Datasets:
annotations_creators:
- no-annotation
language_creators:
- found
language:
- it
license:
- odc-by
multilinguality:
- monolingual
size_categories:
- 100M<n<1B
source_datasets:
- extended
task_categories:
- text-generation
task_ids:
- language-modeling
paperswithcode_id: mc4
pretty_name: mC4_it
Dataset Card for Clean Italian mC4 🇮🇹
Table of Contents
- Dataset Card for Clean
Dataset Description
- Original Homepage: HF Hub
- Paper: ACL Anthology
- Preprint: Arxiv
Dataset Summary
A thoroughly cleaned version of the Italian split of the multilingual colossal, cleaned version of Common Crawl's web crawl corpus (mC4). Based on the Common Crawl dataset. The original version was prepared by AllenAI, hosted at the address https://huggingface.co/datasets/allenai/c4, with subsequent preprocessing performed by Gabriele Sarti following a standard procedure for all dataset shards.
Preprocessing
The preprocessing of the dataset follows the procedure used by Yeb Havinga for training the model t5-base-dutch
on a portion of the cleaned Dutch split of mC4. The original code, that was adapted for Italian in this case, is available on GitLab. In summary, the preprocessing procedure includes:
Removing documents containing words from a selection of the Italian and English List of Dirty Naught Obscene and Otherwise Bad Words.
Removing sentences containing:
Less than 3 words.
A word longer than 1000 characters.
An end symbol not matching end-of-sentence punctuation.
Strings associated to javascript code (e.g.
{
), lorem ipsum, policy information in Italian or English.
Removing documents (after sentence filtering):
Containing less than 5 sentences.
Containing less than 500 or more than 50'000 characters.
Not identified as prevalently Italian by the
LangDetect
package.
Using parallel processing with 96 CPU cores on a TPUv3 via Google Cloud to perform the complete clean of all the original Italian shards of mC4 (1024 of ~220Mb train, 8 of ~24Mb validation) required roughly 10 hours due to the demanding steps of sentence tokenization and language detection. The total size of compressed .json.gz
files is roughly halved after the procedure.
Dataset Structure
Data Instances
An example from the dataset:
{
'timestamp': '2020-02-22T22:24:31Z',
'url': 'https://altreconomia.it/una-rotonda-sul-pane/',
'text': 'Per raggiungere il campo attraversiamo la striscia d’asfalto che porta verso la provinciale numero 13. Mettiamo a rischio la nostra incolumità in un territorio di auto e camion. Sullo sfondo, i profili della Grigna e del Resegone. Più vicini, quelli del solito ipermercato di provincia, e delle villette a schiera che avanzano tra le coltivazioni. È lo sprawling, l’avanzata del cemento.\\nDa questo lato dalla strada, invece, è ancora regno contadino. Almeno per ora. Torniamo a Caponago (Mb), Brianza pura, dove ha avuto i natali il progetto “Spiga e madia”. Ne parlammo su Ae nel gennaio 2009: in un territorio “spaesato”, il Comitato “verso il Distretto di economia solidale della Brianza” (Desbri) e la “Retina” dei gruppi di acquisto locali danno vita a un progetto di produzione di frumento, molitura, panificazione e distribuzione in un raggio di 20 chilometri. Si comincia da zero, nel 2007, senza alcun di finanziamento, quando una famiglia del [...]. Il giochino vale almeno 3 miliardi di euro all’anno. La misura, introdotta in via straordinaria con la finanziaria 2005, è stata prorogata anche con l’ultimo decreto “milleproroghe”.'
}
Data Fields
The data contains the following fields:
url
: url of the source as a stringtext
: text content as a stringtimestamp
: timestamp of extraction as a string
Data Splits
To build mC4, the original authors used CLD3 to identify over 100 languages. For Italian, the whole corpus of scraped text was divided in 1032
jsonl files, 1024
for training following the naming style c4-it.tfrecord-0XXXX-of-01024.json.gz
and 8 for validation following the naming style c4-it-validation.tfrecord-0000X-of-00008.json.gz
. The full set of preprocessed files takes roughly 215GB of disk space to download with Git LFS.
For ease of use under different storage capacities, the following incremental splits are available (sizes are estimates). Important: The sizes in GB represent the estimated weight for :
split | train size (docs, words, download + preproc disk space) | validation size |
---|---|---|
tiny | 10M docs, 4B words (9 GB + 27 GB) | 12k docs |
small | 20M docs, 8B words (18 GB + 54 GB) | 24k docs |
medium | 50M docs, 20B words (47 GB + 135 GB) | 48k docs |
large | 75M docs, 30B words (71 GB + 203 GB) | 72k docs |
full | 103M docs, 41B words (109 GB + 279 GB) | 96k docs |
You can load any subset like this:
from datasets import load_dataset
mc4_it_tiny = load_dataset("gsarti/clean_mc4_it", "tiny")
Since splits are quite large, you may want to traverse them using the streaming mode available starting from 🤗 Datasets v1.9.0:
from datasets import load_dataset
mc4_it_full_stream = load_dataset("gsarti/clean_mc4_it", "full", split='train', streaming=True)
print(next(iter(mc4_it_full_stream))) # Prints the example presented above
Dataset Creation
Refer to the original paper for more considerations regarding the choice of sources and the scraping process for creating mC4
.
Considerations for Using the Data
Social Impact of Dataset
With more than 200GB of cleaned Italian text and more than 41B estimated words, this is by far the largest available corpus for the Italian language. The second largest dataset available is OSCAR, which is only 69GB in size for its deduplicated variant. Using this corpus for training language models with adequate computational resources will allow researchers to reach parity with the performances observed for the English language. This can in turn have important repercussions for the development of commercial language technology applications for the Italian language.
Discussion of Biases
Despit the cleaning procedure aimed at removing vulgarity and profanity, it must be considered that model trained on this scraped corpus will inevitably reflect biases present in blog articles and comments on the Internet. This makes the corpus especially interesting in the context of studying data biases and how to limit their impacts.
Additional Information
Dataset Curators
Authors at AllenAI are the original curators for the mc4
corpus. For inquiries or requests regarding the Italian cleaned portion contained in this repository, please contact me at gabriele.sarti996@gmail.com
Licensing Information
AllenAI are releasing this dataset under the terms of ODC-BY. By using this, you are also bound by the Common Crawl terms of use in respect of the content contained in the dataset.
Citation Information
If you use this dataset in your work, please cite us and the original mC4 authors as:
@inproceedings{sarti-nissim-2024-it5-text,
title = "{IT}5: Text-to-text Pretraining for {I}talian Language Understanding and Generation",
author = "Sarti, Gabriele and
Nissim, Malvina",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italy",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.823",
pages = "9422--9433",
abstract = "We introduce IT5, the first family of encoder-decoder transformer models pretrained specifically on Italian. We document and perform a thorough cleaning procedure for a large Italian corpus and use it to pretrain four IT5 model sizes. We then introduce the ItaGen benchmark, which includes a broad range of natural language understanding and generation tasks for Italian, and use it to evaluate the performance of IT5 models and multilingual baselines. We find monolingual IT5 models to provide the best scale-to-performance ratio across tested models, consistently outperforming their multilingual counterparts and setting a new state-of-the-art for Italian language generation.",
}
@inproceedings{xue-etal-2021-mt5,
title = "m{T}5: A Massively Multilingual Pre-trained Text-to-Text Transformer",
author = "Xue, Linting and
Constant, Noah and
Roberts, Adam and
Kale, Mihir and
Al-Rfou, Rami and
Siddhant, Aditya and
Barua, Aditya and
Raffel, Colin",
booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
month = jun,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.naacl-main.41",
doi = "10.18653/v1/2021.naacl-main.41",
pages = "483--498",
}