File size: 3,844 Bytes
548dcee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from datasets import load_dataset"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "data_files = {\n",
    "    \"train\": \"./train.txt\",\n",
    "    \"val\": \"./val.txt\",\n",
    "    \"test\": \"./test.txt\",\n",
    "}\n",
    "ds = load_dataset(\"text\", data_files=data_files)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "ds['train'] = ds['train'].rename_column('text', 'SMILE')\n",
    "ds['val'] = ds['val'].rename_column('text', 'SMILE')\n",
    "ds['test'] = ds['test'].rename_column('text', 'SMILE')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import selfies as sf\n",
    "\n",
    "def try_convert(row):\n",
    "    selfie = None\n",
    "    try:\n",
    "        selfie = sf.encoder(row['SMILE'])\n",
    "    except:\n",
    "        pass\n",
    "\n",
    "    return {'SELFIE': selfie}\n",
    "\n",
    "# Alongside the SMILES, we also need to convert them to SELFIES\n",
    "# ds['train'] = ds['train'].add_column('SELFIE', ds['train'].map(try_convert, num_proc=8))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "ds['train'] = ds['train'].map(try_convert, num_proc=8)\n",
    "ds['val'] = ds['val'].map(try_convert, num_proc=8)\n",
    "ds['test'] = ds['test'].map(try_convert, num_proc=8)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Drop the rows where the conversion failed\n",
    "ds['train'] = ds['train'].filter(lambda row: row['SELFIE'] is not None)\n",
    "ds['val'] = ds['val'].filter(lambda row: row['SELFIE'] is not None)\n",
    "ds['test'] = ds['test'].filter(lambda row: row['SELFIE'] is not None)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from tokenizers import Tokenizer\n",
    "\n",
    "tokenizer = Tokenizer.from_pretrained(\"haydn-jones/GuacamolSELFIETokenizer\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "unk_id = tokenizer.token_to_id('<UNK>')\n",
    "\n",
    "# Drop any rows where the tokenization has an <UNK> token\n",
    "ds['train'] = ds['train'].filter(lambda row: unk_id not in tokenizer.encode(row['SELFIE']).ids, num_proc=8)\n",
    "ds['val'] = ds['val'].filter(lambda row: unk_id not in tokenizer.encode(row['SELFIE']).ids, num_proc=8)\n",
    "ds['test'] = ds['test'].filter(lambda row: unk_id not in tokenizer.encode(row['SELFIE']).ids, num_proc=8)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "ds.save_to_disk('./guacamol')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "repo_id = \"haydn-jones/Guacamol\"\n",
    "\n",
    "# Push the dataset to the repo\n",
    "ds.push_to_hub(repo_id)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "ddpm",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}