Datasets:
Formats:
webdataset
Size:
10K - 100K
task_categories: | |
- image-classification | |
- unconditional-image-generation | |
size_categories: | |
- 10K<n<100K | |
# MNIST WebDataset PNG | |
The MNIST dataset with samples stored as PNG images and compiled into the WebDataset format. | |
## DALI/JAX Example | |
The following code shows how this dataset can be loaded into JAX arrays by DALI. | |
```python | |
from nvidia.dali import pipeline_def | |
import nvidia.dali.fn as fn | |
import nvidia.dali.types as types | |
from nvidia.dali.plugin.jax import DALIGenericIterator | |
from nvidia.dali.plugin.base_iterator import LastBatchPolicy | |
def get_data_iterator(batch_size, dataset_path): | |
@pipeline_def(batch_size=batch_size, num_threads=4, device_id=0) | |
def wds_pipeline(): | |
raw_image, ascii_label = fn.readers.webdataset( | |
paths=dataset_path, | |
ext=['png', 'cls'], | |
missing_component_behavior='error', | |
) | |
image = fn.decoders.image(raw_image) | |
ascii_shift = types.Constant(48).uint8() | |
label = ascii_label - ascii_shift | |
return image, label | |
data_pipeline = wds_pipeline() | |
data_iterator = DALIGenericIterator( | |
pipelines=[data_pipeline], | |
output_map=['x', 'y'], | |
last_batch_policy=LastBatchPolicy.DROP | |
) | |
return data_iterator | |
data_iterator = get_data_iterator( | |
batch_size=32, | |
dataset_path='data/mnist_webdataset_numpy_flat_9/data.tar' | |
) | |
batch = next(data_iterator) | |
x = batch['x'] | |
y = batch['y'] | |
print('x shape:', x.shape) | |
print('y shape:', y.shape) | |
print('y:', y[:, 0]) | |
``` | |
Output: | |
``` | |
x shape: (32, 28, 28, 3) | |
y shape: (32, 1) | |
y: [5 0 4 1 9 2 1 3 1 4 3 5 3 6 1 7 2 8 6 9 4 0 9 1 1 2 4 3 2 7 3 8] | |
``` | |
## Acknowledgements | |
- Yann LeCun, Courant Institute, NYU | |
- Corinna Cortes, Google Labs, New York | |
- Christopher J.C. Burges, Microsoft Research, Redmond |