Datasets:
annotations_creators:
- expert-generated
- machine-generated
language_creators:
- expert-generated
- machine-generated
language:
- de
- en
- es
- fr
- ja
- ko
- zh
license:
- other
multilinguality:
- multilingual
size_categories:
- 10K<n<100K
source_datasets:
- extended|other-paws
task_categories:
- text-classification
task_ids:
- semantic-similarity-classification
- semantic-similarity-scoring
- text-scoring
- multi-input-text-classification
paperswithcode_id: paws-x
pretty_name: 'PAWS-X: A Cross-lingual Adversarial Dataset for Paraphrase Identification'
tags:
- paraphrase-identification
dataset_info:
- config_name: de
features:
- name: id
dtype: int32
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: label
dtype:
class_label:
names:
'0': '0'
'1': '1'
splits:
- name: train
num_bytes: 12801784
num_examples: 49401
- name: test
num_bytes: 524206
num_examples: 2000
- name: validation
num_bytes: 514001
num_examples: 2000
download_size: 9601920
dataset_size: 13839991
- config_name: en
features:
- name: id
dtype: int32
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: label
dtype:
class_label:
names:
'0': '0'
'1': '1'
splits:
- name: train
num_bytes: 12215913
num_examples: 49401
- name: test
num_bytes: 494726
num_examples: 2000
- name: validation
num_bytes: 492279
num_examples: 2000
download_size: 9045005
dataset_size: 13202918
- config_name: es
features:
- name: id
dtype: int32
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: label
dtype:
class_label:
names:
'0': '0'
'1': '1'
splits:
- name: train
num_bytes: 12808446
num_examples: 49401
- name: test
num_bytes: 519103
num_examples: 2000
- name: validation
num_bytes: 513880
num_examples: 2000
download_size: 9538815
dataset_size: 13841429
- config_name: fr
features:
- name: id
dtype: int32
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: label
dtype:
class_label:
names:
'0': '0'
'1': '1'
splits:
- name: train
num_bytes: 13295557
num_examples: 49401
- name: test
num_bytes: 535093
num_examples: 2000
- name: validation
num_bytes: 533023
num_examples: 2000
download_size: 9785410
dataset_size: 14363673
- config_name: ja
features:
- name: id
dtype: int32
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: label
dtype:
class_label:
names:
'0': '0'
'1': '1'
splits:
- name: train
num_bytes: 15041592
num_examples: 49401
- name: test
num_bytes: 668628
num_examples: 2000
- name: validation
num_bytes: 661770
num_examples: 2000
download_size: 10435711
dataset_size: 16371990
- config_name: ko
features:
- name: id
dtype: int32
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: label
dtype:
class_label:
names:
'0': '0'
'1': '1'
splits:
- name: train
num_bytes: 13934181
num_examples: 49401
- name: test
num_bytes: 562292
num_examples: 2000
- name: validation
num_bytes: 554867
num_examples: 2000
download_size: 10263972
dataset_size: 15051340
- config_name: zh
features:
- name: id
dtype: int32
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: label
dtype:
class_label:
names:
'0': '0'
'1': '1'
splits:
- name: train
num_bytes: 10815499
num_examples: 49401
- name: test
num_bytes: 474644
num_examples: 2000
- name: validation
num_bytes: 473118
num_examples: 2000
download_size: 30282057
dataset_size: 11763261
configs:
- config_name: de
data_files:
- split: train
path: de/train-*
- split: test
path: de/test-*
- split: validation
path: de/validation-*
- config_name: en
data_files:
- split: train
path: en/train-*
- split: test
path: en/test-*
- split: validation
path: en/validation-*
- config_name: es
data_files:
- split: train
path: es/train-*
- split: test
path: es/test-*
- split: validation
path: es/validation-*
- config_name: fr
data_files:
- split: train
path: fr/train-*
- split: test
path: fr/test-*
- split: validation
path: fr/validation-*
- config_name: ja
data_files:
- split: train
path: ja/train-*
- split: test
path: ja/test-*
- split: validation
path: ja/validation-*
- config_name: ko
data_files:
- split: train
path: ko/train-*
- split: test
path: ko/test-*
- split: validation
path: ko/validation-*
Dataset Card for PAWS-X: A Cross-lingual Adversarial Dataset for Paraphrase Identification
Table of Contents
- Dataset Description
- Dataset Structure
- Dataset Creation
- Considerations for Using the Data
- Additional Information
Dataset Description
- Homepage: PAWS-X
- Repository: PAWS-X
- Paper: PAWS-X: A Cross-lingual Adversarial Dataset for Paraphrase Identification
- Point of Contact: Yinfei Yang
Dataset Summary
This dataset contains 23,659 human translated PAWS evaluation pairs and 296,406 machine translated training pairs in six typologically distinct languages: French, Spanish, German, Chinese, Japanese, and Korean. All translated pairs are sourced from examples in PAWS-Wiki.
For further details, see the accompanying paper: PAWS-X: A Cross-lingual Adversarial Dataset for Paraphrase Identification
Supported Tasks and Leaderboards
It has been majorly used for paraphrase identification for English and other 6 languages namely French, Spanish, German, Chinese, Japanese, and Korean
Languages
The dataset is in English, French, Spanish, German, Chinese, Japanese, and Korean
Dataset Structure
Data Instances
For en:
id : 1
sentence1 : In Paris , in October 1560 , he secretly met the English ambassador , Nicolas Throckmorton , asking him for a passport to return to England through Scotland .
sentence2 : In October 1560 , he secretly met with the English ambassador , Nicolas Throckmorton , in Paris , and asked him for a passport to return to Scotland through England .
label : 0
For fr:
id : 1
sentence1 : À Paris, en octobre 1560, il rencontra secrètement l'ambassadeur d'Angleterre, Nicolas Throckmorton, lui demandant un passeport pour retourner en Angleterre en passant par l'Écosse.
sentence2 : En octobre 1560, il rencontra secrètement l'ambassadeur d'Angleterre, Nicolas Throckmorton, à Paris, et lui demanda un passeport pour retourner en Écosse par l'Angleterre.
label : 0
Data Fields
All files are in tsv format with four columns:
Column Name | Data |
---|---|
id | An ID that matches the ID of the source pair in PAWS-Wiki |
sentence1 | The first sentence |
sentence2 | The second sentence |
label | Label for each pair |
The source text of each translation can be retrieved by looking up the ID in the corresponding file in PAWS-Wiki.
Data Splits
The numbers of examples for each of the seven languages are shown below:
Language | Train | Dev | Test |
---|---|---|---|
en | 49,401 | 2,000 | 2,000 |
fr | 49,401 | 2,000 | 2,000 |
es | 49,401 | 2,000 | 2,000 |
de | 49,401 | 2,000 | 2,000 |
zh | 49,401 | 2,000 | 2,000 |
ja | 49,401 | 2,000 | 2,000 |
ko | 49,401 | 2,000 | 2,000 |
Caveat: please note that the dev and test sets of PAWS-X are both sourced from the dev set of PAWS-Wiki. As a consequence, the same
sentence 1
may appear in both the dev and test sets. Nevertheless our data split guarantees that there is no overlap on sentence pairs (sentence 1
+sentence 2
) between dev and test.
Dataset Creation
Curation Rationale
Most existing work on adversarial data generation focuses on English. For example, PAWS (Paraphrase Adversaries from Word Scrambling) (Zhang et al., 2019) consists of challenging English paraphrase identification pairs from Wikipedia and Quora. They remedy this gap with PAWS-X, a new dataset of 23,659 human translated PAWS evaluation pairs in six typologically distinct languages: French, Spanish, German, Chinese, Japanese, and Korean. They provide baseline numbers for three models with different capacity to capture non-local context and sentence structure, and using different multilingual training and evaluation regimes. Multilingual BERT (Devlin et al., 2019) fine-tuned on PAWS English plus machine-translated data performs the best, with a range of 83.1-90.8 accuracy across the non-English languages and an average accuracy gain of 23% over the next best model. PAWS-X shows the effectiveness of deep, multilingual pre-training while also leaving considerable headroom as a new challenge to drive multilingual research that better captures structure and contextual information.
Source Data
PAWS (Paraphrase Adversaries from Word Scrambling)
Initial Data Collection and Normalization
All translated pairs are sourced from examples in PAWS-Wiki
Who are the source language producers?
This dataset contains 23,659 human translated PAWS evaluation pairs and 296,406 machine translated training pairs in six typologically distinct languages: French, Spanish, German, Chinese, Japanese, and Korean.
Annotations
Annotation process
If applicable, describe the annotation process and any tools used, or state otherwise. Describe the amount of data annotated, if not all. Describe or reference annotation guidelines provided to the annotators. If available, provide interannotator statistics. Describe any annotation validation processes.
Who are the annotators?
The paper mentions the translate team, especially Mengmeng Niu, for the help with the annotations.
Personal and Sensitive Information
[More Information Needed]
Considerations for Using the Data
Social Impact of Dataset
[More Information Needed]
Discussion of Biases
[More Information Needed]
Other Known Limitations
[More Information Needed]
Additional Information
Dataset Curators
List the people involved in collecting the dataset and their affiliation(s). If funding information is known, include it here.
Licensing Information
The dataset may be freely used for any purpose, although acknowledgement of Google LLC ("Google") as the data source would be appreciated. The dataset is provided "AS IS" without any warranty, express or implied. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Citation Information
@InProceedings{pawsx2019emnlp,
title = {{PAWS-X: A Cross-lingual Adversarial Dataset for Paraphrase Identification}},
author = {Yang, Yinfei and Zhang, Yuan and Tar, Chris and Baldridge, Jason},
booktitle = {Proc. of EMNLP},
year = {2019}
}
Contributions
Thanks to @bhavitvyamalik, @gowtham1997 for adding this dataset.