEBBCUAAAAAJVq+pgc/d+6cy+Py5cs6cOCA2rVrp4ULFxZ0jQAAAABQpPIVlDJz3XXX6eWXX/YYbQIAAACAkqbAgpIklStXTidPnsz1+nPnzlWTJk1UqVIlVapUSa1bt9bKlSsLsiQAAAAAyLN8XaO0fPlyl+fGGJ06dUqzZs1S27Ztc93Ptddeq5dffln16tWTJH3wwQe644479P3336tRo0b5KQ0AAAAArlq+glKfPn1cnlssFlWrVk1dunTRjBkzct3P7bff7vL8pZde0ty5c7Vt2zaCEgAAAACvyVdQSk9PL+g6lJaWps8++0wJCQlq3bp1puukpKQoJSXF+fzixYuS/ph1z+FwFHhNKJnS09Pl7+8vv/IW+ZYzHu2p1nJ5brf5/O+/5S0F3ncGSyH2nVN7ae07Y5+mp6eXmJ8RGXWWlHpRcnGsoahwrKGoFPQxZjHGeP52kQcZm1sslnxtv2/fPrVu3VrJycmqWLGiYmJi1KtXr0zXnThxoiZNmuSxPCYmRgEBAfl6fQAAAAAlX2JiogYOHKgLFy6oUqVKV91fvoPShx9+qFdeeUU///yzJKl+/foaM2aMhgwZkqd+rly5ori4OJ0/f16LFy/We++9p40bN6phw4Ye62Y2ohQWFqZTp04pKCgoP28DpdDevXvVoUMHVR/4snyr1/VoT4jdrLOr3sxTu83H6MWW6Xp6ZZziPny6QPvOcOX3w/o9Zmyh9J1Te2ntO2Ofbtq0SU2bNvVoL44cDofWrFmjbt26yWq1ersclGIcaygqHGsoKvHx8QoNDS2woJSvU+9effVVPf/883r00UfVtm1bGWO0ZcsWPfzww7Lb7XriiSdy3Zevr69zMoeWLVtq586dev311/X22297rGuz2WSz2TyWW61Wvnhw8vHxUVJSkpJTjUya50hnsiMt3+0pqaZE9p1Te2ntO2Of+vj4lLifEfxcQ1HhWENR4VhDYSvo4ytfQenNN9/U3Llzde+99zqX3XHHHWrUqJEmTpyYp6DkzhjjMmoEAAAAAEUtX0Hp1KlTatOmjcfyNm3a6NSpU7nu55lnnlHPnj0VFhamS5cu6ZNPPtGGDRu0atWq/JQFAAAAAAUiXzecrVevnj799FOP5YsWLdJ1112X635+//13DRkyRJGRkeratau2b9+uVatWqVu3bvkpCwAAAAAKRL5GlCZNmqT+/ftr06ZNatu2rSwWi7755hutW7cu0wCVlXnz5uXn5QEAAACgUOVrRKlfv37avn27goODtWzZMi1ZskTBwcHasWOH7rzzzoKuEQAAAACKVJ5GlDJu8CpJ1113nebMmZPpOgUxHR8AAAAAeEueglKVKlVydWPZtLS0fBcEAAAAAN6Wp6C0fv165/8bY9SrVy+99957qlWrVoEXBgAAAADekqeg1LFjR5fn5cqV080336y6desWaFEoPeLi4mS327NsDw4OVnh4eBFWBAAAAOQsX7PeAbkRFxenyAZRSk5KzHIdP/8AHdgfS1gCAABAsUJQQqGx2+1KTkpUUPRoWYPCPNod8ccVv2KG7HY7QQkAAADFylUHpdxM7oCyzRoUJluNet4uAwAAAMi1PAWlvn37ujxPTk7Www8/rAoVKrgsX7JkydVXBgAAAABekqegVLlyZZfngwcPLtBiAAAAAKA4yFNQmj9/fmHVAQAAAADFho+3CwAAAACA4oagBAAAAABuCEoAAAAA4IagBAAAAABuCEoAAAAA4IagBAAAAABuCEoAAAAA4IagBAAAAABu8nTDWcBdXFyc7HZ7pm2xsbHZbpt2+Vy26wUHBys8PPzqCgQAAADygaCEfIuLi1NkgyglJyXmedvUi6dl/2KqJGnw4MGZruPnH6AD+2MJSwAAAChyBCXkm91uV3JSooKiR8saFObRnnR4ly5s/ijTbdMSL8qkXslyW0f8ccWvmCG73U5QAgAAQJEjKOGqWYPCZKtRz2O5I/54vrcFAAAAvInJHAAAAADADUEJAAAAANwQlAAAAADADUEJAAAAANwQlAAAAADADUEJAAAAANwQlAAAAADADUEJAAAAANwQlAAAAADADUEJAAAAANyU93YBBS0uLk52uz3L9uDgYIWHhxdhRQAAAABKmlIVlOLi4hTZIErJSYlZruPnH6AD+2MJSwAAAACyVKqCkt1uV3JSooKiR8saFObR7og/rvgVM2S32wlKpUBWo4exsbFeqAYAAAClSakKShmsQWGy1ajn7TJQiHIzeggAAADkV6kMSij9shs9zBg5BAAAAPKLoIRiLavT6DKWM3oIAACAwkBQQrGUdvmcZLFo8ODB3i4FAAAAZRBBCcVSesplyZgsJ+ZIOrxLFzZ/5IXKAAAAUBYQlFCsZXVqnSP+uBeqAQAAQFnh4+0CAAAAAKC4ISgBAAAAgBuCEgAAAAC4ISgBAAAAgBuCEgAAAAC4ISgBAAAAgBuCEgAAAAC4ISgBAAAAgJsyecPZ2NjYTJcHBwcrPDy8iKsBAAAAUNyUqaCUdvmcZLFo8ODBmbb7+QfowP5YwhIAAABQxpWpoJSeclkyRkHRo2UNCnNpc8QfV/yKGbLb7QQlAAAAoIwrU0EpgzUoTLYa9bxdBgAAAIBiiskcAAAAAMANQQkAAAAA3BCUAAAAAMANQQkAAAAA3BCUAAAAAMANQQkAAAAA3JTJ6cGRe3FxcbLb7Zm2xcbGFnE1AAAAQNEgKCFLcXFximwQpeSkRG+XAgAAABQpghKyZLfblZyUqKDo0bIGhXm0Jx3epQubP/JCZQAAAEDhIighR9agMNlq1PNY7og/7oVqAAAAgMLn1ckcpk6dqhtvvFGBgYEKCQlRnz59dODAAW+WBAAAAADeDUobN27UiBEjtG3bNq1Zs0apqanq3r27EhISvFkWAAAAgDLOq6ferVq1yuX5/PnzFRISou+++04dOnTwUlUAAAAAyrpidR+lCxcuSJKqVq3q5UoAAAAAlGXFZjIHY4xGjRqldu3aqXHjxpmuk5KSopSUFOfzixcvSpIcDoccDofS09Pl7+8vv/IW+ZYzHtunWstl2W4pb5G/v7/S09PlcDgK8J2VXFezP3Nqz9jfJaVvm8///lvC6s5te2ntuyR+rzPqLCn1ouTiWENR4VhDUSnoY8xijPH87cILRowYoa+++krffPONrr322kzXmThxoiZNmuSxPCYmRgEBAYVdIgAAAIBiKjExUQMHDtSFCxdUqVKlq+6vWASlxx57TMuWLdOmTZtUp06dLNfLbEQpLCxMp06dUlBQkPbu3asOHTqo+sCX5Vu9rsf2CbGbdXbVm5m2X/n9sH6PGatNmzapadOmBffmSrCr2Z85tWfs75LSt83H6MWW6Xp6ZZziPny6xNSd2/bS2ndJ/F47HA6tWbNG3bp1k9Vq9XY5KMU41lBUONZQVOLj4xUaGlpgQcmrp94ZY/TYY49p6dKl2rBhQ7YhSZJsNptsNpvHcqvVKqvVKh8fHyUlJSk51cikWTzWS3akZdmekmqUlJQkHx8fvsT/czX7M6f2jP1N30XTd07tpbXvkvy9zvi5BhQ2jjUUFY41FLaCPr68GpRGjBihmJgYffHFFwoMDNRvv/0mSapcubL8/f29WRoAAACAMsyrs97NnTtXFy5cUKdOnRQaGup8LFq0yJtlAQAAACjjvH7qHQAAAAAUN8XqPkoAAAAAUBwQlAAAAADADUEJAAAAANwQlAAAAADADUEJAAAAANx4dda74ig2NjbLtuDgYIWHhxdhNQAAAAC8gaD0P2mXz0kWiwYPHpzlOn7+ATqwP5awBAAAAJRyBKX/SU+5LBmjoOjRsgaFebQ74o8rfsUM2e12ghIAAABQyhGU3FiDwmSrUc/bZQAAAADwIiZzAAAAAAA3BCUAAAAAcENQAgAAAAA3BCUAAAAAcENQAgAAAAA3zHoHoNTjRtIAACCvCEp5xC9cQMnBjaQBAEB+EZRyiV+4gJKHG0kDAID8IijlEr9wASUXN5IGAAB5RVDKo5L4C1dcXJzsdnuW7ZwyCAAAALgiKJVycXFximwQpeSkxCzX4ZRBAAAAwBVBqZSz2+1KTkrklEEAAAAgDwhKZUROpwxmNptfdjP8AQAAAKUZQamMy81sfgAAAEBZQ1AqBbKbrCGnUaHsZvPLOC0PAAAAKGsISiVcbiZryI2SOJsfAAAAUFgISgUsqxGcwpqCO6fJGpIO79KFzR8V+OsCAAAApRlBqYDkdK1PYU/BndWIkCP+eKG8HgAAAFCaEZQKSG6u9WEKbgAAAKBkICgVMK71AQAAAEo+H28XAAAAAADFDUEJAAAAANwQlAAAAADADUEJAAAAANwQlAAAAADADUEJAAAAANwQlAAAAADADfdRKibi4uJkt9uzbE9JSZHNZvNYHhsbW5hlAQAAAGUSQakYiIuLU2SDKCUnJWa9ksVHMulFVxQAAABQhhGUigG73a7kpEQFRY+WNSjMoz3p8C5d2PxRpu0ZbQAAAAAKDkGpGLEGhclWo57Hckf88SzbM9oAAAAAFByCUhHK6noirjMCAAAAiheCUhFIu3xOslg0ePBgb5cCAAAAIBcISkUgPeWyZEyO1yABAAAAKB4ISkUop2uQAAAAABQP3HAWAAAAANwQlAAAAADADUEJAAAAANwQlAAAAADADUEJAAAAANwQlAAAAADADUEJAAAAANwQlAAAAADADUEJAAAAANwQlAAAAADADUEJAAAAANyU93YBAFBSxcXFyW63Z9keHBys8PDwIqwIAAAUFIISAORDXFycIhtEKTkpMct1/PwDdGB/LGEJAIASiKAEAPlgt9uVnJSooOjRsgaFebQ74o8rfsUM2e12ghIAACUQQQkAroI1KEy2GvW8XQYAAChgTOYAAAAAAG4ISgAAAADghqAEAAAAAG4ISgAAAADghqAEAAAAAG4ISgAAAADgxqtBadOmTbr99ttVs2ZNWSwWLVu2zJvlAAAAAIAkLwelhIQENW3aVLNmzfJmGQAAAADgwqs3nO3Zs6d69uzpzRIAAAAAwINXg1JepaSkKCUlxfn84sWLkiSHwyGHw6H09HT5+/vLr7xFvuWMx/ap1nJZtmfXdrXtJbVvS3kLff+v3ebzv/+WsLpz215W+87Y5+np6XI4HB7t2cnp501++85YN6/1AHnFsYaiwrGGolLQx5jFGOP5L7wXWCwWLV26VH369MlynYkTJ2rSpEkey2NiYhQQEFCI1QEAAAAozhITEzVw4EBduHBBlSpVuur+SlRQymxEKSwsTKdOnVJQUJD27t2rDh06qPrAl+Vbva7H9gmxm3V21ZuZtmfXdrXtJbXvK78f1u8xY+lbf4wovdgyXU+vjFPch0+XmLpz215W+87Y55s2bVLTpk092rOT08+b/PbtcDi0Zs0adevWTVarNU81AXnBsYaiwrGGohIfH6/Q0NACC0ol6tQ7m80mm83msdxqtcpqtcrHx0dJSUlKTjUyaRaP9ZIdaVm2Z9d2te0lte+UVEPfpaTvnNrLat8Z+9zHxyfP/3jn9PPmavqW/v/nGlDYONZQVDjWUNgK+vjiPkoAAAAA4MarI0qXL1/WoUOHnM+PHDmiPXv2qGrVqgoPD/diZQAAAADKMq8GpV27dqlz587O56NGjZIkDR06VAsWLPBSVQAAAADKOq8GpU6dOqmYzCUBAAAAAE5cowQAAAAAbghKAAAAAOCGoAQAAAAAbghKAAAAAOCGoAQAAAAAbghKAAAAAOCGoAQAAAAAbghKAAAAAODGqzecBYDiIDY2NtPlwcHBCg8PL+JqAABAcUBQAlBmpV0+J1ksGjx4cKbtfv4BOrA/lrAEAEAZRFACUGalp1yWjFFQ9GhZg8Jc2hzxxxW/YobsdjtBCQCAMoigBKDMswaFyVajnrfLAAAAxQiTOQAAAACAG4ISAAAAALghKAEAAACAG65RAoBsZDV1eFbLc7seU48DAFC8EZQAIBM5TR1+tdsz9TgAAMUbQQkAMpHd1OGSlHR4ly5s/ihf2zP1OAAAxR9BCQCykdXU4Y7441e1PQAAKN6YzAEAAAAA3BCUAAAAAMANp94BgJdkNiNeenq6JOnEiROqU6dOUZcEAAD+h6AEAEUsuxnx/P39tXDhQrVoeaP2fL+byR4AAPASghIAFLHsZsTzK2+RJCUnJTIrHgAAXkRQAgAvyWxGPN9yRlKadwoCAABOTOYAAAAAAG4YUQKAYiqzyR4yBAcHc1oeAACFiKAEAMVRFpM9ZPDzD9CB/bGEJQAACglBCQCKoywme5AkR/xxxa+YwWQPAAAUIoISABRTmU328GdZnZrHaXkAAFw9ghIAlDDZ3YdJkmw2Py1e/LlCQ0MzbSdIAQCQM4ISAJQw2d2HKfnEjzr/n/cUHR2d5fYEKQAAckZQAoASKrNT8xzxx7O9vik3QYqJIgAAICgBQKmU1fVNOQUpJooAAOAPBCUAKIOYKAIAgOwRlAAATjlNFMFpeQCAsoKgBABwym6iCE7LAwCUJQQlAICHnE7NAwCgtPPxdgEAAAAAUNwQlAAAAADADUEJAAAAANwQlAAAAADADUEJAAAAANww6x0AIE+yuhmtxA1pAQClB0EJAJArOd2MVuKGtACA0oOgBADIlexuRitxQ1oAQOlCUAIA5Ak3owUAlAVM5gAAAAAAbghKAAAAAOCGoAQAAAAAbghKAAAAAOCGyRwAAAWK+ywBAEoDghIAoEBwnyUAQGlCUAIAFAjuswQAKE0ISgCAAsV9lgAApQFBCQBQ6sXFxclut2fZzrVTAAB3BCUAQKkWFxenyAZRSk5KzHKdnK6dyi5oEbIAoHQiKAEAilRWs+IVVuCw2+1KTkrM8dqpzZs3KyoqyqP91KlT6nfX3UpJTsq0fyaoAIDSiaAEACgSOc2Kd7WBI6tRn4xgltW1U7mZrU9SpkGLCSoAoPQiKAEAikR2s+LlJnBkd/pbTqM++a1LkpIO79KFzR9lO0kF944CgNKHoAQAKFL5mRUvN9cZSZmP+mQEnfzW5Yg/nuU23DsKAEovghIAoNjIamQmNjY22+uMshv1yS7oXK3c3jsqq+ufJEacAKC4IigBALwut9cJ5WfUpyhczfVPjDgBQPFEUAIAeF1urxMqaXI74sRkEABQ/Hg9KM2ZM0evvPKKTp06pUaNGmnmzJlq3769t8sCAHhBcR0xulo5XZdV1FOmAwBy5tWgtGjRIo0cOVJz5sxR27Zt9fbbb6tnz5766aef+IcBAFDqFfaU6QCA/PNqUHr11Vd1//3364EHHpAkzZw5U6tXr9bcuXM1depUb5YGAEChy82U6UwEAQDe4bWgdOXKFX333XcaO3asy/Lu3btr69atXqoKAICil9mpebmZCMJm89PixZ8rNDQ00/aUlBTZbLZM25KS/rjn1N69e+Xj45OnbXNqv5ptvdn3qVOnJClf+5O+s+7barVKyvxYK43HEX0Xbd+F+QcjrwUlu92utLQ0Va9e3WV59erV9dtvv2W6TUpKilJSUpzPL1y4IEk6e/asJOnixYvy8/OTJf6ITHqKx/Y+l05l2Z5d29W2l9S+LedO0vf/2tPLS4mJYbKcPVai6s5tO30Xn74zjrWSVjd9F8L31v6z/Gw2BbborXKBQR7bOuzHlfDjOt11110ebU4WH8mkZ9rk7x+g2bNnqXv37s7QlNttc2y/mm292rdFMoa+C7hvfz+bZs+enfmxViqPI/ouyr79/P21ccMG1apVy5kJTHbHbF4YL/n111+NJLN161aX5ZMnTzaRkZGZbjNhwgQjiQcPHjx48ODBgwcPHjwyffzyyy8Fkle8NqIUHByscuXKeYwenT592mOUKcO4ceM0atQo5/Pz588rIiJCcXFxqly5cqHWi7Lt4sWLCgsL0/Hjx1WpUiVvl4NSjGMNRYVjDUWFYw1F5cKFCwoPD1fVqlULpD+vBSVfX1+1aNFCa9as0Z133ulcvmbNGt1xxx2ZbmOz2TI9P7Fy5cp88VAkKlWqxLGGIsGxhqLCsYaiwrGGopLZdZf54dVZ70aNGqUhQ4aoZcuWat26td555x3FxcXp4Ycf9mZZAAAAAMo4rwal/v37Kz4+Xi+88IJOnTqlxo0b6+uvv1ZERIQ3ywIAAABQxnk1KEnS8OHDNXz48Hxta7PZNGHChGynEwQKAscaigrHGooKxxqKCscaikpBH2sWYwpq/jwAAAAAKB0K5konAAAAAChFCEoAAAAA4IagBAAAAABuSnRQmjNnjurUqSM/Pz+1aNFCmzdv9nZJKGWmTp2qG2+8UYGBgQoJCVGfPn104MABb5eFUm7q1KmyWCwaOXKkt0tBKfXrr79q8ODBCgoKUkBAgJo1a6bvvvvO22WhlElNTdVzzz2nOnXqyN/fX3Xr1tULL7yg9PR0b5eGEm7Tpk26/fbbVbNmTVksFi1btsyl3RijiRMnqmbNmvL391enTp30448/5vl1SmxQWrRokUaOHKlnn31W33//vdq3b6+ePXsqLi7O26WhFNm4caNGjBihbdu2ac2aNUpNTVX37t2VkJDg7dJQSu3cuVPvvPOOmjRp4u1SUEqdO3dObdu2ldVq1cqVK/XTTz9pxowZqlKlirdLQykzbdo0vfXWW5o1a5ZiY2M1ffp0vfLKK3rzzTe9XRpKuISEBDVt2lSzZs3KtH369Ol69dVXNWvWLO3cuVM1atRQt27ddOnSpTy9Tomd9a5Vq1a64YYbNHfuXOeyqKgo9enTR1OnTvViZSjNzpw5o5CQEG3cuFEdOnTwdjkoZS5fvqwbbrhBc+bM0eTJk9WsWTPNnDnT22WhlBk7dqy2bNnCWRgodNHR0apevbrmzZvnXNavXz8FBAToX//6lxcrQ2lisVi0dOlS9enTR9Ifo0k1a9bUyJEj9fTTT0uSUlJSVL16dU2bNk0PPfRQrvsukSNKV65c0Xfffafu3bu7LO/evbu2bt3qpapQFly4cEGSVLVqVS9XgtJoxIgRuu2223TLLbd4uxSUYsuXL1fLli119913KyQkRM2bN9e7777r7bJQCrVr107r1q3TwYMHJUl79+7VN998o169enm5MpRmR44c0W+//eaSE2w2mzp27JjnnOD1G87mh91uV1pamqpXr+6yvHr16vrtt9+8VBVKO2OMRo0apXbt2qlx48beLgelzCeffKLdu3dr586d3i4Fpdzhw4c1d+5cjRo1Ss8884x27Nihxx9/XDabTffee6+3y0Mp8vTTT+vChQtq0KCBypUrp7S0NL300ksaMGCAt0tDKZaRBTLLCceOHctTXyUyKGWwWCwuz40xHsuAgvLoo4/qhx9+0DfffOPtUlDKHD9+XP/4xz/073//W35+ft4uB6Vcenq6WrZsqSlTpkiSmjdvrh9//FFz584lKKFALVq0SB999JFiYmLUqFEj7dmzRyNHjlTNmjU1dOhQb5eHUq4gckKJDErBwcEqV66cx+jR6dOnPdIjUBAee+wxLV++XJs2bdK1117r7XJQynz33Xc6ffq0WrRo4VyWlpamTZs2adasWUpJSVG5cuW8WCFKk9DQUDVs2NBlWVRUlBYvXuylilBajRkzRmPHjtVf//pXSdL111+vY8eOaerUqQQlFJoaNWpI+mNkKTQ01Lk8PzmhRF6j5OvrqxYtWmjNmjUuy9esWaM2bdp4qSqURsYYPfroo1qyZIn+85//qE6dOt4uCaVQ165dtW/fPu3Zs8f5aNmypQYNGqQ9e/YQklCg2rZt63Gbg4MHDyoiIsJLFaG0SkxMlI+P66+a5cqVY3pwFKo6deqoRo0aLjnhypUr2rhxY55zQokcUZKkUaNGaciQIWrZsqVat26td955R3FxcXr44Ye9XRpKkREjRigmJkZffPGFAgMDnaOYlStXlr+/v5erQ2kRGBjocd1bhQoVFBQUxPVwKHBPPPGE2rRpoylTpuiee+7Rjh079M477+idd97xdmkoZW6//Xa99NJLCg8PV6NGjfT999/r1Vdf1X333eft0lDCXb58WYcOHXI+P3LkiPbs2aOqVasqPDxcI0eO1JQpU3Tdddfpuuuu05QpUxQQEKCBAwfm6XVK7PTg0h83nJ0+fbpOnTqlxo0b67XXXmPKZhSorM5lnT9/voYNG1a0xaBM6dSpE9ODo9CsWLFC48aN088//6w6depo1KhR+vvf/+7tslDKXLp0Sc8//7yWLl2q06dPq2bNmhowYIDGjx8vX19fb5eHEmzDhg3q3Lmzx/KhQ4dqwYIFMsZo0qRJevvtt3Xu3Dm1atVKs2fPzvMfH0t0UAIAAACAwlAir1ECAAAAgMJEUAIAAAAANwQlAAAAAHBDUAIAAAAANwQlAAAAAHBDUAIAAAAANwQlAAAAAHBDUAIAAAAANwQlAECBslgsWrZsmbfLyJejR4/KYrFoz5492a534MAB1ahRQ5cuXZIkLViwQFWqVCkW9a1YsULNmzdXenp6odcDAKUZQQkASqitW7eqXLlyuvXWW/O8be3atTVz5syCLyoXTp8+rYceekjh4eGy2WyqUaOGevTooW+//dYr9eTHs88+qxEjRigwMLBIXm/YsGEaO3ZsrtaNjo6WxWJRTExMIVcFAKUbQQkASqj3339fjz32mL755hvFxcV5u5xc69evn/bu3asPPvhABw8e1PLly9WpUyedPXvW26XlyokTJ7R8+XL97W9/K5LXS09P11dffaU77rgj19v87W9/05tvvlmIVQFA6UdQAoASKCEhQZ9++qkeeeQRRUdHa8GCBR7rLF++XC1btpSfn5+Cg4PVt29fSVKnTp107NgxPfHEE7JYLLJYLJKkiRMnqlmzZi59zJw5U7Vr13Y+37lzp7p166bg4GBVrlxZHTt21O7du3Nd9/nz5/XNN99o2rRp6ty5syIiInTTTTdp3Lhxuu2225zrWSwWzZ07Vz179pS/v7/q1Kmjzz77zKWvX3/9Vf3799c111yjoKAg3XHHHTp69KjLOvPnz1dUVJT8/PzUoEEDzZkzx6V9x44dat68ufz8/NSyZUt9//33Ob6HTz/9VE2bNtW1116b5Trx8fG66aab1Lt3byUnJ2vDhg2yWCxavXq1mjdvLn9/f3Xp0kWnT5/WypUrFRUVpUqVKmnAgAFKTEx06WvLli3y8fFRq1atnMsOHz6szp07KyAgQE2bNvUYjevdu7d27Nihw4cP5/h+AACZIygBQAm0aNEiRUZGKjIyUoMHD9b8+fNljHG2f/XVV+rbt69uu+02ff/991q3bp1atmwpSVqyZImuvfZavfDCCzp16pROnTqV69e9dOmShg4dqs2bN2vbtm267rrr1KtXL+e1OjmpWLGiKlasqGXLliklJSXbdZ9//nnn6NPgwYM1YMAAxcbGSpISExPVuXNnVaxYUZs2bdI333yjihUr6tZbb9WVK1ckSe+++66effZZvfTSS4qNjdWUKVP0/PPP64MPPpD0R9iMjo5WZGSkvvvuO02cOFFPPvlkju9h06ZNzn2ZmRMnTqh9+/Zq0KCBlixZIj8/P2fbxIkTNWvWLG3dulXHjx/XPffco5kzZyomJkZfffWV1qxZ4zEStHz5ct1+++3y8fn/f7KfffZZPfnkk9qzZ4/q16+vAQMGKDU11dkeERGhkJAQbd68Ocf3AwDIggEAlDht2rQxM2fONMYY43A4THBwsFmzZo2zvXXr1mbQoEFZbh8REWFee+01l2UTJkwwTZs2dVn22muvmYiIiCz7SU1NNYGBgebLL790LpNkli5dmuU2n3/+ubnmmmuMn5+fadOmjRk3bpzZu3evyzqSzMMPP+yyrFWrVuaRRx4xxhgzb948ExkZadLT053tKSkpxt/f36xevdoYY0xYWJiJiYlx6ePFF180rVu3NsYY8/bbb5uqVauahIQEZ/vcuXONJPP9999nWX/Tpk3NCy+84LJs/vz5pnLlyubAgQMmPDzcPPbYYy61rV+/3kgya9eudS6bOnWqkWR++eUX57KHHnrI9OjRw6Xv+vXrm+XLlxtjjDly5IiRZN577z1n+48//mgkmdjYWJftmjdvbiZOnJjl+wAAZI8RJQAoYQ4cOKAdO3bor3/9qySpfPny6t+/v95//33nOnv27FHXrl0L/LVPnz6thx9+WPXr11flypVVuXJlXb58OU/XSPXr108nT57U8uXL1aNHD23YsEE33HCDx+mDrVu39nieMaL03Xff6dChQwoMDHSOUlWtWlXJycn65ZdfdObMGR0/flz333+/s71ixYqaPHmyfvnlF0lSbGysmjZtqoCAgCxfMzNJSUkuo0R/Xt6uXTv16dNHb7zxhvOUxj9r0qSJ8/+rV6+ugIAA1a1b12XZ6dOnnc9jY2N14sQJ3XLLLVn2ExoaKkku20mSv7+/x2l8AIDcK+/tAgAAeTNv3jylpqaqVq1azmXGGFmtVp07d07XXHON/P3989yvj4+Py+l7kuRwOFyeDxs2TGfOnNHMmTMVEREhm82m1q1bO093yy0/Pz9169ZN3bp10/jx4/XAAw9owoQJGjZsWLbbZYSP9PR0tWjRQh9//LHHOtWqVVNycrKkP06/+/O1PZJUrlw5SfJ4r7kVHBysc+fOeSy32Wy65ZZb9NVXX2nMmDGZXsNktVpd3sufn2cs+/O03suXL1e3bt08Pk/3fiR5TAd+9uxZVatWLQ/vDADwZ4woAUAJkpqaqg8//FAzZszQnj17nI+9e/cqIiLCGRyaNGmidevWZdmPr6+v0tLSXJZVq1ZNv/32m0uAcL9fz+bNm/X444+rV69eatSokWw2m+x2+1W/r4YNGyohIcFl2bZt2zyeN2jQQJJ0ww036Oeff1ZISIjq1avn8qhcubKqV6+uWrVq6fDhwx7tderUcb7m3r17lZSUlOVrZqZ58+b66aefPJb7+PjoX//6l1q0aKEuXbro5MmTed4P7r744gv17t07z9tljKw1b978qmsAgLKKoAQAJciKFSt07tw53X///WrcuLHL46677tK8efMkSRMmTNDChQs1YcIExcbGat++fZo+fbqzn9q1a2vTpk369ddfnUGnU6dOOnPmjKZPn65ffvlFs2fP1sqVK11ev169evrXv/6l2NhYbd++XYMGDcrT6FV8fLy6dOmijz76SD/88IOOHDmizz77TNOnT/eY/vqzzz7T+++/r4MHD2rChAnasWOHHn30UUnSoEGDFBwcrDvuuEObN2/WkSNHtHHjRv3jH//QiRMnJP0xccLUqVP1+uuv6+DBg9q3b5/mz5+vV199VZI0cOBA+fj46P7779dPP/2kr7/+Wv/85z9zfA8Z93xyD5rSH6NVH3/8sZo2baouXbrot99+y/W+cXf69Gnt3LlT0dHRed5227ZtztE+AED+EJQAoASZN2+ebrnlFlWuXNmjrV+/ftqzZ492796tTp066bPPPtPy5cvVrFkzdenSRdu3b3eu+8ILL+jo0aP6y1/+4jw9KyoqSnPmzNHs2bPVtGlT7dixw2MWuPfff1/nzp1T8+bNNWTIED3++OMKCQnJdf0VK1ZUq1at9Nprr6lDhw5q3Lixnn/+ef3973/XrFmzXNadNGmSPvnkEzVp0kQffPCBPv74YzVs2FCSFBAQoE2bNik8PFx9+/ZVVFSU7rvvPiUlJalSpUqSpAceeEDvvfeeFixYoOuvv14dO3bUggULnCNKFStW1JdffqmffvpJzZs317PPPqtp06bl+B569eolq9WqtWvXZtpevnx5LVy4UI0aNXJOAZ4fX375pVq1apWn/Zth4cKFGjRokMv1VwCAvLGY/J6kDQBAIbFYLFq6dKn69Onj7VIyNWfOHH3xxRdavXp1ob1G79691a5dOz311FN52u7MmTNq0KCBdu3a5QyFAIC8YzIHAADy6MEHH9S5c+d06dIlBQYGFsprtGvXTgMGDMjzdkeOHNGcOXMISQBwlRhRAgAUO8V9RAkAUPoxogQAKHb4Gx4AwNuYzAEAAAAA3BCUAAAAAMANQQkAAAAA3BCUAAAAAMANQQkAAAAA3BCUAAAAAMANQQkAAAAA3BCUAAAAAMANQQkAAAAA3PwfGJZ3R2MvDokAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 1000x600 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Calculate histogram\n",
    "counts, bin_edges = np.histogram(combined_control_df['actual_speed'], bins=num_bins, range=(0.1, 10))\n",
    "\n",
    "# Convert counts to hours\n",
    "counts_in_hours = (counts * 0.1) / 3600\n",
    "\n",
    "# Calculate total hours\n",
    "total_hours = counts_in_hours.sum()\n",
    "\n",
    "# Plot the histogram\n",
    "plt.figure(figsize=(10, 6))\n",
    "plt.bar(bin_edges[:-1], counts_in_hours, width = 0.1, edgecolor='black')\n",
    "plt.xlabel('Actual Speed (km/h)')\n",
    "plt.ylabel('Hours')\n",
    "plt.title(f'Histogram of Actual Speeds (Range 0.1-10km/h)\\nTotal Hours: {total_hours:.2f}')\n",
    "plt.grid(True)\n",
    "\n",
    "# Set x-axis range\n",
    "plt.xlim(0, 10)\n",
    "\n",
    "plt.show()"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.13"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}