albertvillanova's picture
Convert dataset to Parquet (#4)
c9f4dd8 verified
metadata
annotations_creators:
  - found
language_creators:
  - found
language:
  - code
  - en
license:
  - c-uda
multilinguality:
  - other-programming-languages
size_categories:
  - 100K<n<1M
source_datasets:
  - original
task_categories:
  - translation
task_ids: []
pretty_name: CodeXGlueTcTextToCode
tags:
  - text-to-code
dataset_info:
  features:
    - name: id
      dtype: int32
    - name: nl
      dtype: string
    - name: code
      dtype: string
  splits:
    - name: train
      num_bytes: 96225531
      num_examples: 100000
    - name: validation
      num_bytes: 1749743
      num_examples: 2000
    - name: test
      num_bytes: 1609298
      num_examples: 2000
  download_size: 34258354
  dataset_size: 99584572
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*
      - split: validation
        path: data/validation-*
      - split: test
        path: data/test-*

Dataset Card for "code_x_glue_tc_text_to_code"

Table of Contents

Dataset Description

Dataset Summary

CodeXGLUE text-to-code dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Text-Code/text-to-code

The dataset we use is crawled and filtered from Microsoft Documentation, whose document located at https://github.com/MicrosoftDocs/.

Supported Tasks and Leaderboards

  • machine-translation: The dataset can be used to train a model for generating Java code from an English natural language description.

Languages

  • Java programming language

Dataset Structure

Data Instances

An example of 'train' looks as follows.

{
    "code": "boolean function ( ) { return isParsed ; }", 
    "id": 0, 
    "nl": "check if details are parsed . concode_field_sep Container parent concode_elem_sep boolean isParsed concode_elem_sep long offset concode_elem_sep long contentStartPosition concode_elem_sep ByteBuffer deadBytes concode_elem_sep boolean isRead concode_elem_sep long memMapSize concode_elem_sep Logger LOG concode_elem_sep byte[] userType concode_elem_sep String type concode_elem_sep ByteBuffer content concode_elem_sep FileChannel fileChannel concode_field_sep Container getParent concode_elem_sep byte[] getUserType concode_elem_sep void readContent concode_elem_sep long getOffset concode_elem_sep long getContentSize concode_elem_sep void getContent concode_elem_sep void setDeadBytes concode_elem_sep void parse concode_elem_sep void getHeader concode_elem_sep long getSize concode_elem_sep void parseDetails concode_elem_sep String getType concode_elem_sep void _parseDetails concode_elem_sep String getPath concode_elem_sep boolean verify concode_elem_sep void setParent concode_elem_sep void getBox concode_elem_sep boolean isSmallBox"
}

Data Fields

In the following each data field in go is explained for each config. The data fields are the same among all splits.

default

field name type description
id int32 Index of the sample
nl string The natural language description of the task
code string The programming source code for the task

Data Splits

name train validation test
default 100000 2000 2000

Dataset Creation

Curation Rationale

[More Information Needed]

Source Data

Initial Data Collection and Normalization

[More Information Needed]

Who are the source language producers?

[More Information Needed]

Annotations

Annotation process

[More Information Needed]

Who are the annotators?

[More Information Needed]

Personal and Sensitive Information

[More Information Needed]

Considerations for Using the Data

Social Impact of Dataset

[More Information Needed]

Discussion of Biases

[More Information Needed]

Other Known Limitations

[More Information Needed]

Additional Information

Dataset Curators

https://github.com/microsoft, https://github.com/madlag

Licensing Information

Computational Use of Data Agreement (C-UDA) License.

Citation Information

@article{iyer2018mapping,
  title={Mapping language to code in programmatic context},
  author={Iyer, Srinivasan and Konstas, Ioannis and Cheung, Alvin and Zettlemoyer, Luke},
  journal={arXiv preprint arXiv:1808.09588},
  year={2018}
}

Contributions

Thanks to @madlag (and partly also @ncoop57) for adding this dataset.