license: mit
task_categories:
- question-answering
language:
- en
tags:
- chemistry
- molecule
Dataset Card for MoleculeQA
Dataset Details
Dataset Description
MoleculeQA: A Dataset to Evaluate Factual Accuracy in Molecular Comprehension (EMNLP 2024)
- Curated by: IDEA-XL
- Language(s) (NLP): en
- License: mit
Dataset Sources
- Repository: https://github.com/IDEA-XL/MoleculeQA
- Paper [optional]: https://arxiv.org/abs/2403.08192
Dataset Structure
- JSON
- All
- train.json # 49,993
- valid.json # 5,795
- test.json # 5,786
- TXT
- All
- train.txt
- valid.txt
- test.txt
- Property
- Source
- Structure
- Usage
Dataset Creation
Curation Rationale
Large language models are playing an increasingly significant role in molecular research, yet existing models often generate erroneous information. Traditional evaluations fail to assess a model’s factual correctness. To rectify this absence, we present MoleculeQA1, a novel question answering (QA) dataset which possesses 62K QA pairs over 23K molecules. Each QA pair, composed of a manual question, a positive option and three negative options, has consistent semantics with a molecular description from authoritative corpus. MoleculeQA is not only the first benchmark to evaluate molecular factual correctness but also the largest molecular QA dataset. A comprehensive evaluation on MoleculeQA for existing molecular LLMs exposes their deficiencies in specific aspects and pinpoints crucial factors for molecular modeling. Furthermore, we employ MoleculeQA in reinforcement learning to mitigate model hallucinations, thereby enhancing the factual correctness of generated information.
Source Data
Data Collection and Processing
Citation
BibTeX:
@inproceedings{lu-etal-2024-moleculeqa,
title = "{M}olecule{QA}: A Dataset to Evaluate Factual Accuracy in Molecular Comprehension",
author = "Lu, Xingyu and
Cao, He and
Liu, Zijing and
Bai, Shengyuan and
Chen, Leqing and
Yao, Yuan and
Zheng, Hai-Tao and
Li, Yu",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2024",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-emnlp.216",
pages = "3769--3789",
abstract = "Large language models are playing an increasingly significant role in molecular research, yet existing models often generate erroneous information. Traditional evaluations fail to assess a model{'}s factual correctness. To rectify this absence, we present MoleculeQA, a novel question answering (QA) dataset which possesses 62K QA pairs over 23K molecules. Each QA pair, composed of a manual question, a positive option and three negative options, has consistent semantics with a molecular description from authoritative corpus. MoleculeQA is not only the first benchmark to evaluate molecular factual correctness but also the largest molecular QA dataset. A comprehensive evaluation on MoleculeQA for existing molecular LLMs exposes their deficiencies in specific aspects and pinpoints crucial factors for molecular modeling. Furthermore, we employ MoleculeQA in reinforcement learning to mitigate model hallucinations, thereby enhancing the factual correctness of generated information.",
}