repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
samuel1208/scikit-learn
sklearn/utils/tests/test_testing.py
144
4121
import warnings import unittest import sys from nose.tools import assert_raises from sklearn.utils.testing import ( _assert_less, _assert_greater, assert_less_equal, assert_greater_equal, assert_warns, assert_no_warnings, assert_equal, set_random_state, assert_raise_message) from sklearn.tree import DecisionTreeClassifier from sklearn.lda import LDA try: from nose.tools import assert_less def test_assert_less(): # Check that the nose implementation of assert_less gives the # same thing as the scikit's assert_less(0, 1) _assert_less(0, 1) assert_raises(AssertionError, assert_less, 1, 0) assert_raises(AssertionError, _assert_less, 1, 0) except ImportError: pass try: from nose.tools import assert_greater def test_assert_greater(): # Check that the nose implementation of assert_less gives the # same thing as the scikit's assert_greater(1, 0) _assert_greater(1, 0) assert_raises(AssertionError, assert_greater, 0, 1) assert_raises(AssertionError, _assert_greater, 0, 1) except ImportError: pass def test_assert_less_equal(): assert_less_equal(0, 1) assert_less_equal(1, 1) assert_raises(AssertionError, assert_less_equal, 1, 0) def test_assert_greater_equal(): assert_greater_equal(1, 0) assert_greater_equal(1, 1) assert_raises(AssertionError, assert_greater_equal, 0, 1) def test_set_random_state(): lda = LDA() tree = DecisionTreeClassifier() # LDA doesn't have random state: smoke test set_random_state(lda, 3) set_random_state(tree, 3) assert_equal(tree.random_state, 3) def test_assert_raise_message(): def _raise_ValueError(message): raise ValueError(message) def _no_raise(): pass assert_raise_message(ValueError, "test", _raise_ValueError, "test") assert_raises(AssertionError, assert_raise_message, ValueError, "something else", _raise_ValueError, "test") assert_raises(ValueError, assert_raise_message, TypeError, "something else", _raise_ValueError, "test") assert_raises(AssertionError, assert_raise_message, ValueError, "test", _no_raise) # multiple exceptions in a tuple assert_raises(AssertionError, assert_raise_message, (ValueError, AttributeError), "test", _no_raise) # This class is inspired from numpy 1.7 with an alteration to check # the reset warning filters after calls to assert_warns. # This assert_warns behavior is specific to scikit-learn because #`clean_warning_registry()` is called internally by assert_warns # and clears all previous filters. class TestWarns(unittest.TestCase): def test_warn(self): def f(): warnings.warn("yo") return 3 # Test that assert_warns is not impacted by externally set # filters and is reset internally. # This is because `clean_warning_registry()` is called internally by # assert_warns and clears all previous filters. warnings.simplefilter("ignore", UserWarning) assert_equal(assert_warns(UserWarning, f), 3) # Test that the warning registry is empty after assert_warns assert_equal(sys.modules['warnings'].filters, []) assert_raises(AssertionError, assert_no_warnings, f) assert_equal(assert_no_warnings(lambda x: x, 1), 1) def test_warn_wrong_warning(self): def f(): warnings.warn("yo", DeprecationWarning) failed = False filters = sys.modules['warnings'].filters[:] try: try: # Should raise an AssertionError assert_warns(UserWarning, f) failed = True except AssertionError: pass finally: sys.modules['warnings'].filters = filters if failed: raise AssertionError("wrong warning caught by assert_warn")
bsd-3-clause
kosklain/MitosisDetection
ImageWorker.py
1
11990
""" Created on Jun 20, 2013 This class is the core of two important parts of the project: firstly, the feature calculation is done here. And secondly, the image segmentation is done here. More details on every class/method. @author: Bibiana and Adria """ from scipy import ndimage, fftpack import numpy as np import matplotlib.pyplot as plt from skimage import measure from math import pi from skimage.util import dtype from scipy.ndimage.filters import gaussian_laplace from skimage.color import rgb2hed from mahotas.features import texture, zernike_moments import pywt from scipy.stats.stats import skew, kurtosis from Tamura import Tamura from scipy.stats.mstats_basic import mquantiles """ Constant for L resizing """ rangeL = (1.0/0.95047)*116.- 16. """ Constants for HEDAB resizing """ imageTest = np.array([[[255,0,0]]], dtype=np.uint8) minH = rgb2hed(imageTest)[0][0][0] imageTest = np.array([[[0,255,255]]], dtype=np.uint8) maxH = rgb2hed(imageTest)[0][0][0] rangeH = maxH-minH imageTest = np.array([[[0,255,0]]], dtype=np.uint8) minE = rgb2hed(imageTest)[0][0][1] imageTest = np.array([[[255,0,255]]], dtype=np.uint8) maxE = rgb2hed(imageTest)[0][0][1] rangeE = maxE-minE imageTest = np.array([[[0,0,255]]], dtype=np.uint8) minDAB = rgb2hed(imageTest)[0][0][2] imageTest = np.array([[[255,255,0]]], dtype=np.uint8) maxDAB = rgb2hed(imageTest)[0][0][2] rangeDAB = maxDAB-minDAB """ Base class for operating with images. It forces the user to implement the getPatch method on the classes that inherit from it. It also has some general purpose methods for ploting and calculating limits. """ class ImageWorker: def __init__(self, image, rows=None, columns=None, convert=False): if convert: self.image = dtype.img_as_float(image) else: self.image = image self.rows = len(image) if rows is None else rows self.columns = len(image[0]) if columns is None else columns def showOnlyPatches(self, centers, size): finalImage = np.zeros(self.image.shape, dtype=np.uint8) for center in centers: (beginningi, beginningj, finali, finalj) = self.getLimits(center, size) finalImage[beginningi:finali, beginningj:finalj, :] = self.image[beginningi:finali, beginningj:finalj, :] plt.imshow(finalImage) plt.show() def getLimits(self, center, size): beginningi = max(center[0] - (size - 1) / 2, 0) beginningj = max(center[1] - (size - 1) / 2, 0) finali = min(beginningi + size, self.rows-1) finalj = min(beginningj + size, self.columns-1) return (beginningi, beginningj, finali, finalj) def getPatch(self, center, size): raise NotImplementedError("Should have implemented this") """ 3D image (RGB, HSV, LAB, etc.) worker. It gets the needed features, and it implements the segmentation operation with getBinaryImage(), which gets the binary image that contains True for those pixels that were below all the thresholds and True for the ones which were not below all thresholds. """ class RGBImageWorker(ImageWorker): """ The only1D is used when we are calculating the features of only those pixels that pass all the filters. """ def getGeneralStatistics(self, hara=False, zern=False, tamura=False, only1D=None): generalStatistics = [] if self.rows == 1 and self.columns == 1: for index in range(3): generalStatistics.append(self.image[0,0,index]) return generalStatistics if not only1D is None: im = only1D generalStatistics.extend(self._calculateStatistics(im, haralick=hara, zernike=zern)) fourierTransform = np.abs(fftpack.fft2(im)) #fourierTransform generalStatistics.extend(self._calculateStatistics(fourierTransform)) waveletTransform = pywt.dwt2(im, 'sym5')[0] generalStatistics.extend(self._calculateStatistics(waveletTransform)) waveletFourierTransform = pywt.dwt2(fourierTransform, 'sym5')[0] generalStatistics.extend(self._calculateStatistics(waveletFourierTransform)) if tamura: generalStatistics.extend(self.get3Dstatistics(tamura=True)) return generalStatistics for index in range(3): im = self.image[:, :, index] generalStatistics.extend(self._calculateStatistics(im, haralick=hara, zernike=zern)) fourierTransform = np.abs(fftpack.fft2(im)) #fourierTransform generalStatistics.extend(self._calculateStatistics(fourierTransform)) waveletTransform = pywt.dwt2(im, 'sym5')[0] generalStatistics.extend(self._calculateStatistics(waveletTransform)) waveletFourierTransform = pywt.dwt2(fourierTransform, 'sym5')[0] generalStatistics.extend(self._calculateStatistics(waveletFourierTransform)) if tamura: generalStatistics.extend(self.get3Dstatistics(tamura=True)) return generalStatistics """ Features calculated with only one component (for example, R from RGB). """ def _calculateStatistics(self, img, haralick=False, zernike=False): result = [] #3-bin histogram result.extend(mquantiles(img)) #First four moments result.extend([img.mean(), img.var(), skew(img,axis=None), kurtosis(img,axis=None)]) #Haralick features if haralick: integerImage = dtype.img_as_ubyte(img) result.extend(texture.haralick(integerImage).flatten()) #Zernike moments if zernike: result.extend(zernike_moments(img, int(self.rows)/2 + 1)) return result """ Features calculated with the whole image at once. """ def get3Dstatistics(self, tamura=False): result = [] #Tamura features if tamura: #result.append(Tamura.coarseness(self.image)) it may not work! result.append(Tamura.contrast(self.image)) result.extend(Tamura.directionality(self.image)) return result """ Plot the histogram of a given channel. """ def plotHistogram(self, img): hist, bin_edges = np.histogram(img, bins=60) bin_centers = 0.5 * (bin_edges[:-1] + bin_edges[1:]) plt.plot(bin_centers, hist, lw=2) plt.show() """ Filter an image based on a percentile. """ def filterImage(self, im, threshold): if self.ploting: self.plotHistogram(im) return im < np.percentile(im,threshold) """ V from HSV color space """ def getV(self): preV = np.asanyarray(self.image) preV = dtype.img_as_float(preV) return preV.max(-1) """ Y from XYZ color space """ def getY(self): arr = np.asanyarray(self.image) arr = dtype.img_as_float(arr) mask = arr > 0.04045 arr[mask] = np.power((arr[mask] + 0.055) / 1.055, 2.4) arr[~mask] /= 12.92 Y = arr[:, :, 0] * 0.2126 + arr[:, :, 1] * 0.7152 + arr[:, :, 2] * 0.0722 return Y """ It returns L from LAB color space and L from LUV color space """ def getL(self): Y = self.getY() Y = Y / 0.95047 mask = Y > 0.008856 Y2 = np.power(Y, 1. / 3.) Y[mask] = Y2[mask] Y[~mask] = 7.787 * Y[~mask] + 16. / 116. L = (116. * Y) - 16. L2 = (116. * Y2) - 16. return (L, L2) """ It returns the thresholded (segmented) image, as well as the HED image and BRVL image. """ def getBinaryImage(self): self.ploting = False HEDAB = rgb2hed(self.image) R = self.image[:, :, 0] G = self.image[:, :, 1] B = self.image[:, :, 2] H = HEDAB[:,:,0] E = HEDAB[:,:,1] DAB = HEDAB[:,:,2] BR = B*2/((1+R+G)*(1+B+R+G)) #Blue-ratio image V = self.getV() #From HSV (L, L2) = self.getL() #From CIELAB and CIELUV BRSmoothed = ndimage.gaussian_filter(BR,1) LSmoothed = ndimage.gaussian_filter(L,1) VSmoothed = ndimage.gaussian_filter(V,1) HSmoothed = ndimage.gaussian_filter(H,1) ESmoothed = ndimage.gaussian_filter(E,1) RSmoothed = ndimage.gaussian_filter(R,1) DABSmoothed = ndimage.gaussian_filter(DAB,1) imLLog = self.filterImage(gaussian_laplace(LSmoothed,9), 85) == False imVLog = self.filterImage(gaussian_laplace(VSmoothed, 9), 85) == False imELog = self.filterImage(gaussian_laplace(ESmoothed,9), 84) == False imRLog = self.filterImage(gaussian_laplace(RSmoothed, 9), 84) == False imDABLog = self.filterImage(gaussian_laplace(DABSmoothed,9), 50) imHLog = self.filterImage(gaussian_laplace(HSmoothed,9), 8) imLog = self.filterImage(gaussian_laplace(BRSmoothed,9), 9) imR = self.filterImage(R, 2.5) imB = self.filterImage(B, 10.5) imV = self.filterImage(V, 6.5) imL = self.filterImage(L, 2.5) imL2 = self.filterImage(L2, 2.5) imE = self.filterImage(E, 18) imH = self.filterImage(H, 95) == False imDAB = self.filterImage(DAB, 55) == False imBR = self.filterImage(BR, 63) == False binaryImg = imR & imV & imB & imL & imL2 & imE & imH & imDAB & imLog & imBR & imLLog & imVLog & imELog & imHLog & imRLog & imDABLog openImg = ndimage.binary_opening(binaryImg, iterations=2) closedImg = ndimage.binary_closing(openImg, iterations=8) if self.ploting: plt.imshow(self.image) plt.show() plt.imshow(imR) plt.show() plt.imshow(imV) plt.show() plt.imshow(imB) plt.show() plt.imshow(imL) plt.show() plt.imshow(closedImg) plt.show() BRVL = np.zeros(self.image.shape) BRVL[:,:,0] = BR BRVL[:,:,1] = V BRVL[:,:,2] = L/rangeL #ResizeHEDAB, from 0 to 1. HEDAB[:,:,0] = (H - minH)/rangeH HEDAB[:,:,1] = (E - minE)/rangeE HEDAB[:,:,2] = (DAB - minDAB)/rangeDAB return (BinaryImageWorker(closedImg, self.rows, self.columns), RGBImageWorker(HEDAB, self.rows, self.columns), RGBImageWorker(BRVL, self.rows, self.columns), BinaryImageWorker(binaryImg, self.rows, self.columns)) def getPatch(self, center, size): (beginningi, beginningj, finali, finalj) = self.getLimits(center, size) subImageWorker = RGBImageWorker(self.image[beginningi:finali, beginningj:finalj, :], finali - beginningi, finalj - beginningj) return subImageWorker """ It gets the binary characteristics of an image, such as area, peremiter or roundness. It also gets the centers of all the blobs from the binary thresholded image. """ class BinaryImageWorker(ImageWorker): def getPatch(self, center, size): (beginningi, beginningj, finali, finalj) = self.getLimits(center, size) subImageWorker = BinaryImageWorker(self.image[beginningi:finali, beginningj:finalj], finali - beginningi, finalj - beginningj) return subImageWorker def getGeneralStatistics(self): area = np.sum(self.image) perimeterArray = [len(x) for x in measure.find_contours(self.image, 0.5)] perimeter = max(perimeterArray) if len(perimeterArray) != 0 else 0 roundness = 4 * area * pi / (perimeter * perimeter) if perimeter != 0 else 0 finalStatistics = [area, perimeter, roundness, len(self.getCenters())] return finalStatistics def getCenters(self): lbl = ndimage.label(self.image) centers = ndimage.measurements.center_of_mass(self.image, lbl[0], range(1, lbl[1] + 1)) centers = np.round(centers) return centers
gpl-2.0
nelango/ViralityAnalysis
model/lib/pandas/io/common.py
9
14607
"""Common IO api utilities""" import sys import os import csv import codecs import zipfile from contextlib import contextmanager, closing from pandas.compat import StringIO, BytesIO, string_types, text_type from pandas import compat from pandas.core.common import pprint_thing, is_number try: import pathlib _PATHLIB_INSTALLED = True except ImportError: _PATHLIB_INSTALLED = False try: from py.path import local as LocalPath _PY_PATH_INSTALLED = True except: _PY_PATH_INSTALLED = False if compat.PY3: from urllib.request import urlopen, pathname2url _urlopen = urlopen from urllib.parse import urlparse as parse_url import urllib.parse as compat_parse from urllib.parse import (uses_relative, uses_netloc, uses_params, urlencode, urljoin) from urllib.error import URLError from http.client import HTTPException else: from urllib2 import urlopen as _urlopen from urllib import urlencode, pathname2url from urlparse import urlparse as parse_url from urlparse import uses_relative, uses_netloc, uses_params, urljoin from urllib2 import URLError from httplib import HTTPException from contextlib import contextmanager, closing from functools import wraps # @wraps(_urlopen) @contextmanager def urlopen(*args, **kwargs): with closing(_urlopen(*args, **kwargs)) as f: yield f _VALID_URLS = set(uses_relative + uses_netloc + uses_params) _VALID_URLS.discard('') class PerformanceWarning(Warning): pass class DtypeWarning(Warning): pass try: from boto.s3 import key class BotoFileLikeReader(key.Key): """boto Key modified to be more file-like This modification of the boto Key will read through a supplied S3 key once, then stop. The unmodified boto Key object will repeatedly cycle through a file in S3: after reaching the end of the file, boto will close the file. Then the next call to `read` or `next` will re-open the file and start reading from the beginning. Also adds a `readline` function which will split the returned values by the `\n` character. """ def __init__(self, *args, **kwargs): encoding = kwargs.pop("encoding", None) # Python 2 compat super(BotoFileLikeReader, self).__init__(*args, **kwargs) self.finished_read = False # Add a flag to mark the end of the read. self.buffer = "" self.lines = [] if encoding is None and compat.PY3: encoding = "utf-8" self.encoding = encoding self.lines = [] def next(self): return self.readline() __next__ = next def read(self, *args, **kwargs): if self.finished_read: return b'' if compat.PY3 else '' return super(BotoFileLikeReader, self).read(*args, **kwargs) def close(self, *args, **kwargs): self.finished_read = True return super(BotoFileLikeReader, self).close(*args, **kwargs) def seekable(self): """Needed for reading by bz2""" return False def readline(self): """Split the contents of the Key by '\n' characters.""" if self.lines: retval = self.lines[0] self.lines = self.lines[1:] return retval if self.finished_read: if self.buffer: retval, self.buffer = self.buffer, "" return retval else: raise StopIteration if self.encoding: self.buffer = "{}{}".format(self.buffer, self.read(8192).decode(self.encoding)) else: self.buffer = "{}{}".format(self.buffer, self.read(8192)) split_buffer = self.buffer.split("\n") self.lines.extend(split_buffer[:-1]) self.buffer = split_buffer[-1] return self.readline() except ImportError: # boto is only needed for reading from S3. pass def _is_url(url): """Check to see if a URL has a valid protocol. Parameters ---------- url : str or unicode Returns ------- isurl : bool If `url` has a valid protocol return True otherwise False. """ try: return parse_url(url).scheme in _VALID_URLS except: return False def _is_s3_url(url): """Check for an s3, s3n, or s3a url""" try: return parse_url(url).scheme in ['s3', 's3n', 's3a'] except: return False def maybe_read_encoded_stream(reader, encoding=None, compression=None): """read an encoded stream from the reader and transform the bytes to unicode if required based on the encoding Parameters ---------- reader : a streamable file-like object encoding : optional, the encoding to attempt to read Returns ------- a tuple of (a stream of decoded bytes, the encoding which was used) """ if compat.PY3 or encoding is not None: # pragma: no cover if encoding: errors = 'strict' else: errors = 'replace' encoding = 'utf-8' if compression == 'gzip': reader = BytesIO(reader.read()) else: reader = StringIO(reader.read().decode(encoding, errors)) else: if compression == 'gzip': reader = BytesIO(reader.read()) encoding = None return reader, encoding def _expand_user(filepath_or_buffer): """Return the argument with an initial component of ~ or ~user replaced by that user's home directory. Parameters ---------- filepath_or_buffer : object to be converted if possible Returns ------- expanded_filepath_or_buffer : an expanded filepath or the input if not expandable """ if isinstance(filepath_or_buffer, string_types): return os.path.expanduser(filepath_or_buffer) return filepath_or_buffer def _validate_header_arg(header): if isinstance(header, bool): raise TypeError("Passing a bool to header is invalid. " "Use header=None for no header or " "header=int or list-like of ints to specify " "the row(s) making up the column names") def _stringify_path(filepath_or_buffer): """Return the argument coerced to a string if it was a pathlib.Path or a py.path.local Parameters ---------- filepath_or_buffer : object to be converted Returns ------- str_filepath_or_buffer : a the string version of the input path """ if _PATHLIB_INSTALLED and isinstance(filepath_or_buffer, pathlib.Path): return text_type(filepath_or_buffer) if _PY_PATH_INSTALLED and isinstance(filepath_or_buffer, LocalPath): return filepath_or_buffer.strpath return filepath_or_buffer def get_filepath_or_buffer(filepath_or_buffer, encoding=None, compression=None): """ If the filepath_or_buffer is a url, translate and return the buffer passthru otherwise. Parameters ---------- filepath_or_buffer : a url, filepath (str, py.path.local or pathlib.Path), or buffer encoding : the encoding to use to decode py3 bytes, default is 'utf-8' Returns ------- a filepath_or_buffer, the encoding, the compression """ if _is_url(filepath_or_buffer): req = _urlopen(str(filepath_or_buffer)) if compression == 'infer': content_encoding = req.headers.get('Content-Encoding', None) if content_encoding == 'gzip': compression = 'gzip' else: compression = None # cat on the compression to the tuple returned by the function to_return = list(maybe_read_encoded_stream(req, encoding, compression)) + \ [compression] return tuple(to_return) if _is_s3_url(filepath_or_buffer): try: import boto except: raise ImportError("boto is required to handle s3 files") # Assuming AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY # are environment variables parsed_url = parse_url(filepath_or_buffer) try: conn = boto.connect_s3() except boto.exception.NoAuthHandlerFound: conn = boto.connect_s3(anon=True) b = conn.get_bucket(parsed_url.netloc, validate=False) if compat.PY2 and (compression == 'gzip' or (compression == 'infer' and filepath_or_buffer.endswith(".gz"))): k = boto.s3.key.Key(b, parsed_url.path) filepath_or_buffer = BytesIO(k.get_contents_as_string( encoding=encoding)) else: k = BotoFileLikeReader(b, parsed_url.path, encoding=encoding) k.open('r') # Expose read errors immediately filepath_or_buffer = k return filepath_or_buffer, None, compression # It is a pathlib.Path/py.path.local or string filepath_or_buffer = _stringify_path(filepath_or_buffer) return _expand_user(filepath_or_buffer), None, compression def file_path_to_url(path): """ converts an absolute native path to a FILE URL. Parameters ---------- path : a path in native format Returns ------- a valid FILE URL """ return urljoin('file:', pathname2url(path)) # ZipFile is not a context manager for <= 2.6 # must be tuple index here since 2.6 doesn't use namedtuple for version_info if sys.version_info[1] <= 6: @contextmanager def ZipFile(*args, **kwargs): with closing(zipfile.ZipFile(*args, **kwargs)) as zf: yield zf else: ZipFile = zipfile.ZipFile def _get_handle(path, mode, encoding=None, compression=None): """Gets file handle for given path and mode. """ if compression is not None: if encoding is not None and not compat.PY3: msg = 'encoding + compression not yet supported in Python 2' raise ValueError(msg) if compression == 'gzip': import gzip f = gzip.GzipFile(path, mode) elif compression == 'bz2': import bz2 f = bz2.BZ2File(path, mode) else: raise ValueError('Unrecognized compression type: %s' % compression) if compat.PY3: from io import TextIOWrapper f = TextIOWrapper(f, encoding=encoding) return f else: if compat.PY3: if encoding: f = open(path, mode, encoding=encoding) else: f = open(path, mode, errors='replace') else: f = open(path, mode) return f class UTF8Recoder: """ Iterator that reads an encoded stream and reencodes the input to UTF-8 """ def __init__(self, f, encoding): self.reader = codecs.getreader(encoding)(f) def __iter__(self): return self def read(self, bytes=-1): return self.reader.read(bytes).encode("utf-8") def readline(self): return self.reader.readline().encode("utf-8") def next(self): return next(self.reader).encode("utf-8") # Python 3 iterator __next__ = next if compat.PY3: # pragma: no cover def UnicodeReader(f, dialect=csv.excel, encoding="utf-8", **kwds): # ignore encoding return csv.reader(f, dialect=dialect, **kwds) def UnicodeWriter(f, dialect=csv.excel, encoding="utf-8", **kwds): return csv.writer(f, dialect=dialect, **kwds) else: class UnicodeReader: """ A CSV reader which will iterate over lines in the CSV file "f", which is encoded in the given encoding. On Python 3, this is replaced (below) by csv.reader, which handles unicode. """ def __init__(self, f, dialect=csv.excel, encoding="utf-8", **kwds): f = UTF8Recoder(f, encoding) self.reader = csv.reader(f, dialect=dialect, **kwds) def next(self): row = next(self.reader) return [compat.text_type(s, "utf-8") for s in row] # python 3 iterator __next__ = next def __iter__(self): # pragma: no cover return self class UnicodeWriter: """ A CSV writer which will write rows to CSV file "f", which is encoded in the given encoding. """ def __init__(self, f, dialect=csv.excel, encoding="utf-8", **kwds): # Redirect output to a queue self.queue = StringIO() self.writer = csv.writer(self.queue, dialect=dialect, **kwds) self.stream = f self.encoder = codecs.getincrementalencoder(encoding)() self.quoting = kwds.get("quoting", None) def writerow(self, row): def _check_as_is(x): return (self.quoting == csv.QUOTE_NONNUMERIC and is_number(x)) or isinstance(x, str) row = [x if _check_as_is(x) else pprint_thing(x).encode("utf-8") for x in row] self.writer.writerow([s for s in row]) # Fetch UTF-8 output from the queue ... data = self.queue.getvalue() data = data.decode("utf-8") # ... and reencode it into the target encoding data = self.encoder.encode(data) # write to the target stream self.stream.write(data) # empty queue self.queue.truncate(0) def writerows(self, rows): def _check_as_is(x): return (self.quoting == csv.QUOTE_NONNUMERIC and is_number(x)) or isinstance(x, str) for i, row in enumerate(rows): rows[i] = [x if _check_as_is(x) else pprint_thing(x).encode("utf-8") for x in row] self.writer.writerows([[s for s in row] for row in rows]) # Fetch UTF-8 output from the queue ... data = self.queue.getvalue() data = data.decode("utf-8") # ... and reencode it into the target encoding data = self.encoder.encode(data) # write to the target stream self.stream.write(data) # empty queue self.queue.truncate(0)
mit
crichardson17/starburst_atlas
SFH_comparison/data/Geneva_cont_Rot/Geneva_cont_Rot_5/fullgrid/peaks_reader.py
1
5057
import csv import matplotlib.pyplot as plt from numpy import * import scipy.interpolate import math from pylab import * from matplotlib.ticker import MultipleLocator, FormatStrFormatter import matplotlib.patches as patches from matplotlib.path import Path import os # --------------------------------------------------- headerloc = "/Users/helen/Documents/Elon/Thesis_Research/github_repo/starburst_atlas/headers_dir/headers.txt" # ------------------------------------------------------------------------------------------------------ #data files' names from source directory constructed here. default source directory is working directory numFiles = 3 #change this if you have more/less files gridFiles = [None]*numFiles emissionFiles = [None]*numFiles for i in range(numFiles): for file in os.listdir('.'): if file.endswith("{:d}.grd".format(i+1)): gridFiles[i] = file #keep track of all the files you'll be importing by printing #print file if file.endswith("{:d}.txt".format(i+1)): emissionFiles[i] = file #keep track of all the files you'll be importing by printing #print file print ("Files names constructed") # --------------------------------------------------- #this is where the grid information (phi and hdens) is read in and saved to grid. print("Beginning file import") for i in range(numFiles): gridI = []; with open(gridFiles[i], 'rb') as f: csvReader = csv.reader(f, delimiter='\t') for row in csvReader: gridI.append(row) gridI = asarray(gridI) gridI = gridI[1:,6:8] if ( i == 0 ): grid = gridI else : grid = concatenate((grid,gridI)) for i in range(numFiles): emissionLineI = []; with open(emissionFiles[i], 'rb') as f: csvReader = csv.reader(f, delimiter='\t') headers = csvReader.next() for row in csvReader: emissionLineI.append(row) emissionLineI = asarray(emissionLineI) emissionLineI = emissionLineI[:,1:] if ( i == 0 ): Emissionlines = emissionLineI else : Emissionlines = concatenate((Emissionlines,emissionLineI)) hdens_values = grid[:,1] phi_values = grid[:,0] print("Import files complete") #To fix when hdens > 10 #many of my grids were run off with hdens up to 12 so we needed to cut off part of the data #first create temorary arrays print("modifications begun") hdens_values_2 = empty(shape=[0, 1]) phi_values_2 = empty(shape=[0, 1]) Emissionlines_2 = empty(shape=[0, len(Emissionlines[0,:])]) #save data in range desired to temp arrays for i in range(len(hdens_values)): if (float(hdens_values[i]) < 6.100) & (float(phi_values[i]) < 17.100) : hdens_values_2 = append(hdens_values_2, hdens_values[i]) phi_values_2 = append(phi_values_2, phi_values[i]) Emissionlines_2 = vstack([Emissionlines_2, Emissionlines[i,:]]) #overwrite old arrays hdens_values = hdens_values_2 phi_values = phi_values_2 Emissionlines = Emissionlines_2 print("modifications complete") # --------------------------------------------------- # --------------------------------------------------- #there are the emission line names properly formatted print("Importing headers from header file") headersFile = open(headerloc,'r') headers = headersFile.read().splitlines() headersFile.close() # --------------------------------------------------- #constructing grid by scaling #select the scaling factor #for 1215 #incident = Emissionlines[1:,4] concatenated_data = zeros((len(Emissionlines),len(Emissionlines[0]))) max_values = zeros((len(concatenated_data[0]),4)) #for 4860 incident = concatenated_data[:,57] #take the ratio of incident and all the lines and put it all in an array concatenated_data for i in range(len(Emissionlines)): for j in range(len(Emissionlines[0])): if math.log(4860.*(float(Emissionlines[i,j])/float(Emissionlines[i,57])), 10) > 0: concatenated_data[i,j] = math.log(4860.*(float(Emissionlines[i,j])/float(Emissionlines[i,57])), 10) else: concatenated_data[i,j] == 0 # for 1215 #for i in range(len(Emissionlines)): # for j in range(len(Emissionlines[0])): # if math.log(1215.*(float(Emissionlines[i,j])/float(Emissionlines[i,4])), 10) > 0: # concatenated_data[i,j] = math.log(1215.*(float(Emissionlines[i,j])/float(Emissionlines[i,4])), 10) # else: # concatenated_data[i,j] == 0 # --------------------------------------------------- #find the maxima to plot onto the contour plots for j in range(len(concatenated_data[0])): max_values[j,0] = max(concatenated_data[:,j]) max_values[j,1] = argmax(concatenated_data[:,j], axis = 0) max_values[j,2] = hdens_values[max_values[j,1]] max_values[j,3] = phi_values[max_values[j,1]] #to round off the maxima max_values[:,0] = [ '%.1f' % elem for elem in max_values[:,0] ] print "data arranged" # --------------------------------------------------- #Creating the grid to interpolate with for contours. gridarray = zeros((len(concatenated_data),2)) gridarray[:,0] = hdens_values gridarray[:,1] = phi_values x = gridarray[:,0] y = gridarray[:,1] # --------------------------------------------------- savetxt('peaks_Geneva_cont_5', max_values, delimiter='\t')
gpl-2.0
valexandersaulys/prudential_insurance_kaggle
venv/lib/python2.7/site-packages/sklearn/metrics/tests/test_ranking.py
6
41689
from __future__ import division, print_function import numpy as np from itertools import product import warnings from scipy.sparse import csr_matrix from sklearn import datasets from sklearn import svm from sklearn import ensemble from sklearn.datasets import make_multilabel_classification from sklearn.random_projection import sparse_random_matrix from sklearn.utils.validation import check_array, check_consistent_length from sklearn.utils.validation import check_random_state from sklearn.utils.testing import assert_raises, clean_warning_registry from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_warns from sklearn.metrics import auc from sklearn.metrics import average_precision_score from sklearn.metrics import coverage_error from sklearn.metrics import label_ranking_average_precision_score from sklearn.metrics import precision_recall_curve from sklearn.metrics import label_ranking_loss from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_curve from sklearn.metrics.base import UndefinedMetricWarning ############################################################################### # Utilities for testing def make_prediction(dataset=None, binary=False): """Make some classification predictions on a toy dataset using a SVC If binary is True restrict to a binary classification problem instead of a multiclass classification problem """ if dataset is None: # import some data to play with dataset = datasets.load_iris() X = dataset.data y = dataset.target if binary: # restrict to a binary classification task X, y = X[y < 2], y[y < 2] n_samples, n_features = X.shape p = np.arange(n_samples) rng = check_random_state(37) rng.shuffle(p) X, y = X[p], y[p] half = int(n_samples / 2) # add noisy features to make the problem harder and avoid perfect results rng = np.random.RandomState(0) X = np.c_[X, rng.randn(n_samples, 200 * n_features)] # run classifier, get class probabilities and label predictions clf = svm.SVC(kernel='linear', probability=True, random_state=0) probas_pred = clf.fit(X[:half], y[:half]).predict_proba(X[half:]) if binary: # only interested in probabilities of the positive case # XXX: do we really want a special API for the binary case? probas_pred = probas_pred[:, 1] y_pred = clf.predict(X[half:]) y_true = y[half:] return y_true, y_pred, probas_pred ############################################################################### # Tests def _auc(y_true, y_score): """Alternative implementation to check for correctness of `roc_auc_score`.""" pos_label = np.unique(y_true)[1] # Count the number of times positive samples are correctly ranked above # negative samples. pos = y_score[y_true == pos_label] neg = y_score[y_true != pos_label] diff_matrix = pos.reshape(1, -1) - neg.reshape(-1, 1) n_correct = np.sum(diff_matrix > 0) return n_correct / float(len(pos) * len(neg)) def _average_precision(y_true, y_score): """Alternative implementation to check for correctness of `average_precision_score`.""" pos_label = np.unique(y_true)[1] n_pos = np.sum(y_true == pos_label) order = np.argsort(y_score)[::-1] y_score = y_score[order] y_true = y_true[order] score = 0 for i in range(len(y_score)): if y_true[i] == pos_label: # Compute precision up to document i # i.e, percentage of relevant documents up to document i. prec = 0 for j in range(0, i + 1): if y_true[j] == pos_label: prec += 1.0 prec /= (i + 1.0) score += prec return score / n_pos def test_roc_curve(): # Test Area under Receiver Operating Characteristic (ROC) curve y_true, _, probas_pred = make_prediction(binary=True) expected_auc = _auc(y_true, probas_pred) for drop in [True, False]: fpr, tpr, thresholds = roc_curve(y_true, probas_pred, drop_intermediate=drop) roc_auc = auc(fpr, tpr) assert_array_almost_equal(roc_auc, expected_auc, decimal=2) assert_almost_equal(roc_auc, roc_auc_score(y_true, probas_pred)) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) def test_roc_curve_end_points(): # Make sure that roc_curve returns a curve start at 0 and ending and # 1 even in corner cases rng = np.random.RandomState(0) y_true = np.array([0] * 50 + [1] * 50) y_pred = rng.randint(3, size=100) fpr, tpr, thr = roc_curve(y_true, y_pred, drop_intermediate=True) assert_equal(fpr[0], 0) assert_equal(fpr[-1], 1) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thr.shape) def test_roc_returns_consistency(): # Test whether the returned threshold matches up with tpr # make small toy dataset y_true, _, probas_pred = make_prediction(binary=True) fpr, tpr, thresholds = roc_curve(y_true, probas_pred) # use the given thresholds to determine the tpr tpr_correct = [] for t in thresholds: tp = np.sum((probas_pred >= t) & y_true) p = np.sum(y_true) tpr_correct.append(1.0 * tp / p) # compare tpr and tpr_correct to see if the thresholds' order was correct assert_array_almost_equal(tpr, tpr_correct, decimal=2) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) def test_roc_nonrepeating_thresholds(): # Test to ensure that we don't return spurious repeating thresholds. # Duplicated thresholds can arise due to machine precision issues. dataset = datasets.load_digits() X = dataset['data'] y = dataset['target'] # This random forest classifier can only return probabilities # significant to two decimal places clf = ensemble.RandomForestClassifier(n_estimators=100, random_state=0) # How well can the classifier predict whether a digit is less than 5? # This task contributes floating point roundoff errors to the probabilities train, test = slice(None, None, 2), slice(1, None, 2) probas_pred = clf.fit(X[train], y[train]).predict_proba(X[test]) y_score = probas_pred[:, :5].sum(axis=1) # roundoff errors begin here y_true = [yy < 5 for yy in y[test]] # Check for repeating values in the thresholds fpr, tpr, thresholds = roc_curve(y_true, y_score, drop_intermediate=False) assert_equal(thresholds.size, np.unique(np.round(thresholds, 2)).size) def test_roc_curve_multi(): # roc_curve not applicable for multi-class problems y_true, _, probas_pred = make_prediction(binary=False) assert_raises(ValueError, roc_curve, y_true, probas_pred) def test_roc_curve_confidence(): # roc_curve for confidence scores y_true, _, probas_pred = make_prediction(binary=True) fpr, tpr, thresholds = roc_curve(y_true, probas_pred - 0.5) roc_auc = auc(fpr, tpr) assert_array_almost_equal(roc_auc, 0.90, decimal=2) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) def test_roc_curve_hard(): # roc_curve for hard decisions y_true, pred, probas_pred = make_prediction(binary=True) # always predict one trivial_pred = np.ones(y_true.shape) fpr, tpr, thresholds = roc_curve(y_true, trivial_pred) roc_auc = auc(fpr, tpr) assert_array_almost_equal(roc_auc, 0.50, decimal=2) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) # always predict zero trivial_pred = np.zeros(y_true.shape) fpr, tpr, thresholds = roc_curve(y_true, trivial_pred) roc_auc = auc(fpr, tpr) assert_array_almost_equal(roc_auc, 0.50, decimal=2) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) # hard decisions fpr, tpr, thresholds = roc_curve(y_true, pred) roc_auc = auc(fpr, tpr) assert_array_almost_equal(roc_auc, 0.78, decimal=2) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) def test_roc_curve_one_label(): y_true = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] y_pred = [0, 1, 0, 1, 0, 1, 0, 1, 0, 1] # assert there are warnings w = UndefinedMetricWarning fpr, tpr, thresholds = assert_warns(w, roc_curve, y_true, y_pred) # all true labels, all fpr should be nan assert_array_equal(fpr, np.nan * np.ones(len(thresholds))) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) # assert there are warnings fpr, tpr, thresholds = assert_warns(w, roc_curve, [1 - x for x in y_true], y_pred) # all negative labels, all tpr should be nan assert_array_equal(tpr, np.nan * np.ones(len(thresholds))) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) def test_roc_curve_toydata(): # Binary classification y_true = [0, 1] y_score = [0, 1] tpr, fpr, _ = roc_curve(y_true, y_score) roc_auc = roc_auc_score(y_true, y_score) assert_array_almost_equal(tpr, [0, 1]) assert_array_almost_equal(fpr, [1, 1]) assert_almost_equal(roc_auc, 1.) y_true = [0, 1] y_score = [1, 0] tpr, fpr, _ = roc_curve(y_true, y_score) roc_auc = roc_auc_score(y_true, y_score) assert_array_almost_equal(tpr, [0, 1, 1]) assert_array_almost_equal(fpr, [0, 0, 1]) assert_almost_equal(roc_auc, 0.) y_true = [1, 0] y_score = [1, 1] tpr, fpr, _ = roc_curve(y_true, y_score) roc_auc = roc_auc_score(y_true, y_score) assert_array_almost_equal(tpr, [0, 1]) assert_array_almost_equal(fpr, [0, 1]) assert_almost_equal(roc_auc, 0.5) y_true = [1, 0] y_score = [1, 0] tpr, fpr, _ = roc_curve(y_true, y_score) roc_auc = roc_auc_score(y_true, y_score) assert_array_almost_equal(tpr, [0, 1]) assert_array_almost_equal(fpr, [1, 1]) assert_almost_equal(roc_auc, 1.) y_true = [1, 0] y_score = [0.5, 0.5] tpr, fpr, _ = roc_curve(y_true, y_score) roc_auc = roc_auc_score(y_true, y_score) assert_array_almost_equal(tpr, [0, 1]) assert_array_almost_equal(fpr, [0, 1]) assert_almost_equal(roc_auc, .5) y_true = [0, 0] y_score = [0.25, 0.75] tpr, fpr, _ = roc_curve(y_true, y_score) assert_raises(ValueError, roc_auc_score, y_true, y_score) assert_array_almost_equal(tpr, [0., 0.5, 1.]) assert_array_almost_equal(fpr, [np.nan, np.nan, np.nan]) y_true = [1, 1] y_score = [0.25, 0.75] tpr, fpr, _ = roc_curve(y_true, y_score) assert_raises(ValueError, roc_auc_score, y_true, y_score) assert_array_almost_equal(tpr, [np.nan, np.nan]) assert_array_almost_equal(fpr, [0.5, 1.]) # Multi-label classification task y_true = np.array([[0, 1], [0, 1]]) y_score = np.array([[0, 1], [0, 1]]) assert_raises(ValueError, roc_auc_score, y_true, y_score, average="macro") assert_raises(ValueError, roc_auc_score, y_true, y_score, average="weighted") assert_almost_equal(roc_auc_score(y_true, y_score, average="samples"), 1.) assert_almost_equal(roc_auc_score(y_true, y_score, average="micro"), 1.) y_true = np.array([[0, 1], [0, 1]]) y_score = np.array([[0, 1], [1, 0]]) assert_raises(ValueError, roc_auc_score, y_true, y_score, average="macro") assert_raises(ValueError, roc_auc_score, y_true, y_score, average="weighted") assert_almost_equal(roc_auc_score(y_true, y_score, average="samples"), 0.5) assert_almost_equal(roc_auc_score(y_true, y_score, average="micro"), 0.5) y_true = np.array([[1, 0], [0, 1]]) y_score = np.array([[0, 1], [1, 0]]) assert_almost_equal(roc_auc_score(y_true, y_score, average="macro"), 0) assert_almost_equal(roc_auc_score(y_true, y_score, average="weighted"), 0) assert_almost_equal(roc_auc_score(y_true, y_score, average="samples"), 0) assert_almost_equal(roc_auc_score(y_true, y_score, average="micro"), 0) y_true = np.array([[1, 0], [0, 1]]) y_score = np.array([[0.5, 0.5], [0.5, 0.5]]) assert_almost_equal(roc_auc_score(y_true, y_score, average="macro"), .5) assert_almost_equal(roc_auc_score(y_true, y_score, average="weighted"), .5) assert_almost_equal(roc_auc_score(y_true, y_score, average="samples"), .5) assert_almost_equal(roc_auc_score(y_true, y_score, average="micro"), .5) def test_roc_curve_drop_intermediate(): # Test that drop_intermediate drops the correct thresholds y_true = [0, 0, 0, 0, 1, 1] y_score = [0., 0.2, 0.5, 0.6, 0.7, 1.0] tpr, fpr, thresholds = roc_curve(y_true, y_score, drop_intermediate=True) assert_array_almost_equal(thresholds, [1., 0.7, 0.]) # Test dropping thresholds with repeating scores y_true = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] y_score = [0., 0.1, 0.6, 0.6, 0.7, 0.8, 0.9, 0.6, 0.7, 0.8, 0.9, 0.9, 1.0] tpr, fpr, thresholds = roc_curve(y_true, y_score, drop_intermediate=True) assert_array_almost_equal(thresholds, [1.0, 0.9, 0.7, 0.6, 0.]) def test_auc(): # Test Area Under Curve (AUC) computation x = [0, 1] y = [0, 1] assert_array_almost_equal(auc(x, y), 0.5) x = [1, 0] y = [0, 1] assert_array_almost_equal(auc(x, y), 0.5) x = [1, 0, 0] y = [0, 1, 1] assert_array_almost_equal(auc(x, y), 0.5) x = [0, 1] y = [1, 1] assert_array_almost_equal(auc(x, y), 1) x = [0, 0.5, 1] y = [0, 0.5, 1] assert_array_almost_equal(auc(x, y), 0.5) def test_auc_duplicate_values(): # Test Area Under Curve (AUC) computation with duplicate values # auc() was previously sorting the x and y arrays according to the indices # from numpy.argsort(x), which was reordering the tied 0's in this example # and resulting in an incorrect area computation. This test detects the # error. x = [-2.0, 0.0, 0.0, 0.0, 1.0] y1 = [2.0, 0.0, 0.5, 1.0, 1.0] y2 = [2.0, 1.0, 0.0, 0.5, 1.0] y3 = [2.0, 1.0, 0.5, 0.0, 1.0] for y in (y1, y2, y3): assert_array_almost_equal(auc(x, y, reorder=True), 3.0) def test_auc_errors(): # Incompatible shapes assert_raises(ValueError, auc, [0.0, 0.5, 1.0], [0.1, 0.2]) # Too few x values assert_raises(ValueError, auc, [0.0], [0.1]) # x is not in order assert_raises(ValueError, auc, [1.0, 0.0, 0.5], [0.0, 0.0, 0.0]) def test_auc_score_non_binary_class(): # Test that roc_auc_score function returns an error when trying # to compute AUC for non-binary class values. rng = check_random_state(404) y_pred = rng.rand(10) # y_true contains only one class value y_true = np.zeros(10, dtype="int") assert_raise_message(ValueError, "ROC AUC score is not defined", roc_auc_score, y_true, y_pred) y_true = np.ones(10, dtype="int") assert_raise_message(ValueError, "ROC AUC score is not defined", roc_auc_score, y_true, y_pred) y_true = -np.ones(10, dtype="int") assert_raise_message(ValueError, "ROC AUC score is not defined", roc_auc_score, y_true, y_pred) # y_true contains three different class values y_true = rng.randint(0, 3, size=10) assert_raise_message(ValueError, "multiclass format is not supported", roc_auc_score, y_true, y_pred) clean_warning_registry() with warnings.catch_warnings(record=True): rng = check_random_state(404) y_pred = rng.rand(10) # y_true contains only one class value y_true = np.zeros(10, dtype="int") assert_raise_message(ValueError, "ROC AUC score is not defined", roc_auc_score, y_true, y_pred) y_true = np.ones(10, dtype="int") assert_raise_message(ValueError, "ROC AUC score is not defined", roc_auc_score, y_true, y_pred) y_true = -np.ones(10, dtype="int") assert_raise_message(ValueError, "ROC AUC score is not defined", roc_auc_score, y_true, y_pred) # y_true contains three different class values y_true = rng.randint(0, 3, size=10) assert_raise_message(ValueError, "multiclass format is not supported", roc_auc_score, y_true, y_pred) def test_precision_recall_curve(): y_true, _, probas_pred = make_prediction(binary=True) _test_precision_recall_curve(y_true, probas_pred) # Use {-1, 1} for labels; make sure original labels aren't modified y_true[np.where(y_true == 0)] = -1 y_true_copy = y_true.copy() _test_precision_recall_curve(y_true, probas_pred) assert_array_equal(y_true_copy, y_true) labels = [1, 0, 0, 1] predict_probas = [1, 2, 3, 4] p, r, t = precision_recall_curve(labels, predict_probas) assert_array_almost_equal(p, np.array([0.5, 0.33333333, 0.5, 1., 1.])) assert_array_almost_equal(r, np.array([1., 0.5, 0.5, 0.5, 0.])) assert_array_almost_equal(t, np.array([1, 2, 3, 4])) assert_equal(p.size, r.size) assert_equal(p.size, t.size + 1) def test_precision_recall_curve_pos_label(): y_true, _, probas_pred = make_prediction(binary=False) pos_label = 2 p, r, thresholds = precision_recall_curve(y_true, probas_pred[:, pos_label], pos_label=pos_label) p2, r2, thresholds2 = precision_recall_curve(y_true == pos_label, probas_pred[:, pos_label]) assert_array_almost_equal(p, p2) assert_array_almost_equal(r, r2) assert_array_almost_equal(thresholds, thresholds2) assert_equal(p.size, r.size) assert_equal(p.size, thresholds.size + 1) def _test_precision_recall_curve(y_true, probas_pred): # Test Precision-Recall and aread under PR curve p, r, thresholds = precision_recall_curve(y_true, probas_pred) precision_recall_auc = auc(r, p) assert_array_almost_equal(precision_recall_auc, 0.85, 2) assert_array_almost_equal(precision_recall_auc, average_precision_score(y_true, probas_pred)) assert_almost_equal(_average_precision(y_true, probas_pred), precision_recall_auc, 1) assert_equal(p.size, r.size) assert_equal(p.size, thresholds.size + 1) # Smoke test in the case of proba having only one value p, r, thresholds = precision_recall_curve(y_true, np.zeros_like(probas_pred)) precision_recall_auc = auc(r, p) assert_array_almost_equal(precision_recall_auc, 0.75, 3) assert_equal(p.size, r.size) assert_equal(p.size, thresholds.size + 1) def test_precision_recall_curve_errors(): # Contains non-binary labels assert_raises(ValueError, precision_recall_curve, [0, 1, 2], [[0.0], [1.0], [1.0]]) def test_precision_recall_curve_toydata(): with np.errstate(all="raise"): # Binary classification y_true = [0, 1] y_score = [0, 1] p, r, _ = precision_recall_curve(y_true, y_score) auc_prc = average_precision_score(y_true, y_score) assert_array_almost_equal(p, [1, 1]) assert_array_almost_equal(r, [1, 0]) assert_almost_equal(auc_prc, 1.) y_true = [0, 1] y_score = [1, 0] p, r, _ = precision_recall_curve(y_true, y_score) auc_prc = average_precision_score(y_true, y_score) assert_array_almost_equal(p, [0.5, 0., 1.]) assert_array_almost_equal(r, [1., 0., 0.]) assert_almost_equal(auc_prc, 0.25) y_true = [1, 0] y_score = [1, 1] p, r, _ = precision_recall_curve(y_true, y_score) auc_prc = average_precision_score(y_true, y_score) assert_array_almost_equal(p, [0.5, 1]) assert_array_almost_equal(r, [1., 0]) assert_almost_equal(auc_prc, .75) y_true = [1, 0] y_score = [1, 0] p, r, _ = precision_recall_curve(y_true, y_score) auc_prc = average_precision_score(y_true, y_score) assert_array_almost_equal(p, [1, 1]) assert_array_almost_equal(r, [1, 0]) assert_almost_equal(auc_prc, 1.) y_true = [1, 0] y_score = [0.5, 0.5] p, r, _ = precision_recall_curve(y_true, y_score) auc_prc = average_precision_score(y_true, y_score) assert_array_almost_equal(p, [0.5, 1]) assert_array_almost_equal(r, [1, 0.]) assert_almost_equal(auc_prc, .75) y_true = [0, 0] y_score = [0.25, 0.75] assert_raises(Exception, precision_recall_curve, y_true, y_score) assert_raises(Exception, average_precision_score, y_true, y_score) y_true = [1, 1] y_score = [0.25, 0.75] p, r, _ = precision_recall_curve(y_true, y_score) assert_almost_equal(average_precision_score(y_true, y_score), 1.) assert_array_almost_equal(p, [1., 1., 1.]) assert_array_almost_equal(r, [1, 0.5, 0.]) # Multi-label classification task y_true = np.array([[0, 1], [0, 1]]) y_score = np.array([[0, 1], [0, 1]]) assert_raises(Exception, average_precision_score, y_true, y_score, average="macro") assert_raises(Exception, average_precision_score, y_true, y_score, average="weighted") assert_almost_equal(average_precision_score(y_true, y_score, average="samples"), 1.) assert_almost_equal(average_precision_score(y_true, y_score, average="micro"), 1.) y_true = np.array([[0, 1], [0, 1]]) y_score = np.array([[0, 1], [1, 0]]) assert_raises(Exception, average_precision_score, y_true, y_score, average="macro") assert_raises(Exception, average_precision_score, y_true, y_score, average="weighted") assert_almost_equal(average_precision_score(y_true, y_score, average="samples"), 0.625) assert_almost_equal(average_precision_score(y_true, y_score, average="micro"), 0.625) y_true = np.array([[1, 0], [0, 1]]) y_score = np.array([[0, 1], [1, 0]]) assert_almost_equal(average_precision_score(y_true, y_score, average="macro"), 0.25) assert_almost_equal(average_precision_score(y_true, y_score, average="weighted"), 0.25) assert_almost_equal(average_precision_score(y_true, y_score, average="samples"), 0.25) assert_almost_equal(average_precision_score(y_true, y_score, average="micro"), 0.25) y_true = np.array([[1, 0], [0, 1]]) y_score = np.array([[0.5, 0.5], [0.5, 0.5]]) assert_almost_equal(average_precision_score(y_true, y_score, average="macro"), 0.75) assert_almost_equal(average_precision_score(y_true, y_score, average="weighted"), 0.75) assert_almost_equal(average_precision_score(y_true, y_score, average="samples"), 0.75) assert_almost_equal(average_precision_score(y_true, y_score, average="micro"), 0.75) def test_score_scale_invariance(): # Test that average_precision_score and roc_auc_score are invariant by # the scaling or shifting of probabilities y_true, _, probas_pred = make_prediction(binary=True) roc_auc = roc_auc_score(y_true, probas_pred) roc_auc_scaled = roc_auc_score(y_true, 100 * probas_pred) roc_auc_shifted = roc_auc_score(y_true, probas_pred - 10) assert_equal(roc_auc, roc_auc_scaled) assert_equal(roc_auc, roc_auc_shifted) pr_auc = average_precision_score(y_true, probas_pred) pr_auc_scaled = average_precision_score(y_true, 100 * probas_pred) pr_auc_shifted = average_precision_score(y_true, probas_pred - 10) assert_equal(pr_auc, pr_auc_scaled) assert_equal(pr_auc, pr_auc_shifted) def check_lrap_toy(lrap_score): # Check on several small example that it works assert_almost_equal(lrap_score([[0, 1]], [[0.25, 0.75]]), 1) assert_almost_equal(lrap_score([[0, 1]], [[0.75, 0.25]]), 1 / 2) assert_almost_equal(lrap_score([[1, 1]], [[0.75, 0.25]]), 1) assert_almost_equal(lrap_score([[0, 0, 1]], [[0.25, 0.5, 0.75]]), 1) assert_almost_equal(lrap_score([[0, 1, 0]], [[0.25, 0.5, 0.75]]), 1 / 2) assert_almost_equal(lrap_score([[0, 1, 1]], [[0.25, 0.5, 0.75]]), 1) assert_almost_equal(lrap_score([[1, 0, 0]], [[0.25, 0.5, 0.75]]), 1 / 3) assert_almost_equal(lrap_score([[1, 0, 1]], [[0.25, 0.5, 0.75]]), (2 / 3 + 1 / 1) / 2) assert_almost_equal(lrap_score([[1, 1, 0]], [[0.25, 0.5, 0.75]]), (2 / 3 + 1 / 2) / 2) assert_almost_equal(lrap_score([[0, 0, 1]], [[0.75, 0.5, 0.25]]), 1 / 3) assert_almost_equal(lrap_score([[0, 1, 0]], [[0.75, 0.5, 0.25]]), 1 / 2) assert_almost_equal(lrap_score([[0, 1, 1]], [[0.75, 0.5, 0.25]]), (1 / 2 + 2 / 3) / 2) assert_almost_equal(lrap_score([[1, 0, 0]], [[0.75, 0.5, 0.25]]), 1) assert_almost_equal(lrap_score([[1, 0, 1]], [[0.75, 0.5, 0.25]]), (1 + 2 / 3) / 2) assert_almost_equal(lrap_score([[1, 1, 0]], [[0.75, 0.5, 0.25]]), 1) assert_almost_equal(lrap_score([[1, 1, 1]], [[0.75, 0.5, 0.25]]), 1) assert_almost_equal(lrap_score([[0, 0, 1]], [[0.5, 0.75, 0.25]]), 1 / 3) assert_almost_equal(lrap_score([[0, 1, 0]], [[0.5, 0.75, 0.25]]), 1) assert_almost_equal(lrap_score([[0, 1, 1]], [[0.5, 0.75, 0.25]]), (1 + 2 / 3) / 2) assert_almost_equal(lrap_score([[1, 0, 0]], [[0.5, 0.75, 0.25]]), 1 / 2) assert_almost_equal(lrap_score([[1, 0, 1]], [[0.5, 0.75, 0.25]]), (1 / 2 + 2 / 3) / 2) assert_almost_equal(lrap_score([[1, 1, 0]], [[0.5, 0.75, 0.25]]), 1) assert_almost_equal(lrap_score([[1, 1, 1]], [[0.5, 0.75, 0.25]]), 1) # Tie handling assert_almost_equal(lrap_score([[1, 0]], [[0.5, 0.5]]), 0.5) assert_almost_equal(lrap_score([[0, 1]], [[0.5, 0.5]]), 0.5) assert_almost_equal(lrap_score([[1, 1]], [[0.5, 0.5]]), 1) assert_almost_equal(lrap_score([[0, 0, 1]], [[0.25, 0.5, 0.5]]), 0.5) assert_almost_equal(lrap_score([[0, 1, 0]], [[0.25, 0.5, 0.5]]), 0.5) assert_almost_equal(lrap_score([[0, 1, 1]], [[0.25, 0.5, 0.5]]), 1) assert_almost_equal(lrap_score([[1, 0, 0]], [[0.25, 0.5, 0.5]]), 1 / 3) assert_almost_equal(lrap_score([[1, 0, 1]], [[0.25, 0.5, 0.5]]), (2 / 3 + 1 / 2) / 2) assert_almost_equal(lrap_score([[1, 1, 0]], [[0.25, 0.5, 0.5]]), (2 / 3 + 1 / 2) / 2) assert_almost_equal(lrap_score([[1, 1, 1]], [[0.25, 0.5, 0.5]]), 1) assert_almost_equal(lrap_score([[1, 1, 0]], [[0.5, 0.5, 0.5]]), 2 / 3) assert_almost_equal(lrap_score([[1, 1, 1, 0]], [[0.5, 0.5, 0.5, 0.5]]), 3 / 4) def check_zero_or_all_relevant_labels(lrap_score): random_state = check_random_state(0) for n_labels in range(2, 5): y_score = random_state.uniform(size=(1, n_labels)) y_score_ties = np.zeros_like(y_score) # No relevant labels y_true = np.zeros((1, n_labels)) assert_equal(lrap_score(y_true, y_score), 1.) assert_equal(lrap_score(y_true, y_score_ties), 1.) # Only relevant labels y_true = np.ones((1, n_labels)) assert_equal(lrap_score(y_true, y_score), 1.) assert_equal(lrap_score(y_true, y_score_ties), 1.) # Degenerate case: only one label assert_almost_equal(lrap_score([[1], [0], [1], [0]], [[0.5], [0.5], [0.5], [0.5]]), 1.) def check_lrap_error_raised(lrap_score): # Raise value error if not appropriate format assert_raises(ValueError, lrap_score, [0, 1, 0], [0.25, 0.3, 0.2]) assert_raises(ValueError, lrap_score, [0, 1, 2], [[0.25, 0.75, 0.0], [0.7, 0.3, 0.0], [0.8, 0.2, 0.0]]) assert_raises(ValueError, lrap_score, [(0), (1), (2)], [[0.25, 0.75, 0.0], [0.7, 0.3, 0.0], [0.8, 0.2, 0.0]]) # Check that that y_true.shape != y_score.shape raise the proper exception assert_raises(ValueError, lrap_score, [[0, 1], [0, 1]], [0, 1]) assert_raises(ValueError, lrap_score, [[0, 1], [0, 1]], [[0, 1]]) assert_raises(ValueError, lrap_score, [[0, 1], [0, 1]], [[0], [1]]) assert_raises(ValueError, lrap_score, [[0, 1]], [[0, 1], [0, 1]]) assert_raises(ValueError, lrap_score, [[0], [1]], [[0, 1], [0, 1]]) assert_raises(ValueError, lrap_score, [[0, 1], [0, 1]], [[0], [1]]) def check_lrap_only_ties(lrap_score): # Check tie handling in score # Basic check with only ties and increasing label space for n_labels in range(2, 10): y_score = np.ones((1, n_labels)) # Check for growing number of consecutive relevant for n_relevant in range(1, n_labels): # Check for a bunch of positions for pos in range(n_labels - n_relevant): y_true = np.zeros((1, n_labels)) y_true[0, pos:pos + n_relevant] = 1 assert_almost_equal(lrap_score(y_true, y_score), n_relevant / n_labels) def check_lrap_without_tie_and_increasing_score(lrap_score): # Check that Label ranking average precision works for various # Basic check with increasing label space size and decreasing score for n_labels in range(2, 10): y_score = n_labels - (np.arange(n_labels).reshape((1, n_labels)) + 1) # First and last y_true = np.zeros((1, n_labels)) y_true[0, 0] = 1 y_true[0, -1] = 1 assert_almost_equal(lrap_score(y_true, y_score), (2 / n_labels + 1) / 2) # Check for growing number of consecutive relevant label for n_relevant in range(1, n_labels): # Check for a bunch of position for pos in range(n_labels - n_relevant): y_true = np.zeros((1, n_labels)) y_true[0, pos:pos + n_relevant] = 1 assert_almost_equal(lrap_score(y_true, y_score), sum((r + 1) / ((pos + r + 1) * n_relevant) for r in range(n_relevant))) def _my_lrap(y_true, y_score): """Simple implementation of label ranking average precision""" check_consistent_length(y_true, y_score) y_true = check_array(y_true) y_score = check_array(y_score) n_samples, n_labels = y_true.shape score = np.empty((n_samples, )) for i in range(n_samples): # The best rank correspond to 1. Rank higher than 1 are worse. # The best inverse ranking correspond to n_labels. unique_rank, inv_rank = np.unique(y_score[i], return_inverse=True) n_ranks = unique_rank.size rank = n_ranks - inv_rank # Rank need to be corrected to take into account ties # ex: rank 1 ex aequo means that both label are rank 2. corr_rank = np.bincount(rank, minlength=n_ranks + 1).cumsum() rank = corr_rank[rank] relevant = y_true[i].nonzero()[0] if relevant.size == 0 or relevant.size == n_labels: score[i] = 1 continue score[i] = 0. for label in relevant: # Let's count the number of relevant label with better rank # (smaller rank). n_ranked_above = sum(rank[r] <= rank[label] for r in relevant) # Weight by the rank of the actual label score[i] += n_ranked_above / rank[label] score[i] /= relevant.size return score.mean() def check_alternative_lrap_implementation(lrap_score, n_classes=5, n_samples=20, random_state=0): _, y_true = make_multilabel_classification(n_features=1, allow_unlabeled=False, random_state=random_state, n_classes=n_classes, n_samples=n_samples) # Score with ties y_score = sparse_random_matrix(n_components=y_true.shape[0], n_features=y_true.shape[1], random_state=random_state) if hasattr(y_score, "toarray"): y_score = y_score.toarray() score_lrap = label_ranking_average_precision_score(y_true, y_score) score_my_lrap = _my_lrap(y_true, y_score) assert_almost_equal(score_lrap, score_my_lrap) # Uniform score random_state = check_random_state(random_state) y_score = random_state.uniform(size=(n_samples, n_classes)) score_lrap = label_ranking_average_precision_score(y_true, y_score) score_my_lrap = _my_lrap(y_true, y_score) assert_almost_equal(score_lrap, score_my_lrap) def test_label_ranking_avp(): for fn in [label_ranking_average_precision_score, _my_lrap]: yield check_lrap_toy, fn yield check_lrap_without_tie_and_increasing_score, fn yield check_lrap_only_ties, fn yield check_zero_or_all_relevant_labels, fn yield check_lrap_error_raised, label_ranking_average_precision_score for n_samples, n_classes, random_state in product((1, 2, 8, 20), (2, 5, 10), range(1)): yield (check_alternative_lrap_implementation, label_ranking_average_precision_score, n_classes, n_samples, random_state) def test_coverage_error(): # Toy case assert_almost_equal(coverage_error([[0, 1]], [[0.25, 0.75]]), 1) assert_almost_equal(coverage_error([[0, 1]], [[0.75, 0.25]]), 2) assert_almost_equal(coverage_error([[1, 1]], [[0.75, 0.25]]), 2) assert_almost_equal(coverage_error([[0, 0]], [[0.75, 0.25]]), 0) assert_almost_equal(coverage_error([[0, 0, 0]], [[0.25, 0.5, 0.75]]), 0) assert_almost_equal(coverage_error([[0, 0, 1]], [[0.25, 0.5, 0.75]]), 1) assert_almost_equal(coverage_error([[0, 1, 0]], [[0.25, 0.5, 0.75]]), 2) assert_almost_equal(coverage_error([[0, 1, 1]], [[0.25, 0.5, 0.75]]), 2) assert_almost_equal(coverage_error([[1, 0, 0]], [[0.25, 0.5, 0.75]]), 3) assert_almost_equal(coverage_error([[1, 0, 1]], [[0.25, 0.5, 0.75]]), 3) assert_almost_equal(coverage_error([[1, 1, 0]], [[0.25, 0.5, 0.75]]), 3) assert_almost_equal(coverage_error([[1, 1, 1]], [[0.25, 0.5, 0.75]]), 3) assert_almost_equal(coverage_error([[0, 0, 0]], [[0.75, 0.5, 0.25]]), 0) assert_almost_equal(coverage_error([[0, 0, 1]], [[0.75, 0.5, 0.25]]), 3) assert_almost_equal(coverage_error([[0, 1, 0]], [[0.75, 0.5, 0.25]]), 2) assert_almost_equal(coverage_error([[0, 1, 1]], [[0.75, 0.5, 0.25]]), 3) assert_almost_equal(coverage_error([[1, 0, 0]], [[0.75, 0.5, 0.25]]), 1) assert_almost_equal(coverage_error([[1, 0, 1]], [[0.75, 0.5, 0.25]]), 3) assert_almost_equal(coverage_error([[1, 1, 0]], [[0.75, 0.5, 0.25]]), 2) assert_almost_equal(coverage_error([[1, 1, 1]], [[0.75, 0.5, 0.25]]), 3) assert_almost_equal(coverage_error([[0, 0, 0]], [[0.5, 0.75, 0.25]]), 0) assert_almost_equal(coverage_error([[0, 0, 1]], [[0.5, 0.75, 0.25]]), 3) assert_almost_equal(coverage_error([[0, 1, 0]], [[0.5, 0.75, 0.25]]), 1) assert_almost_equal(coverage_error([[0, 1, 1]], [[0.5, 0.75, 0.25]]), 3) assert_almost_equal(coverage_error([[1, 0, 0]], [[0.5, 0.75, 0.25]]), 2) assert_almost_equal(coverage_error([[1, 0, 1]], [[0.5, 0.75, 0.25]]), 3) assert_almost_equal(coverage_error([[1, 1, 0]], [[0.5, 0.75, 0.25]]), 2) assert_almost_equal(coverage_error([[1, 1, 1]], [[0.5, 0.75, 0.25]]), 3) # Non trival case assert_almost_equal(coverage_error([[0, 1, 0], [1, 1, 0]], [[0.1, 10., -3], [0, 1, 3]]), (1 + 3) / 2.) assert_almost_equal(coverage_error([[0, 1, 0], [1, 1, 0], [0, 1, 1]], [[0.1, 10, -3], [0, 1, 3], [0, 2, 0]]), (1 + 3 + 3) / 3.) assert_almost_equal(coverage_error([[0, 1, 0], [1, 1, 0], [0, 1, 1]], [[0.1, 10, -3], [3, 1, 3], [0, 2, 0]]), (1 + 3 + 3) / 3.) def test_coverage_tie_handling(): assert_almost_equal(coverage_error([[0, 0]], [[0.5, 0.5]]), 0) assert_almost_equal(coverage_error([[1, 0]], [[0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[0, 1]], [[0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[1, 1]], [[0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[0, 0, 0]], [[0.25, 0.5, 0.5]]), 0) assert_almost_equal(coverage_error([[0, 0, 1]], [[0.25, 0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[0, 1, 0]], [[0.25, 0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[0, 1, 1]], [[0.25, 0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[1, 0, 0]], [[0.25, 0.5, 0.5]]), 3) assert_almost_equal(coverage_error([[1, 0, 1]], [[0.25, 0.5, 0.5]]), 3) assert_almost_equal(coverage_error([[1, 1, 0]], [[0.25, 0.5, 0.5]]), 3) assert_almost_equal(coverage_error([[1, 1, 1]], [[0.25, 0.5, 0.5]]), 3) def test_label_ranking_loss(): assert_almost_equal(label_ranking_loss([[0, 1]], [[0.25, 0.75]]), 0) assert_almost_equal(label_ranking_loss([[0, 1]], [[0.75, 0.25]]), 1) assert_almost_equal(label_ranking_loss([[0, 0, 1]], [[0.25, 0.5, 0.75]]), 0) assert_almost_equal(label_ranking_loss([[0, 1, 0]], [[0.25, 0.5, 0.75]]), 1 / 2) assert_almost_equal(label_ranking_loss([[0, 1, 1]], [[0.25, 0.5, 0.75]]), 0) assert_almost_equal(label_ranking_loss([[1, 0, 0]], [[0.25, 0.5, 0.75]]), 2 / 2) assert_almost_equal(label_ranking_loss([[1, 0, 1]], [[0.25, 0.5, 0.75]]), 1 / 2) assert_almost_equal(label_ranking_loss([[1, 1, 0]], [[0.25, 0.5, 0.75]]), 2 / 2) # Undefined metrics - the ranking doesn't matter assert_almost_equal(label_ranking_loss([[0, 0]], [[0.75, 0.25]]), 0) assert_almost_equal(label_ranking_loss([[1, 1]], [[0.75, 0.25]]), 0) assert_almost_equal(label_ranking_loss([[0, 0]], [[0.5, 0.5]]), 0) assert_almost_equal(label_ranking_loss([[1, 1]], [[0.5, 0.5]]), 0) assert_almost_equal(label_ranking_loss([[0, 0, 0]], [[0.5, 0.75, 0.25]]), 0) assert_almost_equal(label_ranking_loss([[1, 1, 1]], [[0.5, 0.75, 0.25]]), 0) assert_almost_equal(label_ranking_loss([[0, 0, 0]], [[0.25, 0.5, 0.5]]), 0) assert_almost_equal(label_ranking_loss([[1, 1, 1]], [[0.25, 0.5, 0.5]]), 0) # Non trival case assert_almost_equal(label_ranking_loss([[0, 1, 0], [1, 1, 0]], [[0.1, 10., -3], [0, 1, 3]]), (0 + 2 / 2) / 2.) assert_almost_equal(label_ranking_loss( [[0, 1, 0], [1, 1, 0], [0, 1, 1]], [[0.1, 10, -3], [0, 1, 3], [0, 2, 0]]), (0 + 2 / 2 + 1 / 2) / 3.) assert_almost_equal(label_ranking_loss( [[0, 1, 0], [1, 1, 0], [0, 1, 1]], [[0.1, 10, -3], [3, 1, 3], [0, 2, 0]]), (0 + 2 / 2 + 1 / 2) / 3.) # Sparse csr matrices assert_almost_equal(label_ranking_loss( csr_matrix(np.array([[0, 1, 0], [1, 1, 0]])), [[0.1, 10, -3], [3, 1, 3]]), (0 + 2 / 2) / 2.) def test_ranking_appropriate_input_shape(): # Check that that y_true.shape != y_score.shape raise the proper exception assert_raises(ValueError, label_ranking_loss, [[0, 1], [0, 1]], [0, 1]) assert_raises(ValueError, label_ranking_loss, [[0, 1], [0, 1]], [[0, 1]]) assert_raises(ValueError, label_ranking_loss, [[0, 1], [0, 1]], [[0], [1]]) assert_raises(ValueError, label_ranking_loss, [[0, 1]], [[0, 1], [0, 1]]) assert_raises(ValueError, label_ranking_loss, [[0], [1]], [[0, 1], [0, 1]]) assert_raises(ValueError, label_ranking_loss, [[0, 1], [0, 1]], [[0], [1]]) def test_ranking_loss_ties_handling(): # Tie handling assert_almost_equal(label_ranking_loss([[1, 0]], [[0.5, 0.5]]), 1) assert_almost_equal(label_ranking_loss([[0, 1]], [[0.5, 0.5]]), 1) assert_almost_equal(label_ranking_loss([[0, 0, 1]], [[0.25, 0.5, 0.5]]), 1 / 2) assert_almost_equal(label_ranking_loss([[0, 1, 0]], [[0.25, 0.5, 0.5]]), 1 / 2) assert_almost_equal(label_ranking_loss([[0, 1, 1]], [[0.25, 0.5, 0.5]]), 0) assert_almost_equal(label_ranking_loss([[1, 0, 0]], [[0.25, 0.5, 0.5]]), 1) assert_almost_equal(label_ranking_loss([[1, 0, 1]], [[0.25, 0.5, 0.5]]), 1) assert_almost_equal(label_ranking_loss([[1, 1, 0]], [[0.25, 0.5, 0.5]]), 1)
gpl-2.0
rkmaddox/mne-python
mne/viz/backends/_notebook.py
4
12670
"""Notebook implementation of _Renderer and GUI.""" # Authors: Guillaume Favelier <guillaume.favelier@gmail.com> # # License: Simplified BSD from contextlib import contextmanager, nullcontext from distutils.version import LooseVersion import pyvista from IPython.display import display from ipywidgets import (Button, Dropdown, FloatSlider, FloatText, HBox, IntSlider, IntText, Text, VBox, IntProgress, Play, jsdlink) from ._abstract import (_AbstractDock, _AbstractToolBar, _AbstractMenuBar, _AbstractStatusBar, _AbstractLayout, _AbstractWidget, _AbstractWindow, _AbstractMplCanvas, _AbstractPlayback, _AbstractBrainMplCanvas, _AbstractMplInterface) from ._pyvista import _PyVistaRenderer, _close_all, _set_3d_view, _set_3d_title # noqa: F401,E501, analysis:ignore class _IpyLayout(_AbstractLayout): def _layout_initialize(self, max_width): self._layout_max_width = max_width def _layout_add_widget(self, layout, widget, stretch=0): widget.layout.margin = "2px 0px 2px 0px" if not isinstance(widget, Play): widget.layout.min_width = "0px" children = list(layout.children) children.append(widget) layout.children = tuple(children) # Fix columns if self._layout_max_width is not None and isinstance(widget, HBox): children = widget.children width = int(self._layout_max_width / len(children)) for child in children: child.layout.width = f"{width}px" class _IpyDock(_AbstractDock, _IpyLayout): def _dock_initialize(self, window=None): self._dock_width = 300 self._dock = self._dock_layout = VBox() self._dock.layout.width = f"{self._dock_width}px" self._layout_initialize(self._dock_width) def _dock_finalize(self): pass def _dock_show(self): self._dock_layout.layout.visibility = "visible" def _dock_hide(self): self._dock_layout.layout.visibility = "hidden" def _dock_add_stretch(self, layout): pass def _dock_add_layout(self, vertical=True): return VBox() if vertical else HBox() def _dock_add_label(self, value, align=False, layout=None): layout = self._dock_layout if layout is None else layout widget = Text(value=value, disabled=True) self._layout_add_widget(layout, widget) return _IpyWidget(widget) def _dock_add_button(self, name, callback, layout=None): widget = Button(description=name) widget.on_click(lambda x: callback()) self._layout_add_widget(layout, widget) return _IpyWidget(widget) def _dock_named_layout(self, name, layout, compact): layout = self._dock_layout if layout is None else layout if name is not None: hlayout = self._dock_add_layout(not compact) self._dock_add_label( value=name, align=not compact, layout=hlayout) self._layout_add_widget(layout, hlayout) layout = hlayout return layout def _dock_add_slider(self, name, value, rng, callback, compact=True, double=False, layout=None): layout = self._dock_named_layout(name, layout, compact) klass = FloatSlider if double else IntSlider widget = klass( value=value, min=rng[0], max=rng[1], readout=False, ) widget.observe(_generate_callback(callback), names='value') self._layout_add_widget(layout, widget) return _IpyWidget(widget) def _dock_add_spin_box(self, name, value, rng, callback, compact=True, double=True, layout=None): layout = self._dock_named_layout(name, layout, compact) klass = FloatText if double else IntText widget = klass( value=value, min=rng[0], max=rng[1], readout=False, ) widget.observe(_generate_callback(callback), names='value') self._layout_add_widget(layout, widget) return _IpyWidget(widget) def _dock_add_combo_box(self, name, value, rng, callback, compact=True, layout=None): layout = self._dock_named_layout(name, layout, compact) widget = Dropdown( value=value, options=rng, ) widget.observe(_generate_callback(callback), names='value') self._layout_add_widget(layout, widget) return _IpyWidget(widget) def _dock_add_group_box(self, name, layout=None): layout = self._dock_layout if layout is None else layout hlayout = VBox() self._layout_add_widget(layout, hlayout) return hlayout def _generate_callback(callback, to_float=False): def func(data): value = data["new"] if "new" in data else data["old"] callback(float(value) if to_float else value) return func class _IpyToolBar(_AbstractToolBar, _IpyLayout): def _tool_bar_load_icons(self): self.icons = dict() self.icons["help"] = "question" self.icons["play"] = None self.icons["pause"] = None self.icons["reset"] = "history" self.icons["scale"] = "magic" self.icons["clear"] = "trash" self.icons["movie"] = "video-camera" self.icons["restore"] = "replay" self.icons["screenshot"] = "camera" self.icons["visibility_on"] = "eye" self.icons["visibility_off"] = "eye" def _tool_bar_initialize(self, name="default", window=None): self.actions = dict() self._tool_bar = self._tool_bar_layout = HBox() self._layout_initialize(None) def _tool_bar_add_button(self, name, desc, func, icon_name=None, shortcut=None): icon_name = name if icon_name is None else icon_name icon = self.icons[icon_name] if icon is None: return widget = Button(tooltip=desc, icon=icon) widget.on_click(lambda x: func()) self._layout_add_widget(self._tool_bar_layout, widget) self.actions[name] = widget def _tool_bar_update_button_icon(self, name, icon_name): self.actions[name].icon = self.icons[icon_name] def _tool_bar_add_text(self, name, value, placeholder): widget = Text(value=value, placeholder=placeholder) self._layout_add_widget(self._tool_bar_layout, widget) self.actions[name] = widget def _tool_bar_add_spacer(self): pass def _tool_bar_add_file_button(self, name, desc, func, shortcut=None): def callback(): fname = self.actions[f"{name}_field"].value func(None if len(fname) == 0 else fname) self._tool_bar_add_text( name=f"{name}_field", value=None, placeholder="Type a file name", ) self._tool_bar_add_button( name=name, desc=desc, func=callback, ) def _tool_bar_add_play_button(self, name, desc, func, shortcut=None): widget = Play(interval=500) self._layout_add_widget(self._tool_bar_layout, widget) self.actions[name] = widget return _IpyWidget(widget) def _tool_bar_set_theme(self, theme): pass class _IpyMenuBar(_AbstractMenuBar): def _menu_initialize(self, window=None): pass def _menu_add_submenu(self, name, desc): pass def _menu_add_button(self, menu_name, name, desc, func): pass class _IpyStatusBar(_AbstractStatusBar, _IpyLayout): def _status_bar_initialize(self, window=None): self._status_bar = self._status_bar_layout = HBox() self._layout_initialize(None) def _status_bar_add_label(self, value, stretch=0): widget = Text(value=value, disabled=True) self._layout_add_widget(self._status_bar_layout, widget) return _IpyWidget(widget) def _status_bar_add_progress_bar(self, stretch=0): widget = IntProgress() self._layout_add_widget(self._status_bar_layout, widget) return _IpyWidget(widget) def _status_bar_update(self): pass class _IpyPlayback(_AbstractPlayback): def _playback_initialize(self, func, timeout, value, rng, time_widget, play_widget): play = play_widget._widget play.min = rng[0] play.max = rng[1] play.value = value slider = time_widget._widget jsdlink((play, 'value'), (slider, 'value')) jsdlink((slider, 'value'), (play, 'value')) class _IpyMplInterface(_AbstractMplInterface): def _mpl_initialize(self): from matplotlib.backends.backend_nbagg import (FigureCanvasNbAgg, FigureManager) self.canvas = FigureCanvasNbAgg(self.fig) self.manager = FigureManager(self.canvas, 0) class _IpyMplCanvas(_AbstractMplCanvas, _IpyMplInterface): def __init__(self, width, height, dpi): super().__init__(width, height, dpi) self._mpl_initialize() class _IpyBrainMplCanvas(_AbstractBrainMplCanvas, _IpyMplInterface): def __init__(self, brain, width, height, dpi): super().__init__(brain, width, height, dpi) self._mpl_initialize() self._connect() class _IpyWindow(_AbstractWindow): def _window_close_connect(self, func): pass def _window_get_dpi(self): return 96 def _window_get_size(self): return self.figure.plotter.window_size def _window_get_simple_canvas(self, width, height, dpi): return _IpyMplCanvas(width, height, dpi) def _window_get_mplcanvas(self, brain, interactor_fraction, show_traces, separate_canvas): w, h = self._window_get_mplcanvas_size(interactor_fraction) self._interactor_fraction = interactor_fraction self._show_traces = show_traces self._separate_canvas = separate_canvas self._mplcanvas = _IpyBrainMplCanvas( brain, w, h, self._window_get_dpi()) return self._mplcanvas def _window_adjust_mplcanvas_layout(self): pass def _window_get_cursor(self): pass def _window_set_cursor(self, cursor): pass def _window_new_cursor(self, name): pass @contextmanager def _window_ensure_minimum_sizes(self): yield def _window_set_theme(self, theme): pass class _IpyWidget(_AbstractWidget): def set_value(self, value): self._widget.value = value def get_value(self): return self._widget.value def set_range(self, rng): self._widget.min = rng[0] self._widget.max = rng[1] def show(self): self._widget.layout.visibility = "visible" def hide(self): self._widget.layout.visibility = "hidden" def update(self, repaint=True): pass class _Renderer(_PyVistaRenderer, _IpyDock, _IpyToolBar, _IpyMenuBar, _IpyStatusBar, _IpyWindow, _IpyPlayback): def __init__(self, *args, **kwargs): self._dock = None self._tool_bar = None self._status_bar = None kwargs["notebook"] = True super().__init__(*args, **kwargs) def _update(self): if self.figure.display is not None: self.figure.display.update_canvas() def _create_default_tool_bar(self): self._tool_bar_load_icons() self._tool_bar_initialize() self._tool_bar_add_file_button( name="screenshot", desc="Take a screenshot", func=self.screenshot, ) def show(self): # default tool bar if self._tool_bar is None: self._create_default_tool_bar() display(self._tool_bar) # viewer if LooseVersion(pyvista.__version__) < LooseVersion('0.30'): viewer = self.plotter.show( use_ipyvtk=True, return_viewer=True) else: # pyvista>=0.30.0 viewer = self.plotter.show( jupyter_backend="ipyvtklink", return_viewer=True) viewer.layout.width = None # unlock the fixed layout # main widget if self._dock is None: main_widget = viewer else: main_widget = HBox([self._dock, viewer]) display(main_widget) self.figure.display = viewer # status bar if self._status_bar is not None: display(self._status_bar) return self.scene() _testing_context = nullcontext
bsd-3-clause
ddasilva/numpy
numpy/lib/npyio.py
3
73866
from __future__ import division, absolute_import, print_function import sys import os import re import itertools import warnings import weakref from operator import itemgetter, index as opindex import numpy as np from . import format from ._datasource import DataSource from numpy.core.multiarray import packbits, unpackbits from ._iotools import ( LineSplitter, NameValidator, StringConverter, ConverterError, ConverterLockError, ConversionWarning, _is_string_like, has_nested_fields, flatten_dtype, easy_dtype, _bytes_to_name ) from numpy.compat import ( asbytes, asstr, asbytes_nested, bytes, basestring, unicode, is_pathlib_path ) if sys.version_info[0] >= 3: import pickle else: import cPickle as pickle from future_builtins import map loads = pickle.loads __all__ = [ 'savetxt', 'loadtxt', 'genfromtxt', 'ndfromtxt', 'mafromtxt', 'recfromtxt', 'recfromcsv', 'load', 'loads', 'save', 'savez', 'savez_compressed', 'packbits', 'unpackbits', 'fromregex', 'DataSource' ] class BagObj(object): """ BagObj(obj) Convert attribute look-ups to getitems on the object passed in. Parameters ---------- obj : class instance Object on which attribute look-up is performed. Examples -------- >>> from numpy.lib.npyio import BagObj as BO >>> class BagDemo(object): ... def __getitem__(self, key): # An instance of BagObj(BagDemo) ... # will call this method when any ... # attribute look-up is required ... result = "Doesn't matter what you want, " ... return result + "you're gonna get this" ... >>> demo_obj = BagDemo() >>> bagobj = BO(demo_obj) >>> bagobj.hello_there "Doesn't matter what you want, you're gonna get this" >>> bagobj.I_can_be_anything "Doesn't matter what you want, you're gonna get this" """ def __init__(self, obj): # Use weakref to make NpzFile objects collectable by refcount self._obj = weakref.proxy(obj) def __getattribute__(self, key): try: return object.__getattribute__(self, '_obj')[key] except KeyError: raise AttributeError(key) def __dir__(self): """ Enables dir(bagobj) to list the files in an NpzFile. This also enables tab-completion in an interpreter or IPython. """ return object.__getattribute__(self, '_obj').keys() def zipfile_factory(file, *args, **kwargs): """ Create a ZipFile. Allows for Zip64, and the `file` argument can accept file, str, or pathlib.Path objects. `args` and `kwargs` are passed to the zipfile.ZipFile constructor. """ if is_pathlib_path(file): file = str(file) import zipfile kwargs['allowZip64'] = True return zipfile.ZipFile(file, *args, **kwargs) class NpzFile(object): """ NpzFile(fid) A dictionary-like object with lazy-loading of files in the zipped archive provided on construction. `NpzFile` is used to load files in the NumPy ``.npz`` data archive format. It assumes that files in the archive have a ``.npy`` extension, other files are ignored. The arrays and file strings are lazily loaded on either getitem access using ``obj['key']`` or attribute lookup using ``obj.f.key``. A list of all files (without ``.npy`` extensions) can be obtained with ``obj.files`` and the ZipFile object itself using ``obj.zip``. Attributes ---------- files : list of str List of all files in the archive with a ``.npy`` extension. zip : ZipFile instance The ZipFile object initialized with the zipped archive. f : BagObj instance An object on which attribute can be performed as an alternative to getitem access on the `NpzFile` instance itself. allow_pickle : bool, optional Allow loading pickled data. Default: True pickle_kwargs : dict, optional Additional keyword arguments to pass on to pickle.load. These are only useful when loading object arrays saved on Python 2 when using Python 3. Parameters ---------- fid : file or str The zipped archive to open. This is either a file-like object or a string containing the path to the archive. own_fid : bool, optional Whether NpzFile should close the file handle. Requires that `fid` is a file-like object. Examples -------- >>> from tempfile import TemporaryFile >>> outfile = TemporaryFile() >>> x = np.arange(10) >>> y = np.sin(x) >>> np.savez(outfile, x=x, y=y) >>> outfile.seek(0) >>> npz = np.load(outfile) >>> isinstance(npz, np.lib.io.NpzFile) True >>> npz.files ['y', 'x'] >>> npz['x'] # getitem access array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> npz.f.x # attribute lookup array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) """ def __init__(self, fid, own_fid=False, allow_pickle=True, pickle_kwargs=None): # Import is postponed to here since zipfile depends on gzip, an # optional component of the so-called standard library. _zip = zipfile_factory(fid) self._files = _zip.namelist() self.files = [] self.allow_pickle = allow_pickle self.pickle_kwargs = pickle_kwargs for x in self._files: if x.endswith('.npy'): self.files.append(x[:-4]) else: self.files.append(x) self.zip = _zip self.f = BagObj(self) if own_fid: self.fid = fid else: self.fid = None def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def close(self): """ Close the file. """ if self.zip is not None: self.zip.close() self.zip = None if self.fid is not None: self.fid.close() self.fid = None self.f = None # break reference cycle def __del__(self): self.close() def __getitem__(self, key): # FIXME: This seems like it will copy strings around # more than is strictly necessary. The zipfile # will read the string and then # the format.read_array will copy the string # to another place in memory. # It would be better if the zipfile could read # (or at least uncompress) the data # directly into the array memory. member = 0 if key in self._files: member = 1 elif key in self.files: member = 1 key += '.npy' if member: bytes = self.zip.open(key) magic = bytes.read(len(format.MAGIC_PREFIX)) bytes.close() if magic == format.MAGIC_PREFIX: bytes = self.zip.open(key) return format.read_array(bytes, allow_pickle=self.allow_pickle, pickle_kwargs=self.pickle_kwargs) else: return self.zip.read(key) else: raise KeyError("%s is not a file in the archive" % key) def __iter__(self): return iter(self.files) def items(self): """ Return a list of tuples, with each tuple (filename, array in file). """ return [(f, self[f]) for f in self.files] def iteritems(self): """Generator that returns tuples (filename, array in file).""" for f in self.files: yield (f, self[f]) def keys(self): """Return files in the archive with a ``.npy`` extension.""" return self.files def iterkeys(self): """Return an iterator over the files in the archive.""" return self.__iter__() def __contains__(self, key): return self.files.__contains__(key) def load(file, mmap_mode=None, allow_pickle=True, fix_imports=True, encoding='ASCII'): """ Load arrays or pickled objects from ``.npy``, ``.npz`` or pickled files. Parameters ---------- file : file-like object, string, or pathlib.Path The file to read. File-like objects must support the ``seek()`` and ``read()`` methods. Pickled files require that the file-like object support the ``readline()`` method as well. mmap_mode : {None, 'r+', 'r', 'w+', 'c'}, optional If not None, then memory-map the file, using the given mode (see `numpy.memmap` for a detailed description of the modes). A memory-mapped array is kept on disk. However, it can be accessed and sliced like any ndarray. Memory mapping is especially useful for accessing small fragments of large files without reading the entire file into memory. allow_pickle : bool, optional Allow loading pickled object arrays stored in npy files. Reasons for disallowing pickles include security, as loading pickled data can execute arbitrary code. If pickles are disallowed, loading object arrays will fail. Default: True fix_imports : bool, optional Only useful when loading Python 2 generated pickled files on Python 3, which includes npy/npz files containing object arrays. If `fix_imports` is True, pickle will try to map the old Python 2 names to the new names used in Python 3. encoding : str, optional What encoding to use when reading Python 2 strings. Only useful when loading Python 2 generated pickled files on Python 3, which includes npy/npz files containing object arrays. Values other than 'latin1', 'ASCII', and 'bytes' are not allowed, as they can corrupt numerical data. Default: 'ASCII' Returns ------- result : array, tuple, dict, etc. Data stored in the file. For ``.npz`` files, the returned instance of NpzFile class must be closed to avoid leaking file descriptors. Raises ------ IOError If the input file does not exist or cannot be read. ValueError The file contains an object array, but allow_pickle=False given. See Also -------- save, savez, savez_compressed, loadtxt memmap : Create a memory-map to an array stored in a file on disk. lib.format.open_memmap : Create or load a memory-mapped ``.npy`` file. Notes ----- - If the file contains pickle data, then whatever object is stored in the pickle is returned. - If the file is a ``.npy`` file, then a single array is returned. - If the file is a ``.npz`` file, then a dictionary-like object is returned, containing ``{filename: array}`` key-value pairs, one for each file in the archive. - If the file is a ``.npz`` file, the returned value supports the context manager protocol in a similar fashion to the open function:: with load('foo.npz') as data: a = data['a'] The underlying file descriptor is closed when exiting the 'with' block. Examples -------- Store data to disk, and load it again: >>> np.save('/tmp/123', np.array([[1, 2, 3], [4, 5, 6]])) >>> np.load('/tmp/123.npy') array([[1, 2, 3], [4, 5, 6]]) Store compressed data to disk, and load it again: >>> a=np.array([[1, 2, 3], [4, 5, 6]]) >>> b=np.array([1, 2]) >>> np.savez('/tmp/123.npz', a=a, b=b) >>> data = np.load('/tmp/123.npz') >>> data['a'] array([[1, 2, 3], [4, 5, 6]]) >>> data['b'] array([1, 2]) >>> data.close() Mem-map the stored array, and then access the second row directly from disk: >>> X = np.load('/tmp/123.npy', mmap_mode='r') >>> X[1, :] memmap([4, 5, 6]) """ own_fid = False if isinstance(file, basestring): fid = open(file, "rb") own_fid = True elif is_pathlib_path(file): fid = file.open("rb") own_fid = True else: fid = file if encoding not in ('ASCII', 'latin1', 'bytes'): # The 'encoding' value for pickle also affects what encoding # the serialized binary data of NumPy arrays is loaded # in. Pickle does not pass on the encoding information to # NumPy. The unpickling code in numpy.core.multiarray is # written to assume that unicode data appearing where binary # should be is in 'latin1'. 'bytes' is also safe, as is 'ASCII'. # # Other encoding values can corrupt binary data, and we # purposefully disallow them. For the same reason, the errors= # argument is not exposed, as values other than 'strict' # result can similarly silently corrupt numerical data. raise ValueError("encoding must be 'ASCII', 'latin1', or 'bytes'") if sys.version_info[0] >= 3: pickle_kwargs = dict(encoding=encoding, fix_imports=fix_imports) else: # Nothing to do on Python 2 pickle_kwargs = {} try: # Code to distinguish from NumPy binary files and pickles. _ZIP_PREFIX = asbytes('PK\x03\x04') N = len(format.MAGIC_PREFIX) magic = fid.read(N) # If the file size is less than N, we need to make sure not # to seek past the beginning of the file fid.seek(-min(N, len(magic)), 1) # back-up if magic.startswith(_ZIP_PREFIX): # zip-file (assume .npz) # Transfer file ownership to NpzFile tmp = own_fid own_fid = False return NpzFile(fid, own_fid=tmp, allow_pickle=allow_pickle, pickle_kwargs=pickle_kwargs) elif magic == format.MAGIC_PREFIX: # .npy file if mmap_mode: return format.open_memmap(file, mode=mmap_mode) else: return format.read_array(fid, allow_pickle=allow_pickle, pickle_kwargs=pickle_kwargs) else: # Try a pickle if not allow_pickle: raise ValueError("allow_pickle=False, but file does not contain " "non-pickled data") try: return pickle.load(fid, **pickle_kwargs) except: raise IOError( "Failed to interpret file %s as a pickle" % repr(file)) finally: if own_fid: fid.close() def save(file, arr, allow_pickle=True, fix_imports=True): """ Save an array to a binary file in NumPy ``.npy`` format. Parameters ---------- file : file, str, or pathlib.Path File or filename to which the data is saved. If file is a file-object, then the filename is unchanged. If file is a string or Path, a ``.npy`` extension will be appended to the file name if it does not already have one. allow_pickle : bool, optional Allow saving object arrays using Python pickles. Reasons for disallowing pickles include security (loading pickled data can execute arbitrary code) and portability (pickled objects may not be loadable on different Python installations, for example if the stored objects require libraries that are not available, and not all pickled data is compatible between Python 2 and Python 3). Default: True fix_imports : bool, optional Only useful in forcing objects in object arrays on Python 3 to be pickled in a Python 2 compatible way. If `fix_imports` is True, pickle will try to map the new Python 3 names to the old module names used in Python 2, so that the pickle data stream is readable with Python 2. arr : array_like Array data to be saved. See Also -------- savez : Save several arrays into a ``.npz`` archive savetxt, load Notes ----- For a description of the ``.npy`` format, see the module docstring of `numpy.lib.format` or the NumPy Enhancement Proposal http://docs.scipy.org/doc/numpy/neps/npy-format.html Examples -------- >>> from tempfile import TemporaryFile >>> outfile = TemporaryFile() >>> x = np.arange(10) >>> np.save(outfile, x) >>> outfile.seek(0) # Only needed here to simulate closing & reopening file >>> np.load(outfile) array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) """ own_fid = False if isinstance(file, basestring): if not file.endswith('.npy'): file = file + '.npy' fid = open(file, "wb") own_fid = True elif is_pathlib_path(file): if not file.name.endswith('.npy'): file = file.parent / (file.name + '.npy') fid = file.open("wb") own_fid = True else: fid = file if sys.version_info[0] >= 3: pickle_kwargs = dict(fix_imports=fix_imports) else: # Nothing to do on Python 2 pickle_kwargs = None try: arr = np.asanyarray(arr) format.write_array(fid, arr, allow_pickle=allow_pickle, pickle_kwargs=pickle_kwargs) finally: if own_fid: fid.close() def savez(file, *args, **kwds): """ Save several arrays into a single file in uncompressed ``.npz`` format. If arguments are passed in with no keywords, the corresponding variable names, in the ``.npz`` file, are 'arr_0', 'arr_1', etc. If keyword arguments are given, the corresponding variable names, in the ``.npz`` file will match the keyword names. Parameters ---------- file : str or file Either the file name (string) or an open file (file-like object) where the data will be saved. If file is a string or a Path, the ``.npz`` extension will be appended to the file name if it is not already there. args : Arguments, optional Arrays to save to the file. Since it is not possible for Python to know the names of the arrays outside `savez`, the arrays will be saved with names "arr_0", "arr_1", and so on. These arguments can be any expression. kwds : Keyword arguments, optional Arrays to save to the file. Arrays will be saved in the file with the keyword names. Returns ------- None See Also -------- save : Save a single array to a binary file in NumPy format. savetxt : Save an array to a file as plain text. savez_compressed : Save several arrays into a compressed ``.npz`` archive Notes ----- The ``.npz`` file format is a zipped archive of files named after the variables they contain. The archive is not compressed and each file in the archive contains one variable in ``.npy`` format. For a description of the ``.npy`` format, see `numpy.lib.format` or the NumPy Enhancement Proposal http://docs.scipy.org/doc/numpy/neps/npy-format.html When opening the saved ``.npz`` file with `load` a `NpzFile` object is returned. This is a dictionary-like object which can be queried for its list of arrays (with the ``.files`` attribute), and for the arrays themselves. Examples -------- >>> from tempfile import TemporaryFile >>> outfile = TemporaryFile() >>> x = np.arange(10) >>> y = np.sin(x) Using `savez` with \\*args, the arrays are saved with default names. >>> np.savez(outfile, x, y) >>> outfile.seek(0) # Only needed here to simulate closing & reopening file >>> npzfile = np.load(outfile) >>> npzfile.files ['arr_1', 'arr_0'] >>> npzfile['arr_0'] array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) Using `savez` with \\**kwds, the arrays are saved with the keyword names. >>> outfile = TemporaryFile() >>> np.savez(outfile, x=x, y=y) >>> outfile.seek(0) >>> npzfile = np.load(outfile) >>> npzfile.files ['y', 'x'] >>> npzfile['x'] array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) """ _savez(file, args, kwds, False) def savez_compressed(file, *args, **kwds): """ Save several arrays into a single file in compressed ``.npz`` format. If keyword arguments are given, then filenames are taken from the keywords. If arguments are passed in with no keywords, then stored file names are arr_0, arr_1, etc. Parameters ---------- file : str File name of ``.npz`` file. args : Arguments Function arguments. kwds : Keyword arguments Keywords. See Also -------- numpy.savez : Save several arrays into an uncompressed ``.npz`` file format numpy.load : Load the files created by savez_compressed. """ _savez(file, args, kwds, True) def _savez(file, args, kwds, compress, allow_pickle=True, pickle_kwargs=None): # Import is postponed to here since zipfile depends on gzip, an optional # component of the so-called standard library. import zipfile # Import deferred for startup time improvement import tempfile if isinstance(file, basestring): if not file.endswith('.npz'): file = file + '.npz' elif is_pathlib_path(file): if not file.name.endswith('.npz'): file = file.parent / (file.name + '.npz') namedict = kwds for i, val in enumerate(args): key = 'arr_%d' % i if key in namedict.keys(): raise ValueError( "Cannot use un-named variables and keyword %s" % key) namedict[key] = val if compress: compression = zipfile.ZIP_DEFLATED else: compression = zipfile.ZIP_STORED zipf = zipfile_factory(file, mode="w", compression=compression) # Stage arrays in a temporary file on disk, before writing to zip. # Since target file might be big enough to exceed capacity of a global # temporary directory, create temp file side-by-side with the target file. file_dir, file_prefix = os.path.split(file) if _is_string_like(file) else (None, 'tmp') fd, tmpfile = tempfile.mkstemp(prefix=file_prefix, dir=file_dir, suffix='-numpy.npy') os.close(fd) try: for key, val in namedict.items(): fname = key + '.npy' fid = open(tmpfile, 'wb') try: format.write_array(fid, np.asanyarray(val), allow_pickle=allow_pickle, pickle_kwargs=pickle_kwargs) fid.close() fid = None zipf.write(tmpfile, arcname=fname) except IOError as exc: raise IOError("Failed to write to %s: %s" % (tmpfile, exc)) finally: if fid: fid.close() finally: os.remove(tmpfile) zipf.close() def _getconv(dtype): """ Find the correct dtype converter. Adapted from matplotlib """ def floatconv(x): x.lower() if b'0x' in x: return float.fromhex(asstr(x)) return float(x) typ = dtype.type if issubclass(typ, np.bool_): return lambda x: bool(int(x)) if issubclass(typ, np.uint64): return np.uint64 if issubclass(typ, np.int64): return np.int64 if issubclass(typ, np.integer): return lambda x: int(float(x)) elif issubclass(typ, np.longdouble): return np.longdouble elif issubclass(typ, np.floating): return floatconv elif issubclass(typ, np.complex): return lambda x: complex(asstr(x)) elif issubclass(typ, np.bytes_): return asbytes else: return asstr def loadtxt(fname, dtype=float, comments='#', delimiter=None, converters=None, skiprows=0, usecols=None, unpack=False, ndmin=0): """ Load data from a text file. Each row in the text file must have the same number of values. Parameters ---------- fname : file, str, or pathlib.Path File, filename, or generator to read. If the filename extension is ``.gz`` or ``.bz2``, the file is first decompressed. Note that generators should return byte strings for Python 3k. dtype : data-type, optional Data-type of the resulting array; default: float. If this is a structured data-type, the resulting array will be 1-dimensional, and each row will be interpreted as an element of the array. In this case, the number of columns used must match the number of fields in the data-type. comments : str or sequence, optional The characters or list of characters used to indicate the start of a comment; default: '#'. delimiter : str, optional The string used to separate values. By default, this is any whitespace. converters : dict, optional A dictionary mapping column number to a function that will convert that column to a float. E.g., if column 0 is a date string: ``converters = {0: datestr2num}``. Converters can also be used to provide a default value for missing data (but see also `genfromtxt`): ``converters = {3: lambda s: float(s.strip() or 0)}``. Default: None. skiprows : int, optional Skip the first `skiprows` lines; default: 0. usecols : int or sequence, optional Which columns to read, with 0 being the first. For example, usecols = (1,4,5) will extract the 2nd, 5th and 6th columns. The default, None, results in all columns being read. .. versionadded:: 1.11.0 Also when a single column has to be read it is possible to use an integer instead of a tuple. E.g ``usecols = 3`` reads the fourth column the same way as `usecols = (3,)`` would. unpack : bool, optional If True, the returned array is transposed, so that arguments may be unpacked using ``x, y, z = loadtxt(...)``. When used with a structured data-type, arrays are returned for each field. Default is False. ndmin : int, optional The returned array will have at least `ndmin` dimensions. Otherwise mono-dimensional axes will be squeezed. Legal values: 0 (default), 1 or 2. .. versionadded:: 1.6.0 Returns ------- out : ndarray Data read from the text file. See Also -------- load, fromstring, fromregex genfromtxt : Load data with missing values handled as specified. scipy.io.loadmat : reads MATLAB data files Notes ----- This function aims to be a fast reader for simply formatted files. The `genfromtxt` function provides more sophisticated handling of, e.g., lines with missing values. .. versionadded:: 1.10.0 The strings produced by the Python float.hex method can be used as input for floats. Examples -------- >>> from io import StringIO # StringIO behaves like a file object >>> c = StringIO("0 1\\n2 3") >>> np.loadtxt(c) array([[ 0., 1.], [ 2., 3.]]) >>> d = StringIO("M 21 72\\nF 35 58") >>> np.loadtxt(d, dtype={'names': ('gender', 'age', 'weight'), ... 'formats': ('S1', 'i4', 'f4')}) array([('M', 21, 72.0), ('F', 35, 58.0)], dtype=[('gender', '|S1'), ('age', '<i4'), ('weight', '<f4')]) >>> c = StringIO("1,0,2\\n3,0,4") >>> x, y = np.loadtxt(c, delimiter=',', usecols=(0, 2), unpack=True) >>> x array([ 1., 3.]) >>> y array([ 2., 4.]) """ # Type conversions for Py3 convenience if comments is not None: if isinstance(comments, (basestring, bytes)): comments = [asbytes(comments)] else: comments = [asbytes(comment) for comment in comments] # Compile regex for comments beforehand comments = (re.escape(comment) for comment in comments) regex_comments = re.compile(asbytes('|').join(comments)) user_converters = converters if delimiter is not None: delimiter = asbytes(delimiter) if usecols is not None: # Allow usecols to be a single int or a sequence of ints try: usecols_as_list = list(usecols) except TypeError: usecols_as_list = [usecols] for col_idx in usecols_as_list: try: opindex(col_idx) except TypeError as e: e.args = ( "usecols must be an int or a sequence of ints but " "it contains at least one element of type %s" % type(col_idx), ) raise # Fall back to existing code usecols = usecols_as_list fown = False try: if is_pathlib_path(fname): fname = str(fname) if _is_string_like(fname): fown = True if fname.endswith('.gz'): import gzip fh = iter(gzip.GzipFile(fname)) elif fname.endswith('.bz2'): import bz2 fh = iter(bz2.BZ2File(fname)) elif sys.version_info[0] == 2: fh = iter(open(fname, 'U')) else: fh = iter(open(fname)) else: fh = iter(fname) except TypeError: raise ValueError('fname must be a string, file handle, or generator') X = [] def flatten_dtype(dt): """Unpack a structured data-type, and produce re-packing info.""" if dt.names is None: # If the dtype is flattened, return. # If the dtype has a shape, the dtype occurs # in the list more than once. shape = dt.shape if len(shape) == 0: return ([dt.base], None) else: packing = [(shape[-1], list)] if len(shape) > 1: for dim in dt.shape[-2::-1]: packing = [(dim*packing[0][0], packing*dim)] return ([dt.base] * int(np.prod(dt.shape)), packing) else: types = [] packing = [] for field in dt.names: tp, bytes = dt.fields[field] flat_dt, flat_packing = flatten_dtype(tp) types.extend(flat_dt) # Avoid extra nesting for subarrays if len(tp.shape) > 0: packing.extend(flat_packing) else: packing.append((len(flat_dt), flat_packing)) return (types, packing) def pack_items(items, packing): """Pack items into nested lists based on re-packing info.""" if packing is None: return items[0] elif packing is tuple: return tuple(items) elif packing is list: return list(items) else: start = 0 ret = [] for length, subpacking in packing: ret.append(pack_items(items[start:start+length], subpacking)) start += length return tuple(ret) def split_line(line): """Chop off comments, strip, and split at delimiter. Note that although the file is opened as text, this function returns bytes. """ line = asbytes(line) if comments is not None: line = regex_comments.split(asbytes(line), maxsplit=1)[0] line = line.strip(asbytes('\r\n')) if line: return line.split(delimiter) else: return [] try: # Make sure we're dealing with a proper dtype dtype = np.dtype(dtype) defconv = _getconv(dtype) # Skip the first `skiprows` lines for i in range(skiprows): next(fh) # Read until we find a line with some values, and use # it to estimate the number of columns, N. first_vals = None try: while not first_vals: first_line = next(fh) first_vals = split_line(first_line) except StopIteration: # End of lines reached first_line = '' first_vals = [] warnings.warn('loadtxt: Empty input file: "%s"' % fname, stacklevel=2) N = len(usecols or first_vals) dtype_types, packing = flatten_dtype(dtype) if len(dtype_types) > 1: # We're dealing with a structured array, each field of # the dtype matches a column converters = [_getconv(dt) for dt in dtype_types] else: # All fields have the same dtype converters = [defconv for i in range(N)] if N > 1: packing = [(N, tuple)] # By preference, use the converters specified by the user for i, conv in (user_converters or {}).items(): if usecols: try: i = usecols.index(i) except ValueError: # Unused converter specified continue converters[i] = conv # Parse each line, including the first for i, line in enumerate(itertools.chain([first_line], fh)): vals = split_line(line) if len(vals) == 0: continue if usecols: vals = [vals[i] for i in usecols] if len(vals) != N: line_num = i + skiprows + 1 raise ValueError("Wrong number of columns at line %d" % line_num) # Convert each value according to its column and store items = [conv(val) for (conv, val) in zip(converters, vals)] # Then pack it according to the dtype's nesting items = pack_items(items, packing) X.append(items) finally: if fown: fh.close() X = np.array(X, dtype) # Multicolumn data are returned with shape (1, N, M), i.e. # (1, 1, M) for a single row - remove the singleton dimension there if X.ndim == 3 and X.shape[:2] == (1, 1): X.shape = (1, -1) # Verify that the array has at least dimensions `ndmin`. # Check correctness of the values of `ndmin` if ndmin not in [0, 1, 2]: raise ValueError('Illegal value of ndmin keyword: %s' % ndmin) # Tweak the size and shape of the arrays - remove extraneous dimensions if X.ndim > ndmin: X = np.squeeze(X) # and ensure we have the minimum number of dimensions asked for # - has to be in this order for the odd case ndmin=1, X.squeeze().ndim=0 if X.ndim < ndmin: if ndmin == 1: X = np.atleast_1d(X) elif ndmin == 2: X = np.atleast_2d(X).T if unpack: if len(dtype_types) > 1: # For structured arrays, return an array for each field. return [X[field] for field in dtype.names] else: return X.T else: return X def savetxt(fname, X, fmt='%.18e', delimiter=' ', newline='\n', header='', footer='', comments='# '): """ Save an array to a text file. Parameters ---------- fname : filename or file handle If the filename ends in ``.gz``, the file is automatically saved in compressed gzip format. `loadtxt` understands gzipped files transparently. X : array_like Data to be saved to a text file. fmt : str or sequence of strs, optional A single format (%10.5f), a sequence of formats, or a multi-format string, e.g. 'Iteration %d -- %10.5f', in which case `delimiter` is ignored. For complex `X`, the legal options for `fmt` are: a) a single specifier, `fmt='%.4e'`, resulting in numbers formatted like `' (%s+%sj)' % (fmt, fmt)` b) a full string specifying every real and imaginary part, e.g. `' %.4e %+.4ej %.4e %+.4ej %.4e %+.4ej'` for 3 columns c) a list of specifiers, one per column - in this case, the real and imaginary part must have separate specifiers, e.g. `['%.3e + %.3ej', '(%.15e%+.15ej)']` for 2 columns delimiter : str, optional String or character separating columns. newline : str, optional String or character separating lines. .. versionadded:: 1.5.0 header : str, optional String that will be written at the beginning of the file. .. versionadded:: 1.7.0 footer : str, optional String that will be written at the end of the file. .. versionadded:: 1.7.0 comments : str, optional String that will be prepended to the ``header`` and ``footer`` strings, to mark them as comments. Default: '# ', as expected by e.g. ``numpy.loadtxt``. .. versionadded:: 1.7.0 See Also -------- save : Save an array to a binary file in NumPy ``.npy`` format savez : Save several arrays into an uncompressed ``.npz`` archive savez_compressed : Save several arrays into a compressed ``.npz`` archive Notes ----- Further explanation of the `fmt` parameter (``%[flag]width[.precision]specifier``): flags: ``-`` : left justify ``+`` : Forces to precede result with + or -. ``0`` : Left pad the number with zeros instead of space (see width). width: Minimum number of characters to be printed. The value is not truncated if it has more characters. precision: - For integer specifiers (eg. ``d,i,o,x``), the minimum number of digits. - For ``e, E`` and ``f`` specifiers, the number of digits to print after the decimal point. - For ``g`` and ``G``, the maximum number of significant digits. - For ``s``, the maximum number of characters. specifiers: ``c`` : character ``d`` or ``i`` : signed decimal integer ``e`` or ``E`` : scientific notation with ``e`` or ``E``. ``f`` : decimal floating point ``g,G`` : use the shorter of ``e,E`` or ``f`` ``o`` : signed octal ``s`` : string of characters ``u`` : unsigned decimal integer ``x,X`` : unsigned hexadecimal integer This explanation of ``fmt`` is not complete, for an exhaustive specification see [1]_. References ---------- .. [1] `Format Specification Mini-Language <http://docs.python.org/library/string.html# format-specification-mini-language>`_, Python Documentation. Examples -------- >>> x = y = z = np.arange(0.0,5.0,1.0) >>> np.savetxt('test.out', x, delimiter=',') # X is an array >>> np.savetxt('test.out', (x,y,z)) # x,y,z equal sized 1D arrays >>> np.savetxt('test.out', x, fmt='%1.4e') # use exponential notation """ # Py3 conversions first if isinstance(fmt, bytes): fmt = asstr(fmt) delimiter = asstr(delimiter) own_fh = False if is_pathlib_path(fname): fname = str(fname) if _is_string_like(fname): own_fh = True if fname.endswith('.gz'): import gzip fh = gzip.open(fname, 'wb') else: if sys.version_info[0] >= 3: fh = open(fname, 'wb') else: fh = open(fname, 'w') elif hasattr(fname, 'write'): fh = fname else: raise ValueError('fname must be a string or file handle') try: X = np.asarray(X) # Handle 1-dimensional arrays if X.ndim == 1: # Common case -- 1d array of numbers if X.dtype.names is None: X = np.atleast_2d(X).T ncol = 1 # Complex dtype -- each field indicates a separate column else: ncol = len(X.dtype.descr) else: ncol = X.shape[1] iscomplex_X = np.iscomplexobj(X) # `fmt` can be a string with multiple insertion points or a # list of formats. E.g. '%10.5f\t%10d' or ('%10.5f', '$10d') if type(fmt) in (list, tuple): if len(fmt) != ncol: raise AttributeError('fmt has wrong shape. %s' % str(fmt)) format = asstr(delimiter).join(map(asstr, fmt)) elif isinstance(fmt, str): n_fmt_chars = fmt.count('%') error = ValueError('fmt has wrong number of %% formats: %s' % fmt) if n_fmt_chars == 1: if iscomplex_X: fmt = [' (%s+%sj)' % (fmt, fmt), ] * ncol else: fmt = [fmt, ] * ncol format = delimiter.join(fmt) elif iscomplex_X and n_fmt_chars != (2 * ncol): raise error elif ((not iscomplex_X) and n_fmt_chars != ncol): raise error else: format = fmt else: raise ValueError('invalid fmt: %r' % (fmt,)) if len(header) > 0: header = header.replace('\n', '\n' + comments) fh.write(asbytes(comments + header + newline)) if iscomplex_X: for row in X: row2 = [] for number in row: row2.append(number.real) row2.append(number.imag) fh.write(asbytes(format % tuple(row2) + newline)) else: for row in X: try: fh.write(asbytes(format % tuple(row) + newline)) except TypeError: raise TypeError("Mismatch between array dtype ('%s') and " "format specifier ('%s')" % (str(X.dtype), format)) if len(footer) > 0: footer = footer.replace('\n', '\n' + comments) fh.write(asbytes(comments + footer + newline)) finally: if own_fh: fh.close() def fromregex(file, regexp, dtype): """ Construct an array from a text file, using regular expression parsing. The returned array is always a structured array, and is constructed from all matches of the regular expression in the file. Groups in the regular expression are converted to fields of the structured array. Parameters ---------- file : str or file File name or file object to read. regexp : str or regexp Regular expression used to parse the file. Groups in the regular expression correspond to fields in the dtype. dtype : dtype or list of dtypes Dtype for the structured array. Returns ------- output : ndarray The output array, containing the part of the content of `file` that was matched by `regexp`. `output` is always a structured array. Raises ------ TypeError When `dtype` is not a valid dtype for a structured array. See Also -------- fromstring, loadtxt Notes ----- Dtypes for structured arrays can be specified in several forms, but all forms specify at least the data type and field name. For details see `doc.structured_arrays`. Examples -------- >>> f = open('test.dat', 'w') >>> f.write("1312 foo\\n1534 bar\\n444 qux") >>> f.close() >>> regexp = r"(\\d+)\\s+(...)" # match [digits, whitespace, anything] >>> output = np.fromregex('test.dat', regexp, ... [('num', np.int64), ('key', 'S3')]) >>> output array([(1312L, 'foo'), (1534L, 'bar'), (444L, 'qux')], dtype=[('num', '<i8'), ('key', '|S3')]) >>> output['num'] array([1312, 1534, 444], dtype=int64) """ own_fh = False if not hasattr(file, "read"): file = open(file, 'rb') own_fh = True try: if not hasattr(regexp, 'match'): regexp = re.compile(asbytes(regexp)) if not isinstance(dtype, np.dtype): dtype = np.dtype(dtype) seq = regexp.findall(file.read()) if seq and not isinstance(seq[0], tuple): # Only one group is in the regexp. # Create the new array as a single data-type and then # re-interpret as a single-field structured array. newdtype = np.dtype(dtype[dtype.names[0]]) output = np.array(seq, dtype=newdtype) output.dtype = dtype else: output = np.array(seq, dtype=dtype) return output finally: if own_fh: file.close() #####-------------------------------------------------------------------------- #---- --- ASCII functions --- #####-------------------------------------------------------------------------- def genfromtxt(fname, dtype=float, comments='#', delimiter=None, skip_header=0, skip_footer=0, converters=None, missing_values=None, filling_values=None, usecols=None, names=None, excludelist=None, deletechars=None, replace_space='_', autostrip=False, case_sensitive=True, defaultfmt="f%i", unpack=None, usemask=False, loose=True, invalid_raise=True, max_rows=None): """ Load data from a text file, with missing values handled as specified. Each line past the first `skip_header` lines is split at the `delimiter` character, and characters following the `comments` character are discarded. Parameters ---------- fname : file, str, pathlib.Path, list of str, generator File, filename, list, or generator to read. If the filename extension is `.gz` or `.bz2`, the file is first decompressed. Note that generators must return byte strings in Python 3k. The strings in a list or produced by a generator are treated as lines. dtype : dtype, optional Data type of the resulting array. If None, the dtypes will be determined by the contents of each column, individually. comments : str, optional The character used to indicate the start of a comment. All the characters occurring on a line after a comment are discarded delimiter : str, int, or sequence, optional The string used to separate values. By default, any consecutive whitespaces act as delimiter. An integer or sequence of integers can also be provided as width(s) of each field. skiprows : int, optional `skiprows` was removed in numpy 1.10. Please use `skip_header` instead. skip_header : int, optional The number of lines to skip at the beginning of the file. skip_footer : int, optional The number of lines to skip at the end of the file. converters : variable, optional The set of functions that convert the data of a column to a value. The converters can also be used to provide a default value for missing data: ``converters = {3: lambda s: float(s or 0)}``. missing : variable, optional `missing` was removed in numpy 1.10. Please use `missing_values` instead. missing_values : variable, optional The set of strings corresponding to missing data. filling_values : variable, optional The set of values to be used as default when the data are missing. usecols : sequence, optional Which columns to read, with 0 being the first. For example, ``usecols = (1, 4, 5)`` will extract the 2nd, 5th and 6th columns. names : {None, True, str, sequence}, optional If `names` is True, the field names are read from the first valid line after the first `skip_header` lines. If `names` is a sequence or a single-string of comma-separated names, the names will be used to define the field names in a structured dtype. If `names` is None, the names of the dtype fields will be used, if any. excludelist : sequence, optional A list of names to exclude. This list is appended to the default list ['return','file','print']. Excluded names are appended an underscore: for example, `file` would become `file_`. deletechars : str, optional A string combining invalid characters that must be deleted from the names. defaultfmt : str, optional A format used to define default field names, such as "f%i" or "f_%02i". autostrip : bool, optional Whether to automatically strip white spaces from the variables. replace_space : char, optional Character(s) used in replacement of white spaces in the variables names. By default, use a '_'. case_sensitive : {True, False, 'upper', 'lower'}, optional If True, field names are case sensitive. If False or 'upper', field names are converted to upper case. If 'lower', field names are converted to lower case. unpack : bool, optional If True, the returned array is transposed, so that arguments may be unpacked using ``x, y, z = loadtxt(...)`` usemask : bool, optional If True, return a masked array. If False, return a regular array. loose : bool, optional If True, do not raise errors for invalid values. invalid_raise : bool, optional If True, an exception is raised if an inconsistency is detected in the number of columns. If False, a warning is emitted and the offending lines are skipped. max_rows : int, optional The maximum number of rows to read. Must not be used with skip_footer at the same time. If given, the value must be at least 1. Default is to read the entire file. .. versionadded:: 1.10.0 Returns ------- out : ndarray Data read from the text file. If `usemask` is True, this is a masked array. See Also -------- numpy.loadtxt : equivalent function when no data is missing. Notes ----- * When spaces are used as delimiters, or when no delimiter has been given as input, there should not be any missing data between two fields. * When the variables are named (either by a flexible dtype or with `names`, there must not be any header in the file (else a ValueError exception is raised). * Individual values are not stripped of spaces by default. When using a custom converter, make sure the function does remove spaces. References ---------- .. [1] NumPy User Guide, section `I/O with NumPy <http://docs.scipy.org/doc/numpy/user/basics.io.genfromtxt.html>`_. Examples --------- >>> from io import StringIO >>> import numpy as np Comma delimited file with mixed dtype >>> s = StringIO("1,1.3,abcde") >>> data = np.genfromtxt(s, dtype=[('myint','i8'),('myfloat','f8'), ... ('mystring','S5')], delimiter=",") >>> data array((1, 1.3, 'abcde'), dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) Using dtype = None >>> s.seek(0) # needed for StringIO example only >>> data = np.genfromtxt(s, dtype=None, ... names = ['myint','myfloat','mystring'], delimiter=",") >>> data array((1, 1.3, 'abcde'), dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) Specifying dtype and names >>> s.seek(0) >>> data = np.genfromtxt(s, dtype="i8,f8,S5", ... names=['myint','myfloat','mystring'], delimiter=",") >>> data array((1, 1.3, 'abcde'), dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) An example with fixed-width columns >>> s = StringIO("11.3abcde") >>> data = np.genfromtxt(s, dtype=None, names=['intvar','fltvar','strvar'], ... delimiter=[1,3,5]) >>> data array((1, 1.3, 'abcde'), dtype=[('intvar', '<i8'), ('fltvar', '<f8'), ('strvar', '|S5')]) """ if max_rows is not None: if skip_footer: raise ValueError( "The keywords 'skip_footer' and 'max_rows' can not be " "specified at the same time.") if max_rows < 1: raise ValueError("'max_rows' must be at least 1.") # Py3 data conversions to bytes, for convenience if comments is not None: comments = asbytes(comments) if isinstance(delimiter, unicode): delimiter = asbytes(delimiter) if isinstance(missing_values, (unicode, list, tuple)): missing_values = asbytes_nested(missing_values) # if usemask: from numpy.ma import MaskedArray, make_mask_descr # Check the input dictionary of converters user_converters = converters or {} if not isinstance(user_converters, dict): raise TypeError( "The input argument 'converter' should be a valid dictionary " "(got '%s' instead)" % type(user_converters)) # Initialize the filehandle, the LineSplitter and the NameValidator own_fhd = False try: if is_pathlib_path(fname): fname = str(fname) if isinstance(fname, basestring): if sys.version_info[0] == 2: fhd = iter(np.lib._datasource.open(fname, 'rbU')) else: fhd = iter(np.lib._datasource.open(fname, 'rb')) own_fhd = True else: fhd = iter(fname) except TypeError: raise TypeError( "fname must be a string, filehandle, list of strings, " "or generator. Got %s instead." % type(fname)) split_line = LineSplitter(delimiter=delimiter, comments=comments, autostrip=autostrip)._handyman validate_names = NameValidator(excludelist=excludelist, deletechars=deletechars, case_sensitive=case_sensitive, replace_space=replace_space) # Skip the first `skip_header` rows for i in range(skip_header): next(fhd) # Keep on until we find the first valid values first_values = None try: while not first_values: first_line = next(fhd) if names is True: if comments in first_line: first_line = ( asbytes('').join(first_line.split(comments)[1:])) first_values = split_line(first_line) except StopIteration: # return an empty array if the datafile is empty first_line = asbytes('') first_values = [] warnings.warn('genfromtxt: Empty input file: "%s"' % fname, stacklevel=2) # Should we take the first values as names ? if names is True: fval = first_values[0].strip() if fval in comments: del first_values[0] # Check the columns to use: make sure `usecols` is a list if usecols is not None: try: usecols = [_.strip() for _ in usecols.split(",")] except AttributeError: try: usecols = list(usecols) except TypeError: usecols = [usecols, ] nbcols = len(usecols or first_values) # Check the names and overwrite the dtype.names if needed if names is True: names = validate_names([_bytes_to_name(_.strip()) for _ in first_values]) first_line = asbytes('') elif _is_string_like(names): names = validate_names([_.strip() for _ in names.split(',')]) elif names: names = validate_names(names) # Get the dtype if dtype is not None: dtype = easy_dtype(dtype, defaultfmt=defaultfmt, names=names, excludelist=excludelist, deletechars=deletechars, case_sensitive=case_sensitive, replace_space=replace_space) # Make sure the names is a list (for 2.5) if names is not None: names = list(names) if usecols: for (i, current) in enumerate(usecols): # if usecols is a list of names, convert to a list of indices if _is_string_like(current): usecols[i] = names.index(current) elif current < 0: usecols[i] = current + len(first_values) # If the dtype is not None, make sure we update it if (dtype is not None) and (len(dtype) > nbcols): descr = dtype.descr dtype = np.dtype([descr[_] for _ in usecols]) names = list(dtype.names) # If `names` is not None, update the names elif (names is not None) and (len(names) > nbcols): names = [names[_] for _ in usecols] elif (names is not None) and (dtype is not None): names = list(dtype.names) # Process the missing values ............................... # Rename missing_values for convenience user_missing_values = missing_values or () # Define the list of missing_values (one column: one list) missing_values = [list([asbytes('')]) for _ in range(nbcols)] # We have a dictionary: process it field by field if isinstance(user_missing_values, dict): # Loop on the items for (key, val) in user_missing_values.items(): # Is the key a string ? if _is_string_like(key): try: # Transform it into an integer key = names.index(key) except ValueError: # We couldn't find it: the name must have been dropped continue # Redefine the key as needed if it's a column number if usecols: try: key = usecols.index(key) except ValueError: pass # Transform the value as a list of string if isinstance(val, (list, tuple)): val = [str(_) for _ in val] else: val = [str(val), ] # Add the value(s) to the current list of missing if key is None: # None acts as default for miss in missing_values: miss.extend(val) else: missing_values[key].extend(val) # We have a sequence : each item matches a column elif isinstance(user_missing_values, (list, tuple)): for (value, entry) in zip(user_missing_values, missing_values): value = str(value) if value not in entry: entry.append(value) # We have a string : apply it to all entries elif isinstance(user_missing_values, bytes): user_value = user_missing_values.split(asbytes(",")) for entry in missing_values: entry.extend(user_value) # We have something else: apply it to all entries else: for entry in missing_values: entry.extend([str(user_missing_values)]) # Process the filling_values ............................... # Rename the input for convenience user_filling_values = filling_values if user_filling_values is None: user_filling_values = [] # Define the default filling_values = [None] * nbcols # We have a dictionary : update each entry individually if isinstance(user_filling_values, dict): for (key, val) in user_filling_values.items(): if _is_string_like(key): try: # Transform it into an integer key = names.index(key) except ValueError: # We couldn't find it: the name must have been dropped, continue # Redefine the key if it's a column number and usecols is defined if usecols: try: key = usecols.index(key) except ValueError: pass # Add the value to the list filling_values[key] = val # We have a sequence : update on a one-to-one basis elif isinstance(user_filling_values, (list, tuple)): n = len(user_filling_values) if (n <= nbcols): filling_values[:n] = user_filling_values else: filling_values = user_filling_values[:nbcols] # We have something else : use it for all entries else: filling_values = [user_filling_values] * nbcols # Initialize the converters ................................ if dtype is None: # Note: we can't use a [...]*nbcols, as we would have 3 times the same # ... converter, instead of 3 different converters. converters = [StringConverter(None, missing_values=miss, default=fill) for (miss, fill) in zip(missing_values, filling_values)] else: dtype_flat = flatten_dtype(dtype, flatten_base=True) # Initialize the converters if len(dtype_flat) > 1: # Flexible type : get a converter from each dtype zipit = zip(dtype_flat, missing_values, filling_values) converters = [StringConverter(dt, locked=True, missing_values=miss, default=fill) for (dt, miss, fill) in zipit] else: # Set to a default converter (but w/ different missing values) zipit = zip(missing_values, filling_values) converters = [StringConverter(dtype, locked=True, missing_values=miss, default=fill) for (miss, fill) in zipit] # Update the converters to use the user-defined ones uc_update = [] for (j, conv) in user_converters.items(): # If the converter is specified by column names, use the index instead if _is_string_like(j): try: j = names.index(j) i = j except ValueError: continue elif usecols: try: i = usecols.index(j) except ValueError: # Unused converter specified continue else: i = j # Find the value to test - first_line is not filtered by usecols: if len(first_line): testing_value = first_values[j] else: testing_value = None converters[i].update(conv, locked=True, testing_value=testing_value, default=filling_values[i], missing_values=missing_values[i],) uc_update.append((i, conv)) # Make sure we have the corrected keys in user_converters... user_converters.update(uc_update) # Fixme: possible error as following variable never used. #miss_chars = [_.missing_values for _ in converters] # Initialize the output lists ... # ... rows rows = [] append_to_rows = rows.append # ... masks if usemask: masks = [] append_to_masks = masks.append # ... invalid invalid = [] append_to_invalid = invalid.append # Parse each line for (i, line) in enumerate(itertools.chain([first_line, ], fhd)): values = split_line(line) nbvalues = len(values) # Skip an empty line if nbvalues == 0: continue if usecols: # Select only the columns we need try: values = [values[_] for _ in usecols] except IndexError: append_to_invalid((i + skip_header + 1, nbvalues)) continue elif nbvalues != nbcols: append_to_invalid((i + skip_header + 1, nbvalues)) continue # Store the values append_to_rows(tuple(values)) if usemask: append_to_masks(tuple([v.strip() in m for (v, m) in zip(values, missing_values)])) if len(rows) == max_rows: break if own_fhd: fhd.close() # Upgrade the converters (if needed) if dtype is None: for (i, converter) in enumerate(converters): current_column = [itemgetter(i)(_m) for _m in rows] try: converter.iterupgrade(current_column) except ConverterLockError: errmsg = "Converter #%i is locked and cannot be upgraded: " % i current_column = map(itemgetter(i), rows) for (j, value) in enumerate(current_column): try: converter.upgrade(value) except (ConverterError, ValueError): errmsg += "(occurred line #%i for value '%s')" errmsg %= (j + 1 + skip_header, value) raise ConverterError(errmsg) # Check that we don't have invalid values nbinvalid = len(invalid) if nbinvalid > 0: nbrows = len(rows) + nbinvalid - skip_footer # Construct the error message template = " Line #%%i (got %%i columns instead of %i)" % nbcols if skip_footer > 0: nbinvalid_skipped = len([_ for _ in invalid if _[0] > nbrows + skip_header]) invalid = invalid[:nbinvalid - nbinvalid_skipped] skip_footer -= nbinvalid_skipped # # nbrows -= skip_footer # errmsg = [template % (i, nb) # for (i, nb) in invalid if i < nbrows] # else: errmsg = [template % (i, nb) for (i, nb) in invalid] if len(errmsg): errmsg.insert(0, "Some errors were detected !") errmsg = "\n".join(errmsg) # Raise an exception ? if invalid_raise: raise ValueError(errmsg) # Issue a warning ? else: warnings.warn(errmsg, ConversionWarning, stacklevel=2) # Strip the last skip_footer data if skip_footer > 0: rows = rows[:-skip_footer] if usemask: masks = masks[:-skip_footer] # Convert each value according to the converter: # We want to modify the list in place to avoid creating a new one... if loose: rows = list( zip(*[[conv._loose_call(_r) for _r in map(itemgetter(i), rows)] for (i, conv) in enumerate(converters)])) else: rows = list( zip(*[[conv._strict_call(_r) for _r in map(itemgetter(i), rows)] for (i, conv) in enumerate(converters)])) # Reset the dtype data = rows if dtype is None: # Get the dtypes from the types of the converters column_types = [conv.type for conv in converters] # Find the columns with strings... strcolidx = [i for (i, v) in enumerate(column_types) if v in (type('S'), np.string_)] # ... and take the largest number of chars. for i in strcolidx: column_types[i] = "|S%i" % max(len(row[i]) for row in data) # if names is None: # If the dtype is uniform, don't define names, else use '' base = set([c.type for c in converters if c._checked]) if len(base) == 1: (ddtype, mdtype) = (list(base)[0], np.bool) else: ddtype = [(defaultfmt % i, dt) for (i, dt) in enumerate(column_types)] if usemask: mdtype = [(defaultfmt % i, np.bool) for (i, dt) in enumerate(column_types)] else: ddtype = list(zip(names, column_types)) mdtype = list(zip(names, [np.bool] * len(column_types))) output = np.array(data, dtype=ddtype) if usemask: outputmask = np.array(masks, dtype=mdtype) else: # Overwrite the initial dtype names if needed if names and dtype.names: dtype.names = names # Case 1. We have a structured type if len(dtype_flat) > 1: # Nested dtype, eg [('a', int), ('b', [('b0', int), ('b1', 'f4')])] # First, create the array using a flattened dtype: # [('a', int), ('b1', int), ('b2', float)] # Then, view the array using the specified dtype. if 'O' in (_.char for _ in dtype_flat): if has_nested_fields(dtype): raise NotImplementedError( "Nested fields involving objects are not supported...") else: output = np.array(data, dtype=dtype) else: rows = np.array(data, dtype=[('', _) for _ in dtype_flat]) output = rows.view(dtype) # Now, process the rowmasks the same way if usemask: rowmasks = np.array( masks, dtype=np.dtype([('', np.bool) for t in dtype_flat])) # Construct the new dtype mdtype = make_mask_descr(dtype) outputmask = rowmasks.view(mdtype) # Case #2. We have a basic dtype else: # We used some user-defined converters if user_converters: ishomogeneous = True descr = [] for i, ttype in enumerate([conv.type for conv in converters]): # Keep the dtype of the current converter if i in user_converters: ishomogeneous &= (ttype == dtype.type) if ttype == np.string_: ttype = "|S%i" % max(len(row[i]) for row in data) descr.append(('', ttype)) else: descr.append(('', dtype)) # So we changed the dtype ? if not ishomogeneous: # We have more than one field if len(descr) > 1: dtype = np.dtype(descr) # We have only one field: drop the name if not needed. else: dtype = np.dtype(ttype) # output = np.array(data, dtype) if usemask: if dtype.names: mdtype = [(_, np.bool) for _ in dtype.names] else: mdtype = np.bool outputmask = np.array(masks, dtype=mdtype) # Try to take care of the missing data we missed names = output.dtype.names if usemask and names: for (name, conv) in zip(names or (), converters): missing_values = [conv(_) for _ in conv.missing_values if _ != asbytes('')] for mval in missing_values: outputmask[name] |= (output[name] == mval) # Construct the final array if usemask: output = output.view(MaskedArray) output._mask = outputmask if unpack: return output.squeeze().T return output.squeeze() def ndfromtxt(fname, **kwargs): """ Load ASCII data stored in a file and return it as a single array. Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function. """ kwargs['usemask'] = False return genfromtxt(fname, **kwargs) def mafromtxt(fname, **kwargs): """ Load ASCII data stored in a text file and return a masked array. Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function to load ASCII data. """ kwargs['usemask'] = True return genfromtxt(fname, **kwargs) def recfromtxt(fname, **kwargs): """ Load ASCII data from a file and return it in a record array. If ``usemask=False`` a standard `recarray` is returned, if ``usemask=True`` a MaskedRecords array is returned. Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function Notes ----- By default, `dtype` is None, which means that the data-type of the output array will be determined from the data. """ kwargs.setdefault("dtype", None) usemask = kwargs.get('usemask', False) output = genfromtxt(fname, **kwargs) if usemask: from numpy.ma.mrecords import MaskedRecords output = output.view(MaskedRecords) else: output = output.view(np.recarray) return output def recfromcsv(fname, **kwargs): """ Load ASCII data stored in a comma-separated file. The returned array is a record array (if ``usemask=False``, see `recarray`) or a masked record array (if ``usemask=True``, see `ma.mrecords.MaskedRecords`). Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function to load ASCII data. Notes ----- By default, `dtype` is None, which means that the data-type of the output array will be determined from the data. """ # Set default kwargs for genfromtxt as relevant to csv import. kwargs.setdefault("case_sensitive", "lower") kwargs.setdefault("names", True) kwargs.setdefault("delimiter", ",") kwargs.setdefault("dtype", None) output = genfromtxt(fname, **kwargs) usemask = kwargs.get("usemask", False) if usemask: from numpy.ma.mrecords import MaskedRecords output = output.view(MaskedRecords) else: output = output.view(np.recarray) return output
bsd-3-clause
agiliq/django-graphos
graphos/tests.py
1
38867
from django.test import TestCase from pymongo.errors import CollectionInvalid from .sources.base import BaseDataSource from .sources.simple import SimpleDataSource from .sources.csv_file import CSVDataSource from .sources.model import ModelDataSource from .sources.mongo import MongoDBDataSource from .renderers import base, flot, gchart, yui, matplotlib_renderer, highcharts from .exceptions import GraphosException from .utils import DEFAULT_HEIGHT, DEFAULT_WIDTH, get_default_options, get_db from demo.models import Account import os import json current_path = os.path.dirname(os.path.abspath(__file__)) class TestSources(TestCase): def test_base_data_source(self): data_source = BaseDataSource() self.assertTrue(hasattr(data_source, "get_data")) self.assertRaises(GraphosException, data_source.get_data,) self.assertTrue(hasattr(data_source, "get_header")) self.assertRaises(GraphosException, data_source.get_header) self.assertTrue(hasattr(data_source, "get_first_column")) self.assertRaises(GraphosException, data_source.get_first_column) def test_simple_data_source(self): data = [ ['Year', 'Sales', 'Expenses'], ['2004', 1000, 400], ['2005', 1170, 460], ['2006', 660, 1120], ['2007', 1030, 540] ] data_source = SimpleDataSource(data) self.assertEqual(data_source.get_data(), data) self.assertEqual(data_source.get_header(), ['Year', 'Sales', 'Expenses']) self.assertEqual(data_source.get_first_column(), ['2004', '2005', '2006', '2007']) def test_csv_data_source(self): data = [ ['Year', 'Sales', 'Expense'], ['2006', '1000', '400'], ['2007', '1170', '460'], ['2008', '660', '1120'], ['2009', '1030', '540'] ] csv_file = open(os.path.join(current_path, "test_data/accounts.csv"), "r") data_source = CSVDataSource(csv_file) self.assertEqual(data, data_source.get_data()) self.assertEqual(data_source.get_header(), ['Year', 'Sales', 'Expense']) self.assertEqual(data_source.get_first_column(), ['2006', '2007', '2008', '2009']) def test_model_data_source(self): data = [ ['year', 'sales', 'expenses'], [u'2004', 1000, 400], [u'2005', 1170, 460], [u'2006', 660, 1120], [u'2007', 1030, 540] ] #Create some rows Account.objects.create(year="2004", sales=1000, expenses=400, ceo="Welch") Account.objects.create(year="2005", sales=1170, expenses=460, ceo="Jobs") Account.objects.create(year="2006", sales=660, expenses=1120, ceo="Page") Account.objects.create(year="2007", sales=1030, expenses=540, ceo="Welch") query_set = Account.objects.all() data_source = ModelDataSource(query_set, ['year', 'sales', 'expenses']) self.assertEqual(data, data_source.get_data()) self.assertEqual(data_source.get_header(), ['year', 'sales', 'expenses']) self.assertEqual(data_source.get_first_column(), ['2004', '2005', '2006', '2007']) def get_mongodb_test_db(db_name, collection_name): cur_dir = os.path.dirname(os.path.realpath(__file__)) test_data_file = open(cur_dir + '/test_data/mongodb/test_zips.json') db = get_db(db_name) try: db.create_collection(collection_name) except CollectionInvalid: pass for line in test_data_file: doc = json.loads(line) db[collection_name].save(doc) test_data_file.close() return db class TestMongoDBSource(TestCase): def setUp(self): db_name = "test_db" collection_name = "zips" self.db = get_mongodb_test_db(db_name, collection_name) self.collection = self.db[collection_name] self.cursor = self.collection.find() self.fields = ['_id', 'pop'] self.data = [['_id', 'pop'], ['35004', 6055], ['35005', 10616], ['35006', 3205], ['35007', 14218], ['35010', 19942], ['35014', 3062], ['35016', 13650], ['35019', 1781], ['35020', 40549], ['35023', 39677], ['35031', 9058], ['35033', 3448], ['35034', 3791], ['35035', 1282], ['35040', 4675], ['35042', 4902], ['35043', 4781], ['35044', 7985], ['35045', 13990], ['35049', '']] self.data_source = MongoDBDataSource(cursor=self.cursor, fields=self.fields) def test_data_source(self): self.assertTrue(hasattr(self.data_source, 'get_data')) self.assertTrue(hasattr(self.data_source, 'get_header')) self.assertTrue(hasattr(self.data_source, 'get_first_column')) self.assertEqual(self.data, self.data_source.get_data()) self.assertEqual(self.fields, self.data_source.get_header()) self.assertEqual( [el[0] for el in self.data[1:]], self.data_source.get_first_column() ) def tearDown(self): self.db.drop_collection(self.collection.name) class TestBaseRenderer(TestCase): def setUp(self): data = [ ['Year', 'Sales', 'Expenses'], [2004, 1000, 400], [2005, 1170, 460], [2006, 660, 1120], [2007, 1030, 540] ] self.options = {"title": "Sales and Expences Graph"} self.default_options = {'title': 'Chart'} self.empty_options = {} self.data_source = SimpleDataSource(data) self.data = data self.html_id = 'base_chart' self.template = 'graphos/as_html.html' self.header = data[0] def test_base_chart(self): chart = base.BaseChart(data_source=self.data_source, options=self.options, html_id=self.html_id) empty_options_chart = base.BaseChart(data_source=self.data_source, options=self.empty_options) self.assertTrue(hasattr(chart, "width")) self.assertEqual(DEFAULT_WIDTH, chart.width) self.assertTrue(hasattr(chart, "height")) self.assertEqual(DEFAULT_HEIGHT, chart.height) self.assertTrue(hasattr(chart, "header")) self.assertEqual(self.header, chart.header) self.assertTrue(hasattr(chart, "get_data")) self.assertEqual(self.data, chart.get_data()) self.assertTrue(hasattr(chart, "get_data_json")) self.assertEqual(json.dumps(self.data), chart.get_data_json()) self.assertTrue(hasattr(chart, "get_options")) self.assertEqual(self.options, chart.get_options()) self.assertEqual(self.default_options, empty_options_chart.get_options()) self.assertTrue(hasattr(chart, "get_options_json")) self.assertEqual(json.dumps(self.options), chart.get_options_json()) self.assertTrue(hasattr(chart, "get_template")) self.assertEqual(self.template, chart.get_template()) self.assertTrue(hasattr(chart, "get_html_template")) self.assertRaises(GraphosException, chart.get_html_template) self.assertTrue(hasattr(chart, "get_js_template")) self.assertRaises(GraphosException, chart.get_js_template) self.assertTrue(hasattr(chart, "get_html_id")) self.assertTrue(self.html_id, chart.get_html_id()) self.assertTrue(hasattr(chart, "as_html")) self.assertRaises(GraphosException, chart.as_html) def test_options(self): """ Assert that options get set to a dictionary in case no options is passed during initialization """ chart = base.BaseChart(data_source=self.data_source) self.assertEqual(self.default_options, chart.get_options()) class TestFlotRenderer(TestCase): """ Test Cases for the graphos.renderers.flot module""" def setUp(self): data = [ ['Year', 'Sales', 'Expenses'], [2004, 1000, 400], [2005, 1170, 460], [2006, 660, 1120], [2007, 1030, 540] ] self.data_source = SimpleDataSource(data) self.data = data self.options = {"title": "Sales and Expences Graph"} self.default_options = get_default_options() self.series_1 = [(2004, 1000), (2005, 1170), (2006, 660), (2007, 1030)] self.series_2 = [(2004, 400), (2005, 460), (2006, 1120), (2007, 540)] self.html_template = 'graphos/flot/html.html' self.js_template = 'graphos/flot/js.html' self.data_source = SimpleDataSource(data) self.data = data self.html_id = 'base_chart' self.header = data[0] series_object_1 = {'data': [(2004, 1000), (2005, 1170), (2006, 660), (2007, 1030)], 'label': 'Sales'} series_object_2 = {'data': [(2004, 400), (2005, 460), (2006, 1120), (2007, 540)], 'label': 'Expenses'} self.series_objects = [series_object_1, series_object_2] def test_base_flot_chart(self): chart = flot.BaseFlotChart(data_source=self.data_source, options=self.options) empty_options_chart = flot.BaseFlotChart(data_source=self.data_source, options={}) json_data = chart.get_serieses() self.assertEqual([self.series_1, self.series_2], json_data) self.assertEqual(self.html_template, chart.get_html_template()) self.assertEqual(self.js_template, chart.get_js_template()) default = get_default_options() self.assertEqual(default, empty_options_chart.get_options()) default.update(self.options) self.assertEqual(default, chart.get_options()) self.assertEqual(json.dumps(default), chart.get_options_json()) self.assertEqual(self.series_objects, chart.get_series_objects()) self.assertEqual(json.dumps(self.series_objects), chart.get_series_objects_json()) def test_line_chart(self): chart = flot.LineChart(data_source=self.data_source, options=self.options) empty_options_chart = flot.LineChart(data_source=self.data_source, options={}) json_data = chart.get_serieses() self.assertEqual([self.series_1, self.series_2], json_data) default = get_default_options("lines") self.assertEqual(default, empty_options_chart.get_options()) default.update(self.options) self.assertEqual(default, chart.get_options()) def test_bar_chart(self): chart = flot.BarChart(data_source=self.data_source, options=self.options) empty_options_chart = flot.BarChart(data_source=self.data_source, options={}) json_data = chart.get_serieses() self.assertEqual([self.series_1, self.series_2], json_data) default = get_default_options("bars") self.assertEqual(default, empty_options_chart.get_options()) default.update(self.options) self.assertEqual(default, chart.get_options()) def test_point_chart(self): chart = flot.PointChart(data_source=self.data_source, options=self.options) empty_options_chart = flot.PointChart(data_source=self.data_source, options={}) json_data = chart.get_serieses() self.assertEqual([self.series_1, self.series_2], json_data) default = get_default_options("points") self.assertEqual(default, empty_options_chart.get_options()) default.update(self.options) self.assertEqual(default, chart.get_options()) class TestGchartRenderer(TestCase): def setUp(self): data = [ ['Year', 'Sales', 'Expenses'], [2004, 1000, 400], [2005, 1170, 460], [2006, 660, 1120], [2007, 1030, 540] ] self.data_source = SimpleDataSource(data) self.data = data def test_line_chart(self): chart = gchart.LineChart(data_source=self.data_source) self.assertNotEqual(chart.as_html(), "") self.assertTrue("LineChart" in chart.as_html()) def test_column_chart(self): chart = gchart.ColumnChart(data_source=self.data_source) self.assertNotEqual(chart.as_html(), "") self.assertTrue("ColumnChart" in chart.as_html()) def test_bar_chart(self): chart = gchart.BarChart(data_source=self.data_source) self.assertNotEqual(chart.as_html(), "") self.assertTrue("BarChart" in chart.as_html()) def test_pie_chart(self): chart = gchart.PieChart(data_source=self.data_source) self.assertNotEqual(chart.as_html(), "") self.assertTrue("PieChart" in chart.as_html()) def test_area_chart(self): chart = gchart.AreaChart(data_source=self.data_source) self.assertNotEqual(chart.as_html(), "") self.assertTrue("AreaChart" in chart.as_html()) def test_candlestick_chart(self): # TODO: Change tests. Candlestick probably expects data in a particular format. # Assert that data sent to candlestick is in correct format, and test accordingly chart = gchart.CandlestickChart(data_source=self.data_source) self.assertNotEqual(chart.as_html(), "") self.assertTrue("CandlestickChart" in chart.as_html()) def test_gauge_chart(self): # TODO: Change tests. Candlestick probably expects data in a particular format. # Assert that data sent to candlestick is in correct format, and test accordingly chart = gchart.GaugeChart(data_source=self.data_source) self.assertNotEqual(chart.as_html(), "") self.assertTrue("Gauge" in chart.as_html()) class TestBaseHighcharts(TestCase): chart_klass = highcharts.BaseHighCharts def setUp(self): data = [ ['Year', 'Sales', 'Expenses'], [2004, 1000, 400], [2005, 1170, 460], [2006, 660, 1120], [2007, 1030, 540] ] self.data_source = SimpleDataSource(data) self.categories = [2004, 2005, 2006, 2007] self.x_axis_title = 'Year' self.series = [{'name': 'Sales', 'data': [1000, 1170, 660, 1030]}, {'name': 'Expenses', 'data': [400, 460, 1120, 540]}] def test_get_categories(self): chart = self.chart_klass(data_source=self.data_source) self.assertEqual(chart.get_categories(), self.categories) self.assertEqual(chart.get_categories_json(), json.dumps(self.categories)) def test_get_series(self): chart = self.chart_klass(data_source=self.data_source) self.assertEqual(chart.get_series(), self.series) def test_get_series_with_colors(self): chart = self.chart_klass(data_source=self.data_source, options={'colors': ['red']}) series = [{'name': 'Sales', 'data': [1000, 1170, 660, 1030], 'color': 'red'}, {'name': 'Expenses', 'data': [400, 460, 1120, 540]}] self.assertEqual(chart.get_series(), series) chart = self.chart_klass(data_source=self.data_source, options={'colors': ['red', 'blue']}) series = [{'name': 'Sales', 'data': [1000, 1170, 660, 1030], 'color': 'red'}, {'name': 'Expenses', 'data': [400, 460, 1120, 540], 'color': 'blue'}] self.assertEqual(chart.get_series(), series) def test_get_title(self): chart = self.chart_klass(data_source=self.data_source) self.assertEqual(chart.get_title(), {'text': 'Chart'}) chart = self.chart_klass(data_source=self.data_source, options={'title': 'Highcharts'}) self.assertEqual(chart.get_title(), {'text': 'Highcharts'}) chart = self.chart_klass(data_source=self.data_source, options={'title': {'text': 'Highcharts', 'align': 'center'}}) self.assertEqual(chart.get_title(), {'text': 'Highcharts', 'align': 'center'}) def test_get_subtitle(self): chart = self.chart_klass(data_source=self.data_source) self.assertEqual(chart.get_subtitle(), {}) chart = self.chart_klass(data_source=self.data_source, options={'subtitle': 'Highcharts'}) self.assertEqual(chart.get_subtitle(), {'text': 'Highcharts'}) chart = self.chart_klass(data_source=self.data_source, options={'subtitle': {'text': 'Highcharts', 'align': 'center'}}) self.assertEqual(chart.get_subtitle(), {'text': 'Highcharts', 'align': 'center'}) def test_get_xaxis(self): chart = self.chart_klass(data_source=self.data_source) self.assertEqual(chart.get_x_axis(), {'categories':self.categories, 'title': {'text': self.x_axis_title}}) chart = self.chart_klass(data_source=self.data_source, options={'xAxis': {'type': 'logarithmic', 'title': {'text': 'Sales vs Year'}}}) self.assertEqual(chart.get_x_axis(), {'categories':self.categories, 'title': {'text': 'Sales vs Year'}, 'type': 'logarithmic'}) def test_get_yaxis(self): chart = self.chart_klass(data_source=self.data_source) self.assertEqual(chart.get_y_axis(), {'title': {'text': 'Values'}}) def test_get_yaxis_single_series(self): single_data = [ ['Year', 'Sales'], [2004, 1000], [2005, 1170], [2006, 660], [2007, 1030] ] chart = self.chart_klass(data_source=SimpleDataSource(single_data)) self.assertEqual(chart.get_y_axis(), {'title': {'text': 'Sales'}}) def test_get_tooltip(self): chart = self.chart_klass(data_source=self.data_source) self.assertEqual(chart.get_tooltip(), {}) def test_get_credits(self): chart = self.chart_klass(data_source=self.data_source) self.assertEqual(chart.get_credits(), {}) def test_get_exporting(self): chart = self.chart_klass(data_source=self.data_source) self.assertEqual(chart.get_exporting(), {}) def test_get_legend(self): chart = self.chart_klass(data_source=self.data_source) self.assertEqual(chart.get_legend(), {}) def test_get_navigation(self): chart = self.chart_klass(data_source=self.data_source) self.assertEqual(chart.get_navigation(), {}) class TestHighchartsLineChart(TestBaseHighcharts): chart_klass = highcharts.LineChart def test_line_chart(self): chart = self.chart_klass(data_source=self.data_source) self.assertEqual(chart.get_chart(), {'type': 'line'}) self.assertNotEqual(chart.as_html(), "") class TestHighchartsBarChart(TestBaseHighcharts): chart_klass = highcharts.BarChart def test_bar_chart(self): chart = self.chart_klass(data_source=self.data_source) self.assertEqual(chart.get_chart(), {'type': 'bar'}) self.assertNotEqual(chart.as_html(), "") class TestHighchartsColumnChart(TestBaseHighcharts): chart_klass = highcharts.ColumnChart def test_column_chart(self): chart = self.chart_klass(data_source=self.data_source) self.assertEqual(chart.get_chart(), {'type': 'column'}) self.assertNotEqual(chart.as_html(), "") class TestHighchartsAreaChart(TestBaseHighcharts): chart_klass = highcharts.AreaChart def test_area_chart(self): chart = self.chart_klass(data_source=self.data_source) self.assertEqual(chart.get_chart(), {'type': 'area'}) self.assertNotEqual(chart.as_html(), "") class TestHighchartsPieChart(TestBaseHighcharts): chart_klass = highcharts.PieChart def test_pie_chart(self): chart = self.chart_klass(data_source=self.data_source) self.assertEqual(chart.get_chart(), {'type': 'pie'}) self.assertNotEqual(chart.as_html(), "") def test_get_series(self): chart = self.chart_klass(data_source=self.data_source) series = [ {'name': "Sales", "data": [{"name": 2004, "y": 1000}, {'name': 2005, 'y': 1170}, {'name': 2006, 'y': 660}, {'name': 2007, 'y': 1030}]}, {'name': 'Expenses', 'data': [{"name": 2004, "y": 400}, {'name': 2005, 'y': 460}, {'name': 2006, 'y': 1120}, {'name': 2007, 'y': 540}]} ] self.assertEqual(chart.get_series(), series) # This function should be modified when color ability is added to Piechart. def test_get_series_with_colors(self): chart = self.chart_klass(data_source=self.data_source, options={'colors': ['red']}) series = [ {'name': "Sales", "data": [{"name": 2004, "y": 1000}, {'name': 2005, 'y': 1170}, {'name': 2006, 'y': 660}, {'name': 2007, 'y': 1030}]}, {'name': 'Expenses', 'data': [{"name": 2004, "y": 400}, {'name': 2005, 'y': 460}, {'name': 2006, 'y': 1120}, {'name': 2007, 'y': 540}]} ] self.assertEqual(chart.get_series(), series) class TestHighchartsScatterChart(TestBaseHighcharts): chart_klass = highcharts.ScatterChart multiseriesdata = [ ['State', 'Country', 'Rainfall', 'Precipitation'], ['Uttar Pradesh', 'India', 1, 2], ['Bihar', 'India', 2, 3], ['Telangana', 'India', 5, 7], ['Lahore', 'Pakistan', 9, 8], ['Hyderabad', 'Pakistan', 8, 7], ['Lahore', 'Pakistan', 3, 11] ] def test_scatter_chart(self): chart = self.chart_klass(data_source=self.data_source) self.assertEqual(chart.get_chart(), {'type': 'scatter'}) self.assertNotEqual(chart.as_html(), "") def test_get_series(self): chart = self.chart_klass(data_source=self.data_source) series = [{'data': [{'Year': 2004, 'x': 1000, 'y': 400}, {'Year': 2005, 'x': 1170, 'y': 460}, {'Year': 2006, 'x': 660, 'y': 1120}, {'Year': 2007, 'x': 1030, 'y': 540}], 'name': 'Year'}] self.assertEqual(chart.get_series(), series) # Scatter Chart has ability to work with multiseries data. chart = self.chart_klass(data_source=SimpleDataSource(self.multiseriesdata)) series = [{"data": [{"y": 8, "x": 9, "State": "Lahore"}, {"y": 7, "x": 8, "State": "Hyderabad"}, {"y": 11, "x": 3, "State": "Lahore"}], "name": "Pakistan"}, {"data": [{"y": 2, "x": 1, "State": "Uttar Pradesh"}, {"y": 3, "x": 2, "State": "Bihar"}, {"y": 7, "x": 5, "State": "Telangana"}], "name": "India"}] self.assertEqual(chart.get_series(), series) # This function should be modified when color ability is added to Scatter. def test_get_series_with_colors(self): chart = self.chart_klass(data_source=self.data_source, options={'colors': ['red']}) pass def test_get_xaxis(self): chart = self.chart_klass(data_source=self.data_source) self.assertEqual(chart.get_x_axis(),{'title': {'text': 'Sales'}}) def test_get_yaxis(self): chart = self.chart_klass(data_source=self.data_source) self.assertEqual(chart.get_y_axis(), {'title': {'text': 'Expenses'}}) def test_get_yaxis_single_series(self): pass class TestHighchartsColumnLineChart(TestBaseHighcharts): chart_klass = highcharts.ColumnLineChart def test_line_chart(self): chart = self.chart_klass(data_source=self.data_source) self.assertEqual(chart.get_chart(), {'type': 'column_line'}) self.assertNotEqual(chart.as_html(), "") def test_get_series(self): chart = self.chart_klass(data_source=self.data_source) series = [{'type': 'column', 'data': [1000, 1170, 660, 1030], 'name': 'Sales'},{'data': [400, 460, 1120, 540], 'name': 'Expenses', 'type': 'line'}] self.assertEqual(chart.get_series(), series) # This function should be modified when color ability is added to ColumnLine. def test_get_series_with_colors(self): chart = self.chart_klass(data_source=self.data_source, options={'colors': ['red']}) series = [{'type': 'column', 'data': [1000, 1170, 660, 1030], 'name': 'Sales'},{'data': [400, 460, 1120, 540], 'name': 'Expenses', 'type': 'line'}] self.assertEqual(chart.get_series(), series) class TestHighchartsLineColumnChart(TestBaseHighcharts): chart_klass = highcharts.LineColumnChart def test_line_chart(self): chart = self.chart_klass(data_source=self.data_source) self.assertEqual(chart.get_chart(), {'type': 'line_column'}) self.assertNotEqual(chart.as_html(), "") def test_get_series(self): chart = self.chart_klass(data_source=self.data_source) series = [{'type': 'line', 'data': [1000, 1170, 660, 1030], 'name': 'Sales'},{'data': [400, 460, 1120, 540], 'name': 'Expenses', 'type': 'column'}] self.assertEqual(chart.get_series(), series) # This function should be modified when color ability is added to ColumnLine. def test_get_series_with_colors(self): chart = self.chart_klass(data_source=self.data_source, options={'colors': ['red']}) series = [{'type': 'line', 'data': [1000, 1170, 660, 1030], 'name': 'Sales'},{'data': [400, 460, 1120, 540], 'name': 'Expenses', 'type': 'column'}] self.assertEqual(chart.get_series(), series) class TestHighchartsFunnel(TestBaseHighcharts): chart_klass = highcharts.Funnel funnel_data = [['Unique users', 'Counts'], ['Website visits', 654], ['Downloads', 4064], ['Requested price list', 1987], ['Invoice sent', 976], ['Finalized', 846] ] def test_funnel_chart(self): chart = self.chart_klass(data_source=self.data_source) self.assertEqual(chart.get_chart(), {'type': 'funnel'}) self.assertNotEqual(chart.as_html(), "") def test_get_series(self): chart = self.chart_klass(data_source=SimpleDataSource(self.funnel_data)) series = [{'data': [['Website visits', 654], ['Downloads', 4064], ['Requested price list', 1987], ['Invoice sent', 976], ['Finalized', 846]]}] self.assertEqual(chart.get_series(), series) # Needs to be modified when color functionality is added to Funnel def test_get_series_with_colors(self): chart = self.chart_klass(data_source=SimpleDataSource(self.funnel_data)) series = [{'data': [['Website visits', 654],['Downloads', 4064],['Requested price list', 1987],['Invoice sent', 976],['Finalized', 846]]}] self.assertEqual(chart.get_series(), series) class TestHighchartsBubbleChart(TestBaseHighcharts): chart_klass = highcharts.Bubble def setUp(self): data = [["Country", "Sugar Consumption", "Fat Consumption", "GDP"], ["India", 10, 15, 90], ["USA", 11, 20, 19], ["Srilanka", 15, 5, 98], ["Indonesia", 16, 35, 150]] self.data_source = SimpleDataSource(data) def test_bubble_chart(self): chart = self.chart_klass(data_source=self.data_source) self.assertEqual(chart.get_chart(), {'type': 'bubble'}) self.assertNotEqual(chart.as_html(), "") def test_get_series(self): bubble_chart_data_multi = [["Grade", "Country", "Sugar Consumption", "Fat Consumption", "GDP"], ["A", "India", 10, 15, 90], ["B", "India", 11, 20, 19], ["P", "USA", 39, 21, 100], ["O", "USA", 44, 29, 150]] chart = self.chart_klass(data_source=self.data_source) series = [{'data': [{'y': 15, 'Country': 'India', 'z': 90, 'x': 10}, {'y': 20, 'Country': 'USA', 'z': 19, 'x': 11}, {'y': 5, 'Country': 'Srilanka', 'z': 98, 'x': 15}, {'y': 35, 'Country': 'Indonesia', 'z': 150, 'x': 16}], 'name': 'Country'}] self.assertEqual(chart.get_series(), series) chart = self.chart_klass(data_source=SimpleDataSource(bubble_chart_data_multi)) series = [{'data': [{'Grade': 'A', 'x': 10, 'z': 90, 'y': 15}, {'Grade': 'B', 'x': 11, 'z': 19, 'y': 20}], 'name': 'India'}, {'data': [{'Grade': 'P', 'x': 39, 'z': 100, 'y': 21}, {'Grade': 'O', 'x': 44, 'z': 150, 'y': 29}], 'name': 'USA'}] self.assertEqual(chart.get_series(), series) # Needs to be modified when color functionality is added to Bubble def test_get_series_with_colors(self): pass def test_get_yaxis(self): chart = self.chart_klass(data_source=self.data_source) self.assertEqual(chart.get_y_axis(), {'title': {'text': 'Fat Consumption'}}) def test_get_xaxis(self): chart = self.chart_klass(data_source=self.data_source) self.assertEqual(chart.get_x_axis(), {'title': {'text': 'Sugar Consumption'}}) # Bubble chart do not have any attribute categories. def test_get_categories(self): pass # Bubble chart do not have any attribute yaxis singleseries. def test_get_yaxis_single_series(self): pass class TestHighchartsHeatMap(TestBaseHighcharts): chart_klass = highcharts.HeatMap def test_heatmap_chart(self): chart = self.chart_klass(data_source=self.data_source) self.assertEqual(chart.get_chart(), {'type': 'heatmap'}) self.assertNotEqual(chart.as_html(), "") def test_get_series(self): chart = self.chart_klass(data_source=self.data_source) series = [{'data': [[0, 0, 1000], [0, 1, 400], [1, 0, 1170], [1, 1, 460], [2, 0, 660], [2, 1, 1120], [3, 0, 1030], [3, 1, 540]]}] self.assertEqual(chart.get_series(), series) def test_get_yaxis(self): chart = self.chart_klass(data_source=self.data_source) self.assertEqual(chart.get_y_axis(), {'categories': ['Sales', 'Expenses']}) # This function should be modified when color ability is added to Heatmap. def test_get_series_with_colors(self): pass def test_get_color_axis(self): chart = self.chart_klass(data_source=self.data_source) self.assertEqual(chart.get_color_axis(), {}) def test_get_yaxis_single_series(self): pass class TestHighchartsTreeMap(TestBaseHighcharts): chart_klass = highcharts.TreeMap treemap_data = [["Country", "Cause", "Death Rate"], ["India", "Cardiovascular Disease", 10], ["India", "Road Accident", 5], ["China", "Cardiovascular Disease", 9], ["China", "Road Accident", 6], ] def test_treemap_chart(self): chart = self.chart_klass(data_source=SimpleDataSource(self.treemap_data)) self.assertEqual(chart.get_chart(), {'type': 'treemap'}) self.assertNotEqual(chart.as_html(), "") def test_get_series(self): chart = self.chart_klass(data_source=SimpleDataSource(self.treemap_data)) series = [{'data': [{'color': '#7cb5ec', 'value': 6, 'id': 'id_00', 'parent': 'id_0', 'name': 'Road Accident'}, {'color': '#7cb5ec', 'value': 9, 'id': 'id_01', 'parent': 'id_0', 'name': 'Cardiovascular Disease'}, {'color': '#7cb5ec', 'id': 'id_0', 'value': 15, 'name': 'China'}, {'color': '#434348', 'value': 5, 'id': 'id_12', 'parent': 'id_1', 'name': 'Road Accident'}, {'color': '#434348', 'value': 10, 'id': 'id_13', 'parent': 'id_1', 'name': 'Cardiovascular Disease'}, {'color': '#434348', 'id': 'id_1', 'value': 15, 'name': 'India'}]}] self.assertEqual(chart.get_series(), series) # Modifiy after color functionality is there in TreeMap def test_get_series_with_colors(self): pass class TestHighchartsPieDonut(TestHighchartsPieChart): chart_klass = highcharts.PieDonut pie_data = [["Country", "Cause", "Death Rate"], ["India", "Cardiovascular Disease", 10], ["India", "Road Accident", 5], ["China", "Cardiovascular Disease", 9], ["China", "Road Accident", 6]] def test_get_series(self): chart = self.chart_klass(data_source=SimpleDataSource(self.pie_data)) series = [{'showInLegend': True, 'dataLabels': {'enabled': False}, 'data': [{'color': '#7cb5ec', 'y': 15, 'name': 'China'}, {'color': '#434348', 'y': 15, 'name': 'India'}], 'name': 'Country', 'size': '60%'}, {'innerSize': '60%', 'data': [{'color': '#7cb5ec', 'y': 6, 'name': 'Road Accident'}, {'color': '#7cb5ec', 'y': 9, 'name': 'Cardiovascular Disease'}, {'color': '#434348', 'y': 5, 'name': 'Road Accident'}, {'color': '#434348', 'y': 10, 'name': 'Cardiovascular Disease'}], 'name': 'Cause', 'size': '80%'}] self.assertEqual(chart.get_series(), series) # To be modified once color functionality is added to Chart. def test_get_series_with_colors(self): pass class TestHighchartsHighMap(TestBaseHighcharts): chart_klass = highcharts.HighMap map_data_us_multi_series_lat_lon = [ ['Latitude', 'Longitude', 'Winner', 'Seats'], [32.380120, -86.300629, 'Trump', 10], [58.299740, -134.406794, 'Trump', 10]] map_data_us_multi_series = [ ['State', 'Winner', 'Seats'], ['us-nj', 'Trump', 10], ['us-ri', 'Trump', 10]] map_data_us_lat_lon = [ ['Latitude', 'Longitude', 'Population'], [32.380120, -86.300629, 900], [58.299740, -134.406794, 387], [33.448260, -112.075774, 313], ] map_data_us = [ ['State', 'Population'], ['us-nj', 438], ['us-ri', 387]] map_data_us_point = [ ['Lat', 'Lon', 'Name', 'Date'], [46.8797, -110.3626, 'trump', '25th February'], [41.4925, -99.9018, 'trump', '26th February'], [45.4925, -89.9018, 'trump', '27th February']] def test_highmap_chart(self): chart = self.chart_klass(data_source=SimpleDataSource(self.map_data_us)) self.assertEqual(chart.get_chart(), {'type': 'map'}) self.assertNotEqual(chart.as_html(), "") chart = self.chart_klass(data_source=SimpleDataSource(self.map_data_us_lat_lon)) self.assertEqual(chart.get_chart(), {'type': 'mapbubble'}) def test_get_series(self): chart = self.chart_klass(data_source=SimpleDataSource(self.map_data_us)) series = [{'joinBy': ['hc-key', 'code'], 'data': [{'code': 'us-nj', 'value': 438}, {'code': 'us-ri', 'value': 387}], 'name': 'Population'}] self.assertEqual(chart.get_series(), series) chart = self.chart_klass(data_source=SimpleDataSource(self.map_data_us_point)) series = [{'color': 'black', 'type': 'map', 'name': 'Regions', 'showInLegend': False}, {'joinBy': ['hc-key', 'code'], 'data': [{'lat': 46.8797, 'Date': '25th February', 'lon': -110.3626}, {'lat': 41.4925, 'Date': '26th February', 'lon': -99.9018}, {'lat': 45.4925, 'Date': '27th February', 'lon': -89.9018}], 'name': 'trump'}] self.assertEqual(chart.get_series(), series) chart = self.chart_klass(data_source=SimpleDataSource(self.map_data_us_lat_lon)) series = [{'type': 'map', 'name': 'Basemap', 'showInLegend': False}, {'joinBy': ['hc-key', 'code'], 'data': [{'lat': 32.38012, 'z': 900, 'lon': -86.300629}, {'lat': 58.29974, 'z': 387, 'lon': -134.406794}, {'lat': 33.44826, 'z': 313, 'lon': -112.075774}], 'name': 'Population'}] self.assertEqual(chart.get_series(), series) chart = self.chart_klass(data_source=SimpleDataSource(self.map_data_us_multi_series)) series = [{'joinBy': ['hc-key', 'code'], 'data': [{'code': 'us-nj', 'Seats': 10}, {'code': 'us-ri', 'Seats': 10}], 'name': 'Trump'}] self.assertEqual(chart.get_series(), series) chart = self.chart_klass(data_source=SimpleDataSource(self.map_data_us_multi_series_lat_lon)) series = [{'color': 'black', 'type': 'map', 'name': 'Regions', 'showInLegend': False}, {'joinBy': ['hc-key', 'code'], 'data': [{'lat': 32.38012, 'lon': -86.300629, 'Seats': 10}, {'lat': 58.29974, 'lon': -134.406794, 'Seats': 10}], 'name': 'Trump'}] self.assertEqual(chart.get_series(), series) # Needs some modification def test_get_series_with_colors(self): pass def test_get_color_axis(self): chart = self.chart_klass(data_source=self.data_source) self.assertEqual(chart.get_color_axis(), {}) # What should be done for this ? Should it be kept or removed ? def test_get_map(self): pass def test_get_yaxis_single_series(self): pass class TestHighchartsDonutChart(TestHighchartsPieChart): chart_klass = highcharts.DonutChart def test_pie_chart(self): chart = self.chart_klass(data_source=self.data_source) self.assertEqual(chart.get_chart(), {'options3d': {'alpha': 45, 'enabled': True}, 'type': 'pie'}) self.assertNotEqual(chart.as_html(), "") class TestYUIRenderer(TestCase): def setUp(self): data = [ ['Year', 'Sales', 'Expenses'], [2004, 1000, 400], [2005, 1170, 460], [2006, 660, 1120], [2007, 1030, 540] ] self.data_source = SimpleDataSource(data) self.data = data def test_line_chart(self): chart = yui.LineChart(data_source=self.data_source) self.assertNotEqual(chart.as_html(), "") self.assertTrue("line" in chart.as_html()) class TestMatplotlibRenderer(TestCase): def setUp(self): data = [['Year', 'Sales', 'Expenses', 'Items Sold', 'Net Profit'], ['2004', 1000, 400, 100, 600], ['2005', 1170, 460, 120, 310], ['2006', 660, 1120, 50, -460], ['2007', 1030, 540, 100, 200]] self.data_source = SimpleDataSource(data) self.data = data def test_line_chart(self): chart = matplotlib_renderer.LineChart(self.data_source) self.assertNotEqual(chart.as_html(), "") def test_bar_chart(self): chart = matplotlib_renderer.BarChart(self.data_source) self.assertNotEqual(chart.as_html(), "")
bsd-2-clause
JosmanPS/scikit-learn
examples/ensemble/plot_adaboost_twoclass.py
347
3268
""" ================== Two-class AdaBoost ================== This example fits an AdaBoosted decision stump on a non-linearly separable classification dataset composed of two "Gaussian quantiles" clusters (see :func:`sklearn.datasets.make_gaussian_quantiles`) and plots the decision boundary and decision scores. The distributions of decision scores are shown separately for samples of class A and B. The predicted class label for each sample is determined by the sign of the decision score. Samples with decision scores greater than zero are classified as B, and are otherwise classified as A. The magnitude of a decision score determines the degree of likeness with the predicted class label. Additionally, a new dataset could be constructed containing a desired purity of class B, for example, by only selecting samples with a decision score above some value. """ print(__doc__) # Author: Noel Dawe <noel.dawe@gmail.com> # # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.ensemble import AdaBoostClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.datasets import make_gaussian_quantiles # Construct dataset X1, y1 = make_gaussian_quantiles(cov=2., n_samples=200, n_features=2, n_classes=2, random_state=1) X2, y2 = make_gaussian_quantiles(mean=(3, 3), cov=1.5, n_samples=300, n_features=2, n_classes=2, random_state=1) X = np.concatenate((X1, X2)) y = np.concatenate((y1, - y2 + 1)) # Create and fit an AdaBoosted decision tree bdt = AdaBoostClassifier(DecisionTreeClassifier(max_depth=1), algorithm="SAMME", n_estimators=200) bdt.fit(X, y) plot_colors = "br" plot_step = 0.02 class_names = "AB" plt.figure(figsize=(10, 5)) # Plot the decision boundaries plt.subplot(121) x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step), np.arange(y_min, y_max, plot_step)) Z = bdt.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, cmap=plt.cm.Paired) plt.axis("tight") # Plot the training points for i, n, c in zip(range(2), class_names, plot_colors): idx = np.where(y == i) plt.scatter(X[idx, 0], X[idx, 1], c=c, cmap=plt.cm.Paired, label="Class %s" % n) plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.legend(loc='upper right') plt.xlabel('x') plt.ylabel('y') plt.title('Decision Boundary') # Plot the two-class decision scores twoclass_output = bdt.decision_function(X) plot_range = (twoclass_output.min(), twoclass_output.max()) plt.subplot(122) for i, n, c in zip(range(2), class_names, plot_colors): plt.hist(twoclass_output[y == i], bins=10, range=plot_range, facecolor=c, label='Class %s' % n, alpha=.5) x1, x2, y1, y2 = plt.axis() plt.axis((x1, x2, y1, y2 * 1.2)) plt.legend(loc='upper right') plt.ylabel('Samples') plt.xlabel('Score') plt.title('Decision Scores') plt.tight_layout() plt.subplots_adjust(wspace=0.35) plt.show()
bsd-3-clause
joshbohde/scikit-learn
sklearn/datasets/tests/test_mldata.py
2
5248
"""Test functionality of mldata fetching utilities.""" from sklearn import datasets from sklearn.datasets import mldata_filename, fetch_mldata from sklearn.utils.testing import (assert_in, mock_urllib2) from nose.tools import assert_equal, assert_raises from nose import with_setup from numpy.testing import assert_array_equal import os import shutil import tempfile import scipy as sp tmpdir = None def setup_tmpdata(): # create temporary dir global tmpdir tmpdir = tempfile.mkdtemp() os.makedirs(os.path.join(tmpdir, 'mldata')) def teardown_tmpdata(): # remove temporary dir if tmpdir is not None: shutil.rmtree(tmpdir) def test_mldata_filename(): cases = [('datasets-UCI iris', 'datasets-uci-iris'), ('news20.binary', 'news20binary'), ('book-crossing-ratings-1.0', 'book-crossing-ratings-10'), ('Nile Water Level', 'nile-water-level'), ('MNIST (original)', 'mnist-original')] for name, desired in cases: assert_equal(mldata_filename(name), desired) @with_setup(setup_tmpdata, teardown_tmpdata) def test_download(): """Test that fetch_mldata is able to download and cache a data set.""" _urllib2_ref = datasets.mldata.urllib2 datasets.mldata.urllib2 = mock_urllib2({'mock': {'label': sp.ones((150,)), 'data': sp.ones((150, 4))}}) try: mock = fetch_mldata('mock', data_home=tmpdir) assert_in(mock, in_=['COL_NAMES', 'DESCR', 'target', 'data']) assert_equal(mock.target.shape, (150,)) assert_equal(mock.data.shape, (150, 4)) assert_raises(datasets.mldata.urllib2.HTTPError, fetch_mldata, 'not_existing_name') finally: datasets.mldata.urllib2 = _urllib2_ref @with_setup(setup_tmpdata, teardown_tmpdata) def test_fetch_one_column(): _urllib2_ref = datasets.mldata.urllib2 try: dataname = 'onecol' # create fake data set in cache x = sp.arange(6).reshape(2, 3) datasets.mldata.urllib2 = mock_urllib2({dataname: {'x': x}}) dset = fetch_mldata(dataname, data_home=tmpdir) assert_in(dset, in_=['COL_NAMES', 'DESCR', 'data'], out_=['target']) assert_equal(dset.data.shape, (2, 3)) assert_array_equal(dset.data, x) # transposing the data array dset = fetch_mldata(dataname, transpose_data=False, data_home=tmpdir) assert_equal(dset.data.shape, (3, 2)) finally: datasets.mldata.urllib2 = _urllib2_ref @with_setup(setup_tmpdata, teardown_tmpdata) def test_fetch_multiple_column(): _urllib2_ref = datasets.mldata.urllib2 try: # create fake data set in cache x = sp.arange(6).reshape(2, 3) y = sp.array([1, -1]) z = sp.arange(12).reshape(4, 3) # by default dataname = 'threecol-default' datasets.mldata.urllib2 = mock_urllib2({dataname: ({'label': y, 'data': x, 'z': z}, ['z', 'data', 'label'])}) dset = fetch_mldata(dataname, data_home=tmpdir) assert_in(dset, in_=['COL_NAMES', 'DESCR', 'target', 'data', 'z'], out_=['x', 'y']) assert_array_equal(dset.data, x) assert_array_equal(dset.target, y) assert_array_equal(dset.z, z.T) # by order dataname = 'threecol-order' datasets.mldata.urllib2 = mock_urllib2({dataname: ({'y': y, 'x': x, 'z': z}, ['y', 'x', 'z'])}) dset = fetch_mldata(dataname, data_home=tmpdir) assert_in(dset, in_=['COL_NAMES', 'DESCR', 'target', 'data', 'z'], out_=['x', 'y']) assert_array_equal(dset.data, x) assert_array_equal(dset.target, y) assert_array_equal(dset.z, z.T) # by number dataname = 'threecol-number' datasets.mldata.urllib2 = mock_urllib2({dataname: ({'y': y, 'x': x, 'z': z}, ['z', 'x', 'y'])}) dset = fetch_mldata(dataname, target_name=2, data_name=0, data_home=tmpdir) assert_in(dset, in_=['COL_NAMES', 'DESCR', 'target', 'data', 'x'], out_=['z', 'y']) assert_array_equal(dset.data, z) assert_array_equal(dset.target, y) # by name dset = fetch_mldata(dataname, target_name='y', data_name='z', data_home=tmpdir) assert_in(dset, in_=['COL_NAMES', 'DESCR', 'target', 'data', 'x'], out_=['z', 'y']) assert_array_equal(dset.data, z) assert_array_equal(dset.target, y) finally: datasets.mldata.urllib2 = _urllib2_ref
bsd-3-clause
dgwakeman/mne-python
mne/parallel.py
13
5045
"""Parallel util function """ # Author: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr> # # License: Simplified BSD from .externals.six import string_types import inspect import logging import os from . import get_config from .utils import logger, verbose if 'MNE_FORCE_SERIAL' in os.environ: _force_serial = True else: _force_serial = None @verbose def parallel_func(func, n_jobs, verbose=None, max_nbytes='auto'): """Return parallel instance with delayed function Util function to use joblib only if available Parameters ---------- func: callable A function n_jobs: int Number of jobs to run in parallel verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). INFO or DEBUG will print parallel status, others will not. max_nbytes : int, str, or None Threshold on the minimum size of arrays passed to the workers that triggers automated memmory mapping. Can be an int in Bytes, or a human-readable string, e.g., '1M' for 1 megabyte. Use None to disable memmaping of large arrays. Use 'auto' to use the value set using mne.set_memmap_min_size. Returns ------- parallel: instance of joblib.Parallel or list The parallel object my_func: callable func if not parallel or delayed(func) n_jobs: int Number of jobs >= 0 """ # for a single job, we don't need joblib if n_jobs == 1: n_jobs = 1 my_func = func parallel = list return parallel, my_func, n_jobs try: from joblib import Parallel, delayed except ImportError: try: from sklearn.externals.joblib import Parallel, delayed except ImportError: logger.warning('joblib not installed. Cannot run in parallel.') n_jobs = 1 my_func = func parallel = list return parallel, my_func, n_jobs # check if joblib is recent enough to support memmaping p_args = inspect.getargspec(Parallel.__init__).args joblib_mmap = ('temp_folder' in p_args and 'max_nbytes' in p_args) cache_dir = get_config('MNE_CACHE_DIR', None) if isinstance(max_nbytes, string_types) and max_nbytes == 'auto': max_nbytes = get_config('MNE_MEMMAP_MIN_SIZE', None) if max_nbytes is not None: if not joblib_mmap and cache_dir is not None: logger.warning('"MNE_CACHE_DIR" is set but a newer version of ' 'joblib is needed to use the memmapping pool.') if joblib_mmap and cache_dir is None: logger.info('joblib supports memapping pool but "MNE_CACHE_DIR" ' 'is not set in MNE-Python config. To enable it, use, ' 'e.g., mne.set_cache_dir(\'/tmp/shm\'). This will ' 'store temporary files under /dev/shm and can result ' 'in large memory savings.') # create keyword arguments for Parallel kwargs = {'verbose': 5 if logger.level <= logging.INFO else 0} if joblib_mmap: if cache_dir is None: max_nbytes = None # disable memmaping kwargs['temp_folder'] = cache_dir kwargs['max_nbytes'] = max_nbytes n_jobs = check_n_jobs(n_jobs) parallel = Parallel(n_jobs, **kwargs) my_func = delayed(func) return parallel, my_func, n_jobs def check_n_jobs(n_jobs, allow_cuda=False): """Check n_jobs in particular for negative values Parameters ---------- n_jobs : int The number of jobs. allow_cuda : bool Allow n_jobs to be 'cuda'. Default: False. Returns ------- n_jobs : int The checked number of jobs. Always positive (or 'cuda' if applicable.) """ if not isinstance(n_jobs, int): if not allow_cuda: raise ValueError('n_jobs must be an integer') elif not isinstance(n_jobs, string_types) or n_jobs != 'cuda': raise ValueError('n_jobs must be an integer, or "cuda"') # else, we have n_jobs='cuda' and this is okay, so do nothing elif _force_serial: n_jobs = 1 logger.info('... MNE_FORCE_SERIAL set. Processing in forced ' 'serial mode.') elif n_jobs <= 0: try: import multiprocessing n_cores = multiprocessing.cpu_count() n_jobs = min(n_cores + n_jobs + 1, n_cores) if n_jobs <= 0: raise ValueError('If n_jobs has a negative value it must not ' 'be less than the number of CPUs present. ' 'You\'ve got %s CPUs' % n_cores) except ImportError: # only warn if they tried to use something other than 1 job if n_jobs != 1: logger.warning('multiprocessing not installed. Cannot run in ' 'parallel.') n_jobs = 1 return n_jobs
bsd-3-clause
kazuto1011/rcnn-server
tms_ss_ssd/nodes/ssd_pascalvoc.py
1
6252
#!/usr/bin/env python import numpy as np import matplotlib.pyplot as plt import os import sys if 'SSD_ROOT' not in os.environ: print "Could not find 'SSD_ROOT'." sys.exit(1) SSD_ROOT = os.environ['SSD_ROOT'] print "SDD=" + SSD_ROOT sys.path.insert(0, os.path.join(SSD_ROOT, 'python')) import caffe import cv2 import argparse import rospy as rp import tms_ss_ssd.srv as srv import tms_ss_ssd.msg as msg from google.protobuf import text_format from caffe.proto import caffe_pb2 # load PASCAL VOC labels labelmap_file = os.path.join(SSD_ROOT, 'data/VOC0712/labelmap_voc.prototxt') file = open(labelmap_file, 'r') labelmap = caffe_pb2.LabelMap() text_format.Merge(str(file.read()), labelmap) def get_labelname(labelmap, labels): num_labels = len(labelmap.item) labelnames = [] if type(labels) is not list: labels = [labels] for label in labels: found = False for i in xrange(0, num_labels): if label == labelmap.item[i].label: found = True labelnames.append(labelmap.item[i].display_name) break assert found == True return labelnames def parse_args(): parser = argparse.ArgumentParser(description='Single Shot Detector demo') parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', default=0, type=int) parser.add_argument('--cpu', dest='cpu_mode', help='Use CPU mode (overrides --gpu)', action='store_true') # parser.add_argument('--net', dest='demo_net', # help='Network to use [vgg16]', # choices=NETS.keys(), default='vgg16') parser.add_argument('--conf', dest='conf_thresh', default=0.6, type=float) parser.add_argument('--nms', dest='nms_thresh', default=0.3, type=float) return parser.parse_args() def load_net(args): model_def = os.path.join(SSD_ROOT, 'models/VGGNet/VOC0712/SSD_300x300/deploy.prototxt') model_weights = os.path.join(SSD_ROOT, 'models/VGGNet/VOC0712/SSD_300x300/VGG_VOC0712_SSD_300x300_iter_60000.caffemodel') return caffe.Net(model_def, model_weights, caffe.TEST) class SSD: def __init__(self, name, args): self._args = args self._name = name self._init = False rp.loginfo("Ready to start") self._server = rp.Service(self._name, srv.obj_detection, self._callback) def _callback(self, req): rp.loginfo("Received an image") if self._init is False: self._net = load_net(self._args) self.transformer = caffe.io.Transformer({'data': self._net.blobs['data'].data.shape}) self.transformer.set_transpose('data', (2, 0, 1)) self.transformer.set_mean('data', np.array([104,117,123])) self.transformer.set_raw_scale('data', 255) self.transformer.set_channel_swap('data', (2,1,0)) self._init = True if self._args.cpu_mode: caffe.set_mode_cpu() else: caffe.set_mode_gpu() caffe.set_device(self._args.gpu_id) # convert rosmsg to cv image np_array = np.fromstring(req.image.data, np.uint8) image = cv2.imdecode(np_array, cv2.CV_LOAD_IMAGE_COLOR) objects = self._detect(image) return srv.obj_detectionResponse(objects) def _detect(self, image): # set net to batch size of 1 image_resize = 300 self._net.blobs['data'].reshape(1, 3, image_resize, image_resize) image = np.asarray(image, np.float32) image /= 255 transformed_image = self.transformer.preprocess('data', image) self._net.blobs['data'].data[...] = transformed_image # Forward pass. detections = self._net.forward()['detection_out'] # Parse the outputs. det_label = detections[0,0,:,1] det_conf = detections[0,0,:,2] det_xmin = detections[0,0,:,3] det_ymin = detections[0,0,:,4] det_xmax = detections[0,0,:,5] det_ymax = detections[0,0,:,6] top_indices = [i for i, conf in enumerate(det_conf) if conf >= self._args.conf_thresh] top_conf = det_conf[top_indices] top_label_indices = det_label[top_indices].tolist() top_labels = get_labelname(labelmap, top_label_indices) top_xmin = det_xmin[top_indices] top_ymin = det_ymin[top_indices] top_xmax = det_xmax[top_indices] top_ymax = det_ymax[top_indices] colors = plt.cm.hsv(np.linspace(0, 1, 21)).tolist() currentAxis = plt.gca() obj_list = [] for i in xrange(top_conf.shape[0]): xmin = int(round(top_xmin[i] * image.shape[1])) ymin = int(round(top_ymin[i] * image.shape[0])) xmax = int(round(top_xmax[i] * image.shape[1])) ymax = int(round(top_ymax[i] * image.shape[0])) score = top_conf[i] label = int(top_label_indices[i]) label_name = top_labels[i] display_txt = '%s: %.2f'%(label_name, score) coords = (xmin, ymin), xmax-xmin+1, ymax-ymin+1 color = colors[label] currentAxis.add_patch(plt.Rectangle(*coords, fill=False, edgecolor=color, linewidth=2)) currentAxis.text(xmin, ymin, display_txt, bbox={'facecolor':color, 'alpha':0.5}) obj = msg.object() obj.class_name = label_name obj.score = top_conf[i] obj.region.x_offset = xmin obj.region.y_offset = ymin obj.region.width = xmax-xmin+1 obj.region.height = ymax-ymin+1 obj.region.do_rectify = False obj_list.append(obj) return obj_list class NodeMain: def __init__(self): rp.init_node('ssd', anonymous=False) rp.on_shutdown(self.shutdown) args = parse_args() node = SSD('ssd', args) rp.spin() @staticmethod def shutdown(): rp.loginfo("Shutting down") if __name__ == '__main__': try: NodeMain() except rp.ROSInterruptException: rp.loginfo("Terminated")
mit
danmackinlay/branching_process
branching_process/datasets/youtube_sornette/fileio.py
1
13901
#!/usr/bin/env python # -*- coding: utf-8 -*- import pandas as pd from time import time from pathlib import Path import os, os.path import numpy as np from numpy import random # from excited_util import to_rng, uuid_source from zlib import crc32 import pickle import warnings from .test_sets import MEXICAN_SINGER pd.set_option('io.hdf.default_format', 'table') inf = float("inf") class RawYoutube: def __init__(self, base_path, *args, **kwargs): self.base_path = Path(base_path) self.raw_path = self.base_path / 'raw.h5' def get_raw_store(self, mode="r"): return get_store(str(self.raw_path), mode=mode) def get_raw_series(self, video_id=MEXICAN_SINGER): with self.get_raw_store(mode="r") as store: query = "video_id=={!r}".format(video_id) return ( store.select("tseries", query), store.select("video_meta", query) ) # # def shardhash_from_filename(filename, nc=2): # return filename[2:2+nc] # def filename_from_shardhash(shard): # return "G_" + shard + ".h5" # def is_valid_shard_filename(filename, nc=2): # return filename.startswith("G_") and filename.endswith(".h5") and len(filename)==(nc+5) # # def gen_shardhash(video_id, nc=2): # """convert video_id to shardgroup hash by taking two chars of hex digest. # crc32 is faster than md5 by a factor of 10^3, # which is significant with this many rows. # (adler32 was even faster but wasn't distributing the series evenly.) # """ # return hex(crc32(video_id) & 0xffffffff)[-nc:] # # def get_store(fn, mode="r"): """ Open an HDF5 file by absolute path without messing around with trying to find the right shard. Set sensible compression etc. """ #If we chose "write" then nuke what was already there. #this didn't seem to work for a while otherwise basedir = os.path.dirname(fn) if not os.path.exists(basedir): os.makedirs(basedir) if mode=="w" and os.path.exists(fn): warnings.warn("deleting", fn) os.unlink(fn) return pd.HDFStore( fn, mode=mode, complevel=5, complib="blosc", chunksize=2<<18 ) # # def get_store_by_path_chunks(fn_chunks, mode="r", **kwargs): # """ # Open an HDF5 file by path chunks, because i am sick of typing # os.path.join # """ # fn = os.path.join(*fn_chunks) # return get_store(fn, mode=mode, **kwargs) # # def get_store_2(pdir=DATA_DIR_ANALYSIS, # fn="def", # mode="r", # **kwargs): # """ # Open an HDF5 file by path chunks, because i am sick of typing # os.path.join # """ # return get_store_by_path_chunks([pdir, fn + ".h5"], mode=mode, **kwargs) # # def get_result_2(pdir=DATA_DIR_ANALYSIS, # fn="def", # hd5path="res", # columns=None, # **kwargs): # """ # Open an HDF5 file by path chunks, because i am sick of typing # os.path.join # """ # with get_store_2(pdir, fn, mode="r", **kwargs) as st: # return st.select(hd5path, columns=columns) # # def get_shard(basedir=DATA_DIR_COOKED, shard="00", mode="r"): # """ # Open an HDF5 file by shard path # """ # fn = os.path.join(basedir, filename_from_shardhash(shard)) # return get_store_by_path_chunks( # [basedir, filename_from_shardhash(shard)], mode=mode # ) # # def get_all_shards(basedir=DATA_DIR_COOKED, include_store=True, nc=2): # for filename in os.listdir(basedir): # if not is_valid_shard_filename(filename, nc): continue # shardhash = shardhash_from_filename(filename, nc) # if include_store: # yield shardhash, get_shard(basedir, shardhash, mode="r") # else: # yield shardhash # # def get_shard_by_vid( # basedir=DATA_DIR_COOKED, # video_id=MEXICAN_SINGER, # mode="r", nc=2): # """ # Open an HDF5 file by shard path # """ # shard = gen_shardhash(video_id, nc) # return get_store_by_path_chunks( # [basedir, filename_from_shardhash(shard)], mode=mode # ) # # def get_one_series(basedir=DATA_DIR_COOKED, video_id=MEXICAN_SINGER, # transform_fn=None, nc=2): # """ # >>> ts, vm = fileio.get_one_series(_settings.DATA_DIR_CHOPPED, "-2IXE5DcWzg") # """ # shard = gen_shardhash(video_id, nc) # if transform_fn is None: # transform_fn = lambda t, m: (t, m) # with get_shard(basedir, shard) as store: # query = "video_id=={!r}".format(video_id) # return transform_fn( # store.select("tseries", query), # store.select("video_meta", query)) # # def iter_series_from_shard(store, transform_fn=None, limit=inf, nc=2, **kwargs): # i = 0 # if transform_fn is None: # transform_fn = lambda t, m, **kwargs: (t, m) # for vid, tseries in store['tseries'].groupby(["video_id"], sort=False): # query = "video_id=={!r}".format(vid) # video_meta = store.select("video_meta", query).iloc[0] # result = transform_fn(tseries, video_meta, **kwargs) # if result is not None: # yield result # i +=1 # if i >= limit: # raise StopIteration # # def iter_series_from_dir(basedir=DATA_DIR_COOKED, transform_fn=None, limit=inf, nc=2, **kwargs): # i = 0 # if transform_fn is None: # transform_fn = lambda t, m: (t, m) # for shardhash, store in get_all_shards(basedir, include_store=True): # with store: # for result in iter_series_from_shard( # store, transform_fn=fransform_fn, nc=nc, **kwargs): # yield result # i +=1 # if i >= limit: # raise StopIteration # # def get_concatenated_shards_table( # basedir=DATA_DIR_COOKED, # hd5path="video_meta", # columns=None, # nc=2, # query=None, # ignore_index=True): # """return an in-memory table synthesized from the pieces""" # shardlist = [] # for item in get_all_shards(basedir, include_store=True, nc=nc): # with item[1] as shard: # shardlist.append(shard.select(hd5path, query, columns=columns)) # return pd.concat(shardlist, ignore_index=ignore_index) # # def get_all_video_ids(): # """return an array of all video ids using cached index""" # return get_concatenated_shards_table(DATA_DIR_IDX, # hd5path="idx", # columns=["video_id"]) # # def find_in_index(vid=MEXICAN_SINGER, columns=None, with_text=False): # columns = [ # u'id_hash', # u'n_samples', # u'start_time', # u'end_time', # u'count_inc_mean', # u'count_inc_std', # u'time_inc_mean', # u'time_inc_std', # u'rate_mean', # u'rate_std', # u'time_span', # u'start_count', # u'count_span', # u'c05_sample', # u'c10_sample', # u'c25_sample', # u'c50_sample', # u'c75_sample', # u'c90_sample', # u'c95_sample', # u'upload_time', # u'length' # ] # # if with_text: # columns.extend([u'author', u'title', u'channel']) # # with get_shard_by_vid(basedir=DATA_DIR_IDX, video_id=vid) as store: # return store.select('idx',"index==vid & columns=columns").iloc[0,:] # # def get_index_table(columns=None, with_text=False,query=None): # """return an in-memory table synthesized from the pieces""" # if columns is None: # columns = [ # u'id_hash', # u'n_samples', # u'start_time', # u'end_time', # u'count_inc_mean', # u'count_inc_std', # u'time_inc_mean', # u'time_inc_std', # u'rate_mean', # u'rate_std', # u'time_span', # u'start_count', # u'count_span', # u'c05_sample', # u'c10_sample', # u'c25_sample', # u'c50_sample', # u'c75_sample', # u'c90_sample', # u'c95_sample', # u'upload_time', # u'length' # ] # if with_text: # columns.extend([u'author', u'title', u'channel']) # # idx = get_concatenated_shards_table( # DATA_DIR_IDX, "idx", # columns=columns, # ignore_index=False, # query=query) # # now stored in the index, but persists somehow as a column # #idx.drop(["video_id"],inplace=True,axis=1) # return idx # # def get_description_table(columns=None): # """return an in-memory table synthesized from the pieces""" # return get_result_2( # DATA_DIR_ANALYSIS, fn="description_idx", columns=columns) # # def map_shards( # pool=None, # base_dir=DATA_DIR_CHOPPED, # process_fn=None, nc=2, # *args, **kwargs): # """ # run the given store-level function on all the stores in a dir. # """ # if pool is None: # from parallel import dummy_pool # pool = dummy_pool # shard_list = get_all_shards(base_dir, include_store=False, nc=nc) # pool.map(process_fn, shard_list, *args, **kwargs) # return pool # # def reduce_shards( # base_dir=DATA_DIR_CHOPPED, # reduce_fn=None, nc=2, # *args, **kwargs): # """ # put the shards back together # """ # if reduce_fn is None: # reduce_fn = lambda x: x # shard_list = get_all_shards(base_dir, include_store=False, nc=nc) # return reduce_fn(shard_list, *args, **kwargs) # # def reduce_pool( # map_pool_key, # reduce_fn=None, # *args, **kwargs): # """ # run the given store-level function on all the stores in a dir. # """ # if reduce_fn is None: # reduce_fn = lambda x: x # from parallel import TrackingPool # pool = TrackingPool(pool_key=map_pool_key) # file_list = pool.all_files(abs_p=True) # return reduce_fn(file_list, *args, **kwargs) # # def purge_pool(map_pool_key): # reduce_pool(map_pool_key, lambda p: os.unlink(p)) # # def get_concatenated_pool_table( # map_pool_key, # hd5path="video_meta", # columns=None, # base_dir=DATA_DIR_JOB_OUTPUT): # """ # for playing concatenated pool # """ # from parallel import TrackingPool # # pool = TrackingPool(pool_key=map_pool_key) # file_list = pool.all_files(abs_p=True, base_dir=base_dir) # table_list = [] # for filepath in file_list: # with pd.HDFStore(filepath, mode="r") as store: # try: # table_list.append(store.select(hd5path, columns=columns)) # except KeyError, e: # warnings.warn( # "no matching object {hd5path!r} in {filepath!r}".format( # hd5path=hd5path, # filepath=filepath, # ) # ) # # return pd.concat(table_list, ignore_index=True) # # def store_concatenated_pool_table( # map_pool_key, # hd5path="res", # out_hd5path=None, # mode="a", # base_dir_in=DATA_DIR_JOB_OUTPUT, # base_dir_out=DATA_DIR_ANALYSIS, # ): # if out_hd5path is None: # out_hd5path = hd5path # c_table = get_concatenated_pool_table( # map_pool_key, hd5path=hd5path, # base_dir=base_dir_in) # with get_store_by_path_chunks([ # base_dir_out, # map_pool_key + ".h5" # ], mode=mode) as st: # st.append(out_hd5path, c_table, # data_columns=True, #index all # index=True, #We can index these because they are atomic # ) # return c_table # # def store_concatenated_pool_table_on_disk( # map_pool_key, # hd5path="video_meta", # out_hd5path=None, # mode="a", # base_dir_in=DATA_DIR_JOB_OUTPUT, # base_dir_out=DATA_DIR_ANALYSIS, # ): # """low-memory version""" # if out_hd5path is None: # out_hd5path = hd5path # pool = TrackingPool(pool_key=map_pool_key) # file_list = pool.all_files(abs_p=True, base_dir=base_dir_in) # with get_store_by_path_chunks([ # base_dir_out, map_pool_key + ".h5"], mode=mode) as write_store: # for filepath in file_list: # with pd.HDFStore(filepath, mode="r") as read_store: # try: # write_store.append(out_hd5path, # read_store.select(hd5path, columns=columns), # data_columns=True, #index all # index=False, # ) # except KeyError, e: # warnings.warn( # "no matching object {hd5path!r} in {filepath!r}".format( # hd5path=hd5path, # filepath=filepath, # ) # ) # write_store.create_table_index(out_hd5path, optlevel=9, kind='full') # #we just return the store; the table is by assumption too big. # c_store = get_store_by_path_chunks([ # base_dir_out, map_pool_key + ".h5"], mode="a") # return c_store # # def decorate(frame, index=None): # """refresh fit table metadata with info from the index""" # if index is None: # index = get_index_table() # index_cols = index.columns # frame_cols = frame.columns # wanted_frame_cols = frame_cols.difference(index_cols) # frame = frame[wanted_frame_cols] # frame = pd.merge( # frame, index, # left_on=["video_id"], # right_index=True, # copy=False, # how="left", # sort=False, # ) # return frame
mit
wronk/mne-python
examples/inverse/plot_label_activation_from_stc.py
62
1949
""" ================================================== Extracting time course from source_estimate object ================================================== Load a SourceEstimate object from stc files and extract the time course of activation in individual labels, as well as in a complex label formed through merging two labels. """ # Author: Christian Brodbeck <christianbrodbeck@nyu.edu> # # License: BSD (3-clause) import os import mne from mne.datasets import sample import matplotlib.pyplot as plt print(__doc__) data_path = sample.data_path() os.environ['SUBJECTS_DIR'] = data_path + '/subjects' meg_path = data_path + '/MEG/sample' # load the stc stc = mne.read_source_estimate(meg_path + '/sample_audvis-meg') # load the labels aud_lh = mne.read_label(meg_path + '/labels/Aud-lh.label') aud_rh = mne.read_label(meg_path + '/labels/Aud-rh.label') # extract the time course for different labels from the stc stc_lh = stc.in_label(aud_lh) stc_rh = stc.in_label(aud_rh) stc_bh = stc.in_label(aud_lh + aud_rh) # calculate center of mass and transform to mni coordinates vtx, _, t_lh = stc_lh.center_of_mass('sample') mni_lh = mne.vertex_to_mni(vtx, 0, 'sample')[0] vtx, _, t_rh = stc_rh.center_of_mass('sample') mni_rh = mne.vertex_to_mni(vtx, 1, 'sample')[0] # plot the activation plt.figure() plt.axes([.1, .275, .85, .625]) hl = plt.plot(stc.times, stc_lh.data.mean(0), 'b')[0] hr = plt.plot(stc.times, stc_rh.data.mean(0), 'g')[0] hb = plt.plot(stc.times, stc_bh.data.mean(0), 'r')[0] plt.xlabel('Time (s)') plt.ylabel('Source amplitude (dSPM)') plt.xlim(stc.times[0], stc.times[-1]) # add a legend including center-of-mass mni coordinates to the plot labels = ['LH: center of mass = %s' % mni_lh.round(2), 'RH: center of mass = %s' % mni_rh.round(2), 'Combined LH & RH'] plt.figlegend([hl, hr, hb], labels, 'lower center') plt.suptitle('Average activation in auditory cortex labels', fontsize=20) plt.show()
bsd-3-clause
arbazkhan002/datasketch
benchmark/minhash_benchmark.py
1
2087
''' Benchmarking the performance and accuracy of MinHash. ''' import time, logging from numpy import random from hashlib import sha1 import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from datasketch.minhash import MinHash logging.basicConfig(level=logging.INFO) # Produce some bytes int_bytes = lambda x : ("a-%d-%d" % (x, x)).encode('utf-8') def run_perf(card, num_perm): m = MinHash(num_perm=num_perm) logging.info("MinHash using %d permutation functions" % num_perm) start = time.clock() for i in range(card): m.update(int_bytes(i)) duration = time.clock() - start logging.info("Digested %d hashes in %.4f sec" % (card, duration)) return duration def _run_acc(size, seed, num_perm): m = MinHash(num_perm=num_perm) s = set() random.seed(seed) for i in range(size): v = int_bytes(random.randint(1, size)) m.update(v) s.add(v) return (m, s) def run_acc(size, num_perm): logging.info("MinHash using %d permutation functions" % num_perm) m1, s1 = _run_acc(size, 1, num_perm) m2, s2 = _run_acc(size, 4, num_perm) j = float(len(s1.intersection(s2)))/float(len(s1.union(s2))) j_e = m1.jaccard(m2) err = abs(j - j_e) return err num_perms = range(10, 256, 20) output = "minhash_benchmark.png" logging.info("> Running performance tests") card = 5000 run_times = [run_perf(card, n) for n in num_perms] logging.info("> Running accuracy tests") size = 5000 errs = [run_acc(size, n) for n in num_perms] logging.info("> Plotting result") fig, axe = plt.subplots(1, 2, sharex=True, figsize=(10, 4)) ax = axe[1] ax.plot(num_perms, run_times, marker='+') ax.set_xlabel("Number of permutation functions") ax.set_ylabel("Running time (sec)") ax.set_title("MinHash performance") ax.grid() ax = axe[0] ax.plot(num_perms, errs, marker='+') ax.set_xlabel("Number of permutation functions") ax.set_ylabel("Absolute error in Jaccard estimation") ax.set_title("MinHash accuracy") ax.grid() plt.tight_layout() fig.savefig(output) logging.info("Plot saved to %s" % output)
mit
nilearn/nilearn_sandbox
nilearn_sandbox/mass_univariate/tests/test_utils.py
1
6016
import numpy as np from sklearn.utils import check_random_state from numpy.testing import assert_array_almost_equal, assert_raises from nilearn.mass_univariate.utils import ( orthonormalize_matrix, normalize_matrix_on_axis, t_score_with_covars_and_normalized_design) def get_tvalue_with_alternative_library(tested_vars, target_vars, covars=None): """Utility function to compute tvalues with linalg or statsmodels Massively univariate linear model (= each target is considered independently). Parameters ---------- tested_vars: array-like, shape=(n_samples, n_regressors) Tested variates, the associated coefficient of which are to be tested independently with a t-test, resulting in as many t-values. target_vars: array-like, shape=(n_samples, n_targets) Target variates, to be approximated with a linear combination of the tested variates and the confounding variates. covars: array-like, shape=(n_samples, n_confounds) Confounding variates, to be fitted but not to be tested Returns ------- t-values: np.ndarray, shape=(n_regressors, n_targets) """ ### set up design n_samples, n_regressors = tested_vars.shape n_targets = target_vars.shape[1] if covars is not None: n_covars = covars.shape[1] design_matrix = np.hstack((tested_vars, covars)) else: n_covars = 0 design_matrix = tested_vars mask_covars = np.ones(n_regressors + n_covars, dtype=bool) mask_covars[:n_regressors] = False test_matrix = np.array([[1.] + [0.] * n_covars]) ### t-values computation try: # try with statsmodels is available (more concise) from statsmodels.regression.linear_model import OLS t_values = np.empty((n_targets, n_regressors)) for i in range(n_targets): current_target = target_vars[:, i].reshape((-1, 1)) for j in range(n_regressors): current_tested_mask = mask_covars.copy() current_tested_mask[j] = True current_design_matrix = design_matrix[:, current_tested_mask] ols_fit = OLS(current_target, current_design_matrix).fit() t_values[i, j] = np.ravel(ols_fit.t_test(test_matrix).tvalue) except: # use linalg if statsmodels is not available from numpy import linalg lost_dof = n_covars + 1 # fit all tested variates independently t_values = np.empty((n_targets, n_regressors)) for i in range(n_regressors): current_tested_mask = mask_covars.copy() current_tested_mask[i] = True current_design_matrix = design_matrix[:, current_tested_mask] invcov = linalg.pinv(current_design_matrix) normalized_cov = np.dot(invcov, invcov.T) t_val_denom_aux = np.diag( np.dot(test_matrix, np.dot(normalized_cov, test_matrix.T))) t_val_denom_aux = t_val_denom_aux.reshape((-1, 1)) for j in range(n_targets): current_target = target_vars[:, j].reshape((-1, 1)) res_lstsq = linalg.lstsq(current_design_matrix, current_target) residuals = (current_target - np.dot(current_design_matrix, res_lstsq[0])) t_val_num = np.dot(test_matrix, res_lstsq[0]) t_val_denom = np.sqrt( np.sum(residuals ** 2, 0) / float(n_samples - lost_dof) * t_val_denom_aux) t_values[j, i] = np.ravel(t_val_num / t_val_denom) return t_values ### Tests t-scores computation ################################################ def test_t_score_with_covars_and_normalized_design_nocovar(random_state=0): rng = check_random_state(random_state) ### Normalized data n_samples = 50 # generate data var1 = np.ones((n_samples, 1)) / np.sqrt(n_samples) var2 = rng.randn(n_samples, 1) var2 = var2 / np.sqrt(np.sum(var2 ** 2, 0)) # normalize # compute t-scores with nilearn's routine t_val_own = t_score_with_covars_and_normalized_design(var1, var2) # compute t-scores with linalg or statsmodels t_val_alt = get_tvalue_with_alternative_library(var1, var2) assert_array_almost_equal(t_val_own, t_val_alt) def test_t_score_with_covars_and_normalized_design_withcovar(random_state=0): """ """ rng = check_random_state(random_state) ### Normalized data n_samples = 50 # generate data var1 = np.ones((n_samples, 1)) / np.sqrt(n_samples) # normalized var2 = rng.randn(n_samples, 1) var2 = var2 / np.sqrt(np.sum(var2 ** 2, 0)) # normalize covars = np.eye(n_samples, 3) # covars is orthogonal covars[3] = -1 # covars is orthogonal to var1 covars = orthonormalize_matrix(covars) # nilearn's t-score own_score = t_score_with_covars_and_normalized_design(var1, var2, covars) # compute t-scores with linalg or statmodels ref_score = get_tvalue_with_alternative_library(var1, var2, covars) assert_array_almost_equal(own_score, ref_score) ### Tests normalize function ################################################## # Is actually tested with doctests, but here are some additional tests. def test_normalize_with_null_columns(): """Check that the normalize function fails when matrix has null columns. """ X = np.array([[1, 2, 0], [0, 1, 0], [1, 1, 0]]) assert_raises(ValueError, normalize_matrix_on_axis, X) def test_normalize_bad_dimensions(): """Check that the normalize function fails when matrix has bad dimension. """ X = np.arange(6) assert_raises(ValueError, normalize_matrix_on_axis, X) X = np.arange(12).reshape((3, 2, 2)) assert_raises(ValueError, normalize_matrix_on_axis, X) def test_normalize_bad_axis(): """Check that the normalize function fails when bad axis is provided. """ X = np.array([[1, 2], [0, 1], [1, 1]]) assert_raises(ValueError, normalize_matrix_on_axis, X, axis=3)
bsd-3-clause
bigdataelephants/scikit-learn
sklearn/tests/test_cross_validation.py
3
43729
"""Test the cross_validation module""" from __future__ import division import warnings import numpy as np from scipy.sparse import coo_matrix from scipy import stats from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import ignore_warnings from sklearn.utils.mocking import CheckingClassifier, MockDataFrame from sklearn import cross_validation as cval from sklearn.base import BaseEstimator from sklearn.datasets import make_regression from sklearn.datasets import load_boston from sklearn.datasets import load_digits from sklearn.datasets import load_iris from sklearn.metrics import accuracy_score from sklearn.metrics import explained_variance_score from sklearn.metrics import make_scorer from sklearn.metrics import precision_score from sklearn.externals import six from sklearn.externals.six.moves import zip from sklearn.linear_model import Ridge from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.cluster import KMeans from sklearn.preprocessing import Imputer, LabelBinarizer from sklearn.pipeline import Pipeline class MockClassifier(BaseEstimator): """Dummy classifier to test the cross-validation""" def __init__(self, a=0, allow_nd=False): self.a = a self.allow_nd = allow_nd def fit(self, X, Y=None, sample_weight=None, class_prior=None, sparse_sample_weight=None, sparse_param=None, dummy_int=None, dummy_str=None, dummy_obj=None, callback=None): """The dummy arguments are to test that this fit function can accept non-array arguments through cross-validation, such as: - int - str (this is actually array-like) - object - function """ self.dummy_int = dummy_int self.dummy_str = dummy_str self.dummy_obj = dummy_obj if callback is not None: callback(self) if self.allow_nd: X = X.reshape(len(X), -1) if X.ndim >= 3 and not self.allow_nd: raise ValueError('X cannot be d') if sample_weight is not None: assert_true(sample_weight.shape[0] == X.shape[0], 'MockClassifier extra fit_param sample_weight.shape[0]' ' is {0}, should be {1}'.format(sample_weight.shape[0], X.shape[0])) if class_prior is not None: assert_true(class_prior.shape[0] == len(np.unique(y)), 'MockClassifier extra fit_param class_prior.shape[0]' ' is {0}, should be {1}'.format(class_prior.shape[0], len(np.unique(y)))) if sparse_sample_weight is not None: fmt = ('MockClassifier extra fit_param sparse_sample_weight' '.shape[0] is {0}, should be {1}') assert_true(sparse_sample_weight.shape[0] == X.shape[0], fmt.format(sparse_sample_weight.shape[0], X.shape[0])) if sparse_param is not None: fmt = ('MockClassifier extra fit_param sparse_param.shape ' 'is ({0}, {1}), should be ({2}, {3})') assert_true(sparse_param.shape == P_sparse.shape, fmt.format(sparse_param.shape[0], sparse_param.shape[1], P_sparse.shape[0], P_sparse.shape[1])) return self def predict(self, T): if self.allow_nd: T = T.reshape(len(T), -1) return T.shape[0] def score(self, X=None, Y=None): return 1. / (1 + np.abs(self.a)) X = np.ones((10, 2)) X_sparse = coo_matrix(X) W_sparse = coo_matrix((np.array([1]), (np.array([1]), np.array([0]))), shape=(10, 1)) P_sparse = coo_matrix(np.eye(5)) y = np.arange(10) // 2 ############################################################################## # Tests def check_valid_split(train, test, n_samples=None): # Use python sets to get more informative assertion failure messages train, test = set(train), set(test) # Train and test split should not overlap assert_equal(train.intersection(test), set()) if n_samples is not None: # Check that the union of train an test split cover all the indices assert_equal(train.union(test), set(range(n_samples))) def check_cv_coverage(cv, expected_n_iter=None, n_samples=None): # Check that a all the samples appear at least once in a test fold if expected_n_iter is not None: assert_equal(len(cv), expected_n_iter) else: expected_n_iter = len(cv) collected_test_samples = set() iterations = 0 for train, test in cv: check_valid_split(train, test, n_samples=n_samples) iterations += 1 collected_test_samples.update(test) # Check that the accumulated test samples cover the whole dataset assert_equal(iterations, expected_n_iter) if n_samples is not None: assert_equal(collected_test_samples, set(range(n_samples))) def test_kfold_valueerrors(): # Check that errors are raised if there is not enough samples assert_raises(ValueError, cval.KFold, 3, 4) # Check that a warning is raised if the least populated class has too few # members. y = [3, 3, -1, -1, 2] cv = assert_warns_message(Warning, "The least populated class", cval.StratifiedKFold, y, 3) # Check that despite the warning the folds are still computed even # though all the classes are not necessarily represented at on each # side of the split at each split check_cv_coverage(cv, expected_n_iter=3, n_samples=len(y)) # Error when number of folds is <= 1 assert_raises(ValueError, cval.KFold, 2, 0) assert_raises(ValueError, cval.KFold, 2, 1) assert_raises(ValueError, cval.StratifiedKFold, y, 0) assert_raises(ValueError, cval.StratifiedKFold, y, 1) # When n is not integer: assert_raises(ValueError, cval.KFold, 2.5, 2) # When n_folds is not integer: assert_raises(ValueError, cval.KFold, 5, 1.5) assert_raises(ValueError, cval.StratifiedKFold, y, 1.5) def test_kfold_indices(): # Check all indices are returned in the test folds kf = cval.KFold(300, 3) check_cv_coverage(kf, expected_n_iter=3, n_samples=300) # Check all indices are returned in the test folds even when equal-sized # folds are not possible kf = cval.KFold(17, 3) check_cv_coverage(kf, expected_n_iter=3, n_samples=17) def test_kfold_no_shuffle(): # Manually check that KFold preserves the data ordering on toy datasets splits = iter(cval.KFold(4, 2)) train, test = next(splits) assert_array_equal(test, [0, 1]) assert_array_equal(train, [2, 3]) train, test = next(splits) assert_array_equal(test, [2, 3]) assert_array_equal(train, [0, 1]) splits = iter(cval.KFold(5, 2)) train, test = next(splits) assert_array_equal(test, [0, 1, 2]) assert_array_equal(train, [3, 4]) train, test = next(splits) assert_array_equal(test, [3, 4]) assert_array_equal(train, [0, 1, 2]) def test_stratified_kfold_no_shuffle(): # Manually check that StratifiedKFold preserves the data ordering as much # as possible on toy datasets in order to avoid hiding sample dependencies # when possible splits = iter(cval.StratifiedKFold([1, 1, 0, 0], 2)) train, test = next(splits) assert_array_equal(test, [0, 2]) assert_array_equal(train, [1, 3]) train, test = next(splits) assert_array_equal(test, [1, 3]) assert_array_equal(train, [0, 2]) splits = iter(cval.StratifiedKFold([1, 1, 1, 0, 0, 0, 0], 2)) train, test = next(splits) assert_array_equal(test, [0, 1, 3, 4]) assert_array_equal(train, [2, 5, 6]) train, test = next(splits) assert_array_equal(test, [2, 5, 6]) assert_array_equal(train, [0, 1, 3, 4]) def test_stratified_kfold_ratios(): # Check that stratified kfold preserves label ratios in individual splits # Repeat with shuffling turned off and on n_samples = 1000 labels = np.array([4] * int(0.10 * n_samples) + [0] * int(0.89 * n_samples) + [1] * int(0.01 * n_samples)) for shuffle in [False, True]: for train, test in cval.StratifiedKFold(labels, 5, shuffle=shuffle): assert_almost_equal(np.sum(labels[train] == 4) / len(train), 0.10, 2) assert_almost_equal(np.sum(labels[train] == 0) / len(train), 0.89, 2) assert_almost_equal(np.sum(labels[train] == 1) / len(train), 0.01, 2) assert_almost_equal(np.sum(labels[test] == 4) / len(test), 0.10, 2) assert_almost_equal(np.sum(labels[test] == 0) / len(test), 0.89, 2) assert_almost_equal(np.sum(labels[test] == 1) / len(test), 0.01, 2) def test_kfold_balance(): # Check that KFold returns folds with balanced sizes for kf in [cval.KFold(i, 5) for i in range(11, 17)]: sizes = [] for _, test in kf: sizes.append(len(test)) assert_true((np.max(sizes) - np.min(sizes)) <= 1) assert_equal(np.sum(sizes), kf.n) def test_stratifiedkfold_balance(): # Check that KFold returns folds with balanced sizes (only when # stratification is possible) # Repeat with shuffling turned off and on labels = [0] * 3 + [1] * 14 for shuffle in [False, True]: for skf in [cval.StratifiedKFold(labels[:i], 3, shuffle=shuffle) for i in range(11, 17)]: sizes = [] for _, test in skf: sizes.append(len(test)) assert_true((np.max(sizes) - np.min(sizes)) <= 1) assert_equal(np.sum(sizes), skf.n) def test_shuffle_kfold(): # Check the indices are shuffled properly, and that all indices are # returned in the different test folds kf = cval.KFold(300, 3, shuffle=True, random_state=0) ind = np.arange(300) all_folds = None for train, test in kf: sorted_array = np.arange(100) assert_true(np.any(sorted_array != ind[train])) sorted_array = np.arange(101, 200) assert_true(np.any(sorted_array != ind[train])) sorted_array = np.arange(201, 300) assert_true(np.any(sorted_array != ind[train])) if all_folds is None: all_folds = ind[test].copy() else: all_folds = np.concatenate((all_folds, ind[test])) all_folds.sort() assert_array_equal(all_folds, ind) def test_shuffle_stratifiedkfold(): # Check that shuffling is happening when requested, and for proper # sample coverage labels = [0] * 20 + [1] * 20 kf0 = list(cval.StratifiedKFold(labels, 5, shuffle=True, random_state=0)) kf1 = list(cval.StratifiedKFold(labels, 5, shuffle=True, random_state=1)) for (_, test0), (_, test1) in zip(kf0, kf1): assert_true(set(test0) != set(test1)) check_cv_coverage(kf0, expected_n_iter=5, n_samples=40) def test_kfold_can_detect_dependent_samples_on_digits(): # see #2372 # The digits samples are dependent: they are apparently grouped by authors # although we don't have any information on the groups segment locations # for this data. We can highlight this fact be computing k-fold cross- # validation with and without shuffling: we observe that the shuffling case # wrongly makes the IID assumption and is therefore too optimistic: it # estimates a much higher accuracy (around 0.96) than than the non # shuffling variant (around 0.86). digits = load_digits() X, y = digits.data[:800], digits.target[:800] model = SVC(C=10, gamma=0.005) n = len(y) cv = cval.KFold(n, 5, shuffle=False) mean_score = cval.cross_val_score(model, X, y, cv=cv).mean() assert_greater(0.88, mean_score) assert_greater(mean_score, 0.85) # Shuffling the data artificially breaks the dependency and hides the # overfitting of the model with regards to the writing style of the authors # by yielding a seriously overestimated score: cv = cval.KFold(n, 5, shuffle=True, random_state=0) mean_score = cval.cross_val_score(model, X, y, cv=cv).mean() assert_greater(mean_score, 0.95) cv = cval.KFold(n, 5, shuffle=True, random_state=1) mean_score = cval.cross_val_score(model, X, y, cv=cv).mean() assert_greater(mean_score, 0.95) # Similarly, StratifiedKFold should try to shuffle the data as little # as possible (while respecting the balanced class constraints) # and thus be able to detect the dependency by not overestimating # the CV score either. As the digits dataset is approximately balanced # the estimated mean score is close to the score measured with # non-shuffled KFold cv = cval.StratifiedKFold(y, 5) mean_score = cval.cross_val_score(model, X, y, cv=cv).mean() assert_greater(0.88, mean_score) assert_greater(mean_score, 0.85) def test_shuffle_split(): ss1 = cval.ShuffleSplit(10, test_size=0.2, random_state=0) ss2 = cval.ShuffleSplit(10, test_size=2, random_state=0) ss3 = cval.ShuffleSplit(10, test_size=np.int32(2), random_state=0) for typ in six.integer_types: ss4 = cval.ShuffleSplit(10, test_size=typ(2), random_state=0) for t1, t2, t3, t4 in zip(ss1, ss2, ss3, ss4): assert_array_equal(t1[0], t2[0]) assert_array_equal(t2[0], t3[0]) assert_array_equal(t3[0], t4[0]) assert_array_equal(t1[1], t2[1]) assert_array_equal(t2[1], t3[1]) assert_array_equal(t3[1], t4[1]) def test_stratified_shuffle_split_init(): y = np.asarray([0, 1, 1, 1, 2, 2, 2]) # Check that error is raised if there is a class with only one sample assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 0.2) # Check that error is raised if the test set size is smaller than n_classes assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 2) # Check that error is raised if the train set size is smaller than # n_classes assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 3, 2) y = np.asarray([0, 0, 0, 1, 1, 1, 2, 2, 2]) # Check that errors are raised if there is not enough samples assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 0.5, 0.6) assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 8, 0.6) assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 0.6, 8) # Train size or test size too small assert_raises(ValueError, cval.StratifiedShuffleSplit, y, train_size=2) assert_raises(ValueError, cval.StratifiedShuffleSplit, y, test_size=2) def test_stratified_shuffle_split_iter(): ys = [np.array([1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3]), np.array([0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3]), np.array([0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2]), np.array([1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4]), np.array([-1] * 800 + [1] * 50) ] for y in ys: sss = cval.StratifiedShuffleSplit(y, 6, test_size=0.33, random_state=0) for train, test in sss: assert_array_equal(np.unique(y[train]), np.unique(y[test])) # Checks if folds keep classes proportions p_train = (np.bincount(np.unique(y[train], return_inverse=True)[1]) / float(len(y[train]))) p_test = (np.bincount(np.unique(y[test], return_inverse=True)[1]) / float(len(y[test]))) assert_array_almost_equal(p_train, p_test, 1) assert_equal(y[train].size + y[test].size, y.size) assert_array_equal(np.lib.arraysetops.intersect1d(train, test), []) @ignore_warnings def test_stratified_shuffle_split_iter_no_indices(): y = np.asarray([0, 1, 2] * 10) sss1 = cval.StratifiedShuffleSplit(y, indices=False, random_state=0) train_mask, test_mask = next(iter(sss1)) sss2 = cval.StratifiedShuffleSplit(y, indices=True, random_state=0) train_indices, test_indices = next(iter(sss2)) assert_array_equal(sorted(test_indices), np.where(test_mask)[0]) def test_stratified_shuffle_split_even(): # Test the StratifiedShuffleSplit, indices are drawn with a # equal chance n_folds = 5 n_iter = 1000 def assert_counts_are_ok(idx_counts, p): # Here we test that the distribution of the counts # per index is close enough to a binomial threshold = 0.05 / n_splits bf = stats.binom(n_splits, p) for count in idx_counts: p = bf.pmf(count) assert_true(p > threshold, "An index is not drawn with chance corresponding " "to even draws") for n_samples in (6, 22): labels = np.array((n_samples // 2) * [0, 1]) splits = cval.StratifiedShuffleSplit(labels, n_iter=n_iter, test_size=1./n_folds, random_state=0) train_counts = [0] * n_samples test_counts = [0] * n_samples n_splits = 0 for train, test in splits: n_splits += 1 for counter, ids in [(train_counts, train), (test_counts, test)]: for id in ids: counter[id] += 1 assert_equal(n_splits, n_iter) assert_equal(len(train), splits.n_train) assert_equal(len(test), splits.n_test) assert_equal(len(set(train).intersection(test)), 0) label_counts = np.unique(labels) assert_equal(splits.test_size, 1.0 / n_folds) assert_equal(splits.n_train + splits.n_test, len(labels)) assert_equal(len(label_counts), 2) ex_test_p = float(splits.n_test) / n_samples ex_train_p = float(splits.n_train) / n_samples assert_counts_are_ok(train_counts, ex_train_p) assert_counts_are_ok(test_counts, ex_test_p) def test_leave_label_out_changing_labels(): """Check that LeaveOneLabelOut and LeavePLabelOut work normally if the labels variable is changed before calling __iter__""" labels = np.array([0, 1, 2, 1, 1, 2, 0, 0]) labels_changing = np.array(labels, copy=True) lolo = cval.LeaveOneLabelOut(labels) lolo_changing = cval.LeaveOneLabelOut(labels_changing) lplo = cval.LeavePLabelOut(labels, p=2) lplo_changing = cval.LeavePLabelOut(labels_changing, p=2) labels_changing[:] = 0 for llo, llo_changing in [(lolo, lolo_changing), (lplo, lplo_changing)]: for (train, test), (train_chan, test_chan) in zip(llo, llo_changing): assert_array_equal(train, train_chan) assert_array_equal(test, test_chan) def test_cross_val_score(): clf = MockClassifier() for a in range(-10, 10): clf.a = a # Smoke test scores = cval.cross_val_score(clf, X, y) assert_array_equal(scores, clf.score(X, y)) # test with multioutput y scores = cval.cross_val_score(clf, X_sparse, X) assert_array_equal(scores, clf.score(X_sparse, X)) scores = cval.cross_val_score(clf, X_sparse, y) assert_array_equal(scores, clf.score(X_sparse, y)) # test with multioutput y scores = cval.cross_val_score(clf, X_sparse, X) assert_array_equal(scores, clf.score(X_sparse, X)) # test with X and y as list list_check = lambda x: isinstance(x, list) clf = CheckingClassifier(check_X=list_check) scores = cval.cross_val_score(clf, X.tolist(), y.tolist()) clf = CheckingClassifier(check_y=list_check) scores = cval.cross_val_score(clf, X, y.tolist()) assert_raises(ValueError, cval.cross_val_score, clf, X, y, scoring="sklearn") # test with 3d X and X_3d = X[:, :, np.newaxis] clf = MockClassifier(allow_nd=True) scores = cval.cross_val_score(clf, X_3d, y) clf = MockClassifier(allow_nd=False) assert_raises(ValueError, cval.cross_val_score, clf, X_3d, y) def test_cross_val_score_pandas(): # check cross_val_score doesn't destroy pandas dataframe types = [(MockDataFrame, MockDataFrame)] try: from pandas import Series, DataFrame types.append((Series, DataFrame)) except ImportError: pass for TargetType, InputFeatureType in types: # X dataframe, y series X_df, y_ser = InputFeatureType(X), TargetType(y) check_df = lambda x: isinstance(x, InputFeatureType) check_series = lambda x: isinstance(x, TargetType) clf = CheckingClassifier(check_X=check_df, check_y=check_series) cval.cross_val_score(clf, X_df, y_ser) def test_cross_val_score_mask(): # test that cross_val_score works with boolean masks svm = SVC(kernel="linear") iris = load_iris() X, y = iris.data, iris.target cv_indices = cval.KFold(len(y), 5, indices=True) scores_indices = cval.cross_val_score(svm, X, y, cv=cv_indices) cv_masks = cval.KFold(len(y), 5, indices=False) scores_masks = cval.cross_val_score(svm, X, y, cv=cv_masks) assert_array_equal(scores_indices, scores_masks) def test_cross_val_score_precomputed(): # test for svm with precomputed kernel svm = SVC(kernel="precomputed") iris = load_iris() X, y = iris.data, iris.target linear_kernel = np.dot(X, X.T) score_precomputed = cval.cross_val_score(svm, linear_kernel, y) svm = SVC(kernel="linear") score_linear = cval.cross_val_score(svm, X, y) assert_array_equal(score_precomputed, score_linear) # Error raised for non-square X svm = SVC(kernel="precomputed") assert_raises(ValueError, cval.cross_val_score, svm, X, y) # test error is raised when the precomputed kernel is not array-like # or sparse assert_raises(ValueError, cval.cross_val_score, svm, linear_kernel.tolist(), y) def test_cross_val_score_fit_params(): clf = MockClassifier() n_samples = X.shape[0] n_classes = len(np.unique(y)) DUMMY_INT = 42 DUMMY_STR = '42' DUMMY_OBJ = object() def assert_fit_params(clf): """Function to test that the values are passed correctly to the classifier arguments for non-array type """ assert_equal(clf.dummy_int, DUMMY_INT) assert_equal(clf.dummy_str, DUMMY_STR) assert_equal(clf.dummy_obj, DUMMY_OBJ) fit_params = {'sample_weight': np.ones(n_samples), 'class_prior': np.ones(n_classes) / n_classes, 'sparse_sample_weight': W_sparse, 'sparse_param': P_sparse, 'dummy_int': DUMMY_INT, 'dummy_str': DUMMY_STR, 'dummy_obj': DUMMY_OBJ, 'callback': assert_fit_params} cval.cross_val_score(clf, X, y, fit_params=fit_params) def test_cross_val_score_score_func(): clf = MockClassifier() _score_func_args = [] def score_func(y_test, y_predict): _score_func_args.append((y_test, y_predict)) return 1.0 with warnings.catch_warnings(record=True): scoring = make_scorer(score_func) score = cval.cross_val_score(clf, X, y, scoring=scoring) assert_array_equal(score, [1.0, 1.0, 1.0]) assert len(_score_func_args) == 3 def test_cross_val_score_errors(): class BrokenEstimator: pass assert_raises(TypeError, cval.cross_val_score, BrokenEstimator(), X) def test_train_test_split_errors(): assert_raises(ValueError, cval.train_test_split) assert_raises(ValueError, cval.train_test_split, range(3), train_size=1.1) assert_raises(ValueError, cval.train_test_split, range(3), test_size=0.6, train_size=0.6) assert_raises(ValueError, cval.train_test_split, range(3), test_size=np.float32(0.6), train_size=np.float32(0.6)) assert_raises(ValueError, cval.train_test_split, range(3), test_size="wrong_type") assert_raises(ValueError, cval.train_test_split, range(3), test_size=2, train_size=4) assert_raises(TypeError, cval.train_test_split, range(3), some_argument=1.1) assert_raises(ValueError, cval.train_test_split, range(3), range(42)) def test_train_test_split(): X = np.arange(100).reshape((10, 10)) X_s = coo_matrix(X) y = np.arange(10) # simple test split = cval.train_test_split(X, y, test_size=None, train_size=.5) X_train, X_test, y_train, y_test = split assert_equal(len(y_test), len(y_train)) # test correspondence of X and y assert_array_equal(X_train[:, 0], y_train * 10) assert_array_equal(X_test[:, 0], y_test * 10) # conversion of lists to arrays (deprecated?) split = cval.train_test_split(X, X_s, y.tolist(), allow_lists=False) X_train, X_test, X_s_train, X_s_test, y_train, y_test = split assert_array_equal(X_train, X_s_train.toarray()) assert_array_equal(X_test, X_s_test.toarray()) # don't convert lists to anything else by default split = cval.train_test_split(X, X_s, y.tolist()) X_train, X_test, X_s_train, X_s_test, y_train, y_test = split assert_true(isinstance(y_train, list)) assert_true(isinstance(y_test, list)) # allow nd-arrays X_4d = np.arange(10 * 5 * 3 * 2).reshape(10, 5, 3, 2) y_3d = np.arange(10 * 7 * 11).reshape(10, 7, 11) split = cval.train_test_split(X_4d, y_3d) assert_equal(split[0].shape, (7, 5, 3, 2)) assert_equal(split[1].shape, (3, 5, 3, 2)) assert_equal(split[2].shape, (7, 7, 11)) assert_equal(split[3].shape, (3, 7, 11)) def train_test_split_pandas(): # check cross_val_score doesn't destroy pandas dataframe types = [MockDataFrame] try: from pandas import DataFrame types.append(DataFrame) except ImportError: pass for InputFeatureType in types: # X dataframe X_df = InputFeatureType(X) X_train, X_test = cval.train_test_split(X_df) assert_true(isinstance(X_train, InputFeatureType)) assert_true(isinstance(X_test, InputFeatureType)) def train_test_split_mock_pandas(): # X mock dataframe X_df = MockDataFrame(X) X_train, X_test = cval.train_test_split(X_df) assert_true(isinstance(X_train, MockDataFrame)) assert_true(isinstance(X_test, MockDataFrame)) X_train_arr, X_test_arr = cval.train_test_split(X_df, allow_lists=False) assert_true(isinstance(X_train_arr, np.ndarray)) assert_true(isinstance(X_test_arr, np.ndarray)) def test_cross_val_score_with_score_func_classification(): iris = load_iris() clf = SVC(kernel='linear') # Default score (should be the accuracy score) scores = cval.cross_val_score(clf, iris.data, iris.target, cv=5) assert_array_almost_equal(scores, [0.97, 1., 0.97, 0.97, 1.], 2) # Correct classification score (aka. zero / one score) - should be the # same as the default estimator score zo_scores = cval.cross_val_score(clf, iris.data, iris.target, scoring="accuracy", cv=5) assert_array_almost_equal(zo_scores, [0.97, 1., 0.97, 0.97, 1.], 2) # F1 score (class are balanced so f1_score should be equal to zero/one # score f1_scores = cval.cross_val_score(clf, iris.data, iris.target, scoring="f1_weighted", cv=5) assert_array_almost_equal(f1_scores, [0.97, 1., 0.97, 0.97, 1.], 2) def test_cross_val_score_with_score_func_regression(): X, y = make_regression(n_samples=30, n_features=20, n_informative=5, random_state=0) reg = Ridge() # Default score of the Ridge regression estimator scores = cval.cross_val_score(reg, X, y, cv=5) assert_array_almost_equal(scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2) # R2 score (aka. determination coefficient) - should be the # same as the default estimator score r2_scores = cval.cross_val_score(reg, X, y, scoring="r2", cv=5) assert_array_almost_equal(r2_scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2) # Mean squared error; this is a loss function, so "scores" are negative mse_scores = cval.cross_val_score(reg, X, y, cv=5, scoring="mean_squared_error") expected_mse = np.array([-763.07, -553.16, -274.38, -273.26, -1681.99]) assert_array_almost_equal(mse_scores, expected_mse, 2) # Explained variance scoring = make_scorer(explained_variance_score) ev_scores = cval.cross_val_score(reg, X, y, cv=5, scoring=scoring) assert_array_almost_equal(ev_scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2) def test_permutation_score(): iris = load_iris() X = iris.data X_sparse = coo_matrix(X) y = iris.target svm = SVC(kernel='linear') cv = cval.StratifiedKFold(y, 2) score, scores, pvalue = cval.permutation_test_score( svm, X, y, n_permutations=30, cv=cv, scoring="accuracy") assert_greater(score, 0.9) assert_almost_equal(pvalue, 0.0, 1) score_label, _, pvalue_label = cval.permutation_test_score( svm, X, y, n_permutations=30, cv=cv, scoring="accuracy", labels=np.ones(y.size), random_state=0) assert_true(score_label == score) assert_true(pvalue_label == pvalue) # check that we obtain the same results with a sparse representation svm_sparse = SVC(kernel='linear') cv_sparse = cval.StratifiedKFold(y, 2) score_label, _, pvalue_label = cval.permutation_test_score( svm_sparse, X_sparse, y, n_permutations=30, cv=cv_sparse, scoring="accuracy", labels=np.ones(y.size), random_state=0) assert_true(score_label == score) assert_true(pvalue_label == pvalue) # test with custom scoring object def custom_score(y_true, y_pred): return (((y_true == y_pred).sum() - (y_true != y_pred).sum()) / y_true.shape[0]) scorer = make_scorer(custom_score) score, _, pvalue = cval.permutation_test_score( svm, X, y, n_permutations=100, scoring=scorer, cv=cv, random_state=0) assert_almost_equal(score, .93, 2) assert_almost_equal(pvalue, 0.01, 3) # set random y y = np.mod(np.arange(len(y)), 3) score, scores, pvalue = cval.permutation_test_score( svm, X, y, n_permutations=30, cv=cv, scoring="accuracy") assert_less(score, 0.5) assert_greater(pvalue, 0.2) def test_cross_val_generator_with_mask(): X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) y = np.array([1, 1, 2, 2]) labels = np.array([1, 2, 3, 4]) loo = assert_warns(DeprecationWarning, cval.LeaveOneOut, 4, indices=False) lpo = assert_warns(DeprecationWarning, cval.LeavePOut, 4, 2, indices=False) kf = assert_warns(DeprecationWarning, cval.KFold, 4, 2, indices=False) skf = assert_warns(DeprecationWarning, cval.StratifiedKFold, y, 2, indices=False) lolo = assert_warns(DeprecationWarning, cval.LeaveOneLabelOut, labels, indices=False) lopo = assert_warns(DeprecationWarning, cval.LeavePLabelOut, labels, 2, indices=False) ss = assert_warns(DeprecationWarning, cval.ShuffleSplit, 4, indices=False) for cv in [loo, lpo, kf, skf, lolo, lopo, ss]: for train, test in cv: assert_equal(np.asarray(train).dtype.kind, 'b') assert_equal(np.asarray(train).dtype.kind, 'b') X_train, X_test = X[train], X[test] y_train, y_test = y[train], y[test] def test_cross_val_generator_with_indices(): X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) y = np.array([1, 1, 2, 2]) labels = np.array([1, 2, 3, 4]) # explicitly passing indices value is deprecated loo = assert_warns(DeprecationWarning, cval.LeaveOneOut, 4, indices=True) lpo = assert_warns(DeprecationWarning, cval.LeavePOut, 4, 2, indices=True) kf = assert_warns(DeprecationWarning, cval.KFold, 4, 2, indices=True) skf = assert_warns(DeprecationWarning, cval.StratifiedKFold, y, 2, indices=True) lolo = assert_warns(DeprecationWarning, cval.LeaveOneLabelOut, labels, indices=True) lopo = assert_warns(DeprecationWarning, cval.LeavePLabelOut, labels, 2, indices=True) # Bootstrap as a cross-validation is deprecated b = assert_warns(DeprecationWarning, cval.Bootstrap, 2) ss = assert_warns(DeprecationWarning, cval.ShuffleSplit, 2, indices=True) for cv in [loo, lpo, kf, skf, lolo, lopo, b, ss]: for train, test in cv: assert_not_equal(np.asarray(train).dtype.kind, 'b') assert_not_equal(np.asarray(train).dtype.kind, 'b') X_train, X_test = X[train], X[test] y_train, y_test = y[train], y[test] @ignore_warnings def test_cross_val_generator_with_default_indices(): X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) y = np.array([1, 1, 2, 2]) labels = np.array([1, 2, 3, 4]) loo = cval.LeaveOneOut(4) lpo = cval.LeavePOut(4, 2) kf = cval.KFold(4, 2) skf = cval.StratifiedKFold(y, 2) lolo = cval.LeaveOneLabelOut(labels) lopo = cval.LeavePLabelOut(labels, 2) b = cval.Bootstrap(2) # only in index mode ss = cval.ShuffleSplit(2) for cv in [loo, lpo, kf, skf, lolo, lopo, b, ss]: for train, test in cv: assert_not_equal(np.asarray(train).dtype.kind, 'b') assert_not_equal(np.asarray(train).dtype.kind, 'b') X_train, X_test = X[train], X[test] y_train, y_test = y[train], y[test] @ignore_warnings def test_cross_val_generator_mask_indices_same(): # Test that the cross validation generators return the same results when # indices=True and when indices=False y = np.array([0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2]) labels = np.array([1, 1, 2, 3, 3, 3, 4]) loo_mask = cval.LeaveOneOut(5, indices=False) loo_ind = cval.LeaveOneOut(5, indices=True) lpo_mask = cval.LeavePOut(10, 2, indices=False) lpo_ind = cval.LeavePOut(10, 2, indices=True) kf_mask = cval.KFold(10, 5, indices=False, shuffle=True, random_state=1) kf_ind = cval.KFold(10, 5, indices=True, shuffle=True, random_state=1) skf_mask = cval.StratifiedKFold(y, 3, indices=False) skf_ind = cval.StratifiedKFold(y, 3, indices=True) lolo_mask = cval.LeaveOneLabelOut(labels, indices=False) lolo_ind = cval.LeaveOneLabelOut(labels, indices=True) lopo_mask = cval.LeavePLabelOut(labels, 2, indices=False) lopo_ind = cval.LeavePLabelOut(labels, 2, indices=True) for cv_mask, cv_ind in [(loo_mask, loo_ind), (lpo_mask, lpo_ind), (kf_mask, kf_ind), (skf_mask, skf_ind), (lolo_mask, lolo_ind), (lopo_mask, lopo_ind)]: for (train_mask, test_mask), (train_ind, test_ind) in \ zip(cv_mask, cv_ind): assert_array_equal(np.where(train_mask)[0], train_ind) assert_array_equal(np.where(test_mask)[0], test_ind) @ignore_warnings def test_bootstrap_errors(): assert_raises(ValueError, cval.Bootstrap, 10, train_size=100) assert_raises(ValueError, cval.Bootstrap, 10, test_size=100) assert_raises(ValueError, cval.Bootstrap, 10, train_size=1.1) assert_raises(ValueError, cval.Bootstrap, 10, test_size=1.1) assert_raises(ValueError, cval.Bootstrap, 10, train_size=0.6, test_size=0.5) @ignore_warnings def test_bootstrap_test_sizes(): assert_equal(cval.Bootstrap(10, test_size=0.2).test_size, 2) assert_equal(cval.Bootstrap(10, test_size=2).test_size, 2) assert_equal(cval.Bootstrap(10, test_size=None).test_size, 5) def test_shufflesplit_errors(): assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=2.0) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=1.0) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=0.1, train_size=0.95) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=11) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=10) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=8, train_size=3) assert_raises(ValueError, cval.ShuffleSplit, 10, train_size=1j) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=None, train_size=None) def test_shufflesplit_reproducible(): # Check that iterating twice on the ShuffleSplit gives the same # sequence of train-test when the random_state is given ss = cval.ShuffleSplit(10, random_state=21) assert_array_equal(list(a for a, b in ss), list(a for a, b in ss)) @ignore_warnings def test_cross_indices_exception(): X = coo_matrix(np.array([[1, 2], [3, 4], [5, 6], [7, 8]])) y = np.array([1, 1, 2, 2]) labels = np.array([1, 2, 3, 4]) loo = cval.LeaveOneOut(4, indices=False) lpo = cval.LeavePOut(4, 2, indices=False) kf = cval.KFold(4, 2, indices=False) skf = cval.StratifiedKFold(y, 2, indices=False) lolo = cval.LeaveOneLabelOut(labels, indices=False) lopo = cval.LeavePLabelOut(labels, 2, indices=False) assert_raises(ValueError, cval.check_cv, loo, X, y) assert_raises(ValueError, cval.check_cv, lpo, X, y) assert_raises(ValueError, cval.check_cv, kf, X, y) assert_raises(ValueError, cval.check_cv, skf, X, y) assert_raises(ValueError, cval.check_cv, lolo, X, y) assert_raises(ValueError, cval.check_cv, lopo, X, y) def test_safe_split_with_precomputed_kernel(): clf = SVC() clfp = SVC(kernel="precomputed") iris = load_iris() X, y = iris.data, iris.target K = np.dot(X, X.T) cv = cval.ShuffleSplit(X.shape[0], test_size=0.25, random_state=0) tr, te = list(cv)[0] X_tr, y_tr = cval._safe_split(clf, X, y, tr) K_tr, y_tr2 = cval._safe_split(clfp, K, y, tr) assert_array_almost_equal(K_tr, np.dot(X_tr, X_tr.T)) X_te, y_te = cval._safe_split(clf, X, y, te, tr) K_te, y_te2 = cval._safe_split(clfp, K, y, te, tr) assert_array_almost_equal(K_te, np.dot(X_te, X_tr.T)) def test_cross_val_score_allow_nans(): # Check that cross_val_score allows input data with NaNs X = np.arange(200, dtype=np.float64).reshape(10, -1) X[2, :] = np.nan y = np.repeat([0, 1], X.shape[0]/2) p = Pipeline([ ('imputer', Imputer(strategy='mean', missing_values='NaN')), ('classifier', MockClassifier()), ]) cval.cross_val_score(p, X, y, cv=5) def test_train_test_split_allow_nans(): # Check that train_test_split allows input data with NaNs X = np.arange(200, dtype=np.float64).reshape(10, -1) X[2, :] = np.nan y = np.repeat([0, 1], X.shape[0]/2) cval.train_test_split(X, y, test_size=0.2, random_state=42) def test_permutation_test_score_allow_nans(): # Check that permutation_test_score allows input data with NaNs X = np.arange(200, dtype=np.float64).reshape(10, -1) X[2, :] = np.nan y = np.repeat([0, 1], X.shape[0]/2) p = Pipeline([ ('imputer', Imputer(strategy='mean', missing_values='NaN')), ('classifier', MockClassifier()), ]) cval.permutation_test_score(p, X, y, cv=5) def test_check_cv_return_types(): X = np.ones((9, 2)) cv = cval._check_cv(3, X, classifier=False) assert_true(isinstance(cv, cval.KFold)) y_binary = np.array([0, 1, 0, 1, 0, 0, 1, 1, 1]) cv = cval._check_cv(3, X, y_binary, classifier=True) assert_true(isinstance(cv, cval.StratifiedKFold)) y_multiclass = np.array([0, 1, 0, 1, 2, 1, 2, 0, 2]) cv = cval._check_cv(3, X, y_multiclass, classifier=True) assert_true(isinstance(cv, cval.StratifiedKFold)) X = np.ones((5, 2)) y_seq_of_seqs = [[], [1, 2], [3], [0, 1, 3], [2]] cv = cval._check_cv(3, X, y_seq_of_seqs, classifier=True) assert_true(isinstance(cv, cval.KFold)) y_indicator_matrix = LabelBinarizer().fit_transform(y_seq_of_seqs) cv = cval._check_cv(3, X, y_indicator_matrix, classifier=True) assert_true(isinstance(cv, cval.KFold)) y_multioutput = np.array([[1, 2], [0, 3], [0, 0], [3, 1], [2, 0]]) cv = cval._check_cv(3, X, y_multioutput, classifier=True) assert_true(isinstance(cv, cval.KFold)) def test_cross_val_score_multilabel(): X = np.array([[-3, 4], [2, 4], [3, 3], [0, 2], [-3, 1], [-2, 1], [0, 0], [-2, -1], [-1, -2], [1, -2]]) y = np.array([[1, 1], [0, 1], [0, 1], [0, 1], [1, 1], [0, 1], [1, 0], [1, 1], [1, 0], [0, 0]]) clf = KNeighborsClassifier(n_neighbors=1) scoring_micro = make_scorer(precision_score, average='micro') scoring_macro = make_scorer(precision_score, average='macro') scoring_samples = make_scorer(precision_score, average='samples') score_micro = cval.cross_val_score(clf, X, y, scoring=scoring_micro, cv=5) score_macro = cval.cross_val_score(clf, X, y, scoring=scoring_macro, cv=5) score_samples = cval.cross_val_score(clf, X, y, scoring=scoring_samples, cv=5) assert_almost_equal(score_micro, [1, 1/2, 3/4, 1/2, 1/3]) assert_almost_equal(score_macro, [1, 1/2, 3/4, 1/2, 1/4]) assert_almost_equal(score_samples, [1, 1/2, 3/4, 1/2, 1/4]) def test_cross_val_predict(): boston = load_boston() X, y = boston.data, boston.target cv = cval.KFold(len(boston.target)) est = Ridge() # Naive loop (should be same as cross_val_predict): preds2 = np.zeros_like(y) for train, test in cv: est.fit(X[train], y[train]) preds2[test] = est.predict(X[test]) preds = cval.cross_val_predict(est, X, y, cv=cv) assert_array_almost_equal(preds, preds2) preds = cval.cross_val_predict(est, X, y) assert_equal(len(preds), len(y)) cv = cval.LeaveOneOut(len(y)) preds = cval.cross_val_predict(est, X, y, cv=cv) assert_equal(len(preds), len(y)) Xsp = X.copy() Xsp *= (Xsp > np.median(Xsp)) Xsp = coo_matrix(Xsp) preds = cval.cross_val_predict(est, Xsp, y) assert_array_almost_equal(len(preds), len(y)) preds = cval.cross_val_predict(KMeans(), X) assert_equal(len(preds), len(y)) def bad_cv(): for i in range(4): yield np.array([0, 1, 2, 3]), np.array([4, 5, 6, 7, 8]) assert_raises(ValueError, cval.cross_val_predict, est, X, y, cv=bad_cv()) def test_sparse_fit_params(): iris = load_iris() X, y = iris.data, iris.target clf = MockClassifier() fit_params = {'sparse_sample_weight': coo_matrix(np.eye(X.shape[0]))} a = cval.cross_val_score(clf, X, y, fit_params=fit_params) assert_array_equal(a, np.ones(3)) def test_check_is_partition(): p = np.arange(100) assert_true(cval._check_is_partition(p, 100)) assert_false(cval._check_is_partition(np.delete(p, 23), 100)) p[0] = 23 assert_false(cval._check_is_partition(p, 100))
bsd-3-clause
henry-ngo/VIP
vip_hci/negfc/simplex_optim.py
1
16676
#! /usr/bin/env python """ Module with simplex (Nelder-Mead) optimization for defining the flux and position of a companion using the Negative Fake Companion. """ from __future__ import print_function import numpy as np import matplotlib.pyplot as plt from scipy.optimize import minimize from .simplex_fmerit import chisquare from ..var import frame_center from ..conf import time_ini, timing, sep __all__ = ['firstguess_from_coord', 'firstguess_simplex', 'firstguess'] def firstguess_from_coord(planet, center, cube, angs, PLSC, psf, fwhm, annulus_width, aperture_radius, ncomp, cube_ref=None, svd_mode='lapack', scaling=None, fmerit='sum', collapse='median', f_range=None, display=False, verbose=True, save=False, **kwargs): """ Determine a first guess for the flux of a companion at a given position in the cube by doing a simple grid search evaluating the reduced chi2. Parameters ---------- planet: numpy.array The (x,y) position of the planet in the pca processed cube. center: numpy.array The (x,y) position of the cube center. cube: numpy.array The cube of fits images expressed as a numpy.array. angs: numpy.array The parallactic angle fits image expressed as a numpy.array. PLSC: float The platescale, in arcsec per pixel. psf: numpy.array The scaled psf expressed as a numpy.array. fwhm : float The FHWM in pixels. annulus_width: int, optional The width in terms of the FWHM of the annulus on which the PCA is done. aperture_radius: int, optional The radius of the circular aperture in terms of the FWHM. ncomp: int The number of principal components. cube_ref : array_like, 3d, optional Reference library cube. For Reference Star Differential Imaging. svd_mode : {'lapack', 'randsvd', 'eigen', 'arpack'}, str optional Switch for different ways of computing the SVD and selected PCs. scaling : {'temp-mean', 'temp-standard'} or None, optional With None, no scaling is performed on the input data before SVD. With "temp-mean" then temporal px-wise mean subtraction is done and with "temp-standard" temporal mean centering plus scaling to unit variance is done. fmerit : {'sum', 'stddev'}, string optional Chooses the figure of merit to be used. stddev works better for close in companions sitting on top of speckle noise. collapse : {'median', 'mean', 'sum', 'trimmean', None}, str or None, optional Sets the way of collapsing the frames for producing a final image. If None then the cube of residuals is used when measuring the function of merit (instead of a single final frame). f_range: numpy.array, optional The range of flux tested values. If None, 20 values between 0 and 5000 are tested. display: boolean, optional If True, the figure chi2 vs. flux is displayed. verbose: boolean If True, display intermediate info in the shell. save: boolean, optional If True, the figure chi2 vs. flux is saved. kwargs: dict, optional Additional parameters are passed to the matplotlib plot method. Returns ------- out : numpy.array The radial coordinates and the flux of the companion. """ xy = planet-center r0= np.sqrt(xy[0]**2+xy[1]**2) theta0 = np.mod(np.arctan2(xy[1],xy[0])/np.pi*180,360) if f_range is not None: n = f_range.shape[0] else: n = 20 f_range = np.linspace(0,5000,n) chi2r = [] if verbose: print('Step | flux | chi2r') counter = 0 for j, f_guess in enumerate(f_range): chi2r.append(chisquare((r0,theta0,f_guess), cube, angs, PLSC, psf, fwhm, annulus_width, aperture_radius,(r0,theta0), ncomp, cube_ref, svd_mode, scaling, fmerit, collapse)) if chi2r[j] > chi2r[j-1]: counter+=1 if counter == 4: break if verbose: print('{}/{} {:.3f} {:.3f}'.format(j+1,n,f_guess,chi2r[j])) chi2r = np.array(chi2r) f0 = f_range[chi2r.argmin()] if display: plt.figure(figsize=kwargs.pop('figsize',(8,4))) plt.title(kwargs.pop('title','')) plt.xlim(f_range[0], f_range[:chi2r.shape[0]].max()) plt.ylim(chi2r.min()*0.9, chi2r.max()*1.1) plt.plot(f_range[:chi2r.shape[0]],chi2r, linestyle = kwargs.pop('linestyle','-'), color = kwargs.pop('color','gray'), marker = kwargs.pop('marker','.'), markerfacecolor='r', markeredgecolor='r', **kwargs) plt.xlabel('flux') plt.ylabel(r'$\chi^2_{r}$') plt.grid('on') if save: plt.savefig('chi2rVSflux.pdf') if display: plt.show() return (r0,theta0,f0) def firstguess_simplex(p, cube, angs, psf, plsc, ncomp, fwhm, annulus_width, aperture_radius, cube_ref=None, svd_mode='lapack', scaling=None, fmerit='sum', collapse='median', p_ini=None, options=None, verbose=False, **kwargs): """ Determine the position of a companion using the negative fake companion technique and a standard minimization algorithm (Default=Nelder-Mead) . Parameters ---------- p : np.array Estimate of the candidate position. cube: numpy.array The cube of fits images expressed as a numpy.array. angs: numpy.array The parallactic angle fits image expressed as a numpy.array. psf: numpy.array The scaled psf expressed as a numpy.array. plsc: float The platescale, in arcsec per pixel. ncomp: int The number of principal components. fwhm : float The FHWM in pixels. annulus_width: int, optional The width in terms of the FWHM of the annulus on which the PCA is done. aperture_radius: int, optional The radius of the circular aperture in terms of the FWHM. cube_ref : array_like, 3d, optional Reference library cube. For Reference Star Differential Imaging. svd_mode : {'lapack', 'randsvd', 'eigen', 'arpack'}, str optional Switch for different ways of computing the SVD and selected PCs. scaling : {'temp-mean', 'temp-standard'} or None, optional With None, no scaling is performed on the input data before SVD. With "temp-mean" then temporal px-wise mean subtraction is done and with "temp-standard" temporal mean centering plus scaling to unit variance is done. fmerit : {'sum', 'stddev'}, string optional Chooses the figure of merit to be used. stddev works better for close in companions sitting on top of speckle noise. collapse : {'median', 'mean', 'sum', 'trimmean', None}, str or None, optional Sets the way of collapsing the frames for producing a final image. If None then the cube of residuals is used when measuring the function of merit (instead of a single final frame). p_ini : np.array Position (r, theta) of the circular aperture center. options: dict, optional The scipy.optimize.minimize options. verbose : boolean, optional If True, informations are displayed in the shell. Returns ------- out : scipy.optimize.minimize solution object The solution of the minimization algorithm. """ if verbose: print('') print('{} minimization is running...'.format(options.get('method','Nelder-Mead'))) if p_ini is None: p_ini = p solu = minimize(chisquare, p, args=(cube, angs, plsc, psf, fwhm, annulus_width, aperture_radius, p_ini, ncomp, cube_ref, svd_mode, scaling, fmerit, collapse), method = options.pop('method','Nelder-Mead'), options=options, **kwargs) if verbose: print(solu) return solu def firstguess(cube, angs, psfn, ncomp, plsc, planets_xy_coord, fwhm=4, annulus_width=3, aperture_radius=4, cube_ref=None, svd_mode='lapack', scaling=None, fmerit='sum', collapse='median', p_ini=None, f_range=None, simplex=True, simplex_options=None, display=False, verbose=True, save=False, figure_options=None): """ Determines a first guess for the position and the flux of a planet. We process the cube without injecting any negative fake companion. This leads to the visual detection of the planet(s). For each of them, one can estimate the (x,y) coordinates in pixel for the position of the star, as well as the planet(s). From the (x,y) coordinates in pixels for the star and planet(s), we can estimate a preliminary guess for the position and flux for each planet by using the method "firstguess_from_coord". The argument "f_range" allows to indicate prior limits for the flux (optional, default: None). This step can be reiterate to refine the preliminary guess for the flux. We can go a step further by using a Simplex Nelder_Mead minimization to estimate the first guess based on the preliminary guess. Parameters ---------- cube: numpy.array The cube of fits images expressed as a numpy.array. angs: numpy.array The parallactic angle fits image expressed as a numpy.array. psfn: numpy.array The centered and normalized (flux in a 1*FWHM aperture must equal 1) PSF 2d-array. ncomp: int The number of principal components. plsc: float The platescale, in arcsec per pixel. planet_xy_coord: array or list The list of (x,y) positions of the planets. fwhm : float, optional The FHWM in pixels. annulus_width: int, optional The width in terms of the FWHM of the annulus on which the PCA is done. aperture_radius: int, optional The radius of the circular aperture in terms of the FWHM. cube_ref : array_like, 3d, optional Reference library cube. For Reference Star Differential Imaging. svd_mode : {'lapack', 'randsvd', 'eigen', 'arpack'}, str optional Switch for different ways of computing the SVD and selected PCs. scaling : {'temp-mean', 'temp-standard'} or None, optional With None, no scaling is performed on the input data before SVD. With "temp-mean" then temporal px-wise mean subtraction is done and with "temp-standard" temporal mean centering plus scaling to unit variance is done. fmerit : {'sum', 'stddev'}, string optional Chooses the figure of merit to be used. stddev works better for close in companions sitting on top of speckle noise. collapse : {'median', 'mean', 'sum', 'trimmean', None}, str or None, optional Sets the way of collapsing the frames for producing a final image. If None then the cube of residuals is used when measuring the function of merit (instead of a single final frame). p_ini: numpy.array Position (r, theta) of the circular aperture center. f_range: numpy.array, optional The range of flux tested values. If None, 20 values between 0 and 5000 are tested. simplex: boolean, optional If True, the Nelder-Mead minimization is performed after the flux grid search. simplex_options: dict, optional The scipy.optimize.minimize options. display: boolean, optional If True, the figure chi2 vs. flux is displayed. verbose: boolean If True, display intermediate info in the shell. save: boolean, optional If True, the figure chi2 vs. flux is saved. figure_options: dict, optional Additional parameters are passed to the matplotlib plot method. Returns ------- out : The radial coordinates and the flux of the companion. WARNING: POLAR ANGLE IS NOT THE CONVENTIONAL NORTH-TO-EAST P.A. """ if verbose: start_time = time_ini() if figure_options is None: figure_options = {'color':'gray', 'marker':'.', 'title':r'$\chi^2_{r}$ vs flux'} planets_xy_coord = np.array(planets_xy_coord) n_planet = planets_xy_coord.shape[0] center_xy_coord = np.array(frame_center(cube[0])) if f_range is None: f_range = np.linspace(0,5000,20) if simplex_options is None: simplex_options = {'xtol':1e-1, 'maxiter':500, 'maxfev':1000} r_0 = np.zeros(n_planet) theta_0 = np.zeros_like(r_0) f_0 = np.zeros_like(r_0) for index_planet in range(n_planet): if verbose: print('') print(sep) print(' Planet {} '.format(index_planet)) print(sep) print('') msg2 = 'Planet {}: flux estimation at the position [{},{}], running ...' print(msg2.format(index_planet,planets_xy_coord[index_planet,0], planets_xy_coord[index_planet,1])) res_init = firstguess_from_coord(planets_xy_coord[index_planet], center_xy_coord, cube, angs, plsc, psfn, fwhm, annulus_width, aperture_radius, ncomp, f_range=f_range, cube_ref=cube_ref, svd_mode=svd_mode, scaling=scaling, fmerit=fmerit, collapse=collapse, display=display, verbose=verbose, save=save, **figure_options) r_pre, theta_pre, f_pre = res_init if verbose: msg3 = 'Planet {}: preliminary guess: (r, theta, f)=({:.1f}, {:.1f}, {:.1f})' print(msg3.format(index_planet,r_pre, theta_pre, f_pre)) if simplex: if verbose: msg4 = 'Planet {}: Simplex Nelder-Mead minimization, running ...' print(msg4.format(index_planet)) res = firstguess_simplex((r_pre,theta_pre,f_pre), cube, angs, psfn, plsc, ncomp, fwhm, annulus_width, aperture_radius, cube_ref=cube_ref, svd_mode=svd_mode, scaling=scaling, fmerit=fmerit, collapse=collapse, p_ini=p_ini, options=simplex_options, verbose=False) r_0[index_planet], theta_0[index_planet], f_0[index_planet] = res.x if verbose: msg5 = 'Planet {}: Success: {}, nit: {}, nfev: {}, chi2r: {}' print(msg5.format(index_planet,res.success,res.nit,res.nfev, res.fun)) print('message: {}'.format(res.message)) else: if verbose: msg4bis = 'Planet {}: Simplex Nelder-Mead minimization skipped.' print(msg4bis.format(index_planet)) r_0[index_planet] = r_pre theta_0[index_planet] = theta_pre f_0[index_planet] = f_pre if verbose: centy, centx = frame_center(cube[0]) posy = r_0 * np.sin(np.deg2rad(theta_0[index_planet])) + centy posx = r_0 * np.cos(np.deg2rad(theta_0[index_planet])) + centx msg6 = 'Planet {}: simplex result: (r, theta, f)=({:.3f}, {:.3f}' msg6 += ', {:.3f}) at \n (X,Y)=({:.2f}, {:.2f})' print(msg6.format(index_planet, r_0[index_planet], theta_0[index_planet], f_0[index_planet], posx[0], posy[0])) if verbose: print('\n', sep, '\nDONE !\n', sep) timing(start_time) return (r_0,theta_0,f_0)
mit
amueller/scipy-2017-sklearn
notebooks/figures/tree_plotting.py
2
20503
import numpy as np from numbers import Integral from sklearn.externals import six from sklearn.tree.export import _color_brew, _criterion, _tree def plot_tree(decision_tree, max_depth=None, feature_names=None, class_names=None, label='all', filled=False, leaves_parallel=False, impurity=True, node_ids=False, proportion=False, rotate=False, rounded=False, special_characters=False, precision=3, ax=None, fontsize=None): """Plot a decision tree. The sample counts that are shown are weighted with any sample_weights that might be present. Parameters ---------- decision_tree : decision tree classifier The decision tree to be exported to GraphViz. max_depth : int, optional (default=None) The maximum depth of the representation. If None, the tree is fully generated. feature_names : list of strings, optional (default=None) Names of each of the features. class_names : list of strings, bool or None, optional (default=None) Names of each of the target classes in ascending numerical order. Only relevant for classification and not supported for multi-output. If ``True``, shows a symbolic representation of the class name. label : {'all', 'root', 'none'}, optional (default='all') Whether to show informative labels for impurity, etc. Options include 'all' to show at every node, 'root' to show only at the top root node, or 'none' to not show at any node. filled : bool, optional (default=False) When set to ``True``, paint nodes to indicate majority class for classification, extremity of values for regression, or purity of node for multi-output. leaves_parallel : bool, optional (default=False) When set to ``True``, draw all leaf nodes at the bottom of the tree. impurity : bool, optional (default=True) When set to ``True``, show the impurity at each node. node_ids : bool, optional (default=False) When set to ``True``, show the ID number on each node. proportion : bool, optional (default=False) When set to ``True``, change the display of 'values' and/or 'samples' to be proportions and percentages respectively. rotate : bool, optional (default=False) When set to ``True``, orient tree left to right rather than top-down. rounded : bool, optional (default=False) When set to ``True``, draw node boxes with rounded corners and use Helvetica fonts instead of Times-Roman. special_characters : bool, optional (default=False) When set to ``False``, ignore special characters for PostScript compatibility. precision : int, optional (default=3) Number of digits of precision for floating point in the values of impurity, threshold and value attributes of each node. ax : matplotlib axis, optional (default=None) Axes to plot to. If None, use current axis. Examples -------- >>> from sklearn.datasets import load_iris >>> clf = tree.DecisionTreeClassifier() >>> iris = load_iris() >>> clf = clf.fit(iris.data, iris.target) >>> plot_tree(clf) # doctest: +SKIP """ exporter = _MPLTreeExporter( max_depth=max_depth, feature_names=feature_names, class_names=class_names, label=label, filled=filled, leaves_parallel=leaves_parallel, impurity=impurity, node_ids=node_ids, proportion=proportion, rotate=rotate, rounded=rounded, special_characters=special_characters, precision=precision, fontsize=fontsize) exporter.export(decision_tree, ax=ax) class _BaseTreeExporter(object): def get_color(self, value): # Find the appropriate color & intensity for a node if self.colors['bounds'] is None: # Classification tree color = list(self.colors['rgb'][np.argmax(value)]) sorted_values = sorted(value, reverse=True) if len(sorted_values) == 1: alpha = 0 else: alpha = ((sorted_values[0] - sorted_values[1]) / (1 - sorted_values[1])) else: # Regression tree or multi-output color = list(self.colors['rgb'][0]) alpha = ((value - self.colors['bounds'][0]) / (self.colors['bounds'][1] - self.colors['bounds'][0])) # unpack numpy scalars alpha = float(alpha) # compute the color as alpha against white color = [int(round(alpha * c + (1 - alpha) * 255, 0)) for c in color] # Return html color code in #RRGGBB format hex_codes = [str(i) for i in range(10)] hex_codes.extend(['a', 'b', 'c', 'd', 'e', 'f']) color = [hex_codes[c // 16] + hex_codes[c % 16] for c in color] return '#' + ''.join(color) def get_fill_color(self, tree, node_id): # Fetch appropriate color for node if 'rgb' not in self.colors: # Initialize colors and bounds if required self.colors['rgb'] = _color_brew(tree.n_classes[0]) if tree.n_outputs != 1: # Find max and min impurities for multi-output self.colors['bounds'] = (np.min(-tree.impurity), np.max(-tree.impurity)) elif (tree.n_classes[0] == 1 and len(np.unique(tree.value)) != 1): # Find max and min values in leaf nodes for regression self.colors['bounds'] = (np.min(tree.value), np.max(tree.value)) if tree.n_outputs == 1: node_val = (tree.value[node_id][0, :] / tree.weighted_n_node_samples[node_id]) if tree.n_classes[0] == 1: # Regression node_val = tree.value[node_id][0, :] else: # If multi-output color node by impurity node_val = -tree.impurity[node_id] return self.get_color(node_val) def node_to_str(self, tree, node_id, criterion): # Generate the node content string if tree.n_outputs == 1: value = tree.value[node_id][0, :] else: value = tree.value[node_id] # Should labels be shown? labels = (self.label == 'root' and node_id == 0) or self.label == 'all' characters = self.characters node_string = characters[-1] # Write node ID if self.node_ids: if labels: node_string += 'node ' node_string += characters[0] + str(node_id) + characters[4] # Write decision criteria if tree.children_left[node_id] != _tree.TREE_LEAF: # Always write node decision criteria, except for leaves if self.feature_names is not None: feature = self.feature_names[tree.feature[node_id]] else: feature = "X%s%s%s" % (characters[1], tree.feature[node_id], characters[2]) node_string += '%s %s %s%s' % (feature, characters[3], round(tree.threshold[node_id], self.precision), characters[4]) # Write impurity if self.impurity: if isinstance(criterion, _criterion.FriedmanMSE): criterion = "friedman_mse" elif not isinstance(criterion, six.string_types): criterion = "impurity" if labels: node_string += '%s = ' % criterion node_string += (str(round(tree.impurity[node_id], self.precision)) + characters[4]) # Write node sample count if labels: node_string += 'samples = ' if self.proportion: percent = (100. * tree.n_node_samples[node_id] / float(tree.n_node_samples[0])) node_string += (str(round(percent, 1)) + '%' + characters[4]) else: node_string += (str(tree.n_node_samples[node_id]) + characters[4]) # Write node class distribution / regression value if self.proportion and tree.n_classes[0] != 1: # For classification this will show the proportion of samples value = value / tree.weighted_n_node_samples[node_id] if labels: node_string += 'value = ' if tree.n_classes[0] == 1: # Regression value_text = np.around(value, self.precision) elif self.proportion: # Classification value_text = np.around(value, self.precision) elif np.all(np.equal(np.mod(value, 1), 0)): # Classification without floating-point weights value_text = value.astype(int) else: # Classification with floating-point weights value_text = np.around(value, self.precision) # Strip whitespace value_text = str(value_text.astype('S32')).replace("b'", "'") value_text = value_text.replace("' '", ", ").replace("'", "") if tree.n_classes[0] == 1 and tree.n_outputs == 1: value_text = value_text.replace("[", "").replace("]", "") value_text = value_text.replace("\n ", characters[4]) node_string += value_text + characters[4] # Write node majority class if (self.class_names is not None and tree.n_classes[0] != 1 and tree.n_outputs == 1): # Only done for single-output classification trees if labels: node_string += 'class = ' if self.class_names is not True: class_name = self.class_names[np.argmax(value)] else: class_name = "y%s%s%s" % (characters[1], np.argmax(value), characters[2]) node_string += class_name # Clean up any trailing newlines if node_string.endswith(characters[4]): node_string = node_string[:-len(characters[4])] return node_string + characters[5] class _MPLTreeExporter(_BaseTreeExporter): def __init__(self, max_depth=None, feature_names=None, class_names=None, label='all', filled=False, leaves_parallel=False, impurity=True, node_ids=False, proportion=False, rotate=False, rounded=False, special_characters=False, precision=3, fontsize=None): self.max_depth = max_depth self.feature_names = feature_names self.class_names = class_names self.label = label self.filled = filled self.leaves_parallel = leaves_parallel self.impurity = impurity self.node_ids = node_ids self.proportion = proportion self.rotate = rotate self.rounded = rounded self.special_characters = special_characters self.precision = precision self.fontsize = fontsize self._scaley = 10 # validate if isinstance(precision, Integral): if precision < 0: raise ValueError("'precision' should be greater or equal to 0." " Got {} instead.".format(precision)) else: raise ValueError("'precision' should be an integer. Got {}" " instead.".format(type(precision))) # The depth of each node for plotting with 'leaf' option self.ranks = {'leaves': []} # The colors to render each node with self.colors = {'bounds': None} self.characters = ['#', '[', ']', '<=', '\n', '', ''] self.bbox_args = dict(fc='w') if self.rounded: self.bbox_args['boxstyle'] = "round" self.arrow_args = dict(arrowstyle="<-") def _make_tree(self, node_id, et): # traverses _tree.Tree recursively, builds intermediate # "_reingold_tilford.Tree" object name = self.node_to_str(et, node_id, criterion='entropy') if (et.children_left[node_id] != et.children_right[node_id]): children = [self._make_tree(et.children_left[node_id], et), self._make_tree(et.children_right[node_id], et)] else: return Tree(name, node_id) return Tree(name, node_id, *children) def export(self, decision_tree, ax=None): import matplotlib.pyplot as plt from matplotlib.text import Annotation if ax is None: ax = plt.gca() ax.set_axis_off() my_tree = self._make_tree(0, decision_tree.tree_) dt = buchheim(my_tree) self._scalex = 1 self.recurse(dt, decision_tree.tree_, ax) anns = [ann for ann in ax.get_children() if isinstance(ann, Annotation)] # get all the annotated points xys = [ann.xyann for ann in anns] mins = np.min(xys, axis=0) maxs = np.max(xys, axis=0) ax.set_xlim(mins[0], maxs[0]) ax.set_ylim(maxs[1], mins[1]) if self.fontsize is None: # get figure to data transform inv = ax.transData.inverted() renderer = ax.figure.canvas.get_renderer() # update sizes of all bboxes for ann in anns: ann.update_bbox_position_size(renderer) # get max box width widths = [inv.get_matrix()[0, 0] * ann.get_bbox_patch().get_window_extent().width for ann in anns] # get minimum max size to not be too big. max_width = max(max(widths), 1) # adjust fontsize to avoid overlap # width should be around 1 in data coordinates size = anns[0].get_fontsize() / max_width for ann in anns: ann.set_fontsize(size) def recurse(self, node, tree, ax, depth=0): kwargs = dict(bbox=self.bbox_args, ha='center', va='center', zorder=100 - 10 * depth) if self.fontsize is not None: kwargs['fontsize'] = self.fontsize xy = (node.x * self._scalex, node.y * self._scaley) if self.max_depth is None or depth <= self.max_depth: if self.filled: kwargs['bbox']['fc'] = self.get_fill_color(tree, node.tree.node_id) if node.parent is None: # root ax.annotate(node.tree.node, xy, **kwargs) else: xy_parent = (node.parent.x * self._scalex, node.parent.y * self._scaley) kwargs["arrowprops"] = self.arrow_args ax.annotate(node.tree.node, xy_parent, xy, **kwargs) for child in node.children: self.recurse(child, tree, ax, depth=depth + 1) else: xy_parent = (node.parent.x * self._scalex, node.parent.y * self._scaley) kwargs["arrowprops"] = self.arrow_args kwargs['bbox']['fc'] = 'grey' ax.annotate("\n (...) \n", xy_parent, xy, **kwargs) class DrawTree(object): def __init__(self, tree, parent=None, depth=0, number=1): self.x = -1. self.y = depth self.tree = tree self.children = [DrawTree(c, self, depth + 1, i + 1) for i, c in enumerate(tree.children)] self.parent = parent self.thread = None self.mod = 0 self.ancestor = self self.change = self.shift = 0 self._lmost_sibling = None # this is the number of the node in its group of siblings 1..n self.number = number def left(self): return self.thread or len(self.children) and self.children[0] def right(self): return self.thread or len(self.children) and self.children[-1] def lbrother(self): n = None if self.parent: for node in self.parent.children: if node == self: return n else: n = node return n def get_lmost_sibling(self): if not self._lmost_sibling and self.parent and self != \ self.parent.children[0]: self._lmost_sibling = self.parent.children[0] return self._lmost_sibling lmost_sibling = property(get_lmost_sibling) def __str__(self): return "%s: x=%s mod=%s" % (self.tree, self.x, self.mod) def __repr__(self): return self.__str__() def buchheim(tree): dt = firstwalk(DrawTree(tree)) min = second_walk(dt) if min < 0: third_walk(dt, -min) return dt def third_walk(tree, n): tree.x += n for c in tree.children: third_walk(c, n) def firstwalk(v, distance=1.): if len(v.children) == 0: if v.lmost_sibling: v.x = v.lbrother().x + distance else: v.x = 0. else: default_ancestor = v.children[0] for w in v.children: firstwalk(w) default_ancestor = apportion(w, default_ancestor, distance) # print("finished v =", v.tree, "children") execute_shifts(v) midpoint = (v.children[0].x + v.children[-1].x) / 2 w = v.lbrother() if w: v.x = w.x + distance v.mod = v.x - midpoint else: v.x = midpoint return v def apportion(v, default_ancestor, distance): w = v.lbrother() if w is not None: # in buchheim notation: # i == inner; o == outer; r == right; l == left; r = +; l = - vir = vor = v vil = w vol = v.lmost_sibling sir = sor = v.mod sil = vil.mod sol = vol.mod while vil.right() and vir.left(): vil = vil.right() vir = vir.left() vol = vol.left() vor = vor.right() vor.ancestor = v shift = (vil.x + sil) - (vir.x + sir) + distance if shift > 0: move_subtree(ancestor(vil, v, default_ancestor), v, shift) sir = sir + shift sor = sor + shift sil += vil.mod sir += vir.mod sol += vol.mod sor += vor.mod if vil.right() and not vor.right(): vor.thread = vil.right() vor.mod += sil - sor else: if vir.left() and not vol.left(): vol.thread = vir.left() vol.mod += sir - sol default_ancestor = v return default_ancestor def move_subtree(wl, wr, shift): subtrees = wr.number - wl.number # print(wl.tree, "is conflicted with", wr.tree, 'moving', subtrees, # 'shift', shift) # print wl, wr, wr.number, wl.number, shift, subtrees, shift/subtrees wr.change -= shift / subtrees wr.shift += shift wl.change += shift / subtrees wr.x += shift wr.mod += shift def execute_shifts(v): shift = change = 0 for w in v.children[::-1]: # print("shift:", w, shift, w.change) w.x += shift w.mod += shift change += w.change shift += w.shift + change def ancestor(vil, v, default_ancestor): # the relevant text is at the bottom of page 7 of # "Improving Walker's Algorithm to Run in Linear Time" by Buchheim et al, # (2002) # http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.16.8757&rep=rep1&type=pdf if vil.ancestor in v.parent.children: return vil.ancestor else: return default_ancestor def second_walk(v, m=0, depth=0, min=None): v.x += m v.y = depth if min is None or v.x < min: min = v.x for w in v.children: min = second_walk(w, m + v.mod, depth + 1, min) return min class Tree(object): def __init__(self, node="", node_id=-1, *children): self.node = node self.width = len(node) self.node_id = node_id if children: self.children = children else: self.children = []
cc0-1.0
mjudsp/Tsallis
examples/ensemble/plot_random_forest_regression_multioutput.py
28
2642
""" ============================================================ Comparing random forests and the multi-output meta estimator ============================================================ An example to compare multi-output regression with random forest and the :ref:`multioutput.MultiOutputRegressor <_multiclass>` meta-estimator. This example illustrates the use of the :ref:`multioutput.MultiOutputRegressor <_multiclass>` meta-estimator to perform multi-output regression. A random forest regressor is used, which supports multi-output regression natively, so the results can be compared. The random forest regressor will only ever predict values within the range of observations or closer to zero for each of the targets. As a result the predictions are biased towards the centre of the circle. Using a single underlying feature the model learns both the x and y coordinate as output. """ print(__doc__) # Author: Tim Head <betatim@gmail.com> # # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import train_test_split from sklearn.multioutput import MultiOutputRegressor # Create a random dataset rng = np.random.RandomState(1) X = np.sort(200 * rng.rand(600, 1) - 100, axis=0) y = np.array([np.pi * np.sin(X).ravel(), np.pi * np.cos(X).ravel()]).T y += (0.5 - rng.rand(*y.shape)) X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=400, random_state=4) max_depth = 30 regr_multirf = MultiOutputRegressor(RandomForestRegressor(max_depth=max_depth, random_state=0)) regr_multirf.fit(X_train, y_train) regr_rf = RandomForestRegressor(max_depth=max_depth, random_state=2) regr_rf.fit(X_train, y_train) # Predict on new data y_multirf = regr_multirf.predict(X_test) y_rf = regr_rf.predict(X_test) # Plot the results plt.figure() s = 50 a = 0.4 plt.scatter(y_test[:, 0], y_test[:, 1], c="navy", s=s, marker="s", alpha=a, label="Data") plt.scatter(y_multirf[:, 0], y_multirf[:, 1], c="cornflowerblue", s=s, alpha=a, label="Multi RF score=%.2f" % regr_multirf.score(X_test, y_test)) plt.scatter(y_rf[:, 0], y_rf[:, 1], c="c", s=s, marker="^", alpha=a, label="RF score=%.2f" % regr_rf.score(X_test, y_test)) plt.xlim([-6, 6]) plt.ylim([-6, 6]) plt.xlabel("target 1") plt.ylabel("target 2") plt.title("Comparing random forests and the multi-output meta estimator") plt.legend() plt.show()
bsd-3-clause
renesugar/arrow
python/pyarrow/serialization.py
1
12689
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from __future__ import absolute_import import collections import six import sys import numpy as np import pyarrow as pa from pyarrow.compat import builtin_pickle, descr_to_dtype from pyarrow.lib import SerializationContext, py_buffer try: import cloudpickle except ImportError: cloudpickle = builtin_pickle # ---------------------------------------------------------------------- # Set up serialization for numpy with dtype object (primitive types are # handled efficiently with Arrow's Tensor facilities, see # python_to_arrow.cc) def _serialize_numpy_array_list(obj): if obj.dtype.str != '|O': # Make the array c_contiguous if necessary so that we can call change # the view. if not obj.flags.c_contiguous: obj = np.ascontiguousarray(obj) return obj.view('uint8'), np.lib.format.dtype_to_descr(obj.dtype) else: return obj.tolist(), np.lib.format.dtype_to_descr(obj.dtype) def _deserialize_numpy_array_list(data): if data[1] != '|O': assert data[0].dtype == np.uint8 return data[0].view(descr_to_dtype(data[1])) else: return np.array(data[0], dtype=np.dtype(data[1])) def _serialize_numpy_matrix(obj): if obj.dtype.str != '|O': # Make the array c_contiguous if necessary so that we can call change # the view. if not obj.flags.c_contiguous: obj = np.ascontiguousarray(obj.A) return obj.A.view('uint8'), np.lib.format.dtype_to_descr(obj.dtype) else: return obj.A.tolist(), np.lib.format.dtype_to_descr(obj.dtype) def _deserialize_numpy_matrix(data): if data[1] != '|O': assert data[0].dtype == np.uint8 return np.matrix(data[0].view(descr_to_dtype(data[1])), copy=False) else: return np.matrix(data[0], dtype=np.dtype(data[1]), copy=False) # ---------------------------------------------------------------------- # pyarrow.RecordBatch-specific serialization matters def _serialize_pyarrow_recordbatch(batch): output_stream = pa.BufferOutputStream() with pa.RecordBatchStreamWriter(output_stream, schema=batch.schema) as wr: wr.write_batch(batch) return output_stream.getvalue() # This will also close the stream. def _deserialize_pyarrow_recordbatch(buf): with pa.RecordBatchStreamReader(buf) as reader: return reader.read_next_batch() # ---------------------------------------------------------------------- # pyarrow.Array-specific serialization matters def _serialize_pyarrow_array(array): # TODO(suquark): implement more effcient array serialization. batch = pa.RecordBatch.from_arrays([array], ['']) return _serialize_pyarrow_recordbatch(batch) def _deserialize_pyarrow_array(buf): # TODO(suquark): implement more effcient array deserialization. batch = _deserialize_pyarrow_recordbatch(buf) return batch.columns[0] # ---------------------------------------------------------------------- # pyarrow.Table-specific serialization matters def _serialize_pyarrow_table(table): output_stream = pa.BufferOutputStream() with pa.RecordBatchStreamWriter(output_stream, schema=table.schema) as wr: wr.write_table(table) return output_stream.getvalue() # This will also close the stream. def _deserialize_pyarrow_table(buf): with pa.RecordBatchStreamReader(buf) as reader: return reader.read_all() def _pickle_to_buffer(x): pickled = builtin_pickle.dumps(x, protocol=builtin_pickle.HIGHEST_PROTOCOL) return py_buffer(pickled) def _load_pickle_from_buffer(data): as_memoryview = memoryview(data) if six.PY2: return builtin_pickle.loads(as_memoryview.tobytes()) else: return builtin_pickle.loads(as_memoryview) # ---------------------------------------------------------------------- # pandas-specific serialization matters def _register_custom_pandas_handlers(context): # ARROW-1784, faster path for pandas-only visibility try: import pandas as pd except ImportError: return import pyarrow.pandas_compat as pdcompat sparse_type_error_msg = ( '{0} serialization is not supported.\n' 'Note that {0} is planned to be deprecated ' 'in pandas future releases.\n' 'See https://github.com/pandas-dev/pandas/issues/19239 ' 'for more information.' ) def _serialize_pandas_dataframe(obj): if (pdcompat._pandas_api.has_sparse and isinstance(obj, pd.SparseDataFrame)): raise NotImplementedError( sparse_type_error_msg.format('SparseDataFrame') ) return pdcompat.dataframe_to_serialized_dict(obj) def _deserialize_pandas_dataframe(data): return pdcompat.serialized_dict_to_dataframe(data) def _serialize_pandas_series(obj): if (pdcompat._pandas_api.has_sparse and isinstance(obj, pd.SparseSeries)): raise NotImplementedError( sparse_type_error_msg.format('SparseSeries') ) return _serialize_pandas_dataframe(pd.DataFrame({obj.name: obj})) def _deserialize_pandas_series(data): deserialized = _deserialize_pandas_dataframe(data) return deserialized[deserialized.columns[0]] context.register_type( pd.Series, 'pd.Series', custom_serializer=_serialize_pandas_series, custom_deserializer=_deserialize_pandas_series) context.register_type( pd.Index, 'pd.Index', custom_serializer=_pickle_to_buffer, custom_deserializer=_load_pickle_from_buffer) if hasattr(pd.core, 'arrays'): if hasattr(pd.core.arrays, 'interval'): context.register_type( pd.core.arrays.interval.IntervalArray, 'pd.core.arrays.interval.IntervalArray', custom_serializer=_pickle_to_buffer, custom_deserializer=_load_pickle_from_buffer) if hasattr(pd.core.arrays, 'period'): context.register_type( pd.core.arrays.period.PeriodArray, 'pd.core.arrays.period.PeriodArray', custom_serializer=_pickle_to_buffer, custom_deserializer=_load_pickle_from_buffer) if hasattr(pd.core.arrays, 'datetimes'): context.register_type( pd.core.arrays.datetimes.DatetimeArray, 'pd.core.arrays.datetimes.DatetimeArray', custom_serializer=_pickle_to_buffer, custom_deserializer=_load_pickle_from_buffer) context.register_type( pd.DataFrame, 'pd.DataFrame', custom_serializer=_serialize_pandas_dataframe, custom_deserializer=_deserialize_pandas_dataframe) def register_torch_serialization_handlers(serialization_context): # ---------------------------------------------------------------------- # Set up serialization for pytorch tensors try: import torch def _serialize_torch_tensor(obj): if obj.is_sparse: # TODO(pcm): Once ARROW-4453 is resolved, return sparse # tensor representation here return (obj._indices().detach().numpy(), obj._values().detach().numpy(), list(obj.shape)) else: return obj.detach().numpy() def _deserialize_torch_tensor(data): if isinstance(data, tuple): return torch.sparse_coo_tensor(data[0], data[1], data[2]) else: return torch.from_numpy(data) for t in [torch.FloatTensor, torch.DoubleTensor, torch.HalfTensor, torch.ByteTensor, torch.CharTensor, torch.ShortTensor, torch.IntTensor, torch.LongTensor, torch.Tensor]: serialization_context.register_type( t, "torch." + t.__name__, custom_serializer=_serialize_torch_tensor, custom_deserializer=_deserialize_torch_tensor) except ImportError: # no torch pass def _register_collections_serialization_handlers(serialization_context): def _serialize_deque(obj): return list(obj) def _deserialize_deque(data): return collections.deque(data) serialization_context.register_type( collections.deque, "collections.deque", custom_serializer=_serialize_deque, custom_deserializer=_deserialize_deque) def _serialize_ordered_dict(obj): return list(obj.keys()), list(obj.values()) def _deserialize_ordered_dict(data): return collections.OrderedDict(zip(data[0], data[1])) serialization_context.register_type( collections.OrderedDict, "collections.OrderedDict", custom_serializer=_serialize_ordered_dict, custom_deserializer=_deserialize_ordered_dict) def _serialize_default_dict(obj): return list(obj.keys()), list(obj.values()), obj.default_factory def _deserialize_default_dict(data): return collections.defaultdict(data[2], zip(data[0], data[1])) serialization_context.register_type( collections.defaultdict, "collections.defaultdict", custom_serializer=_serialize_default_dict, custom_deserializer=_deserialize_default_dict) def _serialize_counter(obj): return list(obj.keys()), list(obj.values()) def _deserialize_counter(data): return collections.Counter(dict(zip(data[0], data[1]))) serialization_context.register_type( collections.Counter, "collections.Counter", custom_serializer=_serialize_counter, custom_deserializer=_deserialize_counter) def register_default_serialization_handlers(serialization_context): # ---------------------------------------------------------------------- # Set up serialization for primitive datatypes # TODO(pcm): This is currently a workaround until arrow supports # arbitrary precision integers. This is only called on long integers, # see the associated case in the append method in python_to_arrow.cc serialization_context.register_type( int, "int", custom_serializer=lambda obj: str(obj), custom_deserializer=lambda data: int(data)) if (sys.version_info < (3, 0)): serialization_context.register_type( long, "long", # noqa: F821 custom_serializer=lambda obj: str(obj), custom_deserializer=lambda data: long(data)) # noqa: F821 serialization_context.register_type( type(lambda: 0), "function", pickle=True) serialization_context.register_type(type, "type", pickle=True) serialization_context.register_type( np.matrix, 'np.matrix', custom_serializer=_serialize_numpy_matrix, custom_deserializer=_deserialize_numpy_matrix) serialization_context.register_type( np.ndarray, 'np.array', custom_serializer=_serialize_numpy_array_list, custom_deserializer=_deserialize_numpy_array_list) serialization_context.register_type( pa.Array, 'pyarrow.Array', custom_serializer=_serialize_pyarrow_array, custom_deserializer=_deserialize_pyarrow_array) serialization_context.register_type( pa.RecordBatch, 'pyarrow.RecordBatch', custom_serializer=_serialize_pyarrow_recordbatch, custom_deserializer=_deserialize_pyarrow_recordbatch) serialization_context.register_type( pa.Table, 'pyarrow.Table', custom_serializer=_serialize_pyarrow_table, custom_deserializer=_deserialize_pyarrow_table) _register_collections_serialization_handlers(serialization_context) _register_custom_pandas_handlers(serialization_context) def default_serialization_context(): context = SerializationContext() register_default_serialization_handlers(context) return context
apache-2.0
justincassidy/scikit-learn
sklearn/ensemble/tests/test_voting_classifier.py
140
6926
"""Testing for the boost module (sklearn.ensemble.boost).""" import numpy as np from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_equal from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import VotingClassifier from sklearn.grid_search import GridSearchCV from sklearn import datasets from sklearn import cross_validation from sklearn.datasets import make_multilabel_classification from sklearn.svm import SVC from sklearn.multiclass import OneVsRestClassifier # Load the iris dataset and randomly permute it iris = datasets.load_iris() X, y = iris.data[:, 1:3], iris.target def test_majority_label_iris(): """Check classification by majority label on dataset iris.""" clf1 = LogisticRegression(random_state=123) clf2 = RandomForestClassifier(random_state=123) clf3 = GaussianNB() eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='hard') scores = cross_validation.cross_val_score(eclf, X, y, cv=5, scoring='accuracy') assert_almost_equal(scores.mean(), 0.95, decimal=2) def test_tie_situation(): """Check voting classifier selects smaller class label in tie situation.""" clf1 = LogisticRegression(random_state=123) clf2 = RandomForestClassifier(random_state=123) eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2)], voting='hard') assert_equal(clf1.fit(X, y).predict(X)[73], 2) assert_equal(clf2.fit(X, y).predict(X)[73], 1) assert_equal(eclf.fit(X, y).predict(X)[73], 1) def test_weights_iris(): """Check classification by average probabilities on dataset iris.""" clf1 = LogisticRegression(random_state=123) clf2 = RandomForestClassifier(random_state=123) clf3 = GaussianNB() eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='soft', weights=[1, 2, 10]) scores = cross_validation.cross_val_score(eclf, X, y, cv=5, scoring='accuracy') assert_almost_equal(scores.mean(), 0.93, decimal=2) def test_predict_on_toy_problem(): """Manually check predicted class labels for toy dataset.""" clf1 = LogisticRegression(random_state=123) clf2 = RandomForestClassifier(random_state=123) clf3 = GaussianNB() X = np.array([[-1.1, -1.5], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2], [2.1, 1.4], [3.1, 2.3]]) y = np.array([1, 1, 1, 2, 2, 2]) assert_equal(all(clf1.fit(X, y).predict(X)), all([1, 1, 1, 2, 2, 2])) assert_equal(all(clf2.fit(X, y).predict(X)), all([1, 1, 1, 2, 2, 2])) assert_equal(all(clf3.fit(X, y).predict(X)), all([1, 1, 1, 2, 2, 2])) eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='hard', weights=[1, 1, 1]) assert_equal(all(eclf.fit(X, y).predict(X)), all([1, 1, 1, 2, 2, 2])) eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='soft', weights=[1, 1, 1]) assert_equal(all(eclf.fit(X, y).predict(X)), all([1, 1, 1, 2, 2, 2])) def test_predict_proba_on_toy_problem(): """Calculate predicted probabilities on toy dataset.""" clf1 = LogisticRegression(random_state=123) clf2 = RandomForestClassifier(random_state=123) clf3 = GaussianNB() X = np.array([[-1.1, -1.5], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2]]) y = np.array([1, 1, 2, 2]) clf1_res = np.array([[0.59790391, 0.40209609], [0.57622162, 0.42377838], [0.50728456, 0.49271544], [0.40241774, 0.59758226]]) clf2_res = np.array([[0.8, 0.2], [0.8, 0.2], [0.2, 0.8], [0.3, 0.7]]) clf3_res = np.array([[0.9985082, 0.0014918], [0.99845843, 0.00154157], [0., 1.], [0., 1.]]) t00 = (2*clf1_res[0][0] + clf2_res[0][0] + clf3_res[0][0]) / 4 t11 = (2*clf1_res[1][1] + clf2_res[1][1] + clf3_res[1][1]) / 4 t21 = (2*clf1_res[2][1] + clf2_res[2][1] + clf3_res[2][1]) / 4 t31 = (2*clf1_res[3][1] + clf2_res[3][1] + clf3_res[3][1]) / 4 eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='soft', weights=[2, 1, 1]) eclf_res = eclf.fit(X, y).predict_proba(X) assert_almost_equal(t00, eclf_res[0][0], decimal=1) assert_almost_equal(t11, eclf_res[1][1], decimal=1) assert_almost_equal(t21, eclf_res[2][1], decimal=1) assert_almost_equal(t31, eclf_res[3][1], decimal=1) try: eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='hard') eclf.fit(X, y).predict_proba(X) except AttributeError: pass else: raise AssertionError('AttributeError for voting == "hard"' ' and with predict_proba not raised') def test_multilabel(): """Check if error is raised for multilabel classification.""" X, y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=False, random_state=123) clf = OneVsRestClassifier(SVC(kernel='linear')) eclf = VotingClassifier(estimators=[('ovr', clf)], voting='hard') try: eclf.fit(X, y) except NotImplementedError: return def test_gridsearch(): """Check GridSearch support.""" clf1 = LogisticRegression(random_state=1) clf2 = RandomForestClassifier(random_state=1) clf3 = GaussianNB() eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='soft') params = {'lr__C': [1.0, 100.0], 'voting': ['soft', 'hard'], 'weights': [[0.5, 0.5, 0.5], [1.0, 0.5, 0.5]]} grid = GridSearchCV(estimator=eclf, param_grid=params, cv=5) grid.fit(iris.data, iris.target)
bsd-3-clause
X0Leon/XQuant
xquant/utils/alternative.py
1
1984
# -*- coding: utf-8 -*- """ Monte Carlo模拟另类历史回测 @author: Leon Zhang @version: 0.4 """ import numpy as np def reorder(a, chunks=1): """ 重新排序组合 参数: a: 一维序列,例如每天的收益率(return/PnL) chunks: 分块数,例如周数或月数 返回: 重排后的序列 """ a = np.array_split(a, chunks) np.random.shuffle(a) a = np.concatenate(a) return a def resample(a, chunks=1): """ 有放回的随机抽样,如果a长度不能被chunks整除,则自动取1 参数: a: 一维序列,例如每天的收益率 chunks: 分块数,要求a长度可以被其整分 返回: 重新随机生成的序列 """ try: a = np.split(a, chunks) index = np.random.choice(range(chunks), size=chunks) a = np.concatenate([a[i] for i in index]) except: a = np.random.choice(a, size=len(a)) return a def monte_carlo(a, chunks=1, times=20, shuffle_type='reorder'): """ 蒙特卡洛模拟对序列a进行重新抽样组合 参数: a: 一维序列 chunks: 分块数,type='resample'时应该要求len(a)可以整除chunks times: 模拟的次数 type: 'reorder'或‘resample'分别为无放回和有放回抽样 返回: 所有随机序列的list """ if shuffle_type == 'reorder': shuffle = reorder elif shuffle_type == 'resample': shuffle = resample else: return None list_a = [] for _ in range(times): list_a.append(shuffle(a, chunks=chunks)) return list_a if __name__ == '__main__': # 示例 import matplotlib.pyplot as plt ret = (np.random.randn(100) + 0.1) / 100 equity_curve = (1 + ret).cumprod() plt.plot(equity_curve, color='blue') generated_ret = monte_carlo(ret, chunks=20) for ret in generated_ret: curve = (1 + ret).cumprod() plt.plot(curve, color='grey', alpha=0.5)
mit
jarogames/gregory
gregory/pi/prerequisites.py
1
2700
#!/usr/bin/python3 import subprocess as sp import os # devnul DEBUG=True packages={} #### WHAT I CONSIDER CRUCIAL FOR RPI ################## packages['blessings']='from blessings import Terminal ... color terminal, moving cursor' packages['prettytable']='ASCII pretty tables' packages['matplotlib']='import matplotlib.pyplot as plt' packages['numpy']='import numpy as np' packages['pandas']='import pandas as pd' packages['pyserial']='? serial read, arduino...?' packages['pyzmq']='! also aptitude install libzmq5 libczmq3' packages['serf_master']='serf package python module' packages['terminaltables']='tables in terminal' packages['colorclass']='colors for terminal tables' #packages['']='serf package python module' # packages['xvbfwrapper']='' # packages['zenipy']='' # packages['youtube-dl']='' # packages['mps-youtube']='' # packages['staticmap']='' # packages['scipy']='' # packages['iminuit']='' # packages['h5py?']='' # packages['Flask']='' # packages['imutils']='opencv image transforms' # packages['logzero']='' # packages['lxml']='' # packages['pexpect']='commandline child communication (ftp...)' # packages['Pillow']='python image lib, fork' # packages['svgwrite']='SVG drawing module' # packages['pyswarm']='particle swarm optimization w.constraints/pyswarms' # packages['']='' # packages['']='' # packages['']='' def check_prerequisites(): if DEBUG:print("F--- Prerequisites: -------------------") CMD="pip3 list --format=legacy" # pip 9.0.1 starts to complain CMD="pip3 list" # pip 1.5 doesnt know --format all=sp.check_output( CMD.split() ).decode("utf8").rstrip().split("\n") #print(all) all=[ x.split()[0] for x in all ] #print(all) needed=[] for p in packages.keys(): if DEBUG:print("ck ... {:15s} ...".format(p),end="") if p in all: if DEBUG:print("[OK]") else: if DEBUG:print("[!!]") needed.append(p) ################# FANTSTIC ERROR CODE CHECK ###### # FNULL=open( os.devnull,"w") # try: # res=sp.check_call( CMD.split() , stdout=FNULL ) # except sp.CalledProcessError: # print("PAC...",p,"...",packages[p]) # needed.append( p ) # #if DEBUG:print(":... {}".format(p) ) return needed def install_prerequisites( prers ): errors=[] for p in prers: CMD="pip3 install "+p+" --user" if DEBUG:print("D...",CMD) try: res=sp.check_call( CMD.split() ) except sp.CalledProcessError: print("ERR...",p,"...",packages[p]) errors.append( p ) if DEBUG:print("ERRORS:",errors) return errors
gpl-2.0
JohanComparat/pySU
spm/bin_SMF/mass_density.py
1
14462
import astropy.cosmology as co cosmo=co.Planck15 import astropy.io.fits as fits import matplotlib matplotlib.use('Agg') matplotlib.rcParams['agg.path.chunksize'] = 2000000 matplotlib.rcParams.update({'font.size': 12}) import matplotlib.pyplot as p import numpy as n import os import sys from scipy.integrate import quad from scipy.interpolate import interp1d # stat functions ld = lambda selection : len(selection.nonzero()[0]) # global cosmo quantities #run mass_density.py 0.2 0.5 #run mass_density.py 0.5 0.8 #run mass_density.py 0.8 1.1 #run mass_density.py 1.1 1.5 z_min = float(sys.argv[1]) z_max = float(sys.argv[2]) logm_m13_05, smf_m13_05 = n.loadtxt(os.path.join(os.environ['OBS_REPO'], 'spm/literature', "M13_cmass_045_055.txt"), unpack=True) logm_m13_065, smf_m13_65 = n.loadtxt(os.path.join(os.environ['OBS_REPO'], 'spm/literature', "M13_cmass_06_07.txt") , unpack=True) if z_min < 0.4: path_2_comp = os.path.join(os.environ['GIT_PYSU'], 'data','zmin0.20_completness.txt') elif z_min < 0.65: path_2_comp = os.path.join(os.environ['GIT_PYSU'], 'data','zmin0.50_completness.txt') else : path_2_comp = os.path.join(os.environ['GIT_PYSU'], 'data','zmin0.80_completness.txt') # log10(M/Msun), Ratios for r<[17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0] DATA_GALFORM = n.loadtxt(path_2_comp, unpack=True) gf = {} gf['r17']= interp1d(DATA_GALFORM[0], DATA_GALFORM[1]) gf['r18']= interp1d(DATA_GALFORM[0], DATA_GALFORM[2]) gf['r19']= interp1d(DATA_GALFORM[0], DATA_GALFORM[3]) gf['r20']= interp1d(DATA_GALFORM[0], DATA_GALFORM[4]) gf['r21']= interp1d(DATA_GALFORM[0], DATA_GALFORM[5]) gf['r22']= interp1d(DATA_GALFORM[0], DATA_GALFORM[6]) gf['r23']= interp1d(DATA_GALFORM[0], DATA_GALFORM[7]) gf['r24']= interp1d(DATA_GALFORM[0], DATA_GALFORM[8]) gf['r25']= interp1d(DATA_GALFORM[0], DATA_GALFORM[9]) volume_per_deg2 = ( cosmo.comoving_volume(z_max) - cosmo.comoving_volume(z_min) ) * n.pi / 129600. volume_per_deg2_val = volume_per_deg2.value smf_ilbert13 = lambda M, M_star, phi_1s, alpha_1s, phi_2s, alpha_2s : ( phi_1s * (M/M_star) ** alpha_1s + phi_2s * (M/M_star) ** alpha_2s ) * n.e ** (-M/M_star) * (M/ M_star) path_ilbert13_SMF = os.path.join(os.environ['OBS_REPO'], 'spm/literature', "ilbert_2013_mass_function_params.txt") zmin, zmax, N, M_comp, M_star, phi_1s, alpha_1s, phi_2s, alpha_2s, log_rho_s = n.loadtxt(path_ilbert13_SMF, unpack=True) if z_min == 0.2 : smf01 = lambda mass : smf_ilbert13( mass , 10**M_star[0], phi_1s[0]*10**(-3), alpha_1s[0], phi_2s[0]*10**(-3), alpha_2s[0] ) area_deep2 = 0.5 if z_min == 0.5 : smf01 = lambda mass : smf_ilbert13( mass , 10**M_star[1], phi_1s[1]*10**(-3), alpha_1s[1], phi_2s[1]*10**(-3), alpha_2s[1] ) area_deep2 = 2.0 if z_min == 0.8 : smf01 = lambda mass : smf_ilbert13( mass , 10**M_star[2], phi_1s[2]*10**(-3), alpha_1s[2], phi_2s[2]*10**(-3), alpha_2s[2] ) area_deep2 = 2.0 if z_min == 1.1 : smf01 = lambda mass : smf_ilbert13( mass , 10**M_star[3], phi_1s[3]*10**(-3), alpha_1s[3], phi_2s[3]*10**(-3), alpha_2s[3] ) area_deep2 = 2.0 #print 10**M_star[0], phi_1s[0]*10**(-3), alpha_1s[0], phi_2s[0]*10**(-3), alpha_2s[0] fun = lambda mass :smf01(mass) # mass * masses = 10**n.arange(7,12,0.1) total_mass_per_unit_volume = n.array([quad(fun, mmin, 10**13)[0] for mmin in masses]) area_sdss = 7900. area_boss = 10000. area_cosmos = 1.52 volume_sdss = 7900. * volume_per_deg2_val volume_boss = 10000. * volume_per_deg2_val volume_cosmos = 1.52 * volume_per_deg2_val volume_deep2 = 2.78 * volume_per_deg2_val out_dir = os.path.join('/data42s/comparat/firefly/v1_1_0/figures/mass-functions') imfs = ["Chabrier_ELODIE_", "Chabrier_MILES_", "Chabrier_STELIB_", "Kroupa_ELODIE_", "Kroupa_MILES_", "Kroupa_STELIB_", "Salpeter_ELODIE_", "Salpeter_MILES_", "Salpeter_STELIB_" ] cosmos_dir = os.path.join(os.environ['OBS_REPO'], 'COSMOS', 'catalogs' ) path_2_cosmos_cat = os.path.join( cosmos_dir, "photoz-2.0", "photoz_vers2.0_010312.fits") #path_2_cosmos_cat = os.path.join( cosmos_dir, "COSMOS2015_Laigle+_v1.1.fits.gz") sdss_dir = os.path.join(os.environ['OBS_REPO'], 'SDSS') path_2_sdss_cat = os.path.join( sdss_dir, '26', 'catalogs', "FireFly.fits" ) path_2_eboss_cat = os.path.join( sdss_dir, 'v5_10_0', 'catalogs', "FireFly.fits" ) # DEEP SURVEYS deep2_dir = os.path.join(os.environ['OBS_REPO'], 'DEEP2') path_2_deep2_cat = os.path.join( deep2_dir, "zcat.deep2.dr4.v4.LFcatalogTC.Planck13.spm.v2.fits" ) # OPENS THE CATALOGS deep2 = fits.open(path_2_deep2_cat)[1].data sdss = fits.open(path_2_sdss_cat)[1].data boss = fits.open(path_2_eboss_cat)[1].data cosmos = fits.open(path_2_cosmos_cat)[1].data def get_basic_stat_DR14(catalog, z_name, z_err_name, class_name, zwarning, zflg_val, prefix, err_max): catalog_zOk =(catalog[z_err_name] > 0.) & (catalog[z_name] > catalog[z_err_name]) & (catalog[class_name]=='GALAXY') & (catalog[zwarning]==zflg_val) catalog_stat = (catalog_zOk) & (catalog[z_name] > z_min) & (catalog[z_name] < z_max) catalog_sel = (catalog_stat) & (catalog[prefix+'stellar_mass'] < 10**14. ) & (catalog[prefix+'stellar_mass'] > 0 ) & (catalog[prefix+'stellar_mass'] > catalog[prefix+'stellar_mass_low_1sig'] ) & (catalog[prefix+'stellar_mass'] < catalog[prefix+'stellar_mass_up_1sig'] ) & ( - n.log10(catalog[prefix+'stellar_mass_low_1sig']) + n.log10(catalog[prefix+'stellar_mass_up_1sig']) < err_max ) m_catalog = n.log10(catalog[prefix+'stellar_mass']) w_catalog = n.ones_like(catalog[prefix+'stellar_mass']) return catalog_sel, m_catalog, w_catalog def get_basic_stat_DEEP2(deep2, IMF, err_max): z_flg = 'ZQUALITY' z_name = 'ZBEST' stellar_mass = IMF+'stellar_mass' deep2_zOk = (deep2[z_name] > z_min) & (deep2[z_name] < z_max) & (deep2[z_flg]>=2.) & (deep2['SSR']>0) & (deep2['TSR']>0) & (deep2['SSR']<=1.0001) & (deep2['TSR']<=1.0001) ok_deep2_02 = (deep2_zOk) & (deep2[stellar_mass] < 10**14. ) & (deep2[stellar_mass] > 0. ) & ( - n.log10(deep2[stellar_mass+'_low']) + n.log10(deep2[stellar_mass+'_up']) < err_max) return ok_deep2_02, n.log10(deep2[stellar_mass][ok_deep2_02]), 1./(deep2['SSR'][ok_deep2_02]*deep2['TSR'][ok_deep2_02]) def get_hist(masses, weights, mbins): NN = n.histogram(masses, mbins)[0] NW = n.histogram(masses, mbins, weights = weights)[0] xx = (mbins[1:] + mbins[:-1])/2. return xx, NW, NN**(-0.5)*NW dlog10m = 0.25 mbins = n.arange(8.7,12.5,dlog10m) def plot_smf_b(IMF="Chabrier_ELODIE_", err_max=0.4): boss_sel, boss_m, boss_w = get_basic_stat_DR14(boss, 'Z_NOQSO', 'Z_ERR_NOQSO', 'CLASS_NOQSO', 'ZWARNING_NOQSO', 0., IMF, err_max) x, y, ye = get_hist(boss_m[boss_sel], weights = boss_w[boss_sel]/(dlog10m*n.log(10)*area_boss*volume_per_deg2_val), mbins = mbins) #sel = (y>0)&(ye>0)&(y>2*ye) return x, y, ye #x[sel], y[sel], ye[sel] #p.errorbar(x, y, yerr = ye, label=IMF[:-1], lw=1) def plot_smf_s(IMF="Chabrier_ELODIE_", err_max=0.4): boss_sel, boss_m, boss_w = get_basic_stat_DR14(sdss, 'Z', 'Z_ERR', 'CLASS', 'ZWARNING', 0., IMF, err_max) x, y, ye = get_hist(boss_m[boss_sel], weights = boss_w[boss_sel]/(dlog10m*n.log(10)*area_sdss*volume_per_deg2_val), mbins = mbins) sel = (y>0)&(ye>0)&(y>2*ye) return x, y, ye#x[sel], y[sel], ye[sel] #p.errorbar(x, y, yerr = ye, label=IMF[:-1], lw=1) def plot_smf_d(IMF="Chabrier_ELODIE_", err_max=0.4, area_deep2=0.5): boss_sel, boss_m, boss_w = get_basic_stat_DEEP2(deep2, IMF, err_max) x, y, ye = get_hist(boss_m, weights = boss_w/(dlog10m*n.log(10)*area_deep2*volume_per_deg2_val), mbins = mbins) sel = (y>0)&(ye>0)&(y>2*ye) return x, y, ye#x[sel], y[sel], ye[sel] xa, ya, yea = plot_smf_b("Chabrier_ELODIE_", 0.2*2) xb, yb, yeb = plot_smf_b("Chabrier_MILES_", 0.2*2) xc, yc, yec = plot_smf_b("Chabrier_STELIB_", 0.2*2) #xc, yc, yec = xc[1:-1], yc[1:-1], yec[1:-1] xd, yd, yed = plot_smf_s("Chabrier_ELODIE_", 0.2*2) xe, ye, yee = plot_smf_s("Chabrier_MILES_", 0.2*2) xf, yf, yef = plot_smf_s("Chabrier_STELIB_", 0.2*2) #xf, yf, yef = xf[2:], yf[2:], yef[2:] xg, yg, yeg = plot_smf_d("Chabrier_ELODIE_", 0.2*2, area_deep2=area_deep2) xh, yh, yeh = plot_smf_d("Chabrier_MILES_", 0.2*2, area_deep2=area_deep2) #xh, yh, yeh = xh[:-1], yh[:-1], yeh[:-1] xi, yi, yei = plot_smf_d("Chabrier_STELIB_", 0.2*2, area_deep2=area_deep2) #xi, yi, yei = xi[:-1], yi[:-1], yei[:-1] p.figure(1, (4.5,4.5)) p.axes([0.19,0.17,0.74,0.72]) p.fill_between( mbins, y1=smf01(10**mbins)*0.77, y2=smf01(10**mbins)*1.23, color='g', alpha=0.5) p.plot(mbins, smf01(10**mbins), label='Ilbert 13', color='g') #p.plot(mbins, smf01(10**mbins)*gf['r18'](mbins), label='G17 r<18', ls='dashed', lw=2) #p.plot(mbins, smf01(10**mbins)*gf['r19'](mbins), label='G17 r<19', ls='dashed', lw=2) #p.plot(mbins, smf01(10**mbins)*gf['r20'](mbins), label='G17 r<20', ls='dashed', lw=2) p.plot(logm_m13_05[:-3], 10**smf_m13_05[:-3], color='m', label='M13 z=0.5') #p.plot(logm_m13_065, 10**smf_m13_65, label='M13 z=0.65') print(ya, yb, yc) print(yea, yeb, yec) p.fill_between( xa, y1=n.min([ya-yea, yb-yeb, yc-yec], axis=0), y2=n.max([ya+yea, yb+yeb, yc+yec], axis=0), color='r', alpha=0.5) p.plot(xa, n.mean([ya, yb, yc], axis=0), label=r'BOSS, eBOSS', color='r') p.fill_between( xd, y1=n.min([yd-yed, ye-yee, yf-yef], axis=0), y2=n.max([yd+yed, ye+yee, yf+yef], axis=0), color='b', alpha=0.5) p.plot(xd, n.mean([yd, ye, yf], axis=0), label=r'SDSS', color='b') p.fill_between( xg, y1=n.min([yg-yeg, yh-yeh, yi-yei], axis=0), y2=n.max([yg+yeg, yh+yeh, yi+yei], axis=0), color='k', alpha=0.5) p.plot(xg, n.mean([yg, yh, yi], axis=0), label=r'DEEP2', color='k') p.title('Chabrier IMF '+str(z_min)+'<z<'+str(z_max)) p.xlabel(r"$\log_{10}$ (M / $M_\odot$ )") p.ylabel(r'$\Phi(M)$ [Mpc$^{-3}$ dex$^{-1}$]') p.yscale('log') p.legend(loc=6, frameon = False) p.ylim((1e-8, 1e-2)) p.xlim((9.5, 12.2)) p.grid() p.savefig(os.path.join(out_dir, "firefly_SMF_BOSS_"+str(z_min)+'_z_'+str(z_max)+".png" )) p.clf() sys.exit() imf = imfs[0] stellar_mass = imf+'stellar_mass' redshift_reliable_boss = (boss['CLASS_NOQSO'] == "GALAXY") & ( boss['Z_ERR_NOQSO'] > 0.0) & (boss['ZWARNING_NOQSO'] == 0) & (boss['Z_NOQSO']>0.001) & (boss['Z_NOQSO'] > boss['Z_ERR_NOQSO'] ) # (boss['SN_MEDIAN_ALL'] > 0.1 ) & error_reliable_boss = (boss[stellar_mass+'_up'] > boss[stellar_mass+'_low'] ) & (boss[stellar_mass+'_up'] > 0. ) & ( boss[stellar_mass+'_low'] > 0. ) & (boss[stellar_mass+'_up'] < 1e14 ) & ( boss[stellar_mass+'_low'] < 1e14 ) mass_reliable_boss_02 = (boss[stellar_mass] > 1e6 ) & ( boss[stellar_mass] < 1e14 ) & ((n.log10(boss[stellar_mass+'_up']) - n.log10(boss[stellar_mass+'_low']))/2. < 0.2 ) mass_reliable_boss_04 = (boss[stellar_mass] > 1e6 ) & ( boss[stellar_mass] < 1e14 ) & ((n.log10(boss[stellar_mass+'_up']) - n.log10(boss[stellar_mass+'_low']))/2. < 0.4 ) ok_boss_02 = (error_reliable_boss) & (mass_reliable_boss_02) & (redshift_reliable_boss)& (boss['Z_NOQSO']>z_min)& (boss['Z_NOQSO']<z_max) ok_boss_04 = (error_reliable_boss) & (mass_reliable_boss_04) & (redshift_reliable_boss)& (boss['Z_NOQSO']>z_min)& (boss['Z_NOQSO']<z_max) redshift_reliable_sdss = (sdss['CLASS'] == "GALAXY") & ( sdss['Z_ERR'] > 0.0) & (sdss['ZWARNING'] == 0) & (sdss['Z'] > 0.001) & (sdss['Z'] > sdss['Z_ERR'] ) # (sdss['SN_MEDIAN_ALL'] > 0.1 ) & error_reliable_sdss = (sdss[stellar_mass+'_up'] > sdss[stellar_mass+'_low'] ) & (sdss[stellar_mass+'_up'] > 0. ) & ( sdss[stellar_mass+'_low'] > 0. ) & (sdss[stellar_mass+'_up'] < 1e14 ) & ( sdss[stellar_mass+'_low'] < 1e14 ) mass_reliable_sdss_02 = (sdss[stellar_mass] > 1e6 ) & ( sdss[stellar_mass] < 1e14 ) & ((n.log10(sdss[stellar_mass+'_up']) - n.log10(sdss[stellar_mass+'_low']))/2. < 0.2 ) mass_reliable_sdss_04 = (sdss[stellar_mass] > 1e6 ) & ( sdss[stellar_mass] < 1e14 ) & ((n.log10(sdss[stellar_mass+'_up']) - n.log10(sdss[stellar_mass+'_low']))/2. < 0.4 ) ok_sdss_02 = (error_reliable_sdss) & (mass_reliable_sdss_02) & (redshift_reliable_sdss)& (sdss['Z']>z_min)& (sdss['Z']<z_max) ok_sdss_04 = (error_reliable_sdss) & (mass_reliable_sdss_04) & (redshift_reliable_sdss)& (sdss['Z']>z_min)& (sdss['Z']<z_max) z_flg = 'ZQUALITY' z_name = 'ZBEST' deep2_zOk = (deep2[z_name] > 0.001) & (deep2[z_flg]>=2.) & (deep2[z_name] < 1.7) & (deep2['SSR']>0) & (deep2['TSR']>0) & (deep2['SSR']<=1.0001) & (deep2['TSR']<=1.0001) ok_deep2_02 = (deep2_zOk) & (deep2[stellar_mass] < 10**14. ) & (deep2[stellar_mass] > 0. ) & (deep2[stellar_mass] >= deep2[stellar_mass+'_low'] ) & (deep2[stellar_mass] <= deep2[stellar_mass+'_up'] ) & ( - n.log10(deep2[stellar_mass+'_low']) + n.log10(deep2[stellar_mass+'_up']) < 0.4 ) ok_deep2_04 = (deep2_zOk) & (deep2[stellar_mass] < 10**14. ) & (deep2[stellar_mass] > 0. ) & (deep2[stellar_mass] >= deep2[stellar_mass+'_low'] ) & (deep2[stellar_mass] <= deep2[stellar_mass+'_up'] ) & ( - n.log10(deep2[stellar_mass+'_low']) + n.log10(deep2[stellar_mass+'_up']) < 0.8 ) total_mass_boss_02 = n.array([ n.sum(boss[stellar_mass][ok_boss_02 & (boss[stellar_mass] > mmin)]) for mmin in masses ]) total_mass_boss_04 = n.array([ n.sum(boss[stellar_mass][ok_boss_04 & (boss[stellar_mass] > mmin)]) for mmin in masses ]) total_mass_sdss_02 = n.array([ n.sum(sdss[stellar_mass][ok_sdss_02 & (sdss[stellar_mass] > mmin)]) for mmin in masses ]) total_mass_sdss_04 = n.array([ n.sum(sdss[stellar_mass][ok_sdss_04 & (sdss[stellar_mass] > mmin)]) for mmin in masses ]) total_mass_deep2_02 = n.array([ n.sum(deep2[stellar_mass][ok_deep2_02 & (deep2[stellar_mass] > mmin)]) for mmin in masses ]) total_mass_deep2_04 = n.array([ n.sum(deep2[stellar_mass][ok_deep2_04 & (deep2[stellar_mass] > mmin)]) for mmin in masses ]) p.figure(1, (4.5, 4.5)) p.axes([0.2,0.2,0.7,0.7]) total = total_mass_per_unit_volume * volume_boss p.plot(masses, total_mass_boss_02/total, label='BOSS 0.2' ) #p.plot(masses, total_mass_boss_04/total, label='BOSS 0.4' ) total = total_mass_per_unit_volume * volume_sdss p.plot(masses, total_mass_sdss_02/total, label='SDSS 0.2' ) #p.plot(masses, total_mass_sdss_04/total, label='SDSS 0.4' ) total = total_mass_per_unit_volume * volume_deep2 p.plot(masses, total_mass_deep2_02/total, label='DEEP2 0.2' ) #p.plot(masses, total_mass_deep2_04/total, label='DEEP2 0.4' ) p.legend(frameon=False, loc=0) p.xlabel('Mmin') p.ylabel('Mass fraction (M>Mmin)') p.title(str(z_min)+'<z<'+str(z_max)) p.xscale('log') p.yscale('log') p.ylim((0.001,2)) p.xlim((1e7,10**(12.5))) p.grid() p.savefig(os.path.join(out_dir, "mass_density"+imf+"_"+str(z_min)+'_z_'+str(z_max)+".jpg" )) p.clf()
cc0-1.0
TomAugspurger/pandas
pandas/tests/indexes/period/test_factorize.py
8
1267
import numpy as np from pandas import PeriodIndex import pandas._testing as tm class TestFactorize: def test_factorize(self): idx1 = PeriodIndex( ["2014-01", "2014-01", "2014-02", "2014-02", "2014-03", "2014-03"], freq="M" ) exp_arr = np.array([0, 0, 1, 1, 2, 2], dtype=np.intp) exp_idx = PeriodIndex(["2014-01", "2014-02", "2014-03"], freq="M") arr, idx = idx1.factorize() tm.assert_numpy_array_equal(arr, exp_arr) tm.assert_index_equal(idx, exp_idx) arr, idx = idx1.factorize(sort=True) tm.assert_numpy_array_equal(arr, exp_arr) tm.assert_index_equal(idx, exp_idx) idx2 = PeriodIndex( ["2014-03", "2014-03", "2014-02", "2014-01", "2014-03", "2014-01"], freq="M" ) exp_arr = np.array([2, 2, 1, 0, 2, 0], dtype=np.intp) arr, idx = idx2.factorize(sort=True) tm.assert_numpy_array_equal(arr, exp_arr) tm.assert_index_equal(idx, exp_idx) exp_arr = np.array([0, 0, 1, 2, 0, 2], dtype=np.intp) exp_idx = PeriodIndex(["2014-03", "2014-02", "2014-01"], freq="M") arr, idx = idx2.factorize() tm.assert_numpy_array_equal(arr, exp_arr) tm.assert_index_equal(idx, exp_idx)
bsd-3-clause
MartinDelzant/scikit-learn
examples/linear_model/plot_sgd_comparison.py
77
1820
""" ================================== Comparing various online solvers ================================== An example showing how different online solvers perform on the hand-written digits dataset. """ # Author: Rob Zinkov <rob at zinkov dot com> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.cross_validation import train_test_split from sklearn.linear_model import SGDClassifier, Perceptron from sklearn.linear_model import PassiveAggressiveClassifier from sklearn.linear_model import LogisticRegression heldout = [0.95, 0.90, 0.75, 0.50, 0.01] rounds = 20 digits = datasets.load_digits() X, y = digits.data, digits.target classifiers = [ ("SGD", SGDClassifier()), ("ASGD", SGDClassifier(average=True)), ("Perceptron", Perceptron()), ("Passive-Aggressive I", PassiveAggressiveClassifier(loss='hinge', C=1.0)), ("Passive-Aggressive II", PassiveAggressiveClassifier(loss='squared_hinge', C=1.0)), ("SAG", LogisticRegression(solver='sag', tol=1e-1, C=1.e4 / X.shape[0])) ] xx = 1. - np.array(heldout) for name, clf in classifiers: print("training %s" % name) rng = np.random.RandomState(42) yy = [] for i in heldout: yy_ = [] for r in range(rounds): X_train, X_test, y_train, y_test = \ train_test_split(X, y, test_size=i, random_state=rng) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) yy_.append(1 - np.mean(y_pred == y_test)) yy.append(np.mean(yy_)) plt.plot(xx, yy, label=name) plt.legend(loc="upper right") plt.xlabel("Proportion train") plt.ylabel("Test Error Rate") plt.show()
bsd-3-clause
glennq/scikit-learn
benchmarks/bench_plot_neighbors.py
101
6469
""" Plot the scaling of the nearest neighbors algorithms with k, D, and N """ from time import time import numpy as np import matplotlib.pyplot as plt from matplotlib import ticker from sklearn import neighbors, datasets def get_data(N, D, dataset='dense'): if dataset == 'dense': np.random.seed(0) return np.random.random((N, D)) elif dataset == 'digits': X = datasets.load_digits().data i = np.argsort(X[0])[::-1] X = X[:, i] return X[:N, :D] else: raise ValueError("invalid dataset: %s" % dataset) def barplot_neighbors(Nrange=2 ** np.arange(1, 11), Drange=2 ** np.arange(7), krange=2 ** np.arange(10), N=1000, D=64, k=5, leaf_size=30, dataset='digits'): algorithms = ('kd_tree', 'brute', 'ball_tree') fiducial_values = {'N': N, 'D': D, 'k': k} #------------------------------------------------------------ # varying N N_results_build = dict([(alg, np.zeros(len(Nrange))) for alg in algorithms]) N_results_query = dict([(alg, np.zeros(len(Nrange))) for alg in algorithms]) for i, NN in enumerate(Nrange): print("N = %i (%i out of %i)" % (NN, i + 1, len(Nrange))) X = get_data(NN, D, dataset) for algorithm in algorithms: nbrs = neighbors.NearestNeighbors(n_neighbors=min(NN, k), algorithm=algorithm, leaf_size=leaf_size) t0 = time() nbrs.fit(X) t1 = time() nbrs.kneighbors(X) t2 = time() N_results_build[algorithm][i] = (t1 - t0) N_results_query[algorithm][i] = (t2 - t1) #------------------------------------------------------------ # varying D D_results_build = dict([(alg, np.zeros(len(Drange))) for alg in algorithms]) D_results_query = dict([(alg, np.zeros(len(Drange))) for alg in algorithms]) for i, DD in enumerate(Drange): print("D = %i (%i out of %i)" % (DD, i + 1, len(Drange))) X = get_data(N, DD, dataset) for algorithm in algorithms: nbrs = neighbors.NearestNeighbors(n_neighbors=k, algorithm=algorithm, leaf_size=leaf_size) t0 = time() nbrs.fit(X) t1 = time() nbrs.kneighbors(X) t2 = time() D_results_build[algorithm][i] = (t1 - t0) D_results_query[algorithm][i] = (t2 - t1) #------------------------------------------------------------ # varying k k_results_build = dict([(alg, np.zeros(len(krange))) for alg in algorithms]) k_results_query = dict([(alg, np.zeros(len(krange))) for alg in algorithms]) X = get_data(N, DD, dataset) for i, kk in enumerate(krange): print("k = %i (%i out of %i)" % (kk, i + 1, len(krange))) for algorithm in algorithms: nbrs = neighbors.NearestNeighbors(n_neighbors=kk, algorithm=algorithm, leaf_size=leaf_size) t0 = time() nbrs.fit(X) t1 = time() nbrs.kneighbors(X) t2 = time() k_results_build[algorithm][i] = (t1 - t0) k_results_query[algorithm][i] = (t2 - t1) plt.figure(figsize=(8, 11)) for (sbplt, vals, quantity, build_time, query_time) in [(311, Nrange, 'N', N_results_build, N_results_query), (312, Drange, 'D', D_results_build, D_results_query), (313, krange, 'k', k_results_build, k_results_query)]: ax = plt.subplot(sbplt, yscale='log') plt.grid(True) tick_vals = [] tick_labels = [] bottom = 10 ** np.min([min(np.floor(np.log10(build_time[alg]))) for alg in algorithms]) for i, alg in enumerate(algorithms): xvals = 0.1 + i * (1 + len(vals)) + np.arange(len(vals)) width = 0.8 c_bar = plt.bar(xvals, build_time[alg] - bottom, width, bottom, color='r') q_bar = plt.bar(xvals, query_time[alg], width, build_time[alg], color='b') tick_vals += list(xvals + 0.5 * width) tick_labels += ['%i' % val for val in vals] plt.text((i + 0.02) / len(algorithms), 0.98, alg, transform=ax.transAxes, ha='left', va='top', bbox=dict(facecolor='w', edgecolor='w', alpha=0.5)) plt.ylabel('Time (s)') ax.xaxis.set_major_locator(ticker.FixedLocator(tick_vals)) ax.xaxis.set_major_formatter(ticker.FixedFormatter(tick_labels)) for label in ax.get_xticklabels(): label.set_rotation(-90) label.set_fontsize(10) title_string = 'Varying %s' % quantity descr_string = '' for s in 'NDk': if s == quantity: pass else: descr_string += '%s = %i, ' % (s, fiducial_values[s]) descr_string = descr_string[:-2] plt.text(1.01, 0.5, title_string, transform=ax.transAxes, rotation=-90, ha='left', va='center', fontsize=20) plt.text(0.99, 0.5, descr_string, transform=ax.transAxes, rotation=-90, ha='right', va='center') plt.gcf().suptitle("%s data set" % dataset.capitalize(), fontsize=16) plt.figlegend((c_bar, q_bar), ('construction', 'N-point query'), 'upper right') if __name__ == '__main__': barplot_neighbors(dataset='digits') barplot_neighbors(dataset='dense') plt.show()
bsd-3-clause
zorroblue/scikit-learn
sklearn/datasets/__init__.py
61
3734
""" The :mod:`sklearn.datasets` module includes utilities to load datasets, including methods to load and fetch popular reference datasets. It also features some artificial data generators. """ from .base import load_breast_cancer from .base import load_boston from .base import load_diabetes from .base import load_digits from .base import load_files from .base import load_iris from .base import load_linnerud from .base import load_sample_images from .base import load_sample_image from .base import load_wine from .base import get_data_home from .base import clear_data_home from .covtype import fetch_covtype from .kddcup99 import fetch_kddcup99 from .mlcomp import load_mlcomp from .lfw import fetch_lfw_pairs from .lfw import fetch_lfw_people from .twenty_newsgroups import fetch_20newsgroups from .twenty_newsgroups import fetch_20newsgroups_vectorized from .mldata import fetch_mldata, mldata_filename from .samples_generator import make_classification from .samples_generator import make_multilabel_classification from .samples_generator import make_hastie_10_2 from .samples_generator import make_regression from .samples_generator import make_blobs from .samples_generator import make_moons from .samples_generator import make_circles from .samples_generator import make_friedman1 from .samples_generator import make_friedman2 from .samples_generator import make_friedman3 from .samples_generator import make_low_rank_matrix from .samples_generator import make_sparse_coded_signal from .samples_generator import make_sparse_uncorrelated from .samples_generator import make_spd_matrix from .samples_generator import make_swiss_roll from .samples_generator import make_s_curve from .samples_generator import make_sparse_spd_matrix from .samples_generator import make_gaussian_quantiles from .samples_generator import make_biclusters from .samples_generator import make_checkerboard from .svmlight_format import load_svmlight_file from .svmlight_format import load_svmlight_files from .svmlight_format import dump_svmlight_file from .olivetti_faces import fetch_olivetti_faces from .species_distributions import fetch_species_distributions from .california_housing import fetch_california_housing from .rcv1 import fetch_rcv1 __all__ = ['clear_data_home', 'dump_svmlight_file', 'fetch_20newsgroups', 'fetch_20newsgroups_vectorized', 'fetch_lfw_pairs', 'fetch_lfw_people', 'fetch_mldata', 'fetch_olivetti_faces', 'fetch_species_distributions', 'fetch_california_housing', 'fetch_covtype', 'fetch_rcv1', 'fetch_kddcup99', 'get_data_home', 'load_boston', 'load_diabetes', 'load_digits', 'load_files', 'load_iris', 'load_breast_cancer', 'load_linnerud', 'load_mlcomp', 'load_sample_image', 'load_sample_images', 'load_svmlight_file', 'load_svmlight_files', 'load_wine', 'make_biclusters', 'make_blobs', 'make_circles', 'make_classification', 'make_checkerboard', 'make_friedman1', 'make_friedman2', 'make_friedman3', 'make_gaussian_quantiles', 'make_hastie_10_2', 'make_low_rank_matrix', 'make_moons', 'make_multilabel_classification', 'make_regression', 'make_s_curve', 'make_sparse_coded_signal', 'make_sparse_spd_matrix', 'make_sparse_uncorrelated', 'make_spd_matrix', 'make_swiss_roll', 'mldata_filename']
bsd-3-clause
zhenv5/scikit-learn
sklearn/cross_decomposition/tests/test_pls.py
215
11427
import numpy as np from sklearn.utils.testing import (assert_array_almost_equal, assert_array_equal, assert_true, assert_raise_message) from sklearn.datasets import load_linnerud from sklearn.cross_decomposition import pls_ from nose.tools import assert_equal def test_pls(): d = load_linnerud() X = d.data Y = d.target # 1) Canonical (symmetric) PLS (PLS 2 blocks canonical mode A) # =========================================================== # Compare 2 algo.: nipals vs. svd # ------------------------------ pls_bynipals = pls_.PLSCanonical(n_components=X.shape[1]) pls_bynipals.fit(X, Y) pls_bysvd = pls_.PLSCanonical(algorithm="svd", n_components=X.shape[1]) pls_bysvd.fit(X, Y) # check equalities of loading (up to the sign of the second column) assert_array_almost_equal( pls_bynipals.x_loadings_, np.multiply(pls_bysvd.x_loadings_, np.array([1, -1, 1])), decimal=5, err_msg="nipals and svd implementation lead to different x loadings") assert_array_almost_equal( pls_bynipals.y_loadings_, np.multiply(pls_bysvd.y_loadings_, np.array([1, -1, 1])), decimal=5, err_msg="nipals and svd implementation lead to different y loadings") # Check PLS properties (with n_components=X.shape[1]) # --------------------------------------------------- plsca = pls_.PLSCanonical(n_components=X.shape[1]) plsca.fit(X, Y) T = plsca.x_scores_ P = plsca.x_loadings_ Wx = plsca.x_weights_ U = plsca.y_scores_ Q = plsca.y_loadings_ Wy = plsca.y_weights_ def check_ortho(M, err_msg): K = np.dot(M.T, M) assert_array_almost_equal(K, np.diag(np.diag(K)), err_msg=err_msg) # Orthogonality of weights # ~~~~~~~~~~~~~~~~~~~~~~~~ check_ortho(Wx, "x weights are not orthogonal") check_ortho(Wy, "y weights are not orthogonal") # Orthogonality of latent scores # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ check_ortho(T, "x scores are not orthogonal") check_ortho(U, "y scores are not orthogonal") # Check X = TP' and Y = UQ' (with (p == q) components) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # center scale X, Y Xc, Yc, x_mean, y_mean, x_std, y_std =\ pls_._center_scale_xy(X.copy(), Y.copy(), scale=True) assert_array_almost_equal(Xc, np.dot(T, P.T), err_msg="X != TP'") assert_array_almost_equal(Yc, np.dot(U, Q.T), err_msg="Y != UQ'") # Check that rotations on training data lead to scores # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Xr = plsca.transform(X) assert_array_almost_equal(Xr, plsca.x_scores_, err_msg="rotation on X failed") Xr, Yr = plsca.transform(X, Y) assert_array_almost_equal(Xr, plsca.x_scores_, err_msg="rotation on X failed") assert_array_almost_equal(Yr, plsca.y_scores_, err_msg="rotation on Y failed") # "Non regression test" on canonical PLS # -------------------------------------- # The results were checked against the R-package plspm pls_ca = pls_.PLSCanonical(n_components=X.shape[1]) pls_ca.fit(X, Y) x_weights = np.array( [[-0.61330704, 0.25616119, -0.74715187], [-0.74697144, 0.11930791, 0.65406368], [-0.25668686, -0.95924297, -0.11817271]]) assert_array_almost_equal(pls_ca.x_weights_, x_weights) x_rotations = np.array( [[-0.61330704, 0.41591889, -0.62297525], [-0.74697144, 0.31388326, 0.77368233], [-0.25668686, -0.89237972, -0.24121788]]) assert_array_almost_equal(pls_ca.x_rotations_, x_rotations) y_weights = np.array( [[+0.58989127, 0.7890047, 0.1717553], [+0.77134053, -0.61351791, 0.16920272], [-0.23887670, -0.03267062, 0.97050016]]) assert_array_almost_equal(pls_ca.y_weights_, y_weights) y_rotations = np.array( [[+0.58989127, 0.7168115, 0.30665872], [+0.77134053, -0.70791757, 0.19786539], [-0.23887670, -0.00343595, 0.94162826]]) assert_array_almost_equal(pls_ca.y_rotations_, y_rotations) # 2) Regression PLS (PLS2): "Non regression test" # =============================================== # The results were checked against the R-packages plspm, misOmics and pls pls_2 = pls_.PLSRegression(n_components=X.shape[1]) pls_2.fit(X, Y) x_weights = np.array( [[-0.61330704, -0.00443647, 0.78983213], [-0.74697144, -0.32172099, -0.58183269], [-0.25668686, 0.94682413, -0.19399983]]) assert_array_almost_equal(pls_2.x_weights_, x_weights) x_loadings = np.array( [[-0.61470416, -0.24574278, 0.78983213], [-0.65625755, -0.14396183, -0.58183269], [-0.51733059, 1.00609417, -0.19399983]]) assert_array_almost_equal(pls_2.x_loadings_, x_loadings) y_weights = np.array( [[+0.32456184, 0.29892183, 0.20316322], [+0.42439636, 0.61970543, 0.19320542], [-0.13143144, -0.26348971, -0.17092916]]) assert_array_almost_equal(pls_2.y_weights_, y_weights) y_loadings = np.array( [[+0.32456184, 0.29892183, 0.20316322], [+0.42439636, 0.61970543, 0.19320542], [-0.13143144, -0.26348971, -0.17092916]]) assert_array_almost_equal(pls_2.y_loadings_, y_loadings) # 3) Another non-regression test of Canonical PLS on random dataset # ================================================================= # The results were checked against the R-package plspm n = 500 p_noise = 10 q_noise = 5 # 2 latents vars: np.random.seed(11) l1 = np.random.normal(size=n) l2 = np.random.normal(size=n) latents = np.array([l1, l1, l2, l2]).T X = latents + np.random.normal(size=4 * n).reshape((n, 4)) Y = latents + np.random.normal(size=4 * n).reshape((n, 4)) X = np.concatenate( (X, np.random.normal(size=p_noise * n).reshape(n, p_noise)), axis=1) Y = np.concatenate( (Y, np.random.normal(size=q_noise * n).reshape(n, q_noise)), axis=1) np.random.seed(None) pls_ca = pls_.PLSCanonical(n_components=3) pls_ca.fit(X, Y) x_weights = np.array( [[0.65803719, 0.19197924, 0.21769083], [0.7009113, 0.13303969, -0.15376699], [0.13528197, -0.68636408, 0.13856546], [0.16854574, -0.66788088, -0.12485304], [-0.03232333, -0.04189855, 0.40690153], [0.1148816, -0.09643158, 0.1613305], [0.04792138, -0.02384992, 0.17175319], [-0.06781, -0.01666137, -0.18556747], [-0.00266945, -0.00160224, 0.11893098], [-0.00849528, -0.07706095, 0.1570547], [-0.00949471, -0.02964127, 0.34657036], [-0.03572177, 0.0945091, 0.3414855], [0.05584937, -0.02028961, -0.57682568], [0.05744254, -0.01482333, -0.17431274]]) assert_array_almost_equal(pls_ca.x_weights_, x_weights) x_loadings = np.array( [[0.65649254, 0.1847647, 0.15270699], [0.67554234, 0.15237508, -0.09182247], [0.19219925, -0.67750975, 0.08673128], [0.2133631, -0.67034809, -0.08835483], [-0.03178912, -0.06668336, 0.43395268], [0.15684588, -0.13350241, 0.20578984], [0.03337736, -0.03807306, 0.09871553], [-0.06199844, 0.01559854, -0.1881785], [0.00406146, -0.00587025, 0.16413253], [-0.00374239, -0.05848466, 0.19140336], [0.00139214, -0.01033161, 0.32239136], [-0.05292828, 0.0953533, 0.31916881], [0.04031924, -0.01961045, -0.65174036], [0.06172484, -0.06597366, -0.1244497]]) assert_array_almost_equal(pls_ca.x_loadings_, x_loadings) y_weights = np.array( [[0.66101097, 0.18672553, 0.22826092], [0.69347861, 0.18463471, -0.23995597], [0.14462724, -0.66504085, 0.17082434], [0.22247955, -0.6932605, -0.09832993], [0.07035859, 0.00714283, 0.67810124], [0.07765351, -0.0105204, -0.44108074], [-0.00917056, 0.04322147, 0.10062478], [-0.01909512, 0.06182718, 0.28830475], [0.01756709, 0.04797666, 0.32225745]]) assert_array_almost_equal(pls_ca.y_weights_, y_weights) y_loadings = np.array( [[0.68568625, 0.1674376, 0.0969508], [0.68782064, 0.20375837, -0.1164448], [0.11712173, -0.68046903, 0.12001505], [0.17860457, -0.6798319, -0.05089681], [0.06265739, -0.0277703, 0.74729584], [0.0914178, 0.00403751, -0.5135078], [-0.02196918, -0.01377169, 0.09564505], [-0.03288952, 0.09039729, 0.31858973], [0.04287624, 0.05254676, 0.27836841]]) assert_array_almost_equal(pls_ca.y_loadings_, y_loadings) # Orthogonality of weights # ~~~~~~~~~~~~~~~~~~~~~~~~ check_ortho(pls_ca.x_weights_, "x weights are not orthogonal") check_ortho(pls_ca.y_weights_, "y weights are not orthogonal") # Orthogonality of latent scores # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ check_ortho(pls_ca.x_scores_, "x scores are not orthogonal") check_ortho(pls_ca.y_scores_, "y scores are not orthogonal") def test_PLSSVD(): # Let's check the PLSSVD doesn't return all possible component but just # the specificied number d = load_linnerud() X = d.data Y = d.target n_components = 2 for clf in [pls_.PLSSVD, pls_.PLSRegression, pls_.PLSCanonical]: pls = clf(n_components=n_components) pls.fit(X, Y) assert_equal(n_components, pls.y_scores_.shape[1]) def test_univariate_pls_regression(): # Ensure 1d Y is correctly interpreted d = load_linnerud() X = d.data Y = d.target clf = pls_.PLSRegression() # Compare 1d to column vector model1 = clf.fit(X, Y[:, 0]).coef_ model2 = clf.fit(X, Y[:, :1]).coef_ assert_array_almost_equal(model1, model2) def test_predict_transform_copy(): # check that the "copy" keyword works d = load_linnerud() X = d.data Y = d.target clf = pls_.PLSCanonical() X_copy = X.copy() Y_copy = Y.copy() clf.fit(X, Y) # check that results are identical with copy assert_array_almost_equal(clf.predict(X), clf.predict(X.copy(), copy=False)) assert_array_almost_equal(clf.transform(X), clf.transform(X.copy(), copy=False)) # check also if passing Y assert_array_almost_equal(clf.transform(X, Y), clf.transform(X.copy(), Y.copy(), copy=False)) # check that copy doesn't destroy # we do want to check exact equality here assert_array_equal(X_copy, X) assert_array_equal(Y_copy, Y) # also check that mean wasn't zero before (to make sure we didn't touch it) assert_true(np.all(X.mean(axis=0) != 0)) def test_scale(): d = load_linnerud() X = d.data Y = d.target # causes X[:, -1].std() to be zero X[:, -1] = 1.0 for clf in [pls_.PLSCanonical(), pls_.PLSRegression(), pls_.PLSSVD()]: clf.set_params(scale=True) clf.fit(X, Y) def test_pls_errors(): d = load_linnerud() X = d.data Y = d.target for clf in [pls_.PLSCanonical(), pls_.PLSRegression(), pls_.PLSSVD()]: clf.n_components = 4 assert_raise_message(ValueError, "Invalid number of components", clf.fit, X, Y)
bsd-3-clause
architecture-building-systems/CEAforArcGIS
cea/optimization/preprocessing/processheat.py
2
2143
""" Boiler Pre-treatment for Heat Processing At the moment, process heat is excluded form the optimization process. It is considered that whenever the case, the most competitive alternative is to have a dedicated natural gas boiler """ import pandas as pd from cea.technologies import boiler from cea.technologies.constants import BOILER_ETA_HP from cea.constants import HOURS_IN_YEAR, WH_TO_J def calc_pareto_Qhp(locator, total_demand, prices, lca): """ This function calculates the contribution to the pareto optimal results of process heating, :param locator: locator class :param total_demand: dataframe with building demand :type locator: class :type total_demand: class :return: hpCosts, hpCO2, hpPrim :rtype: tuple """ hpCosts = 0 hpCO2 = 0 hpPrim = 0 boiler_cost_data = pd.read_excel(locator.get_database_conversion_systems(), sheet_name="Boiler") if total_demand["Qhpro_sys_MWhyr"].sum()>0: df = total_demand[total_demand.Qhpro_sys_MWhyr != 0] for name in df.Name : # Extract process heat needs Qhpro_sys_kWh = pd.read_csv(locator.get_demand_results_file(name), usecols=["Qhpro_sys_kWh"]).Qhpro_sys_kWh.values Qnom_Wh = 0 Qannual_Wh = 0 # Operation costs / CO2 / Prim for i in range(HOURS_IN_YEAR): Qgas_Wh = Qhpro_sys_kWh[i] * 1E3 / BOILER_ETA_HP # [Wh] Assumed 0.9 efficiency if Qgas_Wh < Qnom_Wh: Qnom_Wh = Qgas_Wh Qannual_Wh += Qgas_Wh hpCosts += Qgas_Wh * prices.NG_PRICE # [CHF] hpCO2 += Qgas_Wh * WH_TO_J / 1.0E6 * lca.NG_BACKUPBOILER_TO_CO2_STD / 1E3 # [ton CO2] hpPrim += Qgas_Wh * WH_TO_J / 1.0E6 * lca.NG_BACKUPBOILER_TO_OIL_STD # [MJ-oil-eq] # Investment costs Capex_a_hp_USD, Opex_fixed_hp_USD, Capex_hp_USD = boiler.calc_Cinv_boiler(Qnom_Wh, 'BO1', boiler_cost_data) hpCosts += (Capex_a_hp_USD + Opex_fixed_hp_USD) else: hpCosts = hpCO2 = hpPrim = 0 return hpCosts, hpCO2, hpPrim
mit
QUANTAXIS/QUANTAXIS
QUANTAXIS/QAData/QASeriesStruct.py
2
2868
# coding:utf-8 # # The MIT License (MIT) # # Copyright (c) 2016-2021 yutiansut/QUANTAXIS # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from copy import deepcopy import numpy as np import pandas as pd class QA_DataStruct_Series(): def __init__(self, series): self.series = series.sort_index() if isinstance(series.index, pd.core.indexes.multi.MultiIndex): self.if_multiindex=True self.index = series.index.remove_unused_levels() else: self.if_multiindex=False self.index = series.index def __repr__(self): return '< QA_DATASTRUCT_SEIRES >' def __call__(self): return self.series @property def code(self): if self.if_multiindex: return self.index.levels[1].tolist() else: return None @property def datetime(self): if self.if_multiindex: return self.index.levels[0].tolist() elif (self.index,pd.core.indexes.datetimes.DatetimeIndex): return self.index else: return None @property def date(self): if self.if_multiindex: return np.unique(self.index.levels[0].date).tolist() elif (self.index,pd.core.indexes.datetimes.DatetimeIndex): return np.unique(self.index.date).tolist() else: return None def new(self, series): temp = deepcopy(self) temp.__init__(series) return temp def select_code(self, code): return self.new(self.series.loc[(slice(None), code)]) def select_time(self, start, end=None): if end is None: return self.new(self.series.loc[(pd.Timestamp(start), slice(None))]) else: return self.new(self.series.loc[(slice(pd.Timestamp(start), pd.Timestamp(end)), slice(None))])
mit
MartinsMednis/dynamic-modelling-tools
modeler.py
1
3993
#!/usr/bin/python3 # -*- coding: utf-8 -*- import sys sys.path.append("/home/me/mypy") import os.path import numpy as np # from copy import deepcopy import matplotlib.pyplot as plt import pandas as pd from pandas import DataFrame, Series from modelling_utilities import * # from ethanol_models import zafarLP from model_configuration import model_options # Process command-line arguments and determine experiment numbers if "--model" in sys.argv: model_name = sys.argv[sys.argv.index('--model')+1] # one argument passed after --parameters else: raise Exception('Model not specified.') if "--exptitle" in sys.argv: exptitle = sys.argv[sys.argv.index('--exptitle')+1] # one argument passed after --exptitle if "--path" in sys.argv: path = sys.argv[sys.argv.index('--path')+1] # one argument passed after --path else: path="./" if "--paramrow" in sys.argv: paramrow = sys.argv[sys.argv.index('--paramrow')+1] # one argument passed after --parameters paramrow = int(paramrow) else: paramrow = -1 if "--experiments" in sys.argv: expnoList = sys.argv[sys.argv.index('--experiments')+1:] # everything passed after --experiments # Should we estimate new parameters or simply run simulation estimate_parameters = (True if "-estimate" in sys.argv else False) # Should we save simulation results in parameter table savesim = (True if "-savesim" in sys.argv else False) ## load measurements data ethanol_all = pd.read_pickle('ethanol_all2.pickle') all_data = load_experimental_data(ethanol_all, expnoList) # Configure the model path,model,bounds = model_options(model_name,exptitle) # path = "rezultati_zafarLP/" # model = zafarLP("zafarLP", exptitle=exptitle, path=path, save=True) # # miu_max, Yxs, mS, Ks, Kis, Kip, a, b # bounds = [(0.01, 0.75), (0, 0.9), (0, 0.5), (0.1, 50), (0, 600), (0, 30), (2, 6), (0, 1)] if estimate_parameters: print("New parameter estimation for {0} ...".format(exptitle)) savesim = True ret = model.estimate(bounds,tuple(all_data)) parameters = ret.x model.set_parameters(parameters) MSE = ret.fun # R2 = model.R2(parameters, tuple(all_data)) # visi_parametri = model.parameter_table2(parameters=parameters, exptitle=exptitle, rmse=rmse, R2=R2, save=savesim) else: print("New simulation of {0} ...".format(exptitle)) parameters = model.load_parameters('parameters', row=paramrow) MSE = model.multi_fit_standalone(parameters, tuple(all_data)) # R2 = model.R2(parameters, tuple(all_data)) # print("R2 = {0}".format(R2)) # visi_parametri = model.parameter_table2(parameters=parameters, exptitle=exptitle, rmse=rmse, R2=R2, save=savesim) # print(visi_parametri.transpose()) mod_res_table = prepare_modeling_results(model,all_data,expnoList,path,exptitle) # print(mod_res_table) # Here we calculate separated correlation of biomass curve, etc. XR2 = mySafeR2(mod_res_table['XnOBS'].values,mod_res_table['XnPRED'].values) SR2 = mySafeR2(mod_res_table['SnOBS'].values,mod_res_table['SnPRED'].values) PR2 = mySafeR2(mod_res_table['PnOBS'].values,mod_res_table['PnPRED'].values) Xrmse = math.sqrt(mySafeMSE(mod_res_table['XnOBS'],mod_res_table['XnPRED'])) Srmse = math.sqrt(mySafeMSE(mod_res_table['SnOBS'],mod_res_table['SnPRED'])) Prmse = math.sqrt(mySafeMSE(mod_res_table['PnOBS'],mod_res_table['PnPRED'])) RMSE = math.sqrt(MSE) R2 = model.R2(parameters, tuple(all_data)) visi_parametri = model.parameter_table2(parameters=parameters, exptitle=exptitle, rmse=RMSE, R2=R2, XR2=XR2, SR2=SR2, PR2=PR2, Xrmse=Xrmse, Srmse=Srmse, Prmse=Prmse, save=savesim) visi_parametri.to_html("{0}parameters_{1}.html".format(path,exptitle)) plot_all_results(model,all_data,expnoList,path) # plot_all_results_print(model,all_data,expnoList,path) generate_simulation_results(model,all_data,expnoList,path,exptitle) # plt.show() # print("-------------------------") process_desc = ("Parameter estimation" if estimate_parameters else "Simulation") print("{0} of {1} finished".format(process_desc,exptitle))
unlicense
HealthCatalystSLC/healthcareai-py
healthcareai/trained_models/trained_supervised_model.py
2
30435
"""A Trained Supervised Model.""" import time from datetime import datetime import numpy as np import pandas as pd import healthcareai.common.database_writers import healthcareai.common.file_io_utilities as hcai_io import healthcareai.common.helpers as hcai_helpers import healthcareai.common.model_eval as hcai_model_evaluation import healthcareai.common.top_factors as hcai_factors import healthcareai.common.database_connections as hcai_db import healthcareai.common.database_validators as hcai_dbval from healthcareai.common.healthcareai_error import HealthcareAIError class TrainedSupervisedModel(object): """ The meta-object that is created when training supervised models. This object contains - trained estimator - trained linear estimator used for row level factor analysis - column metadata including transformed feature columns, grain & predicted column - the fit data preparation pipeline used for transforming new data for prediction - calculated metrics - test set actuals, predicted values/probabilities, predicted classes """ def __init__(self, model, feature_model, fit_pipeline, model_type, column_names, grain_column, prediction_column, test_set_predictions, test_set_class_labels, test_set_actual, metric_by_name, original_column_names=None, categorical_column_info=None, training_time=None): """ Create an instance of a TrainedSupervisedModel. Args: model (sklearn.base.BaseEstimator): The fit scikit learn algorithm for prediction feature_model (sklearn.base.BaseEstimator): The fit scikit learn algorithm for feature importance fit_pipeline (sklearn.pipeline.Pipeline): A fit pipeline for use on cleaning new raw data model_type (str): 'classification' or 'regression' column_names (list): List of column names used as features grain_column (str): Grain column (not used as a feature). prediction_column (str): The name of the prediction column test_set_predictions (list): y_prediction number (either probability of class or value) test_set_class_labels (list): y_prediction class label if classification test_set_actual (list): y_test metric_by_name (dict): Metrics by name original_column_names (list): List of column names used as features before running the data preparation pipeline (e.g. before dummification) categorical_column_info (dict): A dictionary mapping the name of each (pre-dummified) categorical column to a pandas.Series containing whose index consists of the different levels of the category and whose values consist of the frequencies with which these levels occur in the training data training_time (float): The time in seconds it took to train the model """ self.model = model self.feature_model = feature_model self.fit_pipeline = fit_pipeline self.column_names = column_names self._model_type = model_type self.grain_column = grain_column self.prediction_column = prediction_column self.test_set_predictions = test_set_predictions self.test_set_class_labels = test_set_class_labels self.test_set_actual = test_set_actual self._metric_by_name = metric_by_name self.original_column_names = original_column_names self.categorical_column_info = categorical_column_info self.train_time = training_time @property def algorithm_name(self): """Model name extracted from the class type.""" model = hcai_helpers.extract_estimator_from_meta_estimator(self.model) name = type(model).__name__ return name @property def is_classification(self): """ Return True if trainer is set up for classification. Easy check to consolidate magic strings in all the model type switches. """ return self.model_type == 'classification' @property def is_regression(self): """ Return True if trainer is set up for regression. Easy check to consolidate magic strings in all the model type switches. """ return self.model_type == 'regression' @property def best_hyperparameters(self): """Best hyperparameters found if model is a meta estimator.""" return hcai_helpers.get_hyperparameters_from_meta_estimator(self.model) @property def model_type(self): """Model type: 'regression' or 'classification'.""" return self._model_type @property def binary_classification_scores(self): # TODO low priority, but test this """Return the probability scores of the first class for a binary classification model.""" if self.is_regression: raise HealthcareAIError('ROC/PR plots are not used to evaluate regression models.') predictions = np.squeeze(self.test_set_predictions[:, 1]) return predictions @property def metrics(self): """Return the metrics that were calculated when the model was trained.""" return self._metric_by_name def save(self, filename=None, debug=True): """ Save this object to a pickle file with the given file name. Args: filename (str): Optional filename override. Defaults to `timestamp_<MODEL_TYPE>_<ALGORITHM_NAME>.pkl`. For example: `2017-05-27T09-12-30_regression_LinearRegression.pkl` debug (bool): Print debug output to console by default """ if filename is None: time_string = time.strftime("%Y-%m-%dT%H-%M-%S") filename = '{}_{}_{}.pkl'.format(time_string, self.model_type, self.algorithm_name) hcai_io.save_object_as_pickle(self, filename) if debug: print('Trained {} model saved as {}'.format(self.algorithm_name, filename)) def make_predictions(self, dataframe): """ Given a new dataframe, apply data transformations and return a dataframe of predictions. Args: dataframe (pandas.core.frame.DataFrame): Raw prediction dataframe Returns: pandas.core.frame.DataFrame: A dataframe containing the grain id and predicted values """ # Run the raw dataframe through the preparation process prepared_dataframe = self.prepare_and_subset(dataframe) # make predictions returning probabity of a class or value of regression if self.is_classification: # Only save the prediction of one of the two classes y_predictions = self.model.predict_proba(prepared_dataframe)[:, 1] elif self.is_regression: y_predictions = self.model.predict(prepared_dataframe) else: raise HealthcareAIError('Model type appears to be neither regression or classification.') # Create a new dataframe with the grain column from the original dataframe results = pd.DataFrame() # Column vector must exist in order to add it to results. if self.grain_column is not None: results[self.grain_column] = dataframe[self.grain_column].values results['Prediction'] = y_predictions return results def prepare_and_subset(self, dataframe): """ Prepare and subset the raw data using the pipeline saved during training. Run the raw dataframe through the saved pipeline and return a dataframe that contains only the columns that were in the original model. This prevents any unexpected changes to incoming columns from interfering with the predictions. Args: dataframe (pandas.core.frame.DataFrame): Raw prediction dataframe Returns: pandas.core.frame.DataFrame: A dataframe that has been run through the pipeline and subsetted to only the columns the model expects. """ # We want to be able to make predictions on new data (without labels) so don't want to insist that the # prediction column be present in the new data. To get around this, add the prediction columns filled with # NaNs. This column should be dropped when the dataframe is run through the pipeline. if self.prediction_column not in dataframe.columns.values \ and self.prediction_column in self.original_column_names: dataframe[self.prediction_column] = np.NaN try: # Raise an error here if any of the columns the model expects are not in the prediction dataframe df2 = dataframe.copy() if self.original_column_names is not None: df2 = df2[self.original_column_names] # Change the dtype of the categorical columns in the prediction dataframe to 'category' with levels # determined by the training data before running the data preparation pipeline if self.categorical_column_info is not None: for column in self.categorical_column_info: col_categories = self.categorical_column_info[column].index df2[column] = df2[column].astype('category', categories=col_categories) # Check whether the prediction data contains categories not present in the training set and print # a message warning that these new values will be dropped and imputed new_values = {v for v in dataframe[column].unique() if not (v in col_categories or pd.isnull(v))} if len(new_values) > 0: category_message = """Column {} contains levels not seen in the training set. These levels have been removed and will be imputed or the corresponding rows dropped.\nNew levels: {}""" print(category_message.format(column, new_values)) # Run the saved data preparation pipeline prepared_dataframe = self.fit_pipeline.transform(df2) # Subset the dataframe to only columns that were saved from the original model training prepared_dataframe = prepared_dataframe[self.column_names] except KeyError as ke: required_columns = self.column_names found_columns = list(dataframe.columns) # If a pre-dummified dataset is expected as the input, list the pre-dummified columns instead of the dummies if not self.original_column_names is None: required_columns = self.original_column_names error_message = """One or more of the columns that the saved trained model needs is not in the dataframe.\n Please compare these lists to see which field(s) is/are missing. Note that you can pass in extra fields,\n which will be ignored, but you must pass in all the required fields.\n Required fields: {} Given fields: {} Likely missing field(s): {} """.format(required_columns, found_columns, ke) raise HealthcareAIError(error_message) return prepared_dataframe def make_factors(self, dataframe, number_top_features=3): """ Given a prediction dataframe, build and return a list of the top k features in dataframe format. Args: dataframe (pandas.core.frame.DataFrame): Raw prediction dataframe number_top_features (int): Number of top features per row Returns: pandas.core.frame.DataFrame: A dataframe containing the grain id and factors """ # Run the raw dataframe through the preparation process prepared_dataframe = self.prepare_and_subset(dataframe) # Create a new dataframe. If grain column exists, add the grain # column from the original dataframe; otherwise, # just create a new empty dataframe. if self.grain_column is not None: results = dataframe[[self.grain_column]] else: results = pd.DataFrame() # Create a list of column names reason_col_names = ['Factor{}TXT'.format(i) for i in range(1, number_top_features + 1)] # Get a 2 dimensional list of all the factors top_features = hcai_factors.top_k_features(prepared_dataframe, self.feature_model, k=number_top_features) # Verify that the number of factors matches the number of rows in the original dataframe. if len(top_features) != len(dataframe): raise HealthcareAIError('Warning! The number of predictions does not match the number of rows.') # Create a dataframe from the column names and top features reasons_df = pd.DataFrame(top_features, columns=reason_col_names, index=dataframe.index) # Join the top features and results dataframes results = pd.concat([results, reasons_df], axis=1, join_axes=[dataframe.index]) # results.set_index(keys=self.grain_column, inplace=True) return results def make_predictions_with_k_factors(self, dataframe, number_top_features=3): """ Create a datarrame with predictions and factors. Given a prediction dataframe, build and return a dataframe with the grain column, the predictions and the top k features. Args: dataframe (pandas.core.frame.DataFrame): Raw prediction dataframe number_top_features (int): Number of top features per row Returns: pandas.core.frame.DataFrame: Predictions with factors and grain column """ # TODO Note this is inefficient since we are running the raw dataframe through the pipeline twice. Consider # Get the factors and predictions results = self.make_factors(dataframe, number_top_features=number_top_features) predictions = self.make_predictions(dataframe) # Verify that the number of predictions matches the number of rows in the original dataframe. if len(predictions) != len(dataframe): raise HealthcareAIError('Warning! The number of predictions does not match the number of rows.') # Add predictions column to dataframe results['Prediction'] = predictions['Prediction'].values return results def make_original_with_predictions_and_factors(self, dataframe, number_top_features=3): """ Create a dataframe containing the original data, predictions and factors. Given a prediction dataframe, build and return a dataframe with the all the original columns, the predictions, and the top k features. Args: dataframe (pandas.core.frame.DataFrame): Raw prediction dataframe number_top_features (int): Number of top features per row Returns: pandas.core.frame.DataFrame: """ # TODO Note this is inefficient since we are running the raw dataframe through the pipeline twice. # Get the factors and predictions results = self.make_predictions_with_k_factors(dataframe, number_top_features=number_top_features) # replace the original prediction column original_dataframe = dataframe.drop([self.prediction_column], axis=1) # Join the two dataframes together results = pd.concat([original_dataframe, results], axis=1) return results def create_catalyst_dataframe(self, dataframe): """ Create a Health Catalyst specific dataframe of predictions. Given a prediction dataframe, build and return a dataframe with the health catalyst specific column names, the predictions, and the top 3 features. Args: dataframe (pandas.core.frame.DataFrame): Raw prediction dataframe Returns: pandas.core.frame.DataFrame: """ # Get predictions and on the top 3 features (catalyst SAMs expect 3 factors) factors_and_predictions_df = self.make_predictions_with_k_factors(dataframe, number_top_features=3) # Add all the catalyst-specific columns to back into the SAM factors_and_predictions_df['BindingID'] = 0 factors_and_predictions_df['BindingNM'] = 'Python' factors_and_predictions_df['LastLoadDTS'] = datetime.utcnow().strftime('%Y-%m-%d %H:%M:%S.%f')[:-3] return factors_and_predictions_df def predict_to_catalyst_sam(self, dataframe, server, database, table, schema=None, predicted_column_name=None): """ Given a dataframe you want predictions on, make predictions and save them to a catalyst-specific EDW table. Args: dataframe (pandas.core.frame.DataFrame): Raw prediction dataframe server (str): the target server name database (str): the database name table (str): the destination table name schema (str): the optional schema predicted_column_name (str): optional predicted column name (defaults to PredictedProbNBR or PredictedValueNBR) """ # Make predictions in specific format sam_df = self.create_catalyst_dataframe(dataframe) # Rename prediction column to default based on model type or given one if predicted_column_name is None: if self.is_classification: predicted_column_name = 'PredictedProbNBR' elif self.is_regression: predicted_column_name = 'PredictedValueNBR' sam_df.rename(columns={'Prediction': predicted_column_name}, inplace=True) try: engine = hcai_db.build_mssql_engine_using_trusted_connections(server, database) healthcareai.common.database_writers.write_to_db_agnostic(engine, table, sam_df, schema=schema) except HealthcareAIError as hcaie: # Run validation and alert user hcai_dbval.validate_catalyst_prediction_sam_connection(server, table, self.grain_column, self.prediction_column) raise HealthcareAIError(hcaie.message) def predict_to_sqlite(self, prediction_dataframe, database, table, prediction_generator, predicted_column_name=None): """ Given a dataframe you want predictions on, make predictions and save them to an sqlite table. Args: prediction_dataframe (pandas.core.frame.DataFrame): Raw prediction dataframe database (str): database file name table (str): table name prediction_generator (method): one of the trained supervised model prediction methods predicted_column_name (str): optional predicted column name (defaults to PredictedProbNBR or PredictedValueNBR) """ # validate inputs if type(prediction_generator).__name__ != 'method': raise HealthcareAIError( 'Use of this method requires a prediction generator from a trained supervised model') # Get predictions from given generator sam_df = prediction_generator(prediction_dataframe) # Rename prediction column to default based on model type or given one if predicted_column_name is None: if self.is_classification: predicted_column_name = 'PredictedProbNBR' elif self.is_regression: predicted_column_name = 'PredictedValueNBR' sam_df.rename(columns={'Prediction': predicted_column_name}, inplace=True) engine = hcai_db.build_sqlite_engine(database) healthcareai.common.database_writers.write_to_db_agnostic(engine, table, sam_df) def roc_plot(self): """Return a plot of the ROC curve of the holdout set from model training.""" self.validate_classification() tsm_classification_comparison_plots(trained_supervised_models=self, plot_type='ROC') def roc(self, print_output=True): """ Print out ROC details and return them with cutoffs. Note this is a simple subset of TrainedSupervisedModel.metrics() Args: print_output (bool): True (default) to print a table of output. Returns: dict: A subset of TrainedSupervisedModel.metrics() that are ROC specific """ self.validate_classification() metrics = self._metric_by_name roc = { 'roc_auc': metrics['roc_auc'], 'best_roc_cutoff': metrics['best_roc_cutoff'], 'best_true_positive_rate': metrics['best_true_positive_rate'], 'best_false_positive_rate': metrics['best_false_positive_rate'], 'roc_thresholds': metrics['roc_thresholds'], 'true_positive_rates': metrics['true_positive_rates'], 'false_positive_rates': metrics['false_positive_rates'], } # roc = self._metric_by_name if print_output: print(('\nReceiver Operating Characteristic (ROC):\n' ' Area under curve (ROC AUC): {:0.2f}\n' ' Ideal ROC cutoff is {:0.2f}, yielding TPR of {:0.2f} and FPR of {:0.2f}').format( roc['roc_auc'], roc['best_roc_cutoff'], roc['best_true_positive_rate'], roc['best_false_positive_rate'])) print('|--------------------------------|') print('| ROC |') print('| Threshhold | TPR | FPR |') print('|--------------|--------|--------|') for i, _ in enumerate(roc['roc_thresholds']): marker = '***' if roc['roc_thresholds'][i] == roc['best_roc_cutoff'] else ' ' print('| {} {:03.2f} | {:03.2f} | {:03.2f} |'.format( marker, roc['roc_thresholds'][i], roc['true_positive_rates'][i], roc['false_positive_rates'][i])) print('|--------------------------------|') print('| *** Ideal cutoff |') print('|--------------------------------|') return roc def pr_plot(self): """Return a plot of the PR curve of the holdout set from model training.""" self.validate_classification() tsm_classification_comparison_plots(trained_supervised_models=self, plot_type='PR') def pr(self, print_output=True): """ Print out PR details and return them with cutoffs. Note this is a simple subset of TrainedSupervisedModel.metrics() Args: print_output (bool): True (default) to print a table of output. Returns: dict: A subset of TrainedSupervisedModel.metrics() that are PR specific """ self.validate_classification() metrics = self._metric_by_name pr = { 'pr_auc': metrics['pr_auc'], 'best_pr_cutoff': metrics['best_pr_cutoff'], 'best_precision': metrics['best_precision'], 'best_recall': metrics['best_recall'], 'pr_thresholds': metrics['pr_thresholds'], 'precisions': metrics['precisions'], 'recalls': metrics['recalls'], } if print_output: print(('\nPrecision-Recall:\n' ' Area under Precision Recall curve (PR AUC): {:0.2f}\n' ' Ideal PR cutoff is {:0.2f}, yielding precision of {:04.3f} and recall of {:04.3f}').format( pr['pr_auc'], pr['best_pr_cutoff'], pr['best_precision'], pr['best_recall'])) print('|---------------------------------|') print('| Precision-Recall Thresholds |') print('| Threshhold | Precision | Recall |') print('|------------|-----------|--------|') for i, _ in enumerate(pr['pr_thresholds']): marker = '***' if pr['pr_thresholds'][i] == pr['best_pr_cutoff'] else ' ' print('| {} {:03.2f} | {:03.2f} | {:03.2f} |'.format( marker, pr['pr_thresholds'][i], pr['precisions'][i], pr['recalls'][i])) print('|---------------------------------|') print('| *** Ideal cutoff |') print('|---------------------------------|') return pr def validate_classification(self): """Validate that a model is classification and raise an error if it is not. Run this on any method that only makes sense for classification. """ # TODO add binary check and rename to validate_binary_classification if self.model_type != 'classification': raise HealthcareAIError('This function only runs on a binary classification model.') def print_training_results(self): """ Print metrics, stats and hyperparameters of a trained supervised model. This includes the model name, training time, hyperparameters, and performance metrics. """ print('{} Training Results:'.format(self.algorithm_name)) print('- Training time:') print(' Trained the {} model in {} seconds'.format(self.algorithm_name, round(self.train_time, 2))) hyperparameters = self.best_hyperparameters if hyperparameters is None: hyperparameters = 'N/A: No hyperparameter search was performed' print('- Best hyperparameters found were:\n {}'.format(hyperparameters)) if self._model_type == 'classification': print('- {} performance metrics:\n Accuracy: {:03.2f}\n ROC AUC: {:03.2f}\n PR AUC: {:03.2f}'.format( self.algorithm_name, self.metrics['accuracy'], self.metrics['roc_auc'], self.metrics['pr_auc'])) elif self._model_type == 'regression': print('- {} performance metrics:\n Mean Squared Error (MSE): {}\n Mean Absolute Error (MAE): {}'.format( self.algorithm_name, self.metrics['mean_squared_error'], self.metrics['mean_absolute_error'])) def get_estimator_from_trained_supervised_model(trained_supervised_model): """ Given an instance of a TrainedSupervisedModel, return the main estimator, regardless of random search. Args: trained_supervised_model (TrainedSupervisedModel): Returns: sklearn.base.BaseEstimator: The scikit learn estimator """ # Validate input is a TSM if not isinstance(trained_supervised_model, TrainedSupervisedModel): raise HealthcareAIError('This requires an instance of a TrainedSupervisedModel') """ 1. check if it is a TSM Y: proceed N: raise error? 2. check if tsm.model is a meta estimator Y: extract best_estimator_ N: return tsm.model """ # Check if tsm.model is a meta estimator result = hcai_helpers.extract_estimator_from_meta_estimator(trained_supervised_model.model) return result def tsm_classification_comparison_plots(trained_supervised_models, plot_type='ROC', save=False): """ Given a single or list of trained supervised models, plot a ROC or PR curve for each one. Args: plot_type (str): 'ROC' (default) or 'PR' trained_supervised_models (TrainedSupervisedModel): a single or iterable containing TrainedSupervisedModels save (bool): Save the plot to a file """ # Input validation and dispatch if plot_type == 'ROC': plotter = hcai_model_evaluation.roc_plot_from_thresholds elif plot_type == 'PR': plotter = hcai_model_evaluation.pr_plot_from_thresholds else: raise HealthcareAIError('Please choose either plot_type=\'ROC\' or plot_type=\'PR\'') metrics_by_model = {} try: for index, model in enumerate(trained_supervised_models): if not isinstance(model, TrainedSupervisedModel): raise HealthcareAIError('One of the objects in the list is not a TrainedSupervisedModel ({})' .format(model)) algorithm_name = "{}: {}".format(index + 1, model.algorithm_name) metrics_by_model[algorithm_name] = model.metrics except TypeError: # input is not iterable (assume single TSM) if not isinstance(trained_supervised_models, TrainedSupervisedModel): raise HealthcareAIError('Input is not a TrainedSupervisedModel ({})'.format(trained_supervised_models)) metrics_by_model[trained_supervised_models.algorithm_name] = trained_supervised_models.metrics # TODO so, you could check for different GUIDs that could be saved in each TSM! # The assumption here is that each TSM was trained on the same train test split, # which happens when instantiating SupervisedModelTrainer # Plot with the selected plotter plotter(metrics_by_model, save=save, debug=False) def plot_rf_features_from_tsm(trained_supervised_model, x_train, feature_limit=15, save=False): """ Given an instance of a TrainedSupervisedModel, the x_train data, display or save a feature importance graph. Args: trained_supervised_model (TrainedSupervisedModel): x_train (numpy.array): A 2D numpy array that was used for training feature_limit (int): The maximum number of features to plot save (bool): True to save the plot, false to display it in a blocking thread """ model = get_estimator_from_trained_supervised_model(trained_supervised_model) column_names = trained_supervised_model.column_names hcai_model_evaluation.plot_random_forest_feature_importance( model, x_train, column_names, feature_limit=feature_limit, save=save)
mit
GGiecold/pyRMT
setup.py
1
1778
#!/usr/bin/env python # -*- coding: utf-8 -*- from codecs import open from os import path from sys import version from setuptools import setup here = path.abspath(path.dirname(__file__)) with open(path.join(here, 'README.md'), encoding = 'utf-8') as f: long_description = f.read() setup(name = 'pyRMT', version = '0.1.0', description = 'Python for Random Matrix Theory: cleaning schemes for noisy correlation matrices', long_description = long_description, url = 'https://github.com/GGiecold/pyRMT', download_url = 'https://github.com/GGiecold/pyRMT', author = 'Gregory Giecold', author_email = 'g.giecold@gmail.com', maintainer = 'Gregory Giecold', maintainer_email = 'g.giecold@gmail.com', license = 'MIT License', py_modules = ['pyRMT'], platforms = 'ALL', install_requires = ['numpy', 'pandas', 'sklearn'], setup_requires = ['numpy'], classifiers = ['Development Status :: 4 - Beta', 'Environment :: Console', 'Intended Audience :: End Users/Desktop', 'Intended Audience :: Developers', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: MIT License', 'Natural Language :: English', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Mathematics', ], keywords = 'applied-mathematics cleaning correlation-matrices noise-reduction random-matrix-theory' )
mit
Barmaley-exe/scikit-learn
sklearn/ensemble/__init__.py
44
1228
""" The :mod:`sklearn.ensemble` module includes ensemble-based methods for classification and regression. """ from .base import BaseEnsemble from .forest import RandomForestClassifier from .forest import RandomForestRegressor from .forest import RandomTreesEmbedding from .forest import ExtraTreesClassifier from .forest import ExtraTreesRegressor from .bagging import BaggingClassifier from .bagging import BaggingRegressor from .weight_boosting import AdaBoostClassifier from .weight_boosting import AdaBoostRegressor from .gradient_boosting import GradientBoostingClassifier from .gradient_boosting import GradientBoostingRegressor from . import bagging from . import forest from . import weight_boosting from . import gradient_boosting from . import partial_dependence __all__ = ["BaseEnsemble", "RandomForestClassifier", "RandomForestRegressor", "RandomTreesEmbedding", "ExtraTreesClassifier", "ExtraTreesRegressor", "BaggingClassifier", "BaggingRegressor", "GradientBoostingClassifier", "GradientBoostingRegressor", "AdaBoostClassifier", "AdaBoostRegressor", "bagging", "forest", "gradient_boosting", "partial_dependence", "weight_boosting"]
bsd-3-clause
ywcui1990/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/numerix/__init__.py
69
5473
""" numerix imports either Numeric or numarray based on various selectors. 0. If the value "--numpy","--numarray" or "--Numeric" is specified on the command line, then numerix imports the specified array package. 1. The value of numerix in matplotlibrc: either Numeric or numarray 2. If none of the above is done, the default array package is Numeric. Because the matplotlibrc always provides *some* value for numerix (it has it's own system of default values), this default is most likely never used. To summarize: the commandline is examined first, the rc file second, and the default array package is Numeric. """ import sys, os, struct from matplotlib import rcParams, verbose which = None, None use_maskedarray = None # First, see if --numarray or --Numeric was specified on the command # line: for a in sys.argv: if a in ["--Numeric", "--numeric", "--NUMERIC", "--Numarray", "--numarray", "--NUMARRAY", "--NumPy", "--numpy", "--NUMPY", "--Numpy", ]: which = a[2:], "command line" if a == "--maskedarray": use_maskedarray = True if a == "--ma": use_maskedarray = False try: del a except NameError: pass if which[0] is None: try: # In theory, rcParams always has *some* value for numerix. which = rcParams['numerix'], "rc" except KeyError: pass if use_maskedarray is None: try: use_maskedarray = rcParams['maskedarray'] except KeyError: use_maskedarray = False # If all the above fail, default to Numeric. Most likely not used. if which[0] is None: which = "numeric", "defaulted" which = which[0].strip().lower(), which[1] if which[0] not in ["numeric", "numarray", "numpy"]: raise ValueError("numerix selector must be either 'Numeric', 'numarray', or 'numpy' but the value obtained from the %s was '%s'." % (which[1], which[0])) if which[0] == "numarray": import warnings warnings.warn("numarray use as a numerix backed for matplotlib is deprecated", DeprecationWarning, stacklevel=1) #from na_imports import * from numarray import * from _na_imports import nx, inf, infinity, Infinity, Matrix, isnan, all from numarray.numeric import nonzero from numarray.convolve import cross_correlate, convolve import numarray version = 'numarray %s'%numarray.__version__ nan = struct.unpack('d', struct.pack('Q', 0x7ff8000000000000))[0] elif which[0] == "numeric": import warnings warnings.warn("Numeric use as a numerix backed for matplotlib is deprecated", DeprecationWarning, stacklevel=1) #from nc_imports import * from Numeric import * from _nc_imports import nx, inf, infinity, Infinity, isnan, all, any from Matrix import Matrix import Numeric version = 'Numeric %s'%Numeric.__version__ nan = struct.unpack('d', struct.pack('Q', 0x7ff8000000000000))[0] elif which[0] == "numpy": try: import numpy.oldnumeric as numpy from numpy.oldnumeric import * except ImportError: import numpy from numpy import * print 'except asarray', asarray from _sp_imports import nx, infinity, rand, randn, isnan, all, any from _sp_imports import UInt8, UInt16, UInt32, Infinity try: from numpy.oldnumeric.matrix import Matrix except ImportError: Matrix = matrix version = 'numpy %s' % numpy.__version__ from numpy import nan else: raise RuntimeError("invalid numerix selector") # Some changes are only applicable to the new numpy: if (which[0] == 'numarray' or which[0] == 'numeric'): from mlab import amin, amax newaxis = NewAxis def typecode(a): return a.typecode() def iscontiguous(a): return a.iscontiguous() def byteswapped(a): return a.byteswapped() def itemsize(a): return a.itemsize() def angle(a): return arctan2(a.imag, a.real) else: # We've already checked for a valid numerix selector, # so assume numpy. from mlab import amin, amax newaxis = NewAxis from numpy import angle def typecode(a): return a.dtype.char def iscontiguous(a): return a.flags.contiguous def byteswapped(a): return a.byteswap() def itemsize(a): return a.itemsize verbose.report('numerix %s'%version) # a bug fix for blas numeric suggested by Fernando Perez matrixmultiply=dot asum = sum def _import_fail_message(module, version): """Prints a message when the array package specific version of an extension fails to import correctly. """ _dict = { "which" : which[0], "module" : module, "specific" : version + module } print """ The import of the %(which)s version of the %(module)s module, %(specific)s, failed. This is is either because %(which)s was unavailable when matplotlib was compiled, because a dependency of %(specific)s could not be satisfied, or because the build flag for this module was turned off in setup.py. If it appears that %(specific)s was not built, make sure you have a working copy of %(which)s and then re-install matplotlib. Otherwise, the following traceback gives more details:\n""" % _dict g = globals() l = locals() __import__('ma', g, l) __import__('fft', g, l) __import__('linear_algebra', g, l) __import__('random_array', g, l) __import__('mlab', g, l) la = linear_algebra ra = random_array
agpl-3.0
effigies/mne-python
mne/viz/evoked.py
1
12200
"""Functions to make simple plot on evoked M/EEG data (besides topographies) """ from __future__ import print_function # Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr> # Denis Engemann <denis.engemann@gmail.com> # Martin Luessi <mluessi@nmr.mgh.harvard.edu> # Eric Larson <larson.eric.d@gmail.com> # Cathy Nangini <cnangini@gmail.com> # Mainak Jas <mainak@neuro.hut.fi> # # License: Simplified BSD from itertools import cycle import numpy as np from ..io.pick import channel_type from ..externals.six import string_types from .utils import _mutable_defaults, _check_delayed_ssp from .utils import _draw_proj_checkbox, tight_layout def _plot_evoked(evoked, picks, exclude, unit, show, ylim, proj, xlim, hline, units, scalings, titles, axes, plot_type, cmap=None): """Aux function for plot_evoked and plot_evoked_image (cf. docstrings) Extra param is: plot_type : str, value ('butterfly' | 'image') The type of graph to plot: 'butterfly' plots each channel as a line (x axis: time, y axis: amplitude). 'image' plots a 2D image where color depicts the amplitude of each channel at a given time point (x axis: time, y axis: channel). In 'image' mode, the plot is not interactive. """ import matplotlib.pyplot as plt if axes is not None and proj == 'interactive': raise RuntimeError('Currently only single axis figures are supported' ' for interactive SSP selection.') scalings, titles, units = _mutable_defaults(('scalings', scalings), ('titles', titles), ('units', units)) channel_types = set(key for d in [scalings, titles, units] for key in d) channel_types = sorted(channel_types) # to guarantee consistent order if picks is None: picks = list(range(evoked.info['nchan'])) bad_ch_idx = [evoked.ch_names.index(ch) for ch in evoked.info['bads'] if ch in evoked.ch_names] if len(exclude) > 0: if isinstance(exclude, string_types) and exclude == 'bads': exclude = bad_ch_idx elif (isinstance(exclude, list) and all([isinstance(ch, string_types) for ch in exclude])): exclude = [evoked.ch_names.index(ch) for ch in exclude] else: raise ValueError('exclude has to be a list of channel names or ' '"bads"') picks = list(set(picks).difference(exclude)) types = [channel_type(evoked.info, idx) for idx in picks] n_channel_types = 0 ch_types_used = [] for t in channel_types: if t in types: n_channel_types += 1 ch_types_used.append(t) axes_init = axes # remember if axes where given as input fig = None if axes is None: fig, axes = plt.subplots(n_channel_types, 1) if isinstance(axes, plt.Axes): axes = [axes] elif isinstance(axes, np.ndarray): axes = list(axes) if axes_init is not None: fig = axes[0].get_figure() if not len(axes) == n_channel_types: raise ValueError('Number of axes (%g) must match number of channel ' 'types (%g)' % (len(axes), n_channel_types)) # instead of projecting during each iteration let's use the mixin here. if proj is True and evoked.proj is not True: evoked = evoked.copy() evoked.apply_proj() times = 1e3 * evoked.times # time in miliseconds for ax, t in zip(axes, ch_types_used): ch_unit = units[t] this_scaling = scalings[t] if unit is False: this_scaling = 1.0 ch_unit = 'NA' # no unit idx = [picks[i] for i in range(len(picks)) if types[i] == t] if len(idx) > 0: # Parameters for butterfly interactive plots if plot_type == 'butterfly': if any([i in bad_ch_idx for i in idx]): colors = ['k'] * len(idx) for i in bad_ch_idx: if i in idx: colors[idx.index(i)] = 'r' ax._get_lines.color_cycle = iter(colors) else: ax._get_lines.color_cycle = cycle(['k']) # Set amplitude scaling D = this_scaling * evoked.data[idx, :] # plt.axes(ax) if plot_type == 'butterfly': ax.plot(times, D.T) elif plot_type == 'image': im = ax.imshow(D, interpolation='nearest', origin='lower', extent=[times[0], times[-1], 0, D.shape[0]], aspect='auto', cmap=cmap) cbar = plt.colorbar(im, ax=ax) cbar.ax.set_title(ch_unit) if xlim is not None: if xlim == 'tight': xlim = (times[0], times[-1]) ax.set_xlim(xlim) if ylim is not None and t in ylim: if plot_type == 'butterfly': ax.set_ylim(ylim[t]) elif plot_type == 'image': im.set_clim(ylim[t]) ax.set_title(titles[t] + ' (%d channel%s)' % ( len(D), 's' if len(D) > 1 else '')) ax.set_xlabel('time (ms)') if plot_type == 'butterfly': ax.set_ylabel('data (%s)' % ch_unit) elif plot_type == 'image': ax.set_ylabel('channels (%s)' % 'index') else: raise ValueError("plot_type has to be 'butterfly' or 'image'." "Got %s." % plot_type) if (plot_type == 'butterfly') and (hline is not None): for h in hline: ax.axhline(h, color='r', linestyle='--', linewidth=2) if axes_init is None: plt.subplots_adjust(0.175, 0.08, 0.94, 0.94, 0.2, 0.63) if proj == 'interactive': _check_delayed_ssp(evoked) params = dict(evoked=evoked, fig=fig, projs=evoked.info['projs'], axes=axes, types=types, units=units, scalings=scalings, unit=unit, ch_types_used=ch_types_used, picks=picks, plot_update_proj_callback=_plot_update_evoked, plot_type=plot_type) _draw_proj_checkbox(None, params) if show and plt.get_backend() != 'agg': plt.show() fig.canvas.draw() # for axes plots update axes. tight_layout(fig=fig) return fig def plot_evoked(evoked, picks=None, exclude='bads', unit=True, show=True, ylim=None, proj=False, xlim='tight', hline=None, units=None, scalings=None, titles=None, axes=None, plot_type="butterfly"): """Plot evoked data Note: If bad channels are not excluded they are shown in red. Parameters ---------- evoked : instance of Evoked The evoked data picks : array-like of int | None The indices of channels to plot. If None show all. exclude : list of str | 'bads' Channels names to exclude from being shown. If 'bads', the bad channels are excluded. unit : bool Scale plot with channel (SI) unit. show : bool Call pyplot.show() as the end or not. ylim : dict | None ylim for plots. e.g. ylim = dict(eeg=[-200e-6, 200e6]) Valid keys are eeg, mag, grad, misc. If None, the ylim parameter for each channel equals the pyplot default. xlim : 'tight' | tuple | None xlim for plots. proj : bool | 'interactive' If true SSP projections are applied before display. If 'interactive', a check box for reversible selection of SSP projection vectors will be shown. hline : list of floats | None The values at which to show an horizontal line. units : dict | None The units of the channel types used for axes lables. If None, defaults to `dict(eeg='uV', grad='fT/cm', mag='fT')`. scalings : dict | None The scalings of the channel types to be applied for plotting. If None,` defaults to `dict(eeg=1e6, grad=1e13, mag=1e15)`. titles : dict | None The titles associated with the channels. If None, defaults to `dict(eeg='EEG', grad='Gradiometers', mag='Magnetometers')`. axes : instance of Axis | list | None The axes to plot to. If list, the list must be a list of Axes of the same length as the number of channel types. If instance of Axes, there must be only one channel type plotted. """ return _plot_evoked(evoked=evoked, picks=picks, exclude=exclude, unit=unit, show=show, ylim=ylim, proj=proj, xlim=xlim, hline=hline, units=units, scalings=scalings, titles=titles, axes=axes, plot_type="butterfly") def plot_evoked_image(evoked, picks=None, exclude='bads', unit=True, show=True, clim=None, proj=False, xlim='tight', units=None, scalings=None, titles=None, axes=None, cmap='RdBu_r'): """Plot evoked data as images Parameters ---------- evoked : instance of Evoked The evoked data picks : array-like of int | None The indices of channels to plot. If None show all. exclude : list of str | 'bads' Channels names to exclude from being shown. If 'bads', the bad channels are excluded. unit : bool Scale plot with channel (SI) unit. show : bool Call pyplot.show() as the end or not. clim : dict | None clim for plots. e.g. clim = dict(eeg=[-200e-6, 200e6]) Valid keys are eeg, mag, grad, misc. If None, the clim parameter for each channel equals the pyplot default. xlim : 'tight' | tuple | None xlim for plots. proj : bool | 'interactive' If true SSP projections are applied before display. If 'interactive', a check box for reversible selection of SSP projection vectors will be shown. units : dict | None The units of the channel types used for axes lables. If None, defaults to `dict(eeg='uV', grad='fT/cm', mag='fT')`. scalings : dict | None The scalings of the channel types to be applied for plotting. If None,` defaults to `dict(eeg=1e6, grad=1e13, mag=1e15)`. titles : dict | None The titles associated with the channels. If None, defaults to `dict(eeg='EEG', grad='Gradiometers', mag='Magnetometers')`. axes : instance of Axis | list | None The axes to plot to. If list, the list must be a list of Axes of the same length as the number of channel types. If instance of Axes, there must be only one channel type plotted. cmap : matplotlib colormap Colormap. """ return _plot_evoked(evoked=evoked, picks=picks, exclude=exclude, unit=unit, show=show, ylim=clim, proj=proj, xlim=xlim, hline=None, units=units, scalings=scalings, titles=titles, axes=axes, plot_type="image", cmap=cmap) def _plot_update_evoked(params, bools): """ update the plot evoked lines """ picks, evoked = [params[k] for k in ('picks', 'evoked')] times = evoked.times * 1e3 projs = [proj for ii, proj in enumerate(params['projs']) if ii in np.where(bools)[0]] params['proj_bools'] = bools new_evoked = evoked.copy() new_evoked.info['projs'] = [] new_evoked.add_proj(projs) new_evoked.apply_proj() for ax, t in zip(params['axes'], params['ch_types_used']): this_scaling = params['scalings'][t] idx = [picks[i] for i in range(len(picks)) if params['types'][i] == t] D = this_scaling * new_evoked.data[idx, :] if params['plot_type'] == 'butterfly': [line.set_data(times, di) for line, di in zip(ax.lines, D)] else: ax.images[0].set_data(D) params['fig'].canvas.draw()
bsd-3-clause
microelly2/geodata
geodat/import_image.py
1
9439
'''import a image as elevation grid''' # -*- coding: utf-8 -*- #------------------------------------------------- #-- geodat import image to nurbs/pcl #-- #-- microelly 2016 v 0.2 #-- #-- GNU Lesser General Public License (LGPL) #------------------------------------------------- from geodat.say import * import Points import sys if sys.version_info[0] !=2: from importlib import reload import matplotlib.pyplot as plt import matplotlib.image as mpimg import numpy as np import os.path import csv,re import random ## create the pointcloud, grid or nurbs surface # # @param filename image file # @param n size of a flat border around the area # @param c color channel (not used) # @param inverse invert the height # @param kx scale the size value 1 means 1 pixel is 1 mm # @param ky # @param kz # @param gengrid create a grid of the isocurves # @param genblock create a solid with the surface as the top face # @param genpoles create a pointcloud of the poles # @param pointsonly create only a point cloud of the pixel points # # For large images the computation time can be very long, # so the option to run **pointsonly** first is a good way to inspect the image data. # # . def import_image(filename=None,n=10,c=2,inverse=False,kx=10,ky=10,kz=60,gengrid=True,genblock=False,genpoles=False,pointsonly=False): '''import_image(filename=None,n=10,c=2,inverse=False,kx=10,ky=10,kz=60,gengrid=True,genblock=False,genpoles=False,pointsonly=False) ''' display_mathplot=False dataAsPoles=False if filename==None: filename='/home/microelly2/Schreibtisch/test_nurbs3.png' img = mpimg.imread(filename) ojn=os.path.basename(filename) # grey scaled image and color channel select if len(img.shape) == 2: lum_img = img else: lum_img = img[:,:,c] lum_img = 0.33*img[:,:,0]+0.33*img[:,:,1]+0.34*img[:,:,2] (lu,lv)=lum_img.shape if display_mathplot: plt.imshow(lum_img) plt.show() #create a n points border uu2=np.zeros((lu+2*n)*(lv+2*n)) uu2=uu2.reshape(lu+2*n,lv+2*n) uu2[n:lu+n,n:lv+n]=lum_img lum_img=uu2 (lu,lv)=lum_img.shape bz=kz+100 if inverse: kz= -kz pts=[] uu=[] for u in range(lu): ul=[] for v in range(lv): # p=FreeCAD.Vector(ky*v,-kx*u,bz-kz*lum_img[u,v]) r=0.001 p=FreeCAD.Vector(ky*v+r*random.random(),-kx*u+r*random.random(),bz-kz*lum_img[u,v] +r*random.random()) ul.append(p) pts.append(p) uu.append(ul) # show the points p=Points.Points(pts) Points.show(p) App.ActiveDocument.ActiveObject.ViewObject.ShapeColor=(1.0,.0,1.0) App.ActiveDocument.ActiveObject.Label="Points " + str(lv) +" " + str(lu) + " _" say ((("u, v, points"),u,v,len(pts))) Gui.updateGui() if pointsonly: return tt=Part.BSplineSurface() if dataAsPoles: pols=uu else: tt.interpolate(uu) # flatten the border pols=tt.getPoles() pols2=np.array(pols) lup,lvp,la=pols2.shape zz=bz bord=n-2 for u in range(lup): for v in range(bord): op=pols[u][v] nup=FreeCAD.Vector(op.x,op.y,zz) pols[u][v]=nup op=pols[u][-1-v] nup=FreeCAD.Vector(op.x,op.y,zz) pols[u][-1-v]=nup for u in range(bord): for v in range(lvp): op=pols[u][v] nup=FreeCAD.Vector(op.x,op.y,zz) pols[u][v]=nup op=pols[-1-u][v] nup=FreeCAD.Vector(op.x,op.y,zz) pols[-1-u][v]=nup bs=Part.BSplineSurface() knot_v2=tt.getVKnots() knot_u2=tt.getUKnots() mult_u=tt.getUMultiplicities() mult_v=tt.getVMultiplicities() ws=tt.getWeights() bs.buildFromPolesMultsKnots(pols, mult_u, mult_v, knot_u2, knot_v2, False,False,3,3, ws ) if 1: sha=bs.toShape() # show the poles if genpoles: pols=bs.getPoles() ps=[] for l in pols: for po in l: ps.append(po) p=Points.Points(ps) Points.show(p) App.ActiveDocument.ActiveObject.ViewObject.ShapeColor=(1.0,1.0,.0) App.ActiveDocument.ActiveObject.Label='Poles ' + str(lv) +" " + str(lu) +" _" Gui.updateGui() # the nurbs grid if gengrid: jj=[] rr=lv for i in range(rr+1): v=bs.vIso((0.0+i)/rr).toShape() jj.append(v.Edge1) rr=lu for i in range(rr+1): v=bs.uIso((0.0+i)/rr).toShape() jj.append(v.Edge1) com=Part.makeCompound(jj) ttt=App.ActiveDocument.addObject('Part::Feature','Nurbsgrid ' + str(n) + ' ' + ojn) ttt.ViewObject.DisplayMode = "Wireframe" # ttt.ViewObject.hide() ttt.Shape=com ttt.Placement.Base.z=10 Gui.updateGui() return #create the solid a=FreeCAD.Vector(0,0,-bz) b=FreeCAD.Vector(0,-kx*(lu-1),-bz) c=FreeCAD.Vector(ky*(lv-1),-kx*(lu-1),-bz) d=FreeCAD.Vector(ky*(lv-1),0,-bz) ad=FreeCAD.Vector(0,0,bz) bd=FreeCAD.Vector(0,-kx*(lu-1),bz) cd=FreeCAD.Vector(ky*(lv-1),-kx*(lu-1),bz) dd=FreeCAD.Vector(ky*(lv-1),0,bz) # for nonlinear borders - experimental if 0: u0e=bs.uIso(0).toShape() p=Part.makePolygon([ad,a,d,dd],True) ll=p.Edges+[u0e.Edge1] f4=Part.makeFilledFace(Part.__sortEdges__(ll)) Part.show(f4) v0e=bs.vIso(0).toShape() p=Part.makePolygon([bd,b,a,ad],True) ll=p.Edges+[v0e.Edge1] f1=Part.makeFilledFace(Part.__sortEdges__(ll)) #Part.show(v0e) #Part.show(p) Part.show(f1) u1e=bs.uIso(1).toShape() p=Part.makePolygon([bd,b,c,cd],True) ll=p.Edges+[u1e.Edge1] f2=Part.makeFilledFace(Part.__sortEdges__(ll)) # f2=Part.Face(Part.__sortEdges__(ll)) #Part.show(u1e) #Part.show(p) Part.show(f2) v1e=bs.vIso(1).toShape() p=Part.makePolygon([dd,d,c,cd],True) ll=p.Edges+[v1e.Edge1] f3=Part.makeFilledFace(Part.__sortEdges__(ll)) #Part.show(v1e) #Part.show(p) Part.show(f3) p=Part.makePolygon([a,b,c,d], True) f0=Part.makeFilledFace(p.Edges) Part.show(f0) if 1: nb=App.ActiveDocument.addObject('Part::Spline','Nurbs ' + str(n) + ' ' + ojn) nb.Shape=sha.Face1 if genblock: fln=sha.Face1 f0=Part.Face(Part.makePolygon([a,b,c,d], True)) f1=Part.Face(Part.makePolygon([ad,bd,b,a], True)) f2=Part.Face(Part.makePolygon([b,bd,cd,c], True)) f3=Part.Face(Part.makePolygon([cd,dd,d,c], True)) f4=Part.Face(Part.makePolygon([ad,a,d,dd], True)) fls=[f0,f1,f2,f3,f4,fln] sh=Part.Shell(fls) sol=Part.Solid(sh) ttt=App.ActiveDocument.addObject('Part::Feature','Nurbsblock ' + str(n) + ' ' + ojn) ttt.Shape=sol # ttt.ViewObject.hide() print (lu,lv) return bs # bs=createNurbsblock('/home/microelly2/Schreibtisch/fisch.jpg',5,0,True,1000,1000,10) #bs=createNurbsblock('/home/microelly2/Bilder/fcsw.png',5,0,True,10,10,40) #bs=createNurbsblock('/home/microelly2/Schreibtisch/freeka.png',10,0,1,100,100,400) #jpeg brauch kleiner werte #+# #bs=createNurbsblock('/home/microelly2/Schreibtisch/quick61.jpg',10,0,True,100,100,3) #bs=createNurbsblock('/home/microelly2/Schreibtisch/normanc.jpg',10,0,True,100,100,4) sdialog=''' #VerticalLayoutTab: MainWindow: VerticalLayout: id:'main' QtGui.QLabel: setText:"*** I M A G E T O N U R B S ***" VerticalLayout: id:'img1' # setVisible:False QtGui.QPushButton: setText: "Browse for input data filename" clicked.connect: app.getfn QtGui.QLineEdit: setText:"UserAppData/Mod/geodat/testdata/freeka.png" id: 'bl' HorizontalLayout: QtGui.QLabel: setText:"Scale " QtGui.QLineEdit: setText:"10" id: 'kx' QtGui.QLineEdit: setText:"10" id: 'ky' QtGui.QLineEdit: setText:"60" id: 'kz' QtGui.QCheckBox: id: 'inverse' setText: 'Invert Height' setChecked: False QtGui.QLabel: setText:"Border Size " QtGui.QLineEdit: setText:"5" id: 'border' QtGui.QLabel: setText:"Color Channel RGB 012 3-grey noimp " QtGui.QLineEdit: setText:"2" id: 'color' QtGui.QCheckBox: id: 'pointsonly' setText: 'create only a Pointcloud' setChecked: True QtGui.QCheckBox: id: 'gengrid' setText: 'create Nurbs Grid' setChecked: True QtGui.QCheckBox: id: 'genblock' setText: 'create Nurbsblock Solid' setChecked: False QtGui.QCheckBox: id: 'genpoles' setText: 'create Pole Cloud' setChecked: False QtGui.QPushButton: setText: "import image" id:'run' clicked.connect: app.run ''' ## the gui backend class MyApp(object): def run(self): '''load the file and create a nurbs surface''' try: filename=self.root.ids['bl'].text() if filename.startswith('UserAppData'): filename=filename.replace('UserAppData',FreeCAD.ConfigGet("UserAppData")) ts=time.time() bs=import_image( filename, int(self.root.ids['border'].text()), int(self.root.ids['color'].text()), self.root.ids['inverse'].isChecked(), int(self.root.ids['kx'].text()), int(self.root.ids['ky'].text()), int(self.root.ids['kz'].text()), self.root.ids['gengrid'].isChecked(), self.root.ids['genblock'].isChecked(), self.root.ids['genpoles'].isChecked(), self.root.ids['pointsonly'].isChecked(), ) te=time.time() say("load image time " + str(round(te-ts,2))) except: sayexc() def getfn(self): ''' get the filename of the image file''' fileName = QtGui.QFileDialog.getOpenFileName(None,u"Open File",u"/tmp/"); print(fileName) self.root.ids['bl'].setText(fileName[0]) ## the gui startup def mydialog(run=True): app=MyApp() import geodat import geodat.miki as miki reload(miki) miki=miki.Miki() miki.app=app app.root=miki miki.parse2(sdialog) miki.run(sdialog) return miki ## start and hide the gui dialog def runtest(): m=mydialog() m.objects[0].hide() if __name__ == '__main__': runtest() def importImage(): mydialog()
lgpl-3.0
buguen/pylayers
pylayers/mobility/agent.py
1
11442
from SimPy.SimulationRT import Simulation #from simpy.simulation import * from pylayers.mobility.transit.Person import Person from pylayers.mobility.transit.World import world from pylayers.mobility.transit.SteeringBehavior import Seek, Separation, Containment, InterpenetrationConstraint, queue_steering_mind import numpy as np import networkx as nx import time import ConfigParser import pandas as pd import pylayers.util.pyutil as pyu from pylayers.network.network import Node, Network from pylayers.network.communication import Gcom, TX, RX from pylayers.location.localization import Localization, PLocalization from pylayers.gis.layout import Layout from pylayers.util.utilnet import * #from pylayers.util.pymysqldb import Database import pdb """" .. currentmodule:: pylayers.mobility.agent .. autosummary:: :toctree: generated/ """ class Agent(object): """ Class Agent Members ------- args ID name typ net epwr gcom sim wstd sens dcond meca : transit.Person net : pylayers.network.Network sim : PN : rxt rxr """ def __init__(self, **args): """ Mobile Agent Init Parameters ---------- 'ID': string agent ID 'name': string Agent name 'typ': string agent typ . 'ag' for moving agent, 'ap' for static acces point 'pos' : np.array([]) numpy array containing the initial position of the agent 'roomId': int Room number where the agent is initialized (Layout.Gr) 'meca_updt': float update time interval for the mechanical process 'loc': bool enable/disable localization process of the agent 'loc_updt': float update time interval for localization process 'L': pylayers.gis.Layout() 'net':pylayers.network.Network(), 'wstd': list of string list of used radio access techology of the agent 'world': transit.world() Soon deprecated 'save': list of string list of save method ( soon deprecated) 'sim':Simpy.SimulationRT.Simulation(), 'epwr': dictionnary dictionnary of emmited power of transsmitter{'wstd#':epwr value} 'sens': dictionnary dictionnary of sensitivity of reveicer {'wstd#':sens value} 'dcond': dictionnary Not used yet 'gcom':pylayers.communication.Gcom() Communication graph 'comm_mod': string Communication between nodes mode: 'autonomous': all TOAs are refreshed regulary 'synchro' : only visilbe TOAs are refreshed """ defaults = {'ID': '0', 'name': 'johndoe', 'typ': 'ag', 'color': 'k', 'pdshow': False, 'pos': np.array([]), 'roomId': -1, 'froom': [], 'wait': [], 'seed': 0, 'cdest': 'random', 'meca_updt': 0.1, 'loc': False, 'loc_updt': 0.5, 'loc_method': ['geo'], 'L': Layout(), 'network': True, 'net': Network(), 'wstd': ['rat1'], 'world': world(), 'save': [], 'sim': Simulation(), 'epwr': {}, 'sens': {}, 'dcond': {}, 'gcom': Gcom(), 'comm_mode': 'autonomous'} for key, value in defaults.items(): if key not in args: args[key] = value self.args = args self.ID = args['ID'] self.name = args['name'] self.typ = args['typ'] # Create Network self.net = args['net'] self.epwr = args['epwr'] self.gcom = args['gcom'] self.sim = args['sim'] self.wstd = args['wstd'] if args['epwr'] == {}: self.epwr = {x: 0 for x in self.wstd} else: self.epwr = args['epwr'] if args['sens'] == {}: self.sens = {x: -180 for x in self.wstd} else: self.sens = args['sens'] try: self.dcond = args['dcond'] except: pass # check if node id already given if self.ID in self.net.nodes(): raise NameError( 'another agent has the ID: ' + self.ID + ' .Please use an other ID') if self.typ == 'ag': # mechanical init self.meca = Person(ID=self.ID, color=args['color'], pdshow=args['pdshow'], roomId=args['roomId'], L=args['L'], net=self.net, interval=args['meca_updt'], wld=args['world'], sim=args['sim'], seed=args['seed'], moving=True, froom=args['froom'], wait=args['wait'], cdest=args['cdest'], save=args['save'] ) self.meca.behaviors = [Seek(), Containment(), Separation(), InterpenetrationConstraint()] self.meca.steering_mind = queue_steering_mind # Network init self.node = Node(ID=self.ID,name=self.name, p=conv_vecarr(self.meca.position), t=self.sim.now(), wstd=args['wstd'], epwr=self.epwr, sens=self.sens, typ=self.typ) self.net.add_nodes_from(self.node.nodes(data=True)) self.sim.activate(self.meca, self.meca.move(), 0.0) self.PN = self.net.node[self.ID]['PN'] # Communication init if args['comm_mode'] == 'synchro' and args['network']: # The TOA requests are made every refreshTOA time ( can be modified in agent.ini) # This Mode will be deprecated in future version self.rxr = RX(net=self.net, ID=self.ID, dcond=self.dcond, gcom=self.gcom, sim=self.sim) self.rxt = RX(net=self.net, ID=self.ID, dcond=self.dcond, gcom=self.gcom, sim=self.sim) self.sim.activate(self.rxr, self.rxr.refresh_RSS(), 0.0) self.sim.activate(self.rxt, self.rxt.refresh_TOA(), 0.0) elif args['comm_mode'] == 'autonomous' and args['network']: # The requests are made by node only when they are in # visibility of pairs. # self.rxr only manage a refresh RSS process self.rxr = RX(net=self.net, ID=self.ID, gcom=self.gcom, sim=self.sim) # self.tx manage all requests to other nodes self.tx = TX(net=self.net, ID=self.ID, gcom=self.gcom, sim=self.sim) # self.tx replies to requests from self.tx self.rx = RX(net=self.net, ID=self.ID, gcom=self.gcom, sim=self.sim) self.sim.activate(self.rxr, self.rxr.refresh_RSS(), 0.0) self.sim.activate(self.tx, self.tx.request(), 0.0) self.sim.activate(self.rx, self.rx.wait_request(), 0.0) elif self.typ == 'ap': if args['roomId'] == -1: self.node = Node(ID=self.ID, p=self.args['pos'], t=self.sim.now(), wstd=args['wstd'], epwr=self.epwr, sens=self.sens, typ=self.typ) else: pp = np.array(args['L'].Gr.pos[self.args['roomId']]) self.node = Node( ID=self.ID, p=pp, t=self.sim.now(), wstd=args['wstd'], epwr=self.epwr, sens=self.sens, typ=self.typ) self.net.add_nodes_from(self.node.nodes(data=True)) self.sim = args['sim'] self.PN = self.net.node[self.ID]['PN'] self.PN.node[self.ID]['pe'] = self.net.node[self.ID]['p'] if args['comm_mode'] == 'autonomous' and args['network']: self.rx = RX(net=self.net, ID=self.ID, gcom=self.gcom, sim=self.sim) self.sim.activate(self.rx, self.rx.wait_request(), 0.0) p = self.args['pos'] self.posdf = pd.DataFrame( {'t': pd.Timestamp(0), 'x': p[0], 'y': p[1], 'z': p[2], 'vx': np.array([0.0]), 'vy': np.array([0.0]), 'ax': np.array([0.0]), 'ay': np.array([0.0]), }, columns=['t', 'x', 'y', 'z', 'vx', 'vy', 'ax', 'ay'], index=np.array([0])) else: raise NameError( 'wrong agent typ, it must be either agent (ag) or acces point (ap) ') if self.typ == 'ap': self.MoA = 1 else: self.MoA = 0 if 'mysql' in args['save']: config = ConfigParser.ConfigParser() config.read(pyu.getlong('simulnet.ini', 'ini')) sql_opt = dict(config.items('Mysql')) db = Database(sql_opt['host'], sql_opt['user'], sql_opt['passwd'], sql_opt['dbname']) db.writenode(self.ID, self.name, self.MoA) if 'txt' in args['save']: pyu.writenode(self) if self.typ != 'ap' and args['loc']: self.loc = Localization(net=self.net, ID=self.ID, method=args['loc_method']) self.Ploc = PLocalization(loc=self.loc, loc_updt_time=args['loc_updt'], tx=self.tx, sim=args['sim']) self.sim.activate(self.Ploc, self.Ploc.run(), 1.5) def __repr__(self): s = 'General Agent info \n********************\n' s = s + 'name : ' + self.name + '\n' s = s + 'ID: ' + self.ID + '\n' s = s + 'typ: ' + self.typ s = s + '\n\n More Agent information about:' s = s + '\n+ Mecanichal => self.meca' s = s + '\n+ Network => self.net' s = s + '\n+ Personnal Network => self.PN' s = s + '\n+ Localization => self.loc\n\n' try: s = s + self.PN.__repr__() + '\n\n' except: s = s + 'No network simulated' if self.typ != 'ap': s = s + self.meca.__repr__() + '\n\n' try: s = s + self.loc.__repr__() + '\n\n' except: s = s + 'no localization simulated' return s
lgpl-3.0
ghchinoy/tensorflow
tensorflow/contrib/training/python/training/feeding_queue_runner_test.py
76
5052
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests `FeedingQueueRunner` using arrays and `DataFrames`.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.client import session from tensorflow.python.estimator.inputs.queues.feeding_functions import _enqueue_data as enqueue_data from tensorflow.python.framework import ops from tensorflow.python.platform import test from tensorflow.python.training import coordinator from tensorflow.python.training import queue_runner_impl # pylint: disable=g-import-not-at-top try: import pandas as pd HAS_PANDAS = True except ImportError: HAS_PANDAS = False def get_rows(array, row_indices): rows = [array[i] for i in row_indices] return np.vstack(rows) class FeedingQueueRunnerTestCase(test.TestCase): """Tests for `FeedingQueueRunner`.""" def testArrayFeeding(self): with ops.Graph().as_default(): array = np.arange(32).reshape([16, 2]) q = enqueue_data(array, capacity=100) batch_size = 3 dq_op = q.dequeue_many(batch_size) with session.Session() as sess: coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(sess=sess, coord=coord) for i in range(100): indices = [ j % array.shape[0] for j in range(batch_size * i, batch_size * (i + 1)) ] expected_dq = get_rows(array, indices) dq = sess.run(dq_op) np.testing.assert_array_equal(indices, dq[0]) np.testing.assert_array_equal(expected_dq, dq[1]) coord.request_stop() coord.join(threads) def testArrayFeedingMultiThread(self): with ops.Graph().as_default(): array = np.arange(256).reshape([128, 2]) q = enqueue_data(array, capacity=128, num_threads=8, shuffle=True) batch_size = 3 dq_op = q.dequeue_many(batch_size) with session.Session() as sess: coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(sess=sess, coord=coord) for _ in range(100): dq = sess.run(dq_op) indices = dq[0] expected_dq = get_rows(array, indices) np.testing.assert_array_equal(expected_dq, dq[1]) coord.request_stop() coord.join(threads) def testPandasFeeding(self): if not HAS_PANDAS: return with ops.Graph().as_default(): array1 = np.arange(32) array2 = np.arange(32, 64) df = pd.DataFrame({"a": array1, "b": array2}, index=np.arange(64, 96)) q = enqueue_data(df, capacity=100) batch_size = 5 dq_op = q.dequeue_many(5) with session.Session() as sess: coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(sess=sess, coord=coord) for i in range(100): indices = [ j % array1.shape[0] for j in range(batch_size * i, batch_size * (i + 1)) ] expected_df_indices = df.index[indices] expected_rows = df.iloc[indices] dq = sess.run(dq_op) np.testing.assert_array_equal(expected_df_indices, dq[0]) for col_num, col in enumerate(df.columns): np.testing.assert_array_equal(expected_rows[col].values, dq[col_num + 1]) coord.request_stop() coord.join(threads) def testPandasFeedingMultiThread(self): if not HAS_PANDAS: return with ops.Graph().as_default(): array1 = np.arange(128, 256) array2 = 2 * array1 df = pd.DataFrame({"a": array1, "b": array2}, index=np.arange(128)) q = enqueue_data(df, capacity=128, num_threads=8, shuffle=True) batch_size = 5 dq_op = q.dequeue_many(batch_size) with session.Session() as sess: coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(sess=sess, coord=coord) for _ in range(100): dq = sess.run(dq_op) indices = dq[0] expected_rows = df.iloc[indices] for col_num, col in enumerate(df.columns): np.testing.assert_array_equal(expected_rows[col].values, dq[col_num + 1]) coord.request_stop() coord.join(threads) if __name__ == "__main__": test.main()
apache-2.0
ilyes14/scikit-learn
sklearn/linear_model/least_angle.py
61
54324
""" Least Angle Regression algorithm. See the documentation on the Generalized Linear Model for a complete discussion. """ from __future__ import print_function # Author: Fabian Pedregosa <fabian.pedregosa@inria.fr> # Alexandre Gramfort <alexandre.gramfort@inria.fr> # Gael Varoquaux # # License: BSD 3 clause from math import log import sys import warnings from distutils.version import LooseVersion import numpy as np from scipy import linalg, interpolate from scipy.linalg.lapack import get_lapack_funcs from .base import LinearModel from ..base import RegressorMixin from ..utils import arrayfuncs, as_float_array, check_X_y from ..cross_validation import check_cv from ..utils import ConvergenceWarning from ..externals.joblib import Parallel, delayed from ..externals.six.moves import xrange import scipy solve_triangular_args = {} if LooseVersion(scipy.__version__) >= LooseVersion('0.12'): solve_triangular_args = {'check_finite': False} def lars_path(X, y, Xy=None, Gram=None, max_iter=500, alpha_min=0, method='lar', copy_X=True, eps=np.finfo(np.float).eps, copy_Gram=True, verbose=0, return_path=True, return_n_iter=False, positive=False): """Compute Least Angle Regression or Lasso path using LARS algorithm [1] The optimization objective for the case method='lasso' is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 in the case of method='lars', the objective function is only known in the form of an implicit equation (see discussion in [1]) Read more in the :ref:`User Guide <least_angle_regression>`. Parameters ----------- X : array, shape: (n_samples, n_features) Input data. y : array, shape: (n_samples) Input targets. positive : boolean (default=False) Restrict coefficients to be >= 0. When using this option together with method 'lasso' the model coefficients will not converge to the ordinary-least-squares solution for small values of alpha (neither will they when using method 'lar' ..). Only coeffiencts up to the smallest alpha value (``alphas_[alphas_ > 0.].min()`` when fit_path=True) reached by the stepwise Lars-Lasso algorithm are typically in congruence with the solution of the coordinate descent lasso_path function. max_iter : integer, optional (default=500) Maximum number of iterations to perform, set to infinity for no limit. Gram : None, 'auto', array, shape: (n_features, n_features), optional Precomputed Gram matrix (X' * X), if ``'auto'``, the Gram matrix is precomputed from the given X, if there are more samples than features. alpha_min : float, optional (default=0) Minimum correlation along the path. It corresponds to the regularization parameter alpha parameter in the Lasso. method : {'lar', 'lasso'}, optional (default='lar') Specifies the returned model. Select ``'lar'`` for Least Angle Regression, ``'lasso'`` for the Lasso. eps : float, optional (default=``np.finfo(np.float).eps``) The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. copy_X : bool, optional (default=True) If ``False``, ``X`` is overwritten. copy_Gram : bool, optional (default=True) If ``False``, ``Gram`` is overwritten. verbose : int (default=0) Controls output verbosity. return_path : bool, optional (default=True) If ``return_path==True`` returns the entire path, else returns only the last point of the path. return_n_iter : bool, optional (default=False) Whether to return the number of iterations. Returns -------- alphas : array, shape: [n_alphas + 1] Maximum of covariances (in absolute value) at each iteration. ``n_alphas`` is either ``max_iter``, ``n_features`` or the number of nodes in the path with ``alpha >= alpha_min``, whichever is smaller. active : array, shape [n_alphas] Indices of active variables at the end of the path. coefs : array, shape (n_features, n_alphas + 1) Coefficients along the path n_iter : int Number of iterations run. Returned only if return_n_iter is set to True. See also -------- lasso_path LassoLars Lars LassoLarsCV LarsCV sklearn.decomposition.sparse_encode References ---------- .. [1] "Least Angle Regression", Effron et al. http://www-stat.stanford.edu/~tibs/ftp/lars.pdf .. [2] `Wikipedia entry on the Least-angle regression <http://en.wikipedia.org/wiki/Least-angle_regression>`_ .. [3] `Wikipedia entry on the Lasso <http://en.wikipedia.org/wiki/Lasso_(statistics)#Lasso_method>`_ """ n_features = X.shape[1] n_samples = y.size max_features = min(max_iter, n_features) if return_path: coefs = np.zeros((max_features + 1, n_features)) alphas = np.zeros(max_features + 1) else: coef, prev_coef = np.zeros(n_features), np.zeros(n_features) alpha, prev_alpha = np.array([0.]), np.array([0.]) # better ideas? n_iter, n_active = 0, 0 active, indices = list(), np.arange(n_features) # holds the sign of covariance sign_active = np.empty(max_features, dtype=np.int8) drop = False # will hold the cholesky factorization. Only lower part is # referenced. # We are initializing this to "zeros" and not empty, because # it is passed to scipy linalg functions and thus if it has NaNs, # even if they are in the upper part that it not used, we # get errors raised. # Once we support only scipy > 0.12 we can use check_finite=False and # go back to "empty" L = np.zeros((max_features, max_features), dtype=X.dtype) swap, nrm2 = linalg.get_blas_funcs(('swap', 'nrm2'), (X,)) solve_cholesky, = get_lapack_funcs(('potrs',), (X,)) if Gram is None: if copy_X: # force copy. setting the array to be fortran-ordered # speeds up the calculation of the (partial) Gram matrix # and allows to easily swap columns X = X.copy('F') elif Gram == 'auto': Gram = None if X.shape[0] > X.shape[1]: Gram = np.dot(X.T, X) elif copy_Gram: Gram = Gram.copy() if Xy is None: Cov = np.dot(X.T, y) else: Cov = Xy.copy() if verbose: if verbose > 1: print("Step\t\tAdded\t\tDropped\t\tActive set size\t\tC") else: sys.stdout.write('.') sys.stdout.flush() tiny = np.finfo(np.float).tiny # to avoid division by 0 warning tiny32 = np.finfo(np.float32).tiny # to avoid division by 0 warning equality_tolerance = np.finfo(np.float32).eps while True: if Cov.size: if positive: C_idx = np.argmax(Cov) else: C_idx = np.argmax(np.abs(Cov)) C_ = Cov[C_idx] if positive: C = C_ else: C = np.fabs(C_) else: C = 0. if return_path: alpha = alphas[n_iter, np.newaxis] coef = coefs[n_iter] prev_alpha = alphas[n_iter - 1, np.newaxis] prev_coef = coefs[n_iter - 1] alpha[0] = C / n_samples if alpha[0] <= alpha_min + equality_tolerance: # early stopping if abs(alpha[0] - alpha_min) > equality_tolerance: # interpolation factor 0 <= ss < 1 if n_iter > 0: # In the first iteration, all alphas are zero, the formula # below would make ss a NaN ss = ((prev_alpha[0] - alpha_min) / (prev_alpha[0] - alpha[0])) coef[:] = prev_coef + ss * (coef - prev_coef) alpha[0] = alpha_min if return_path: coefs[n_iter] = coef break if n_iter >= max_iter or n_active >= n_features: break if not drop: ########################################################## # Append x_j to the Cholesky factorization of (Xa * Xa') # # # # ( L 0 ) # # L -> ( ) , where L * w = Xa' x_j # # ( w z ) and z = ||x_j|| # # # ########################################################## if positive: sign_active[n_active] = np.ones_like(C_) else: sign_active[n_active] = np.sign(C_) m, n = n_active, C_idx + n_active Cov[C_idx], Cov[0] = swap(Cov[C_idx], Cov[0]) indices[n], indices[m] = indices[m], indices[n] Cov_not_shortened = Cov Cov = Cov[1:] # remove Cov[0] if Gram is None: X.T[n], X.T[m] = swap(X.T[n], X.T[m]) c = nrm2(X.T[n_active]) ** 2 L[n_active, :n_active] = \ np.dot(X.T[n_active], X.T[:n_active].T) else: # swap does only work inplace if matrix is fortran # contiguous ... Gram[m], Gram[n] = swap(Gram[m], Gram[n]) Gram[:, m], Gram[:, n] = swap(Gram[:, m], Gram[:, n]) c = Gram[n_active, n_active] L[n_active, :n_active] = Gram[n_active, :n_active] # Update the cholesky decomposition for the Gram matrix if n_active: linalg.solve_triangular(L[:n_active, :n_active], L[n_active, :n_active], trans=0, lower=1, overwrite_b=True, **solve_triangular_args) v = np.dot(L[n_active, :n_active], L[n_active, :n_active]) diag = max(np.sqrt(np.abs(c - v)), eps) L[n_active, n_active] = diag if diag < 1e-7: # The system is becoming too ill-conditioned. # We have degenerate vectors in our active set. # We'll 'drop for good' the last regressor added. # Note: this case is very rare. It is no longer triggered by the # test suite. The `equality_tolerance` margin added in 0.16.0 to # get early stopping to work consistently on all versions of # Python including 32 bit Python under Windows seems to make it # very difficult to trigger the 'drop for good' strategy. warnings.warn('Regressors in active set degenerate. ' 'Dropping a regressor, after %i iterations, ' 'i.e. alpha=%.3e, ' 'with an active set of %i regressors, and ' 'the smallest cholesky pivot element being %.3e' % (n_iter, alpha, n_active, diag), ConvergenceWarning) # XXX: need to figure a 'drop for good' way Cov = Cov_not_shortened Cov[0] = 0 Cov[C_idx], Cov[0] = swap(Cov[C_idx], Cov[0]) continue active.append(indices[n_active]) n_active += 1 if verbose > 1: print("%s\t\t%s\t\t%s\t\t%s\t\t%s" % (n_iter, active[-1], '', n_active, C)) if method == 'lasso' and n_iter > 0 and prev_alpha[0] < alpha[0]: # alpha is increasing. This is because the updates of Cov are # bringing in too much numerical error that is greater than # than the remaining correlation with the # regressors. Time to bail out warnings.warn('Early stopping the lars path, as the residues ' 'are small and the current value of alpha is no ' 'longer well controlled. %i iterations, alpha=%.3e, ' 'previous alpha=%.3e, with an active set of %i ' 'regressors.' % (n_iter, alpha, prev_alpha, n_active), ConvergenceWarning) break # least squares solution least_squares, info = solve_cholesky(L[:n_active, :n_active], sign_active[:n_active], lower=True) if least_squares.size == 1 and least_squares == 0: # This happens because sign_active[:n_active] = 0 least_squares[...] = 1 AA = 1. else: # is this really needed ? AA = 1. / np.sqrt(np.sum(least_squares * sign_active[:n_active])) if not np.isfinite(AA): # L is too ill-conditioned i = 0 L_ = L[:n_active, :n_active].copy() while not np.isfinite(AA): L_.flat[::n_active + 1] += (2 ** i) * eps least_squares, info = solve_cholesky( L_, sign_active[:n_active], lower=True) tmp = max(np.sum(least_squares * sign_active[:n_active]), eps) AA = 1. / np.sqrt(tmp) i += 1 least_squares *= AA if Gram is None: # equiangular direction of variables in the active set eq_dir = np.dot(X.T[:n_active].T, least_squares) # correlation between each unactive variables and # eqiangular vector corr_eq_dir = np.dot(X.T[n_active:], eq_dir) else: # if huge number of features, this takes 50% of time, I # think could be avoided if we just update it using an # orthogonal (QR) decomposition of X corr_eq_dir = np.dot(Gram[:n_active, n_active:].T, least_squares) g1 = arrayfuncs.min_pos((C - Cov) / (AA - corr_eq_dir + tiny)) if positive: gamma_ = min(g1, C / AA) else: g2 = arrayfuncs.min_pos((C + Cov) / (AA + corr_eq_dir + tiny)) gamma_ = min(g1, g2, C / AA) # TODO: better names for these variables: z drop = False z = -coef[active] / (least_squares + tiny32) z_pos = arrayfuncs.min_pos(z) if z_pos < gamma_: # some coefficients have changed sign idx = np.where(z == z_pos)[0][::-1] # update the sign, important for LAR sign_active[idx] = -sign_active[idx] if method == 'lasso': gamma_ = z_pos drop = True n_iter += 1 if return_path: if n_iter >= coefs.shape[0]: del coef, alpha, prev_alpha, prev_coef # resize the coefs and alphas array add_features = 2 * max(1, (max_features - n_active)) coefs = np.resize(coefs, (n_iter + add_features, n_features)) alphas = np.resize(alphas, n_iter + add_features) coef = coefs[n_iter] prev_coef = coefs[n_iter - 1] alpha = alphas[n_iter, np.newaxis] prev_alpha = alphas[n_iter - 1, np.newaxis] else: # mimic the effect of incrementing n_iter on the array references prev_coef = coef prev_alpha[0] = alpha[0] coef = np.zeros_like(coef) coef[active] = prev_coef[active] + gamma_ * least_squares # update correlations Cov -= gamma_ * corr_eq_dir # See if any coefficient has changed sign if drop and method == 'lasso': # handle the case when idx is not length of 1 [arrayfuncs.cholesky_delete(L[:n_active, :n_active], ii) for ii in idx] n_active -= 1 m, n = idx, n_active # handle the case when idx is not length of 1 drop_idx = [active.pop(ii) for ii in idx] if Gram is None: # propagate dropped variable for ii in idx: for i in range(ii, n_active): X.T[i], X.T[i + 1] = swap(X.T[i], X.T[i + 1]) # yeah this is stupid indices[i], indices[i + 1] = indices[i + 1], indices[i] # TODO: this could be updated residual = y - np.dot(X[:, :n_active], coef[active]) temp = np.dot(X.T[n_active], residual) Cov = np.r_[temp, Cov] else: for ii in idx: for i in range(ii, n_active): indices[i], indices[i + 1] = indices[i + 1], indices[i] Gram[i], Gram[i + 1] = swap(Gram[i], Gram[i + 1]) Gram[:, i], Gram[:, i + 1] = swap(Gram[:, i], Gram[:, i + 1]) # Cov_n = Cov_j + x_j * X + increment(betas) TODO: # will this still work with multiple drops ? # recompute covariance. Probably could be done better # wrong as Xy is not swapped with the rest of variables # TODO: this could be updated residual = y - np.dot(X, coef) temp = np.dot(X.T[drop_idx], residual) Cov = np.r_[temp, Cov] sign_active = np.delete(sign_active, idx) sign_active = np.append(sign_active, 0.) # just to maintain size if verbose > 1: print("%s\t\t%s\t\t%s\t\t%s\t\t%s" % (n_iter, '', drop_idx, n_active, abs(temp))) if return_path: # resize coefs in case of early stop alphas = alphas[:n_iter + 1] coefs = coefs[:n_iter + 1] if return_n_iter: return alphas, active, coefs.T, n_iter else: return alphas, active, coefs.T else: if return_n_iter: return alpha, active, coef, n_iter else: return alpha, active, coef ############################################################################### # Estimator classes class Lars(LinearModel, RegressorMixin): """Least Angle Regression model a.k.a. LAR Read more in the :ref:`User Guide <least_angle_regression>`. Parameters ---------- n_nonzero_coefs : int, optional Target number of non-zero coefficients. Use ``np.inf`` for no limit. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). positive : boolean (default=False) Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept which is set True by default. verbose : boolean or integer, optional Sets the verbosity amount normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the ``tol`` parameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization. fit_path : boolean If True the full path is stored in the ``coef_path_`` attribute. If you compute the solution for a large problem or many targets, setting ``fit_path`` to ``False`` will lead to a speedup, especially with a small alpha. Attributes ---------- alphas_ : array, shape (n_alphas + 1,) | list of n_targets such arrays Maximum of covariances (in absolute value) at each iteration. \ ``n_alphas`` is either ``n_nonzero_coefs`` or ``n_features``, \ whichever is smaller. active_ : list, length = n_alphas | list of n_targets such lists Indices of active variables at the end of the path. coef_path_ : array, shape (n_features, n_alphas + 1) \ | list of n_targets such arrays The varying values of the coefficients along the path. It is not present if the ``fit_path`` parameter is ``False``. coef_ : array, shape (n_features,) or (n_targets, n_features) Parameter vector (w in the formulation formula). intercept_ : float | array, shape (n_targets,) Independent term in decision function. n_iter_ : array-like or int The number of iterations taken by lars_path to find the grid of alphas for each target. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.Lars(n_nonzero_coefs=1) >>> clf.fit([[-1, 1], [0, 0], [1, 1]], [-1.1111, 0, -1.1111]) ... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE Lars(copy_X=True, eps=..., fit_intercept=True, fit_path=True, n_nonzero_coefs=1, normalize=True, positive=False, precompute='auto', verbose=False) >>> print(clf.coef_) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE [ 0. -1.11...] See also -------- lars_path, LarsCV sklearn.decomposition.sparse_encode """ def __init__(self, fit_intercept=True, verbose=False, normalize=True, precompute='auto', n_nonzero_coefs=500, eps=np.finfo(np.float).eps, copy_X=True, fit_path=True, positive=False): self.fit_intercept = fit_intercept self.verbose = verbose self.normalize = normalize self.method = 'lar' self.precompute = precompute self.n_nonzero_coefs = n_nonzero_coefs self.positive = positive self.eps = eps self.copy_X = copy_X self.fit_path = fit_path def _get_gram(self): # precompute if n_samples > n_features precompute = self.precompute if hasattr(precompute, '__array__'): Gram = precompute elif precompute == 'auto': Gram = 'auto' else: Gram = None return Gram def fit(self, X, y, Xy=None): """Fit the model using X, y as training data. parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values. Xy : array-like, shape (n_samples,) or (n_samples, n_targets), \ optional Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomputed. returns ------- self : object returns an instance of self. """ X, y = check_X_y(X, y, y_numeric=True, multi_output=True) n_features = X.shape[1] X, y, X_mean, y_mean, X_std = self._center_data(X, y, self.fit_intercept, self.normalize, self.copy_X) if y.ndim == 1: y = y[:, np.newaxis] n_targets = y.shape[1] alpha = getattr(self, 'alpha', 0.) if hasattr(self, 'n_nonzero_coefs'): alpha = 0. # n_nonzero_coefs parametrization takes priority max_iter = self.n_nonzero_coefs else: max_iter = self.max_iter precompute = self.precompute if not hasattr(precompute, '__array__') and ( precompute is True or (precompute == 'auto' and X.shape[0] > X.shape[1]) or (precompute == 'auto' and y.shape[1] > 1)): Gram = np.dot(X.T, X) else: Gram = self._get_gram() self.alphas_ = [] self.n_iter_ = [] if self.fit_path: self.coef_ = [] self.active_ = [] self.coef_path_ = [] for k in xrange(n_targets): this_Xy = None if Xy is None else Xy[:, k] alphas, active, coef_path, n_iter_ = lars_path( X, y[:, k], Gram=Gram, Xy=this_Xy, copy_X=self.copy_X, copy_Gram=True, alpha_min=alpha, method=self.method, verbose=max(0, self.verbose - 1), max_iter=max_iter, eps=self.eps, return_path=True, return_n_iter=True, positive=self.positive) self.alphas_.append(alphas) self.active_.append(active) self.n_iter_.append(n_iter_) self.coef_path_.append(coef_path) self.coef_.append(coef_path[:, -1]) if n_targets == 1: self.alphas_, self.active_, self.coef_path_, self.coef_ = [ a[0] for a in (self.alphas_, self.active_, self.coef_path_, self.coef_)] self.n_iter_ = self.n_iter_[0] else: self.coef_ = np.empty((n_targets, n_features)) for k in xrange(n_targets): this_Xy = None if Xy is None else Xy[:, k] alphas, _, self.coef_[k], n_iter_ = lars_path( X, y[:, k], Gram=Gram, Xy=this_Xy, copy_X=self.copy_X, copy_Gram=True, alpha_min=alpha, method=self.method, verbose=max(0, self.verbose - 1), max_iter=max_iter, eps=self.eps, return_path=False, return_n_iter=True, positive=self.positive) self.alphas_.append(alphas) self.n_iter_.append(n_iter_) if n_targets == 1: self.alphas_ = self.alphas_[0] self.n_iter_ = self.n_iter_[0] self._set_intercept(X_mean, y_mean, X_std) return self class LassoLars(Lars): """Lasso model fit with Least Angle Regression a.k.a. Lars It is a Linear Model trained with an L1 prior as regularizer. The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 Read more in the :ref:`User Guide <least_angle_regression>`. Parameters ---------- alpha : float Constant that multiplies the penalty term. Defaults to 1.0. ``alpha = 0`` is equivalent to an ordinary least square, solved by :class:`LinearRegression`. For numerical reasons, using ``alpha = 0`` with the LassoLars object is not advised and you should prefer the LinearRegression object. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). positive : boolean (default=False) Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept which is set True by default. Under the positive restriction the model coefficients will not converge to the ordinary-least-squares solution for small values of alpha. Only coeffiencts up to the smallest alpha value (``alphas_[alphas_ > 0.].min()`` when fit_path=True) reached by the stepwise Lars-Lasso algorithm are typically in congruence with the solution of the coordinate descent Lasso estimator. verbose : boolean or integer, optional Sets the verbosity amount normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter : integer, optional Maximum number of iterations to perform. eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the ``tol`` parameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization. fit_path : boolean If ``True`` the full path is stored in the ``coef_path_`` attribute. If you compute the solution for a large problem or many targets, setting ``fit_path`` to ``False`` will lead to a speedup, especially with a small alpha. Attributes ---------- alphas_ : array, shape (n_alphas + 1,) | list of n_targets such arrays Maximum of covariances (in absolute value) at each iteration. \ ``n_alphas`` is either ``max_iter``, ``n_features``, or the number of \ nodes in the path with correlation greater than ``alpha``, whichever \ is smaller. active_ : list, length = n_alphas | list of n_targets such lists Indices of active variables at the end of the path. coef_path_ : array, shape (n_features, n_alphas + 1) or list If a list is passed it's expected to be one of n_targets such arrays. The varying values of the coefficients along the path. It is not present if the ``fit_path`` parameter is ``False``. coef_ : array, shape (n_features,) or (n_targets, n_features) Parameter vector (w in the formulation formula). intercept_ : float | array, shape (n_targets,) Independent term in decision function. n_iter_ : array-like or int. The number of iterations taken by lars_path to find the grid of alphas for each target. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.LassoLars(alpha=0.01) >>> clf.fit([[-1, 1], [0, 0], [1, 1]], [-1, 0, -1]) ... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE LassoLars(alpha=0.01, copy_X=True, eps=..., fit_intercept=True, fit_path=True, max_iter=500, normalize=True, positive=False, precompute='auto', verbose=False) >>> print(clf.coef_) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE [ 0. -0.963257...] See also -------- lars_path lasso_path Lasso LassoCV LassoLarsCV sklearn.decomposition.sparse_encode """ def __init__(self, alpha=1.0, fit_intercept=True, verbose=False, normalize=True, precompute='auto', max_iter=500, eps=np.finfo(np.float).eps, copy_X=True, fit_path=True, positive=False): self.alpha = alpha self.fit_intercept = fit_intercept self.max_iter = max_iter self.verbose = verbose self.normalize = normalize self.method = 'lasso' self.positive = positive self.precompute = precompute self.copy_X = copy_X self.eps = eps self.fit_path = fit_path ############################################################################### # Cross-validated estimator classes def _check_copy_and_writeable(array, copy=False): if copy or not array.flags.writeable: return array.copy() return array def _lars_path_residues(X_train, y_train, X_test, y_test, Gram=None, copy=True, method='lars', verbose=False, fit_intercept=True, normalize=True, max_iter=500, eps=np.finfo(np.float).eps, positive=False): """Compute the residues on left-out data for a full LARS path Parameters ----------- X_train : array, shape (n_samples, n_features) The data to fit the LARS on y_train : array, shape (n_samples) The target variable to fit LARS on X_test : array, shape (n_samples, n_features) The data to compute the residues on y_test : array, shape (n_samples) The target variable to compute the residues on Gram : None, 'auto', array, shape: (n_features, n_features), optional Precomputed Gram matrix (X' * X), if ``'auto'``, the Gram matrix is precomputed from the given X, if there are more samples than features copy : boolean, optional Whether X_train, X_test, y_train and y_test should be copied; if False, they may be overwritten. method : 'lar' | 'lasso' Specifies the returned model. Select ``'lar'`` for Least Angle Regression, ``'lasso'`` for the Lasso. verbose : integer, optional Sets the amount of verbosity fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). positive : boolean (default=False) Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept which is set True by default. See reservations for using this option in combination with method 'lasso' for expected small values of alpha in the doc of LassoLarsCV and LassoLarsIC. normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. max_iter : integer, optional Maximum number of iterations to perform. eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the ``tol`` parameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization. Returns -------- alphas : array, shape (n_alphas,) Maximum of covariances (in absolute value) at each iteration. ``n_alphas`` is either ``max_iter`` or ``n_features``, whichever is smaller. active : list Indices of active variables at the end of the path. coefs : array, shape (n_features, n_alphas) Coefficients along the path residues : array, shape (n_alphas, n_samples) Residues of the prediction on the test data """ X_train = _check_copy_and_writeable(X_train, copy) y_train = _check_copy_and_writeable(y_train, copy) X_test = _check_copy_and_writeable(X_test, copy) y_test = _check_copy_and_writeable(y_test, copy) if fit_intercept: X_mean = X_train.mean(axis=0) X_train -= X_mean X_test -= X_mean y_mean = y_train.mean(axis=0) y_train = as_float_array(y_train, copy=False) y_train -= y_mean y_test = as_float_array(y_test, copy=False) y_test -= y_mean if normalize: norms = np.sqrt(np.sum(X_train ** 2, axis=0)) nonzeros = np.flatnonzero(norms) X_train[:, nonzeros] /= norms[nonzeros] alphas, active, coefs = lars_path( X_train, y_train, Gram=Gram, copy_X=False, copy_Gram=False, method=method, verbose=max(0, verbose - 1), max_iter=max_iter, eps=eps, positive=positive) if normalize: coefs[nonzeros] /= norms[nonzeros][:, np.newaxis] residues = np.dot(X_test, coefs) - y_test[:, np.newaxis] return alphas, active, coefs, residues.T class LarsCV(Lars): """Cross-validated Least Angle Regression model Read more in the :ref:`User Guide <least_angle_regression>`. Parameters ---------- fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). positive : boolean (default=False) Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept which is set True by default. verbose : boolean or integer, optional Sets the verbosity amount normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter: integer, optional Maximum number of iterations to perform. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. max_n_alphas : integer, optional The maximum number of points on the path used to compute the residuals in the cross-validation n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Attributes ---------- coef_ : array, shape (n_features,) parameter vector (w in the formulation formula) intercept_ : float independent term in decision function coef_path_ : array, shape (n_features, n_alphas) the varying values of the coefficients along the path alpha_ : float the estimated regularization parameter alpha alphas_ : array, shape (n_alphas,) the different values of alpha along the path cv_alphas_ : array, shape (n_cv_alphas,) all the values of alpha along the path for the different folds cv_mse_path_ : array, shape (n_folds, n_cv_alphas) the mean square error on left-out for each fold along the path (alpha values given by ``cv_alphas``) n_iter_ : array-like or int the number of iterations run by Lars with the optimal alpha. See also -------- lars_path, LassoLars, LassoLarsCV """ method = 'lar' def __init__(self, fit_intercept=True, verbose=False, max_iter=500, normalize=True, precompute='auto', cv=None, max_n_alphas=1000, n_jobs=1, eps=np.finfo(np.float).eps, copy_X=True, positive=False): self.fit_intercept = fit_intercept self.positive = positive self.max_iter = max_iter self.verbose = verbose self.normalize = normalize self.precompute = precompute self.copy_X = copy_X self.cv = cv self.max_n_alphas = max_n_alphas self.n_jobs = n_jobs self.eps = eps def fit(self, X, y): """Fit the model using X, y as training data. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) Target values. Returns ------- self : object returns an instance of self. """ self.fit_path = True X, y = check_X_y(X, y, y_numeric=True) # init cross-validation generator cv = check_cv(self.cv, X, y, classifier=False) Gram = 'auto' if self.precompute else None cv_paths = Parallel(n_jobs=self.n_jobs, verbose=self.verbose)( delayed(_lars_path_residues)( X[train], y[train], X[test], y[test], Gram=Gram, copy=False, method=self.method, verbose=max(0, self.verbose - 1), normalize=self.normalize, fit_intercept=self.fit_intercept, max_iter=self.max_iter, eps=self.eps, positive=self.positive) for train, test in cv) all_alphas = np.concatenate(list(zip(*cv_paths))[0]) # Unique also sorts all_alphas = np.unique(all_alphas) # Take at most max_n_alphas values stride = int(max(1, int(len(all_alphas) / float(self.max_n_alphas)))) all_alphas = all_alphas[::stride] mse_path = np.empty((len(all_alphas), len(cv_paths))) for index, (alphas, active, coefs, residues) in enumerate(cv_paths): alphas = alphas[::-1] residues = residues[::-1] if alphas[0] != 0: alphas = np.r_[0, alphas] residues = np.r_[residues[0, np.newaxis], residues] if alphas[-1] != all_alphas[-1]: alphas = np.r_[alphas, all_alphas[-1]] residues = np.r_[residues, residues[-1, np.newaxis]] this_residues = interpolate.interp1d(alphas, residues, axis=0)(all_alphas) this_residues **= 2 mse_path[:, index] = np.mean(this_residues, axis=-1) mask = np.all(np.isfinite(mse_path), axis=-1) all_alphas = all_alphas[mask] mse_path = mse_path[mask] # Select the alpha that minimizes left-out error i_best_alpha = np.argmin(mse_path.mean(axis=-1)) best_alpha = all_alphas[i_best_alpha] # Store our parameters self.alpha_ = best_alpha self.cv_alphas_ = all_alphas self.cv_mse_path_ = mse_path # Now compute the full model # it will call a lasso internally when self if LassoLarsCV # as self.method == 'lasso' Lars.fit(self, X, y) return self @property def alpha(self): # impedance matching for the above Lars.fit (should not be documented) return self.alpha_ class LassoLarsCV(LarsCV): """Cross-validated Lasso, using the LARS algorithm The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 Read more in the :ref:`User Guide <least_angle_regression>`. Parameters ---------- fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). positive : boolean (default=False) Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept which is set True by default. Under the positive restriction the model coefficients do not converge to the ordinary-least-squares solution for small values of alpha. Only coeffiencts up to the smallest alpha value (``alphas_[alphas_ > 0.].min()`` when fit_path=True) reached by the stepwise Lars-Lasso algorithm are typically in congruence with the solution of the coordinate descent Lasso estimator. As a consequence using LassoLarsCV only makes sense for problems where a sparse solution is expected and/or reached. verbose : boolean or integer, optional Sets the verbosity amount normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter : integer, optional Maximum number of iterations to perform. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. max_n_alphas : integer, optional The maximum number of points on the path used to compute the residuals in the cross-validation n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. Attributes ---------- coef_ : array, shape (n_features,) parameter vector (w in the formulation formula) intercept_ : float independent term in decision function. coef_path_ : array, shape (n_features, n_alphas) the varying values of the coefficients along the path alpha_ : float the estimated regularization parameter alpha alphas_ : array, shape (n_alphas,) the different values of alpha along the path cv_alphas_ : array, shape (n_cv_alphas,) all the values of alpha along the path for the different folds cv_mse_path_ : array, shape (n_folds, n_cv_alphas) the mean square error on left-out for each fold along the path (alpha values given by ``cv_alphas``) n_iter_ : array-like or int the number of iterations run by Lars with the optimal alpha. Notes ----- The object solves the same problem as the LassoCV object. However, unlike the LassoCV, it find the relevant alphas values by itself. In general, because of this property, it will be more stable. However, it is more fragile to heavily multicollinear datasets. It is more efficient than the LassoCV if only a small number of features are selected compared to the total number, for instance if there are very few samples compared to the number of features. See also -------- lars_path, LassoLars, LarsCV, LassoCV """ method = 'lasso' class LassoLarsIC(LassoLars): """Lasso model fit with Lars using BIC or AIC for model selection The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 AIC is the Akaike information criterion and BIC is the Bayes Information criterion. Such criteria are useful to select the value of the regularization parameter by making a trade-off between the goodness of fit and the complexity of the model. A good model should explain well the data while being simple. Read more in the :ref:`User Guide <least_angle_regression>`. Parameters ---------- criterion : 'bic' | 'aic' The type of criterion to use. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). positive : boolean (default=False) Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept which is set True by default. Under the positive restriction the model coefficients do not converge to the ordinary-least-squares solution for small values of alpha. Only coeffiencts up to the smallest alpha value (``alphas_[alphas_ > 0.].min()`` when fit_path=True) reached by the stepwise Lars-Lasso algorithm are typically in congruence with the solution of the coordinate descent Lasso estimator. As a consequence using LassoLarsIC only makes sense for problems where a sparse solution is expected and/or reached. verbose : boolean or integer, optional Sets the verbosity amount normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter : integer, optional Maximum number of iterations to perform. Can be used for early stopping. eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the ``tol`` parameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization. Attributes ---------- coef_ : array, shape (n_features,) parameter vector (w in the formulation formula) intercept_ : float independent term in decision function. alpha_ : float the alpha parameter chosen by the information criterion n_iter_ : int number of iterations run by lars_path to find the grid of alphas. criterion_ : array, shape (n_alphas,) The value of the information criteria ('aic', 'bic') across all alphas. The alpha which has the smallest information criteria is chosen. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.LassoLarsIC(criterion='bic') >>> clf.fit([[-1, 1], [0, 0], [1, 1]], [-1.1111, 0, -1.1111]) ... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE LassoLarsIC(copy_X=True, criterion='bic', eps=..., fit_intercept=True, max_iter=500, normalize=True, positive=False, precompute='auto', verbose=False) >>> print(clf.coef_) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE [ 0. -1.11...] Notes ----- The estimation of the number of degrees of freedom is given by: "On the degrees of freedom of the lasso" Hui Zou, Trevor Hastie, and Robert Tibshirani Ann. Statist. Volume 35, Number 5 (2007), 2173-2192. http://en.wikipedia.org/wiki/Akaike_information_criterion http://en.wikipedia.org/wiki/Bayesian_information_criterion See also -------- lars_path, LassoLars, LassoLarsCV """ def __init__(self, criterion='aic', fit_intercept=True, verbose=False, normalize=True, precompute='auto', max_iter=500, eps=np.finfo(np.float).eps, copy_X=True, positive=False): self.criterion = criterion self.fit_intercept = fit_intercept self.positive = positive self.max_iter = max_iter self.verbose = verbose self.normalize = normalize self.copy_X = copy_X self.precompute = precompute self.eps = eps def fit(self, X, y, copy_X=True): """Fit the model using X, y as training data. Parameters ---------- X : array-like, shape (n_samples, n_features) training data. y : array-like, shape (n_samples,) target values. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. Returns ------- self : object returns an instance of self. """ self.fit_path = True X, y = check_X_y(X, y, y_numeric=True) X, y, Xmean, ymean, Xstd = LinearModel._center_data( X, y, self.fit_intercept, self.normalize, self.copy_X) max_iter = self.max_iter Gram = self._get_gram() alphas_, active_, coef_path_, self.n_iter_ = lars_path( X, y, Gram=Gram, copy_X=copy_X, copy_Gram=True, alpha_min=0.0, method='lasso', verbose=self.verbose, max_iter=max_iter, eps=self.eps, return_n_iter=True, positive=self.positive) n_samples = X.shape[0] if self.criterion == 'aic': K = 2 # AIC elif self.criterion == 'bic': K = log(n_samples) # BIC else: raise ValueError('criterion should be either bic or aic') R = y[:, np.newaxis] - np.dot(X, coef_path_) # residuals mean_squared_error = np.mean(R ** 2, axis=0) df = np.zeros(coef_path_.shape[1], dtype=np.int) # Degrees of freedom for k, coef in enumerate(coef_path_.T): mask = np.abs(coef) > np.finfo(coef.dtype).eps if not np.any(mask): continue # get the number of degrees of freedom equal to: # Xc = X[:, mask] # Trace(Xc * inv(Xc.T, Xc) * Xc.T) ie the number of non-zero coefs df[k] = np.sum(mask) self.alphas_ = alphas_ with np.errstate(divide='ignore'): self.criterion_ = n_samples * np.log(mean_squared_error) + K * df n_best = np.argmin(self.criterion_) self.alpha_ = alphas_[n_best] self.coef_ = coef_path_[:, n_best] self._set_intercept(Xmean, ymean, Xstd) return self
bsd-3-clause
rustychris/stompy
stompy/model/suntans/sunreader.py
1
147480
from __future__ import print_function from __future__ import division # These were added by 2to3, but seem to cause more issues than they solve # from builtins import zip # from builtins import str # from builtins import map # from builtins import range # from builtins import object # from past.utils import old_div import re import pprint import sys, os, shutil, time import hashlib, pickle try: try: from osgeo import osr except: import osr except ImportError: print("GDAL unavailable") osr = "unavaiable" from numpy import ma import glob,datetime import subprocess from . import transect from ...grid import (trigrid,orthomaker) from . import forcing from ...spatial import field import mmap from numpy import * from ...spatial.linestring_utils import upsample_linearring try: import pytz utc = pytz.timezone('utc') except ImportError: print("couldn't load utc timezone") utc = None try: from safe_pylab import * import safe_pylab as pylab except: print("Plotting disabled") from numpy.random import random # configurable, per-user or host settings: import local_config # use absolute paths since we need to change directories to invoke vdatum REALSIZE = 8 REALTYPE = float64 def read_bathymetry_offset(): ## Figure out the constant offset in the bathymetry from NAVD88 import sys comp_path = os.path.join( os.environ['HOME'], "classes/research/spatialdata/us/ca/suntans/bathymetry/compiled") if comp_path not in sys.path: sys.path.append(comp_path) import depth_offset bathymetry_offset = depth_offset.navd88_highwater #print "Bathymetry has constant offset of %gm"%bathymetry_offset return bathymetry_offset def msl_to_navd88(lonlat_locs): if msl_to_navd88.warning: print(msl_to_navd88.warning) msl_to_navd88.warning = None return 0.938*ones( (lonlat_locs.shape[0],) ) # return apply_vdatum('LMSL','MLLW',lonlat_locs) def apply_vdatum(src_vdatum,dest_vdatum,lonlat_locs): """ given a vector of lon/lat yx pairs, return the height that must be added to MSL to get a NAVD88 measurement """ tmp_in = "/tmp/tmpinput" tmp_out = "/tmp/tmpoutput" in_fp = open(tmp_in,'wt') for i in range(lonlat_locs.shape[0]): in_fp.write("%d, %f, %f, 0.0\n"%(i,lonlat_locs[i,0],lonlat_locs[i,1])) in_fp.close() vdatum_dir = local_config.vdatum_dir command = "cd %s ; java VDatum -lonlat -heights -hin WGS84 -units meters -vin %s -vout %s %s %s"%( vdatum_dir, src_vdatum, dest_vdatum, tmp_in,tmp_out) # print "About to run vdatum command:" # print command res = subprocess.call(command,shell=True) if res: print("Something probably went wrong there. Returned ",res) raise Exception("Subcommand vdatum failed") offsets = zeros( (lonlat_locs.shape[0]), float64) fp_out = open(tmp_out,'rt') for i in range(lonlat_locs.shape[0]): stupid_id,x,y,z = [float(s) for s in fp_out.readline().split(',')] offsets[i] = z fp_out.close() return offsets msl_to_navd88.warning = "WARNING: assuming constant 0.938m MSL-NAVD88" import subprocess import socket class MPIrunner(object): """ Try to figure out if we're running on mpich1 or mpich2 """ def __init__(self,cmdlist,np=4,no_mpi_for_1=True,wait=1): """ np: number of processors no_mpi_for_for_1: if np==1 and this is true, run the command directly without any mpi Now tries to figure out if we're on bobstar, in which case submit jobs via qsub """ mpi_version = None if np == 1 and no_mpi_for_1: mpi_version = 0 host = socket.gethostname() # bobstar? (or other qsub based machine) if mpi_version is None: if host == 'head0.localdomain': print("good luck - we're running on bobstar") mpi_version = 'bobstar' elif host.startswith('eddy.'): print("looks like we're on eddy") mpi_version = 'eddy' elif host == 'sunfish': print("Hi sunfish!") mpi_version='sunfish' elif host.startswith('trestles'): print("hi trestles.") # seems that trestles can run qsub from nodes # now, so no need to test whether we're in # a qsub job. (but this does not handle the # case where the script is running inside # a qsub job that already has the right np, # and really just want to run mpirun_rsh right away..) mpi_version = 'trestles' # running locally on mac: if mpi_version is None and sys.platform == 'darwin': mpi_version = 'darwin' # look for some direct ways to start it: if mpi_version is None: print("Trying versions of mpich") for cmd,version in [('mpich2version',2), ('mpich2version',1), ('mpichversion.mpich-shmem',1)]: try: pipe = subprocess.Popen(cmd,stdout=subprocess.PIPE) version_info = pipe.communicate()[0] mpi_version = version break except OSError as exc: #print "While trying to figure out the mpich version, the command %s"%cmd #print "raised an exception" #print exc pass # might be open mpi - if mpi_version is None: print("Trying Open MPI") try: pipe = subprocess.Popen(['mpirun','-V'],stdout=subprocess.PIPE,stderr=subprocess.PIPE) stdout_txt,stderr_txt = pipe.communicate() if b"Open MPI" in stderr_txt + stdout_txt: print("Found mpi is openmpi") mpi_version="openmpi" else: print("OpenMPI mpirun printed something else") print(stderr_txt) print(stdout_txt) except OSError as exc: print("While checking for Open MPI, the command %s"%cmd) print("raised an exception") print(exc) if mpi_version is None: raise Exception("MPI wasn't found") print("Using mpi version %s"%mpi_version) print(" PWD: ",os.getcwd()) print(" np: ",np) print(" command: "," ".join(cmdlist)) def must_wait(): if not wait: print("Sorry - have to wait on non-qsub platforms") if mpi_version == 0: must_wait() subprocess.call(cmdlist) elif mpi_version == 1: must_wait() if host=='marvin': mpirun = "mpirun.mpich-shmem" else: mpirun = "mpirun" subprocess.call([mpirun,'-np','%d'%np] + cmdlist) elif mpi_version == 2: must_wait() subprocess.call(['mpiexec','-np','%d'%np] + cmdlist) elif mpi_version == 'darwin': must_wait() subprocess.call(['mpiexec','-np','%d'%np,'-host','localhost'] + cmdlist) elif mpi_version =='bobstar': self.run_bobstar(np,cmdlist,wait=wait) elif mpi_version == 'eddy': self.run_eddy(np,cmdlist,wait=wait) elif mpi_version in ['trestles']: self.run_trestles(np,cmdlist,wait=wait,mpi_version=mpi_version) elif mpi_version=='sunfish': self.run_sunfish(np,cmdlist,wait=wait) elif mpi_version=='openmpi': must_wait() print("Running via openmpi") subprocess.call(['mpirun','-n','%d'%np] + cmdlist) else: raise Exception("Failed to find a way to run this! mpi version is %s"%mpi_version) def run_bobstar(self,np,cmdlist,wait=True): self.run_qsub(np,cmdlist, ppn=8,walltime=None, wait=wait) def run_sunfish(self,np,cmdlist,wait=True): self.run_qsub(np,cmdlist,ppn=8,walltime="24:00:00",wait=wait, mpi_template="mpirun -np %(np)i",) def run_eddy(self,np,cmdlist,wait=True): if 0: # the more standard but old way on eddy: # eddy policy is 24 hour jobs self.run_qsub(np,cmdlist, ppn=8,walltime='24:00:00', mpi_template='/usr/bin/mpirun -np %(np)i', wait=wait) else: self.run_qsub(np,cmdlist, ppn=8,walltime='24:00:00', mpi_template='/home/rusty/bin/mpiexec --comm pmi -n %(np)i', wait=wait) def run_trestles(self,np,cmdlist,wait=True,mpi_version='trestles'): """ trestles has 32 cores per node, but they also have a shared queue which allows for using a smaller number of cores (and getting charged for the smaller number). it defaults to 48 hours, but I think that it charges for all of walltime, even if the job finishes early (annoying). for testing, force walltime = 1.0 """ if np > 1: mpi_template="mpirun_rsh -np %(np)i -hostfile $PBS_NODEFILE" else: # sometimes run serial jobs via qsub to have more resources mpi_template="" if np < 32: # use one node from the shared queue q = 'shared' ppn = np else: q = 'normal' ppn = 32 # just guess if not given... walltime=os.environ.get('WALLTIME','1:00:00') self.run_qsub(np,cmdlist, ppn=ppn,walltime=walltime,save_script=False, queue=q, mpi_template=mpi_template, # "mpirun_rsh -np %(np)i -hostfile $PBS_NODEFILE", wait=wait) def run_qsub(self,np,cmdlist,ppn=8,walltime=None,save_script=False, queue=None, mpi_template="mpirun -np %(np)i -machine vapi", wait=True): """ Simple wrapper for qsub - note: some systems have a very small default walltime but allow for arbitrarily large walltime, while others have a generous default but don't allow anything bigger. save_script: if true, write the script out to qsub_script.sh, and exit. wait: if False queue and it return, otherwise watch qstat for it to finish. """ print("submitting job: walltime will be: ",walltime) # first figure out how many nodes: nnodes = int( (np-1) / ppn + 1 ) if walltime is None: walltime = "" else: walltime = ",walltime=%s"%walltime if queue is not None: qtxt ="#PBS -q %s\n"%queue else: qtxt ="# no queue specified" mpi_command = mpi_template%locals() script = """#!/bin/bash %s #PBS -N rusty #PBS -l nodes=%i:ppn=%i%s #PBS -V DISPLAY="" export DISPLAY cd %s echo Run started at `date` time %s %s echo Run ended at `date` """%(qtxt,nnodes,ppn,walltime,os.getcwd(),mpi_command," ".join(cmdlist)) if save_script: fp = open("qsub_script.sh","wt") fp.write(script) fp.close() sys.exit(1) print("------Script------") print(script) print("------------------") # it would be nice to run it interactively and just wait, but # qsub says we have to be on a terminal to do that (and I think # that interactive jobs also don't run the script). # so capture the job number from qsub: # 9552.scyld.localdomain proc = subprocess.Popen(['qsub'],stdin=subprocess.PIPE,stdout=subprocess.PIPE,stderr=subprocess.PIPE) out,err = proc.communicate( script ) job_id = out.strip() print("qsub returned with code %s. job id is '%s'"%(proc.returncode,job_id)) if job_id=="": print("Didn't get a job id back from qsub.") print("stdout was:") print(out) print("stderr was:") print(err) return if not wait: print("Not waiting. job id is %s"%job_id) return # poll the job via qstat # increase sleep time as we go sleep_time = 5.0 sleep_r = 1.2 sleep_time_max = 600 last_status = None while 1: proc = subprocess.Popen(['qstat',job_id],stdout=subprocess.PIPE) out,err = proc.communicate() print("qstat returned: ",out) lines = out.split("\n") if len(lines)>=3: # print "Job status line is ",lines[2] stat_line = lines[2] status = stat_line.split()[4] print('status is ',status) else: print("Assuming that no response means that it's finished") status = 'C' if status == 'C': print("Completed!") break else: if last_status == status: sleep_time = min( sleep_r * sleep_time, sleep_time_max) else: sleep_time = 5.0 last_status = status print("sleeping %f seconds"%sleep_time) time.sleep( sleep_time ) class SuntansCrash(object): horizontal_courant = 1 vertical_courant = 2 def site(self): g = self.sun.grid(processor = self.processor) if self.description == SuntansCrash.vertical_courant: return g.vcenters()[self.cell_id] else: endpoints = g.points[g.edges[self.edge_id,:2],:2] return endpoints.mean(axis=0) # compute midpoint def plot(self): # plot the location of the cell on top of the # bathymetry, and with a second plot showing the # stage of the nearest profile point # plotting a crash site self.sun.plot_bathymetry(procs = [self.processor] ) site = self.site() plot( [site[0]],[site[1]],'ro' ) annotate('Offender',site) def closest_profile_point(self): site = self.site() pnts = self.sun.profile_points() dists = sqrt( (pnts[:,0]-site[0])**2 + (pnts[:,1]-site[1])**2 ) best = argmin(dists) print("Closest profile point is %g away"%dists[best]) self.closest_profile_location = pnts[best] self.closest_profile_index = best return best def plot_nearest_freesurface(self): prof_point = self.closest_profile_point() prof_data = self.sun.profile_data('FreeSurfaceFile') point_data = prof_data[:,prof_point] prof_time = self.sun.timeline(units='days',output='profile') plot(prof_time,point_data) def full_plot(self): clf() subplot(212) self.plot_nearest_freesurface() subplot(211) self.plot_vicinity() def plot_vicinity(self): self.plot() self.closest_profile_point() p = self.closest_profile_location plot( [p[0]],[p[1]],'bo') annotate('Profile loc',p) def depth_info(self): if self.description == self.horizontal_courant: print("Horizontal courant number violation") print("edge_id: ",self.edge_id) g = self.sun.grid(processor = self.processor) cells = g.edges[self.edge_id,3:5] elif self.description == self.vertical_courant: print("Vertical courant number violation") print("cell_id: ",self.cell_id) print("dz: ",self.dz) cells = [self.cell_id] else: print("Unknown crash type ",self.description) print("Z-level of crash: ",self.z_id) fs = self.storefile().freesurface() for c in cells: print("Cell %i"%c) print("Depth[cell=%i]: %g"%(c,self.sun.depth_for_cell(c,self.processor))) if self.z_id == 0: print("Top of this z-level: 0.0") else: print("Top of this z_level: %g"%(self.sun.z_levels()[self.z_id-1])) print("Bottom of this z_level: %g"%(self.sun.z_levels()[self.z_id])) print("Freesurface[cell=%i]: %g"%(c,fs[c])) _storefile = None def storefile(self): if self._storefile is None: self._storefile = StoreFile(self.sun, self.processor) return self._storefile def spin_mapper(spin_sun,target_sun,target_absdays,scalar='salinity',nonnegative=1): """ return a function that takes a proc, cell and k-level from target_sun and returns a scalar value from the spin_sun. the timestep will be chosen to be as close as possible to the starting time of target_sun """ ### figure out the step to use: # the time of this storefile: spin_times = date2num( spin_sun.time_zero()) + spin_sun.timeline(units='days') step = argmin( abs(spin_times-target_absdays) ) print("Difference between target time and spinup time: %gs"%( 24*3600*(target_absdays - spin_times[step]) )) ### map target z-levels to the spin_sun z-levels z_levels = target_sun.z_levels() spin_z_levels = spin_sun.z_levels() # could be refined some, to use middles of the cells k_to_spin_k = searchsorted(spin_z_levels,z_levels) ### as needed, figure out how our cells map onto the # processors and cells of the spin_run. Since we # may not need all of the spin_sun's domains, # do this dynamically proc_cell_to_spin_cell = {} # (target_proc,target_cell) -> (spin_proc,spin_cell_id) cell_salinity = {} # spin proc -> salt[spin_c,spin_k] grids = [None] * target_sun.num_processors() spin_ctops = [None] * spin_sun.num_processors() def mapper(p,c,k): # populate per processor things as needed if grids[p] is None: grids[p] = target_sun.grid(p) # first figure out the spin-cell if (p,c) not in proc_cell_to_spin_cell: # The real way: proc_cell_to_spin_cell[(p,c)] = spin_sun.closest_cell(grids[p].vcenters()[c]) spin_proc,spin_c = proc_cell_to_spin_cell[(p,c)] # map my k onto the spinup-k: try: spin_k = k_to_spin_k[k] except: print("Ran into trouble while trying to map p=%d c=%d k=%d"%(p,c,k)) print("through the map ") print(k_to_spin_k) raise # get the ctop values for the spinup run: if spin_ctops[spin_proc] is None: spin_ctops[spin_proc] = spin_sun.ctop(spin_proc,step) # print "Read ctops for spinup: spin_proc=%d length=%s\n"%(spin_proc,spin_ctops[spin_proc].shape) # how deep is that cell? spin_nk = spin_sun.Nk(spin_proc)[spin_c] # if the spinup cell is dry, pull from the highest wet cell try: if spin_k < spin_ctops[spin_proc][spin_c]: spin_k = spin_ctops[spin_proc][spin_c] except IndexError: print("Trouble with production run (%d,%d,%d) mapping to spinup (%d,%d,??) shaped %s"%(p,c,k,spin_proc,spin_c,spin_ctops[spin_proc].shape)) raise # if it's too deep, truncate if spin_k >= spin_nk: spin_k = spin_nk - 1 if spin_proc not in cell_salinity: g,cell_salinity[spin_proc] = spin_sun.cell_salinity(spin_proc,step) s = cell_salinity[spin_proc][spin_c,spin_k] if nonnegative and s<0.0: s=0.0 return s return mapper class SediStoreFile(object): """ Like StoreFile, but for reading/writing sediment restart data """ hdr_bytes=3*4 @staticmethod def filename(sun,processor,startfile=0): # this is currently hardcoded in sedi.c and phys.c - so we have to hardcode here. if startfile: return os.path.join(sun.datadir,'start_sedi.dat.%d'%processor) else: return os.path.join(sun.datadir,'store_sedi.dat.%d'%processor) def __init__(self,sun,processor,startfile=0): self.sun = sun self.proc = processor self.grid = sun.grid(processor) self.fn = self.filename(sun,processor,startfile) self.fp = open(self.fn,'rb+') # pre-compute strides self.stride_Nc = self.grid.Ncells() self.stride_Nc_Nk = self.sun.Nk(self.proc).sum() # read the header info: header = fromstring(self.fp.read(self.hdr_bytes),int32) self.timestep = header[0] self.nclasses = header[1] self.nlayers = header[2] def seek_ssc(self,species): self.fp.seek(self.hdr_bytes + species* self.stride_Nc_Nk * REALSIZE) def seek_bed(self,layer): self.fp.seek(self.hdr_bytes + self.nclasses*self.stride_Nc_Nk * REALSIZE \ + layer * self.stride_Nc) def read_ssc(self,species): self.seek_ssc(species) return fromstring( self.fp.read(self.stride_Nc_Nk * REALSIZE), REALTYPE) def read_bed(self,layer): self.seek_bed(layer) return fromstring( self.fp.read(self.stride_Nc * REALSIZE), REALTYPE) def write_ssc(self,species,ssc): data = ssc.astype(REALTYPE) self.seek_ssc(species) self.fp.write( data.tostring() ) self.fp.flush() def write_bed(self,layer,bed): data = bed.astype(REALTYPE) self.seek_bed(layer) self.fp.write( data.tostring() ) self.fp.flush() def overwrite_ssc(self,func,species): """ iterate over all the cells and set the ssc in each one, overwriting the existing ssc data signature for the function func(cell id, k-level) """ # read the current data: ssc = self.read_ssc(species) i = 0 # linear index into data Nk = self.sun.Nk(self.proc) for c in range(self.grid.Ncells()): for k in range(Nk[c]): ssc[i] = func(self.proc,c,k) i+=1 self.write_ssc(species,ssc) def overwrite_bed(self,func,layer): bed = self.read_bed(layer) for c in range(self.grid.Ncells()): bed[c] = func(self.proc,c,layer) self.write_bed(layer,bed) def close(self): self.fp.close() self.fp = None class StoreFile(object): """ Encapsulates reading of store.dat files, either for restarts or for crashes New: support for overwriting portions of a storefile """ def __init__(self,sun,processor,startfile=0,filename=None): """ startfile: if true, choose filename using StartFile instead of StoreFile """ self.sun = sun self.proc = processor if filename is None: if startfile: self.fn = self.sun.file_path('StartFile',self.proc) else: self.fn = self.sun.file_path('StoreFile',self.proc) else: self.fn=filename self.fp = open(self.fn,'rb+') # lazy loading of the strides, in case we just want the # timestep self.blocks_initialized = False def initialize_blocks(self): if not self.blocks_initialized: # all data is lazy-loaded self.grid = self.sun.grid(self.proc) # pre-compute strides Nc = self.grid.Ncells() Ne_Nke = self.sun.Nke(self.proc).sum() Nc_Nk = self.sun.Nk(self.proc).sum() Nc_Nkp1 = (self.sun.Nk(self.proc) + 1).sum() # and define the structure of the file: blocks = [ ['timestep', int32, 1], ['freesurface', REALTYPE, Nc], ['ab_hor_moment', REALTYPE, Ne_Nke], ['ab_vert_moment', REALTYPE, Nc_Nk], ['ab_salinity', REALTYPE, Nc_Nk], ['ab_temperature', REALTYPE, Nc_Nk], ['ab_turb_q', REALTYPE, Nc_Nk], ['ab_turb_l', REALTYPE, Nc_Nk], ['turb_q', REALTYPE, Nc_Nk], ['turb_l', REALTYPE, Nc_Nk], ['nu_t', REALTYPE, Nc_Nk], ['K_t', REALTYPE, Nc_Nk], ['u', REALTYPE, Ne_Nke], ['w', REALTYPE, Nc_Nkp1], ['p_nonhydro', REALTYPE, Nc_Nk], ['salinity', REALTYPE, Nc_Nk], ['temperature', REALTYPE, Nc_Nk], ['bg_salinity', REALTYPE, Nc_Nk]] # and then rearrange to get block offsets and sizes ready for reading block_names = [b[0] for b in blocks] block_sizes = array( [ ones(1,b[1]).itemsize * b[2] for b in blocks] ) block_offsets = block_sizes.cumsum() - block_sizes expected_filesize = block_sizes.sum() actual_filesize = os.stat(self.fn).st_size if expected_filesize != actual_filesize: raise Exception("Mismatch in filesize: %s != %s"%(expected_filesize, actual_filesize)) self.block_names = block_names self.block_sizes = block_sizes self.block_offsets = block_offsets self.block_types = [b[1] for b in blocks] self.blocks_initialized = True def close(self): self.fp.close() self.fp = None def read_block(self,label): # special handling for timestep - can skip having to initialized # too much if label == 'timestep': self.fp.seek(0) s = self.fp.read( 4 ) return fromstring( s, int32 ) else: # 2014/7/13: this line was missing - not sure how it ever # worked - or if this is incomplete code?? self.initialize_blocks() i = self.block_names.index(label) self.fp.seek( self.block_offsets[i] ) s = self.fp.read( self.block_sizes[i] ) return fromstring( s, self.block_types[i] ) def write_block(self,label,data): i = self.block_names.index(label) self.fp.seek( self.block_offsets[i] ) data = data.astype(self.block_types[i]) self.fp.write( data.tostring() ) self.fp.flush() def timestep(self): return self.read_block('timestep')[0] def time(self): """ return a datetime corresponding to our timestep """ return self.sun.time_zero() + datetime.timedelta( self.timestep() * self.sun.conf_float('dt')/(24.*3600) ) def freesurface(self): return self.read_block('freesurface') def u(self): blk = self.read_block('u') Nke = self.sun.Nke(self.proc) Nke_cumul = Nke.cumsum() - Nke full_u = nan*ones( (self.grid.Nedges(),Nke.max()) ) for e in range(self.grid.Nedges()): full_u[e,0:Nke[e]] = blk[Nke_cumul[e]:Nke_cumul[e]+Nke[e]] return full_u def overwrite_salinity(self,func): """ iterate over all the cells and set the salinity in each one, overwriting the existing salinity data signature for the function func(cell id, k-level) """ # read the current data: salt = self.read_block('salinity') # for starters, just call out to func once for each # cell, but pass it the cell id so that func can # cache locations for each grid cell. i = 0 # linear index into data Nk = self.sun.Nk(self.proc) for c in range(self.grid.Ncells()): for k in range(Nk[c]): salt[i] = func(self.proc,c,k) i+=1 self.write_block('salinity',salt) def overwrite_temperature(self,func): """ iterate over all the cells and set the temperature in each one, overwriting the existing salinity data signature for the function func(proc, cell id, k-level) """ # read the current data: temp = self.read_block('temperature') # for starters, just call out to func once for each # cell, but pass it the cell id so that func can # cache locations for each grid cell. i = 0 # linear index into data Nk = self.sun.Nk(self.proc) for c in range(self.grid.Ncells()): for k in range(Nk[c]): temp[i] = func(self.proc,c,k) i+=1 self.write_block('temperature',temp) def copy_salinity(self,spin_sun): """ Overwrite the salinity record with a salinity record taken from the spin_sun run. Step selects which full-grid output to use, or if not specified choose the step closest to the time of this storefile. """ ### figure out the step to use: # the time of this storefile: my_absdays = date2num( sun.time() ) mapper = spin_mapper(spin_sun, self.sun, my_absdays,scalar='salinity') self.overwrite_salinity(mapper) # the rest of the fields still need to be implemented, but the pieces are mostly # here. see SunReader.read_cell_z_level_scalar() for a good start, and maybe # there is a nice way to refactor this and that. class GenericConfig(object): """ Handles reading and writing of suntans.dat formatted files. """ def __init__(self,filename=None,text=None): """ filename: path to file to open and parse text: a string containing the entire file to parse """ self.filename = filename if filename: fp = open(filename,'rt') else: fp = [s+"\n" for s in text.split("\n")] self.entries = {} self.originals = [] for line in fp: # save original text so we can write out a new suntans.dat with # only minor changes self.originals.append(line) i = len(self.originals)-1 m = re.match("^\s*((\S+)\s+(\S+))?\s*.*",line) if m and m.group(1): key = m.group(2).lower() val = m.group(3) self.entries[key] = [val,i] if filename: fp.close() def conf_float(self,key): return self.conf_str(key,float) def conf_int(self,key,default=None): x=self.conf_str(key,int) if x is None: return default return x def conf_str(self,key,caster=lambda x:x): key = key.lower() if key in self.entries: return caster(self.entries[key][0]) else: return None def __setitem__(self,key,value): self.set_value(key,value) def __getitem__(self,key): return self.conf_str(key) def __delitem__(self,key): # if the line already exists, it will be written out commented, otherwise # it won't be written at all. self.set_value(key,None) def __eq__(self,other): return self.is_equal(other) def is_equal(self,other,limit_to_keys=None): # key by key equality comparison: print("Comparing two configs") for k in self.entries.keys(): if limit_to_keys and k not in limit_to_keys: continue if k not in other.entries: print("Other is missing key %s"%k) return False elif self.val_to_str(other.entries[k][0]) != self.val_to_str(self.entries[k][0]): print("Different values key %s => %s, %s"%(k,self.entries[k][0],other.entries[k][0])) return False for k in other.entries.keys(): if limit_to_keys and k not in limit_to_keys: continue if k not in self.entries: print("other has extra key %s"%k) return False return True def disable_value(self,key): key = key.lower() if key not in self.entries: return old_val,i = self.entries[key] self.originals[i] = "# %s"%(self.originals[i]) self.entries[key][0] = None def val_to_str(self,value): # make sure that floats are formatted with plenty of digits: # and handle annoyance of standard Python types vs. numpy types # But None stays None, as it gets handled specially elsewhere if value is None: return None if isinstance(value,float) or isinstance(value,floating): value = "%.12g"%value else: value = str(value) return value def set_value(self,key,value): """ Update a value in the configuration. Setting an item to None will comment out the line if it already exists, and omit the line if it does not yet exist. """ key = key.lower() if key not in self.entries: if value is None: return self.originals.append("# blank #") i = len(self.originals) - 1 self.entries[key] = [None,i] old_val,i = self.entries[key] value = self.val_to_str(value) if value is not None: self.originals[i] = "%s %s # from sunreader code\n"%(key,value) else: self.originals[i] = "# " + self.originals[i] self.entries[key][0] = value def write_config(self,filename=None,check_changed=True,backup=True): """ Write this config out to a text file filename: defaults to self.filename check_changed: if True, and the file already exists and is not materially different, then do nothing. Good for avoiding unnecessary changes to mtimes. backup: if true, copy any existing file to <filename>.bak """ filename = filename or self.filename if filename is None: raise Exception("No clue about the filename for writing config file") if check_changed: if os.path.exists(filename): existing_conf = self.__class__(filename) if existing_conf == self: print("No change in config") return if os.path.exists(filename) and backup: filename_bak = filename + ".bak" os.rename(filename,filename_bak) fp = open(filename,'wt') for line in self.originals: fp.write(line) fp.close() class SediLsConfig(GenericConfig): def __init__(self,filename=None,text=None): if filename is None and text is None: text = """ ######################################################################## # # Default input file for the L. Sanford based sediment module in SUNTANS. # see LS2008 for variable meanings ######################################################################## r_consolidate 3.4722e-5 # 3.0 / 86400. # [1/s] r_swell 3.4722e-7 # 3.0 / 86400 / 100; # [1/s] beta 1.36e-4 # [m/s/Pa] gamma0 0.002 # [-] rho_solid 2650 # dry weight [kg/m3] tau_cs 0.125 # [Pa] critical stress of erosion for sand tau_c_min 0.02 # [Pa] - minimum floc critical stress for erosion phi_mud_solid_min 0.03 # mud solids fraction [-] Nspecies 2 # Number of sediment species # Settling velocities - positive is rising ws000 -0.0005 ws001 -0.01 flags000 SED_MUD flags001 SED_SAND bed_fraction000 0.9 bed_fraction001 0.1 Nlayers 26 dm000 0.05 # nominal mass in each layer [kg/m2] dm001 0.05 dm002 0.05 dm003 0.05 dm004 0.05 dm005 0.05 dm006 0.05 dm007 0.05 dm008 0.05 dm009 0.05 dm010 0.05 dm011 0.05 dm012 0.05 dm013 0.05 dm014 0.05 dm015 0.05 dm016 0.05 dm017 0.05 dm018 0.05 dm019 0.05 dm020 0.05 dm021 0.05 dm022 0.05 dm023 0.05 dm024 0.05 dm025 3.75 """ super(SediLsConfig,self).__init__(filename=filename,text=text) class SediConfig(GenericConfig): def __init__(self,filename=None,text=None): if filename is None and text is None: text = """ ######################################################################## # # Default input file for the sediment module in SUNTANS. # ######################################################################## NL 1 # Number of bed layers (MAX = 5) spwght 2.65 # Specific weight of the sediment particle diam 0.0001 # Mean diameter of the sediment particle (m) gamma 0.2 # Coefficient for flocculated settling velcoity Chind 0.1 # Concentration (in volumetric fraction) criterion for hindered settling velocity Cfloc 0.02 # Concentration (in volumetric fraction) criterion for flocculated settling velcoity k 0.0002 # Constant coefficient for settling velocity as a function of conc. Kb 0.001 # Bottom length scale Kagg 0.15 # Aggregation coefficient (dimensionless) Kbrk 0.0002 # Break-up coefficient (dimensionless) Fy 0.0000000001 #Yield strength (N) nf 2.5 #Fractal dimension (0~3, usually 2~3) q 0.5 #Constant coefficient in the breakup formulation Nsize 2 #Number of the size classes diam_min 0.00008 #Minimum sediment size diam_max 0.00024 #Maximum sediment size Dp 0.000004 #Diameter of the primary particle (in m) Dl1 180000 # Dry density (g/m^3) Tcsl1 0.06 # Critical Shear Stress (N/m^2) E1 0.03 # Erosion Rate Constant (g/m^2/s) alpha1 6.5 # Empirical coef. for the erosion rate cnsd1 0.001 # Consolidation rate (g/m^2/s) hl1 1.00 # Layer thickness (m) """ super(SediConfig,self).__init__(filename=filename,text=text) # the current process for handling dates uses pylab datenums, but since these # have units of days, and days have a non-power of 2 number of seconds in them, # it can't represent times accurately. the error is usually on the order of # 10 us - this parameter describes the expected resolution of values which # have been converted to floating point - and where possible the conversion # back from floating point should round at this precision # to make it a bit easier to know that the arithmetic will be exact, this # is specified as an integer inverse of the precision datenum_precision_per_s = 100 # 10ms - should be evenly divisible into 1e6 def dt_round(dt): """ Given a datetime or timedelta object, round it to datenum_precision """ if isinstance(dt,datetime.timedelta): td = dt # days are probably fine dec_seconds = td.seconds + 1e-6 * td.microseconds # the correct number of time quanta quanta = int(round(dec_seconds * datenum_precision_per_s)) # how to get that back to an exact number of seconds? new_seconds = quanta // datenum_precision_per_s # careful to keep it integer arithmetic us_per_quanta = 1000000 // datenum_precision_per_s new_microseconds = (quanta % datenum_precision_per_s) * us_per_quanta return datetime.timedelta( days=td.days, seconds = new_seconds, microseconds = new_microseconds ) else: # same deal, but the fields have slightly different names # And the integer arithmetic cannot be used to count absolute seconds - # that will overflow 32-bit ints (okay with 64, but better not # to assume 64-bit ints are available) dec_seconds = dt.second + 1e-6 * dt.microsecond quanta = int(round(dec_seconds * datenum_precision_per_s)) # how to get that back to an exact number of seconds? new_seconds = quanta // datenum_precision_per_s # careful to keep it integer arithmetic us_per_quanta = 1000000// datenum_precision_per_s new_microseconds = (quanta % datenum_precision_per_s) * us_per_quanta # to handle the carries between microseconds, seconds, days, # construct an exact timedelta object - also avoids having to do # int arithmetic with seconds over many days, which could overflow. td = datetime.timedelta(seconds = new_seconds - dt.second, microseconds = new_microseconds - dt.microsecond) return dt + td class SunConfig(GenericConfig): def time_zero(self): """ return python datetime for the when t=0 is""" # try the old way, where these are separate fields: start_year = self.conf_int('start_year') start_day = self.conf_float('start_day') if start_year is not None: # Note: we're dealing with 0-based start days here. start_datetime = datetime.datetime(start_year,1,1,tzinfo=utc) + dt_round(datetime.timedelta(start_day)) return start_datetime # That failed, so try the other way print("Trying the new way of specifying t0") s = self.conf_str('TimeZero') # 1999-01-01-00:00 start_datetime = datetime.datetime.strptime(s,'%Y-%m-%d-%H:%M') start_datetime = start_datetime.replace(tzinfo=utc) return start_datetime def simulation_seconds(self): return self.conf_float('dt') * self.conf_int('nsteps') def timestep(self): """ Return a timedelta object for the timestep - should be safe from roundoff. """ return dt_round( datetime.timedelta(seconds=self.conf_float('dt')) ) def simulation_period(self): """ This is more naive than the SunReader simulation_period(), in that it does *not* look at any restart information, just start_year, start_day, dt, and nsteps WARNING: this used to add an extra dt to start_date - maybe trying to make it the time of the first profile output?? this seems like a bad idea. As of Nov 18, 2012, it does not do that (and at the same time, moves to datetime arithmetic) return a pair of python datetime objects for the start and end of the simulation. """ t0 = self.time_zero() # why did it add dt here??? # start_date = t0 + datetime.timedelta( self.conf_float('dt') / (24.*3600) ) # simulation_days = self.simulation_seconds() / (24.*3600) # end_date = start_date + datetime.timedelta(simulation_days) start_date = t0 end_date = start_date + self.conf_int('nsteps')*self.timestep() return start_date,end_date def copy_t0(self,other): self.set_value('start_year',other.conf_int('start_year')) self.set_value('start_day',other.conf_float('start_day')) def set_simulation_period(self,start_date,end_date): """ Based on the two python datetime instances given, sets start_day, start_year and nsteps """ self.set_value('start_year',start_date.year) t0 = datetime.datetime( start_date.year,1,1,tzinfo=utc ) self.set_value('start_day',date2num(start_date) - date2num(t0)) # roundoff dangers here - # self.set_simulation_duration_days( date2num(end_date) - date2num(start_date)) self.set_simulation_duration(delta=(end_date - start_date)) def set_simulation_duration_days(self,days): self.set_simulation_duration(days=days) def set_simulation_duration(self, days=None, delta=None, seconds = None): """ Set the number of steps for the simulation - exactly one of the parameters should be specified: days: decimal number of days - DANGER - it's very easy to get some round-off issues here delta: a datetime.timedelta object. hopefully safe, as long as any differencing between dates was done with UTC dates (or local dates with no daylight savings transitions) seconds: total number of seconds - this should be safe, though there are some possibilities for roundoff. """ print("Setting simulation duration:") print(" days=",days) print(" delta=",delta) print(" seconds=",seconds) # convert everything to a timedelta - if (days is not None) + (delta is not None) + (seconds is not None) != 1: raise Exception("Exactly one of days, delta, or seconds must be specified") if days is not None: delta = datetime.timedelta(days=days) elif seconds is not None: delta = datetime.timedelta(seconds=seconds) # assuming that dt is also a multiple of the precision (currently 10ms), this is # safe delta = dt_round(delta) print(" rounded delta = ",delta) timestep = dt_round(datetime.timedelta(seconds=self.conf_float('dt'))) print(" rounded timestep =",timestep) # now we have a hopefully exact simulation duration in integer days, seconds, microseconds # and a similarly exact timestep # would like to do this: # nsteps = delta / timestep # but that's not supported until python 3.3 or so def to_quanta(td): """ return integer number of time quanta in the time delta object """ us_per_quanta = 1000000 // datenum_precision_per_s return (td.days*86400 + td.seconds)*datenum_precision_per_s + \ int( round( td.microseconds/us_per_quanta) ) quanta_timestep = to_quanta(timestep) quanta_delta = to_quanta(delta) print(" quanta_timestep=",quanta_timestep) print(" quanta_delta=",quanta_delta) nsteps = quanta_delta // quanta_timestep print(" nsteps = ",nsteps) # double-check, going back to timedelta objects: err = nsteps * timestep - delta self.set_value('nsteps',int(nsteps)) print("Simulation duration requires %i steps (rounding error=%s)"%(self.conf_int('nsteps'),err)) def is_grid_compatible(self,other): """ Compare two config's, and return False if any parameters which would affect grid partitioning/celldata/edgedata/etc. are different. Note that differences in other input files can also cause two grids to be different, esp. vertspace.dat """ # keep all lowercase keys = ['nkmax', 'stairstep', 'rstretch', 'correctvoronoi', 'voronoiratio', 'vertgridcorrect', 'intdepth', 'pslg', 'points', 'edges', 'cells', 'depth', # 'vertspace.dat.in' if rstretch==0 'topology.dat', 'edgedata', 'celldata', 'vertspace.dat'] return self.is_equal(other,limit_to_keys=keys) class SunReader(object): """ Encapsulates reading of suntans output data """ sun_exec = local_config.sun_exec EMPTY = 999999 def __init__(self,datadir='.'): self.datadir = datadir self.load_suntans_dat() # lazy-load self._step_data = None self._profile_points = None self._starting_time_step = None self._profile_data = {} self._z_levels = None # per processor stuff self._grids = {} self._topos = {} self._bathy = {} self._edgedata = {} self._celldata = {} self._topo_edges = None self._cell_velocity = {} _shared_grid = None def share_grid(self,other_sun): """ Queries for grid information will be redirected to the given instance - useful for a series of restarts where there's no need to read the grid in multiple times. No checking is done to make sure that the given instance actually has the same grid as this instance - caveat emptor. """ self._shared_grid = other_sun def load_suntans_dat(self): self.conf = SunConfig( os.path.join(self.datadir,'suntans.dat') ) def save_to_folder(self,folder): """ Write everything we know about the run into the given folder. At a minimum this is suntans.dat, points.dat, cells.dat, edges.dat """ folder = os.path.abspath(folder) orig_folder = os.path.abspath(self.datadir) # suntans.dat - copied from our existing suntans.dat unless they are # the same file. if folder != orig_folder: print("Copying suntans.dat") shutil.copyfile( os.path.join(orig_folder,'suntans.dat'), os.path.join(folder,'suntans.dat') ) else: print("Skipping suntans.dat - it's the same file") # grid: g = self.grid() print("Renumbering before save") g.renumber() print("Writing renumbered grid") g.write_suntans( folder ) # old interface - just delegate to newer class def conf_float(self,key): return self.conf.conf_float(key) def conf_int(self,key): return self.conf.conf_int(key) def conf_str(self,key): return self.conf.conf_str(key) def modify_dt(self,dt): """ Changes dt, and tries to alter the simulation period accordingly. This means changing the number of steps to cover the same period of time, and updating start_year/day so that boundaries.c gets the same real-world time for the start of the simulation """ # we can't really trust start_year/day at the beginning, # but try to preserve the duration: duration = self.conf.simulation_seconds() eff_t0 = self.effective_time_zero() self.conf.set_value('dt',float(dt)) # Now this will use the new value of dt to figure out nsteps self.conf.set_simulation_period(eff_t0,eff_t0 + duration/(24*3600.)) self.conf.write_config() def grid(self,processor=None,readonly=True): """ if processor is None, return a TriGrid object for the entire domain otherwise, return one processor's grid. if readonly is True, enable space-savings which reuse things like the points array """ if self._shared_grid: return self._shared_grid.grid(processor) if processor not in self._grids: self._grids[processor] = orthomaker.OrthoMaker(suntans_reader=self,processor=processor,readonly=readonly) return self._grids[processor] def proc_nonghost_cells(self,proc): """ returns an array of cell indices which are *not* ghost cells """ ng_cells = [] g = self.grid(proc) for i in range(g.Ncells()): if not self.proc_cell_is_ghost(proc,i): ng_cells.append(i) return array(ng_cells) def proc_cell_is_ghost(self,proc,i): """ Returns true if the specified cell is a ghost cell. """ cdata = self.celldata(proc) edges = self.grid(proc).edges marks = edges[cdata[i,5:8].astype(int32),2] return any(marks==6) warned_profile_filesize = 0 def steps_available(self,output='grid'): """ How many timesteps have been written out (not how many have been run, though, since generally only a small fraction are actually written out to disk) """ if output=='grid': return self.step_data()['steps_output'] else: # profile data: from_step_dat = old_div((self.step_data()['step'] - self.starting_time_step()),self.conf_int('ntoutProfs')) prof_dat_size = os.stat( self.file_path('FreeSurfaceFile') + ".prof" ).st_size n_prof_pnts = len( self.profile_points() ) n_steps_in_file = old_div(prof_dat_size, (n_prof_pnts * REALSIZE)) if n_steps_in_file != from_step_dat and not self.warned_profile_filesize: print("Filesize suggests %i profile timesteps, but step.dat suggests %i"%(n_steps_in_file,from_step_dat)) self.warned_profile_filesize = 1 return n_steps_in_file def step_data(self,reload=False): """ Return a dict with information parsed from step.dat, or None if there is no step.dat file """ if self._step_data is None or reload: try: raw = open(self.datadir + "/step.dat","rt").read() except IOError: return None m = re.match("On (\d+) of (\d+), t=([0-9\.]+) \(([0-9\.]+)% Complete, (\d+) output\)", raw) if m is None: print("------step.dat------") print(raw) print("--------------------") raise Exception("Failed to parse step.dat. Probably transient - try again") self._step_data = {'step':int(m.group(1)), 'total_steps':int(m.group(2)), 'model_time':float(m.group(3)), 'percent':float(m.group(4)), 'steps_output':int(m.group(5)) } return self._step_data def domain_decomposition(self,np=None): """ Once the grid and depths are in place, call on sun to break it out into multiple domains """ if np is None: np = self.num_processors() # possible that this is the first time to run the decomposition if np is None: print("Couldn't detect number of processors - will use np=1") np = 1 cmd = [self.sun_exec,'-g','-vvv','--datadir=%s'%os.path.abspath(self.datadir)] MPIrunner(cmd,np=np) # and check to see that it worked - or at least created a topology.dat.0 file if not os.path.exists( self.file_path('topology',0) ): raise Exception("Appears that partitioning failed - probably couldn't find sun (%s) or MPI"%self.sun_exec) def run_simulation(self,np=None,wait=1): """ run it! if wait is true, will not return until simulation process completes """ if np is None: np = self.num_processors() if np is None: print("Couldn't detect number of processors - will use np=1") np = 1 cmd = [self.sun_exec,'-s','-vvv','--datadir=%s'%os.path.abspath(self.datadir)] if self.starting_time_step() != 0: print("Will be a restart") cmd.append('-r') if wait: t_start = time.time() MPIrunner(cmd,np=np,wait=wait) if wait: t_elapsed = time.time() - t_start self.log_runtime(np,t_elapsed) def log_runtime(self,np,t_elapsed): """ For now, just log as many of the relevant details as possible to a file in datadir. Depending on how teragrid charges for stuff, this may get expanded into something that can approximate the anticipated run time. possible factors: - the sun executable - all of sedi.dat, wave.dat - the grid (discerned from depth.dat) - Nkmax, dt, nonlinear, beta==0, gamma==0 - np """ details = {} for datfile in ["sedi.dat","wave.dat"]: fn = os.path.join(self.datadir,datfile) if os.path.exists(fn): fp = open(fn,"rt") hsh = hashlib.md5() # md5.new() hsh.update(fp.read()) fp.close() details[datfile ] = hsh.hexdigest() else: details[datfile] = "missing" fp = open(self.sun_exec,"rb") hsh = hashlib.md5() ; hsh.update(fp.read()) details['sun'] = hsh.hexdigest() # md5.new(fp.read()).hexdigest() fp.close() # get some idea of grid size just from the first processor: cdata = self.celldata(0) details['Nc0'] = "%d"%len(cdata) details['Nc3D0'] = "%d"%cdata[4].sum() details['np'] = "%d"%np details['dt'] = "%f"%self.conf_float('dt') details['nonlinear'] = "%d"%self.conf_int('nonlinear') for s in ['beta','gamma']: if self.conf_float(s)!=0: details[s] = "yes" else: details[s] = "no" # And write it out... log_fp = open(os.path.join(self.datadir,"timing.out"),"wt") for k in details: log_fp.write("%s = %s\n"%(k,details[k])) log_fp.write("elapsed = %f\n"%t_elapsed) log_fp.close() # The actual data: # Most data is defined at the voronoi centers # Some values (free surface), or defined only at the surface, # while others are defined for every z-level # Some values have a time axis as well. # Want something like: # fs = sdata.freesurface() # # fs has a time axis, which can be referenced # # # gridplot( fs.grid(time=213.4) ) # gridplot( fs.grid(step=100) ) # Maybe the grid can handle most of the plotting, and we just # pass it the grid data? # Then the freesurface would just map cell indices to a scalar # value. # Surface velocity would map cell indices to a 3-vector def cell_velocity_fread(self,processor,time_step): """ Returns velocity values in an array Nc x Nkmax x 3 for now, only a single time_step can be specified returns tuple of grid, velocity[cell,z_level,component] """ g = self.grid(processor) Ncells = g.Ncells() u_name = self.file_path("HorizontalVelocityFile",processor) nsteps = self.steps_available() nkmax = self.conf_int('Nkmax') fp = open(u_name,"rb") if time_step >= nsteps: print("Using last time step instead of whatever you asked for") time_step = nsteps - 1 if time_step < 0: time_step = nsteps + time_step if time_step < 0: print("Clamping time step to be non-negative") time_step = 0 frame_size = nkmax*3*Ncells*REALSIZE fp.seek(time_step*frame_size) raw = fp.read(frame_size) # assume it was run on the same machine, so endian-ness # is the same values = fromstring(raw,REALTYPE) results = values.reshape( (nkmax,3,Ncells) ) results = swapaxes(results,1,2) # => z-level, cell index, component results = swapaxes(results,0,1) # => cell index, z-level, component return g,results def cell_velocity(self,processor,time_step=None): """ Like cell_velocity(), but try to memory map the file, and returns all timesteps returns tuple of grid, velocity[time,cell,z_level,component] """ g = self.grid(processor) if processor not in self._cell_velocity: Ncells = g.Ncells() u_name = self.file_path("HorizontalVelocityFile",processor) nkmax = self.conf_int('Nkmax') # Choose the number of steps based on the file size - # A single step will take Ncells*Nkmax*3*REALSIZE frame_size = nkmax*3*Ncells*REALSIZE nbytes = os.stat(u_name).st_size # self.steps_available() nsteps = nbytes // frame_size final_shape = (nsteps,nkmax,3,Ncells) results = memmap(u_name, dtype=REALTYPE, mode='r', shape=final_shape) # time, k, component, cell results = swapaxes(results,2,3) # => time, z-level, cell index, component results = swapaxes(results,1,2) # => time, cell index, z-level, component self._cell_velocity[processor] = results else: results = self._cell_velocity[processor] if time_step is not None: results = results[time_step,...] return g,results def cell_nuT(self,processor,time_step): return self.cell_scalar('EddyViscosityFile',processor,time_step) def cell_salinity(self,processor,time_step=None): """ Read salinity values into an array Nc x Nkmax for now, only a single time_step can be specified returns tuple of grid, salinity[cell,z_level] """ return self.cell_scalar('SalinityFile',processor,time_step) def cell_temperature(self,processor,time_step=None): """ Read temperature values into an array Nc x Nkmax for now, only a single time_step can be specified returns tuple of grid, salinity[cell,z_level] """ return self.cell_scalar('TemperatureFile',processor,time_step) _cell_scalars = None def cell_scalar(self,filename_name,processor,time_step=None): """ Read a cell-based scalar value from suntans output. filename_name: the suntans.dat field that has the setting we want. SalinityFile TemperatureFile """ if self._cell_scalars is None: self._cell_scalars = {} if filename_name not in self._cell_scalars: self._cell_scalars[filename_name] = {} g = self.grid(processor) if processor not in self._cell_scalars[filename_name]: Ncells = g.Ncells() s_name = self.file_path(filename_name,processor) nsteps = self.steps_available() nkmax = self.conf_int('Nkmax') frame_size = Ncells * nkmax * REALSIZE nbytes = os.stat(s_name).st_size data_shape = ( nbytes//frame_size,nkmax,Ncells) try: full_scal = memmap(s_name, dtype=REALTYPE, mode='r', shape=data_shape) # print "Successfully mapped %s"%s_name except mmap.error: print("Looks like we can't memory map the files. Going to be slow...") print("Size of %s is %d bytes"%(s_name,bytes)) # is there another option, like a dynamically read, file-backed array? fp = open(s_name,'rb') full_scal = fromstring(fp.read(),dtype=REALTYPE ).reshape( data_shape ) fp.close() self._cell_scalars[filename_name][processor] = swapaxes(full_scal,1,2) full_scal = self._cell_scalars[filename_name][processor] nsteps = full_scal.shape[0] if time_step is not None: if time_step >= nsteps: time_step = nsteps - 1 if time_step < 0: time_step = nsteps + time_step if time_step < 0: time_step = 0 return g,full_scal[time_step,:,:] else: return g,full_scal[:,:,:] def close_files(self): """ Close things like memmap'd scalar files """ if self._cell_scalars is not None: for filename in self._cell_scalars: for proc in list(self._cell_scalars[filename].keys()): del self._cell_scalars[filename][proc] if self._freesurface is not None: for proc in list(self._freesurface.keys()): del self._freesurface[proc] if self._cell_velocity is not None: for proc in list(self._cell_velocity.keys()): del self._cell_velocity[proc] if self._celldata is not None: for proc in list(self._celldata.keys()): del self._celldata[proc] if self._edgedata is not None: for proc in list(self._edgedata.keys()): del self._edgedata[proc] def ctop(self,processor,time_step): h = self.freesurface(processor,[time_step])[0] return self.h_to_ctop(h) def h_to_ctop(self,h,dzmin=None): if dzmin is None: # recent suntans code does this # the 2 is from #define DZMIN_SURFACE 2*DZMIN # so self.dzmin should reflect #DEFINE DZMIN 0.001 (or whatever it currently is) dzmin = 2*self.dzmin ctops = searchsorted(self.z_levels() - dzmin, -h) return ctops _freesurface = None def freesurface(self,processor,time_step=None): """ Returns freesurface values in an array (len(time_step),Nc) (or a 1-d array if time_step is a scalar). if time_step is not specified, returns freesurface for all cells, all timesteps in the file. """ g = self.grid(processor) if self._freesurface is None: self._freesurface = {} if processor not in self._freesurface: Ncells = g.Ncells() fs_name = self.file_path("FreeSurfaceFile",processor) frame_size = Ncells * REALSIZE nbytes = os.stat(fs_name).st_size data_shape = ( nbytes//frame_size,Ncells) try: self._freesurface[processor] = memmap(fs_name, dtype=REALTYPE, mode='r', shape=data_shape) except mmap.error: fp = open(fs_name,'rb') self._freesurface[processor] = fromstring(fp.read(),dtype=REALTYPE ).reshape( data_shape ) fp.close() if time_step is None: return self._freesurface[processor] else: return self._freesurface[processor][time_step,:] def file_path(self,conf_name,processor=None): base_name = self.conf_str(conf_name) if base_name is None: # raise Exception,"File path configuration not found for %s"%conf_name base_name = conf_name if processor is not None and conf_name not in ('points','DataLocations'): base_name += ".%i"%processor return self.datadir+"/"+base_name def profile_points(self,force=False): if self._profile_points is None or force: prof_points_fp = open(self.file_path("DataLocations")) xy_points = [] for line in prof_points_fp: this_point = [float(s) for s in line.split()] if len(this_point) == 2: xy_points.append(this_point) self._profile_points = array(xy_points) return self._profile_points _profdata = None def profdata(self): """ Reads the profdata.dat file, """ if self._profdata is None: fn = self.file_path('ProfileDataFile') fp = open(fn,'rb') # data format: # (4 byte int)numTotalDataPoints: Number of data points found on all processors. Note that # that this could be different from the number specified since some may lie outside the domain. # (4 byte int)numInterpPoints: Number of nearest neighbors to each point used for interpolation. # (4 byte int)NkmaxProfs: Number of vertical levels output in the profiles. # (4 byte int)nsteps: Total number of time steps in the simulation. # (4 byte int)ntoutProfs: Frequency of profile output. This implies a total of nsteps/ntoutProfs are output. # (8 byte double)dt: Time step size # (8 byte double array X NkmaxProfs)dz: Contains the vertical grid spacings. # (4 byte int array X numTotalDataPoints)allIndices: Contains the indices of each point that determines its # original location in the data file. This is mostly for debugging since the output data is resorted # so that it is in the same order as it appeared in the data file. # (4 byte int array X 2*numTotalDataPoints)dataXY: Contains the original data points at (or near) which profiles # are output. # (8 byte double array X numTotalDataPoints*numInterpPoints)xv: Array containing the x-locations of the nearest # neighbors to the dataXY points. If numInterpPoints=3, then the 3 closest neighbors to the point # (dataXY[2*i],dataXY[2*i+1]) are (xv[3*i],yv[3*i]), (xv[3*i+1],yv[3*i+1]), (xv[3*i+2],yv[3*i+2]). # (8 byte double array X numTotalDataPoints*numInterpPoints)yv: Array containing the y-locations of the nearest # neighbors to the dataXY points (see xv above). pdata = {} hdr_ints = fromstring(fp.read(5*4),int32) pdata['numTotalDataPoints'] = hdr_ints[0] pdata['numInterpPoints'] = hdr_ints[1] pdata['NkmaxProfs'] = hdr_ints[2] pdata['nsteps'] = hdr_ints[3] pdata['ntoutProfs'] = hdr_ints[4] pdata['dt'] = fromstring(fp.read(REALSIZE),REALTYPE) pdata['dzz'] = fromstring(fp.read(REALSIZE*pdata['NkmaxProfs']),REALTYPE) pdata['allIndices'] = fromstring(fp.read(4*pdata['numTotalDataPoints']),int32) # Wait a second - this file doesn't even have proc/cell info... dataxy = fromstring(fp.read(REALSIZE*2*pdata['numTotalDataPoints']),REALTYPE) # pdata['dataXY_serial'] = dataxy # needs to be reshaped pdata['dataXY'] = dataxy.reshape( (-1,2) ) print("About to read coordinates, file position is",fp.tell()) xvyv = fromstring(fp.read(2*REALSIZE*pdata['numTotalDataPoints']*pdata['numInterpPoints']), REALTYPE) pdata['xvyv'] = xvyv pdata['xy'] = xvyv.reshape( (2,-1) ).transpose() self._profdata = pdata return self._profdata def nkmax_profs(self): nkmax_profs = self.conf_int('NkmaxProfs') if nkmax_profs == 0: nkmax_profs = self.conf_int('Nkmax') return nkmax_profs def profile_data(self,scalar,timestep=None): """ scalar is one of HorizontalVelocityFile, FreeSurfaceFile, etc""" if scalar not in self._profile_data: prof_pnts = self.profile_points() prof_len = prof_pnts.shape[0] prof_fname = self.file_path(scalar) + ".prof" if not os.path.exists(prof_fname): return None ## Figure out the shape of the output: # I'm assuming that profile data gets spat out in the same # ordering of dimensions as regular grid-based data shape_per_step = [] # profiles.c writes u first then v, then w, each with a # separate call to Write3DData() if scalar == 'HorizontalVelocityFile': shape_per_step.append(3) # the outer loop is over profile points shape_per_step.append(prof_len) # This used to drop the z-level dimension for 2-D runs, but # moving forward, seems better to always include z even if # there's only one layer, so post-processing scripts don't have # to special case it. ## And does it have z-levels? if so, that is the inner-most # loop, so the last dimension of the array if scalar != 'FreeSurfaceFile': nkmax_profs = self.nkmax_profs() shape_per_step.append(nkmax_profs) # better to use the size of the specific file we're opening: # NOT this way: # profile_steps = self.steps_available(output='profile') # but this way: prof_dat_size = os.stat( prof_fname).st_size bytes_per_step = REALSIZE * prod( array(shape_per_step) ) n_steps_in_file = int( prof_dat_size//bytes_per_step ) final_shape = tuple([n_steps_in_file] + shape_per_step) # print "Total shape of profile data: ",final_shape if self.conf_int('numInterpPoints') != 1: raise Exception("Sorry - please set numInterpPoints to 1") if 1: # print "Trying to memory map the data.." data = memmap(prof_fname, dtype=REALTYPE, mode='r', shape=final_shape) else: prof_fp = open(prof_fname,"rb") data = fromstring(prof_fp.read(),float64) prof_fp.close() data = data.reshape(*final_shape) self._profile_data[scalar] = data data = self._profile_data[scalar] if timestep is not None: if timestep >= data.shape[0]: print("Bad timestep %d, last valid step is %d"%(timestep,data.shape[0]-1)) timestep = data.shape[0] - 1 return data[timestep] else: return data def scalars(self): """ Returns a list of names for scalar outputs, i.e. [SalinityFile, TemperatureFile] """ scals = [] if float(self.conf['beta']) != 0: scals.append('SalinityFile') if float(self.conf['gamma']) != 0: scals.append('TemperatureFile') scals.append('EddyViscosityFile') return scals # Profile processing: def profile_to_transect(self,xy,absdays_utc,scalar): """ Extract data from profile dumps close to the given times and locations, then construct a Transect instance. xy is an Nx2 vector of utm coordinates absdays_utc is an N vector of UTC abs-days, from date2num scalar identifies what variable is output - 'SalinityFile' For now, no interpolation is done, and the transect will have the actual xy, times and depths from the simulation. In the future there could be options for interpolating in time, horizontal space, and/or vertical space, such that the resulting transect would be congruent with some other transect """ ## Allocate N = len(xy) new_xy = zeros( (N,2), float64 ) new_times = zeros( N, float64 ) if self.nkmax_profs() != self.conf_int('Nkmax'): # This isn't hard, just too lazy to do it right now. raise Exception("Not quite smart enough to handle profiles that are different Nkmax than grid") new_scalar = zeros( (self.conf_int('Nkmax'),N), float64 ) z_levels = concatenate( ([0],-self.z_levels()) ) z_interfaces = repeat( z_levels[:,newaxis],N,axis=1 ) mask = zeros( new_scalar.shape,bool ) ## Get timeline: t0 = self.conf.time_zero() t0_absdays = date2num( t0 ) prof_absdays = t0_absdays + self.timeline(units='days',output='profile') pnts = self.profile_points() # this memory maps the profile data file, so there is no advantage in pulling # just a single timestep. prof_data = self.profile_data(scalar) prof_h = self.profile_data('FreeSurfaceFile') if len(prof_data.shape) == 2: new_shape = (prof_data.shape[0],prof_data.shape[1],1) prof_data = prof_data.reshape( new_shape ) # prof_data: [step,point,z-level] for i in range(N): # what timestep is this closest to? prof_step = searchsorted(prof_absdays,absdays_utc[i]) # what profile point is it closest to? prof_loc = self.xy_to_profile_index(xy[i]) # and find the bathymetry there: proc,cell = self.closest_cell(xy[i]) cdata = self.celldata(proc) bathy = -cdata[cell,3] # read that profile fs_height = prof_h[prof_step,prof_loc] new_xy[i] = pnts[prof_loc] new_times[i] = prof_absdays[prof_step] new_scalar[:,i] = prof_data[prof_step,prof_loc,:] # and take care of a possible thin cell at the surface: Nk = cdata[cell,4].astype(int32) ctop = min( self.h_to_ctop(fs_height), Nk-1) z_interfaces[:ctop+1,i] = fs_height z_interfaces[Nk:,i] = bathy mask[:ctop,i] = True mask[Nk:,i] = True # apply mask to scalar new_scalar = ma.array(new_scalar,mask=mask) if 0: # Transect assumes that data are located at the given nodes, so we need to # roughly translate the bin-based values of SUNTANS into centered points. # This does not take into account the location of the freesurface or the bed # within the given z-level. z_level_centers = self.bathymetry_offset()-self.z_levels() + 0.5*self.dz() return transect.Transect(new_xy,new_times, z_level_center, new_scalar, desc='Suntans output: %s'%scalar) else: # New transect code allows for zonal scalar - z_interfaces = z_interfaces + self.bathymetry_offset() return transect.Transect(new_xy,new_times, z_interfaces, new_scalar, desc='Suntans output: %s'%scalar) def map_local_to_global(self,proc): gglobal=self.grid() glocal=self.grid(proc) l2g=np.zeros( glocal.Ncells(), 'i4') for li in range(glocal.Ncells()): l2g[li] = gglobal.find_cell( glocal.cells[li] ) return l2g # in-core caching in addition to filesystem caching _global_to_local = None def map_global_cells_to_local_cells(self,cells=None,allow_cache=True,check_chain=True, honor_ghosts=False): """ Map global cell indices to local cell indices. if cells is None, return a mapping for all global cells if cells is None, and allow_cache is true, attempt to read/write a cached mapping as global_to_local.bin if honor_ghosts is True, then make the mapping consistent with the "owner" of each cell, rather than just a processor which contains that cell. """ # Map global cells to processors, then iterate over processors, calculating # surface velocity, and averaging over the relevant cells. if cells is None and allow_cache: if self._global_to_local is not None: print("using in-core caching for global to local mapping") return self._global_to_local if check_chain: datadirs = [s.datadir for s in self.chain_restarts()] else: datadirs = [self.datadir] for datadir in datadirs[::-1]: cache_fn = os.path.join(datadir,'global_to_local.bin') if os.path.exists(cache_fn): fp = open(cache_fn,'rb') global_to_local = None try: global_to_local = pickle.load(fp) finally: fp.close() if global_to_local is not None: return global_to_local cache_fn = os.path.join(self.datadir,'global_to_local.bin') else: cache_fn = None grid = self.grid() if cells is None: print("Will map all cells") cells = arange(grid.Ncells()) all_cells = True else: all_cells = False global_to_local = zeros( len(cells), [('global',int32), ('proc',int32), ('local',int32)]) global_to_local['global'] = cells global_to_local['proc'] = -1 for processor in range(self.num_processors()): print("P%d"%processor, end=' ') local_g = self.grid(processor) if all_cells: # faster to loop over the local cells if honor_ghosts: local_cells=self.proc_nonghost_cells(processor) else: local_cells=range(local_g.Ncells()) for i in local_cells: gi = grid.find_cell( local_g.cells[i] ) gtl = global_to_local[gi] if gtl['proc'] >= 0: continue gtl['proc'] = processor gtl['local'] = i else: for gtl in global_to_local: if gtl['proc'] >= 0: continue try: i = local_g.find_cell( grid.cells[gtl['global']] ) gtl['proc'] = processor gtl['local'] = i except trigrid.NoSuchCellError: pass print("done mapping") if cache_fn is not None: fp = open(cache_fn,'wb') pickle.dump(global_to_local, fp) fp.close() self._global_to_local = global_to_local return global_to_local def cell_values_local_to_global(self,cell_values=None,func=None): """ Given per-processor cell values (for the moment, only supports 2-D cell-centered scalars) return an array for the global cell-centered data """ g2l = self.map_global_cells_to_local_cells() gg = self.grid() print("Compiling local data to global array") g_data = None # allocate lazily so we know the dtype to use for p in range(self.num_processors()): if cell_values: local_values = cell_values[p] else: local_values = func(p) # not terribly efficient, but maybe okay... local_g2l = g2l[ g2l['proc'] == p ] if g_data is None: g_data = zeros( gg.Ncells(), dtype=local_values.dtype) g_data[ local_g2l['global'] ] = local_values[ local_g2l['local'] ] print("Done compiling local data to global array") return g_data def read_section_defs(self): fp = open(self.file_path('sectionsinputfile'),'rt') def tok_gen(fp): for line in fp: for snip in line.split(): yield snip token = tok_gen(fp).__next__ Nsections = int(token()) sections = [None]*Nsections for nsec in range(Nsections): Nnodes = int(token()) nodes = [] for n in range(Nnodes): nodes.append( int(token()) ) sections[nsec] = nodes return sections def full_to_transect(self,xy,absdays,scalar_file,min_dx=10.0): """ Construct a Transect from full grid scalar output, where xy is a sequence of points giving the transect, absdays a sequence of times, and scalar which field should be read. For now, it's not smart enough to know how big the cells are and do a proper line-cell intersection, so you have to specify a min_dx, and as long as that is significantly smaller than the grid size, it will pick up all the cells with a significant intersection with the transect. also the handling of the freesurface and timesteps are lacking. The freesurface is used only to decide ctop - it is not used to truncate the surface cell. And no interpolation in time is done - only the nearest timestep is extracted. """ xy = asarray(xy) absdays = asarray(absdays) utm_points,sources = upsample_linearring(xy,density=200.0,closed_ring=0,return_sources=1) # construct an interpolated set of times, estimating a timestamp for each of the newly # interpolated utm_points. absdays_expanded = interp(sources, arange(len(absdays)),absdays) utm_deltas = sqrt(sum(diff(utm_points,axis=0)**2,axis=1)) utm_dists = concatenate( ([0],cumsum(utm_deltas)) ) ## choose a timestep: timeline = date2num(self.time_zero()) + self.timeline(output='grid',units='days') steps = searchsorted(timeline,absdays_expanded) # the output right after the requested date # adjust to whichever step closer: for i in range(len(steps)): if steps[i]>0 and timeline[steps[i]] - absdays_expanded[i] > absdays_expanded[i] - timeline[steps[i]-1]: steps[i] -= 1 g = self.grid() global_cells = [] for xy in utm_points: global_cells.append( g.closest_cell(xy) ) # Now remove any duplicates global_cells = array(global_cells) valid = (global_cells[:-1] != global_cells[1:] ) valid = concatenate( (valid,[True]) ) global_cells = global_cells[valid] utm_dists = utm_dists[valid] utm_points = utm_points[valid] steps = steps[valid] absdays_expanded = absdays_expanded[valid] nkmax = self.conf_int('nkmax') scalar = zeros( (len(global_cells),nkmax), float64 ) local_proc_cells = zeros( (len(global_cells),2), int32 ) - 1 bathy_offset = self.bathymetry_offset() interface_elevs = bathy_offset + concatenate( ([0], -self.z_levels()) ) # Nk + 1 entries! elev_fs = zeros( len(global_cells), float64 ) # these will be corrected for bathy_offset elev_bed = zeros( len(global_cells), float64 ) # elevations of interfaces for each watercolumn elev_per_column = zeros( (len(global_cells),len(interface_elevs)), float64) for proc in range(self.num_processors()): # print "Reading salinity from processor %d"%proc local_g, full_scal = self.cell_scalar(scalar_file,proc) # [Ntimesteps,cells,z-level] fs = self.freesurface(proc) # [Ntimesteps,cells] celldata = self.celldata(proc) for gc_i in range(len(global_cells)): gc = global_cells[gc_i] step = steps[gc_i] if local_proc_cells[gc_i,0] >= 0: continue # already been read try: i = local_g.find_cell( g.cells[gc] ) local_proc_cells[gc_i,0] = proc local_proc_cells[gc_i,1] = i ktop = self.h_to_ctop(fs[step,i]) kmax = int(celldata[i,4]) elev_fs[gc_i] = fs[step,i] + bathy_offset elev_bed[gc_i] = -celldata[i,3] + bathy_offset scalar[gc_i,:] = full_scal[step,i,:] scalar[gc_i,:ktop] = nan scalar[gc_i,kmax:] = nan elev_per_column[gc_i,:] = interface_elevs elev_per_column[gc_i,ktop] = elev_fs[gc_i] elev_per_column[gc_i,kmax] = elev_bed[gc_i] except trigrid.NoSuchCellError: continue ## Make that into a transect: scalar = ma.masked_invalid(scalar) # ideally we'd include the time-varying freesurface elevation, too... t = transect.Transect(xy=utm_points, times = timeline[steps], elevations=elev_per_column.T, scalar=scalar.T, dists=utm_dists) t.trim_to_valid() return t _finder = None def xy_to_profile_index(self,xy): if self._finder is None: pnts = self.profile_points() data = arange(len(pnts)) finder = field.XYZField(pnts,data) finder.build_index() self._finder = finder return self._finder.nearest(xy) def timeline(self,units='seconds',output='grid'): """ units: seconds, minutes, hours, days or absdays, which returns matplotlib-style datenums output: grid - timeseries for grid outputs profile - timeseries for profile outputs times are measured from sun.time_zero() except for absdays which is the matplotlib absolute time unit, decimal days since something... Note that in some cases the outputs are not evenly spaced, particularly when ntout does not divide evenly into nsteps and when the starting time step was not on an integral number of ntouts """ steps_output = self.steps_available(output) if output=='grid': output_interval = self.conf_int('ntout') elif output=='profile': output_interval = self.conf_int('ntoutProfs') else: raise Exception("bad output spec for timeline: %s"%output) dt = output_interval*self.conf_float('dt') if output == 'grid': # a little tricky, as the starting step may not be an integral number of # ntout. offset = self.starting_time_step() % self.conf_int('ntout') steps = arange(0,steps_output)*output_interval + self.starting_time_step() - offset steps[0] += offset # may also have a straggler last_step = StoreFile(self,0).timestep() if last_step != steps[-1]: steps = concatenate( (steps,[last_step]) ) tseries_seconds = steps*self.conf_float('dt') else: # profiles are output when the step is a multiple of the output interval, and only starting # with the end of the first step: # this expression rounds starting_time_step+1 up to the next even multiple of output_interval. first_prof_output_step = output_interval * \ ((self.starting_time_step() + output_interval)//output_interval) tseries_seconds = arange(0,steps_output)*dt + first_prof_output_step*self.conf_float('dt') offset = 0 if units == 'seconds': divisor = 1. elif units == 'minutes': divisor = 60. elif units == 'hours': divisor = 3600. elif units == 'days': divisor = 24*3600 elif units =='absdays': divisor = 24*3600 offset = date2num( self.time_zero() ) else: raise Exception("Bad time unit: %s"%units) return offset + tseries_seconds/divisor class Topology(object): pass def topology(self,processor): if processor not in self._topos: topo_path = self.file_path('topology',processor) try: fp = open(topo_path) except IOError: return None def int_iter(fp): for line in fp: for num in map(int,line.split()): yield num # just returns integer after integer... nums = int_iter(fp) topo = SunReader.Topology() topo.filename = topo_path topo.num_processors = next(nums) topo.num_neighbors = next(nums) topo.neighbor_ids = [next(nums) for i in range(topo.num_neighbors)] topo.cellsend = [None]*topo.num_neighbors topo.cellrecv = [None]*topo.num_neighbors topo.edgesend = [None]*topo.num_neighbors topo.edgerecv = [None]*topo.num_neighbors for i in range(topo.num_neighbors): num_cellsend = next(nums) num_cellrecv = next(nums) num_edgesend = next(nums) num_edgerecv = next(nums) topo.cellsend[i] = array([next(nums) for j in range(num_cellsend)]) topo.cellrecv[i] = array([next(nums) for j in range(num_cellrecv)]) topo.edgesend[i] = array([next(nums) for j in range(num_edgesend)]) topo.edgerecv[i] = array([next(nums) for j in range(num_edgerecv)]) # 3 and 6 come from the limits in grid.h, MAXBCTYPES-1 and MAXMARKS-1 topo.celldist = array([next(nums) for i in range(3)]) topo.edgedist = array([next(nums) for i in range(6)]) grid = self.grid(processor) topo.cellp = array([next(nums) for i in range(grid.Ncells())]) topo.edgep = array([next(nums) for i in range(grid.Nedges())]) self._topos[processor] = topo return self._topos[processor] def sendrecv_edges(self,data): """ data: list with num_processors() elements, each being iterable with Nedges() elements. Exchange data as described by the topology files, overwriting entries in the given arrays. """ for proc in range(self.num_processors()): print("sendrecv for proc %d"%proc) topo = self.topology(proc) for i in range(topo.num_neighbors): nbr = topo.neighbor_ids[i] print(" receiving from %d"%nbr) topo_nbr = self.topology(nbr) # find the edge ids that they're supposed to send to us: me_to_them = topo_nbr.neighbor_ids.index(proc) # These are the indices, as known by the neighbor: nbr_edges_to_send = topo_nbr.edgesend[me_to_them] # And the indices as known to me: my_edges_to_recv = topo.edgerecv[i] data[proc][my_edges_to_recv] = data[nbr][nbr_edges_to_send] def num_processors(self): t = self.topology(0) if t: return t.num_processors else: return None def time_zero(self): """ return python datetime for the when t=0. This has been moved into SunConfig, and here we just delegate to that. """ return self.conf.time_zero() def simulation_period(self,end_is_last_output=True): """ return a pair of python datetime objects for the start and end of the simulation This includes the offset due to a restart, and gives the ending datetime of when the simulation would finish, irrespective of how many steps have been run so far. there are some corner cases here that get fuzzy, depending on which files are availale for determining the simulation period. Read the code for details, but in general, life is easier if ntout divides into nsteps evenly. where possible, end_is_last_output determines how to choose the exact definition of the end date. """ start_fn = self.file_path('StartFile',0) store_fn = self.file_path('StoreFile',0) step_data = self.step_data() if os.path.lexists(start_fn): if os.path.exists(store_fn): # I don't remember the exact reason that it's better to # use storefiles, except that when runs are moved around, # storefiles are more likely to still exist, while links to # startfiles get broken. But it's possible that the storefile # is empty, it's not a restart, and we'd have been better off # to reader # From a storefile and step_data, can work back to get # starting time sf = StoreFile(self,processor=0) last_output_date = sf.time() grid_outputs = step_data['steps_output'] # note that this is duration from first to last output. run_duration = self.conf.timestep() * int(self.conf['ntout']) * (grid_outputs-1) start_date = last_output_date - run_duration elif os.path.exists(start_fn): # So it's presumably restart: start_date,end_date = self.conf.simulation_period() if self.starting_time_step()==0: raise Exception("%s looks like a restart, but can't find Start or Store file"%self.datadir) restart_offset = self.starting_time_step() * self.conf.timestep() start_date += restart_offset else: raise Exception("Looks like a restart, but store and start files are missing") else: # presumably not a restart, and the configured period is what we want. start_date,end_date = self.conf.simulation_period() nsteps = int(self.conf['nsteps']) ntout = int(self.conf['ntout']) if end_is_last_output: # round down to integer number of ntout periods: duration = self.conf.timestep() * ntout * (nsteps//ntout) else: duration = self.conf.timestep() * nsteps end_date = start_date + duration return start_date,end_date def starting_time_step(self): if self._starting_time_step is None: start_file = self.file_path('StartFile',0) if os.path.exists(start_file): # print "This is a restart." fp = open(start_file,'rb') x = fromstring(fp.read(4),int32) fp.close() self._starting_time_step = x[0] else: self._starting_time_step = 0 return self._starting_time_step def parent_datadir(self): """ If this is a restart, return the datadir of the original (if possible - this requires that StartFile is a symlink!) if this is a restart, but the parent run can't be found, returns -1. if it's not a restart, return False """ start_file = self.file_path('StartFile',0) if os.path.exists(start_file): if os.path.islink(start_file): parent_dir = os.path.dirname( os.path.realpath( start_file ) ) if parent_dir == self.datadir: # shouldn't ever happen, but occasionally runs are corrupted like this. return False else: return parent_dir else: print(" It's a restart, but no symlink") return -1 else: return False _restarts = None def chain_restarts(self,max_count=None): """ returns something that can be iterated over to get sunreader instances ending with this one. only goes back as far as the symlink trail of startfiles will allow the last one will be self - not a copy of self. """ if self._restarts is None: suns = [] sun = self while sun is not None and (max_count is None or len(suns) < max_count): suns.insert(0,sun) parent_dir = sun.parent_datadir() # print "Checking parent_dir",parent_dir if isinstance(parent_dir,str): sun = SunReader(parent_dir) else: sun = None print("Found %d chained restarts"%len(suns)) if max_count is not None: # only cache this when we got all of them self._restarts = suns else: return suns if max_count is not None and len(self._restarts > max_count): return self._restarts[-max_count:] else: return self._restarts def effective_time_zero(self): """ return datetime for the when t=0, adjusted to be consistent with possible changes in dt between restarts. """ suns = self.chain_restarts()[:-1] if len(suns) > 0: # The step that each one ended on ending_steps = array( [StoreFile(s,0).timestep() for s in suns] ) num_steps = ending_steps.copy() # here we assume that first that we got back (which may *not* be the # actual first simulation - we may have lost the trail of symlinks) # has a timestep representative of all runs up to that point num_steps[1:] -= num_steps[:-1] # And the possibly varying dt dts = array( [s.conf_float('dt') for s in suns] ) sim_seconds = num_steps*dts total_past_seconds = sum(sim_seconds) # This should be the real time of our start t = suns[0].time_zero() + datetime.timedelta( total_past_seconds/(24.*3600.) ) t0 = t - datetime.timedelta( self.starting_time_step()*self.conf_float('dt') / (24.*3600) ) else: t0 = self.time_zero() return t0 def bathymetry_offset(self): """ a bit hackish - a constant offset is subtracted from all NAVD88 bathymetry to ensure that there aren't issues with the way that suntans reads bathymetry as absolute value. this code peaks into the bathymetry processing code to intuit what offset was added to the bathymetry """ return read_bathymetry_offset() # Datum helpers def srs_text(self): return "EPSG:26910" def srs(self): proj = osr.SpatialReference() proj.SetFromUserInput(self.srs_text()) return proj def xform_suntans_to_nad83(self): nad83_proj = osr.SpatialReference() nad83_proj.SetFromUserInput('NAD83') xform = osr.CoordinateTransformation(self.srs(),nad83_proj) return xform def xform_nad83_to_suntans(self): nad83_proj = osr.SpatialReference() nad83_proj.SetFromUserInput('NAD83') xform = osr.CoordinateTransformation(nad83_proj,self.srs()) return xform def xform_suntans_to_wgs84(self): wgs84_proj = osr.SpatialReference() wgs84_proj.SetFromUserInput('WGS84') xform = osr.CoordinateTransformation(self.srs(),wgs84_proj) return xform def xform_wgs84_to_suntans(self): wgs84_proj = osr.SpatialReference() wgs84_proj.SetFromUserInput('WGS84') xform = osr.CoordinateTransformation(wgs84_proj,self.srs()) return xform def mllw_to_navd88(self,utm_locs): return self.vdatum_for_utm('MLLW','NAVD88',utm_locs) def msl_to_navd88(self,utm_locs): return self.vdatum_for_utm('LMSL','NAVD88',utm_locs) def vdatum_for_utm(self,src_vdatum,dest_vdatum,utm_locs): """ given a vector of utm xy pairs, return the height that must be added to go from the first vertical datum to the second. """ lonlat_locs = zeros( utm_locs.shape, float64 ) xform = self.xform_suntans_to_nad83() for i in range(utm_locs.shape[0]): lon,lat,dummy = xform.TransformPoint(utm_locs[i,0],utm_locs[i,1]) lonlat_locs[i,:] = [lon,lat] return apply_vdatum(src_vdatum,dest_vdatum,lonlat_locs) def plot_bathymetry(self,procs=None,ufunction=None,**kwargs): def f(proc): bath,gr = self.read_bathymetry(proc) if ufunction: bath = ufunction(bath) return bath return self.plot_scalar(f,procs,**kwargs) def plot_edge_vector(self,u,proc,offset=0.0,**kwargs): """ quiver plot on edges. u is a scalar, and the vector will be constructed using the edge normals offset shifts the origin along the edge to facilitate multiple vectors on one edge kwargs passed on to quiver. """ if u.ndim != 1: raise Exception("velocity vector has shape %s - should be 1-D"%str(u.shape)) # g = self.grid(proc) edata = self.edgedata(proc) vec_u = u[:,newaxis] * edata[:,2:4] vec_origin = edata[:,4:6] + offset*(edata[:,0])[:,newaxis] * (edata[:,3:1:-1] * [-1,1]) # slide origin over so we can put multiple arrows on # the same edge: # g.plot() quiver(vec_origin[:,0], vec_origin[:,1], vec_u[:,0], vec_u[:,1], **kwargs) def plot_scalar(self,scalar_for_proc,procs=None,clip=None,cmap=None,vmin=None,vmax=None): """ takes care of setting all regions to the same normalization scale. nan valued cells will be skipped """ if procs is None: procs = range(self.num_processors()) pdatas = [] clim = [ inf,-inf] for proc in procs: gr = self.grid(proc) scalar = scalar_for_proc(proc) pdata = gr.plot_scalar( scalar, clip=clip,cmap=cmap ) if pdata: valid = isfinite(scalar) if any(valid): this_clim = scalar[valid].min(), scalar[valid].max() if this_clim[0] < clim[0]: clim[0] = this_clim[0] if this_clim[1] > clim[1]: clim[1] = this_clim[1] pdatas.append( pdata ) if vmin is not None: clim[0] = vmin if vmax is not None: clim[1] = vmax for p in pdatas: p.set_clim( *clim ) return pdatas[0] def count_3d_cells(self): count = 0 for p in range(self.num_processors()): cdata = self.celldata(p) ng = self.proc_nonghost_cells(p) count += cdata[ng,4].sum() return count def celldata(self,proc): # 0,1: x,y voronoi center # 2: area # 3: depth at voronoi center # 4: Nk - number of levels # 5-7: edge indexes # 8-10: cell neighbors # 11-13: dot(cell-outware,edge-nx/ny) # 14-16: distances from edges to voronoi center if self._shared_grid: return self._shared_grid.celldata(proc) if proc not in self._celldata: Ncells = self.grid(proc).Ncells() celldata_name = self.file_path("celldata",proc) fp = open(celldata_name,"rb") cdata = [] for i in range(Ncells): cdata.append( list( [float(s) for s in fp.readline().split() ] ) ) cdata = array(cdata) self._celldata[proc] = cdata return self._celldata[proc] def write_celldata(self,processor): f = self.file_path('celldata',processor) fp = open(f,'wt') g = self.grid(processor) Nc = g.Ncells() cdata = self.celldata(processor) for i in range(Nc): fp.write("%.6f %.6f %.6f %.6f %d %d %d %d %d %d %d %d %d %d %.6f %.6f %.6f\n"%tuple(cdata[i,:])) fp.close() def Nk(self,proc): return self.celldata(proc)[:,4].astype(int32) def Nke(self,proc): return self.edgedata(proc)[:,6].astype(int32) def Nkc(self,proc): return self.edgedata(proc)[:,7].astype(int32) def edge_bathymetry(self,proc): """ If edge depths are defined separately, return an xyz array of them for the given processor. Otherwise, return None """ fn = self.file_path('edgedepths',proc) if os.path.exists(fn): return loadtxt(fn) def read_bathymetry(self,proc): gr = self.grid(proc) return self.celldata(proc)[:,3],gr def depth_for_cell(self,cell_id,proc): bath,gr = self.read_bathymetry(proc) return bath[cell_id] dzmin=0.001 # someday could read this from a file... _dz = None def dz(self): if self._dz is None: vsp = open(self.file_path('vertspace'),'rt') self._dz = array(list(map(float,vsp.read().split()))) return self._dz def z_levels(self): """ returns bottoms of the z-levels, but as *soundings*, and not including z=0. """ if self._z_levels is None: dz_list = self.dz() self._z_levels = cumsum(dz_list) return self._z_levels def primary_boundary_datasource(self): """ return the datasource that forces the largest number of edges. This is a hack to find the datasource that forces the freesurface on the ocean boundary. """ best_fg = None for proc in range(self.num_processors()): f = forcing.read_boundaries_dat(self,proc) for fg in f.forcing_groups: if best_fg is None or len(best_fg.edges) < len(fg.edges): best_fg = fg ds_index = best_fg.hydro_datasource() return best_fg.gforce.datasources[ds_index] def boundary_forcing(self,proc=None): """ if proc is not given, return forcing from the first processor that has some forced cells this could probably get factored into boundary_inputs:BoundaryWriter """ if proc is None: for proc in range(self.num_processors()): f = forcing.read_boundaries_dat(self,proc) if f.has_forced_edges(): return f else: return forcing.read_boundaries_dat(self,proc) def topo_edges(self): if self._topo_edges is None: self._topo_edges = [] for p in range(self.num_processors()): fp = open(self.file_path('topology',p),'rt') def tokgen(): while 1: buff = fp.readline() if buff == "": return for t in buff.split(): yield int(t) tok = tokgen() nprocs = next(tok) nneighs = next(tok) for n in range(nneighs): neigh = next(tok) if p < neigh: self._topo_edges.append( (p,neigh) ) return self._topo_edges def show_topology(self,procs_per_node=4,topo_edges=None): if topo_edges is None: topo_edges = self.topo_edges() # load the graph: # the graph is stored just as a set of edges, with # the processors numbered 0-<nprocs-1> cla() # graph the processor connectivity graph: # round up: n_nodes = 1 + (self.num_processors()-1)//procs_per_node nodes = 2*arange(n_nodes) # space nodes out twice as much as cores cores = arange(procs_per_node) x,y = meshgrid(cores,nodes) # I want an array that maps proc_number to an xy pair proc_locs = transpose( array( (x.ravel(),y.ravel()), float64 )) # and randomly perturb so we can see all the lines: proc_locs[:,:1] = proc_locs[:,:1] + 0.4*(random( proc_locs[:,:1].shape ) - 0.5) # now proc 0-3 are on a line, 4-7, etc. for i in range(self.num_processors()): pylab.annotate( "%i"%i, proc_locs[i] ) pylab.plot(proc_locs[:,0],proc_locs[:,1],'ro') for e in topo_edges: locs = proc_locs[array(e),:] pylab.plot( locs[:,0],locs[:,1],'b-' ) pylab.axis('equal') x1,x2,y1,y2 = pylab.axis() x1 = x1 - 0.05*(x2 - x1) x2 = x2 + 0.05*(x2 - x1) y1 = y1 - 0.05*(y2 - y1) y2 = y2 + 0.05*(y2 - y1) pylab.axis( [x1,x2,y1,y2] ) def remap_processors(self,procs_per_node=4,do_plot=False): import pymetis # create the adjacency graph in the way that # pymetis likes it adj = [None]*s.num_processors() topo_edges = s.topo_edges() for a,b in topo_edges: if adj[a] is None: adj[a] = [] if adj[b] is None: adj[b] = [] adj[a].append(b) adj[b].append(a) n_nodes = 1 + old_div((s.num_processors() - 1), procs_per_node) cuts,parts = pymetis.part_graph(n_nodes,adjacency=adj) print(parts) # create a mapping of old proc nunmber to new proc number #parts = array(parts) mapping = -1*ones(s.num_processors()) # mapping[i] gives the new processor number for proc i count_per_node = zeros(n_nodes) for i in range(len(parts)): # old proc i my_node = parts[i] new_proc = my_node * procs_per_node + count_per_node[my_node] mapping[i] = new_proc count_per_node[my_node]+=1 # now create a new topo-edges array so we can graph this... new_topo_edges = mapping[array(s.topo_edges())] new_topo_edges = new_topo_edges.astype(int32) if do_plot: pylab.clf() pylab.subplot(121) s.show_topology() pylab.subplot(122) s.show_topology(topo_edges=new_topo_edges) def parse_output(self,output_name=None): """ reads the output from a run, hopefully with at least -vv verbosity. If the run crashed, sets self.crash to a crash object Sets self.status to one of 'done','crash','running' this is a work in progress (but you knew that, right?) """ if output_name is None: output_name = sun_dir+'/output' run_output = open(output_name) self.status = 'running' self.crash = None while 1: l = run_output.readline() if not l: break if l.find('Run is blowing up!') >= 0: self.status = 'crash' m = re.match(r'Time step (\d+): Processor (\d+), Run is blowing up!',l) if not m: print("Failed to match against") print(l) else: # got a crash crash = SuntansCrash() crash.sun = self crash.step = int(m.group(1)) crash.processor = int(m.group(2)) l = run_output.readline() for i in range(100): # search for CFL details up to 100 lines away ### Vertical Courant number: m = re.match(r'Courant number problems at \((\d+),(\d+)\), Wmax=([-0-9\.]+), dz=([0-9\.]+) CmaxW=([0-9\.]+) > ([0-9\.]+)', l) if m: crash.cell_id = int(m.group(1)) crash.z_id = int(m.group(2)) crash.w_max = float(m.group(3)) crash.dz = float(m.group(4)) crash.cmax_w = float(m.group(5)) crash.cmax_w_lim = float(m.group(6)) crash.description = SuntansCrash.vertical_courant break ### Horizontal Courant number: m = re.match(r'Courant number problems at \((\d+),(\d+)\), Umax=([-0-9\.]+), dx=([0-9\.]+) CmaxU=([0-9\.]+) > ([0-9\.]+)', l) if m: crash.edge_id = int(m.group(1)) crash.z_id = int(m.group(2)) crash.u_max = float(m.group(3)) crash.dx = float(m.group(4)) crash.cmax_u = float(m.group(5)) crash.cmax_u_lim = float(m.group(6)) crash.description = SuntansCrash.horizontal_courant break print("Hmm - maybe this isn't a vertical courant number issue") l = run_output.readline() self.crash = crash break def write_bov(self,label,proc,dims,data): """ Write a binary file that will hopefully be readable by visit through some naming conventions, and can be read back into sunreader. label: a name containing no spaces or dashes that describes what the data is (e.g. m2_fs_amp ) dims: a list identifying the dimensions in order. [z_level, cell, time_step] data: an array that matches the described dimensions. Currently there are only two grids defined in visit: 2D cells 3D cells, with z-level """ # Enforce this ordering on the dimensions, which comes from the # ordering of dimensions in suntans scalar output required_order = ['time_step','z_level','cell'] given_order = [required_order.index(s) for s in dims] if sorted(given_order) != given_order: raise Exception("Order of dimensions must be time_step, cell, z_level") # Enforce the expected size of each dimension: g = self.grid(proc) for i in range(len(dims)): if dims[i] == 'time_step': print("Assuming that number of timesteps is okay") elif dims[i] == 'cell' and data.shape[i] != g.Ncells(): print("WARNING: cell dimension - data shape is %i but grid reports %i"%(data.shape[i],g.Ncells())) elif dims[i] == 'z_level' and data.shape[i] != self.conf_int('Nkmax'): print("WARNING: z_level dimension - data shape is %i but Nkmax is %i"%( data.shape[i],self.conf_int('Nkmax'))) if data.dtype != float64: print("Converting to 64-bit floats") data = data.astype(float64) formatted_name = os.path.join(self.datadir,label + "-" + "-".join(dims) + ".raw.%i"%proc) print("Writing to %s"%formatted_name) fp = open(formatted_name,'wb') fp.write(data.tostring()) fp.close() def harm_decomposition(self,consts=['constant','M2'],ref_data=None,phase_units='minutes', skip=0.5): """ Perform a harmonic decomposition on the freesurface, using the given constituents, and write the results to <const name>_<phase or amp>-cell.raw.<proc> Phase is relative to cos(t), t in simulation time. At some point ref_data may be used to specify a timeseries that can also be decomposed, and whose amp/phase will be used as a reference for normalizing the others... or set ref_data='forcing' to take the reference to be the forcing on the first forced cell (i.e. it will loop over processors, and take the first cell with forcing data) """ import harm_field if ref_data == 'forcing': # this matches the timeline used in harm_field: # times of freesurface output, using the second half of the run. # for forcing it would be okay to use the entire run, but I # think it's more consistent to decompose the forcing at the # same times as the cell values t = self.timeline()[self.steps_available()//2:] forcing = None for proc in range(self.num_processors()): forcing = self.boundary_forcing(proc) if forcing.n_bcells > 0: print("Getting forcing data for boundary cell 0, processor %s"%proc) ref_data = forcing.calc_forcing(times=t,units='seconds') break if forcing is None: raise Exception("No forced boundary cells were found") if ref_data: ref_t,ref_vals = ref_data # need to get the right omegas, a bit kludgy. import harm_plot,harm_decomp hplot = harm_plot.HarmonicPlot(sun=self,consts=consts) my_omegas = hplot.omegas print("Calculating decomposition for forcing data") ref_comps = harm_decomp.decompose(ref_t,ref_vals,my_omegas) else: ref_comps = None for proc in range(self.num_processors()): print("Decomposition for processor %i"%proc) harm_field hplot = harm_field.HarmonicField(self,proc=proc,consts=consts,skip=skip) print(" Calculating decomposition") amps,phase = hplot.calc_harmonics() if ref_comps is not None: amps = amps/ref_comps[:,0] phase = phase - ref_comps[:,1] for i in range(len(consts)): print(" Writing %s"%consts[i]) self.write_bov('%s_amp'%consts[i],proc=proc,dims=['cell'],data=amps[:,i]) phase_data = phase[:,i] if phase_units == 'radians': pass elif phase_units == 'degrees': phase_data *= (180./pi) elif phase_units == 'minutes': omega = hplot.omegas[i] if omega > 0.0: phase_data *= 1.0 / (60.0*omega) self.write_bov('%s_phase'%consts[i],proc=proc,dims=['cell'],data=phase_data) def edgedata(self,processor): # 0: edge length # 1: dg, voronoi length # 2,3: nx, ny, edge normal # 4,5: x,y position of center # 6: Nke # 7: Nkc # 8: cell nc1 - [nx,ny] points *toward* this cell. # 9: cell nc2 - upwind cell for positive face velocity # 10,11: gradf - face number for nc1, nc2 # 12: marker # 13,14: point indexes if self._shared_grid: return self._shared_grid.edgedata(processor) if processor not in self._edgedata: g = self.grid(processor) Ne = g.Nedges() f = self.file_path('edgedata',processor) fp = open(f,'rt') edgedata = zeros([Ne,15],float64) for i in range(Ne): edgedata[i,:] = list(map(float,fp.readline().split())) self._edgedata[processor] = edgedata return self._edgedata[processor] def write_edgedata(self,processor): f = self.file_path('edgedata',processor) fp = open(f,'wt') g = self.grid(processor) Ne = g.Nedges() edata = self.edgedata(processor) for i in range(Ne): fp.write("%f %f %f %f %f %f %d %d %d %d %d %d %d %d %d\n"%tuple(edata[i,:])) fp.close() def write_random_dataxy(self,fraction=0.05): """ randomly choose the given fraction of cells, and write a set of profile points (dataxy.dat) accordingly. """ # refuse to overwrite an existing one: dataxy_path = self.file_path('DataLocations') if os.path.exists(dataxy_path): raise Exception("Please remove existing profile locations file %s first"%dataxy_path) fp = open(dataxy_path,'wt') for proc in range(self.num_processors()): print("choosing cell centers from processor %i"%proc) g = self.grid(proc) sampling = random( g.Ncells() ) chosen = find( sampling < fraction ) chosen_points = g.vcenters()[chosen] for winner in chosen_points: fp.write( "%g %g\n"%(int(winner[0]),int(winner[1])) ) fp.close() def write_initial_salinity(self,func,dimensions=3,func_by_index=0): """ write salinity initialization for all processors based on the values returned by func dimensions=3: full field, func = func(x,y,z) dimensions=1: vertical profile, func = func(z) """ self.write_initial_cond(func,'InitSalinityFile',dimensions,func_by_index=func_by_index) def write_initial_temperature(self,func,dimensions=3,func_by_index=0): self.write_initial_cond(func,'InitTemperatureFile',dimensions,func_by_index=func_by_index) def copy_scalar_to_initial_cond(self,sun_in, scalar_file_in='SalinityFile', scalar_file_out='InitSalinityFile', step=-1): """ For copying the output of one run to the initialization of another. Right now, the grids must be identical, including the subdomain decomposition which makes this method pretty much useless since suntans can just do a restart sun_in: a sun instance for the last run scalar_file_in: which suntans.dat field has the filename for reading the last run's scalar scalar_file_out: which suntans.dat field has the filename for the scalar the we are writing out step: number of the step to read from the last run. negative means count back from the end. """ # First, some sanity checks: if self.num_processors() != sun_in.num_processors(): raise Exception("Mismatch in number of processors: %d vs %d"%(self.num_processors(), sun_in.num_processors())) for proc in range(self.num_processors()): fname_in = sun_in.file_path(scalar_file_in,proc) fname_out = self.file_path(scalar_file_out,proc) print("Transcribing scalar from %s to %s"%(fname_in,fname_out)) # Read the old data: g_in,scalar_in = sun_in.cell_scalar(scalar_file_in,proc,step) g_out = self.grid(proc) # more sanity checks: if any(g_in.cells != g_out.cells): raise Exception("Cell arrays don't match!") Nc = self.grid(proc).Ncells() Nk = self.Nk(proc) column_starts = Nk.cumsum() - Nk scalar = zeros( Nk.sum(), REALTYPE ) for i in range(Nc): for k in range(Nk[i]): # not positive about the ordering of indices for scalar_in scalar[column_starts[i] + k] = scalar_in[i,k] fp = open(fname,'wb') fp.write( scalar.tostring() ) fp.close() def write_initial_cond(self,func,scalar_file='InitSalinityFile',dimensions=3,func_by_index=0): """ need to interpret func_by_index - if true, then the function actually takes a cell and k, and returns the value, not by physical coordinates. """ if not func_by_index: # vertical locations nkmax = self.conf_int('Nkmax') z_levels = concatenate( ([0],self.z_levels()) ) mid_elevations = 0.5*(z_levels[1:] + z_levels[:-1]) if dimensions == 3: for proc in range(self.num_processors()): fname = self.file_path(scalar_file,proc) print("Writing initial condition to %s"%fname) g = self.grid(proc) if not func_by_index: # these are the xy locations centers = g.vcenters() Nc = self.grid(proc).Ncells() Nk = self.Nk(proc) column_starts = Nk.cumsum() - Nk scalar = zeros( Nk.sum(), REALTYPE ) for i in range(Nc): for k in range(Nk[i]): if func_by_index: scalar[column_starts[i] + k] = func(proc,i,k) else: scalar[column_starts[i] + k] = func(centers[i,0],centers[i,1],mid_elevations[k]) fp = open(fname,'wb') fp.write( scalar.tostring() ) fp.close() else: # dimensions == 1 fname = self.file_path(scalar_file) scalar = zeros( nkmax, REALTYPE) for k in range(nkmax): scalar[k] = func(mid_elevations[k]) fp = open(fname,'wb') fp.write( scalar.tostring() ) fp.close() def read_cell_scalar_log(self,label,proc=None,time_step=None): """ a bit of a hack - this is for reading data logged by the logger.c functions. needs to be abstracted out to the same can be used for reading scalar initialization, or even more general where we can specify whether all z-levels or only valid z-levels are in the file (then it could be used for reading scalar output, too) """ if time_step is not None: fname = '%s-time_step-cell.raw'%label else: fname = '%s-cell.raw'%label fname = os.path.join(self.datadir,fname) if proc is not None: fname += '.%d'%proc fp = open(fname,'rb') Nc = self.grid(proc).Ncells() real_size = 8 time_stride = real_size * Nc if time_step: fp.seek(time_stride*time_step) cell_scalar = fromstring(fp.read(time_stride),float64) return cell_scalar def read_edge_scalar(self,label,proc=None,time_step=None): """ if time_step is None, assume it's not time varying. if time_step is 'all', then read all timesteps. otherwise, read a single timestep as specified """ if time_step is not None: fname = '%s-time_step-edge.raw'%label else: fname = '%s-edge.raw'%label if proc is not None: fname += '.%d'%proc Ne = self.grid(proc).Nedges() real_size = 8 full_fname = os.path.join(self.datadir,fname) if time_step == 'all': # try memory mapping: frame_size = Ne * REALSIZE nbytes = os.stat(full_fname).st_size data_shape = (nbytes//frame_size,Ne) edge_scalar = memmap(full_fname, dtype=REALTYPE, mode='r', shape=data_shape) else: fp = open(full_fname,'rb') time_stride = real_size * Ne if time_step: fp.seek(time_stride*time_step) edge_scalar = fromstring(fp.read(time_stride),float64) fp.close() return edge_scalar def read_edge_z_level_scalar(self,label,proc=None,time_step=None): if time_step is not None: fname = '%s-time_step-edge-z_level.raw'%label else: fname = '%s-edge-z_level.dat'%label if proc is not None: fname += '.%d'%proc fp = open(os.path.join(self.datadir,fname),'rb') Nkc = self.Nkc(proc) Ne = self.grid(proc).Nedges() real_size = 8 time_stride = real_size * Nkc.sum() if time_step: fp.seek(time_stride*time_step) raw_scalar = fromstring(fp.read(time_stride),float64) # rewrite scalar in a nice x[j][k] sort of way. Note that this means # the [j] array is a list, not a numpy array: column_starts = Nkc.cumsum() - Nkc edgescalar = [raw_scalar[column_starts[i]:column_starts[i]+Nkc[i]] for i in range(Ne)] return edgescalar def read_cell_z_level_scalar(self,label=None,fname=None,proc=None,time_step=None): """ if fname is None, determines a file name based on the label and the structure of the data. Note that if fname is specified, proc must still be specified as needed but it will *not* be appended to the filename """ if fname is None: if time_step is not None: fname = '%s-time_step-cell-z_level.raw'%label else: fname = '%s-cell-z_level.raw'%label if proc is not None: fname += '.%d'%proc fp = open(os.path.join(self.datadir,fname),'rb') Nk = self.Nk(proc) Nc = self.grid(proc).Ncells() real_size = 8 time_stride = real_size * Nk.sum() if time_step: fp.seek(time_stride*time_step) raw_scalar = fromstring(fp.read(time_stride),float64) # rewrite scalar in a nice x[j][k] sort of way. Note that this means # the [j] array is a list, not a numpy array: column_starts = Nk.cumsum() - Nk cellscalar = [raw_scalar[column_starts[i]:column_starts[i]+Nk[i]] for i in range(Nc)] return cellscalar def closest_profile_point(self,p): pnts = self.profile_points() dists = sqrt( (pnts[:,0]-p[0])**2 + (pnts[:,1]-p[1])**2 ) return argmin(dists) def closest_cell(self,xy,full=0): """ Return proc,cell_id for the closest cell to the given point, across all processors. Slow... full==0: each subdomain will only consider cells that contain the closest global point. as long as all points are part of a cell, this should be fine. full==1: if the closest point isn't in a cell, consider *all* cells. """ ids = [] dists = [] # Read the full grid once, build its index. #print "Closest cell - reading full grid" gfull = self.grid() #print "building its index" gfull.build_index() i = gfull.closest_point(xy) #print "Got closest index %d"%i c_list = [] # a list of cell ids, one per processor dist_list = [] # the distances, same deal for p in range(self.num_processors()): #print "Checking on processor %i"%p #print "Reading its grid" g = self.grid(p) # c_p = g.closest_cell(xy,full=full) ## this is basically the body of trigrid::closest_cell() try: cells = list( g.pnt2cells(i) ) except KeyError: if not full: # note that this processor didn't have a good match c_list.append(-1) dist_list.append(inf) continue else: print("This must be on a subdomain. The best point wasn't in one of our cells") cells = list(range(g.Ncells())) # found some candidate cells - # choose based on distance to vcenter cell_centers = g.vcenters()[cells] dists = ((xy-cell_centers)**2).sum(axis=1) # closest cell on proc p chosen = cells[argmin(dists)] c_list.append( chosen ) dist_list.append( dists.min() ) # dist_list = array(dist_list) best_p = argmin(dist_list) best_c = c_list[best_p] return best_p,best_c def grid_stats(self): """ Print a short summary of grid information This needs to be run on a domain that has already been decomposed into subdomains (such that celldata.dat.* files exist) """ procs = list(range(self.num_processors())) twoD_cells = 0 threeD_cells = 0 for p in procs: print("...Reading subdomain %d"%p) g=self.grid(p) nonghost = self.proc_nonghost_cells(p) twoD_cells += len(nonghost) threeD_cells += sum(self.Nk(p)[nonghost]) print("Total 2D cells: %d"%twoD_cells) print("Total 3D cells: %d"%threeD_cells) # Some distance metrics: dg_per_proc = [] for p in procs: print("...Reading subdomain %d"%p) edgedata = self.edgedata(p) valid = (edgedata[:,12] == 0) | ((edgedata[:,12]==5) & (edgedata[:,8]>=0)) dg_per_proc.append( edgedata[valid,1] ) dg_total = concatenate(dg_per_proc) print("Spacing between adjacent voronoi centers [m]:") print(" Mean=%f Median=%f Min=%f Max=%f"%(mean(dg_total),median(dg_total), dg_total.min(), dg_total.max())) def calc_Cvol_distribution(self): """ from storefile, calculate some simple statistics for the distribution of volumetric courant number. prints them out and returns a list of [ ('name',value), ... ] """ # Choose a full-grid output to analyze - since we need the storefile # as well, we pretty much have to choose the last full grid output n = self.steps_available() - 1 dt = self.conf_float('dt') all_Cvol = [] # will append single Cvol numbers all_df = [] # will append arrays for valid edges all_dg = [] # same dz = self.dz() dzmin_surface = 2*self.dzmin # the dzmin cutoff for merging a surface cell with the one below it. z = -self.z_levels() # elevation of the bottom of each z level for proc in range(self.num_processors()): print("Proc %d"%proc) cdata = self.celldata(proc) edata = self.edgedata(proc) Ac = cdata[:,2] bed = -cdata[:,3] valid_edge = (edata[:,12] == 0) | ( (edata[:,12] == 5) & (edata[:,8]>=0)) all_df.append( edata[valid_edge,0] ) all_dg.append( edata[valid_edge,1] ) store = StoreFile(self,proc) h = store.freesurface() u = store.u() # calculate dz, dzf g = self.grid(proc) ctops = self.h_to_ctop(h,dzmin_surface) etops = zeros( g.Nedges(), int32 ) h_edge= zeros( g.Nedges(), float64 ) bed_edge = zeros( g.Nedges(), float64 ) Nke = edata[:,6].astype(int32) dzf = [None] * g.Nedges() for j in range( g.Nedges() ): # we don't have exact information here, but assume that the top, non-zero velocity # in u corresponds to the top edge. nc1,nc2 = edata[j,8], edata[j,9] if nc1 < 0: nc = nc2 bed_edge[j] = bed[nc2] elif nc2 < 0: nc = nc1 bed_edge[j] = bed[nc1] else: bed_edge[j] = max( bed[nc1], bed[nc2] ) nz = nonzero( u[j] )[0] if len(nz) > 0: u_for_upwind = u[j][nz[0]] if u_for_upwind > 0: nc = nc2 else: nc = nc1 else: if h[nc1] > h[nc2]: nc = nc1 else: nc = nc2 etops[j] = ctops[nc] h_edge[j] = h[nc] # fill in dzf: this_dzf = dz[:Nke[j]].copy() this_dzf[:etops[j]] = 0.0 # empty cells above fs this_dzf[etops[j]] = h_edge[j] - z[etops[j]] # recalc surface cell this_dzf[Nke[j]-1] -= bed_edge[j] - z[Nke[j]-1] # trim bed layer (which could be same as surface) dzf[j] = this_dzf # Now loop through cells, and get volumetric courant numbers: for i in self.proc_nonghost_cells(proc): # range(g.Ncells()): Nk = int(cdata[i,4]) dzc = dz[:Nk].copy() dzc[:ctops[i]] = 0.0 # empty cells above fs dzc[ctops[i]] = h[i] - z[ctops[i]] # recalc surface cell dzc[Nk-1] -= bed[i] - z[Nk-1] # trim bed layer (which could be same as surface) for k in range(ctops[i],Nk): V = Ac[i] * dzc[k] Q = 0 for j,normal in zip( cdata[i,5:8].astype(int32), cdata[i,11:14]): df = edata[j,0] if k == ctops[i]: # surface cell gets flux from edges here and up # (which may be below ctop, anyway) kstart = etops[j] else: kstart = k for kk in range(kstart,min(k+1,Nke[j])): # so now kk is guaranteed to be valid layer for the edge j if u[j][kk] * normal > 0: # it's an outflow Q += u[j][kk] * normal * df * dzf[j][kk] C = Q * dt / V all_Cvol.append(C) all_Cvol = array(all_Cvol) all_df = concatenate( all_df ) all_dg = concatenate( all_dg ) # and calculate the effect of substepping to get an effective mean Cvol: nsubsteps = ceil(all_Cvol.max()) dt = self.conf_float('dt') sub_dt = dt/nsubsteps mean_sub_Cvol = mean( all_Cvol/nsubsteps ) # print "Mean Cvol: %f"%all_Cvol.mean() # print "Mean df: %f"%all_df.mean() # print "Mean dg: %f"%all_dg.mean() return [ ('Mean Cvol',all_Cvol.mean()), ('Mean df',all_df.mean()), ('Mean dg',all_dg.mean()), ('dt',dt), ('sub_dt',sub_dt), ('nsubsteps',nsubsteps), ('Mean subCvol',mean_sub_Cvol)] def all_dz(self,proc,time_step): """ Return a 2-D array of dz values all_dz[cell,k] dry cells are set to 0, and the bed and freesurface height are taken into account. Useful for depth-integrating. """ cdata = self.celldata(proc) Nk = cdata[:,4].astype(int32) bed = -cdata[:,3] all_dz = (self.dz())[newaxis,:].repeat(len(Nk),axis=0) z = -self.z_levels() h = self.freesurface(proc,[time_step])[0] ctops = self.h_to_ctop(h) for i in range(len(Nk)): all_dz[i,:ctops[i]] = 0.0 # empty cells above fs all_dz[i,Nk[i]:] = 0.0 # empty cells below bed all_dz[i,ctops[i]] = h[i] - z[ctops[i]] # recalc surface cell all_dz[i,Nk[i]-1] -= bed[i] - z[Nk[i]-1] # trim bed layer (which could be same as surface) return all_dz def averaging_weights(self,proc,time_step,ztop=None,zbottom=None,dz=None): """ Returns weights as array [Nk] to average over a cell-centered quantity for the range specified by ztop,zbottom, and dz. range is specified by 2 of the 3 of ztop, zbottom, dz, all non-negative. ztop: distance from freesurface zbottom: distance from bed dz: thickness if the result would be an empty region, return nans. this thing is slow! - lots of time in adjusting all_dz """ cdata = self.celldata(proc) Nk = cdata[:,4].astype(int32) bed = -cdata[:,3] one_dz = self.dz() all_dz = one_dz[newaxis,:].repeat(len(cdata),axis=0) all_k = arange(len(one_dz))[None,:].repeat(len(cdata),axis=0) z = -self.z_levels() h = self.freesurface(proc,[time_step])[0] # adjust bed and # 3 choices here.. # try to clip to reasonable values at the same time: if ztop is not None: if ztop != 0: h = h - ztop # don't modify h # don't allow h to go below the bed h[ h<bed ] = bed if dz is not None: # don't allow bed to be below the real bed. bed = maximum( h - dz, bed) if zbottom is not None: # no clipping checks for zbottom yet. if zbottom != 0: bed = bed + zbottom # don't modify bed! if dz is not None: h = bed + dz # so now h and bed are elevations bounding the integration region ctops = self.h_to_ctop(h) # default h_to_ctop will use the dzmin appropriate for the surface, # but at the bed, it goes the other way - safest just to say dzmin=0, # and also clamp to known Nk cbeds = self.h_to_ctop(bed,dzmin=0) + 1 # it's an exclusive index cbeds[ cbeds > Nk ] = Nk[ cbeds > Nk ] if 0: # non vectorized - takes 0.8s per processor on the test run for i in range(len(Nk)): all_dz[i,:ctops[i]] = 0.0 # empty cells above fs all_dz[i,cbeds[i]:] = 0.0 # empty cells below bed - might be an error... all_dz[i,ctops[i]] = h[i] - z[ctops[i]] # recalc surface cell all_dz[i,cbeds[i]-1] -= bed[i] - z[cbeds[i]-1] # trim bed layer (which could be same as surface) else: # attempt to vectorize - about 70x speedup # seems that there is a problem with how dry cells are handled - # for the exploratorium display this ending up with a number of cells with # salinity close to 1e6. # in the case of a dry cell, ctop==cbed==Nk[i] # drymask = (all_k < ctops[:,None]) | (all_k>=cbeds[:,None]) all_dz[drymask] = 0.0 ii = arange(len(cdata)) all_dz[ii,ctops] = h - z[ctops] all_dz[ii,cbeds-1] -= bed - z[cbeds-1] # make those weighted averages # have to add extra axis to get broadcasting correct all_dz = all_dz / sum(all_dz,axis=1)[:,None] return all_dz
mit
thast/EOSC513
DC/SparseGN/WVT_DB4_withoutW/WVT_DB4_withoutW.py
1
10446
from SimPEG import Mesh, Regularization, Maps, Utils, EM from SimPEG.EM.Static import DC import numpy as np import matplotlib.pyplot as plt #%matplotlib inline import copy import pandas as pd from scipy.sparse import csr_matrix, spdiags, dia_matrix,diags from scipy.sparse.linalg import spsolve from scipy.stats import norm,multivariate_normal import sys path ="../pymatsolver/" path = "../../../Documents/pymatsolver/" sys.path.append(path) from pymatsolver import PardisoSolver from scipy.interpolate import LinearNDInterpolator, interp1d from sklearn.mixture import GaussianMixture from SimPEG import DataMisfit, Regularization, Optimization, InvProblem, Directives, Inversion import time #2D model csx, csy, csz = 0.25,0.25,0.25 # Number of core cells in each directiPon s ncx, ncz = 2**7-24,2**7-12 # Number of padding cells to add in each direction npad = 12 # Vectors of cell lengthts in each direction hx = [(csx,npad, -1.5),(csx,ncx),(csx,npad, 1.5)] hz= [(csz,npad,-1.5),(csz,ncz)] # Create mesh mesh = Mesh.TensorMesh([hx, hz],x0="CN") # Map mesh coordinates from local to UTM coordiantes #mesh.x0[2] = mesh.x0[2]-mesh.vectorCCz[-npad-1] mesh.x0[1] = mesh.x0[1]+csz/2. #mesh.x0[0] = mesh.x0[0]+csx/2. #mesh.plotImage(np.ones(mesh.nC)*np.nan, grid=True) #mesh.plotImage(np.ones(mesh.nC)*np.nan, grid=True) #plt.gca().set_xlim([-20,20]) #plt.gca().set_ylim([-15,0]) #mesh.plotGrid() #plt.gca().set_aspect('equal') #plt.show() print "Mesh Size: ", mesh.nC #Model Creation lnsig_air = 1e-8; x0,z0, r0 = -6., -4., 3. x1,z1, r1 = 6., -4., 3. ln_sigback = -5. ln_sigc = -3. ln_sigr = -7. noisemean = 0. noisevar = 0.0 overburden_extent = 0. ln_over = -4. #m = (lnsig_background)*np.ones(mesh.nC); #mu =np.ones(mesh.nC); mtrue = ln_sigback*np.ones(mesh.nC) + norm(noisemean,noisevar).rvs(mesh.nC) overb = (mesh.gridCC[:,1] >-overburden_extent) & (mesh.gridCC[:,1]<=0) mtrue[overb] = ln_over*np.ones_like(mtrue[overb])+ norm(noisemean,noisevar).rvs(np.prod((mtrue[overb]).shape)) csph = (np.sqrt((mesh.gridCC[:,1]-z0)**2.+(mesh.gridCC[:,0]-x0)**2.))< r0 mtrue[csph] = ln_sigc*np.ones_like(mtrue[csph]) + norm(noisemean,noisevar).rvs(np.prod((mtrue[csph]).shape)) #Define the sphere limit rsph = (np.sqrt((mesh.gridCC[:,1]-z1)**2.+(mesh.gridCC[:,0]-x1)**2.))< r1 mtrue[rsph] = ln_sigr*np.ones_like(mtrue[rsph]) + norm(noisemean,noisevar).rvs(np.prod((mtrue[rsph]).shape)) mtrue = Utils.mkvc(mtrue); mesh.plotGrid() plt.gca().set_xlim([-10,10]) plt.gca().set_ylim([-10,0]) xyzlim = np.r_[[[-10.,10.],[-10.,1.]]] actind, meshCore = Utils.meshutils.ExtractCoreMesh(xyzlim,mesh) plt.hist(mtrue[actind],bins =50,normed=True); fig0 = plt.figure() ax0 = fig0.add_subplot(111) mm = meshCore.plotImage(mtrue[actind],ax = ax0) plt.colorbar(mm[0]) ax0.set_aspect("equal") #plt.show() def getCylinderPoints(xc,zc,r): xLocOrig1 = np.arange(-r,r+r/10.,r/10.) xLocOrig2 = np.arange(r,-r-r/10.,-r/10.) # Top half of cylinder zLoc1 = np.sqrt(-xLocOrig1**2.+r**2.)+zc # Bottom half of cylinder zLoc2 = -np.sqrt(-xLocOrig2**2.+r**2.)+zc # Shift from x = 0 to xc xLoc1 = xLocOrig1 + xc*np.ones_like(xLocOrig1) xLoc2 = xLocOrig2 + xc*np.ones_like(xLocOrig2) topHalf = np.vstack([xLoc1,zLoc1]).T topHalf = topHalf[0:-1,:] bottomHalf = np.vstack([xLoc2,zLoc2]).T bottomHalf = bottomHalf[0:-1,:] cylinderPoints = np.vstack([topHalf,bottomHalf]) cylinderPoints = np.vstack([cylinderPoints,topHalf[0,:]]) return cylinderPoints cylinderPoints0 = getCylinderPoints(x0,z1,r0) cylinderPoints1 = getCylinderPoints(x1,z1,r1) #Gradient array 1 2D srclist = [] nSrc = 23 lines = 1 ylines = np.r_[0.] xlines = np.r_[0.] z = 0. #xline for k in range(lines): for i in range(nSrc): if i<=11: locA = np.r_[-14.+1., z] locB = np.r_[-8.+2.*i-1., z] #M = np.c_[np.arange(-12.,-12+2*(i+1),2),np.ones(i+1)*z] #N = np.c_[np.arange(-10.,-10+2*(i+1),2),np.ones(i+1)*z] M = np.c_[np.arange(-12.,10+1,2),np.ones(12)*z] N = np.c_[np.arange(-10.,12+1,2),np.ones(12)*z] rx = DC.Rx.Dipole(M,N) src= DC.Src.Dipole([rx],locA,locB) srclist.append(src) #print locA,locB,"\n",[M,N],"\n" #rx = DC.Rx.Dipole(-M,-N) #src= DC.Src.Dipole([rx],-locA,-locB) #srclist.append(src) #print -locA,-locB,"\n",[-M,-N],"\n" else: locA = np.r_[-14.+2*(i-11)+1., z] locB = np.r_[14.-1.,z] #M = np.c_[np.arange(locA[0]+1.,12.,2),np.ones(nSrc-i)*z] #N = np.c_[np.arange(locA[0]+3.,14.,2),np.ones(nSrc-i)*z] M = np.c_[np.arange(-12.,10+1,2),np.ones(12)*z] N = np.c_[np.arange(-10.,12+1,2),np.ones(12)*z] rx = DC.Rx.Dipole(M,N) src= DC.Src.Dipole([rx],locA,locB) srclist.append(src) #print "line2",locA,locB,"\n",[M,N],"\n" #rx = DC.Rx.Dipole(-M,-N) #src= DC.Src.Dipole([rx],-locA,-locB) #srclist.append(src) mapping = Maps.ExpMap(mesh) survey = DC.Survey(srclist) problem = DC.Problem3D_CC(mesh, sigmaMap=mapping) problem.pair(survey) problem.Solver = PardisoSolver dmis = DataMisfit.l2_DataMisfit(survey) survey.dpred(mtrue) survey.makeSyntheticData(mtrue,std=0.05,force=True) survey.eps = 1e-5*np.linalg.norm(survey.dobs) print '# of data: ', survey.dobs.shape from SimPEG.Maps import IdentityMap import pywt class WaveletMap(IdentityMap): def __init__(self, mesh=None, nP=None, **kwargs): super(WaveletMap, self).__init__(mesh=mesh, nP=nP, **kwargs) def _transform(self, m, wv = 'db4'): coeff_wv = pywt.wavedecn(m.reshape(self.mesh.nCx,self.mesh.nCy,order = 'F'),wv, mode = 'per') array_wv = pywt.coeffs_to_array(coeff_wv) return Utils.mkvc(array_wv[0]) def deriv(self, m, v=None, wv = 'db4'): if v is not None: coeff_wv = pywt.wavedecn(v.reshape(self.mesh.nCx,self.mesh.nCy,order = 'F'),wv, mode = 'per') array_wv = pywt.coeffs_to_array(coeff_wv) return Utils.mkvc(array_wv[0]) else: print "not implemented" def inverse(self, m, wv = 'db4'): msyn = np.zeros(mesh.nC) coeff_wv = pywt.wavedecn(msyn.reshape(self.mesh.nCx,self.mesh.nCy,order = 'F'),wv, mode = 'per') array_wv = pywt.coeffs_to_array(coeff_wv) coeff_back = pywt.array_to_coeffs(m.reshape(array_wv[0].shape, order = 'F'),array_wv[1]) coeff_m = pywt.waverecn(coeff_back,wv, mode = 'per') return Utils.mkvc(coeff_m) class iWaveletMap(IdentityMap): def __init__(self, mesh, nP=None, **kwargs): super(iWaveletMap, self).__init__(mesh=mesh, nP=nP, **kwargs) def _transform(self, m, wv = 'db4'): msyn = np.zeros(mesh.nC) coeff_map = pywt.wavedecn(msyn.reshape(self.mesh.nCx,self.mesh.nCy,order = 'F'),wv, mode = 'per') array_map = pywt.coeffs_to_array(coeff_map) coeff_map = pywt.array_to_coeffs(m.reshape(array_map[0].shape,order= 'F'),array_map[1]) coeff_back_map = pywt.waverecn(coeff_map,wv, mode = 'per') return Utils.mkvc(coeff_back_map) def deriv(self, m, v=None, wv = 'db4'): if v is not None: coeff_wv = pywt.wavedecn(v.reshape(self.mesh.nCx,self.mesh.nCy,order = 'F'),wv, mode = 'per') array_wv = pywt.coeffs_to_array(coeff_wv) coeff_back = pywt.array_to_coeffs(v,array_wv[1]) coeff_m = pywt.waverecn(coeff_back,wv, mode = 'per') return Utils.mkvc(coeff_m) else: print "not implemented" def inverse(self, m, wv = 'db4'): coeff_wv = pywt.wavedecn(m.reshape(self.mesh.nCx,self.mesh.nCy,order = 'F'),wv, mode = 'per') array_wv = pywt.coeffs_to_array(coeff_wv) return Utils.mkvc(array_wv[0]) wavmap = WaveletMap(mesh) iwavmap = iWaveletMap(mesh) import spgl1 #Parameter for SPGL1 iterations nits = 10 mwav = (-5.)*np.ones_like(mtrue) it = 0 phi_d_normal = np.load('../../NormalInversion/NormalInversion/phid_normal.npy') ratio = np.r_[6.5,phi_d_normal[0:-1]/phi_d_normal[1:]] #ratio = 10.*np.ones(nits) min_progress = 1.2 xlist = [] #Parameters for W #nsubSrc = 5 #InnerIt = 1 #dmisfitsub = [] #Initialize Random Source #W = np.random.randn(survey.nSrc,nsubSrc) #problem.unpair() #roblem.pair(survey) #Q = problem.getRHS() #sub = problem.getRHS().dot(W) #rx_r = SimultaneousRx(locs=P) #srcList_r = [] #for isrc in range(sub.shape[1]): # src_r = SimultaneousSrc([rx_r], Q=Q[:,isrc],W=W[:,isrc],QW =Q.dot(W)[:,isrc]) # srcList_r.append(src_r) #survey_r = DC.Survey(srcList_r) #problem.unpair() #problem.pair(survey_r) d = survey.dpred(mtrue) survey.dobs = d survey.std = np.ones_like(d)*0.05 survey.eps = 1e-5*np.linalg.norm(survey.dobs) dmisfitall = [] dmisfitall.append(dmis.eval(mwav)/survey.nD) timespgl1 = [] print "end iteration: ",it, '; Overall Normalized Misfit: ', dmis.eval(mwav)/survey.nD while (dmis.eval(mwav)/survey.nD)>0.5 and it<nits: def JS(x,mode): if mode == 1: return problem.Jvec(mwav,iwavmap*x) else: return wavmap*problem.Jtvec(mwav,x) b = survey.dpred(mwav)-survey.dpred(mtrue) print '# of data: ',b.shape opts = spgl1.spgSetParms({'iterations':100, 'verbosity':2}) sigtol = np.linalg.norm(b)/np.maximum(ratio[it],min_progress) #tautol = 20000. tic = time.clock() x,resid,grad,info = spgl1.spg_bpdn(JS, b, sigma = sigtol,options=opts) toc = time.clock() print 'SPGL1 chronometer: ',toc - tic timespgl1.append(toc-tic) #x,resid,grad,info = spgl1.spg_lasso(JS,b,tautol,opts) #assert dmis.eval(mwav) > dmis.eval(mwav - iwavmap*x) mwav = mwav - iwavmap*x it +=1 print "end iteration: ",it, '; Normalized Misfit: ', dmis.eval(mwav)/survey.nD dmisfitall.append(dmis.eval(mwav)/survey.nD) xlist.append(x) np.save('./dmisfitall.npy',dmisfitall) np.save('./mfinal.npy',mwav) np.savez('./xlist.npz',xlist) np.save('./time.npz',timespgl1) mm = mesh.plotImage(mwav) plt.colorbar(mm[0]) plt.gca().set_xlim([-10.,10.]) plt.gca().set_ylim([-10.,0.]) plt.plot(cylinderPoints0[:,0],cylinderPoints0[:,1], linestyle = 'dashed', color='k') plt.plot(cylinderPoints1[:,0],cylinderPoints1[:,1], linestyle = 'dashed', color='k') plt.show()
mit
blaze/dask
dask/dataframe/utils.py
1
32073
import math import numbers import re import textwrap from collections.abc import Iterator, Mapping import sys import traceback from contextlib import contextmanager import numpy as np import pandas as pd from pandas.api.types import ( is_categorical_dtype, is_scalar, is_sparse, is_period_dtype, is_datetime64tz_dtype, is_interval_dtype, ) # include these here for compat from ._compat import ( # noqa: F401 PANDAS_VERSION, PANDAS_GT_0240, PANDAS_GT_0250, PANDAS_GT_100, PANDAS_GT_110, HAS_INT_NA, tm, ) from .extensions import make_array_nonempty, make_scalar from ..base import is_dask_collection from ..core import get_deps from ..local import get_sync from ..utils import asciitable, is_arraylike, Dispatch, typename from ..utils import is_dataframe_like as dask_is_dataframe_like from ..utils import is_series_like as dask_is_series_like from ..utils import is_index_like as dask_is_index_like # register pandas extension types from . import _dtypes # noqa: F401 from . import methods def is_integer_na_dtype(t): dtype = getattr(t, "dtype", t) if HAS_INT_NA: types = ( pd.Int8Dtype, pd.Int16Dtype, pd.Int32Dtype, pd.Int64Dtype, pd.UInt8Dtype, pd.UInt16Dtype, pd.UInt32Dtype, pd.UInt64Dtype, ) else: types = () return isinstance(dtype, types) def shard_df_on_index(df, divisions): """Shard a DataFrame by ranges on its index Examples -------- >>> df = pd.DataFrame({'a': [0, 10, 20, 30, 40], 'b': [5, 4 ,3, 2, 1]}) >>> df a b 0 0 5 1 10 4 2 20 3 3 30 2 4 40 1 >>> shards = list(shard_df_on_index(df, [2, 4])) >>> shards[0] a b 0 0 5 1 10 4 >>> shards[1] a b 2 20 3 3 30 2 >>> shards[2] a b 4 40 1 >>> list(shard_df_on_index(df, []))[0] # empty case a b 0 0 5 1 10 4 2 20 3 3 30 2 4 40 1 """ if isinstance(divisions, Iterator): divisions = list(divisions) if not len(divisions): yield df else: divisions = np.array(divisions) df = df.sort_index() index = df.index if is_categorical_dtype(index): index = index.as_ordered() indices = index.searchsorted(divisions) yield df.iloc[: indices[0]] for i in range(len(indices) - 1): yield df.iloc[indices[i] : indices[i + 1]] yield df.iloc[indices[-1] :] _META_TYPES = "meta : pd.DataFrame, pd.Series, dict, iterable, tuple, optional" _META_DESCRIPTION = """\ An empty ``pd.DataFrame`` or ``pd.Series`` that matches the dtypes and column names of the output. This metadata is necessary for many algorithms in dask dataframe to work. For ease of use, some alternative inputs are also available. Instead of a ``DataFrame``, a ``dict`` of ``{name: dtype}`` or iterable of ``(name, dtype)`` can be provided (note that the order of the names should match the order of the columns). Instead of a series, a tuple of ``(name, dtype)`` can be used. If not provided, dask will try to infer the metadata. This may lead to unexpected results, so providing ``meta`` is recommended. For more information, see ``dask.dataframe.utils.make_meta``. """ def insert_meta_param_description(*args, **kwargs): """Replace `$META` in docstring with param description. If pad keyword is provided, will pad description by that number of spaces (default is 8).""" if not args: return lambda f: insert_meta_param_description(f, **kwargs) f = args[0] indent = " " * kwargs.get("pad", 8) body = textwrap.wrap( _META_DESCRIPTION, initial_indent=indent, subsequent_indent=indent, width=78 ) descr = "{0}\n{1}".format(_META_TYPES, "\n".join(body)) if f.__doc__: if "$META" in f.__doc__: f.__doc__ = f.__doc__.replace("$META", descr) else: # Put it at the end of the parameters section parameter_header = "Parameters\n%s----------" % indent[4:] first, last = re.split("Parameters\\n[ ]*----------", f.__doc__) parameters, rest = last.split("\n\n", 1) f.__doc__ = "{0}{1}{2}\n{3}{4}\n\n{5}".format( first, parameter_header, parameters, indent[4:], descr, rest ) return f @contextmanager def raise_on_meta_error(funcname=None, udf=False): """Reraise errors in this block to show metadata inference failure. Parameters ---------- funcname : str, optional If provided, will be added to the error message to indicate the name of the method that failed. """ try: yield except Exception as e: exc_type, exc_value, exc_traceback = sys.exc_info() tb = "".join(traceback.format_tb(exc_traceback)) msg = "Metadata inference failed{0}.\n\n" if udf: msg += ( "You have supplied a custom function and Dask is unable to \n" "determine the type of output that that function returns. \n\n" "To resolve this please provide a meta= keyword.\n" "The docstring of the Dask function you ran should have more information.\n\n" ) msg += ( "Original error is below:\n" "------------------------\n" "{1}\n\n" "Traceback:\n" "---------\n" "{2}" ) msg = msg.format(" in `{0}`".format(funcname) if funcname else "", repr(e), tb) raise ValueError(msg) from e UNKNOWN_CATEGORIES = "__UNKNOWN_CATEGORIES__" def has_known_categories(x): """Returns whether the categories in `x` are known. Parameters ---------- x : Series or CategoricalIndex """ x = getattr(x, "_meta", x) if is_series_like(x): return UNKNOWN_CATEGORIES not in x.cat.categories elif is_index_like(x) and hasattr(x, "categories"): return UNKNOWN_CATEGORIES not in x.categories raise TypeError("Expected Series or CategoricalIndex") def strip_unknown_categories(x, just_drop_unknown=False): """Replace any unknown categoricals with empty categoricals. Useful for preventing ``UNKNOWN_CATEGORIES`` from leaking into results. """ if isinstance(x, (pd.Series, pd.DataFrame)): x = x.copy() if isinstance(x, pd.DataFrame): cat_mask = x.dtypes == "category" if cat_mask.any(): cats = cat_mask[cat_mask].index for c in cats: if not has_known_categories(x[c]): if just_drop_unknown: x[c].cat.remove_categories(UNKNOWN_CATEGORIES, inplace=True) else: x[c].cat.set_categories([], inplace=True) elif isinstance(x, pd.Series): if is_categorical_dtype(x.dtype) and not has_known_categories(x): x.cat.set_categories([], inplace=True) if isinstance(x.index, pd.CategoricalIndex) and not has_known_categories( x.index ): x.index = x.index.set_categories([]) elif isinstance(x, pd.CategoricalIndex) and not has_known_categories(x): x = x.set_categories([]) return x def clear_known_categories(x, cols=None, index=True): """Set categories to be unknown. Parameters ---------- x : DataFrame, Series, Index cols : iterable, optional If x is a DataFrame, set only categoricals in these columns to unknown. By default, all categorical columns are set to unknown categoricals index : bool, optional If True and x is a Series or DataFrame, set the clear known categories in the index as well. """ if isinstance(x, (pd.Series, pd.DataFrame)): x = x.copy() if isinstance(x, pd.DataFrame): mask = x.dtypes == "category" if cols is None: cols = mask[mask].index elif not mask.loc[cols].all(): raise ValueError("Not all columns are categoricals") for c in cols: x[c].cat.set_categories([UNKNOWN_CATEGORIES], inplace=True) elif isinstance(x, pd.Series): if is_categorical_dtype(x.dtype): x.cat.set_categories([UNKNOWN_CATEGORIES], inplace=True) if index and isinstance(x.index, pd.CategoricalIndex): x.index = x.index.set_categories([UNKNOWN_CATEGORIES]) elif isinstance(x, pd.CategoricalIndex): x = x.set_categories([UNKNOWN_CATEGORIES]) return x def _empty_series(name, dtype, index=None): if isinstance(dtype, str) and dtype == "category": return pd.Series( pd.Categorical([UNKNOWN_CATEGORIES]), name=name, index=index ).iloc[:0] return pd.Series([], dtype=dtype, name=name, index=index) make_meta = Dispatch("make_meta") @make_meta.register((pd.Series, pd.DataFrame)) def make_meta_pandas(x, index=None): return x.iloc[:0] @make_meta.register(pd.Index) def make_meta_index(x, index=None): return x[0:0] @make_meta.register(object) def make_meta_object(x, index=None): """Create an empty pandas object containing the desired metadata. Parameters ---------- x : dict, tuple, list, pd.Series, pd.DataFrame, pd.Index, dtype, scalar To create a DataFrame, provide a `dict` mapping of `{name: dtype}`, or an iterable of `(name, dtype)` tuples. To create a `Series`, provide a tuple of `(name, dtype)`. If a pandas object, names, dtypes, and index should match the desired output. If a dtype or scalar, a scalar of the same dtype is returned. index : pd.Index, optional Any pandas index to use in the metadata. If none provided, a `RangeIndex` will be used. Examples -------- >>> make_meta([('a', 'i8'), ('b', 'O')]) # doctest: +SKIP Empty DataFrame Columns: [a, b] Index: [] >>> make_meta(('a', 'f8')) # doctest: +SKIP Series([], Name: a, dtype: float64) >>> make_meta('i8') # doctest: +SKIP 1 """ if hasattr(x, "_meta"): return x._meta elif is_arraylike(x) and x.shape: return x[:0] if index is not None: index = make_meta(index) if isinstance(x, dict): return pd.DataFrame( {c: _empty_series(c, d, index=index) for (c, d) in x.items()}, index=index ) if isinstance(x, tuple) and len(x) == 2: return _empty_series(x[0], x[1], index=index) elif isinstance(x, (list, tuple)): if not all(isinstance(i, tuple) and len(i) == 2 for i in x): raise ValueError( "Expected iterable of tuples of (name, dtype), got {0}".format(x) ) return pd.DataFrame( {c: _empty_series(c, d, index=index) for (c, d) in x}, columns=[c for c, d in x], index=index, ) elif not hasattr(x, "dtype") and x is not None: # could be a string, a dtype object, or a python type. Skip `None`, # because it is implictly converted to `dtype('f8')`, which we don't # want here. try: dtype = np.dtype(x) return _scalar_from_dtype(dtype) except Exception: # Continue on to next check pass if is_scalar(x): return _nonempty_scalar(x) raise TypeError("Don't know how to create metadata from {0}".format(x)) _numeric_index_types = (pd.Int64Index, pd.Float64Index, pd.UInt64Index) meta_nonempty = Dispatch("meta_nonempty") @meta_nonempty.register(object) def meta_nonempty_object(x): """Create a nonempty pandas object from the given metadata. Returns a pandas DataFrame, Series, or Index that contains two rows of fake data. """ if is_scalar(x): return _nonempty_scalar(x) else: raise TypeError( "Expected Pandas-like Index, Series, DataFrame, or scalar, " "got {0}".format(typename(type(x))) ) @meta_nonempty.register(pd.DataFrame) def meta_nonempty_dataframe(x): idx = meta_nonempty(x.index) dt_s_dict = dict() data = dict() for i, c in enumerate(x.columns): series = x.iloc[:, i] dt = series.dtype if dt not in dt_s_dict: dt_s_dict[dt] = _nonempty_series(x.iloc[:, i], idx=idx) data[i] = dt_s_dict[dt] res = pd.DataFrame(data, index=idx, columns=np.arange(len(x.columns))) res.columns = x.columns if PANDAS_GT_100: res.attrs = x.attrs return res @meta_nonempty.register(pd.Index) def _nonempty_index(idx): typ = type(idx) if typ is pd.RangeIndex: return pd.RangeIndex(2, name=idx.name) elif typ in _numeric_index_types: return typ([1, 2], name=idx.name) elif typ is pd.Index: return pd.Index(["a", "b"], name=idx.name) elif typ is pd.DatetimeIndex: start = "1970-01-01" # Need a non-monotonic decreasing index to avoid issues with # partial string indexing see https://github.com/dask/dask/issues/2389 # and https://github.com/pandas-dev/pandas/issues/16515 # This doesn't mean `_meta_nonempty` should ever rely on # `self.monotonic_increasing` or `self.monotonic_decreasing` try: return pd.date_range( start=start, periods=2, freq=idx.freq, tz=idx.tz, name=idx.name ) except ValueError: # older pandas versions data = [start, "1970-01-02"] if idx.freq is None else None return pd.DatetimeIndex( data, start=start, periods=2, freq=idx.freq, tz=idx.tz, name=idx.name ) elif typ is pd.PeriodIndex: return pd.period_range( start="1970-01-01", periods=2, freq=idx.freq, name=idx.name ) elif typ is pd.TimedeltaIndex: start = np.timedelta64(1, "D") try: return pd.timedelta_range( start=start, periods=2, freq=idx.freq, name=idx.name ) except ValueError: # older pandas versions start = np.timedelta64(1, "D") data = [start, start + 1] if idx.freq is None else None return pd.TimedeltaIndex( data, start=start, periods=2, freq=idx.freq, name=idx.name ) elif typ is pd.CategoricalIndex: if len(idx.categories) == 0: data = pd.Categorical(_nonempty_index(idx.categories), ordered=idx.ordered) else: data = pd.Categorical.from_codes( [-1, 0], categories=idx.categories, ordered=idx.ordered ) return pd.CategoricalIndex(data, name=idx.name) elif typ is pd.MultiIndex: levels = [_nonempty_index(l) for l in idx.levels] codes = [[0, 0] for i in idx.levels] try: return pd.MultiIndex(levels=levels, codes=codes, names=idx.names) except TypeError: # older pandas versions return pd.MultiIndex(levels=levels, labels=codes, names=idx.names) raise TypeError( "Don't know how to handle index of type {0}".format(typename(type(idx))) ) hash_object_dispatch = Dispatch("hash_object_dispatch") @hash_object_dispatch.register((pd.DataFrame, pd.Series, pd.Index)) def hash_object_pandas( obj, index=True, encoding="utf8", hash_key=None, categorize=True ): return pd.util.hash_pandas_object( obj, index=index, encoding=encoding, hash_key=hash_key, categorize=categorize ) group_split_dispatch = Dispatch("group_split_dispatch") @group_split_dispatch.register((pd.DataFrame, pd.Series, pd.Index)) def group_split_pandas(df, c, k, ignore_index=False): indexer, locations = pd._libs.algos.groupsort_indexer( c.astype(np.int64, copy=False), k ) df2 = df.take(indexer) locations = locations.cumsum() parts = [ df2.iloc[a:b].reset_index(drop=True) if ignore_index else df2.iloc[a:b] for a, b in zip(locations[:-1], locations[1:]) ] return dict(zip(range(k), parts)) _simple_fake_mapping = { "b": np.bool_(True), "V": np.void(b" "), "M": np.datetime64("1970-01-01"), "m": np.timedelta64(1), "S": np.str_("foo"), "a": np.str_("foo"), "U": np.unicode_("foo"), "O": "foo", } def _scalar_from_dtype(dtype): if dtype.kind in ("i", "f", "u"): return dtype.type(1) elif dtype.kind == "c": return dtype.type(complex(1, 0)) elif dtype.kind in _simple_fake_mapping: o = _simple_fake_mapping[dtype.kind] return o.astype(dtype) if dtype.kind in ("m", "M") else o else: raise TypeError("Can't handle dtype: {0}".format(dtype)) @make_scalar.register(np.dtype) def _(dtype): return _scalar_from_dtype(dtype) @make_scalar.register(pd.Timestamp) @make_scalar.register(pd.Timedelta) @make_scalar.register(pd.Period) @make_scalar.register(pd.Interval) def _(x): return x def _nonempty_scalar(x): if type(x) in make_scalar._lookup: return make_scalar(x) if np.isscalar(x): dtype = x.dtype if hasattr(x, "dtype") else np.dtype(type(x)) return make_scalar(dtype) raise TypeError("Can't handle meta of type '{0}'".format(typename(type(x)))) @meta_nonempty.register(pd.Series) def _nonempty_series(s, idx=None): # TODO: Use register dtypes with make_array_nonempty if idx is None: idx = _nonempty_index(s.index) dtype = s.dtype if is_datetime64tz_dtype(dtype): entry = pd.Timestamp("1970-01-01", tz=dtype.tz) data = [entry, entry] elif is_categorical_dtype(dtype): if len(s.cat.categories): data = [s.cat.categories[0]] * 2 cats = s.cat.categories else: data = _nonempty_index(s.cat.categories) cats = s.cat.categories[:0] data = pd.Categorical(data, categories=cats, ordered=s.cat.ordered) elif is_integer_na_dtype(dtype): data = pd.array([1, None], dtype=dtype) elif is_period_dtype(dtype): # pandas 0.24.0+ should infer this to be Series[Period[freq]] freq = dtype.freq data = [pd.Period("2000", freq), pd.Period("2001", freq)] elif is_sparse(dtype): # TODO: pandas <0.24 # Pandas <= 0.23.4: if PANDAS_GT_0240: entry = _scalar_from_dtype(dtype.subtype) else: entry = _scalar_from_dtype(dtype.subtype) if PANDAS_GT_100: data = pd.array([entry, entry], dtype=dtype) else: data = pd.SparseArray([entry, entry], dtype=dtype) elif is_interval_dtype(dtype): entry = _scalar_from_dtype(dtype.subtype) if PANDAS_GT_0240: data = pd.array([entry, entry], dtype=dtype) else: data = np.array([entry, entry], dtype=dtype) elif type(dtype) in make_array_nonempty._lookup: data = make_array_nonempty(dtype) else: entry = _scalar_from_dtype(dtype) data = np.array([entry, entry], dtype=dtype) out = pd.Series(data, name=s.name, index=idx) if PANDAS_GT_100: out.attrs = s.attrs return out def is_dataframe_like(df): return dask_is_dataframe_like(df) def is_series_like(s): return dask_is_series_like(s) def is_index_like(s): return dask_is_index_like(s) def check_meta(x, meta, funcname=None, numeric_equal=True): """Check that the dask metadata matches the result. If metadata matches, ``x`` is passed through unchanged. A nice error is raised if metadata doesn't match. Parameters ---------- x : DataFrame, Series, or Index meta : DataFrame, Series, or Index The expected metadata that ``x`` should match funcname : str, optional The name of the function in which the metadata was specified. If provided, the function name will be included in the error message to be more helpful to users. numeric_equal : bool, optionl If True, integer and floating dtypes compare equal. This is useful due to panda's implicit conversion of integer to floating upon encountering missingness, which is hard to infer statically. """ eq_types = {"i", "f", "u"} if numeric_equal else set() def equal_dtypes(a, b): if is_categorical_dtype(a) != is_categorical_dtype(b): return False if isinstance(a, str) and a == "-" or isinstance(b, str) and b == "-": return False if is_categorical_dtype(a) and is_categorical_dtype(b): if UNKNOWN_CATEGORIES in a.categories or UNKNOWN_CATEGORIES in b.categories: return True return a == b return (a.kind in eq_types and b.kind in eq_types) or (a == b) if not ( is_dataframe_like(meta) or is_series_like(meta) or is_index_like(meta) ) or is_dask_collection(meta): raise TypeError( "Expected partition to be DataFrame, Series, or " "Index, got `%s`" % typename(type(meta)) ) if type(x) != type(meta): errmsg = "Expected partition of type `%s` but got `%s`" % ( typename(type(meta)), typename(type(x)), ) elif is_dataframe_like(meta): dtypes = pd.concat([x.dtypes, meta.dtypes], axis=1, sort=True) bad_dtypes = [ (repr(col), a, b) for col, a, b in dtypes.fillna("-").itertuples() if not equal_dtypes(a, b) ] if bad_dtypes: errmsg = "Partition type: `%s`\n%s" % ( typename(type(meta)), asciitable(["Column", "Found", "Expected"], bad_dtypes), ) else: check_matching_columns(meta, x) return x else: if equal_dtypes(x.dtype, meta.dtype): return x errmsg = "Partition type: `%s`\n%s" % ( typename(type(meta)), asciitable(["", "dtype"], [("Found", x.dtype), ("Expected", meta.dtype)]), ) raise ValueError( "Metadata mismatch found%s.\n\n" "%s" % ((" in `%s`" % funcname if funcname else ""), errmsg) ) def check_matching_columns(meta, actual): # Need nan_to_num otherwise nan comparison gives False if not np.array_equal(np.nan_to_num(meta.columns), np.nan_to_num(actual.columns)): extra = methods.tolist(actual.columns.difference(meta.columns)) missing = methods.tolist(meta.columns.difference(actual.columns)) if extra or missing: extra_info = f" Extra: {extra}\n Missing: {missing}" else: extra_info = "Order of columns does not match" raise ValueError( "The columns in the computed data do not match" " the columns in the provided metadata\n" f"{extra_info}" ) def index_summary(idx, name=None): """Summarized representation of an Index.""" n = len(idx) if name is None: name = idx.__class__.__name__ if n: head = idx[0] tail = idx[-1] summary = ", {} to {}".format(head, tail) else: summary = "" return "{}: {} entries{}".format(name, n, summary) ############################################################### # Testing ############################################################### def _check_dask(dsk, check_names=True, check_dtypes=True, result=None): import dask.dataframe as dd if hasattr(dsk, "__dask_graph__"): graph = dsk.__dask_graph__() if hasattr(graph, "validate"): graph.validate() if result is None: result = dsk.compute(scheduler="sync") if isinstance(dsk, dd.Index): assert "Index" in type(result).__name__, type(result) # assert type(dsk._meta) == type(result), type(dsk._meta) if check_names: assert dsk.name == result.name assert dsk._meta.name == result.name if isinstance(result, pd.MultiIndex): assert result.names == dsk._meta.names if check_dtypes: assert_dask_dtypes(dsk, result) elif isinstance(dsk, dd.Series): assert "Series" in type(result).__name__, type(result) assert type(dsk._meta) == type(result), type(dsk._meta) if check_names: assert dsk.name == result.name, (dsk.name, result.name) assert dsk._meta.name == result.name if check_dtypes: assert_dask_dtypes(dsk, result) _check_dask( dsk.index, check_names=check_names, check_dtypes=check_dtypes, result=result.index, ) elif isinstance(dsk, dd.DataFrame): assert "DataFrame" in type(result).__name__, type(result) assert isinstance(dsk.columns, pd.Index), type(dsk.columns) assert type(dsk._meta) == type(result), type(dsk._meta) if check_names: tm.assert_index_equal(dsk.columns, result.columns) tm.assert_index_equal(dsk._meta.columns, result.columns) if check_dtypes: assert_dask_dtypes(dsk, result) _check_dask( dsk.index, check_names=check_names, check_dtypes=check_dtypes, result=result.index, ) elif isinstance(dsk, dd.core.Scalar): assert np.isscalar(result) or isinstance( result, (pd.Timestamp, pd.Timedelta) ) if check_dtypes: assert_dask_dtypes(dsk, result) else: msg = "Unsupported dask instance {0} found".format(type(dsk)) raise AssertionError(msg) return result return dsk def _maybe_sort(a): # sort by value, then index try: if is_dataframe_like(a): if set(a.index.names) & set(a.columns): a.index.names = [ "-overlapped-index-name-%d" % i for i in range(len(a.index.names)) ] a = a.sort_values(by=methods.tolist(a.columns)) else: a = a.sort_values() except (TypeError, IndexError, ValueError): pass return a.sort_index() def assert_eq( a, b, check_names=True, check_dtypes=True, check_divisions=True, check_index=True, **kwargs, ): if check_divisions: assert_divisions(a) assert_divisions(b) if hasattr(a, "divisions") and hasattr(b, "divisions"): at = type(np.asarray(a.divisions).tolist()[0]) # numpy to python bt = type(np.asarray(b.divisions).tolist()[0]) # scalar conversion assert at == bt, (at, bt) assert_sane_keynames(a) assert_sane_keynames(b) a = _check_dask(a, check_names=check_names, check_dtypes=check_dtypes) b = _check_dask(b, check_names=check_names, check_dtypes=check_dtypes) if not check_index: a = a.reset_index(drop=True) b = b.reset_index(drop=True) if hasattr(a, "to_pandas"): a = a.to_pandas() if hasattr(b, "to_pandas"): b = b.to_pandas() if isinstance(a, pd.DataFrame): a = _maybe_sort(a) b = _maybe_sort(b) tm.assert_frame_equal(a, b, **kwargs) elif isinstance(a, pd.Series): a = _maybe_sort(a) b = _maybe_sort(b) tm.assert_series_equal(a, b, check_names=check_names, **kwargs) elif isinstance(a, pd.Index): tm.assert_index_equal(a, b, **kwargs) else: if a == b: return True else: if np.isnan(a): assert np.isnan(b) else: assert np.allclose(a, b) return True def assert_dask_graph(dask, label): if hasattr(dask, "dask"): dask = dask.dask assert isinstance(dask, Mapping) for k in dask: if isinstance(k, tuple): k = k[0] if k.startswith(label): return True raise AssertionError( "given dask graph doesn't contain label: {label}".format(label=label) ) def assert_divisions(ddf): if not hasattr(ddf, "divisions"): return if not getattr(ddf, "known_divisions", False): return def index(x): if is_index_like(x): return x try: return x.index.get_level_values(0) except AttributeError: return x.index results = get_sync(ddf.dask, ddf.__dask_keys__()) for i, df in enumerate(results[:-1]): if len(df): assert index(df).min() >= ddf.divisions[i] assert index(df).max() < ddf.divisions[i + 1] if len(results[-1]): assert index(results[-1]).min() >= ddf.divisions[-2] assert index(results[-1]).max() <= ddf.divisions[-1] def assert_sane_keynames(ddf): if not hasattr(ddf, "dask"): return for k in ddf.dask.keys(): while isinstance(k, tuple): k = k[0] assert isinstance(k, (str, bytes)) assert len(k) < 100 assert " " not in k assert k.split("-")[0].isidentifier() def assert_dask_dtypes(ddf, res, numeric_equal=True): """Check that the dask metadata matches the result. If `numeric_equal`, integer and floating dtypes compare equal. This is useful due to the implicit conversion of integer to floating upon encountering missingness, which is hard to infer statically.""" eq_type_sets = [{"O", "S", "U", "a"}] # treat object and strings alike if numeric_equal: eq_type_sets.append({"i", "f", "u"}) def eq_dtypes(a, b): return any( a.kind in eq_types and b.kind in eq_types for eq_types in eq_type_sets ) or (a == b) if not is_dask_collection(res) and is_dataframe_like(res): for col, a, b in pd.concat([ddf._meta.dtypes, res.dtypes], axis=1).itertuples(): assert eq_dtypes(a, b) elif not is_dask_collection(res) and (is_index_like(res) or is_series_like(res)): a = ddf._meta.dtype b = res.dtype assert eq_dtypes(a, b) else: if hasattr(ddf._meta, "dtype"): a = ddf._meta.dtype if not hasattr(res, "dtype"): assert np.isscalar(res) b = np.dtype(type(res)) else: b = res.dtype assert eq_dtypes(a, b) else: assert type(ddf._meta) == type(res) def assert_max_deps(x, n, eq=True): dependencies, dependents = get_deps(x.dask) if eq: assert max(map(len, dependencies.values())) == n else: assert max(map(len, dependencies.values())) <= n def valid_divisions(divisions): """Are the provided divisions valid? Examples -------- >>> valid_divisions([1, 2, 3]) True >>> valid_divisions([3, 2, 1]) False >>> valid_divisions([1, 1, 1]) False >>> valid_divisions([0, 1, 1]) True >>> valid_divisions(123) False >>> valid_divisions([0, float('nan'), 1]) False """ if not isinstance(divisions, (tuple, list)): return False for i, x in enumerate(divisions[:-2]): if x >= divisions[i + 1]: return False if isinstance(x, numbers.Number) and math.isnan(x): return False for x in divisions[-2:]: if isinstance(x, numbers.Number) and math.isnan(x): return False if divisions[-2] > divisions[-1]: return False return True def drop_by_shallow_copy(df, columns, errors="raise"): """Use shallow copy to drop columns in place""" df2 = df.copy(deep=False) if not pd.api.types.is_list_like(columns): columns = [columns] df2.drop(columns=columns, inplace=True, errors=errors) return df2
bsd-3-clause
andres-de-castro/kineSYS
ssvep_trainer.py
1
6516
#!usb/bin/env/python import ctypes import datetime import os import speech import time import subprocess import sys import pandas as pd from ctypes import * from numpy import * from ctypes.util import find_library # print (ctypes.util.find_library('edk.dll')) # print (os.path.exists('edk.dll')) libEDK = cdll.LoadLibrary("edk.dll") header = ['COUNTER','AF3','F7','F3','FC5','T7','P7','O1','O2','P8','T8','FC6','F4','F8','AF4','GYROX','GYROY','TIMESTAMP','FUNC_ID','FUNC_VALUE','MARKER','SYNC_SIGNAL','USER','CLASS'] # subprocess.Popen(["python", "ssvep_flash.py"]) if len(sys.argv) == 1: print "Please enter the name of the user being tested on" user_name = str(raw_input()).lower() print "Please enter the session time" session_time = float(raw_input()) print "Please enter the number of sessions" number_of_sessions = int(raw_input()) print "Please enter type of class" class_type = str(raw_input()) else: user_name = sys.argv[1] session_time = float(sys.argv[2]) number_of_sessions = int(sys.argv[3]) class_type = str(sys.argv[4]) timestamp = datetime.datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d--%H-%M') def record_data(session_time=8.0, target=None): session_log = pd.DataFrame() hData = libEDK.EE_DataCreate() libEDK.EE_DataSetBufferSizeInSec(secs) start_time = time.time() # print ("Buffer size in secs:") while time.time() < start_time + session_time + 1: if state == 0: eventType = libEDK.EE_EmoEngineEventGetType(eEvent) libEDK.EE_EmoEngineEventGetUserId(eEvent, user) #libEDK.EE_Event_enum.EE_UserAdded: if eventType == 16: libEDK.EE_DataAcquisitionEnable(userID, True) readytocollect = True if readytocollect is True: libEDK.EE_DataUpdateHandle(0, hData) libEDK.EE_DataGetNumberOfSample(hData, nSamplesTaken) print ("Wrote ", nSamplesTaken[0]) if nSamplesTaken[0] != 0: nSam = nSamplesTaken[0] arr = (ctypes.c_double * nSamplesTaken[0])() ctypes.cast(arr, ctypes.POINTER(ctypes.c_double)) #libEDK.EE_DataGet(hData, 3,byref(arr), nSam) # data = array('d')#zeros(nSamplesTaken[0],double) for sampleIdx in range(nSamplesTaken[0]): row = [] for i in range(22): libEDK.EE_DataGet(hData,targetChannelList[i], byref(arr), nSam) # print >>f,arr[sampleIdx],",", row.append(str(arr[sampleIdx])) row = ','.join(row) + ',' + user_name + ',' + str(target) row = row.split(',') session_log = session_log.append([row]) time.sleep(0.2) libEDK.EE_DataFree(hData) session_log.columns = header return session_log[:((int(session_time) - 1)*128)] ED_COUNTER = 0 ED_INTERPOLATED = 1 ED_RAW_CQ = 2 ED_AF3 = 3 ED_F7 = 4 ED_F3 = 5 ED_FC5 = 6 ED_T7 = 7 ED_P7 = 8 ED_O1 = 9 ED_O2 = 10 ED_P8 = 11 ED_T8 = 12 ED_FC6 = 13 ED_F4 = 14 ED_F8 = 15 ED_AF4 = 16 ED_GYROX = 17 ED_GYROY = 18 ED_TIMESTAMP = 19 ED_ES_TIMESTAMP = 20 ED_FUNC_ID = 21 ED_FUNC_VALUE = 22 ED_MARKER = 23 ED_SYNC_SIGNAL = 24 # IN DLL(edk.dll) # typedef enum EE_DataChannels_enum { # ED_COUNTER = 0, ED_INTERPOLATED, ED_RAW_CQ, # ED_AF3, ED_F7, ED_F3, ED_FC5, ED_T7, # ED_P7, ED_O1, ED_O2, ED_P8, ED_T8, # ED_FC6, ED_F4, ED_F8, ED_AF4, ED_GYROX, # ED_GYROY, ED_TIMESTAMP, ED_ES_TIMESTAMP, ED_FUNC_ID, ED_FUNC_VALUE, ED_MARKER, # ED_SYNC_SIGNAL # } EE_DataChannel_t; targetChannelList = [ED_COUNTER, ED_AF3, ED_F7, ED_F3, ED_FC5, ED_T7,ED_P7, ED_O1, ED_O2, ED_P8, ED_T8,ED_FC6, ED_F4, ED_F8, ED_AF4, ED_GYROX, ED_GYROY, ED_TIMESTAMP, ED_FUNC_ID, ED_FUNC_VALUE, ED_MARKER, ED_SYNC_SIGNAL] write = sys.stdout.write eEvent = libEDK.EE_EmoEngineEventCreate() eState = libEDK.EE_EmoStateCreate() userID = c_uint(0) nSamples = c_uint(0) nSam = c_uint(0) nSamplesTaken = pointer(nSamples) da = zeros(128, double) data = pointer(c_double(0)) user = pointer(userID) composerPort = c_uint(1726) secs = c_float(1) datarate = c_uint(0) readytocollect = False option = c_int(0) state = c_int(0) classes_list = { 0:'Left', 1:'Up', 2:'Right', 3:'Down' } print (libEDK.EE_EngineConnect("Emotiv Systems-5")) if libEDK.EE_EngineConnect("Emotiv Systems-5") != 0: print "Emotiv Engine start up failed." else: print "Emotiv Engine startup has completed successfully.\n\n" master_session = pd.DataFrame(columns=header) print "Press any key to being testing" _ = raw_input() state = libEDK.EE_EngineGetNextEvent(eEvent) for _ in range(number_of_sessions): for target in classes_list: print "next class is {0}".format(classes_list[target]) speech.say("next class is {0}".format(classes_list[target])) print "Press any key to continue" str(raw_input()).lower() for i in range(3): if i == 4: speech.say('Get ready!') print '\n\nGet ready!\n\n' time.sleep(0.5) print i + 1 speech.say(str(i + 1)) session_log = record_data( session_time=session_time, target=target, ) print "\nDo you want to save the current session?" save_session_response = str(raw_input()).lower() while save_session_response != 'y': for i in range(3): if i == 4: speech.say('Get ready!') print '\n\nGet ready!\n\n' time.sleep(0.5) print i + 1 speech.say(str(i + 1)) session_log = record_data( session_time=session_time, target=target, ) print "Do you want to save the current session? Hit \'y\' to save session.\n" save_session_response = str(raw_input()).lower() master_session = pd.concat([master_session, session_log]) libEDK.EE_EngineDisconnect() libEDK.EE_EmoStateFree(eState) libEDK.EE_EmoEngineEventFree(eEvent) print master_session master_session.to_csv('./logs/' + timestamp + '_' + user_name + '_' + 'ssvep' + '_' + class_type + '.csv', mode='a', index=None) print '\nFile has been saved to:' + '/logs/' + timestamp + '_' + user_name + '_' + 'ssvep' + '_' + class_type + '.csv'
apache-2.0
RayMick/scikit-learn
examples/svm/plot_svm_nonlinear.py
268
1091
""" ============== Non-linear SVM ============== Perform binary classification using non-linear SVC with RBF kernel. The target to predict is a XOR of the inputs. The color map illustrates the decision function learned by the SVC. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm xx, yy = np.meshgrid(np.linspace(-3, 3, 500), np.linspace(-3, 3, 500)) np.random.seed(0) X = np.random.randn(300, 2) Y = np.logical_xor(X[:, 0] > 0, X[:, 1] > 0) # fit the model clf = svm.NuSVC() clf.fit(X, Y) # plot the decision function for each datapoint on the grid Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.imshow(Z, interpolation='nearest', extent=(xx.min(), xx.max(), yy.min(), yy.max()), aspect='auto', origin='lower', cmap=plt.cm.PuOr_r) contours = plt.contour(xx, yy, Z, levels=[0], linewidths=2, linetypes='--') plt.scatter(X[:, 0], X[:, 1], s=30, c=Y, cmap=plt.cm.Paired) plt.xticks(()) plt.yticks(()) plt.axis([-3, 3, -3, 3]) plt.show()
bsd-3-clause
0asa/scikit-learn
examples/applications/plot_model_complexity_influence.py
25
6378
""" ========================== Model Complexity Influence ========================== Demonstrate how model complexity influences both prediction accuracy and computational performance. The dataset is the Boston Housing dataset (resp. 20 Newsgroups) for regression (resp. classification). For each class of models we make the model complexity vary through the choice of relevant model parameters and measure the influence on both computational performance (latency) and predictive power (MSE or Hamming Loss). """ print(__doc__) # Author: Eustache Diemert <eustache@diemert.fr> # License: BSD 3 clause import time import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1.parasite_axes import host_subplot from mpl_toolkits.axisartist.axislines import Axes from scipy.sparse.csr import csr_matrix from sklearn import datasets from sklearn.utils import shuffle from sklearn.metrics import mean_squared_error from sklearn.svm.classes import NuSVR from sklearn.ensemble.gradient_boosting import GradientBoostingRegressor from sklearn.linear_model.stochastic_gradient import SGDClassifier from sklearn.metrics.metrics import hamming_loss ############################################################################### # Routines # initialize random generator np.random.seed(0) def generate_data(case, sparse=False): """Generate regression/classification data.""" bunch = None if case == 'regression': bunch = datasets.load_boston() elif case == 'classification': bunch = datasets.fetch_20newsgroups_vectorized(subset='all') X, y = shuffle(bunch.data, bunch.target) offset = int(X.shape[0] * 0.8) X_train, y_train = X[:offset], y[:offset] X_test, y_test = X[offset:], y[offset:] if sparse: X_train = csr_matrix(X_train) X_test = csr_matrix(X_test) else: X_train = np.array(X_train) X_test = np.array(X_test) y_test = np.array(y_test) y_train = np.array(y_train) data = {'X_train': X_train, 'X_test': X_test, 'y_train': y_train, 'y_test': y_test} return data def benchmark_influence(conf): """ Benchmark influence of :changing_param: on both MSE and latency. """ prediction_times = [] prediction_powers = [] complexities = [] for param_value in conf['changing_param_values']: conf['tuned_params'][conf['changing_param']] = param_value estimator = conf['estimator'](**conf['tuned_params']) print("Benchmarking %s" % estimator) estimator.fit(conf['data']['X_train'], conf['data']['y_train']) conf['postfit_hook'](estimator) complexity = conf['complexity_computer'](estimator) complexities.append(complexity) start_time = time.time() for _ in range(conf['n_samples']): y_pred = estimator.predict(conf['data']['X_test']) elapsed_time = (time.time() - start_time) / float(conf['n_samples']) prediction_times.append(elapsed_time) pred_score = conf['prediction_performance_computer']( conf['data']['y_test'], y_pred) prediction_powers.append(pred_score) print("Complexity: %d | %s: %.4f | Pred. Time: %fs\n" % ( complexity, conf['prediction_performance_label'], pred_score, elapsed_time)) return prediction_powers, prediction_times, complexities def plot_influence(conf, mse_values, prediction_times, complexities): """ Plot influence of model complexity on both accuracy and latency. """ plt.figure(figsize=(12, 6)) host = host_subplot(111, axes_class=Axes) plt.subplots_adjust(right=0.75) par1 = host.twinx() host.set_xlabel('Model Complexity (%s)' % conf['complexity_label']) y1_label = conf['prediction_performance_label'] y2_label = "Time (s)" host.set_ylabel(y1_label) par1.set_ylabel(y2_label) p1, = host.plot(complexities, mse_values, 'b-', label="prediction error") p2, = par1.plot(complexities, prediction_times, 'r-', label="latency") host.legend(loc='upper right') host.axis["left"].label.set_color(p1.get_color()) par1.axis["right"].label.set_color(p2.get_color()) plt.title('Influence of Model Complexity - %s' % conf['estimator'].__name__) plt.show() def _count_nonzero_coefficients(estimator): a = estimator.coef_.toarray() return np.count_nonzero(a) ############################################################################### # main code regression_data = generate_data('regression') classification_data = generate_data('classification', sparse=True) configurations = [ {'estimator': SGDClassifier, 'tuned_params': {'penalty': 'elasticnet', 'alpha': 0.001, 'loss': 'modified_huber', 'fit_intercept': True}, 'changing_param': 'l1_ratio', 'changing_param_values': [0.25, 0.5, 0.75, 0.9], 'complexity_label': 'non_zero coefficients', 'complexity_computer': _count_nonzero_coefficients, 'prediction_performance_computer': hamming_loss, 'prediction_performance_label': 'Hamming Loss (Misclassification Ratio)', 'postfit_hook': lambda x: x.sparsify(), 'data': classification_data, 'n_samples': 30}, {'estimator': NuSVR, 'tuned_params': {'C': 1e3, 'gamma': 2**-15}, 'changing_param': 'nu', 'changing_param_values': [0.1, 0.25, 0.5, 0.75, 0.9], 'complexity_label': 'n_support_vectors', 'complexity_computer': lambda x: len(x.support_vectors_), 'data': regression_data, 'postfit_hook': lambda x: x, 'prediction_performance_computer': mean_squared_error, 'prediction_performance_label': 'MSE', 'n_samples': 30}, {'estimator': GradientBoostingRegressor, 'tuned_params': {'loss': 'ls'}, 'changing_param': 'n_estimators', 'changing_param_values': [10, 50, 100, 200, 500], 'complexity_label': 'n_trees', 'complexity_computer': lambda x: x.n_estimators, 'data': regression_data, 'postfit_hook': lambda x: x, 'prediction_performance_computer': mean_squared_error, 'prediction_performance_label': 'MSE', 'n_samples': 30}, ] for conf in configurations: prediction_performances, prediction_times, complexities = \ benchmark_influence(conf) plot_influence(conf, prediction_performances, prediction_times, complexities)
bsd-3-clause
BoltzmannBrain/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/axis.py
69
54453
""" Classes for the ticks and x and y axis """ from __future__ import division from matplotlib import rcParams import matplotlib.artist as artist import matplotlib.cbook as cbook import matplotlib.font_manager as font_manager import matplotlib.lines as mlines import matplotlib.patches as mpatches import matplotlib.scale as mscale import matplotlib.text as mtext import matplotlib.ticker as mticker import matplotlib.transforms as mtransforms import matplotlib.units as munits class Tick(artist.Artist): """ Abstract base class for the axis ticks, grid lines and labels 1 refers to the bottom of the plot for xticks and the left for yticks 2 refers to the top of the plot for xticks and the right for yticks Publicly accessible attributes: :attr:`tick1line` a Line2D instance :attr:`tick2line` a Line2D instance :attr:`gridline` a Line2D instance :attr:`label1` a Text instance :attr:`label2` a Text instance :attr:`gridOn` a boolean which determines whether to draw the tickline :attr:`tick1On` a boolean which determines whether to draw the 1st tickline :attr:`tick2On` a boolean which determines whether to draw the 2nd tickline :attr:`label1On` a boolean which determines whether to draw tick label :attr:`label2On` a boolean which determines whether to draw tick label """ def __init__(self, axes, loc, label, size = None, # points gridOn = None, # defaults to axes.grid tick1On = True, tick2On = True, label1On = True, label2On = False, major = True, ): """ bbox is the Bound2D bounding box in display coords of the Axes loc is the tick location in data coords size is the tick size in relative, axes coords """ artist.Artist.__init__(self) if gridOn is None: gridOn = rcParams['axes.grid'] self.set_figure(axes.figure) self.axes = axes name = self.__name__.lower() if size is None: if major: size = rcParams['%s.major.size'%name] pad = rcParams['%s.major.pad'%name] else: size = rcParams['%s.minor.size'%name] pad = rcParams['%s.minor.pad'%name] self._tickdir = rcParams['%s.direction'%name] if self._tickdir == 'in': self._xtickmarkers = (mlines.TICKUP, mlines.TICKDOWN) self._ytickmarkers = (mlines.TICKRIGHT, mlines.TICKLEFT) self._pad = pad else: self._xtickmarkers = (mlines.TICKDOWN, mlines.TICKUP) self._ytickmarkers = (mlines.TICKLEFT, mlines.TICKRIGHT) self._pad = pad + size self._loc = loc self._size = size self.tick1line = self._get_tick1line() self.tick2line = self._get_tick2line() self.gridline = self._get_gridline() self.label1 = self._get_text1() self.label = self.label1 # legacy name self.label2 = self._get_text2() self.gridOn = gridOn self.tick1On = tick1On self.tick2On = tick2On self.label1On = label1On self.label2On = label2On self.update_position(loc) def get_children(self): children = [self.tick1line, self.tick2line, self.gridline, self.label1, self.label2] return children def set_clip_path(self, clippath, transform=None): artist.Artist.set_clip_path(self, clippath, transform) #self.tick1line.set_clip_path(clippath, transform) #self.tick2line.set_clip_path(clippath, transform) self.gridline.set_clip_path(clippath, transform) set_clip_path.__doc__ = artist.Artist.set_clip_path.__doc__ def get_pad_pixels(self): return self.figure.dpi * self._pad / 72.0 def contains(self, mouseevent): """ Test whether the mouse event occured in the Tick marks. This function always returns false. It is more useful to test if the axis as a whole contains the mouse rather than the set of tick marks. """ if callable(self._contains): return self._contains(self,mouseevent) return False,{} def set_pad(self, val): """ Set the tick label pad in points ACCEPTS: float """ self._pad = val def get_pad(self): 'Get the value of the tick label pad in points' return self._pad def _get_text1(self): 'Get the default Text 1 instance' pass def _get_text2(self): 'Get the default Text 2 instance' pass def _get_tick1line(self): 'Get the default line2D instance for tick1' pass def _get_tick2line(self): 'Get the default line2D instance for tick2' pass def _get_gridline(self): 'Get the default grid Line2d instance for this tick' pass def get_loc(self): 'Return the tick location (data coords) as a scalar' return self._loc def draw(self, renderer): if not self.get_visible(): return renderer.open_group(self.__name__) midPoint = mtransforms.interval_contains(self.get_view_interval(), self.get_loc()) if midPoint: if self.gridOn: self.gridline.draw(renderer) if self.tick1On: self.tick1line.draw(renderer) if self.tick2On: self.tick2line.draw(renderer) if self.label1On: self.label1.draw(renderer) if self.label2On: self.label2.draw(renderer) renderer.close_group(self.__name__) def set_label1(self, s): """ Set the text of ticklabel ACCEPTS: str """ self.label1.set_text(s) set_label = set_label1 def set_label2(self, s): """ Set the text of ticklabel2 ACCEPTS: str """ self.label2.set_text(s) def _set_artist_props(self, a): a.set_figure(self.figure) #if isinstance(a, mlines.Line2D): a.set_clip_box(self.axes.bbox) def get_view_interval(self): 'return the view Interval instance for the axis this tick is ticking' raise NotImplementedError('Derived must override') def set_view_interval(self, vmin, vmax, ignore=False): raise NotImplementedError('Derived must override') class XTick(Tick): """ Contains all the Artists needed to make an x tick - the tick line, the label text and the grid line """ __name__ = 'xtick' def _get_text1(self): 'Get the default Text instance' # the y loc is 3 points below the min of y axis # get the affine as an a,b,c,d,tx,ty list # x in data coords, y in axes coords #t = mtext.Text( trans, vert, horiz = self.axes.get_xaxis_text1_transform(self._pad) size = rcParams['xtick.labelsize'] t = mtext.Text( x=0, y=0, fontproperties=font_manager.FontProperties(size=size), color=rcParams['xtick.color'], verticalalignment=vert, horizontalalignment=horiz, ) t.set_transform(trans) self._set_artist_props(t) return t def _get_text2(self): 'Get the default Text 2 instance' # x in data coords, y in axes coords #t = mtext.Text( trans, vert, horiz = self.axes.get_xaxis_text2_transform(self._pad) t = mtext.Text( x=0, y=1, fontproperties=font_manager.FontProperties(size=rcParams['xtick.labelsize']), color=rcParams['xtick.color'], verticalalignment=vert, horizontalalignment=horiz, ) t.set_transform(trans) self._set_artist_props(t) return t def _get_tick1line(self): 'Get the default line2D instance' # x in data coords, y in axes coords l = mlines.Line2D(xdata=(0,), ydata=(0,), color='k', linestyle = 'None', marker = self._xtickmarkers[0], markersize=self._size, ) l.set_transform(self.axes.get_xaxis_transform()) self._set_artist_props(l) return l def _get_tick2line(self): 'Get the default line2D instance' # x in data coords, y in axes coords l = mlines.Line2D( xdata=(0,), ydata=(1,), color='k', linestyle = 'None', marker = self._xtickmarkers[1], markersize=self._size, ) l.set_transform(self.axes.get_xaxis_transform()) self._set_artist_props(l) return l def _get_gridline(self): 'Get the default line2D instance' # x in data coords, y in axes coords l = mlines.Line2D(xdata=(0.0, 0.0), ydata=(0, 1.0), color=rcParams['grid.color'], linestyle=rcParams['grid.linestyle'], linewidth=rcParams['grid.linewidth'], ) l.set_transform(self.axes.get_xaxis_transform()) self._set_artist_props(l) return l def update_position(self, loc): 'Set the location of tick in data coords with scalar *loc*' x = loc nonlinear = (hasattr(self.axes, 'yaxis') and self.axes.yaxis.get_scale() != 'linear' or hasattr(self.axes, 'xaxis') and self.axes.xaxis.get_scale() != 'linear') if self.tick1On: self.tick1line.set_xdata((x,)) if self.tick2On: self.tick2line.set_xdata((x,)) if self.gridOn: self.gridline.set_xdata((x,)) if self.label1On: self.label1.set_x(x) if self.label2On: self.label2.set_x(x) if nonlinear: self.tick1line._invalid = True self.tick2line._invalid = True self.gridline._invalid = True self._loc = loc def get_view_interval(self): 'return the Interval instance for this axis view limits' return self.axes.viewLim.intervalx def set_view_interval(self, vmin, vmax, ignore = False): if ignore: self.axes.viewLim.intervalx = vmin, vmax else: Vmin, Vmax = self.get_view_interval() self.axes.viewLim.intervalx = min(vmin, Vmin), max(vmax, Vmax) def get_minpos(self): return self.axes.dataLim.minposx def get_data_interval(self): 'return the Interval instance for this axis data limits' return self.axes.dataLim.intervalx class YTick(Tick): """ Contains all the Artists needed to make a Y tick - the tick line, the label text and the grid line """ __name__ = 'ytick' # how far from the y axis line the right of the ticklabel are def _get_text1(self): 'Get the default Text instance' # x in axes coords, y in data coords #t = mtext.Text( trans, vert, horiz = self.axes.get_yaxis_text1_transform(self._pad) t = mtext.Text( x=0, y=0, fontproperties=font_manager.FontProperties(size=rcParams['ytick.labelsize']), color=rcParams['ytick.color'], verticalalignment=vert, horizontalalignment=horiz, ) t.set_transform(trans) #t.set_transform( self.axes.transData ) self._set_artist_props(t) return t def _get_text2(self): 'Get the default Text instance' # x in axes coords, y in data coords #t = mtext.Text( trans, vert, horiz = self.axes.get_yaxis_text2_transform(self._pad) t = mtext.Text( x=1, y=0, fontproperties=font_manager.FontProperties(size=rcParams['ytick.labelsize']), color=rcParams['ytick.color'], verticalalignment=vert, horizontalalignment=horiz, ) t.set_transform(trans) self._set_artist_props(t) return t def _get_tick1line(self): 'Get the default line2D instance' # x in axes coords, y in data coords l = mlines.Line2D( (0,), (0,), color='k', marker = self._ytickmarkers[0], linestyle = 'None', markersize=self._size, ) l.set_transform(self.axes.get_yaxis_transform()) self._set_artist_props(l) return l def _get_tick2line(self): 'Get the default line2D instance' # x in axes coords, y in data coords l = mlines.Line2D( (1,), (0,), color='k', marker = self._ytickmarkers[1], linestyle = 'None', markersize=self._size, ) l.set_transform(self.axes.get_yaxis_transform()) self._set_artist_props(l) return l def _get_gridline(self): 'Get the default line2D instance' # x in axes coords, y in data coords l = mlines.Line2D( xdata=(0,1), ydata=(0, 0), color=rcParams['grid.color'], linestyle=rcParams['grid.linestyle'], linewidth=rcParams['grid.linewidth'], ) l.set_transform(self.axes.get_yaxis_transform()) self._set_artist_props(l) return l def update_position(self, loc): 'Set the location of tick in data coords with scalar loc' y = loc nonlinear = (hasattr(self.axes, 'yaxis') and self.axes.yaxis.get_scale() != 'linear' or hasattr(self.axes, 'xaxis') and self.axes.xaxis.get_scale() != 'linear') if self.tick1On: self.tick1line.set_ydata((y,)) if self.tick2On: self.tick2line.set_ydata((y,)) if self.gridOn: self.gridline.set_ydata((y, )) if self.label1On: self.label1.set_y( y ) if self.label2On: self.label2.set_y( y ) if nonlinear: self.tick1line._invalid = True self.tick2line._invalid = True self.gridline._invalid = True self._loc = loc def get_view_interval(self): 'return the Interval instance for this axis view limits' return self.axes.viewLim.intervaly def set_view_interval(self, vmin, vmax, ignore = False): if ignore: self.axes.viewLim.intervaly = vmin, vmax else: Vmin, Vmax = self.get_view_interval() self.axes.viewLim.intervaly = min(vmin, Vmin), max(vmax, Vmax) def get_minpos(self): return self.axes.dataLim.minposy def get_data_interval(self): 'return the Interval instance for this axis data limits' return self.axes.dataLim.intervaly class Ticker: locator = None formatter = None class Axis(artist.Artist): """ Public attributes * :attr:`transData` - transform data coords to display coords * :attr:`transAxis` - transform axis coords to display coords """ LABELPAD = 5 OFFSETTEXTPAD = 3 def __str__(self): return self.__class__.__name__ \ + "(%f,%f)"%tuple(self.axes.transAxes.transform_point((0,0))) def __init__(self, axes, pickradius=15): """ Init the axis with the parent Axes instance """ artist.Artist.__init__(self) self.set_figure(axes.figure) self.axes = axes self.major = Ticker() self.minor = Ticker() self.callbacks = cbook.CallbackRegistry(('units', 'units finalize')) #class dummy: # locator = None # formatter = None #self.major = dummy() #self.minor = dummy() self._autolabelpos = True self.label = self._get_label() self.offsetText = self._get_offset_text() self.majorTicks = [] self.minorTicks = [] self.pickradius = pickradius self.cla() self.set_scale('linear') def set_label_coords(self, x, y, transform=None): """ Set the coordinates of the label. By default, the x coordinate of the y label is determined by the tick label bounding boxes, but this can lead to poor alignment of multiple ylabels if there are multiple axes. Ditto for the y coodinate of the x label. You can also specify the coordinate system of the label with the transform. If None, the default coordinate system will be the axes coordinate system (0,0) is (left,bottom), (0.5, 0.5) is middle, etc """ self._autolabelpos = False if transform is None: transform = self.axes.transAxes self.label.set_transform(transform) self.label.set_position((x, y)) def get_transform(self): return self._scale.get_transform() def get_scale(self): return self._scale.name def set_scale(self, value, **kwargs): self._scale = mscale.scale_factory(value, self, **kwargs) self._scale.set_default_locators_and_formatters(self) def limit_range_for_scale(self, vmin, vmax): return self._scale.limit_range_for_scale(vmin, vmax, self.get_minpos()) def get_children(self): children = [self.label] majorticks = self.get_major_ticks() minorticks = self.get_minor_ticks() children.extend(majorticks) children.extend(minorticks) return children def cla(self): 'clear the current axis' self.set_major_locator(mticker.AutoLocator()) self.set_major_formatter(mticker.ScalarFormatter()) self.set_minor_locator(mticker.NullLocator()) self.set_minor_formatter(mticker.NullFormatter()) # Clear the callback registry for this axis, or it may "leak" self.callbacks = cbook.CallbackRegistry(('units', 'units finalize')) # whether the grids are on self._gridOnMajor = rcParams['axes.grid'] self._gridOnMinor = False self.label.set_text('') self._set_artist_props(self.label) # build a few default ticks; grow as necessary later; only # define 1 so properties set on ticks will be copied as they # grow cbook.popall(self.majorTicks) cbook.popall(self.minorTicks) self.majorTicks.extend([self._get_tick(major=True)]) self.minorTicks.extend([self._get_tick(major=False)]) self._lastNumMajorTicks = 1 self._lastNumMinorTicks = 1 self.converter = None self.units = None self.set_units(None) def set_clip_path(self, clippath, transform=None): artist.Artist.set_clip_path(self, clippath, transform) majorticks = self.get_major_ticks() minorticks = self.get_minor_ticks() for child in self.majorTicks + self.minorTicks: child.set_clip_path(clippath, transform) def get_view_interval(self): 'return the Interval instance for this axis view limits' raise NotImplementedError('Derived must override') def set_view_interval(self, vmin, vmax, ignore=False): raise NotImplementedError('Derived must override') def get_data_interval(self): 'return the Interval instance for this axis data limits' raise NotImplementedError('Derived must override') def set_data_interval(self): 'Set the axis data limits' raise NotImplementedError('Derived must override') def _set_artist_props(self, a): if a is None: return a.set_figure(self.figure) def iter_ticks(self): """ Iterate through all of the major and minor ticks. """ majorLocs = self.major.locator() majorTicks = self.get_major_ticks(len(majorLocs)) self.major.formatter.set_locs(majorLocs) majorLabels = [self.major.formatter(val, i) for i, val in enumerate(majorLocs)] minorLocs = self.minor.locator() minorTicks = self.get_minor_ticks(len(minorLocs)) self.minor.formatter.set_locs(minorLocs) minorLabels = [self.minor.formatter(val, i) for i, val in enumerate(minorLocs)] major_minor = [ (majorTicks, majorLocs, majorLabels), (minorTicks, minorLocs, minorLabels)] for group in major_minor: for tick in zip(*group): yield tick def get_ticklabel_extents(self, renderer): """ Get the extents of the tick labels on either side of the axes. """ ticklabelBoxes = [] ticklabelBoxes2 = [] interval = self.get_view_interval() for tick, loc, label in self.iter_ticks(): if tick is None: continue if not mtransforms.interval_contains(interval, loc): continue tick.update_position(loc) tick.set_label1(label) tick.set_label2(label) if tick.label1On and tick.label1.get_visible(): extent = tick.label1.get_window_extent(renderer) ticklabelBoxes.append(extent) if tick.label2On and tick.label2.get_visible(): extent = tick.label2.get_window_extent(renderer) ticklabelBoxes2.append(extent) if len(ticklabelBoxes): bbox = mtransforms.Bbox.union(ticklabelBoxes) else: bbox = mtransforms.Bbox.from_extents(0, 0, 0, 0) if len(ticklabelBoxes2): bbox2 = mtransforms.Bbox.union(ticklabelBoxes2) else: bbox2 = mtransforms.Bbox.from_extents(0, 0, 0, 0) return bbox, bbox2 def draw(self, renderer, *args, **kwargs): 'Draw the axis lines, grid lines, tick lines and labels' ticklabelBoxes = [] ticklabelBoxes2 = [] if not self.get_visible(): return renderer.open_group(__name__) interval = self.get_view_interval() for tick, loc, label in self.iter_ticks(): if tick is None: continue if not mtransforms.interval_contains(interval, loc): continue tick.update_position(loc) tick.set_label1(label) tick.set_label2(label) tick.draw(renderer) if tick.label1On and tick.label1.get_visible(): extent = tick.label1.get_window_extent(renderer) ticklabelBoxes.append(extent) if tick.label2On and tick.label2.get_visible(): extent = tick.label2.get_window_extent(renderer) ticklabelBoxes2.append(extent) # scale up the axis label box to also find the neighbors, not # just the tick labels that actually overlap note we need a # *copy* of the axis label box because we don't wan't to scale # the actual bbox self._update_label_position(ticklabelBoxes, ticklabelBoxes2) self.label.draw(renderer) self._update_offset_text_position(ticklabelBoxes, ticklabelBoxes2) self.offsetText.set_text( self.major.formatter.get_offset() ) self.offsetText.draw(renderer) if 0: # draw the bounding boxes around the text for debug for tick in majorTicks: label = tick.label1 mpatches.bbox_artist(label, renderer) mpatches.bbox_artist(self.label, renderer) renderer.close_group(__name__) def _get_label(self): raise NotImplementedError('Derived must override') def _get_offset_text(self): raise NotImplementedError('Derived must override') def get_gridlines(self): 'Return the grid lines as a list of Line2D instance' ticks = self.get_major_ticks() return cbook.silent_list('Line2D gridline', [tick.gridline for tick in ticks]) def get_label(self): 'Return the axis label as a Text instance' return self.label def get_offset_text(self): 'Return the axis offsetText as a Text instance' return self.offsetText def get_pickradius(self): 'Return the depth of the axis used by the picker' return self.pickradius def get_majorticklabels(self): 'Return a list of Text instances for the major ticklabels' ticks = self.get_major_ticks() labels1 = [tick.label1 for tick in ticks if tick.label1On] labels2 = [tick.label2 for tick in ticks if tick.label2On] return cbook.silent_list('Text major ticklabel', labels1+labels2) def get_minorticklabels(self): 'Return a list of Text instances for the minor ticklabels' ticks = self.get_minor_ticks() labels1 = [tick.label1 for tick in ticks if tick.label1On] labels2 = [tick.label2 for tick in ticks if tick.label2On] return cbook.silent_list('Text minor ticklabel', labels1+labels2) def get_ticklabels(self, minor=False): 'Return a list of Text instances for ticklabels' if minor: return self.get_minorticklabels() return self.get_majorticklabels() def get_majorticklines(self): 'Return the major tick lines as a list of Line2D instances' lines = [] ticks = self.get_major_ticks() for tick in ticks: lines.append(tick.tick1line) lines.append(tick.tick2line) return cbook.silent_list('Line2D ticklines', lines) def get_minorticklines(self): 'Return the minor tick lines as a list of Line2D instances' lines = [] ticks = self.get_minor_ticks() for tick in ticks: lines.append(tick.tick1line) lines.append(tick.tick2line) return cbook.silent_list('Line2D ticklines', lines) def get_ticklines(self, minor=False): 'Return the tick lines as a list of Line2D instances' if minor: return self.get_minorticklines() return self.get_majorticklines() def get_majorticklocs(self): "Get the major tick locations in data coordinates as a numpy array" return self.major.locator() def get_minorticklocs(self): "Get the minor tick locations in data coordinates as a numpy array" return self.minor.locator() def get_ticklocs(self, minor=False): "Get the tick locations in data coordinates as a numpy array" if minor: return self.minor.locator() return self.major.locator() def _get_tick(self, major): 'return the default tick intsance' raise NotImplementedError('derived must override') def _copy_tick_props(self, src, dest): 'Copy the props from src tick to dest tick' if src is None or dest is None: return dest.label1.update_from(src.label1) dest.label2.update_from(src.label2) dest.tick1line.update_from(src.tick1line) dest.tick2line.update_from(src.tick2line) dest.gridline.update_from(src.gridline) dest.tick1On = src.tick1On dest.tick2On = src.tick2On dest.label1On = src.label1On dest.label2On = src.label2On def get_major_locator(self): 'Get the locator of the major ticker' return self.major.locator def get_minor_locator(self): 'Get the locator of the minor ticker' return self.minor.locator def get_major_formatter(self): 'Get the formatter of the major ticker' return self.major.formatter def get_minor_formatter(self): 'Get the formatter of the minor ticker' return self.minor.formatter def get_major_ticks(self, numticks=None): 'get the tick instances; grow as necessary' if numticks is None: numticks = len(self.get_major_locator()()) if len(self.majorTicks) < numticks: # update the new tick label properties from the old for i in range(numticks - len(self.majorTicks)): tick = self._get_tick(major=True) self.majorTicks.append(tick) if self._lastNumMajorTicks < numticks: protoTick = self.majorTicks[0] for i in range(self._lastNumMajorTicks, len(self.majorTicks)): tick = self.majorTicks[i] if self._gridOnMajor: tick.gridOn = True self._copy_tick_props(protoTick, tick) self._lastNumMajorTicks = numticks ticks = self.majorTicks[:numticks] return ticks def get_minor_ticks(self, numticks=None): 'get the minor tick instances; grow as necessary' if numticks is None: numticks = len(self.get_minor_locator()()) if len(self.minorTicks) < numticks: # update the new tick label properties from the old for i in range(numticks - len(self.minorTicks)): tick = self._get_tick(major=False) self.minorTicks.append(tick) if self._lastNumMinorTicks < numticks: protoTick = self.minorTicks[0] for i in range(self._lastNumMinorTicks, len(self.minorTicks)): tick = self.minorTicks[i] if self._gridOnMinor: tick.gridOn = True self._copy_tick_props(protoTick, tick) self._lastNumMinorTicks = numticks ticks = self.minorTicks[:numticks] return ticks def grid(self, b=None, which='major', **kwargs): """ Set the axis grid on or off; b is a boolean use *which* = 'major' | 'minor' to set the grid for major or minor ticks if *b* is *None* and len(kwargs)==0, toggle the grid state. If *kwargs* are supplied, it is assumed you want the grid on and *b* will be set to True *kwargs* are used to set the line properties of the grids, eg, xax.grid(color='r', linestyle='-', linewidth=2) """ if len(kwargs): b = True if which.lower().find('minor')>=0: if b is None: self._gridOnMinor = not self._gridOnMinor else: self._gridOnMinor = b for tick in self.minorTicks: # don't use get_ticks here! if tick is None: continue tick.gridOn = self._gridOnMinor if len(kwargs): artist.setp(tick.gridline,**kwargs) else: if b is None: self._gridOnMajor = not self._gridOnMajor else: self._gridOnMajor = b for tick in self.majorTicks: # don't use get_ticks here! if tick is None: continue tick.gridOn = self._gridOnMajor if len(kwargs): artist.setp(tick.gridline,**kwargs) def update_units(self, data): """ introspect *data* for units converter and update the axis.converter instance if necessary. Return *True* is *data* is registered for unit conversion """ converter = munits.registry.get_converter(data) if converter is None: return False self.converter = converter default = self.converter.default_units(data) #print 'update units: default="%s", units=%s"'%(default, self.units) if default is not None and self.units is None: self.set_units(default) self._update_axisinfo() return True def _update_axisinfo(self): """ check the axis converter for the stored units to see if the axis info needs to be updated """ if self.converter is None: return info = self.converter.axisinfo(self.units) if info is None: return if info.majloc is not None and self.major.locator!=info.majloc: self.set_major_locator(info.majloc) if info.minloc is not None and self.minor.locator!=info.minloc: self.set_minor_locator(info.minloc) if info.majfmt is not None and self.major.formatter!=info.majfmt: self.set_major_formatter(info.majfmt) if info.minfmt is not None and self.minor.formatter!=info.minfmt: self.set_minor_formatter(info.minfmt) if info.label is not None: label = self.get_label() label.set_text(info.label) def have_units(self): return self.converter is not None or self.units is not None def convert_units(self, x): if self.converter is None: self.converter = munits.registry.get_converter(x) if self.converter is None: #print 'convert_units returning identity: units=%s, converter=%s'%(self.units, self.converter) return x ret = self.converter.convert(x, self.units) #print 'convert_units converting: axis=%s, units=%s, converter=%s, in=%s, out=%s'%(self, self.units, self.converter, x, ret) return ret def set_units(self, u): """ set the units for axis ACCEPTS: a units tag """ pchanged = False if u is None: self.units = None pchanged = True else: if u!=self.units: self.units = u #print 'setting units', self.converter, u, munits.registry.get_converter(u) pchanged = True if pchanged: self._update_axisinfo() self.callbacks.process('units') self.callbacks.process('units finalize') def get_units(self): 'return the units for axis' return self.units def set_major_formatter(self, formatter): """ Set the formatter of the major ticker ACCEPTS: A :class:`~matplotlib.ticker.Formatter` instance """ self.major.formatter = formatter formatter.set_axis(self) def set_minor_formatter(self, formatter): """ Set the formatter of the minor ticker ACCEPTS: A :class:`~matplotlib.ticker.Formatter` instance """ self.minor.formatter = formatter formatter.set_axis(self) def set_major_locator(self, locator): """ Set the locator of the major ticker ACCEPTS: a :class:`~matplotlib.ticker.Locator` instance """ self.major.locator = locator locator.set_axis(self) def set_minor_locator(self, locator): """ Set the locator of the minor ticker ACCEPTS: a :class:`~matplotlib.ticker.Locator` instance """ self.minor.locator = locator locator.set_axis(self) def set_pickradius(self, pickradius): """ Set the depth of the axis used by the picker ACCEPTS: a distance in points """ self.pickradius = pickradius def set_ticklabels(self, ticklabels, *args, **kwargs): """ Set the text values of the tick labels. Return a list of Text instances. Use *kwarg* *minor=True* to select minor ticks. ACCEPTS: sequence of strings """ #ticklabels = [str(l) for l in ticklabels] minor = kwargs.pop('minor', False) if minor: self.set_minor_formatter(mticker.FixedFormatter(ticklabels)) ticks = self.get_minor_ticks() else: self.set_major_formatter( mticker.FixedFormatter(ticklabels) ) ticks = self.get_major_ticks() self.set_major_formatter( mticker.FixedFormatter(ticklabels) ) ret = [] for i, tick in enumerate(ticks): if i<len(ticklabels): tick.label1.set_text(ticklabels[i]) ret.append(tick.label1) tick.label1.update(kwargs) return ret def set_ticks(self, ticks, minor=False): """ Set the locations of the tick marks from sequence ticks ACCEPTS: sequence of floats """ ### XXX if the user changes units, the information will be lost here ticks = self.convert_units(ticks) if len(ticks) > 1: xleft, xright = self.get_view_interval() if xright > xleft: self.set_view_interval(min(ticks), max(ticks)) else: self.set_view_interval(max(ticks), min(ticks)) if minor: self.set_minor_locator(mticker.FixedLocator(ticks)) return self.get_minor_ticks(len(ticks)) else: self.set_major_locator( mticker.FixedLocator(ticks) ) return self.get_major_ticks(len(ticks)) def _update_label_position(self, bboxes, bboxes2): """ Update the label position based on the sequence of bounding boxes of all the ticklabels """ raise NotImplementedError('Derived must override') def _update_offset_text_postion(self, bboxes, bboxes2): """ Update the label position based on the sequence of bounding boxes of all the ticklabels """ raise NotImplementedError('Derived must override') def pan(self, numsteps): 'Pan *numsteps* (can be positive or negative)' self.major.locator.pan(numsteps) def zoom(self, direction): "Zoom in/out on axis; if *direction* is >0 zoom in, else zoom out" self.major.locator.zoom(direction) class XAxis(Axis): __name__ = 'xaxis' axis_name = 'x' def contains(self,mouseevent): """Test whether the mouse event occured in the x axis. """ if callable(self._contains): return self._contains(self,mouseevent) x,y = mouseevent.x,mouseevent.y try: trans = self.axes.transAxes.inverted() xaxes,yaxes = trans.transform_point((x,y)) except ValueError: return False, {} l,b = self.axes.transAxes.transform_point((0,0)) r,t = self.axes.transAxes.transform_point((1,1)) inaxis = xaxes>=0 and xaxes<=1 and ( (y<b and y>b-self.pickradius) or (y>t and y<t+self.pickradius)) return inaxis, {} def _get_tick(self, major): return XTick(self.axes, 0, '', major=major) def _get_label(self): # x in axes coords, y in display coords (to be updated at draw # time by _update_label_positions) label = mtext.Text(x=0.5, y=0, fontproperties = font_manager.FontProperties(size=rcParams['axes.labelsize']), color = rcParams['axes.labelcolor'], verticalalignment='top', horizontalalignment='center', ) label.set_transform( mtransforms.blended_transform_factory( self.axes.transAxes, mtransforms.IdentityTransform() )) self._set_artist_props(label) self.label_position='bottom' return label def _get_offset_text(self): # x in axes coords, y in display coords (to be updated at draw time) offsetText = mtext.Text(x=1, y=0, fontproperties = font_manager.FontProperties(size=rcParams['xtick.labelsize']), color = rcParams['xtick.color'], verticalalignment='top', horizontalalignment='right', ) offsetText.set_transform( mtransforms.blended_transform_factory( self.axes.transAxes, mtransforms.IdentityTransform() )) self._set_artist_props(offsetText) self.offset_text_position='bottom' return offsetText def get_label_position(self): """ Return the label position (top or bottom) """ return self.label_position def set_label_position(self, position): """ Set the label position (top or bottom) ACCEPTS: [ 'top' | 'bottom' ] """ assert position == 'top' or position == 'bottom' if position == 'top': self.label.set_verticalalignment('bottom') else: self.label.set_verticalalignment('top') self.label_position=position def _update_label_position(self, bboxes, bboxes2): """ Update the label position based on the sequence of bounding boxes of all the ticklabels """ if not self._autolabelpos: return x,y = self.label.get_position() if self.label_position == 'bottom': if not len(bboxes): bottom = self.axes.bbox.ymin else: bbox = mtransforms.Bbox.union(bboxes) bottom = bbox.y0 self.label.set_position( (x, bottom - self.LABELPAD*self.figure.dpi / 72.0)) else: if not len(bboxes2): top = self.axes.bbox.ymax else: bbox = mtransforms.Bbox.union(bboxes2) top = bbox.y1 self.label.set_position( (x, top+self.LABELPAD*self.figure.dpi / 72.0)) def _update_offset_text_position(self, bboxes, bboxes2): """ Update the offset_text position based on the sequence of bounding boxes of all the ticklabels """ x,y = self.offsetText.get_position() if not len(bboxes): bottom = self.axes.bbox.ymin else: bbox = mtransforms.Bbox.union(bboxes) bottom = bbox.y0 self.offsetText.set_position((x, bottom-self.OFFSETTEXTPAD*self.figure.dpi/72.0)) def get_text_heights(self, renderer): """ Returns the amount of space one should reserve for text above and below the axes. Returns a tuple (above, below) """ bbox, bbox2 = self.get_ticklabel_extents(renderer) # MGDTODO: Need a better way to get the pad padPixels = self.majorTicks[0].get_pad_pixels() above = 0.0 if bbox2.height: above += bbox2.height + padPixels below = 0.0 if bbox.height: below += bbox.height + padPixels if self.get_label_position() == 'top': above += self.label.get_window_extent(renderer).height + padPixels else: below += self.label.get_window_extent(renderer).height + padPixels return above, below def set_ticks_position(self, position): """ Set the ticks position (top, bottom, both, default or none) both sets the ticks to appear on both positions, but does not change the tick labels. default resets the tick positions to the default: ticks on both positions, labels at bottom. none can be used if you don't want any ticks. ACCEPTS: [ 'top' | 'bottom' | 'both' | 'default' | 'none' ] """ assert position in ('top', 'bottom', 'both', 'default', 'none') ticks = list( self.get_major_ticks() ) # a copy ticks.extend( self.get_minor_ticks() ) if position == 'top': for t in ticks: t.tick1On = False t.tick2On = True t.label1On = False t.label2On = True elif position == 'bottom': for t in ticks: t.tick1On = True t.tick2On = False t.label1On = True t.label2On = False elif position == 'default': for t in ticks: t.tick1On = True t.tick2On = True t.label1On = True t.label2On = False elif position == 'none': for t in ticks: t.tick1On = False t.tick2On = False else: for t in ticks: t.tick1On = True t.tick2On = True for t in ticks: t.update_position(t._loc) def tick_top(self): 'use ticks only on top' self.set_ticks_position('top') def tick_bottom(self): 'use ticks only on bottom' self.set_ticks_position('bottom') def get_ticks_position(self): """ Return the ticks position (top, bottom, default or unknown) """ majt=self.majorTicks[0] mT=self.minorTicks[0] majorTop=(not majt.tick1On) and majt.tick2On and (not majt.label1On) and majt.label2On minorTop=(not mT.tick1On) and mT.tick2On and (not mT.label1On) and mT.label2On if majorTop and minorTop: return 'top' MajorBottom=majt.tick1On and (not majt.tick2On) and majt.label1On and (not majt.label2On) MinorBottom=mT.tick1On and (not mT.tick2On) and mT.label1On and (not mT.label2On) if MajorBottom and MinorBottom: return 'bottom' majorDefault=majt.tick1On and majt.tick2On and majt.label1On and (not majt.label2On) minorDefault=mT.tick1On and mT.tick2On and mT.label1On and (not mT.label2On) if majorDefault and minorDefault: return 'default' return 'unknown' def get_view_interval(self): 'return the Interval instance for this axis view limits' return self.axes.viewLim.intervalx def set_view_interval(self, vmin, vmax, ignore=False): if ignore: self.axes.viewLim.intervalx = vmin, vmax else: Vmin, Vmax = self.get_view_interval() self.axes.viewLim.intervalx = min(vmin, Vmin), max(vmax, Vmax) def get_minpos(self): return self.axes.dataLim.minposx def get_data_interval(self): 'return the Interval instance for this axis data limits' return self.axes.dataLim.intervalx def set_data_interval(self, vmin, vmax, ignore=False): 'return the Interval instance for this axis data limits' if ignore: self.axes.dataLim.intervalx = vmin, vmax else: Vmin, Vmax = self.get_data_interval() self.axes.dataLim.intervalx = min(vmin, Vmin), max(vmax, Vmax) class YAxis(Axis): __name__ = 'yaxis' axis_name = 'y' def contains(self,mouseevent): """Test whether the mouse event occurred in the y axis. Returns *True* | *False* """ if callable(self._contains): return self._contains(self,mouseevent) x,y = mouseevent.x,mouseevent.y try: trans = self.axes.transAxes.inverted() xaxes,yaxes = trans.transform_point((x,y)) except ValueError: return False, {} l,b = self.axes.transAxes.transform_point((0,0)) r,t = self.axes.transAxes.transform_point((1,1)) inaxis = yaxes>=0 and yaxes<=1 and ( (x<l and x>l-self.pickradius) or (x>r and x<r+self.pickradius)) return inaxis, {} def _get_tick(self, major): return YTick(self.axes, 0, '', major=major) def _get_label(self): # x in display coords (updated by _update_label_position) # y in axes coords label = mtext.Text(x=0, y=0.5, # todo: get the label position fontproperties=font_manager.FontProperties(size=rcParams['axes.labelsize']), color = rcParams['axes.labelcolor'], verticalalignment='center', horizontalalignment='right', rotation='vertical', ) label.set_transform( mtransforms.blended_transform_factory( mtransforms.IdentityTransform(), self.axes.transAxes) ) self._set_artist_props(label) self.label_position='left' return label def _get_offset_text(self): # x in display coords, y in axes coords (to be updated at draw time) offsetText = mtext.Text(x=0, y=0.5, fontproperties = font_manager.FontProperties(size=rcParams['ytick.labelsize']), color = rcParams['ytick.color'], verticalalignment = 'bottom', horizontalalignment = 'left', ) offsetText.set_transform(mtransforms.blended_transform_factory( self.axes.transAxes, mtransforms.IdentityTransform()) ) self._set_artist_props(offsetText) self.offset_text_position='left' return offsetText def get_label_position(self): """ Return the label position (left or right) """ return self.label_position def set_label_position(self, position): """ Set the label position (left or right) ACCEPTS: [ 'left' | 'right' ] """ assert position == 'left' or position == 'right' if position == 'right': self.label.set_horizontalalignment('left') else: self.label.set_horizontalalignment('right') self.label_position=position def _update_label_position(self, bboxes, bboxes2): """ Update the label position based on the sequence of bounding boxes of all the ticklabels """ if not self._autolabelpos: return x,y = self.label.get_position() if self.label_position == 'left': if not len(bboxes): left = self.axes.bbox.xmin else: bbox = mtransforms.Bbox.union(bboxes) left = bbox.x0 self.label.set_position( (left-self.LABELPAD*self.figure.dpi/72.0, y)) else: if not len(bboxes2): right = self.axes.bbox.xmax else: bbox = mtransforms.Bbox.union(bboxes2) right = bbox.x1 self.label.set_position( (right+self.LABELPAD*self.figure.dpi/72.0, y)) def _update_offset_text_position(self, bboxes, bboxes2): """ Update the offset_text position based on the sequence of bounding boxes of all the ticklabels """ x,y = self.offsetText.get_position() top = self.axes.bbox.ymax self.offsetText.set_position((x, top+self.OFFSETTEXTPAD*self.figure.dpi/72.0)) def set_offset_position(self, position): assert position == 'left' or position == 'right' x,y = self.offsetText.get_position() if position == 'left': x = 0 else: x = 1 self.offsetText.set_ha(position) self.offsetText.set_position((x,y)) def get_text_widths(self, renderer): bbox, bbox2 = self.get_ticklabel_extents(renderer) # MGDTODO: Need a better way to get the pad padPixels = self.majorTicks[0].get_pad_pixels() left = 0.0 if bbox.width: left += bbox.width + padPixels right = 0.0 if bbox2.width: right += bbox2.width + padPixels if self.get_label_position() == 'left': left += self.label.get_window_extent(renderer).width + padPixels else: right += self.label.get_window_extent(renderer).width + padPixels return left, right def set_ticks_position(self, position): """ Set the ticks position (left, right, both or default) both sets the ticks to appear on both positions, but does not change the tick labels. default resets the tick positions to the default: ticks on both positions, labels on the left. ACCEPTS: [ 'left' | 'right' | 'both' | 'default' | 'none' ] """ assert position in ('left', 'right', 'both', 'default', 'none') ticks = list( self.get_major_ticks() ) # a copy ticks.extend( self.get_minor_ticks() ) if position == 'right': self.set_offset_position('right') for t in ticks: t.tick1On = False t.tick2On = True t.label1On = False t.label2On = True elif position == 'left': self.set_offset_position('left') for t in ticks: t.tick1On = True t.tick2On = False t.label1On = True t.label2On = False elif position == 'default': self.set_offset_position('left') for t in ticks: t.tick1On = True t.tick2On = True t.label1On = True t.label2On = False elif position == 'none': for t in ticks: t.tick1On = False t.tick2On = False else: self.set_offset_position('left') for t in ticks: t.tick1On = True t.tick2On = True def tick_right(self): 'use ticks only on right' self.set_ticks_position('right') def tick_left(self): 'use ticks only on left' self.set_ticks_position('left') def get_ticks_position(self): """ Return the ticks position (left, right, both or unknown) """ majt=self.majorTicks[0] mT=self.minorTicks[0] majorRight=(not majt.tick1On) and majt.tick2On and (not majt.label1On) and majt.label2On minorRight=(not mT.tick1On) and mT.tick2On and (not mT.label1On) and mT.label2On if majorRight and minorRight: return 'right' majorLeft=majt.tick1On and (not majt.tick2On) and majt.label1On and (not majt.label2On) minorLeft=mT.tick1On and (not mT.tick2On) and mT.label1On and (not mT.label2On) if majorLeft and minorLeft: return 'left' majorDefault=majt.tick1On and majt.tick2On and majt.label1On and (not majt.label2On) minorDefault=mT.tick1On and mT.tick2On and mT.label1On and (not mT.label2On) if majorDefault and minorDefault: return 'default' return 'unknown' def get_view_interval(self): 'return the Interval instance for this axis view limits' return self.axes.viewLim.intervaly def set_view_interval(self, vmin, vmax, ignore=False): if ignore: self.axes.viewLim.intervaly = vmin, vmax else: Vmin, Vmax = self.get_view_interval() self.axes.viewLim.intervaly = min(vmin, Vmin), max(vmax, Vmax) def get_minpos(self): return self.axes.dataLim.minposy def get_data_interval(self): 'return the Interval instance for this axis data limits' return self.axes.dataLim.intervaly def set_data_interval(self, vmin, vmax, ignore=False): 'return the Interval instance for this axis data limits' if ignore: self.axes.dataLim.intervaly = vmin, vmax else: Vmin, Vmax = self.get_data_interval() self.axes.dataLim.intervaly = min(vmin, Vmin), max(vmax, Vmax)
agpl-3.0
Garrett-R/scikit-learn
sklearn/svm/tests/test_bounds.py
42
2112
import nose from nose.tools import assert_true import numpy as np from scipy import sparse as sp from sklearn.svm.bounds import l1_min_c from sklearn.svm import LinearSVC from sklearn.linear_model.logistic import LogisticRegression dense_X = [[-1, 0], [0, 1], [1, 1], [1, 1]] sparse_X = sp.csr_matrix(dense_X) Y1 = [0, 1, 1, 1] Y2 = [2, 1, 0, 0] def test_l1_min_c(): losses = ['l2', 'log'] Xs = {'sparse': sparse_X, 'dense': dense_X} Ys = {'two-classes': Y1, 'multi-class': Y2} intercepts = {'no-intercept': {'fit_intercept': False}, 'fit-intercept': {'fit_intercept': True, 'intercept_scaling': 10}} for loss in losses: for X_label, X in Xs.items(): for Y_label, Y in Ys.items(): for intercept_label, intercept_params in intercepts.items(): check = lambda: check_l1_min_c(X, Y, loss, **intercept_params) check.description = ('Test l1_min_c loss=%r %s %s %s' % (loss, X_label, Y_label, intercept_label)) yield check def check_l1_min_c(X, y, loss, fit_intercept=True, intercept_scaling=None): min_c = l1_min_c(X, y, loss, fit_intercept, intercept_scaling) clf = { 'log': LogisticRegression(penalty='l1'), 'l2': LinearSVC(loss='l2', penalty='l1', dual=False), }[loss] clf.fit_intercept = fit_intercept clf.intercept_scaling = intercept_scaling clf.C = min_c clf.fit(X, y) assert_true((np.asarray(clf.coef_) == 0).all()) assert_true((np.asarray(clf.intercept_) == 0).all()) clf.C = min_c * 1.01 clf.fit(X, y) assert_true((np.asarray(clf.coef_) != 0).any() or (np.asarray(clf.intercept_) != 0).any()) @nose.tools.raises(ValueError) def test_ill_posed_min_c(): X = [[0, 0], [0, 0]] y = [0, 1] l1_min_c(X, y) @nose.tools.raises(ValueError) def test_unsupported_loss(): l1_min_c(dense_X, Y1, 'l1')
bsd-3-clause
warmspringwinds/scikit-image
doc/examples/plot_threshold_adaptive.py
22
1307
""" ===================== Adaptive Thresholding ===================== Thresholding is the simplest way to segment objects from a background. If that background is relatively uniform, then you can use a global threshold value to binarize the image by pixel-intensity. If there's large variation in the background intensity, however, adaptive thresholding (a.k.a. local or dynamic thresholding) may produce better results. Here, we binarize an image using the `threshold_adaptive` function, which calculates thresholds in regions of size `block_size` surrounding each pixel (i.e. local neighborhoods). Each threshold value is the weighted mean of the local neighborhood minus an offset value. """ import matplotlib.pyplot as plt from skimage import data from skimage.filters import threshold_otsu, threshold_adaptive image = data.page() global_thresh = threshold_otsu(image) binary_global = image > global_thresh block_size = 40 binary_adaptive = threshold_adaptive(image, block_size, offset=10) fig, axes = plt.subplots(nrows=3, figsize=(7, 8)) ax0, ax1, ax2 = axes plt.gray() ax0.imshow(image) ax0.set_title('Image') ax1.imshow(binary_global) ax1.set_title('Global thresholding') ax2.imshow(binary_adaptive) ax2.set_title('Adaptive thresholding') for ax in axes: ax.axis('off') plt.show()
bsd-3-clause
yianni/strands_qsr_lib
qsr_lib/dbg/dbg_rcc8.py
8
6604
#!/usr/bin/python # import numpy as np from matplotlib import pyplot as plt from matplotlib.patches import Rectangle class Dbg(object): def __init__(self): pass def return_bounding_box_2d(self, x, y, xsize, ysize): """Return the bounding box :param x: x center :param y: y center :param xsize: x size :param ysize: y size :return: list(x1, y1, x2, y2) where (x1, y1) and (x2, y2) are the coordinates of the diagonal points of the bounding box depending on your coordinates frame """ if xsize <= 0 or ysize <= 0: print("ERROR: can't compute bounding box, xsize or height has no positive value") return [] return [x-xsize/2, y-ysize/2, x+xsize/2, y+ysize/2] def compute_qsr(self, bb1, bb2): """Wrapper for __compute_qsr :param bb1: diagonal points coordinates of first bounding box (x1, y1, x2, y2) :param bb2: diagonal points coordinates of second bounding box (x1, y1, x2, y2) :return: an RCC depending on your implementation """ return self.__compute_qsr(bb1, bb2) def __compute_qsr(self, bb1, bb2): """Return RCC8 :param bb1: diagonal points coordinates of first bounding box (x1, y1, x2, y2) :param bb2: diagonal points coordinates of second bounding box (x1, y1, x2, y2) :return: an RCC8 relation from the following: {0:'dc'} x is disconnected from y {1:'ec'} x is externally connected with y {2:'po'} x partially overlaps y {3:'eq'} x equals y {4:'tpp'} x is a tangential proper part of y {5:'ntpp'} y is a non-tangential proper part of x {6:'tppi'} y is a tangential proper part of x {7:'ntppi'} y is a non-tangential proper part of x +-------------+ +-------------+ |a | |a | | | | | | A | | B | | | | | | b| | b| +-------------+ +-------------+ """ # Object 1 Top Left X ax = bb1[0] # Object 1 Top Left Y ay = bb1[1] # Object 2 Top Left X cx = bb2[0] # Object 2 Top Left X cy = bb2[1] # Object 1 Bottom Right X bx = bb1[2] # Object 1 Bottom Right Y by = bb1[3] # Object 2 Bottom Right X dx = bb2[2] # Object 2 Bottom Right Y dy = bb2[3] # CALCULATE EQ # Is object1 equal to object2 if(bb1 == bb2): return "eq" # Are objects disconnected? # Cond1. If A's left edge is to the right of the B's right edge, - then A is Totally to right Of B # Cond2. If A's right edge is to the left of the B's left edge, - then A is Totally to left Of B # Cond3. If A's top edge is below B's bottom edge, - then A is Totally below B # Cond4. If A's bottom edge is above B's top edge, - then A is Totally above B # Cond1 Cond2 Cond3 Cond4 if (ax > dx) or (bx < cx) or (ay > dy) or (by < cy): return "dc" # Is one object inside the other BinsideA = (ax <= cx) and (ay <= cy) and (bx >= dx) and (by >= dy) AinsideB = (ax >= cx) and (ay >= cy) and (bx <= dx) and (by <= dy) # Do objects share an X or Y (but are not necessarily touching) sameX = (ax == cx or ax == dx or bx == cx or bx == dx) sameY = (ay == cy or ay == dy or by == cy or by == dy) if AinsideB and (sameX or sameY): return "tpp" if BinsideA and (sameX or sameY): return "tppi" if AinsideB: return "ntpp" if BinsideA: return "ntppi" # Are objects touching? # Cond1. If A's left edge is equal to B's right edge, - then A is to the right of B and touching # Cond2. If A's right edge is qual to B's left edge, - then A is to the left of B and touching # Cond3. If A's top edge equal to B's bottom edge, - then A is below B and touching # Cond4. If A's bottom edge equal to B's top edge, - then A is above B and touching # Cond1 Cond2 Cond3 Cond4 if (ax == dx) or (bx == cx) or (ay == dy) or (by == cy): return "ec" # If none of the other conditions are met, the objects must be parially overlapping return "po" def plot_bbs(bb1, bb2): plt.figure() ax = plt.gca() # ax.invert_yaxis() ax.add_patch(Rectangle((bb1[0], bb1[1]), bb1[2]-bb1[0], bb1[3]-bb1[1], alpha=1, facecolor="blue")) ax.annotate("o1", (bb1[0], bb1[1]), color='black', weight='bold', fontsize=14) ax.add_patch(Rectangle((bb2[0], bb2[1]), bb2[2]-bb2[0], bb2[3]-bb2[1], alpha=1, facecolor="red")) ax.annotate("o2", (bb2[0], bb2[1]), color='black', weight='bold', fontsize=14) h = 6 l = 0 # ax.set_xlim(l, h) # ax.set_ylim(l, h) ax.set_xlim(l, h) ax.set_ylim(h, l) plt.show() if __name__ == '__main__': dbg = Dbg() """ {0:'dc'} x is disconnected from y {1:'ec'} x is externally connected with y {2:'po'} x partially overlaps y {3:'eq'} x equals y {4:'tpp'} x is a tangential proper part of y {5:'ntpp'} y is a non-tangential proper part of x {6:'tppi'} y is a tangential proper part of x {7:'ntppi'} y is a non-tangential proper part of x +-------------+ +-------------+ |a | |a | | | | | | A | | B | | | | | | b| | b| +-------------+ +-------------+ """ # Play with these to test (x_center, y_center, xsize(i.e. x-size), ysize(i.e. y-size)) o1 = (3., 3., 2., 2.) o2 = (3., 2., 1., 1.) o1 = dbg.return_bounding_box_2d(o1[0], o1[1], o1[2], o1[3]) o2 = dbg.return_bounding_box_2d(o2[0], o2[1], o2[2], o2[3]) # Bounding boxes # print("o1:", o1) # print("o2:", o2) # Relations print("o1o2:", dbg.compute_qsr(o1, o2)) print("o2o1:", dbg.compute_qsr(o2, o1)) # Plot the boxes plot_bbs(o1, o2)
mit
osvaldshpengler/BuildingMachineLearningSystemsWithPython
ch02/heldout.py
24
1377
# This code is supporting material for the book # Building Machine Learning Systems with Python # by Willi Richert and Luis Pedro Coelho # published by PACKT Publishing # # It is made available under the MIT License # This script demonstrates the difference between the training accuracy and # testing (held-out) accuracy. import numpy as np from sklearn.datasets import load_iris from threshold import fit_model, accuracy data = load_iris() features = data['data'] labels = data['target_names'][data['target']] # We are going to remove the setosa examples as they are too easy: is_setosa = (labels == 'setosa') features = features[~is_setosa] labels = labels[~is_setosa] # Now we classify virginica vs non-virginica is_virginica = (labels == 'virginica') # Split the data in two: testing and training testing = np.tile([True, False], 50) # testing = [True,False,True,False,True,False...] # Training is the negation of testing: i.e., datapoints not used for testing, # will be used for training training = ~testing model = fit_model(features[training], is_virginica[training]) train_accuracy = accuracy(features[training], is_virginica[training], model) test_accuracy = accuracy(features[testing], is_virginica[testing], model) print('''\ Training accuracy was {0:.1%}. Testing accuracy was {1:.1%} (N = {2}). '''.format(train_accuracy, test_accuracy, testing.sum()))
mit
linkmax91/bitquant
web/home/ipython/examples/bitcoinworksheet.py
1
5516
# -*- coding: utf-8 -*- # <nbformat>3.0</nbformat> # <codecell> %matplotlib inline from BitcoinAverager import TimeUtil, BitcoinAverager, PriceCompositor, Forex, BitcoinDataLoader # <codecell> import datetime import time import pytz from dateutil.relativedelta import relativedelta hkg_time = pytz.timezone("Asia/Hong_Kong") start = hkg_time.localize(datetime.datetime(2014,2,1,6,0,0)) period = relativedelta(days=1) intervals = 30 TimeUtil.time_table(start, period, intervals) # <codecell> averagers = {} exchanges = ["anxhkHKD", "bitfinexUSD", "bitstampUSD", "btceUSD", "itbitEUR", "itbitSGD", "itbitUSD", \ "krakenEUR", "krakenUSD", "okcoinCNY", "btcnCNY"] for e in exchanges: averagers[e] = BitcoinAverager(e) averager = averagers["bitfinexUSD"] averager_base = BitcoinAverager("bitfinexUSD", "GBP") # <codecell> averager.index_range() # <codecell> from datetime import datetime from dateutil.relativedelta import relativedelta import pytz hkg_time = pytz.timezone("Asia/Hong_Kong") start_time = hkg_time.localize(datetime(2014,2,1,6,0,0)) end_time = start_time + relativedelta(days=1) start_epoch = TimeUtil.unix_epoch(start_time) end_epoch = TimeUtil.unix_epoch(end_time) selected = averager.select(start_epoch, end_epoch) len(selected) # <codecell> from datetime import datetime from dateutil.relativedelta import relativedelta import pytz hkg_time = pytz.timezone("Asia/Hong_Kong") start_time = hkg_time.localize(datetime(2014,2,1,6,0,0)) end_time = start_time + relativedelta(minute=15) start_epoch = TimeUtil.unix_epoch(start_time) end_epoch = TimeUtil.unix_epoch(end_time) selected = averager.select(start_epoch, end_epoch) selected # <codecell> selected = averager.intervals(start_time, relativedelta(minutes=1),50 ) selected # <codecell> selected_base = averager_base.intervals(start_time, relativedelta(minutes=1),50 ) selected_base # <codecell> %matplotlib inline # <codecell> selected.plot(y='price') # <codecell> selected.plot(y="volume") # <codecell> import datetime import time import pytz from dateutil.relativedelta import relativedelta hkg_time = pytz.timezone("Asia/Hong_Kong") start = hkg_time.localize(datetime.datetime(2014,2,1,6,0,0)) period = relativedelta(days=1) intervals = 30 forex_list = ["GBPUSD"] forex_table = {} compositor = PriceCompositor() avg = compositor.exchange_table(start, period, intervals) for f in forex_list: forex = Forex(f) forex_table[f] = forex.rates(list(map(TimeUtil.unix_epoch, avg.index)), avg.index) forex_table[f].rename(columns={"rates" : f}, inplace=True) avg = avg.join(forex_table[f] for f in forex_list) # <codecell> forex_table["GBPUSD"] # <codecell> f=Forex("USDUSD") f.rates(map(TimeUtil.unix_epoch, avg.index), avg.index) # <codecell> import datetime import time import pytz from dateutil.relativedelta import relativedelta hkg_time = pytz.timezone("Asia/Hong_Kong") start_date = hkg_time.localize(datetime.datetime(2014,2,1,7,0,0)) period = relativedelta(minutes=5) intervals = 200 forex_table = {} compositor = PriceCompositor() avg = compositor.exchange_table(start_date, period, intervals) for f in forex_list: forex = Forex(f) forex_table[f] = forex.rates(list(map(TimeUtil.unix_epoch, avg.index)), avg.index) forex_table[f].rename(columns={"rates" : f}, inplace=True) avg = avg.join(forex_table[f] for f in forex_list) avg[['bitfinexUSD_price', 'bitstampUSD_price']] # <codecell> avg[['GBPUSD']] # <codecell> import datetime import time import pytz from dateutil.relativedelta import relativedelta hkg_time = pytz.timezone("Asia/Hong_Kong") start_date = hkg_time.localize(datetime.datetime(2014,2,1,7,0,0)) period = relativedelta(hours=1) intervals = 200 compositor = PriceCompositor() compositor.currency_table(start_date, period, intervals) # <codecell> import datetime import time import pytz from dateutil.relativedelta import relativedelta hkg_time = pytz.timezone("Asia/Hong_Kong") start_date = hkg_time.localize(datetime.datetime(2014,2,1,7,0,0)) period = relativedelta(hours=1) intervals = 200 compositor = PriceCompositor() composite = compositor.composite_table(start_date, period, intervals) composite # <codecell> composite[["price"]].plot() # <codecell> import datetime import time import pytz from dateutil.relativedelta import relativedelta hkg_time = pytz.timezone("Asia/Hong_Kong") start_date = hkg_time.localize(datetime.datetime(2014,2,1,7,0,0)) period = relativedelta(hours=1) intervals = 200 compositor = PriceCompositor() compositor.generate(start_date, period, intervals) # <codecell> c = compositor.generate(start_date, period, intervals, converted_prices=True,currency=True) c # <codecell> import matplotlib.pyplot as plt plt.figure(figsize=(10, 10)) ax1 = plt.subplot2grid((8,1), (0,0), rowspan=7) ax2 = plt.subplot2grid((8,1), (7,0)) ax1.xaxis.set_ticklabels([]) c[['price', 'GBPUSD_price', 'GBPEUR_price']].plot(ax=ax1) c[['volume', 'USD_volume', 'EUR_volume']].plot(ax=ax2) # <codecell> import datetime import time import pytz from dateutil.relativedelta import relativedelta hkg_time = pytz.timezone("Asia/Hong_Kong") start_date = hkg_time.localize(datetime.datetime(2014,2,1,7,0,0)) period = relativedelta(hours=1) intervals = 200 compositor = PriceCompositor(base_currency="USD") composite = compositor.generate(start_date, period, intervals) # <codecell> composite[["price"]].plot() # <codecell> compositor.reload() # <codecell> f = BitcoinDataLoader() # <codecell> f.filedata() # <codecell>
apache-2.0
yanlend/scikit-learn
sklearn/svm/setup.py
321
3157
import os from os.path import join import numpy from sklearn._build_utils import get_blas_info def configuration(parent_package='', top_path=None): from numpy.distutils.misc_util import Configuration config = Configuration('svm', parent_package, top_path) config.add_subpackage('tests') # Section LibSVM # we compile both libsvm and libsvm_sparse config.add_library('libsvm-skl', sources=[join('src', 'libsvm', 'libsvm_template.cpp')], depends=[join('src', 'libsvm', 'svm.cpp'), join('src', 'libsvm', 'svm.h')], # Force C++ linking in case gcc is picked up instead # of g++ under windows with some versions of MinGW extra_link_args=['-lstdc++'], ) libsvm_sources = ['libsvm.c'] libsvm_depends = [join('src', 'libsvm', 'libsvm_helper.c'), join('src', 'libsvm', 'libsvm_template.cpp'), join('src', 'libsvm', 'svm.cpp'), join('src', 'libsvm', 'svm.h')] config.add_extension('libsvm', sources=libsvm_sources, include_dirs=[numpy.get_include(), join('src', 'libsvm')], libraries=['libsvm-skl'], depends=libsvm_depends, ) ### liblinear module cblas_libs, blas_info = get_blas_info() if os.name == 'posix': cblas_libs.append('m') liblinear_sources = ['liblinear.c', join('src', 'liblinear', '*.cpp')] liblinear_depends = [join('src', 'liblinear', '*.h'), join('src', 'liblinear', 'liblinear_helper.c')] config.add_extension('liblinear', sources=liblinear_sources, libraries=cblas_libs, include_dirs=[join('..', 'src', 'cblas'), numpy.get_include(), blas_info.pop('include_dirs', [])], extra_compile_args=blas_info.pop('extra_compile_args', []), depends=liblinear_depends, # extra_compile_args=['-O0 -fno-inline'], ** blas_info) ## end liblinear module # this should go *after* libsvm-skl libsvm_sparse_sources = ['libsvm_sparse.c'] config.add_extension('libsvm_sparse', libraries=['libsvm-skl'], sources=libsvm_sparse_sources, include_dirs=[numpy.get_include(), join("src", "libsvm")], depends=[join("src", "libsvm", "svm.h"), join("src", "libsvm", "libsvm_sparse_helper.c")]) return config if __name__ == '__main__': from numpy.distutils.core import setup setup(**configuration(top_path='').todict())
bsd-3-clause
siutanwong/scikit-learn
examples/svm/plot_separating_hyperplane.py
294
1273
""" ========================================= SVM: Maximum margin separating hyperplane ========================================= Plot the maximum margin separating hyperplane within a two-class separable dataset using a Support Vector Machine classifier with linear kernel. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm # we create 40 separable points np.random.seed(0) X = np.r_[np.random.randn(20, 2) - [2, 2], np.random.randn(20, 2) + [2, 2]] Y = [0] * 20 + [1] * 20 # fit the model clf = svm.SVC(kernel='linear') clf.fit(X, Y) # get the separating hyperplane w = clf.coef_[0] a = -w[0] / w[1] xx = np.linspace(-5, 5) yy = a * xx - (clf.intercept_[0]) / w[1] # plot the parallels to the separating hyperplane that pass through the # support vectors b = clf.support_vectors_[0] yy_down = a * xx + (b[1] - a * b[0]) b = clf.support_vectors_[-1] yy_up = a * xx + (b[1] - a * b[0]) # plot the line, the points, and the nearest vectors to the plane plt.plot(xx, yy, 'k-') plt.plot(xx, yy_down, 'k--') plt.plot(xx, yy_up, 'k--') plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80, facecolors='none') plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired) plt.axis('tight') plt.show()
bsd-3-clause
jakobworldpeace/scikit-learn
examples/bicluster/plot_spectral_biclustering.py
403
2011
""" ============================================= A demo of the Spectral Biclustering algorithm ============================================= This example demonstrates how to generate a checkerboard dataset and bicluster it using the Spectral Biclustering algorithm. The data is generated with the ``make_checkerboard`` function, then shuffled and passed to the Spectral Biclustering algorithm. The rows and columns of the shuffled matrix are rearranged to show the biclusters found by the algorithm. The outer product of the row and column label vectors shows a representation of the checkerboard structure. """ print(__doc__) # Author: Kemal Eren <kemal@kemaleren.com> # License: BSD 3 clause import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import make_checkerboard from sklearn.datasets import samples_generator as sg from sklearn.cluster.bicluster import SpectralBiclustering from sklearn.metrics import consensus_score n_clusters = (4, 3) data, rows, columns = make_checkerboard( shape=(300, 300), n_clusters=n_clusters, noise=10, shuffle=False, random_state=0) plt.matshow(data, cmap=plt.cm.Blues) plt.title("Original dataset") data, row_idx, col_idx = sg._shuffle(data, random_state=0) plt.matshow(data, cmap=plt.cm.Blues) plt.title("Shuffled dataset") model = SpectralBiclustering(n_clusters=n_clusters, method='log', random_state=0) model.fit(data) score = consensus_score(model.biclusters_, (rows[:, row_idx], columns[:, col_idx])) print("consensus score: {:.1f}".format(score)) fit_data = data[np.argsort(model.row_labels_)] fit_data = fit_data[:, np.argsort(model.column_labels_)] plt.matshow(fit_data, cmap=plt.cm.Blues) plt.title("After biclustering; rearranged to show biclusters") plt.matshow(np.outer(np.sort(model.row_labels_) + 1, np.sort(model.column_labels_) + 1), cmap=plt.cm.Blues) plt.title("Checkerboard structure of rearranged data") plt.show()
bsd-3-clause
bthirion/scikit-learn
benchmarks/bench_isolation_forest.py
17
4784
""" ========================================== IsolationForest benchmark ========================================== A test of IsolationForest on classical anomaly detection datasets. """ from time import time import numpy as np import matplotlib.pyplot as plt from sklearn.ensemble import IsolationForest from sklearn.metrics import roc_curve, auc from sklearn.datasets import fetch_kddcup99, fetch_covtype, fetch_mldata from sklearn.preprocessing import MultiLabelBinarizer from sklearn.utils import shuffle as sh print(__doc__) def print_outlier_ratio(y): """ Helper function to show the distinct value count of element in the target. Useful indicator for the datasets used in bench_isolation_forest.py. """ uniq, cnt = np.unique(y, return_counts=True) print("----- Target count values: ") for u, c in zip(uniq, cnt): print("------ %s -> %d occurences" % (str(u), c)) print("----- Outlier ratio: %.5f" % (np.min(cnt) / len(y))) np.random.seed(1) fig_roc, ax_roc = plt.subplots(1, 1, figsize=(8, 5)) # Set this to true for plotting score histograms for each dataset: with_decision_function_histograms = False # Removed the shuttle dataset because as of 2017-03-23 mldata.org is down: # datasets = ['http', 'smtp', 'SA', 'SF', 'shuttle', 'forestcover'] datasets = ['http', 'smtp', 'SA', 'SF', 'forestcover'] # Loop over all datasets for fitting and scoring the estimator: for dat in datasets: # Loading and vectorizing the data: print('====== %s ======' % dat) print('--- Fetching data...') if dat in ['http', 'smtp', 'SF', 'SA']: dataset = fetch_kddcup99(subset=dat, shuffle=True, percent10=True) X = dataset.data y = dataset.target if dat == 'shuttle': dataset = fetch_mldata('shuttle') X = dataset.data y = dataset.target X, y = sh(X, y) # we remove data with label 4 # normal data are then those of class 1 s = (y != 4) X = X[s, :] y = y[s] y = (y != 1).astype(int) print('----- ') if dat == 'forestcover': dataset = fetch_covtype(shuffle=True) X = dataset.data y = dataset.target # normal data are those with attribute 2 # abnormal those with attribute 4 s = (y == 2) + (y == 4) X = X[s, :] y = y[s] y = (y != 2).astype(int) print_outlier_ratio(y) print('--- Vectorizing data...') if dat == 'SF': lb = MultiLabelBinarizer() x1 = lb.fit_transform(X[:, 1]) X = np.c_[X[:, :1], x1, X[:, 2:]] y = (y != b'normal.').astype(int) print_outlier_ratio(y) if dat == 'SA': lb = MultiLabelBinarizer() x1 = lb.fit_transform(X[:, 1]) x2 = lb.fit_transform(X[:, 2]) x3 = lb.fit_transform(X[:, 3]) X = np.c_[X[:, :1], x1, x2, x3, X[:, 4:]] y = (y != b'normal.').astype(int) print_outlier_ratio(y) if dat in ('http', 'smtp'): y = (y != b'normal.').astype(int) print_outlier_ratio(y) n_samples, n_features = X.shape n_samples_train = n_samples // 2 X = X.astype(float) X_train = X[:n_samples_train, :] X_test = X[n_samples_train:, :] y_train = y[:n_samples_train] y_test = y[n_samples_train:] print('--- Fitting the IsolationForest estimator...') model = IsolationForest(n_jobs=-1) tstart = time() model.fit(X_train) fit_time = time() - tstart tstart = time() scoring = - model.decision_function(X_test) # the lower, the more abnormal print("--- Preparing the plot elements...") if with_decision_function_histograms: fig, ax = plt.subplots(3, sharex=True, sharey=True) bins = np.linspace(-0.5, 0.5, 200) ax[0].hist(scoring, bins, color='black') ax[0].set_title('Decision function for %s dataset' % dat) ax[1].hist(scoring[y_test == 0], bins, color='b', label='normal data') ax[1].legend(loc="lower right") ax[2].hist(scoring[y_test == 1], bins, color='r', label='outliers') ax[2].legend(loc="lower right") # Show ROC Curves predict_time = time() - tstart fpr, tpr, thresholds = roc_curve(y_test, scoring) auc_score = auc(fpr, tpr) label = ('%s (AUC: %0.3f, train_time= %0.2fs, ' 'test_time= %0.2fs)' % (dat, auc_score, fit_time, predict_time)) # Print AUC score and train/test time: print(label) ax_roc.plot(fpr, tpr, lw=1, label=label) ax_roc.set_xlim([-0.05, 1.05]) ax_roc.set_ylim([-0.05, 1.05]) ax_roc.set_xlabel('False Positive Rate') ax_roc.set_ylabel('True Positive Rate') ax_roc.set_title('Receiver operating characteristic (ROC) curves') ax_roc.legend(loc="lower right") fig_roc.tight_layout() plt.show()
bsd-3-clause
agilefall/aws-tools
sqs_metrics.py
1
3242
#!/usr/bin/python import argparse import boto.sqs import boto.ec2.cloudwatch import os import csv from datetime import datetime, timedelta from collections import defaultdict import pandas as pd import matplotlib.pyplot as plt import StringIO class SqsMetrics: default_metrics= ["ApproximateNumberOfMessagesVisible", "NumberOfMessagesDeleted", "NumberOfMessagesSent"] def __init__(self, region): assert region, "region must be supplied" self.region = region self.cw_conn = None def connect(self): if (self.cw_conn is None): self.cw_conn = boto.ec2.cloudwatch.connect_to_region(self.region) assert self.cw_conn, "Cannot get cloudwatch connection for region %s" % (self.region) def get_queue_metrics(self, queue_name, metric_names = default_metrics, num_hours = 24): print "getting {} for queue {} in region {}".format(metric_names, queue_name, self.region) self.connect() end = datetime.utcnow() start = end - timedelta(hours=num_hours) datas = [] for metric_name in metric_names: print "getting metric {} for queue {}".format(metric_name, queue_name) metrics = self.cw_conn.list_metrics(dimensions = dict(QueueName = queue_name), namespace='AWS/SQS', metric_name = metric_name) query_result = metrics[0].query(start, end, 'Sum', 'Count', period = 300) df = pd.DataFrame.from_records(query_result, index="Timestamp") df = df.rename(columns = {'Sum': metric_name}) datas.append(df[metric_name]) return pd.concat(datas, axis=1) def to_graph(self, metrics_df): num_cols = len(metrics_df.columns) for i in range(num_cols): name = metrics_df.columns[i] plt.subplot(num_cols, 1, i + 1) metrics_df[name].plot(title=name) plt.tight_layout() #pad=0.4, w_pad=0.5, h_pad=1.0) plt.show() def to_summary(self, metrics_table): print metrics_table.describe() def to_csv(self, metrics_df): sb = StringIO.StringIO() metrics_df.to_csv(sb) print sb.getvalue() def main(): parser = argparse.ArgumentParser(description="Sqs visible message delta in last hour") parser.add_argument("queue_name", help="name of queue to retrieve metrics for") parser.add_argument("-metrics", help="comma delimited list of metrics to retrieve") parser.add_argument("--region", help="aws region", default=os.environ['AWS_DEFAULT_REGION']) parser.add_argument("--output", choices=["csv", "graph", "summary"], default="graph", help="how to output results") parser.add_argument("--hours", type=int, help="num hours to retrieve", default=24) args = parser.parse_args() sm = SqsMetrics(args.region) if args.metrics: metrics_name = args.metrics.split(',') else: metrics_name = SqsMetrics.default_metrics metrics = sm.get_queue_metrics(args.queue_name, metrics_name, args.hours) {"csv": sm.to_csv, "summary": sm.to_summary, "graph": sm.to_graph }[args.output](metrics) if __name__ == "__main__": main()
apache-2.0
idaks/PW-explorer
PW_explorer/Input_Parsers/Clingo_Parser/clingo_parser.py
1
6566
from antlr4 import * from .Antlr_Files.ClingoLexer import ClingoLexer from .Antlr_Files.ClingoParser import ClingoParser from .Antlr_Files.ClingoListener import ClingoListener from ...helper import isfloat, PossibleWorld, Relation import pandas as pd import numpy as np from antlr4.tree.Trees import Trees def rearrangePWSandRLS(relations, pws): """ Sort the possible worlds and relations by their ids :return: None """ relations.sort(key=lambda x: x.r_id) pws.sort(key=lambda x: x.pw_id) def loadIntoPandas(relations, pws, dfs): """ Populate the Pandas DF, one for each relation :return: None """ for n, rl in enumerate(relations): cls = ['pw'] cls.extend([str('x' + str(i)) for i in range(1, rl.arity + 1)]) rws = [] # could convert into numpy if sure it's all float/int for m, pw in enumerate(pws): if rl.relation_name in pw.rls: rl_data_pw = [] for rl_data in pw.rls[rl.relation_name]: rl_data_pw.append(rl_data.copy()) rl_data_pw[-1].insert(0, pw.pw_id) rws.extend(rl_data_pw) df = pd.DataFrame(rws, columns=cls) dfs[rl.relation_name] = df ###################################################################################### ###################################################################################### class AntlrClingoListener(ClingoListener): def __init__(self): self.pws = [] self.relations = [] self.expected_pws = 0 self.curr_pw = None self.curr_pw_id = 1 self.curr_fact = None self.curr_fact_data = None self.curr_fact_depth = 0 self.n_facts = 0 self.dfs = {} self.silent = False def enterClingoOutput(self, ctx): if ctx.OPTIMUM_FOUND() is not None: if ctx.OPTIMUM_FOUND().getText() == 'UNSATISFIABLE': if not self.silent: print("The problem is unsatisfiable") # print("enterClingoOutput") def enterPw(self, ctx): self.curr_pw = PossibleWorld(self.curr_pw_id) # assert curr_pw.pw_id == int(ctx.TEXT(0).getText()) if ctx.TEXT(1) is not None: self.curr_pw.pw_soln = float(ctx.TEXT(1).getText()) if isfloat(ctx.TEXT(1).getText()) else ctx.TEXT(1).getText() def enterFact(self, ctx): self.curr_fact_depth += 1 rel_name = ctx.TEXT().getText() if self.curr_fact_depth == 1: self.curr_fact = Relation(rel_name) # Set defaults in case this is a 0-arity relation self.curr_fact_data = [] else: tmp_ptr = self.curr_fact_data for _ in range(self.curr_fact_depth-2): tmp_ptr = tmp_ptr[-1] tmp_ptr.append([rel_name]) def enterFact_text(self, ctx:ClingoParser.Fact_textContext): tmp_ptr = self.curr_fact_data for _ in range(self.curr_fact_depth - 1): tmp_ptr = tmp_ptr[-1] tmp_ptr.append(ctx.TEXT().getText()) def exitFact(self, ctx): if self.curr_fact_depth == 1: self.curr_fact.arity = len(self.curr_fact_data) rl_name_mod = str(self.curr_fact.relation_name + '_' + str(self.curr_fact.arity)) self.curr_fact.relation_name = rl_name_mod foundMatch = False for rl in self.relations: if self.curr_fact.relation_name == rl.relation_name and self.curr_fact.arity == rl.arity: self.curr_fact.r_id = rl.r_id foundMatch = True break if not foundMatch: newRl = Relation(self.curr_fact.relation_name) newRl.arity = self.curr_fact.arity newRl.r_id = self.n_facts self.n_facts += 1 self.relations.append(newRl) self.curr_fact.r_id = newRl.r_id self.curr_pw.add_relation(self.curr_fact.relation_name, self.curr_fact_data) self.curr_fact = None # could introduce bugs if passed by pointer in the upper statement, so be careful, use copy() if needed self.curr_fact_data = None self.curr_fact_depth -= 1 def exitPw(self, ctx): self.pws.append(self.curr_pw) # again be wary, else use .copy() self.curr_pw = None self.curr_pw_id += 1 def enterOptimum(self, ctx): optimum_found = ctx.TEXT().getText() if optimum_found == 'yes': if not self.silent: print('Optimum Solution was found') elif optimum_found == 'no': if not self.silent: print('Optimum Solution was not found') else: if not self.silent: print('Unexpected Output:', optimum_found) def enterOptimization(self, ctx): opt_soln = ctx.TEXT().getText() if not self.silent: print('Optimized Solution is', opt_soln) def enterModels(self, ctx): num_models = ctx.TEXT().getText() num_models = int(num_models) if not self.silent: print("Number of Models:", num_models) self.expected_pws = num_models def exitClingoOutput(self, ctx): # loading into pandas DF rearrangePWSandRLS(self.relations, self.pws) loadIntoPandas(self.relations, self.pws, self.dfs) ###################################################################################### def __parse_clingo_output__(input_stream, silent=False, print_parse_tree=False): lexer = ClingoLexer(input_stream) # use this line to take input from the cmd line # lexer = ClingoLexer(StdinStream()) ct_stream = CommonTokenStream(lexer) parser = ClingoParser(ct_stream) tree = parser.clingoOutput() if print_parse_tree: print(Trees.toStringTree(tree, None, parser)) pw_analyzer = AntlrClingoListener() pw_analyzer.silent = silent walker = ParseTreeWalker() walker.walk(pw_analyzer, tree) return pw_analyzer.dfs, pw_analyzer.relations, pw_analyzer.pws def parse_clingo_output_from_file(fname, silent=False, print_parse_tree=False): input_stream = FileStream(fname) return __parse_clingo_output__(input_stream, silent, print_parse_tree) def parse_clingo_output_from_string(clingo_output_string, silent=False, print_parse_tree=False): input_stream = InputStream(clingo_output_string) return __parse_clingo_output__(input_stream, silent, print_parse_tree)
apache-2.0
shyamalschandra/scikit-learn
setup.py
19
11460
#! /usr/bin/env python # # Copyright (C) 2007-2009 Cournapeau David <cournape@gmail.com> # 2010 Fabian Pedregosa <fabian.pedregosa@inria.fr> # License: 3-clause BSD import subprocess descr = """A set of python modules for machine learning and data mining""" import sys import os import shutil from distutils.command.clean import clean as Clean from pkg_resources import parse_version if sys.version_info[0] < 3: import __builtin__ as builtins else: import builtins # This is a bit (!) hackish: we are setting a global variable so that the main # sklearn __init__ can detect if it is being loaded by the setup routine, to # avoid attempting to load components that aren't built yet: # the numpy distutils extensions that are used by scikit-learn to recursively # build the compiled extensions in sub-packages is based on the Python import # machinery. builtins.__SKLEARN_SETUP__ = True DISTNAME = 'scikit-learn' DESCRIPTION = 'A set of python modules for machine learning and data mining' with open('README.rst') as f: LONG_DESCRIPTION = f.read() MAINTAINER = 'Andreas Mueller' MAINTAINER_EMAIL = 'amueller@ais.uni-bonn.de' URL = 'http://scikit-learn.org' LICENSE = 'new BSD' DOWNLOAD_URL = 'http://sourceforge.net/projects/scikit-learn/files/' # We can actually import a restricted version of sklearn that # does not need the compiled code import sklearn VERSION = sklearn.__version__ from sklearn._build_utils import cythonize # Optional setuptools features # We need to import setuptools early, if we want setuptools features, # as it monkey-patches the 'setup' function # For some commands, use setuptools SETUPTOOLS_COMMANDS = set([ 'develop', 'release', 'bdist_egg', 'bdist_rpm', 'bdist_wininst', 'install_egg_info', 'build_sphinx', 'egg_info', 'easy_install', 'upload', 'bdist_wheel', '--single-version-externally-managed', ]) if SETUPTOOLS_COMMANDS.intersection(sys.argv): import setuptools extra_setuptools_args = dict( zip_safe=False, # the package can run out of an .egg file include_package_data=True, ) else: extra_setuptools_args = dict() # Custom clean command to remove build artifacts class CleanCommand(Clean): description = "Remove build artifacts from the source tree" def run(self): Clean.run(self) # Remove c files if we are not within a sdist package cwd = os.path.abspath(os.path.dirname(__file__)) remove_c_files = not os.path.exists(os.path.join(cwd, 'PKG-INFO')) if remove_c_files: cython_hash_file = os.path.join(cwd, 'cythonize.dat') if os.path.exists(cython_hash_file): os.unlink(cython_hash_file) print('Will remove generated .c files') if os.path.exists('build'): shutil.rmtree('build') for dirpath, dirnames, filenames in os.walk('sklearn'): for filename in filenames: if any(filename.endswith(suffix) for suffix in (".so", ".pyd", ".dll", ".pyc")): os.unlink(os.path.join(dirpath, filename)) continue extension = os.path.splitext(filename)[1] if remove_c_files and extension in ['.c', '.cpp']: pyx_file = str.replace(filename, extension, '.pyx') if os.path.exists(os.path.join(dirpath, pyx_file)): os.unlink(os.path.join(dirpath, filename)) for dirname in dirnames: if dirname == '__pycache__': shutil.rmtree(os.path.join(dirpath, dirname)) cmdclass = {'clean': CleanCommand} # Optional wheelhouse-uploader features # To automate release of binary packages for scikit-learn we need a tool # to download the packages generated by travis and appveyor workers (with # version number matching the current release) and upload them all at once # to PyPI at release time. # The URL of the artifact repositories are configured in the setup.cfg file. WHEELHOUSE_UPLOADER_COMMANDS = set(['fetch_artifacts', 'upload_all']) if WHEELHOUSE_UPLOADER_COMMANDS.intersection(sys.argv): import wheelhouse_uploader.cmd cmdclass.update(vars(wheelhouse_uploader.cmd)) def configuration(parent_package='', top_path=None): if os.path.exists('MANIFEST'): os.remove('MANIFEST') from numpy.distutils.misc_util import Configuration config = Configuration(None, parent_package, top_path) # Avoid non-useful msg: # "Ignoring attempt to set 'name' (from ... " config.set_options(ignore_setup_xxx_py=True, assume_default_configuration=True, delegate_options_to_subpackages=True, quiet=True) config.add_subpackage('sklearn') return config scipy_min_version = '0.9' numpy_min_version = '1.6.1' def get_scipy_status(): """ Returns a dictionary containing a boolean specifying whether SciPy is up-to-date, along with the version string (empty string if not installed). """ scipy_status = {} try: import scipy scipy_version = scipy.__version__ scipy_status['up_to_date'] = parse_version( scipy_version) >= parse_version(scipy_min_version) scipy_status['version'] = scipy_version except ImportError: scipy_status['up_to_date'] = False scipy_status['version'] = "" return scipy_status def get_numpy_status(): """ Returns a dictionary containing a boolean specifying whether NumPy is up-to-date, along with the version string (empty string if not installed). """ numpy_status = {} try: import numpy numpy_version = numpy.__version__ numpy_status['up_to_date'] = parse_version( numpy_version) >= parse_version(numpy_min_version) numpy_status['version'] = numpy_version except ImportError: numpy_status['up_to_date'] = False numpy_status['version'] = "" return numpy_status def generate_cython(): cwd = os.path.abspath(os.path.dirname(__file__)) print("Cythonizing sources") cythonize.main(cwd) def setup_package(): metadata = dict(name=DISTNAME, maintainer=MAINTAINER, maintainer_email=MAINTAINER_EMAIL, description=DESCRIPTION, license=LICENSE, url=URL, version=VERSION, download_url=DOWNLOAD_URL, long_description=LONG_DESCRIPTION, classifiers=['Intended Audience :: Science/Research', 'Intended Audience :: Developers', 'License :: OSI Approved', 'Programming Language :: C', 'Programming Language :: Python', 'Topic :: Software Development', 'Topic :: Scientific/Engineering', 'Operating System :: Microsoft :: Windows', 'Operating System :: POSIX', 'Operating System :: Unix', 'Operating System :: MacOS', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', ], cmdclass=cmdclass, **extra_setuptools_args) if len(sys.argv) == 1 or ( len(sys.argv) >= 2 and ('--help' in sys.argv[1:] or sys.argv[1] in ('--help-commands', 'egg_info', '--version', 'clean'))): # For these actions, NumPy is not required, nor Cythonization # # They are required to succeed without Numpy for example when # pip is used to install Scikit-learn when Numpy is not yet present in # the system. try: from setuptools import setup except ImportError: from distutils.core import setup metadata['version'] = VERSION else: numpy_status = get_numpy_status() numpy_req_str = "scikit-learn requires NumPy >= {0}.\n".format( numpy_min_version) scipy_status = get_scipy_status() scipy_req_str = "scikit-learn requires SciPy >= {0}.\n".format( scipy_min_version) instructions = ("Installation instructions are available on the " "scikit-learn website: " "http://scikit-learn.org/stable/install.html\n") if numpy_status['up_to_date'] is False: if numpy_status['version']: raise ImportError("Your installation of Numerical Python " "(NumPy) {0} is out-of-date.\n{1}{2}" .format(numpy_status['version'], numpy_req_str, instructions)) else: raise ImportError("Numerical Python (NumPy) is not " "installed.\n{0}{1}" .format(numpy_req_str, instructions)) if scipy_status['up_to_date'] is False: if scipy_status['version']: raise ImportError("Your installation of Scientific Python " "(SciPy) {0} is out-of-date.\n{1}{2}" .format(scipy_status['version'], scipy_req_str, instructions)) else: raise ImportError("Scientific Python (SciPy) is not " "installed.\n{0}{1}" .format(scipy_req_str, instructions)) from numpy.distutils.core import setup metadata['configuration'] = configuration if len(sys.argv) >= 2 and sys.argv[1] not in 'config': # Cythonize if needed print('Generating cython files') cwd = os.path.abspath(os.path.dirname(__file__)) if not os.path.exists(os.path.join(cwd, 'PKG-INFO')): # Generate Cython sources, unless building from source release generate_cython() # Clean left-over .so file for dirpath, dirnames, filenames in os.walk( os.path.join(cwd, 'sklearn')): for filename in filenames: extension = os.path.splitext(filename)[1] if extension in (".so", ".pyd", ".dll"): pyx_file = str.replace(filename, extension, '.pyx') print(pyx_file) if not os.path.exists(os.path.join(dirpath, pyx_file)): os.unlink(os.path.join(dirpath, filename)) setup(**metadata) if __name__ == "__main__": setup_package()
bsd-3-clause
wronk/mne-python
mne/viz/_3d.py
2
40857
"""Functions to make 3D plots with M/EEG data """ from __future__ import print_function # Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr> # Denis Engemann <denis.engemann@gmail.com> # Martin Luessi <mluessi@nmr.mgh.harvard.edu> # Eric Larson <larson.eric.d@gmail.com> # Mainak Jas <mainak@neuro.hut.fi> # Mark Wronkiewicz <wronk.mark@gmail.com> # # License: Simplified BSD import base64 from itertools import cycle import os.path as op import warnings import numpy as np from scipy import linalg from ..externals.six import string_types, advance_iterator from ..io import _loc_to_coil_trans, Info from ..io.pick import pick_types from ..io.constants import FIFF from ..surface import (get_head_surf, get_meg_helmet_surf, read_surface, transform_surface_to) from ..transforms import (read_trans, _find_trans, apply_trans, combine_transforms, _get_trans, _ensure_trans, invert_transform, Transform) from ..utils import get_subjects_dir, logger, _check_subject, verbose, warn from ..fixes import _get_args from ..defaults import _handle_default from .utils import mne_analyze_colormap, _prepare_trellis, COLORS, plt_show from ..externals.six import BytesIO def plot_evoked_field(evoked, surf_maps, time=None, time_label='t = %0.0f ms', n_jobs=1): """Plot MEG/EEG fields on head surface and helmet in 3D Parameters ---------- evoked : instance of mne.Evoked The evoked object. surf_maps : list The surface mapping information obtained with make_field_map. time : float | None The time point at which the field map shall be displayed. If None, the average peak latency (across sensor types) is used. time_label : str How to print info about the time instant visualized. n_jobs : int Number of jobs to run in parallel. Returns ------- fig : instance of mlab.Figure The mayavi figure. """ types = [t for t in ['eeg', 'grad', 'mag'] if t in evoked] time_idx = None if time is None: time = np.mean([evoked.get_peak(ch_type=t)[1] for t in types]) if not evoked.times[0] <= time <= evoked.times[-1]: raise ValueError('`time` (%0.3f) must be inside `evoked.times`' % time) time_idx = np.argmin(np.abs(evoked.times - time)) types = [sm['kind'] for sm in surf_maps] # Plot them from mayavi import mlab alphas = [1.0, 0.5] colors = [(0.6, 0.6, 0.6), (1.0, 1.0, 1.0)] colormap = mne_analyze_colormap(format='mayavi') colormap_lines = np.concatenate([np.tile([0., 0., 255., 255.], (127, 1)), np.tile([0., 0., 0., 255.], (2, 1)), np.tile([255., 0., 0., 255.], (127, 1))]) fig = mlab.figure(bgcolor=(0.0, 0.0, 0.0), size=(600, 600)) for ii, this_map in enumerate(surf_maps): surf = this_map['surf'] map_data = this_map['data'] map_type = this_map['kind'] map_ch_names = this_map['ch_names'] if map_type == 'eeg': pick = pick_types(evoked.info, meg=False, eeg=True) else: pick = pick_types(evoked.info, meg=True, eeg=False, ref_meg=False) ch_names = [evoked.ch_names[k] for k in pick] set_ch_names = set(ch_names) set_map_ch_names = set(map_ch_names) if set_ch_names != set_map_ch_names: message = ['Channels in map and data do not match.'] diff = set_map_ch_names - set_ch_names if len(diff): message += ['%s not in data file. ' % list(diff)] diff = set_ch_names - set_map_ch_names if len(diff): message += ['%s not in map file.' % list(diff)] raise RuntimeError(' '.join(message)) data = np.dot(map_data, evoked.data[pick, time_idx]) x, y, z = surf['rr'].T nn = surf['nn'] # make absolutely sure these are normalized for Mayavi nn = nn / np.sum(nn * nn, axis=1)[:, np.newaxis] # Make a solid surface vlim = np.max(np.abs(data)) alpha = alphas[ii] with warnings.catch_warnings(record=True): # traits mesh = mlab.pipeline.triangular_mesh_source(x, y, z, surf['tris']) mesh.data.point_data.normals = nn mesh.data.cell_data.normals = None mlab.pipeline.surface(mesh, color=colors[ii], opacity=alpha) # Now show our field pattern with warnings.catch_warnings(record=True): # traits mesh = mlab.pipeline.triangular_mesh_source(x, y, z, surf['tris'], scalars=data) mesh.data.point_data.normals = nn mesh.data.cell_data.normals = None with warnings.catch_warnings(record=True): # traits fsurf = mlab.pipeline.surface(mesh, vmin=-vlim, vmax=vlim) fsurf.module_manager.scalar_lut_manager.lut.table = colormap # And the field lines on top with warnings.catch_warnings(record=True): # traits mesh = mlab.pipeline.triangular_mesh_source(x, y, z, surf['tris'], scalars=data) mesh.data.point_data.normals = nn mesh.data.cell_data.normals = None with warnings.catch_warnings(record=True): # traits cont = mlab.pipeline.contour_surface(mesh, contours=21, line_width=1.0, vmin=-vlim, vmax=vlim, opacity=alpha) cont.module_manager.scalar_lut_manager.lut.table = colormap_lines if '%' in time_label: time_label %= (1e3 * evoked.times[time_idx]) mlab.text(0.01, 0.01, time_label, width=0.4) mlab.view(10, 60) return fig def _plot_mri_contours(mri_fname, surf_fnames, orientation='coronal', slices=None, show=True, img_output=False): """Plot BEM contours on anatomical slices. Parameters ---------- mri_fname : str The name of the file containing anatomical data. surf_fnames : list of str The filenames for the BEM surfaces in the format ['inner_skull.surf', 'outer_skull.surf', 'outer_skin.surf']. orientation : str 'coronal' or 'transverse' or 'sagittal' slices : list of int Slice indices. show : bool Call pyplot.show() at the end. img_output : None | tuple If tuple (width and height), images will be produced instead of a single figure with many axes. This mode is designed to reduce the (substantial) overhead associated with making tens to hundreds of matplotlib axes, instead opting to re-use a single Axes instance. Returns ------- fig : Instance of matplotlib.figure.Figure | list The figure. Will instead be a list of png images if img_output is a tuple. """ import matplotlib.pyplot as plt import nibabel as nib if orientation not in ['coronal', 'axial', 'sagittal']: raise ValueError("Orientation must be 'coronal', 'axial' or " "'sagittal'. Got %s." % orientation) # Load the T1 data nim = nib.load(mri_fname) data = nim.get_data() affine = nim.get_affine() n_sag, n_axi, n_cor = data.shape orientation_name2axis = dict(sagittal=0, axial=1, coronal=2) orientation_axis = orientation_name2axis[orientation] if slices is None: n_slices = data.shape[orientation_axis] slices = np.linspace(0, n_slices, 12, endpoint=False).astype(np.int) # create of list of surfaces surfs = list() trans = linalg.inv(affine) # XXX : next line is a hack don't ask why trans[:3, -1] = [n_sag // 2, n_axi // 2, n_cor // 2] for surf_fname in surf_fnames: surf = dict() surf['rr'], surf['tris'] = read_surface(surf_fname) # move back surface to MRI coordinate system surf['rr'] = nib.affines.apply_affine(trans, surf['rr']) surfs.append(surf) if img_output is None: fig, axs = _prepare_trellis(len(slices), 4) else: fig, ax = plt.subplots(1, 1, figsize=(7.0, 7.0)) axs = [ax] * len(slices) fig_size = fig.get_size_inches() w, h = img_output[0], img_output[1] w2 = fig_size[0] fig.set_size_inches([(w2 / float(w)) * w, (w2 / float(w)) * h]) plt.close(fig) inds = dict(coronal=[0, 1, 2], axial=[2, 0, 1], sagittal=[2, 1, 0])[orientation] outs = [] for ax, sl in zip(axs, slices): # adjust the orientations for good view if orientation == 'coronal': dat = data[:, :, sl].transpose() elif orientation == 'axial': dat = data[:, sl, :] elif orientation == 'sagittal': dat = data[sl, :, :] # First plot the anatomical data if img_output is not None: ax.clear() ax.imshow(dat, cmap=plt.cm.gray) ax.axis('off') # and then plot the contours on top for surf in surfs: ax.tricontour(surf['rr'][:, inds[0]], surf['rr'][:, inds[1]], surf['tris'], surf['rr'][:, inds[2]], levels=[sl], colors='yellow', linewidths=2.0) if img_output is not None: ax.set_xticks([]) ax.set_yticks([]) ax.set_xlim(0, img_output[1]) ax.set_ylim(img_output[0], 0) output = BytesIO() fig.savefig(output, bbox_inches='tight', pad_inches=0, format='png') outs.append(base64.b64encode(output.getvalue()).decode('ascii')) if show: plt.subplots_adjust(left=0., bottom=0., right=1., top=1., wspace=0., hspace=0.) plt_show(show) return fig if img_output is None else outs @verbose def plot_trans(info, trans='auto', subject=None, subjects_dir=None, ch_type=None, source=('bem', 'head'), coord_frame='head', meg_sensors=False, eeg_sensors=True, dig=False, ref_meg=False, verbose=None): """Plot MEG/EEG head surface and helmet in 3D. Parameters ---------- info : dict The measurement info. trans : str | 'auto' | dict | None The full path to the head<->MRI transform ``*-trans.fif`` file produced during coregistration. If trans is None, no head surface will be shown. subject : str | None The subject name corresponding to FreeSurfer environment variable SUBJECT. subjects_dir : str The path to the freesurfer subjects reconstructions. It corresponds to Freesurfer environment variable SUBJECTS_DIR. ch_type : None | 'eeg' | 'meg' If None, both the MEG helmet and EEG electrodes will be shown. If 'meg', only the MEG helmet will be shown. If 'eeg', only the EEG electrodes will be shown. source : str Type to load. Common choices would be `'bem'` or `'head'`. We first try loading `'$SUBJECTS_DIR/$SUBJECT/bem/$SUBJECT-$SOURCE.fif'`, and then look for `'$SUBJECT*$SOURCE.fif'` in the same directory. Defaults to 'bem'. Note. For single layer bems it is recommended to use 'head'. coord_frame : str Coordinate frame to use, 'head', 'meg', or 'mri'. meg_sensors : bool If True, plot MEG sensors as points in addition to showing the helmet. eeg_sensors : bool If True, plot EEG sensors as points. dig : bool If True, plot the digitization points. ref_meg : bool If True (default False), include reference MEG sensors. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- fig : instance of mlab.Figure The mayavi figure. """ from ..forward import _create_meg_coils if not isinstance(info, Info): raise TypeError('info must be an instance of Info, got %s' % type(info)) if coord_frame not in ['head', 'meg', 'mri']: raise ValueError('coord_frame must be "head" or "meg"') if ch_type not in [None, 'eeg', 'meg']: raise ValueError('Argument ch_type must be None | eeg | meg. Got %s.' % ch_type) show_head = (subject is not None) if isinstance(trans, string_types): if trans == 'auto': # let's try to do this in MRI coordinates so they're easy to plot subjects_dir = get_subjects_dir(subjects_dir, raise_error=True) trans = _find_trans(subject, subjects_dir) trans = read_trans(trans) elif trans is None: trans = Transform('head', 'mri', np.eye(4)) show_head = False elif not isinstance(trans, dict): raise TypeError('trans must be str, dict, or None') head_mri_t = _ensure_trans(trans, 'head', 'mri') del trans # both the head and helmet will be in MRI coordinates after this meg_picks = pick_types(info, meg=True, ref_meg=ref_meg) surfs = dict() if show_head: subjects_dir = get_subjects_dir(subjects_dir, raise_error=True) surfs['head'] = get_head_surf(subject, source=source, subjects_dir=subjects_dir) if (ch_type is None and len(meg_picks) > 0) or ch_type == 'meg': surfs['helmet'] = get_meg_helmet_surf(info, head_mri_t) if coord_frame == 'meg': surf_trans = combine_transforms(info['dev_head_t'], head_mri_t, 'meg', 'mri') elif coord_frame == 'head': surf_trans = head_mri_t else: # coord_frame == 'mri' surf_trans = None for key in surfs.keys(): surfs[key] = transform_surface_to(surfs[key], coord_frame, surf_trans) del surf_trans # determine points meg_rrs, meg_tris = list(), list() ext_loc = list() car_loc = list() eeg_loc = list() if eeg_sensors and (ch_type is None or ch_type == 'eeg'): eeg_loc = np.array([info['chs'][k]['loc'][:3] for k in pick_types(info, meg=False, eeg=True)]) if len(eeg_loc) > 0: # Transform EEG electrodes from head coordinates if necessary if coord_frame == 'meg': eeg_loc = apply_trans(invert_transform(info['dev_head_t']), eeg_loc) elif coord_frame == 'mri': eeg_loc = apply_trans(head_mri_t, eeg_loc) else: # only warn if EEG explicitly requested, or EEG channels exist but # no locations are provided if (ch_type is not None or len(pick_types(info, meg=False, eeg=True)) > 0): warn('EEG electrode locations not found. Cannot plot EEG ' 'electrodes.') if meg_sensors: coil_transs = [_loc_to_coil_trans(info['chs'][pick]['loc']) for pick in meg_picks] # Transform MEG coordinates from meg if necessary trans = None if coord_frame == 'head': trans = info['dev_head_t'] elif coord_frame == 'mri': trans = combine_transforms(info['dev_head_t'], head_mri_t, 'meg', 'mri') coils = _create_meg_coils([info['chs'][pick] for pick in meg_picks], acc='normal') offset = 0 for coil, coil_trans in zip(coils, coil_transs): rrs, tris = _sensor_shape(coil) rrs = apply_trans(coil_trans, rrs) if trans is not None: rrs = apply_trans(trans, rrs) meg_rrs.append(rrs) meg_tris.append(tris + offset) offset += len(meg_rrs[-1]) if len(meg_rrs) == 0: warn('MEG electrodes not found. Cannot plot MEG locations.') else: meg_rrs = np.concatenate(meg_rrs, axis=0) meg_tris = np.concatenate(meg_tris, axis=0) if dig: ext_loc = np.array([d['r'] for d in info['dig'] if d['kind'] == FIFF.FIFFV_POINT_EXTRA]) car_loc = np.array([d['r'] for d in info['dig'] if d['kind'] == FIFF.FIFFV_POINT_CARDINAL]) if coord_frame == 'meg': t = invert_transform(info['dev_head_t']) ext_loc = apply_trans(t, ext_loc) car_loc = apply_trans(t, car_loc) elif coord_frame == 'mri': ext_loc = apply_trans(head_mri_t, ext_loc) car_loc = apply_trans(head_mri_t, car_loc) if len(car_loc) == len(ext_loc) == 0: warn('Digitization points not found. Cannot plot digitization.') # do the plotting, surfaces then points from mayavi import mlab fig = mlab.figure(bgcolor=(0.0, 0.0, 0.0), size=(600, 600)) alphas = dict(head=1.0, helmet=0.5) colors = dict(head=(0.6, 0.6, 0.6), helmet=(0.0, 0.0, 0.6)) for key, surf in surfs.items(): x, y, z = surf['rr'].T nn = surf['nn'] # make absolutely sure these are normalized for Mayavi nn = nn / np.sum(nn * nn, axis=1)[:, np.newaxis] # Make a solid surface with warnings.catch_warnings(record=True): # traits mesh = mlab.pipeline.triangular_mesh_source(x, y, z, surf['tris']) mesh.data.point_data.normals = nn mesh.data.cell_data.normals = None mlab.pipeline.surface(mesh, color=colors[key], opacity=alphas[key]) datas = (eeg_loc, car_loc, ext_loc) colors = ((1., 0., 0.), (1., 1., 0.), (1., 0.5, 0.)) alphas = (1.0, 0.5, 0.25) scales = (0.005, 0.015, 0.0075) for data, color, alpha, scale in zip(datas, colors, alphas, scales): if len(data) > 0: with warnings.catch_warnings(record=True): # traits mlab.points3d(data[:, 0], data[:, 1], data[:, 2], color=color, scale_factor=scale, opacity=alpha) if len(meg_rrs) > 0: color, alpha = (0., 0.25, 0.5), 0.25 mlab.triangular_mesh(meg_rrs[:, 0], meg_rrs[:, 1], meg_rrs[:, 2], meg_tris, color=color, opacity=alpha) mlab.view(90, 90) return fig def _make_tris_fan(n_vert): """Helper to make tris given a number of vertices of a circle-like obj""" tris = np.zeros((n_vert - 2, 3), int) tris[:, 2] = np.arange(2, n_vert) tris[:, 1] = tris[:, 2] - 1 return tris def _sensor_shape(coil): """Get the sensor shape vertices""" rrs = np.empty([0, 2]) tris = np.empty([0, 3], int) id_ = coil['type'] & 0xFFFF if id_ in (2, 3012, 3013, 3011): # square figure eight # wound by right hand rule such that +x side is "up" (+z) long_side = coil['size'] # length of long side (meters) offset = 0.0025 # offset of the center portion of planar grad coil rrs = np.array([ [offset, -long_side / 2.], [long_side / 2., -long_side / 2.], [long_side / 2., long_side / 2.], [offset, long_side / 2.], [-offset, -long_side / 2.], [-long_side / 2., -long_side / 2.], [-long_side / 2., long_side / 2.], [-offset, long_side / 2.]]) tris = np.concatenate((_make_tris_fan(4), _make_tris_fan(4) + 4), axis=0) elif id_ in (2000, 3022, 3023, 3024): # square magnetometer (potentially point-type) size = 0.001 if id_ == 2000 else (coil['size'] / 2.) rrs = np.array([[-1., 1.], [1., 1.], [1., -1.], [-1., -1.]]) * size tris = _make_tris_fan(4) elif id_ in (4001, 4003, 5002, 7002, 7003): # round magnetometer n_pts = 15 # number of points for circle circle = np.exp(2j * np.pi * np.arange(n_pts) / float(n_pts)) circle = np.concatenate(([0.], circle)) circle *= coil['size'] / 2. # radius of coil rrs = np.array([circle.real, circle.imag]).T tris = _make_tris_fan(n_pts + 1) elif id_ in (4002, 5001, 5003, 5004, 4004, 4005, 6001, 7001): # round coil 1st order (off-diagonal) gradiometer baseline = coil['base'] if id_ in (5004, 4005) else 0. n_pts = 16 # number of points for circle # This time, go all the way around circle to close it fully circle = np.exp(2j * np.pi * np.arange(-1, n_pts) / float(n_pts - 1)) circle[0] = 0 # center pt for triangulation circle *= coil['size'] / 2. rrs = np.array([ # first, second coil np.concatenate([circle.real + baseline / 2., circle.real - baseline / 2.]), np.concatenate([circle.imag, -circle.imag])]).T tris = np.concatenate([_make_tris_fan(n_pts + 1), _make_tris_fan(n_pts + 1) + n_pts + 1]) # Go from (x,y) -> (x,y,z) rrs = np.pad(rrs, ((0, 0), (0, 1)), mode='constant') return rrs, tris def _limits_to_control_points(clim, stc_data, colormap): """Private helper function to convert limits (values or percentiles) to control points. Note: If using 'mne', generate cmap control points for a directly mirrored cmap for simplicity (i.e., no normalization is computed to account for a 2-tailed mne cmap). Parameters ---------- clim : str | dict Desired limits use to set cmap control points. Returns ------- ctrl_pts : list (length 3) Array of floats corresponding to values to use as cmap control points. colormap : str The colormap. """ # Based on type of limits specified, get cmap control points if colormap == 'auto': if clim == 'auto': colormap = 'mne' if (stc_data < 0).any() else 'hot' else: if 'lims' in clim: colormap = 'hot' else: # 'pos_lims' in clim colormap = 'mne' if clim == 'auto': # Set upper and lower bound based on percent, and get average between ctrl_pts = np.percentile(np.abs(stc_data), [96, 97.5, 99.95]) elif isinstance(clim, dict): # Get appropriate key for clim if it's a dict limit_key = ['lims', 'pos_lims'][colormap in ('mne', 'mne_analyze')] if colormap != 'auto' and limit_key not in clim.keys(): raise KeyError('"pos_lims" must be used with "mne" colormap') clim['kind'] = clim.get('kind', 'percent') if clim['kind'] == 'percent': ctrl_pts = np.percentile(np.abs(stc_data), list(np.abs(clim[limit_key]))) elif clim['kind'] == 'value': ctrl_pts = np.array(clim[limit_key]) if (np.diff(ctrl_pts) < 0).any(): raise ValueError('value colormap limits must be strictly ' 'nondecreasing') else: raise ValueError('If clim is a dict, clim[kind] must be ' ' "value" or "percent"') else: raise ValueError('"clim" must be "auto" or dict') if len(ctrl_pts) != 3: raise ValueError('"lims" or "pos_lims" is length %i. It must be length' ' 3' % len(ctrl_pts)) ctrl_pts = np.array(ctrl_pts, float) if len(set(ctrl_pts)) != 3: if len(set(ctrl_pts)) == 1: # three points match if ctrl_pts[0] == 0: # all are zero warn('All data were zero') ctrl_pts = np.arange(3, dtype=float) else: ctrl_pts *= [0., 0.5, 1] # all nonzero pts == max else: # two points match # if points one and two are identical, add a tiny bit to the # control point two; if points two and three are identical, # subtract a tiny bit from point two. bump = 1e-5 if ctrl_pts[0] == ctrl_pts[1] else -1e-5 ctrl_pts[1] = ctrl_pts[0] + bump * (ctrl_pts[2] - ctrl_pts[0]) return ctrl_pts, colormap def plot_source_estimates(stc, subject=None, surface='inflated', hemi='lh', colormap='auto', time_label='time=%0.2f ms', smoothing_steps=10, transparent=None, alpha=1.0, time_viewer=False, config_opts=None, subjects_dir=None, figure=None, views='lat', colorbar=True, clim='auto'): """Plot SourceEstimates with PySurfer Note: PySurfer currently needs the SUBJECTS_DIR environment variable, which will automatically be set by this function. Plotting multiple SourceEstimates with different values for subjects_dir will cause PySurfer to use the wrong FreeSurfer surfaces when using methods of the returned Brain object. It is therefore recommended to set the SUBJECTS_DIR environment variable or always use the same value for subjects_dir (within the same Python session). Parameters ---------- stc : SourceEstimates The source estimates to plot. subject : str | None The subject name corresponding to FreeSurfer environment variable SUBJECT. If None stc.subject will be used. If that is None, the environment will be used. surface : str The type of surface (inflated, white etc.). hemi : str, 'lh' | 'rh' | 'split' | 'both' The hemisphere to display. colormap : str | np.ndarray of float, shape(n_colors, 3 | 4) Name of colormap to use or a custom look up table. If array, must be (n x 3) or (n x 4) array for with RGB or RGBA values between 0 and 255. If 'auto', either 'hot' or 'mne' will be chosen based on whether 'lims' or 'pos_lims' are specified in `clim`. time_label : str How to print info about the time instant visualized. smoothing_steps : int The amount of smoothing transparent : bool | None If True, use a linear transparency between fmin and fmid. None will choose automatically based on colormap type. alpha : float Alpha value to apply globally to the overlay. time_viewer : bool Display time viewer GUI. config_opts : dict Keyword arguments for Brain initialization. See pysurfer.viz.Brain. subjects_dir : str The path to the freesurfer subjects reconstructions. It corresponds to Freesurfer environment variable SUBJECTS_DIR. figure : instance of mayavi.core.scene.Scene | list | int | None If None, a new figure will be created. If multiple views or a split view is requested, this must be a list of the appropriate length. If int is provided it will be used to identify the Mayavi figure by it's id or create a new figure with the given id. views : str | list View to use. See surfer.Brain(). colorbar : bool If True, display colorbar on scene. clim : str | dict Colorbar properties specification. If 'auto', set clim automatically based on data percentiles. If dict, should contain: ``kind`` : str Flag to specify type of limits. 'value' or 'percent'. ``lims`` : list | np.ndarray | tuple of float, 3 elements Note: Only use this if 'colormap' is not 'mne'. Left, middle, and right bound for colormap. ``pos_lims`` : list | np.ndarray | tuple of float, 3 elements Note: Only use this if 'colormap' is 'mne'. Left, middle, and right bound for colormap. Positive values will be mirrored directly across zero during colormap construction to obtain negative control points. Returns ------- brain : Brain A instance of surfer.viz.Brain from PySurfer. """ from surfer import Brain, TimeViewer config_opts = _handle_default('config_opts', config_opts) import mayavi from mayavi import mlab # import here to avoid circular import problem from ..source_estimate import SourceEstimate if not isinstance(stc, SourceEstimate): raise ValueError('stc has to be a surface source estimate') if hemi not in ['lh', 'rh', 'split', 'both']: raise ValueError('hemi has to be either "lh", "rh", "split", ' 'or "both"') n_split = 2 if hemi == 'split' else 1 n_views = 1 if isinstance(views, string_types) else len(views) if figure is not None: # use figure with specified id or create new figure if isinstance(figure, int): figure = mlab.figure(figure, size=(600, 600)) # make sure it is of the correct type if not isinstance(figure, list): figure = [figure] if not all(isinstance(f, mayavi.core.scene.Scene) for f in figure): raise TypeError('figure must be a mayavi scene or list of scenes') # make sure we have the right number of figures n_fig = len(figure) if not n_fig == n_split * n_views: raise RuntimeError('`figure` must be a list with the same ' 'number of elements as PySurfer plots that ' 'will be created (%s)' % n_split * n_views) # convert control points to locations in colormap ctrl_pts, colormap = _limits_to_control_points(clim, stc.data, colormap) # Construct cmap manually if 'mne' and get cmap bounds # and triage transparent argument if colormap in ('mne', 'mne_analyze'): colormap = mne_analyze_colormap(ctrl_pts) scale_pts = [-1 * ctrl_pts[-1], 0, ctrl_pts[-1]] transparent = False if transparent is None else transparent else: scale_pts = ctrl_pts transparent = True if transparent is None else transparent subjects_dir = get_subjects_dir(subjects_dir=subjects_dir, raise_error=True) subject = _check_subject(stc.subject, subject, True) if hemi in ['both', 'split']: hemis = ['lh', 'rh'] else: hemis = [hemi] title = subject if len(hemis) > 1 else '%s - %s' % (subject, hemis[0]) args = _get_args(Brain.__init__) kwargs = dict(title=title, figure=figure, config_opts=config_opts, subjects_dir=subjects_dir) if 'views' in args: kwargs['views'] = views with warnings.catch_warnings(record=True): # traits warnings brain = Brain(subject, hemi, surface, **kwargs) for hemi in hemis: hemi_idx = 0 if hemi == 'lh' else 1 if hemi_idx == 0: data = stc.data[:len(stc.vertices[0])] else: data = stc.data[len(stc.vertices[0]):] vertices = stc.vertices[hemi_idx] time = 1e3 * stc.times with warnings.catch_warnings(record=True): # traits warnings brain.add_data(data, colormap=colormap, vertices=vertices, smoothing_steps=smoothing_steps, time=time, time_label=time_label, alpha=alpha, hemi=hemi, colorbar=colorbar) # scale colormap and set time (index) to display brain.scale_data_colormap(fmin=scale_pts[0], fmid=scale_pts[1], fmax=scale_pts[2], transparent=transparent) if time_viewer: TimeViewer(brain) return brain def plot_sparse_source_estimates(src, stcs, colors=None, linewidth=2, fontsize=18, bgcolor=(.05, 0, .1), opacity=0.2, brain_color=(0.7,) * 3, show=True, high_resolution=False, fig_name=None, fig_number=None, labels=None, modes=('cone', 'sphere'), scale_factors=(1, 0.6), verbose=None, **kwargs): """Plot source estimates obtained with sparse solver Active dipoles are represented in a "Glass" brain. If the same source is active in multiple source estimates it is displayed with a sphere otherwise with a cone in 3D. Parameters ---------- src : dict The source space. stcs : instance of SourceEstimate or list of instances of SourceEstimate The source estimates (up to 3). colors : list List of colors linewidth : int Line width in 2D plot. fontsize : int Font size. bgcolor : tuple of length 3 Background color in 3D. opacity : float in [0, 1] Opacity of brain mesh. brain_color : tuple of length 3 Brain color. show : bool Show figures if True. high_resolution : bool If True, plot on the original (non-downsampled) cortical mesh. fig_name : Mayavi figure name. fig_number : Matplotlib figure number. labels : ndarray or list of ndarrays Labels to show sources in clusters. Sources with the same label and the waveforms within each cluster are presented in the same color. labels should be a list of ndarrays when stcs is a list ie. one label for each stc. modes : list Should be a list, with each entry being ``'cone'`` or ``'sphere'`` to specify how the dipoles should be shown. scale_factors : list List of floating point scale factors for the markers. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). **kwargs : kwargs Keyword arguments to pass to mlab.triangular_mesh. """ known_modes = ['cone', 'sphere'] if not isinstance(modes, (list, tuple)) or \ not all(mode in known_modes for mode in modes): raise ValueError('mode must be a list containing only ' '"cone" or "sphere"') if not isinstance(stcs, list): stcs = [stcs] if labels is not None and not isinstance(labels, list): labels = [labels] if colors is None: colors = COLORS linestyles = ['-', '--', ':'] # Show 3D lh_points = src[0]['rr'] rh_points = src[1]['rr'] points = np.r_[lh_points, rh_points] lh_normals = src[0]['nn'] rh_normals = src[1]['nn'] normals = np.r_[lh_normals, rh_normals] if high_resolution: use_lh_faces = src[0]['tris'] use_rh_faces = src[1]['tris'] else: use_lh_faces = src[0]['use_tris'] use_rh_faces = src[1]['use_tris'] use_faces = np.r_[use_lh_faces, lh_points.shape[0] + use_rh_faces] points *= 170 vertnos = [np.r_[stc.lh_vertno, lh_points.shape[0] + stc.rh_vertno] for stc in stcs] unique_vertnos = np.unique(np.concatenate(vertnos).ravel()) from mayavi import mlab from matplotlib.colors import ColorConverter color_converter = ColorConverter() f = mlab.figure(figure=fig_name, bgcolor=bgcolor, size=(600, 600)) mlab.clf() if mlab.options.backend != 'test': f.scene.disable_render = True with warnings.catch_warnings(record=True): # traits warnings surface = mlab.triangular_mesh(points[:, 0], points[:, 1], points[:, 2], use_faces, color=brain_color, opacity=opacity, **kwargs) import matplotlib.pyplot as plt # Show time courses plt.figure(fig_number) plt.clf() colors = cycle(colors) logger.info("Total number of active sources: %d" % len(unique_vertnos)) if labels is not None: colors = [advance_iterator(colors) for _ in range(np.unique(np.concatenate(labels).ravel()).size)] for idx, v in enumerate(unique_vertnos): # get indices of stcs it belongs to ind = [k for k, vertno in enumerate(vertnos) if v in vertno] is_common = len(ind) > 1 if labels is None: c = advance_iterator(colors) else: # if vertex is in different stcs than take label from first one c = colors[labels[ind[0]][vertnos[ind[0]] == v]] mode = modes[1] if is_common else modes[0] scale_factor = scale_factors[1] if is_common else scale_factors[0] if (isinstance(scale_factor, (np.ndarray, list, tuple)) and len(unique_vertnos) == len(scale_factor)): scale_factor = scale_factor[idx] x, y, z = points[v] nx, ny, nz = normals[v] with warnings.catch_warnings(record=True): # traits mlab.quiver3d(x, y, z, nx, ny, nz, color=color_converter.to_rgb(c), mode=mode, scale_factor=scale_factor) for k in ind: vertno = vertnos[k] mask = (vertno == v) assert np.sum(mask) == 1 linestyle = linestyles[k] plt.plot(1e3 * stcs[k].times, 1e9 * stcs[k].data[mask].ravel(), c=c, linewidth=linewidth, linestyle=linestyle) plt.xlabel('Time (ms)', fontsize=18) plt.ylabel('Source amplitude (nAm)', fontsize=18) if fig_name is not None: plt.title(fig_name) plt_show(show) surface.actor.property.backface_culling = True surface.actor.property.shading = True return surface def plot_dipole_locations(dipoles, trans, subject, subjects_dir=None, bgcolor=(1, 1, 1), opacity=0.3, brain_color=(1, 1, 0), fig_name=None, fig_size=(600, 600), mode='cone', scale_factor=0.1e-1, colors=None, verbose=None): """Plot dipole locations Only the location of the first time point of each dipole is shown. Parameters ---------- dipoles : list of instances of Dipole | Dipole The dipoles to plot. trans : dict The mri to head trans. subject : str The subject name corresponding to FreeSurfer environment variable SUBJECT. subjects_dir : None | str The path to the freesurfer subjects reconstructions. It corresponds to Freesurfer environment variable SUBJECTS_DIR. The default is None. bgcolor : tuple of length 3 Background color in 3D. opacity : float in [0, 1] Opacity of brain mesh. brain_color : tuple of length 3 Brain color. fig_name : str Mayavi figure name. fig_size : tuple of length 2 Mayavi figure size. mode : str Should be ``'cone'`` or ``'sphere'`` to specify how the dipoles should be shown. scale_factor : float The scaling applied to amplitudes for the plot. colors: list of colors | None Color to plot with each dipole. If None default colors are used. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- fig : instance of mlab.Figure The mayavi figure. Notes ----- .. versionadded:: 0.9.0 """ from mayavi import mlab from matplotlib.colors import ColorConverter color_converter = ColorConverter() trans = _get_trans(trans)[0] subjects_dir = get_subjects_dir(subjects_dir=subjects_dir, raise_error=True) fname = op.join(subjects_dir, subject, 'bem', 'inner_skull.surf') points, faces = read_surface(fname) points = apply_trans(trans['trans'], points * 1e-3) from .. import Dipole if isinstance(dipoles, Dipole): dipoles = [dipoles] if mode not in ['cone', 'sphere']: raise ValueError('mode must be in "cone" or "sphere"') if colors is None: colors = cycle(COLORS) fig = mlab.figure(size=fig_size, bgcolor=bgcolor, fgcolor=(0, 0, 0)) with warnings.catch_warnings(record=True): # FutureWarning in traits mlab.triangular_mesh(points[:, 0], points[:, 1], points[:, 2], faces, color=brain_color, opacity=opacity) for dip, color in zip(dipoles, colors): rgb_color = color_converter.to_rgb(color) with warnings.catch_warnings(record=True): # FutureWarning in traits mlab.quiver3d(dip.pos[0, 0], dip.pos[0, 1], dip.pos[0, 2], dip.ori[0, 0], dip.ori[0, 1], dip.ori[0, 2], opacity=1., mode=mode, color=rgb_color, scalars=dip.amplitude.max(), scale_factor=scale_factor) if fig_name is not None: mlab.title(fig_name) if fig.scene is not None: # safe for Travis fig.scene.x_plus_view() return fig
bsd-3-clause
imito/odin
examples/voxceleb/train_xvec.py
1
7023
from __future__ import print_function, division, absolute_import import matplotlib matplotlib.use('Agg') import os os.environ['ODIN'] = 'float32,gpu' import scipy.io import numpy as np import tensorflow as tf from tensorflow.python.ops import init_ops from odin import training from odin.utils import (args_parse, ctext, Progbar, as_tuple_of_shape, crypto, stdio) from odin import fuel as F, visual as V, nnet as N, backend as K from utils import prepare_dnn_data, get_model_path, csv2mat # =========================================================================== # Configs # =========================================================================== args = args_parse([ ('recipe', 'the name of function defined in feature_recipes.py', None), ('-feat', "Acoustic feature", ('mspec', 'mfcc'), 'mspec'), ('-batch', "batch size", None, 64), ('-epoch', "number of epoch", None, 25), ('-l', "audio segmenting length in second", None, 3), ('--debug', "enable debug mode", None, False), ('--train', "force continue training the saved model", None, False), ]) FEAT = args.feat TRAIN_MODEL = args.train DEBUG = bool(args.debug) (EXP_DIR, MODEL_PATH, LOG_PATH, TRAIN_PATH, TEST_PATH) = get_model_path('xvec', args) stdio(LOG_PATH) # =========================================================================== # Create data feeder # =========================================================================== (train, valid, test_ids, test_dat, all_speakers) = prepare_dnn_data( recipe=args.recipe, feat=FEAT, utt_length=args.l) n_speakers = len(all_speakers) + 1 # =========================================================================== # Create the network # =========================================================================== inputs = [K.placeholder(shape=(None,) + shape[1:], dtype='float32', name='input%d' % i) for i, shape in enumerate(as_tuple_of_shape(train.shape))] X = inputs[0] y = inputs[1] print("Inputs:", ctext(inputs, 'cyan')) # ====== the network ====== # if os.path.exists(MODEL_PATH): x_vec = N.deserialize(path=MODEL_PATH, force_restore_vars=True) else: TRAIN_MODEL = True with N.args_scope( ['TimeDelayedConv', dict(time_pool='none', activation=K.relu)], ['Dense', dict(activation=K.linear, b_init=None)], ['BatchNorm', dict(activation=K.relu)] ): x_vec = N.Sequence([ N.Dropout(level=0.3), N.TimeDelayedConv(n_new_features=512, n_time_context=5), N.TimeDelayedConv(n_new_features=512, n_time_context=5), N.TimeDelayedConv(n_new_features=512, n_time_context=7), N.Dense(512), N.BatchNorm(), N.Dense(1500), N.BatchNorm(), N.StatsPool(axes=1, output_mode='concat'), N.Flatten(outdim=2), N.Dense(512, name="LatentOutput"), N.BatchNorm(), N.Dense(512), N.BatchNorm(), N.Dense(n_speakers, activation=K.linear, b_init=init_ops.constant_initializer(value=0)) ], debug=1) # ====== create outputs ====== # y_logit = x_vec(X) y_proba = tf.nn.softmax(y_logit) z = K.ComputationGraph(y_proba).get(roles=N.Dense, scope='LatentOutput', beginning_scope=False)[0] print('Latent space:', ctext(z, 'cyan')) # ====== create loss ====== # ce = tf.losses.softmax_cross_entropy(onehot_labels=y, logits=y_logit) acc = K.metrics.categorical_accuracy(y_true=y, y_pred=y_proba) # ====== params and optimizing ====== # updates = K.optimizers.Adam(lr=0.0001, name='XAdam').minimize( loss=ce, roles=[K.role.TrainableParameter], exclude_roles=[K.role.InitialState], verbose=True) K.initialize_all_variables() # # ====== Functions ====== # print('Building training functions ...') f_train = K.function(inputs, [ce, acc], updates=updates, training=True) print('Building testing functions ...') f_score = K.function(inputs, [ce, acc], training=False) # Latent spaces f_z = K.function(inputs=X, outputs=z, training=False) # =========================================================================== # Create trainer # =========================================================================== if TRAIN_MODEL: print('Start training ...') task = training.MainLoop(batch_size=args.batch, seed=1234, shuffle_level=2, allow_rollback=True) task.set_checkpoint(MODEL_PATH, x_vec) task.set_callbacks([ training.NaNDetector(), training.EarlyStopGeneralizationLoss('valid', ce, threshold=5, patience=5) ]) task.set_train_task(func=f_train, data=train, epoch=args.epoch, name='train') task.set_valid_task(func=f_score, data=valid, freq=training.Timer(percentage=0.8), name='valid') task.run() # =========================================================================== # Saving the test data # CSV separated by tab # =========================================================================== sep = '\t' prog = Progbar(target=len(test_ids) + len(train) + len(valid), print_summary=True, print_report=True, name="Extracting x-vector") with open(TRAIN_PATH, 'w') as f_train, open(TEST_PATH, 'w') as f_test: # ====== save training set ====== # for name, idx, X, y in train.set_batch(batch_size=8000, batch_mode='file', seed=None): assert idx == 0 y = np.argmax(y, axis=-1) assert len(set(y)) == 1 y = y[0] z = np.mean(f_z(X), axis=0, keepdims=False).astype('float32') f_train.write(sep.join([str(y)] + [str(i) for i in z]) + '\n') prog.add(X.shape[0]) # ====== save validation set ====== # for name, idx, X, y in valid.set_batch(batch_size=8000, batch_mode='file', seed=None): assert idx == 0 y = np.argmax(y, axis=-1) assert len(set(y)) == 1 y = y[0] z = np.mean(f_z(X), axis=0, keepdims=False).astype('float32') f_train.write(sep.join([str(y)] + [str(i) for i in z]) + '\n') prog.add(X.shape[0]) # ====== save test set ====== # for name, (start, end) in sorted(test_ids.items(), key=lambda x: x[0]): y = test_dat[start:end] z = np.mean(f_z(y), axis=0, keepdims=False).astype('float32') f_test.write(sep.join([name] + [str(i) for i in z]) + '\n') prog.add(1) # convert everything to matlab format csv2mat(exp_dir=EXP_DIR) # =========================================================================== # Evaluate and save the log # =========================================================================== np.random.seed(87654321) shape = inputs[0].shape X = np.random.rand(64, shape[1].value, shape[2].value).astype('float32') Z = f_z(X) # ====== make sure model has the same identity ====== # print(Z.shape, Z.sum(), (Z**2).sum(), Z.std()) print(ctext(crypto.md5_checksum(Z), 'cyan'))
mit
kagayakidan/scikit-learn
sklearn/tree/export.py
78
15814
""" This module defines export functions for decision trees. """ # Authors: Gilles Louppe <g.louppe@gmail.com> # Peter Prettenhofer <peter.prettenhofer@gmail.com> # Brian Holt <bdholt1@gmail.com> # Noel Dawe <noel@dawe.me> # Satrajit Gosh <satrajit.ghosh@gmail.com> # Trevor Stephens <trev.stephens@gmail.com> # Licence: BSD 3 clause import numpy as np from ..externals import six from . import _criterion from . import _tree def _color_brew(n): """Generate n colors with equally spaced hues. Parameters ---------- n : int The number of colors required. Returns ------- color_list : list, length n List of n tuples of form (R, G, B) being the components of each color. """ color_list = [] # Initialize saturation & value; calculate chroma & value shift s, v = 0.75, 0.9 c = s * v m = v - c for h in np.arange(25, 385, 360. / n).astype(int): # Calculate some intermediate values h_bar = h / 60. x = c * (1 - abs((h_bar % 2) - 1)) # Initialize RGB with same hue & chroma as our color rgb = [(c, x, 0), (x, c, 0), (0, c, x), (0, x, c), (x, 0, c), (c, 0, x), (c, x, 0)] r, g, b = rgb[int(h_bar)] # Shift the initial RGB values to match value and store rgb = [(int(255 * (r + m))), (int(255 * (g + m))), (int(255 * (b + m)))] color_list.append(rgb) return color_list def export_graphviz(decision_tree, out_file="tree.dot", max_depth=None, feature_names=None, class_names=None, label='all', filled=False, leaves_parallel=False, impurity=True, node_ids=False, proportion=False, rotate=False, rounded=False, special_characters=False): """Export a decision tree in DOT format. This function generates a GraphViz representation of the decision tree, which is then written into `out_file`. Once exported, graphical renderings can be generated using, for example:: $ dot -Tps tree.dot -o tree.ps (PostScript format) $ dot -Tpng tree.dot -o tree.png (PNG format) The sample counts that are shown are weighted with any sample_weights that might be present. Read more in the :ref:`User Guide <tree>`. Parameters ---------- decision_tree : decision tree classifier The decision tree to be exported to GraphViz. out_file : file object or string, optional (default="tree.dot") Handle or name of the output file. max_depth : int, optional (default=None) The maximum depth of the representation. If None, the tree is fully generated. feature_names : list of strings, optional (default=None) Names of each of the features. class_names : list of strings, bool or None, optional (default=None) Names of each of the target classes in ascending numerical order. Only relevant for classification and not supported for multi-output. If ``True``, shows a symbolic representation of the class name. label : {'all', 'root', 'none'}, optional (default='all') Whether to show informative labels for impurity, etc. Options include 'all' to show at every node, 'root' to show only at the top root node, or 'none' to not show at any node. filled : bool, optional (default=False) When set to ``True``, paint nodes to indicate majority class for classification, extremity of values for regression, or purity of node for multi-output. leaves_parallel : bool, optional (default=False) When set to ``True``, draw all leaf nodes at the bottom of the tree. impurity : bool, optional (default=True) When set to ``True``, show the impurity at each node. node_ids : bool, optional (default=False) When set to ``True``, show the ID number on each node. proportion : bool, optional (default=False) When set to ``True``, change the display of 'values' and/or 'samples' to be proportions and percentages respectively. rotate : bool, optional (default=False) When set to ``True``, orient tree left to right rather than top-down. rounded : bool, optional (default=False) When set to ``True``, draw node boxes with rounded corners and use Helvetica fonts instead of Times-Roman. special_characters : bool, optional (default=False) When set to ``False``, ignore special characters for PostScript compatibility. Examples -------- >>> from sklearn.datasets import load_iris >>> from sklearn import tree >>> clf = tree.DecisionTreeClassifier() >>> iris = load_iris() >>> clf = clf.fit(iris.data, iris.target) >>> tree.export_graphviz(clf, ... out_file='tree.dot') # doctest: +SKIP """ def get_color(value): # Find the appropriate color & intensity for a node if colors['bounds'] is None: # Classification tree color = list(colors['rgb'][np.argmax(value)]) sorted_values = sorted(value, reverse=True) alpha = int(255 * (sorted_values[0] - sorted_values[1]) / (1 - sorted_values[1])) else: # Regression tree or multi-output color = list(colors['rgb'][0]) alpha = int(255 * ((value - colors['bounds'][0]) / (colors['bounds'][1] - colors['bounds'][0]))) # Return html color code in #RRGGBBAA format color.append(alpha) hex_codes = [str(i) for i in range(10)] hex_codes.extend(['a', 'b', 'c', 'd', 'e', 'f']) color = [hex_codes[c // 16] + hex_codes[c % 16] for c in color] return '#' + ''.join(color) def node_to_str(tree, node_id, criterion): # Generate the node content string if tree.n_outputs == 1: value = tree.value[node_id][0, :] else: value = tree.value[node_id] # Should labels be shown? labels = (label == 'root' and node_id == 0) or label == 'all' # PostScript compatibility for special characters if special_characters: characters = ['&#35;', '<SUB>', '</SUB>', '&le;', '<br/>', '>'] node_string = '<' else: characters = ['#', '[', ']', '<=', '\\n', '"'] node_string = '"' # Write node ID if node_ids: if labels: node_string += 'node ' node_string += characters[0] + str(node_id) + characters[4] # Write decision criteria if tree.children_left[node_id] != _tree.TREE_LEAF: # Always write node decision criteria, except for leaves if feature_names is not None: feature = feature_names[tree.feature[node_id]] else: feature = "X%s%s%s" % (characters[1], tree.feature[node_id], characters[2]) node_string += '%s %s %s%s' % (feature, characters[3], round(tree.threshold[node_id], 4), characters[4]) # Write impurity if impurity: if isinstance(criterion, _criterion.FriedmanMSE): criterion = "friedman_mse" elif not isinstance(criterion, six.string_types): criterion = "impurity" if labels: node_string += '%s = ' % criterion node_string += (str(round(tree.impurity[node_id], 4)) + characters[4]) # Write node sample count if labels: node_string += 'samples = ' if proportion: percent = (100. * tree.n_node_samples[node_id] / float(tree.n_node_samples[0])) node_string += (str(round(percent, 1)) + '%' + characters[4]) else: node_string += (str(tree.n_node_samples[node_id]) + characters[4]) # Write node class distribution / regression value if proportion and tree.n_classes[0] != 1: # For classification this will show the proportion of samples value = value / tree.weighted_n_node_samples[node_id] if labels: node_string += 'value = ' if tree.n_classes[0] == 1: # Regression value_text = np.around(value, 4) elif proportion: # Classification value_text = np.around(value, 2) elif np.all(np.equal(np.mod(value, 1), 0)): # Classification without floating-point weights value_text = value.astype(int) else: # Classification with floating-point weights value_text = np.around(value, 4) # Strip whitespace value_text = str(value_text.astype('S32')).replace("b'", "'") value_text = value_text.replace("' '", ", ").replace("'", "") if tree.n_classes[0] == 1 and tree.n_outputs == 1: value_text = value_text.replace("[", "").replace("]", "") value_text = value_text.replace("\n ", characters[4]) node_string += value_text + characters[4] # Write node majority class if (class_names is not None and tree.n_classes[0] != 1 and tree.n_outputs == 1): # Only done for single-output classification trees if labels: node_string += 'class = ' if class_names is not True: class_name = class_names[np.argmax(value)] else: class_name = "y%s%s%s" % (characters[1], np.argmax(value), characters[2]) node_string += class_name # Clean up any trailing newlines if node_string[-2:] == '\\n': node_string = node_string[:-2] if node_string[-5:] == '<br/>': node_string = node_string[:-5] return node_string + characters[5] def recurse(tree, node_id, criterion, parent=None, depth=0): if node_id == _tree.TREE_LEAF: raise ValueError("Invalid node_id %s" % _tree.TREE_LEAF) left_child = tree.children_left[node_id] right_child = tree.children_right[node_id] # Add node with description if max_depth is None or depth <= max_depth: # Collect ranks for 'leaf' option in plot_options if left_child == _tree.TREE_LEAF: ranks['leaves'].append(str(node_id)) elif str(depth) not in ranks: ranks[str(depth)] = [str(node_id)] else: ranks[str(depth)].append(str(node_id)) out_file.write('%d [label=%s' % (node_id, node_to_str(tree, node_id, criterion))) if filled: # Fetch appropriate color for node if 'rgb' not in colors: # Initialize colors and bounds if required colors['rgb'] = _color_brew(tree.n_classes[0]) if tree.n_outputs != 1: # Find max and min impurities for multi-output colors['bounds'] = (np.min(-tree.impurity), np.max(-tree.impurity)) elif tree.n_classes[0] == 1: # Find max and min values in leaf nodes for regression colors['bounds'] = (np.min(tree.value), np.max(tree.value)) if tree.n_outputs == 1: node_val = (tree.value[node_id][0, :] / tree.weighted_n_node_samples[node_id]) if tree.n_classes[0] == 1: # Regression node_val = tree.value[node_id][0, :] else: # If multi-output color node by impurity node_val = -tree.impurity[node_id] out_file.write(', fillcolor="%s"' % get_color(node_val)) out_file.write('] ;\n') if parent is not None: # Add edge to parent out_file.write('%d -> %d' % (parent, node_id)) if parent == 0: # Draw True/False labels if parent is root node angles = np.array([45, -45]) * ((rotate - .5) * -2) out_file.write(' [labeldistance=2.5, labelangle=') if node_id == 1: out_file.write('%d, headlabel="True"]' % angles[0]) else: out_file.write('%d, headlabel="False"]' % angles[1]) out_file.write(' ;\n') if left_child != _tree.TREE_LEAF: recurse(tree, left_child, criterion=criterion, parent=node_id, depth=depth + 1) recurse(tree, right_child, criterion=criterion, parent=node_id, depth=depth + 1) else: ranks['leaves'].append(str(node_id)) out_file.write('%d [label="(...)"' % node_id) if filled: # color cropped nodes grey out_file.write(', fillcolor="#C0C0C0"') out_file.write('] ;\n' % node_id) if parent is not None: # Add edge to parent out_file.write('%d -> %d ;\n' % (parent, node_id)) own_file = False try: if isinstance(out_file, six.string_types): if six.PY3: out_file = open(out_file, "w", encoding="utf-8") else: out_file = open(out_file, "wb") own_file = True # The depth of each node for plotting with 'leaf' option ranks = {'leaves': []} # The colors to render each node with colors = {'bounds': None} out_file.write('digraph Tree {\n') # Specify node aesthetics out_file.write('node [shape=box') rounded_filled = [] if filled: rounded_filled.append('filled') if rounded: rounded_filled.append('rounded') if len(rounded_filled) > 0: out_file.write(', style="%s", color="black"' % ", ".join(rounded_filled)) if rounded: out_file.write(', fontname=helvetica') out_file.write('] ;\n') # Specify graph & edge aesthetics if leaves_parallel: out_file.write('graph [ranksep=equally, splines=polyline] ;\n') if rounded: out_file.write('edge [fontname=helvetica] ;\n') if rotate: out_file.write('rankdir=LR ;\n') # Now recurse the tree and add node & edge attributes if isinstance(decision_tree, _tree.Tree): recurse(decision_tree, 0, criterion="impurity") else: recurse(decision_tree.tree_, 0, criterion=decision_tree.criterion) # If required, draw leaf nodes at same depth as each other if leaves_parallel: for rank in sorted(ranks): out_file.write("{rank=same ; " + "; ".join(r for r in ranks[rank]) + "} ;\n") out_file.write("}") finally: if own_file: out_file.close()
bsd-3-clause
mlyundin/scikit-learn
examples/cluster/plot_adjusted_for_chance_measures.py
286
4353
""" ========================================================== Adjustment for chance in clustering performance evaluation ========================================================== The following plots demonstrate the impact of the number of clusters and number of samples on various clustering performance evaluation metrics. Non-adjusted measures such as the V-Measure show a dependency between the number of clusters and the number of samples: the mean V-Measure of random labeling increases significantly as the number of clusters is closer to the total number of samples used to compute the measure. Adjusted for chance measure such as ARI display some random variations centered around a mean score of 0.0 for any number of samples and clusters. Only adjusted measures can hence safely be used as a consensus index to evaluate the average stability of clustering algorithms for a given value of k on various overlapping sub-samples of the dataset. """ print(__doc__) # Author: Olivier Grisel <olivier.grisel@ensta.org> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from time import time from sklearn import metrics def uniform_labelings_scores(score_func, n_samples, n_clusters_range, fixed_n_classes=None, n_runs=5, seed=42): """Compute score for 2 random uniform cluster labelings. Both random labelings have the same number of clusters for each value possible value in ``n_clusters_range``. When fixed_n_classes is not None the first labeling is considered a ground truth class assignment with fixed number of classes. """ random_labels = np.random.RandomState(seed).random_integers scores = np.zeros((len(n_clusters_range), n_runs)) if fixed_n_classes is not None: labels_a = random_labels(low=0, high=fixed_n_classes - 1, size=n_samples) for i, k in enumerate(n_clusters_range): for j in range(n_runs): if fixed_n_classes is None: labels_a = random_labels(low=0, high=k - 1, size=n_samples) labels_b = random_labels(low=0, high=k - 1, size=n_samples) scores[i, j] = score_func(labels_a, labels_b) return scores score_funcs = [ metrics.adjusted_rand_score, metrics.v_measure_score, metrics.adjusted_mutual_info_score, metrics.mutual_info_score, ] # 2 independent random clusterings with equal cluster number n_samples = 100 n_clusters_range = np.linspace(2, n_samples, 10).astype(np.int) plt.figure(1) plots = [] names = [] for score_func in score_funcs: print("Computing %s for %d values of n_clusters and n_samples=%d" % (score_func.__name__, len(n_clusters_range), n_samples)) t0 = time() scores = uniform_labelings_scores(score_func, n_samples, n_clusters_range) print("done in %0.3fs" % (time() - t0)) plots.append(plt.errorbar( n_clusters_range, np.median(scores, axis=1), scores.std(axis=1))[0]) names.append(score_func.__name__) plt.title("Clustering measures for 2 random uniform labelings\n" "with equal number of clusters") plt.xlabel('Number of clusters (Number of samples is fixed to %d)' % n_samples) plt.ylabel('Score value') plt.legend(plots, names) plt.ylim(ymin=-0.05, ymax=1.05) # Random labeling with varying n_clusters against ground class labels # with fixed number of clusters n_samples = 1000 n_clusters_range = np.linspace(2, 100, 10).astype(np.int) n_classes = 10 plt.figure(2) plots = [] names = [] for score_func in score_funcs: print("Computing %s for %d values of n_clusters and n_samples=%d" % (score_func.__name__, len(n_clusters_range), n_samples)) t0 = time() scores = uniform_labelings_scores(score_func, n_samples, n_clusters_range, fixed_n_classes=n_classes) print("done in %0.3fs" % (time() - t0)) plots.append(plt.errorbar( n_clusters_range, scores.mean(axis=1), scores.std(axis=1))[0]) names.append(score_func.__name__) plt.title("Clustering measures for random uniform labeling\n" "against reference assignment with %d classes" % n_classes) plt.xlabel('Number of clusters (Number of samples is fixed to %d)' % n_samples) plt.ylabel('Score value') plt.ylim(ymin=-0.05, ymax=1.05) plt.legend(plots, names) plt.show()
bsd-3-clause
etkirsch/scikit-learn
examples/missing_values.py
233
3056
""" ====================================================== Imputing missing values before building an estimator ====================================================== This example shows that imputing the missing values can give better results than discarding the samples containing any missing value. Imputing does not always improve the predictions, so please check via cross-validation. Sometimes dropping rows or using marker values is more effective. Missing values can be replaced by the mean, the median or the most frequent value using the ``strategy`` hyper-parameter. The median is a more robust estimator for data with high magnitude variables which could dominate results (otherwise known as a 'long tail'). Script output:: Score with the entire dataset = 0.56 Score without the samples containing missing values = 0.48 Score after imputation of the missing values = 0.55 In this case, imputing helps the classifier get close to the original score. """ import numpy as np from sklearn.datasets import load_boston from sklearn.ensemble import RandomForestRegressor from sklearn.pipeline import Pipeline from sklearn.preprocessing import Imputer from sklearn.cross_validation import cross_val_score rng = np.random.RandomState(0) dataset = load_boston() X_full, y_full = dataset.data, dataset.target n_samples = X_full.shape[0] n_features = X_full.shape[1] # Estimate the score on the entire dataset, with no missing values estimator = RandomForestRegressor(random_state=0, n_estimators=100) score = cross_val_score(estimator, X_full, y_full).mean() print("Score with the entire dataset = %.2f" % score) # Add missing values in 75% of the lines missing_rate = 0.75 n_missing_samples = np.floor(n_samples * missing_rate) missing_samples = np.hstack((np.zeros(n_samples - n_missing_samples, dtype=np.bool), np.ones(n_missing_samples, dtype=np.bool))) rng.shuffle(missing_samples) missing_features = rng.randint(0, n_features, n_missing_samples) # Estimate the score without the lines containing missing values X_filtered = X_full[~missing_samples, :] y_filtered = y_full[~missing_samples] estimator = RandomForestRegressor(random_state=0, n_estimators=100) score = cross_val_score(estimator, X_filtered, y_filtered).mean() print("Score without the samples containing missing values = %.2f" % score) # Estimate the score after imputation of the missing values X_missing = X_full.copy() X_missing[np.where(missing_samples)[0], missing_features] = 0 y_missing = y_full.copy() estimator = Pipeline([("imputer", Imputer(missing_values=0, strategy="mean", axis=0)), ("forest", RandomForestRegressor(random_state=0, n_estimators=100))]) score = cross_val_score(estimator, X_missing, y_missing).mean() print("Score after imputation of the missing values = %.2f" % score)
bsd-3-clause
datapythonista/pandas
asv_bench/benchmarks/tslibs/offsets.py
6
2207
""" offsets benchmarks that rely only on tslibs. See benchmarks.offset for offsets benchmarks that rely on other parts of pandas. """ from datetime import datetime import numpy as np from pandas import offsets try: import pandas.tseries.holiday except ImportError: pass hcal = pandas.tseries.holiday.USFederalHolidayCalendar() # These offsets currently raise a NotImplimentedError with .apply_index() non_apply = [ offsets.Day(), offsets.BYearEnd(), offsets.BYearBegin(), offsets.BQuarterEnd(), offsets.BQuarterBegin(), offsets.BMonthEnd(), offsets.BMonthBegin(), offsets.CustomBusinessDay(), offsets.CustomBusinessDay(calendar=hcal), offsets.CustomBusinessMonthBegin(calendar=hcal), offsets.CustomBusinessMonthEnd(calendar=hcal), offsets.CustomBusinessMonthEnd(calendar=hcal), ] other_offsets = [ offsets.YearEnd(), offsets.YearBegin(), offsets.QuarterEnd(), offsets.QuarterBegin(), offsets.MonthEnd(), offsets.MonthBegin(), offsets.DateOffset(months=2, days=2), offsets.BusinessDay(), offsets.SemiMonthEnd(), offsets.SemiMonthBegin(), ] offset_objs = non_apply + other_offsets class OnOffset: params = offset_objs param_names = ["offset"] def setup(self, offset): self.dates = [ datetime(2016, m, d) for m in [10, 11, 12] for d in [1, 2, 3, 28, 29, 30, 31] if not (m == 11 and d == 31) ] def time_on_offset(self, offset): for date in self.dates: offset.is_on_offset(date) class OffestDatetimeArithmetic: params = offset_objs param_names = ["offset"] def setup(self, offset): self.date = datetime(2011, 1, 1) self.dt64 = np.datetime64("2011-01-01 09:00Z") def time_apply(self, offset): offset.apply(self.date) def time_apply_np_dt64(self, offset): offset.apply(self.dt64) def time_add(self, offset): self.date + offset def time_add_10(self, offset): self.date + (10 * offset) def time_subtract(self, offset): self.date - offset def time_subtract_10(self, offset): self.date - (10 * offset)
bsd-3-clause
samuel1208/scikit-learn
examples/cluster/plot_birch_vs_minibatchkmeans.py
333
3694
""" ================================= Compare BIRCH and MiniBatchKMeans ================================= This example compares the timing of Birch (with and without the global clustering step) and MiniBatchKMeans on a synthetic dataset having 100,000 samples and 2 features generated using make_blobs. If ``n_clusters`` is set to None, the data is reduced from 100,000 samples to a set of 158 clusters. This can be viewed as a preprocessing step before the final (global) clustering step that further reduces these 158 clusters to 100 clusters. """ # Authors: Manoj Kumar <manojkumarsivaraj334@gmail.com # Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr> # License: BSD 3 clause print(__doc__) from itertools import cycle from time import time import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as colors from sklearn.preprocessing import StandardScaler from sklearn.cluster import Birch, MiniBatchKMeans from sklearn.datasets.samples_generator import make_blobs # Generate centers for the blobs so that it forms a 10 X 10 grid. xx = np.linspace(-22, 22, 10) yy = np.linspace(-22, 22, 10) xx, yy = np.meshgrid(xx, yy) n_centres = np.hstack((np.ravel(xx)[:, np.newaxis], np.ravel(yy)[:, np.newaxis])) # Generate blobs to do a comparison between MiniBatchKMeans and Birch. X, y = make_blobs(n_samples=100000, centers=n_centres, random_state=0) # Use all colors that matplotlib provides by default. colors_ = cycle(colors.cnames.keys()) fig = plt.figure(figsize=(12, 4)) fig.subplots_adjust(left=0.04, right=0.98, bottom=0.1, top=0.9) # Compute clustering with Birch with and without the final clustering step # and plot. birch_models = [Birch(threshold=1.7, n_clusters=None), Birch(threshold=1.7, n_clusters=100)] final_step = ['without global clustering', 'with global clustering'] for ind, (birch_model, info) in enumerate(zip(birch_models, final_step)): t = time() birch_model.fit(X) time_ = time() - t print("Birch %s as the final step took %0.2f seconds" % ( info, (time() - t))) # Plot result labels = birch_model.labels_ centroids = birch_model.subcluster_centers_ n_clusters = np.unique(labels).size print("n_clusters : %d" % n_clusters) ax = fig.add_subplot(1, 3, ind + 1) for this_centroid, k, col in zip(centroids, range(n_clusters), colors_): mask = labels == k ax.plot(X[mask, 0], X[mask, 1], 'w', markerfacecolor=col, marker='.') if birch_model.n_clusters is None: ax.plot(this_centroid[0], this_centroid[1], '+', markerfacecolor=col, markeredgecolor='k', markersize=5) ax.set_ylim([-25, 25]) ax.set_xlim([-25, 25]) ax.set_autoscaley_on(False) ax.set_title('Birch %s' % info) # Compute clustering with MiniBatchKMeans. mbk = MiniBatchKMeans(init='k-means++', n_clusters=100, batch_size=100, n_init=10, max_no_improvement=10, verbose=0, random_state=0) t0 = time() mbk.fit(X) t_mini_batch = time() - t0 print("Time taken to run MiniBatchKMeans %0.2f seconds" % t_mini_batch) mbk_means_labels_unique = np.unique(mbk.labels_) ax = fig.add_subplot(1, 3, 3) for this_centroid, k, col in zip(mbk.cluster_centers_, range(n_clusters), colors_): mask = mbk.labels_ == k ax.plot(X[mask, 0], X[mask, 1], 'w', markerfacecolor=col, marker='.') ax.plot(this_centroid[0], this_centroid[1], '+', markeredgecolor='k', markersize=5) ax.set_xlim([-25, 25]) ax.set_ylim([-25, 25]) ax.set_title("MiniBatchKMeans") ax.set_autoscaley_on(False) plt.show()
bsd-3-clause
fjxhkj/PTVS
Python/Product/ML/ProjectTemplates/ClusteringTemplate/clustering.py
18
10394
''' This script perfoms the basic process for applying a machine learning algorithm to a dataset using Python libraries. The four steps are: 1. Download a dataset (using pandas) 2. Process the numeric data (using numpy) 3. Train and evaluate learners (using scikit-learn) 4. Plot and compare results (using matplotlib) The data is downloaded from URL, which is defined below. As is normal for machine learning problems, the nature of the source data affects the entire solution. When you change URL to refer to your own data, you will need to review the data processing steps to ensure they remain correct. ============ Example Data ============ The example is from http://archive.ics.uci.edu/ml/datasets/Water+Treatment+Plant It contains a range of continuous values from sensors at a water treatment plant, and the aim is to use unsupervised learners to determine whether the plant is operating correctly. See the linked page for more information about the data set. This script uses unsupervised clustering learners and dimensionality reduction models to find similar values, outliers, and visualize the classes. ''' # Remember to update the script for the new data when you change this URL URL = "http://archive.ics.uci.edu/ml/machine-learning-databases/water-treatment/water-treatment.data" # Uncomment this call when using matplotlib to generate images # rather than displaying interactive UI. #import matplotlib #matplotlib.use('Agg') from pandas import read_table import numpy as np import matplotlib.pyplot as plt from matplotlib.ticker import MaxNLocator try: # [OPTIONAL] Seaborn makes plots nicer import seaborn except ImportError: pass # ===================================================================== def download_data(): ''' Downloads the data for this script into a pandas DataFrame. ''' # If your data is in an Excel file, install 'xlrd' and use # pandas.read_excel instead of read_table #from pandas import read_excel #frame = read_excel(URL) # If your data is in a private Azure blob, install 'azure' and use # BlobService.get_blob_to_path() with read_table() or read_excel() #import azure.storage #service = azure.storage.BlobService(ACCOUNT_NAME, ACCOUNT_KEY) #service.get_blob_to_path(container_name, blob_name, 'my_data.csv') #frame = read_table('my_data.csv', ... frame = read_table( URL, # Uncomment if the file needs to be decompressed #compression='gzip', #compression='bz2', # Specify the file encoding # Latin-1 is common for data from US sources encoding='latin-1', #encoding='utf-8', # UTF-8 is also common # Specify the separator in the data sep=',', # comma separated values #sep='\t', # tab separated values #sep=' ', # space separated values # Ignore spaces after the separator skipinitialspace=True, # Treat question marks as missing values na_values=['?'], # Generate row labels from each row number index_col=None, #index_col=0, # use the first column as row labels #index_col=-1, # use the last column as row labels # Generate column headers row from each column number header=None, #header=0, # use the first line as headers # Use manual headers and skip the first row in the file #header=0, #names=['col1', 'col2', ...], ) # Return a subset of the columns #return frame[['col1', 'col4', ...]] # Return the entire frame #return frame # Return all except the first column del frame[frame.columns[0]] return frame # ===================================================================== def get_features(frame): ''' Transforms and scales the input data and returns a numpy array that is suitable for use with scikit-learn. Note that in unsupervised learning there are no labels. ''' # Replace missing values with 0.0 # or we can use scikit-learn to calculate missing values below #frame[frame.isnull()] = 0.0 # Convert values to floats arr = np.array(frame, dtype=np.float) # Impute missing values from the mean of their entire column from sklearn.preprocessing import Imputer imputer = Imputer(strategy='mean') arr = imputer.fit_transform(arr) # Normalize the entire data set to mean=0.0 and variance=1.0 from sklearn.preprocessing import scale arr = scale(arr) return arr # ===================================================================== def reduce_dimensions(X): ''' Reduce the dimensionality of X with different reducers. Return a sequence of tuples containing: (title, x coordinates, y coordinates) for each reducer. ''' # Principal Component Analysis (PCA) is a linear reduction model # that identifies the components of the data with the largest # variance. from sklearn.decomposition import PCA reducer = PCA(n_components=2) X_r = reducer.fit_transform(X) yield 'PCA', X_r[:, 0], X_r[:, 1] # Independent Component Analysis (ICA) decomposes a signal by # identifying the independent contributing sources. from sklearn.decomposition import FastICA reducer = FastICA(n_components=2) X_r = reducer.fit_transform(X) yield 'ICA', X_r[:, 0], X_r[:, 1] # t-distributed Stochastic Neighbor Embedding (t-SNE) is a # non-linear reduction model. It operates best on data with a low # number of attributes (<50) and is often preceded by a linear # reduction model such as PCA. from sklearn.manifold import TSNE reducer = TSNE(n_components=2) X_r = reducer.fit_transform(X) yield 't-SNE', X_r[:, 0], X_r[:, 1] def evaluate_learners(X): ''' Run multiple times with different learners to get an idea of the relative performance of each configuration. Returns a sequence of tuples containing: (title, predicted classes) for each learner. ''' from sklearn.cluster import (MeanShift, MiniBatchKMeans, SpectralClustering, AgglomerativeClustering) learner = MeanShift( # Let the learner use its own heuristic for determining the # number of clusters to create bandwidth=None ) y = learner.fit_predict(X) yield 'Mean Shift clusters', y learner = MiniBatchKMeans(n_clusters=2) y = learner.fit_predict(X) yield 'K Means clusters', y learner = SpectralClustering(n_clusters=2) y = learner.fit_predict(X) yield 'Spectral clusters', y learner = AgglomerativeClustering(n_clusters=2) y = learner.fit_predict(X) yield 'Agglomerative clusters (N=2)', y learner = AgglomerativeClustering(n_clusters=5) y = learner.fit_predict(X) yield 'Agglomerative clusters (N=5)', y # ===================================================================== def plot(Xs, predictions): ''' Create a plot comparing multiple learners. `Xs` is a list of tuples containing: (title, x coord, y coord) `predictions` is a list of tuples containing (title, predicted classes) All the elements will be plotted against each other in a two-dimensional grid. ''' # We will use subplots to display the results in a grid nrows = len(Xs) ncols = len(predictions) fig = plt.figure(figsize=(16, 8)) fig.canvas.set_window_title('Clustering data from ' + URL) # Show each element in the plots returned from plt.subplots() for row, (row_label, X_x, X_y) in enumerate(Xs): for col, (col_label, y_pred) in enumerate(predictions): ax = plt.subplot(nrows, ncols, row * ncols + col + 1) if row == 0: plt.title(col_label) if col == 0: plt.ylabel(row_label) # Plot the decomposed input data and use the predicted # cluster index as the value in a color map. plt.scatter(X_x, X_y, c=y_pred.astype(np.float), cmap='prism', alpha=0.5) # Set the axis tick formatter to reduce the number of ticks ax.xaxis.set_major_locator(MaxNLocator(nbins=4)) ax.yaxis.set_major_locator(MaxNLocator(nbins=4)) # Let matplotlib handle the subplot layout plt.tight_layout() # ================================== # Display the plot in interactive UI plt.show() # To save the plot to an image file, use savefig() #plt.savefig('plot.png') # Open the image file with the default image viewer #import subprocess #subprocess.Popen('plot.png', shell=True) # To save the plot to an image in memory, use BytesIO and savefig() # This can then be written to any stream-like object, such as a # file or HTTP response. #from io import BytesIO #img_stream = BytesIO() #plt.savefig(img_stream, fmt='png') #img_bytes = img_stream.getvalue() #print('Image is {} bytes - {!r}'.format(len(img_bytes), img_bytes[:8] + b'...')) # Closing the figure allows matplotlib to release the memory used. plt.close() # ===================================================================== if __name__ == '__main__': # Download the data set from URL print("Downloading data from {}".format(URL)) frame = download_data() # Process data into a feature array # This is unsupervised learning, and so there are no labels print("Processing {} samples with {} attributes".format(len(frame.index), len(frame.columns))) X = get_features(frame) # Run multiple dimensionality reduction algorithms on the data print("Reducing dimensionality") Xs = list(reduce_dimensions(X)) # Evaluate multiple clustering learners on the data print("Evaluating clustering learners") predictions = list(evaluate_learners(X)) # Display the results print("Plotting the results") plot(Xs, predictions)
apache-2.0
procoder317/scikit-learn
sklearn/linear_model/ransac.py
191
14261
# coding: utf-8 # Author: Johannes Schönberger # # License: BSD 3 clause import numpy as np from ..base import BaseEstimator, MetaEstimatorMixin, RegressorMixin, clone from ..utils import check_random_state, check_array, check_consistent_length from ..utils.random import sample_without_replacement from ..utils.validation import check_is_fitted from .base import LinearRegression _EPSILON = np.spacing(1) def _dynamic_max_trials(n_inliers, n_samples, min_samples, probability): """Determine number trials such that at least one outlier-free subset is sampled for the given inlier/outlier ratio. Parameters ---------- n_inliers : int Number of inliers in the data. n_samples : int Total number of samples in the data. min_samples : int Minimum number of samples chosen randomly from original data. probability : float Probability (confidence) that one outlier-free sample is generated. Returns ------- trials : int Number of trials. """ inlier_ratio = n_inliers / float(n_samples) nom = max(_EPSILON, 1 - probability) denom = max(_EPSILON, 1 - inlier_ratio ** min_samples) if nom == 1: return 0 if denom == 1: return float('inf') return abs(float(np.ceil(np.log(nom) / np.log(denom)))) class RANSACRegressor(BaseEstimator, MetaEstimatorMixin, RegressorMixin): """RANSAC (RANdom SAmple Consensus) algorithm. RANSAC is an iterative algorithm for the robust estimation of parameters from a subset of inliers from the complete data set. More information can be found in the general documentation of linear models. A detailed description of the algorithm can be found in the documentation of the ``linear_model`` sub-package. Read more in the :ref:`User Guide <RansacRegression>`. Parameters ---------- base_estimator : object, optional Base estimator object which implements the following methods: * `fit(X, y)`: Fit model to given training data and target values. * `score(X, y)`: Returns the mean accuracy on the given test data, which is used for the stop criterion defined by `stop_score`. Additionally, the score is used to decide which of two equally large consensus sets is chosen as the better one. If `base_estimator` is None, then ``base_estimator=sklearn.linear_model.LinearRegression()`` is used for target values of dtype float. Note that the current implementation only supports regression estimators. min_samples : int (>= 1) or float ([0, 1]), optional Minimum number of samples chosen randomly from original data. Treated as an absolute number of samples for `min_samples >= 1`, treated as a relative number `ceil(min_samples * X.shape[0]`) for `min_samples < 1`. This is typically chosen as the minimal number of samples necessary to estimate the given `base_estimator`. By default a ``sklearn.linear_model.LinearRegression()`` estimator is assumed and `min_samples` is chosen as ``X.shape[1] + 1``. residual_threshold : float, optional Maximum residual for a data sample to be classified as an inlier. By default the threshold is chosen as the MAD (median absolute deviation) of the target values `y`. is_data_valid : callable, optional This function is called with the randomly selected data before the model is fitted to it: `is_data_valid(X, y)`. If its return value is False the current randomly chosen sub-sample is skipped. is_model_valid : callable, optional This function is called with the estimated model and the randomly selected data: `is_model_valid(model, X, y)`. If its return value is False the current randomly chosen sub-sample is skipped. Rejecting samples with this function is computationally costlier than with `is_data_valid`. `is_model_valid` should therefore only be used if the estimated model is needed for making the rejection decision. max_trials : int, optional Maximum number of iterations for random sample selection. stop_n_inliers : int, optional Stop iteration if at least this number of inliers are found. stop_score : float, optional Stop iteration if score is greater equal than this threshold. stop_probability : float in range [0, 1], optional RANSAC iteration stops if at least one outlier-free set of the training data is sampled in RANSAC. This requires to generate at least N samples (iterations):: N >= log(1 - probability) / log(1 - e**m) where the probability (confidence) is typically set to high value such as 0.99 (the default) and e is the current fraction of inliers w.r.t. the total number of samples. residual_metric : callable, optional Metric to reduce the dimensionality of the residuals to 1 for multi-dimensional target values ``y.shape[1] > 1``. By default the sum of absolute differences is used:: lambda dy: np.sum(np.abs(dy), axis=1) random_state : integer or numpy.RandomState, optional The generator used to initialize the centers. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. Attributes ---------- estimator_ : object Best fitted model (copy of the `base_estimator` object). n_trials_ : int Number of random selection trials until one of the stop criteria is met. It is always ``<= max_trials``. inlier_mask_ : bool array of shape [n_samples] Boolean mask of inliers classified as ``True``. References ---------- .. [1] http://en.wikipedia.org/wiki/RANSAC .. [2] http://www.cs.columbia.edu/~belhumeur/courses/compPhoto/ransac.pdf .. [3] http://www.bmva.org/bmvc/2009/Papers/Paper355/Paper355.pdf """ def __init__(self, base_estimator=None, min_samples=None, residual_threshold=None, is_data_valid=None, is_model_valid=None, max_trials=100, stop_n_inliers=np.inf, stop_score=np.inf, stop_probability=0.99, residual_metric=None, random_state=None): self.base_estimator = base_estimator self.min_samples = min_samples self.residual_threshold = residual_threshold self.is_data_valid = is_data_valid self.is_model_valid = is_model_valid self.max_trials = max_trials self.stop_n_inliers = stop_n_inliers self.stop_score = stop_score self.stop_probability = stop_probability self.residual_metric = residual_metric self.random_state = random_state def fit(self, X, y): """Fit estimator using RANSAC algorithm. Parameters ---------- X : array-like or sparse matrix, shape [n_samples, n_features] Training data. y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values. Raises ------ ValueError If no valid consensus set could be found. This occurs if `is_data_valid` and `is_model_valid` return False for all `max_trials` randomly chosen sub-samples. """ X = check_array(X, accept_sparse='csr') y = check_array(y, ensure_2d=False) check_consistent_length(X, y) if self.base_estimator is not None: base_estimator = clone(self.base_estimator) else: base_estimator = LinearRegression() if self.min_samples is None: # assume linear model by default min_samples = X.shape[1] + 1 elif 0 < self.min_samples < 1: min_samples = np.ceil(self.min_samples * X.shape[0]) elif self.min_samples >= 1: if self.min_samples % 1 != 0: raise ValueError("Absolute number of samples must be an " "integer value.") min_samples = self.min_samples else: raise ValueError("Value for `min_samples` must be scalar and " "positive.") if min_samples > X.shape[0]: raise ValueError("`min_samples` may not be larger than number " "of samples ``X.shape[0]``.") if self.stop_probability < 0 or self.stop_probability > 1: raise ValueError("`stop_probability` must be in range [0, 1].") if self.residual_threshold is None: # MAD (median absolute deviation) residual_threshold = np.median(np.abs(y - np.median(y))) else: residual_threshold = self.residual_threshold if self.residual_metric is None: residual_metric = lambda dy: np.sum(np.abs(dy), axis=1) else: residual_metric = self.residual_metric random_state = check_random_state(self.random_state) try: # Not all estimator accept a random_state base_estimator.set_params(random_state=random_state) except ValueError: pass n_inliers_best = 0 score_best = np.inf inlier_mask_best = None X_inlier_best = None y_inlier_best = None # number of data samples n_samples = X.shape[0] sample_idxs = np.arange(n_samples) n_samples, _ = X.shape for self.n_trials_ in range(1, self.max_trials + 1): # choose random sample set subset_idxs = sample_without_replacement(n_samples, min_samples, random_state=random_state) X_subset = X[subset_idxs] y_subset = y[subset_idxs] # check if random sample set is valid if (self.is_data_valid is not None and not self.is_data_valid(X_subset, y_subset)): continue # fit model for current random sample set base_estimator.fit(X_subset, y_subset) # check if estimated model is valid if (self.is_model_valid is not None and not self.is_model_valid(base_estimator, X_subset, y_subset)): continue # residuals of all data for current random sample model y_pred = base_estimator.predict(X) diff = y_pred - y if diff.ndim == 1: diff = diff.reshape(-1, 1) residuals_subset = residual_metric(diff) # classify data into inliers and outliers inlier_mask_subset = residuals_subset < residual_threshold n_inliers_subset = np.sum(inlier_mask_subset) # less inliers -> skip current random sample if n_inliers_subset < n_inliers_best: continue if n_inliers_subset == 0: raise ValueError("No inliers found, possible cause is " "setting residual_threshold ({0}) too low.".format( self.residual_threshold)) # extract inlier data set inlier_idxs_subset = sample_idxs[inlier_mask_subset] X_inlier_subset = X[inlier_idxs_subset] y_inlier_subset = y[inlier_idxs_subset] # score of inlier data set score_subset = base_estimator.score(X_inlier_subset, y_inlier_subset) # same number of inliers but worse score -> skip current random # sample if (n_inliers_subset == n_inliers_best and score_subset < score_best): continue # save current random sample as best sample n_inliers_best = n_inliers_subset score_best = score_subset inlier_mask_best = inlier_mask_subset X_inlier_best = X_inlier_subset y_inlier_best = y_inlier_subset # break if sufficient number of inliers or score is reached if (n_inliers_best >= self.stop_n_inliers or score_best >= self.stop_score or self.n_trials_ >= _dynamic_max_trials(n_inliers_best, n_samples, min_samples, self.stop_probability)): break # if none of the iterations met the required criteria if inlier_mask_best is None: raise ValueError( "RANSAC could not find valid consensus set, because" " either the `residual_threshold` rejected all the samples or" " `is_data_valid` and `is_model_valid` returned False for all" " `max_trials` randomly ""chosen sub-samples. Consider " "relaxing the ""constraints.") # estimate final model using all inliers base_estimator.fit(X_inlier_best, y_inlier_best) self.estimator_ = base_estimator self.inlier_mask_ = inlier_mask_best return self def predict(self, X): """Predict using the estimated model. This is a wrapper for `estimator_.predict(X)`. Parameters ---------- X : numpy array of shape [n_samples, n_features] Returns ------- y : array, shape = [n_samples] or [n_samples, n_targets] Returns predicted values. """ check_is_fitted(self, 'estimator_') return self.estimator_.predict(X) def score(self, X, y): """Returns the score of the prediction. This is a wrapper for `estimator_.score(X, y)`. Parameters ---------- X : numpy array or sparse matrix of shape [n_samples, n_features] Training data. y : array, shape = [n_samples] or [n_samples, n_targets] Target values. Returns ------- z : float Score of the prediction. """ check_is_fitted(self, 'estimator_') return self.estimator_.score(X, y)
bsd-3-clause
ehogan/iris
docs/iris/src/conf.py
5
10757
# (C) British Crown Copyright 2010 - 2016, Met Office # # This file is part of Iris. # # Iris is free software: you can redistribute it and/or modify it under # the terms of the GNU Lesser General Public License as published by the # Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Iris is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with Iris. If not, see <http://www.gnu.org/licenses/>. from __future__ import (absolute_import, division, print_function) from six.moves import (filter, input, map, range, zip) # noqa # -*- coding: utf-8 -*- # # Iris documentation build configuration file, created by # sphinx-quickstart on Tue May 25 13:26:23 2010. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys, os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.append(os.path.abspath('sphinxext')) # add some sample files from the developers guide.. sys.path.append(os.path.abspath(os.path.join('developers_guide'))) # -- General configuration ----------------------------------------------------- # Temporary value for use by LaTeX and 'man' output. # Deleted at the end of the module. _authors = ('Byron Blay', 'Ed Campbell', 'Philip Elson', 'Richard Hattersley', 'Bill Little') # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.coverage', 'sphinx.ext.pngmath', 'sphinx.ext.autosummary', 'sphinx.ext.graphviz', 'sphinx.ext.intersphinx', 'sphinx.ext.doctest', 'matplotlib.sphinxext.mathmpl', 'matplotlib.sphinxext.only_directives', 'matplotlib.sphinxext.plot_directive', # better class documentation 'custom_class_autodoc', # Data instance __repr__ filter. 'custom_data_autodoc', 'gen_example_directory', 'generate_package_rst', 'gen_gallery', # Add labels to figures automatically 'auto_label_figures', ] # list of packages to document autopackage_name = ['iris'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'contents' # General information about the project. project = u'Iris' # define the copyright information for latex builds. Note, for html builds, # the copyright exists directly inside "_templates/layout.html" copyright = u'British Crown Copyright 2010 - 2015, Met Office' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # import iris # The short X.Y version. if iris.__version__ == 'dev': version = 'dev' else: # major.feature(.minor)-dev -> major.minor version = '.'.join(iris.__version__.split('-')[0].split('.')[:2]) # The full version, including alpha/beta/rc tags. release = iris.__version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['sphinxext', 'build'] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # Definer the default highlight language. This also allows the >>> removal # javascript (copybutton.js) to function. highlight_language = 'python' # A list of ignored prefixes for module index sorting. modindex_common_prefix = ['iris'] intersphinx_mapping = { 'python': ('http://docs.python.org/2.7', None), 'numpy': ('http://docs.scipy.org/doc/numpy/', None), 'scipy': ('http://docs.scipy.org/doc/scipy/reference/', None), 'matplotlib': ('http://matplotlib.org/', None), 'cartopy': ('http://scitools.org.uk/cartopy/docs/latest/', None), 'biggus': ('https://biggus.readthedocs.io/en/latest/', None), } # -- Doctest ------------------------------------------------------------------ doctest_global_setup = 'import iris' # -- Autodoc ------------------------------------------------------------------ autodoc_member_order = 'groupwise' autodoc_default_flags = ['show-inheritance'] # include the __init__ method when documenting classes # document the init/new method at the top level of the class documentation rather than displaying the class docstring autoclass_content='init' # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. Major themes that come with # Sphinx are currently 'default' and 'sphinxdoc'. html_theme = 'default' html_theme = 'sphinxdoc' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. html_additional_pages = {'index': 'index.html', 'gallery':'gallery.html'} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. html_show_sphinx = False # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # If nonempty, this is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = '' # Output file base name for HTML help builder. htmlhelp_basename = 'Irisdoc' html_use_modindex = False # -- Options for LaTeX output -------------------------------------------------- # The paper size ('letter' or 'a4'). #latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). #latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('contents', 'Iris.tex', u'Iris Documentation', ' \\and '.join(_authors), 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Additional stuff for the LaTeX preamble. #latex_preamble = '' # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True latex_elements = {} latex_elements['docclass'] = 'MO_report' # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'iris', u'Iris Documentation', _authors, 1) ] ########################## # plot directive options # ########################## plot_formats = [('png', 100), #('hires.png', 200), ('pdf', 250) ] # Delete the temporary value. del _authors
lgpl-3.0
gpospelov/BornAgain
Examples/varia/AllFormFactorsAvailable.py
1
3637
""" All form factors available in BornAgain in the Born Approximation """ import numpy import bornagain as ba import ba_plot from bornagain import deg, angstrom from matplotlib import pyplot as plt phi_min, phi_max = -2.0, 2.0 alpha_min, alpha_max = 0.0, 2.0 formfactors = [ ba.FormFactorAnisoPyramid(20.0, 16.0, 13.0, 60.0*deg), ba.FormFactorBox(20.0, 16.0, 13.0), ba.FormFactorCantellatedCube(15.0, 6.0), ba.FormFactorCone(10.0, 13.0, 60.0*deg), ba.FormFactorCone6(10.0, 13.0, 60.0*deg), ba.FormFactorCuboctahedron(20.0, 13.0, 0.7, 60.0*deg), ba.FormFactorCylinder(8.0, 16.0), ba.FormFactorDodecahedron(5.0), ba.FormFactorEllipsoidalCylinder(8.0, 13.0, 16.0), ba.FormFactorFullSphere(8.0), ba.FormFactorFullSpheroid(10.0, 13.0), ba.FormFactorHemiEllipsoid(10.0, 6.0, 8.0), ba.FormFactorIcosahedron(8.0), ba.FormFactorPrism3(10.0, 13.0), ba.FormFactorPrism6(5.0, 11.0), ba.FormFactorPyramid(18.0, 13.0, 60.0*deg), ba.FormFactorCosineRippleBox(27.0, 20.0, 14.0), ba.FormFactorSawtoothRippleBox(36.0, 25.0, 14.0, 3.0), ba.FormFactorTetrahedron(15.0, 6.0, 60.0*deg), ba.FormFactorTruncatedCube(15.0, 6.0), ba.FormFactorTruncatedSphere(5.0, 7.0, 0), ba.FormFactorTruncatedSpheroid(7.5, 9.0, 1.2, 0), ] def get_sample(formfactor): """ Returns a one-layer sample that contains particles with given form factor. """ # defining materials m_vacuum = ba.HomogeneousMaterial("Vacuum", 0.0, 0.0) m_particle = ba.HomogeneousMaterial("Particle", 6e-4, 2e-8) # collection of particles particle = ba.Particle(m_particle, formfactor) particle_layout = ba.ParticleLayout() particle_layout.addParticle(particle, 1.0) vacuum_layer = ba.Layer(m_vacuum) vacuum_layer.addLayout(particle_layout) multi_layer = ba.MultiLayer() multi_layer.addLayer(vacuum_layer) return multi_layer def get_simulation(sample): """ Returns GISAXS simulation with standard beam and detector. """ simulation = ba.GISASSimulation() simulation.setDetectorParameters(100, phi_min*deg, phi_max*deg, 100, alpha_min*deg, alpha_max*deg) simulation.setBeamParameters(1.0*angstrom, 0.2*deg, 0.0*deg) simulation.setSample(sample) return simulation def simulate(ff): """ Runs simulation for one form factor, and returns simulated intensity pattern """ sample = get_sample(ff) simulation = get_simulation(sample) simulation.runSimulation() return simulation.result() def simulate_and_plot(): """ Run simulation one by one for every form factor from the list and plot results on a single canvas """ fig = plt.figure(figsize=(12.80, 10.24)) for nplot, ff in enumerate(formfactors): name = ff.__class__.__name__ name = name.replace("FormFactor", "") print("Generating intensity map in BA for '{0}'".format(name)) result = simulate(ff) # showing the result plt.subplot(5, 5, nplot + 1) plt.subplots_adjust(wspace=0.3, hspace=0.3) ba_plot.plot_colormap(result, xlabel="", ylabel="", zlabel="") plt.tick_params(axis='both', which='major', labelsize=8) plt.tick_params(axis='both', which='minor', labelsize=6) plt.xticks(numpy.arange(phi_min, phi_max + 0.0001, 1.0)) plt.text(-0.1, 2.15, name, horizontalalignment='center', verticalalignment='center', fontsize=9) plt.show() if __name__ == '__main__': simulate_and_plot()
gpl-3.0
davidgbe/scikit-learn
sklearn/linear_model/tests/test_perceptron.py
378
1815
import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_raises from sklearn.utils import check_random_state from sklearn.datasets import load_iris from sklearn.linear_model import Perceptron iris = load_iris() random_state = check_random_state(12) indices = np.arange(iris.data.shape[0]) random_state.shuffle(indices) X = iris.data[indices] y = iris.target[indices] X_csr = sp.csr_matrix(X) X_csr.sort_indices() class MyPerceptron(object): def __init__(self, n_iter=1): self.n_iter = n_iter def fit(self, X, y): n_samples, n_features = X.shape self.w = np.zeros(n_features, dtype=np.float64) self.b = 0.0 for t in range(self.n_iter): for i in range(n_samples): if self.predict(X[i])[0] != y[i]: self.w += y[i] * X[i] self.b += y[i] def project(self, X): return np.dot(X, self.w) + self.b def predict(self, X): X = np.atleast_2d(X) return np.sign(self.project(X)) def test_perceptron_accuracy(): for data in (X, X_csr): clf = Perceptron(n_iter=30, shuffle=False) clf.fit(data, y) score = clf.score(data, y) assert_true(score >= 0.7) def test_perceptron_correctness(): y_bin = y.copy() y_bin[y != 1] = -1 clf1 = MyPerceptron(n_iter=2) clf1.fit(X, y_bin) clf2 = Perceptron(n_iter=2, shuffle=False) clf2.fit(X, y_bin) assert_array_almost_equal(clf1.w, clf2.coef_.ravel()) def test_undefined_methods(): clf = Perceptron() for meth in ("predict_proba", "predict_log_proba"): assert_raises(AttributeError, lambda x: getattr(clf, x), meth)
bsd-3-clause
saiwing-yeung/scikit-learn
examples/manifold/plot_swissroll.py
330
1446
""" =================================== Swiss Roll reduction with LLE =================================== An illustration of Swiss Roll reduction with locally linear embedding """ # Author: Fabian Pedregosa -- <fabian.pedregosa@inria.fr> # License: BSD 3 clause (C) INRIA 2011 print(__doc__) import matplotlib.pyplot as plt # This import is needed to modify the way figure behaves from mpl_toolkits.mplot3d import Axes3D Axes3D #---------------------------------------------------------------------- # Locally linear embedding of the swiss roll from sklearn import manifold, datasets X, color = datasets.samples_generator.make_swiss_roll(n_samples=1500) print("Computing LLE embedding") X_r, err = manifold.locally_linear_embedding(X, n_neighbors=12, n_components=2) print("Done. Reconstruction error: %g" % err) #---------------------------------------------------------------------- # Plot result fig = plt.figure() try: # compatibility matplotlib < 1.0 ax = fig.add_subplot(211, projection='3d') ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=color, cmap=plt.cm.Spectral) except: ax = fig.add_subplot(211) ax.scatter(X[:, 0], X[:, 2], c=color, cmap=plt.cm.Spectral) ax.set_title("Original data") ax = fig.add_subplot(212) ax.scatter(X_r[:, 0], X_r[:, 1], c=color, cmap=plt.cm.Spectral) plt.axis('tight') plt.xticks([]), plt.yticks([]) plt.title('Projected data') plt.show()
bsd-3-clause
mbayon/TFG-MachineLearning
venv/lib/python3.6/site-packages/sklearn/decomposition/tests/test_nmf.py
21
17922
import numpy as np import scipy.sparse as sp import numbers from scipy import linalg from sklearn.decomposition import NMF, non_negative_factorization from sklearn.decomposition import nmf # For testing internals from scipy.sparse import csc_matrix from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_raise_message, assert_no_warnings from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_greater from sklearn.utils.testing import ignore_warnings from sklearn.utils.extmath import squared_norm from sklearn.base import clone from sklearn.exceptions import ConvergenceWarning def test_initialize_nn_output(): # Test that initialization does not return negative values rng = np.random.mtrand.RandomState(42) data = np.abs(rng.randn(10, 10)) for init in ('random', 'nndsvd', 'nndsvda', 'nndsvdar'): W, H = nmf._initialize_nmf(data, 10, init=init, random_state=0) assert_false((W < 0).any() or (H < 0).any()) def test_parameter_checking(): A = np.ones((2, 2)) name = 'spam' msg = "Invalid solver parameter: got 'spam' instead of one of" assert_raise_message(ValueError, msg, NMF(solver=name).fit, A) msg = "Invalid init parameter: got 'spam' instead of one of" assert_raise_message(ValueError, msg, NMF(init=name).fit, A) msg = "Invalid beta_loss parameter: got 'spam' instead of one" assert_raise_message(ValueError, msg, NMF(solver='mu', beta_loss=name).fit, A) msg = "Invalid beta_loss parameter: solver 'cd' does not handle " msg += "beta_loss = 1.0" assert_raise_message(ValueError, msg, NMF(solver='cd', beta_loss=1.0).fit, A) msg = "Negative values in data passed to" assert_raise_message(ValueError, msg, NMF().fit, -A) assert_raise_message(ValueError, msg, nmf._initialize_nmf, -A, 2, 'nndsvd') clf = NMF(2, tol=0.1).fit(A) assert_raise_message(ValueError, msg, clf.transform, -A) def test_initialize_close(): # Test NNDSVD error # Test that _initialize_nmf error is less than the standard deviation of # the entries in the matrix. rng = np.random.mtrand.RandomState(42) A = np.abs(rng.randn(10, 10)) W, H = nmf._initialize_nmf(A, 10, init='nndsvd') error = linalg.norm(np.dot(W, H) - A) sdev = linalg.norm(A - A.mean()) assert_true(error <= sdev) def test_initialize_variants(): # Test NNDSVD variants correctness # Test that the variants 'nndsvda' and 'nndsvdar' differ from basic # 'nndsvd' only where the basic version has zeros. rng = np.random.mtrand.RandomState(42) data = np.abs(rng.randn(10, 10)) W0, H0 = nmf._initialize_nmf(data, 10, init='nndsvd') Wa, Ha = nmf._initialize_nmf(data, 10, init='nndsvda') War, Har = nmf._initialize_nmf(data, 10, init='nndsvdar', random_state=0) for ref, evl in ((W0, Wa), (W0, War), (H0, Ha), (H0, Har)): assert_almost_equal(evl[ref != 0], ref[ref != 0]) # ignore UserWarning raised when both solver='mu' and init='nndsvd' @ignore_warnings(category=UserWarning) def test_nmf_fit_nn_output(): # Test that the decomposition does not contain negative values A = np.c_[5 * np.ones(5) - np.arange(1, 6), 5 * np.ones(5) + np.arange(1, 6)] for solver in ('cd', 'mu'): for init in (None, 'nndsvd', 'nndsvda', 'nndsvdar', 'random'): model = NMF(n_components=2, solver=solver, init=init, random_state=0) transf = model.fit_transform(A) assert_false((model.components_ < 0).any() or (transf < 0).any()) def test_nmf_fit_close(): rng = np.random.mtrand.RandomState(42) # Test that the fit is not too far away for solver in ('cd', 'mu'): pnmf = NMF(5, solver=solver, init='nndsvdar', random_state=0, max_iter=600) X = np.abs(rng.randn(6, 5)) assert_less(pnmf.fit(X).reconstruction_err_, 0.1) def test_nmf_transform(): # Test that NMF.transform returns close values rng = np.random.mtrand.RandomState(42) A = np.abs(rng.randn(6, 5)) for solver in ['cd', 'mu']: m = NMF(solver=solver, n_components=3, init='random', random_state=0, tol=1e-5) ft = m.fit_transform(A) t = m.transform(A) assert_array_almost_equal(ft, t, decimal=2) def test_nmf_transform_custom_init(): # Smoke test that checks if NMF.transform works with custom initialization random_state = np.random.RandomState(0) A = np.abs(random_state.randn(6, 5)) n_components = 4 avg = np.sqrt(A.mean() / n_components) H_init = np.abs(avg * random_state.randn(n_components, 5)) W_init = np.abs(avg * random_state.randn(6, n_components)) m = NMF(solver='cd', n_components=n_components, init='custom', random_state=0) m.fit_transform(A, W=W_init, H=H_init) m.transform(A) def test_nmf_inverse_transform(): # Test that NMF.inverse_transform returns close values random_state = np.random.RandomState(0) A = np.abs(random_state.randn(6, 4)) for solver in ('cd', 'mu'): m = NMF(solver=solver, n_components=4, init='random', random_state=0, max_iter=1000) ft = m.fit_transform(A) A_new = m.inverse_transform(ft) assert_array_almost_equal(A, A_new, decimal=2) def test_n_components_greater_n_features(): # Smoke test for the case of more components than features. rng = np.random.mtrand.RandomState(42) A = np.abs(rng.randn(30, 10)) NMF(n_components=15, random_state=0, tol=1e-2).fit(A) def test_nmf_sparse_input(): # Test that sparse matrices are accepted as input from scipy.sparse import csc_matrix rng = np.random.mtrand.RandomState(42) A = np.abs(rng.randn(10, 10)) A[:, 2 * np.arange(5)] = 0 A_sparse = csc_matrix(A) for solver in ('cd', 'mu'): est1 = NMF(solver=solver, n_components=5, init='random', random_state=0, tol=1e-2) est2 = clone(est1) W1 = est1.fit_transform(A) W2 = est2.fit_transform(A_sparse) H1 = est1.components_ H2 = est2.components_ assert_array_almost_equal(W1, W2) assert_array_almost_equal(H1, H2) def test_nmf_sparse_transform(): # Test that transform works on sparse data. Issue #2124 rng = np.random.mtrand.RandomState(42) A = np.abs(rng.randn(3, 2)) A[1, 1] = 0 A = csc_matrix(A) for solver in ('cd', 'mu'): model = NMF(solver=solver, random_state=0, n_components=2, max_iter=400) A_fit_tr = model.fit_transform(A) A_tr = model.transform(A) assert_array_almost_equal(A_fit_tr, A_tr, decimal=1) def test_non_negative_factorization_consistency(): # Test that the function is called in the same way, either directly # or through the NMF class rng = np.random.mtrand.RandomState(42) A = np.abs(rng.randn(10, 10)) A[:, 2 * np.arange(5)] = 0 for solver in ('cd', 'mu'): W_nmf, H, _ = non_negative_factorization( A, solver=solver, random_state=1, tol=1e-2) W_nmf_2, _, _ = non_negative_factorization( A, H=H, update_H=False, solver=solver, random_state=1, tol=1e-2) model_class = NMF(solver=solver, random_state=1, tol=1e-2) W_cls = model_class.fit_transform(A) W_cls_2 = model_class.transform(A) assert_array_almost_equal(W_nmf, W_cls, decimal=10) assert_array_almost_equal(W_nmf_2, W_cls_2, decimal=10) def test_non_negative_factorization_checking(): A = np.ones((2, 2)) # Test parameters checking is public function nnmf = non_negative_factorization assert_no_warnings(nnmf, A, A, A, np.int64(1)) msg = ("Number of components must be a positive integer; " "got (n_components=1.5)") assert_raise_message(ValueError, msg, nnmf, A, A, A, 1.5) msg = ("Number of components must be a positive integer; " "got (n_components='2')") assert_raise_message(ValueError, msg, nnmf, A, A, A, '2') msg = "Negative values in data passed to NMF (input H)" assert_raise_message(ValueError, msg, nnmf, A, A, -A, 2, 'custom') msg = "Negative values in data passed to NMF (input W)" assert_raise_message(ValueError, msg, nnmf, A, -A, A, 2, 'custom') msg = "Array passed to NMF (input H) is full of zeros" assert_raise_message(ValueError, msg, nnmf, A, A, 0 * A, 2, 'custom') msg = "Invalid regularization parameter: got 'spam' instead of one of" assert_raise_message(ValueError, msg, nnmf, A, A, 0 * A, 2, 'custom', True, 'cd', 2., 1e-4, 200, 0., 0., 'spam') def _beta_divergence_dense(X, W, H, beta): """Compute the beta-divergence of X and W.H for dense array only. Used as a reference for testing nmf._beta_divergence. """ if isinstance(X, numbers.Number): W = np.array([[W]]) H = np.array([[H]]) X = np.array([[X]]) WH = np.dot(W, H) if beta == 2: return squared_norm(X - WH) / 2 WH_Xnonzero = WH[X != 0] X_nonzero = X[X != 0] np.maximum(WH_Xnonzero, 1e-9, out=WH_Xnonzero) if beta == 1: res = np.sum(X_nonzero * np.log(X_nonzero / WH_Xnonzero)) res += WH.sum() - X.sum() elif beta == 0: div = X_nonzero / WH_Xnonzero res = np.sum(div) - X.size - np.sum(np.log(div)) else: res = (X_nonzero ** beta).sum() res += (beta - 1) * (WH ** beta).sum() res -= beta * (X_nonzero * (WH_Xnonzero ** (beta - 1))).sum() res /= beta * (beta - 1) return res def test_beta_divergence(): # Compare _beta_divergence with the reference _beta_divergence_dense n_samples = 20 n_features = 10 n_components = 5 beta_losses = [0., 0.5, 1., 1.5, 2.] # initialization rng = np.random.mtrand.RandomState(42) X = rng.randn(n_samples, n_features) X[X < 0] = 0. X_csr = sp.csr_matrix(X) W, H = nmf._initialize_nmf(X, n_components, init='random', random_state=42) for beta in beta_losses: ref = _beta_divergence_dense(X, W, H, beta) loss = nmf._beta_divergence(X, W, H, beta) loss_csr = nmf._beta_divergence(X_csr, W, H, beta) assert_almost_equal(ref, loss, decimal=7) assert_almost_equal(ref, loss_csr, decimal=7) def test_special_sparse_dot(): # Test the function that computes np.dot(W, H), only where X is non zero. n_samples = 10 n_features = 5 n_components = 3 rng = np.random.mtrand.RandomState(42) X = rng.randn(n_samples, n_features) X[X < 0] = 0. X_csr = sp.csr_matrix(X) W = np.abs(rng.randn(n_samples, n_components)) H = np.abs(rng.randn(n_components, n_features)) WH_safe = nmf._special_sparse_dot(W, H, X_csr) WH = nmf._special_sparse_dot(W, H, X) # test that both results have same values, in X_csr nonzero elements ii, jj = X_csr.nonzero() WH_safe_data = np.asarray(WH_safe[ii, jj]).ravel() assert_array_almost_equal(WH_safe_data, WH[ii, jj], decimal=10) # test that WH_safe and X_csr have the same sparse structure assert_array_equal(WH_safe.indices, X_csr.indices) assert_array_equal(WH_safe.indptr, X_csr.indptr) assert_array_equal(WH_safe.shape, X_csr.shape) @ignore_warnings(category=ConvergenceWarning) def test_nmf_multiplicative_update_sparse(): # Compare sparse and dense input in multiplicative update NMF # Also test continuity of the results with respect to beta_loss parameter n_samples = 20 n_features = 10 n_components = 5 alpha = 0.1 l1_ratio = 0.5 n_iter = 20 # initialization rng = np.random.mtrand.RandomState(1337) X = rng.randn(n_samples, n_features) X = np.abs(X) X_csr = sp.csr_matrix(X) W0, H0 = nmf._initialize_nmf(X, n_components, init='random', random_state=42) for beta_loss in (-1.2, 0, 0.2, 1., 2., 2.5): # Reference with dense array X W, H = W0.copy(), H0.copy() W1, H1, _ = non_negative_factorization( X, W, H, n_components, init='custom', update_H=True, solver='mu', beta_loss=beta_loss, max_iter=n_iter, alpha=alpha, l1_ratio=l1_ratio, regularization='both', random_state=42) # Compare with sparse X W, H = W0.copy(), H0.copy() W2, H2, _ = non_negative_factorization( X_csr, W, H, n_components, init='custom', update_H=True, solver='mu', beta_loss=beta_loss, max_iter=n_iter, alpha=alpha, l1_ratio=l1_ratio, regularization='both', random_state=42) assert_array_almost_equal(W1, W2, decimal=7) assert_array_almost_equal(H1, H2, decimal=7) # Compare with almost same beta_loss, since some values have a specific # behavior, but the results should be continuous w.r.t beta_loss beta_loss -= 1.e-5 W, H = W0.copy(), H0.copy() W3, H3, _ = non_negative_factorization( X_csr, W, H, n_components, init='custom', update_H=True, solver='mu', beta_loss=beta_loss, max_iter=n_iter, alpha=alpha, l1_ratio=l1_ratio, regularization='both', random_state=42) assert_array_almost_equal(W1, W3, decimal=4) assert_array_almost_equal(H1, H3, decimal=4) def test_nmf_negative_beta_loss(): # Test that an error is raised if beta_loss < 0 and X contains zeros. # Test that the output has not NaN values when the input contains zeros. n_samples = 6 n_features = 5 n_components = 3 rng = np.random.mtrand.RandomState(42) X = rng.randn(n_samples, n_features) X[X < 0] = 0 X_csr = sp.csr_matrix(X) def _assert_nmf_no_nan(X, beta_loss): W, H, _ = non_negative_factorization( X, n_components=n_components, solver='mu', beta_loss=beta_loss, random_state=0, max_iter=1000) assert_false(np.any(np.isnan(W))) assert_false(np.any(np.isnan(H))) msg = "When beta_loss <= 0 and X contains zeros, the solver may diverge." for beta_loss in (-0.6, 0.): assert_raise_message(ValueError, msg, _assert_nmf_no_nan, X, beta_loss) _assert_nmf_no_nan(X + 1e-9, beta_loss) for beta_loss in (0.2, 1., 1.2, 2., 2.5): _assert_nmf_no_nan(X, beta_loss) _assert_nmf_no_nan(X_csr, beta_loss) def test_nmf_regularization(): # Test the effect of L1 and L2 regularizations n_samples = 6 n_features = 5 n_components = 3 rng = np.random.mtrand.RandomState(42) X = np.abs(rng.randn(n_samples, n_features)) # L1 regularization should increase the number of zeros l1_ratio = 1. for solver in ['cd', 'mu']: regul = nmf.NMF(n_components=n_components, solver=solver, alpha=0.5, l1_ratio=l1_ratio, random_state=42) model = nmf.NMF(n_components=n_components, solver=solver, alpha=0., l1_ratio=l1_ratio, random_state=42) W_regul = regul.fit_transform(X) W_model = model.fit_transform(X) H_regul = regul.components_ H_model = model.components_ W_regul_n_zeros = W_regul[W_regul == 0].size W_model_n_zeros = W_model[W_model == 0].size H_regul_n_zeros = H_regul[H_regul == 0].size H_model_n_zeros = H_model[H_model == 0].size assert_greater(W_regul_n_zeros, W_model_n_zeros) assert_greater(H_regul_n_zeros, H_model_n_zeros) # L2 regularization should decrease the mean of the coefficients l1_ratio = 0. for solver in ['cd', 'mu']: regul = nmf.NMF(n_components=n_components, solver=solver, alpha=0.5, l1_ratio=l1_ratio, random_state=42) model = nmf.NMF(n_components=n_components, solver=solver, alpha=0., l1_ratio=l1_ratio, random_state=42) W_regul = regul.fit_transform(X) W_model = model.fit_transform(X) H_regul = regul.components_ H_model = model.components_ assert_greater(W_model.mean(), W_regul.mean()) assert_greater(H_model.mean(), H_regul.mean()) @ignore_warnings(category=ConvergenceWarning) def test_nmf_decreasing(): # test that the objective function is decreasing at each iteration n_samples = 20 n_features = 15 n_components = 10 alpha = 0.1 l1_ratio = 0.5 tol = 0. # initialization rng = np.random.mtrand.RandomState(42) X = rng.randn(n_samples, n_features) np.abs(X, X) W0, H0 = nmf._initialize_nmf(X, n_components, init='random', random_state=42) for beta_loss in (-1.2, 0, 0.2, 1., 2., 2.5): for solver in ('cd', 'mu'): if solver != 'mu' and beta_loss != 2: # not implemented continue W, H = W0.copy(), H0.copy() previous_loss = None for _ in range(30): # one more iteration starting from the previous results W, H, _ = non_negative_factorization( X, W, H, beta_loss=beta_loss, init='custom', n_components=n_components, max_iter=1, alpha=alpha, solver=solver, tol=tol, l1_ratio=l1_ratio, verbose=0, regularization='both', random_state=0, update_H=True) loss = nmf._beta_divergence(X, W, H, beta_loss) if previous_loss is not None: assert_greater(previous_loss, loss) previous_loss = loss
mit
ALDepp/python_toolbox
plot_budget_terms.py
1
14489
#!/usr/bin/env python from netCDF4 import Dataset import numpy as np from numpy import inf import matplotlib.pyplot as plt from mpl_toolkits.basemap import maskoceans import os import pickle import shelve import copy import math import glob import matplotlib.lines as mlines termspath='/net/bhw435/nobackup_1/users/deppenme/sens_exp/a01d/buget_terms/' region = 'ab' # ab or itcz #get all data #SST bias term SSTbiasin = shelve.open(termspath + 'sst_daily_bias_ece-era.dat', 'r') tos_bias = SSTbiasin['tos_bias_' + region] SSTbiasin.close() tos_bias_monthly = np.asarray((np.nanmean(tos_bias[:31]),np.nanmean(tos_bias[31:62]),np.nanmean(tos_bias[62:93]),np.nanmean(tos_bias[93:]))) #Q terms Qin = shelve.open(termspath + 'cumsum_deltaK_duetoQ.dat', 'r') dT_ece = Qin['dT_ece_' + region] #this is the temp change due to Q dT_era = Qin['dT_era_' + region] Qin.close() dT_ece_monthly = np.asarray((np.nanmean(dT_ece[:31]),np.nanmean(dT_ece[31:62]),np.nanmean(dT_ece[62:93]),np.nanmean(dT_ece[93:]))) dT_era_monthly = np.asarray((np.nanmean(dT_era[:31]),np.nanmean(dT_era[31:62]),np.nanmean(dT_era[62:93]),np.nanmean(dT_era[93:]))) bias_q = dT_ece - dT_era bias_q_monthly = np.asarray((np.nanmean(bias_q[:31]),np.nanmean(bias_q[31:62]),np.nanmean(bias_q[62:93]),np.nanmean(bias_q[93:]))) #SST dev term SSTdevelopmentin = shelve.open(termspath + 'devSST_' + region + '.dat', 'r') dcum_ece_ave = SSTdevelopmentin['dcum_ece_ave'] dcum_era_ave = SSTdevelopmentin['dcum_era_ave'] SSTdevelopmentin.close() dcum_ece_ave_monthly = np.asarray((np.nanmean(dcum_ece_ave[:31]),np.nanmean(dcum_ece_ave[31:62]),np.nanmean(dcum_ece_ave[62:93]),np.nanmean(dcum_ece_ave[93:]))) dcum_era_ave_monthly = np.asarray((np.nanmean(dcum_era_ave[:31]),np.nanmean(dcum_era_ave[31:62]),np.nanmean(dcum_era_ave[62:93]),np.nanmean(dcum_era_ave[93:]))) bias_sst = dcum_ece_ave - dcum_era_ave #horizontal advection terms adv = shelve.open(termspath + 'advection_terms_uv_' + region + '.dat','r') u_ece = np.asarray(adv['u_adv_terms_' + region + '_ece']) v_ece = np.asarray(adv['v_adv_terms_' + region + '_ece']) u_ora = np.asarray(adv['u_adv_terms_' + region + '_ora']) v_ora = np.asarray(adv['v_adv_terms_' + region + '_ora']) adv.close() uv_ece = np.cumsum((-u_ece))+np.cumsum((-v_ece)) uv_ora = np.cumsum((-u_ora))+np.cumsum((-v_ora)) bias_uv_ece_ora = uv_ece - uv_ora #upwelling term upw_ece = shelve.open(termspath + 'W_below_mxl_divH_ece_' + region + '_mesh.dat') W_ece = upw_ece['W_' + region] upw_ece.close() contr_w_ece = np.cumsum(-W_ece) upw_ora = shelve.open(termspath + 'W_below_mxl_divH_ora_' + region + '_ORAmesh.dat') W_ora = upw_ora['W_' + region] upw_ora.close() contr_w_ora = np.cumsum(-W_ora) #biases and monthly means rest_term_ece = dcum_ece_ave_monthly - uv_ece - (-W_ece) - dT_ece_monthly rest_term_era = dcum_era_ave_monthly - uv_ora - (-W_ora) - dT_era_monthly bias_uv_q = bias_uv_ece_ora + bias_q_monthly bias_upwelling = contr_w_ece - contr_w_ora #add the biases bias_tot_all_terms = bias_upwelling + bias_q_monthly + bias_uv_ece_ora #get the ave monthly sst bias bias_sst_monthly = np.asarray((np.nanmean(bias_sst[:31]),np.nanmean(bias_sst[31:62]),np.nanmean(bias_sst[62:93]),np.nanmean(bias_sst[93:]))) rest_term_bias = rest_term_ece - rest_term_era #plot for presentation #legend(first = moves to the right, second: moves to the top) #one by one #nb1 # only dcum sst development plt.figure(figsize=(10,8)) plt.xlim(-1,124) plt.yticks(fontsize=14) plt.xticks(fontsize=14) plt.plot(range(122),dcum_ece_ave,label=r'EC-E',color='blue',lw=2) plt.plot(range(122),dcum_era_ave,label=r'ERA',color='red',lw=2) plt.plot(range(123),dT_ece,label=r'Q ECE',color='blue',ls='-.',lw=1.5,alpha=0) plt.plot(range(123),dT_era,label=r'Q ERA',color='red',ls='-.',lw=1.5,alpha=0) plt.legend(bbox_to_anchor=(0.20, 0.18, 0, 0.05),prop={'size':14},fancybox=True) plt.title(r'$\int_{}^{}{\frac{\mathrm{d}SST}{\mathrm{d}t}}$ in ' + region + ' box',fontsize=16) plt.xlabel('Days from 05-01', fontsize=16) plt.ylabel(r"$\Delta$ SST [K]", fontsize=16) for i in np.arange(-6,2.5,0.5): plt.axhline(i,color='gray',alpha=0.1,ls='--') plt.savefig('SSTbiasdev_' + region.upper() + '_1_dz_test.pdf',dpi=500, bbox_inches='tight') plt.close() #nb2 # dcum sst development and bijdrage q plt.figure(figsize=(10,8)) plt.xlim(-1,124) plt.ylim(-6,2) plt.yticks(fontsize=14) plt.xticks(fontsize=14) plt.plot(range(122),dcum_ece_ave,label=r'EC-E',color='blue',lw=2) plt.plot(range(122),dcum_era_ave,label=r'ERA',color='red',lw=2) plt.plot(range(123),dT_ece,label=r'Q ECE',color='blue',ls='-.',lw=2.5) plt.plot(range(123),dT_era,label=r'Q ERA',color='red',ls='-.',lw=2.5) plt.legend(bbox_to_anchor=(0.20, 0.18, 0, 0.05),prop={'size':14},fancybox=True) plt.title(r'$\int_{}^{}{\frac{\mathrm{d}SST}{\mathrm{d}t}}$ in ' + region + ' box',fontsize=16) plt.xlabel('Days from 05-01', fontsize=16) plt.ylabel(r"$\Delta$ SST [K]", fontsize=16) for i in np.arange(-6,2.5,0.5): plt.axhline(i,color='gray',alpha=0.1,ls='--') plt.savefig('SSTbiasdev_' + region.upper() + '_2_dz.pdf',dpi=500, bbox_inches='tight') plt.close() #nb3 add advection information #these are the pure advection terms, but for their contribution to dT/dt they must be multiplied with (-1) #dcum sst and q in the background, U and V apart plt.figure(figsize=(10,8)) plt.xlim(-1,124) plt.ylim(-6,2) plt.yticks(fontsize=14) plt.xticks(fontsize=14) plt.plot(range(122),dcum_ece_ave,color='blue',alpha=0.2,lw=2) plt.plot(range(122),dcum_era_ave,color='red',alpha=0.2,lw=2) plt.plot(range(123),dT_ece,color='blue',ls='-.',lw=2.5,alpha=0.2) plt.plot(range(123),dT_era,color='red',ls='-.',lw=2.5,alpha=0.2) plt.scatter((13,44,76,106),np.cumsum((-u_ece)),label='ECE',color='blue',marker=r'$\mathrm{U}$',s=150) plt.scatter((13,44,76,106),np.cumsum((-v_ece)),label='ECE',color='blue',marker=r'$\mathrm{V}$',s=150) plt.scatter((16,47,76,106),np.cumsum((-u_ora)),label='ORA',color='red',marker=r'$\mathrm{U}$',s=150) plt.scatter((16,47,76,106),np.cumsum((-v_ora)),label='ORA',color='red',marker=r'$\mathrm{V}$',s=150) plt.plot((15,46,76,107),np.cumsum((-u_ece)),color='blue',lw=1.5,ls=':',alpha=0.4) plt.plot((15,46,76,107),np.cumsum((-v_ece)),color='blue',lw=1.5,ls=':',alpha=0.4) plt.plot((15,46,76,107),np.cumsum((-u_ora)),color='red',lw=1.5,ls=':',alpha=0.4) plt.plot((15,46,76,107),np.cumsum((-v_ora)),color='red',lw=1.5,ls=':',alpha=0.4) plt.legend(bbox_to_anchor=(0.18, 0.18, 0, 0.05),prop={'size':14},fancybox=True,scatterpoints = 1) plt.title(r'$\int_{}^{}{\frac{\mathrm{d}SST}{\mathrm{d}t}}$ in ' + region.upper() + ' box',fontsize=16) plt.xlabel('Days from 05-01', fontsize=16) plt.ylabel(r"$\Delta$ SST [K]", fontsize=16) for i in np.arange(-6,2.5,0.5): plt.axhline(i,color='gray',alpha=0.1,ls='--') plt.savefig('SSTbiasdev_' + region.upper() + '_3_dz.pdf',dpi=500, bbox_inches='tight') plt.close() #nb4 with actual bijdrage u and v plt.figure(figsize=(10,8)) plt.xlim(-1,124) plt.ylim(-6,2) plt.yticks(fontsize=14) plt.xticks(fontsize=14) plt.plot(range(122),dcum_ece_ave,color='blue',alpha=0.2,lw=2) plt.plot(range(122),dcum_era_ave,color='red',alpha=0.2,lw=2) plt.plot(range(123),dT_ece,color='blue',ls='-.',lw=2.5,alpha=0.2) plt.plot(range(123),dT_era,color='red',ls='-.',lw=2.5,alpha=0.2) plt.scatter((13,44,74,104),uv_ece,label='ECE',color='blue',marker=r'$\mathrm{UV}$',s=330) plt.scatter((16,47,77,107),uv_ora,label='ORA',color='red',marker=r'$\mathrm{UV}$',s=330) plt.plot((13,44,74,104),(np.cumsum((-u_ece))+np.cumsum((-v_ece))),color='blue',lw=0.5,ls=':',alpha=0.4) plt.plot((16,47,77,107),(np.cumsum((-u_ora))+np.cumsum((-v_ora))),color='red',lw=0.5,ls=':',alpha=0.4) plt.legend(bbox_to_anchor=(0.18, 0.22, 0, 0.05),prop={'size':14},fancybox=True,scatterpoints = 1) plt.title(r'$\int_{}^{}{\frac{\mathrm{d}SST}{\mathrm{d}t}}$ in ' + region.upper() + ' box',fontsize=16) plt.xlabel('Days from 05-01', fontsize=16) plt.ylabel(r"$\Delta$ SST [K]", fontsize=16) for i in np.arange(-6,2.5,0.5): plt.axhline(i,color='gray',alpha=0.1,ls='--') plt.savefig('SSTbiasdev_' + region + '_4_dz.pdf',dpi=500, bbox_inches='tight') plt.close() #nb 5 #--------- put upwelling in plt.figure(figsize=(10,8)) plt.xlim(-1,124) plt.ylim(-6,2) plt.yticks(fontsize=14) plt.xticks(fontsize=14) plt.plot(range(122),dcum_ece_ave,color='blue',alpha=0.2,lw=2) plt.plot(range(122),dcum_era_ave,color='red',alpha=0.2,lw=2) plt.plot(range(123),dT_ece,color='blue',ls='-.',lw=2.5,alpha=0.2) plt.plot(range(123),dT_era,color='red',ls='-.',lw=2.5,alpha=0.2) plt.scatter((13,44,74,104),(np.cumsum((-u_ece))+np.cumsum((-v_ece))),color='blue',marker=r'$\mathrm{UV}$',s=250,alpha=0.2) plt.scatter((16,47,77,107),(np.cumsum((-u_ora))+np.cumsum((-v_ora))),color='red',marker=r'$\mathrm{UV}$',s=250,alpha=0.2) plt.plot((13,44,74,104),(np.cumsum((-u_ece))+np.cumsum((-v_ece))),color='blue',lw=0.5,ls=':',alpha=0.2) plt.plot((16,47,77,107),(np.cumsum((-u_ora))+np.cumsum((-v_ora))),color='red',lw=0.5,ls=':',alpha=0.2) plt.scatter((13,44,74,104),contr_w_ece,label='ECE',color='blue',marker=r'$\mathrm{W}$',s=250) plt.plot((13,44,74,104),contr_w_ece,color='blue',lw=0.5,ls='--',alpha=0.4) plt.scatter((13,44,74,104),contr_w_ora,label='ORA',color='red',marker=r'$\mathrm{W}$',s=250) plt.plot((13,44,74,104),contr_w_ora,color='red',lw=0.5,ls='--',alpha=0.4) plt.legend(bbox_to_anchor=(0.18, 0.2, 0, 0.05),prop={'size':14},fancybox=True,scatterpoints = 1) plt.title(r'$\int_{}^{}{\frac{\mathrm{d}SST}{\mathrm{d}t}}$ in ' + region.upper() + ' box',fontsize=16) plt.xlabel('Days from 05-01', fontsize=16) plt.ylabel(r"$\Delta$ SST [K]", fontsize=16) for i in np.arange(-6,3.5,0.5): plt.axhline(i,color='gray',alpha=0.1,ls='--') plt.savefig('SSTbiasdev_' + region + '_5_dz_MESH.pdf',dpi=500, bbox_inches='tight') plt.close() # nb 6 #--------- put rest term in plt.figure(figsize=(10,8)) plt.xlim(-1,124) plt.ylim(-6,2) plt.yticks(fontsize=14) plt.xticks(fontsize=14) plt.plot(range(122),dcum_ece_ave,color='blue',alpha=0.2,lw=2) plt.plot(range(122),dcum_era_ave,color='red',alpha=0.2,lw=2) plt.plot(range(123),dT_ece,color='blue',ls='-.',lw=2.5,alpha=0.2) plt.plot(range(123),dT_era,color='red',ls='-.',lw=2.5,alpha=0.2) plt.scatter((13,44,74,104),(np.cumsum((-u_ece))+np.cumsum((-v_ece))),color='blue',marker=r'$\mathrm{UV}$',s=250,alpha=0.2) plt.scatter((16,47,77,107),(np.cumsum((-u_ora))+np.cumsum((-v_ora))),color='red',marker=r'$\mathrm{UV}$',s=250,alpha=0.2) plt.plot((13,44,74,104),(np.cumsum((-u_ece))+np.cumsum((-v_ece))),color='blue',lw=0.5,ls=':',alpha=0.2) plt.plot((16,47,77,107),(np.cumsum((-u_ora))+np.cumsum((-v_ora))),color='red',lw=0.5,ls=':',alpha=0.2) plt.scatter((13,44,74,104),contr_w_ece,color='blue',marker=r'$\mathrm{W}$',s=250,alpha=0.2) plt.plot((13,44,74,104),contr_w_ece,color='blue',lw=0.5,ls='--',alpha=0.4) plt.scatter((13,44,74,104),contr_w_ora,color='red',marker=r'$\mathrm{W}$',s=250,alpha=0.2) plt.plot((13,44,74,104),contr_w_ora,color='red',lw=0.5,ls='--',alpha=0.4) plt.scatter((13,44,74,104),rest_term_ece,label='ECE',color='blue',marker=r'$\mathrm{R^*}$',s=250) plt.plot((13,44,74,104),rest_term_ece,color='blue',lw=0.5,ls='--',alpha=0.4) plt.scatter((13,44,74,104),rest_term_era,label='ORA',color='red',marker=r'$\mathrm{R^*}$',s=250) plt.plot((13,44,74,104),rest_term_era,color='red',lw=0.5,ls='--',alpha=0.4) plt.legend(bbox_to_anchor=(0.18, 0.2, 0, 0.05),prop={'size':14},fancybox=True,scatterpoints = 1) plt.title(r'$\int_{}^{}{\frac{\mathrm{d}SST}{\mathrm{d}t}}$ in ' + region.upper() + ' box',fontsize=16) plt.xlabel('Days from 05-01', fontsize=16) plt.ylabel(r"$\Delta$ SST [K]", fontsize=16) for i in np.arange(-6,2.5,0.5): plt.axhline(i,color='gray',alpha=0.1,ls='--') plt.savefig('SSTbiasdev_' + region + '_6_dz_MESH.pdf',dpi=500, bbox_inches='tight') plt.close() # nb 7 # - ---- put bias upwelling in # this is with the star, not the good one plt.figure(figsize=(10,8)) plt.xlim(-1,124) plt.ylim(-4.5,2.5) plt.yticks(fontsize=14) plt.xticks(fontsize=14) plt.plot(range(123),tos_bias,color='green',lw=2.5,label='SST') plt.scatter((15,46,76,107),bias_q_monthly,color='green',marker=r'$\mathrm{Q}$',s=250,alpha=0.4) plt.plot(range(123),bias_q,color='green',lw=2.5,ls='-.',label='Q',alpha=0.4) plt.scatter((15,46,76,107),bias_uv_ece_ora,label='UV',color='green',marker=r'$\mathrm{UV}$',s=250,alpha=0.4) plt.plot((15,46,76,107),bias_uv_ece_ora,color='green',lw=0.5,ls=':',alpha=0.4) plt.scatter((15,46,76,107),bias_upwelling,label='W',color='green',marker=r'$\mathrm{W}$',s=200,alpha=0.4) plt.plot((15,46,76,107),bias_upwelling,color='green',lw=0.5,ls='--',alpha=0.4) plt.scatter((15,46,76,107),bias_tot_all_terms,label='UV+W+Q',marker='*',s=250,color='black',alpha=0.8) plt.legend(bbox_to_anchor=(0.25, 0.25, 0, 0.05),prop={'size':14},fancybox=True,scatterpoints = 1) plt.title(r'$\int_{}^{}{\frac{\mathrm{d}SST}{\mathrm{d}t}}$ biases in ' + region.upper() + ' box',fontsize=16) plt.xlabel('Days from 05-01', fontsize=16) plt.ylabel(r"$\Delta$ SST [K]", fontsize=16) for i in np.arange(-6,2.5,0.5): plt.axhline(i,color='gray',alpha=0.1,ls='--') plt.savefig('SSTbiasdev_' + region + '_7_dz_MESH.pdf',dpi=500, bbox_inches='tight') plt.close() # nb 8 #this is with the rest term plt.figure(figsize=(10,8)) plt.xlim(-1,124) plt.ylim(-4.5,6.5) plt.yticks(fontsize=14) plt.xticks(fontsize=14) plt.plot(range(123),tos_bias,color='green',lw=2.5,label='SST') plt.scatter((15,46,76,107),bias_q_monthly,color='green',marker=r'$\mathrm{Q}$',s=250) plt.plot(range(123),bias_q,color='green',lw=2.5,ls='-.',label='Q') plt.scatter((15,46,76,107),bias_uv_ece_ora,label='UV',color='green',marker=r'$\mathrm{UV}$',s=250) plt.plot((15,46,76,107),bias_uv_ece_ora,color='green',lw=0.5,ls=':',alpha=0.4) plt.scatter((15,46,76,107),bias_upwelling,label='W',color='green',marker=r'$\mathrm{W}$',s=200) plt.plot((15,46,76,107),bias_upwelling,color='green',lw=0.5,ls='--',alpha=0.4) plt.scatter((15,46,76,107),rest_term_bias,label=r'$R^*$',marker=r'$\mathrm{R^*}$',s=250,color='green') plt.plot((15,46,76,107),rest_term_bias,lw=0.5,ls='--',alpha=0.4,color='green') plt.legend(bbox_to_anchor=(0.18, 0.24, 0, 0.05),prop={'size':14},fancybox=True,scatterpoints = 1) plt.title(r'$\int_{}^{}{\frac{\mathrm{d}SST}{\mathrm{d}t}}$ biases in ' + region.upper() + ' box',fontsize=16) plt.xlabel('Days from 05-01', fontsize=16) plt.ylabel(r"$\Delta$ SST [K]", fontsize=16) for i in np.arange(-6,6.5,0.5): plt.axhline(i,color='gray',alpha=0.1,ls='--') plt.savefig('SSTbiasdev_' + region + '_8_dz_MESH.pdf',dpi=500, bbox_inches='tight') plt.close()
mit
jorik041/scikit-learn
sklearn/utils/tests/test_random.py
230
7344
from __future__ import division import numpy as np import scipy.sparse as sp from scipy.misc import comb as combinations from numpy.testing import assert_array_almost_equal from sklearn.utils.random import sample_without_replacement from sklearn.utils.random import random_choice_csc from sklearn.utils.testing import ( assert_raises, assert_equal, assert_true) ############################################################################### # test custom sampling without replacement algorithm ############################################################################### def test_invalid_sample_without_replacement_algorithm(): assert_raises(ValueError, sample_without_replacement, 5, 4, "unknown") def test_sample_without_replacement_algorithms(): methods = ("auto", "tracking_selection", "reservoir_sampling", "pool") for m in methods: def sample_without_replacement_method(n_population, n_samples, random_state=None): return sample_without_replacement(n_population, n_samples, method=m, random_state=random_state) check_edge_case_of_sample_int(sample_without_replacement_method) check_sample_int(sample_without_replacement_method) check_sample_int_distribution(sample_without_replacement_method) def check_edge_case_of_sample_int(sample_without_replacement): # n_poluation < n_sample assert_raises(ValueError, sample_without_replacement, 0, 1) assert_raises(ValueError, sample_without_replacement, 1, 2) # n_population == n_samples assert_equal(sample_without_replacement(0, 0).shape, (0, )) assert_equal(sample_without_replacement(1, 1).shape, (1, )) # n_population >= n_samples assert_equal(sample_without_replacement(5, 0).shape, (0, )) assert_equal(sample_without_replacement(5, 1).shape, (1, )) # n_population < 0 or n_samples < 0 assert_raises(ValueError, sample_without_replacement, -1, 5) assert_raises(ValueError, sample_without_replacement, 5, -1) def check_sample_int(sample_without_replacement): # This test is heavily inspired from test_random.py of python-core. # # For the entire allowable range of 0 <= k <= N, validate that # the sample is of the correct length and contains only unique items n_population = 100 for n_samples in range(n_population + 1): s = sample_without_replacement(n_population, n_samples) assert_equal(len(s), n_samples) unique = np.unique(s) assert_equal(np.size(unique), n_samples) assert_true(np.all(unique < n_population)) # test edge case n_population == n_samples == 0 assert_equal(np.size(sample_without_replacement(0, 0)), 0) def check_sample_int_distribution(sample_without_replacement): # This test is heavily inspired from test_random.py of python-core. # # For the entire allowable range of 0 <= k <= N, validate that # sample generates all possible permutations n_population = 10 # a large number of trials prevents false negatives without slowing normal # case n_trials = 10000 for n_samples in range(n_population): # Counting the number of combinations is not as good as counting the # the number of permutations. However, it works with sampling algorithm # that does not provide a random permutation of the subset of integer. n_expected = combinations(n_population, n_samples, exact=True) output = {} for i in range(n_trials): output[frozenset(sample_without_replacement(n_population, n_samples))] = None if len(output) == n_expected: break else: raise AssertionError( "number of combinations != number of expected (%s != %s)" % (len(output), n_expected)) def test_random_choice_csc(n_samples=10000, random_state=24): # Explicit class probabilities classes = [np.array([0, 1]), np.array([0, 1, 2])] class_probabilites = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] got = random_choice_csc(n_samples, classes, class_probabilites, random_state) assert_true(sp.issparse(got)) for k in range(len(classes)): p = np.bincount(got.getcol(k).toarray().ravel()) / float(n_samples) assert_array_almost_equal(class_probabilites[k], p, decimal=1) # Implicit class probabilities classes = [[0, 1], [1, 2]] # test for array-like support class_probabilites = [np.array([0.5, 0.5]), np.array([0, 1/2, 1/2])] got = random_choice_csc(n_samples=n_samples, classes=classes, random_state=random_state) assert_true(sp.issparse(got)) for k in range(len(classes)): p = np.bincount(got.getcol(k).toarray().ravel()) / float(n_samples) assert_array_almost_equal(class_probabilites[k], p, decimal=1) # Edge case proabilites 1.0 and 0.0 classes = [np.array([0, 1]), np.array([0, 1, 2])] class_probabilites = [np.array([1.0, 0.0]), np.array([0.0, 1.0, 0.0])] got = random_choice_csc(n_samples, classes, class_probabilites, random_state) assert_true(sp.issparse(got)) for k in range(len(classes)): p = np.bincount(got.getcol(k).toarray().ravel(), minlength=len(class_probabilites[k])) / n_samples assert_array_almost_equal(class_probabilites[k], p, decimal=1) # One class target data classes = [[1], [0]] # test for array-like support class_probabilites = [np.array([0.0, 1.0]), np.array([1.0])] got = random_choice_csc(n_samples=n_samples, classes=classes, random_state=random_state) assert_true(sp.issparse(got)) for k in range(len(classes)): p = np.bincount(got.getcol(k).toarray().ravel()) / n_samples assert_array_almost_equal(class_probabilites[k], p, decimal=1) def test_random_choice_csc_errors(): # the length of an array in classes and class_probabilites is mismatched classes = [np.array([0, 1]), np.array([0, 1, 2, 3])] class_probabilites = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] assert_raises(ValueError, random_choice_csc, 4, classes, class_probabilites, 1) # the class dtype is not supported classes = [np.array(["a", "1"]), np.array(["z", "1", "2"])] class_probabilites = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] assert_raises(ValueError, random_choice_csc, 4, classes, class_probabilites, 1) # the class dtype is not supported classes = [np.array([4.2, 0.1]), np.array([0.1, 0.2, 9.4])] class_probabilites = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] assert_raises(ValueError, random_choice_csc, 4, classes, class_probabilites, 1) # Given proabilites don't sum to 1 classes = [np.array([0, 1]), np.array([0, 1, 2])] class_probabilites = [np.array([0.5, 0.6]), np.array([0.6, 0.1, 0.3])] assert_raises(ValueError, random_choice_csc, 4, classes, class_probabilites, 1)
bsd-3-clause
rupakc/Kaggle-Compendium
Job Salary Prediction/preprocess.py
4
9418
# -*- coding: utf-8 -*- """ Created on Mon Dec 14 22:25:49 2016 Preprocessing Utilities for cleaning and processing of data @author: Rupak Chakraborty """ import pandas as pd from nltk.corpus import stopwords import string from nltk.stem import PorterStemmer stopword_list = set(stopwords.words("english")) punctuation_list = list(string.punctuation) ps = PorterStemmer() months_list = ["january","february","march","april","may","june","july","august", "september","october","november","december"] digit_list = ["0","1","2","3","4","5","6","7","8","9"] month_list_short = ["jan","feb","mar","apr","may","jun","jul","aug","sept","oct","nov","dec"] emoticon_list = [":)",":(","^_^","-_-","<3",":D",":P",":/"] html_tag_list = ["&nbsp","&lt","&gt","&amp",";","<strong>","<em>","[1]","</strong>","</em>","<div>","</div>","<b>","</b>","[2]","[3]","...","[img]","[/img]","<u>","</u>","<p>","</p>","\n","\\t","<span>", "</span>","[Moved]","<br/>","<a>","</a>","&quot","<br>","<br />","Â","<a rel=\"nofollow\" class=\"ot-hashtag\"","&#39","<a","’","&#39;"] extend_punct_list = [' ',',',':',';','\'','\t','\n','?','-','$',"!!","?","w/","!","!!!","w/","'","RT","rt","@","#","/",":)", ":(",":D","^_^","^","...","&","\\",":","?","<",">","$","%","*","`","~","-","_", "+","=","{","}","[","]","|","\"",",",";",")","(","r/","/u/","*","-"] punctuation_list.extend(extend_punct_list) #punctuation_list.remove(".") months_list.extend(month_list_short) """ Given a string normalizes it, i.e. converts it to lowercase and strips it of extra spaces Params: -------- s - String which is to be normalized Returns: --------- String in the normalized form """ def normalize_string(s): s = s.lower() s = s.strip() return s """ Given a list of strings normalizes the strings Params: ------- string_list - List containing the strings which are to be normalized Returns: --------- Returns a list containing the normalized string list """ def normalize_string_list(string_list): normalized_list = [] for sentence in string_list: normalized_list.append(normalize_string(sentence)) return normalized_list """ Given a string and a separator splits up the string in the tokens Params: -------- s - string which has to be tokenized separator - separator based on which the string is to be tokenized Returns: --------- A list of words in the sentence based on the separator """ def tokenize_string(s,separator): word_list = list([]) if isinstance(s,basestring): word_list = s.split(separator) return word_list """ Given a list of sentences tokenizes each sentence in the list Params: -------- string_list - List of sentences which have to be tokenized separator - Separator based on which the sentences have to be tokenized """ def tokenize_string_list(string_list,separator): tokenized_sentence_list = [] for sentence in string_list: #sentence = sentence.encode("ascii","ignore") tokenized_sentence_list.append(tokenize_string(sentence,separator)) return tokenized_sentence_list """ Given a string containing stopwords removes all the stopwords Params: -------- s - String containing the stopwords which are to be removed Returns: --------- String sans the stopwords """ def remove_stopwords(s): s = s.lower() removed_string = '' words = s.split() for word in words: if word not in stopword_list: removed_string = removed_string + word.strip() + " " return removed_string.strip() """ Given a list of sentences and a filename, writes the sentences to the file Params: -------- sentence_list - List of sentences which have to be written to the file filename - File to which the sentences have to be written Returns: --------- Nothing quite just writes the sentences to the file """ def write_sentences_to_file(sentence_list,filename): write_file = open(filename,'w') for sentence in sentence_list: write_file.write(encode_ascii(sentence) + '\n') write_file.flush() write_file.close() """ Removes all the punctuations from a given string Params: -------- s - String containing the possible punctuations Returns: -------- String without the punctuations (including new lines and tabs) """ def remove_punctuations(s): s = s.lower() s = s.strip() for punctuation in punctuation_list: s = s.replace(punctuation,' ') return s.strip() """ Strips a given string of HTML tags Params: -------- s - String from which the HTML tags have to be removed Returns: --------- String sans the HTML tags """ def remove_html_tags(s): for tag in html_tag_list: s = s.replace(tag,' ') return s """ Given a string removes all the digits from them Params: ------- s - String from which the digits need to be removed Returns: --------- String without occurence of the digits """ def remove_digits(s): for digit in digit_list: s = s.replace(digit,'') return s """ Given a string returns all occurences of a month from it Params: -------- s - String containing possible month names Returns: -------- String wihtout the occurence of the months """ def remove_months(s): s = s.lower() words = s.split() without_month_list = [word for word in words if word not in months_list] month_clean_string = "" for word in without_month_list: month_clean_string = month_clean_string + word + " " return month_clean_string.strip() """ Checks if a given string contains all ASCII characters Params: ------- s - String which is to be checked for ASCII characters Returns: -------- True if the string contains all ASCII characters, False otherwise """ def is_ascii(s): if isinstance(s,basestring): return all(ord(c) < 128 for c in s) return False """ Given a string encodes it in ascii format Params: -------- s - String which is to be encoded Returns: -------- String encoded in ascii format """ def encode_ascii(s): return s.encode('ascii','ignore') """ Stems each word of a given sentence to it's root word using Porters Stemmer Params: -------- sentence - String containing the sentence which is to be stemmed Returns: --------- Sentence where each word has been stemmed to it's root word """ def stem_sentence(sentence): words = sentence.split() stemmed_sentence = "" for word in words: try: if is_ascii(word): stemmed_sentence = stemmed_sentence + ps.stem_word(word) + " " except: pass return stemmed_sentence.strip() """ Given a string removes urls from the string Params: -------- s - String containing urls which have to be removed Returns: -------- String without the occurence of the urls """ def remove_url(s): s = s.lower() words = s.split() without_url = "" for word in words: if word.count('http:') == 0 and word.count('https:') == 0 and word.count('ftp:') == 0 and word.count('www.') == 0 and word.count('.com') == 0 and word.count('.ly') == 0 and word.count('.st') == 0: without_url = without_url + word + " " return without_url.strip() """ Given a string removes all the words whose length is less than 3 Params: -------- s - String from which small words have to be removed. Returns: --------- Returns a string without occurence of small words """ def remove_small_words(s): words = s.split() clean_string = "" for word in words: if len(word) >= 3: clean_string = clean_string + word + " " return clean_string.strip() """ Defines the pipeline for cleaning and preprocessing of text Params: -------- s - String containing the text which has to be preprocessed Returns: --------- String which has been passed through the preprocessing pipeline """ def text_clean_pipeline(s): s = remove_url(s) s = remove_punctuations(s) s = remove_html_tags(s) s = remove_stopwords(s) s = remove_months(s) s = remove_digits(s) #s = stem_sentence(s) s = remove_small_words(s) return s """ Given a list of sentences processes the list through the pre-preprocessing pipeline and returns the list Params: -------- sentence_list - List of sentences which are to be cleaned Returns: --------- The cleaned and pre-processed sentence list """ def text_clean_pipeline_list(sentence_list): clean_sentence_list = list([]) for s in sentence_list: s = remove_digits(s) s = remove_punctuations(s) s = remove_html_tags(s) s = remove_stopwords(s) s = remove_months(s) s = remove_small_words(s) #s = encode_ascii(s) #s = remove_url(s) #s = stem_sentence(s) clean_sentence_list.append(s) return clean_sentence_list """ Given a excel filepath and a corresponding sheetname reads it and converts it into a dataframe Params: -------- filename - Filepath containing the location and name of the file sheetname - Name of the sheet containing the data Returns: --------- pandas dataframe containing the data from the excel file """ def get_dataframe_from_excel(filename,sheetname): xl_file = pd.ExcelFile(filename) data_frame = xl_file.parse(sheetname) return data_frame
mit
bsipocz/astroML
doc/logos/plot_logo.py
5
1286
""" NASA Sloan Atlas ---------------- This shows some visualizations of the data from the NASA SDSS Atlas """ # Author: Jake VanderPlas <vanderplas@astro.washington.edu> # License: BSD # The figure is an example from astroML: see http://astroML.github.com import numpy as np from matplotlib import pyplot as plt from matplotlib.font_manager import FontProperties from astroML.datasets import fetch_nasa_atlas data = fetch_nasa_atlas() #------------------------------------------------------------ # plot the RA/DEC in an area-preserving projection RA = data['RA'] DEC = data['DEC'] # convert coordinates to degrees RA -= 180 RA *= np.pi / 180 DEC *= np.pi / 180 fig = plt.figure(figsize=(8, 2), facecolor='w') ax = fig.add_axes([0.56, 0.1, 0.4, 0.8], projection='mollweide') plt.scatter(RA, DEC, s=1, lw=0, c=data['Z'], cmap=plt.cm.copper) plt.grid(True) ax.xaxis.set_major_formatter(plt.NullFormatter()) ax.yaxis.set_major_formatter(plt.NullFormatter()) font = {'family' : 'neuropol X', 'color' : '#222222', 'weight' : 'normal', 'size' : 135, } fig.text(0.5, 0.5, 'astroML', ha='center', va='center', fontdict=font) #size=135, #fontproperties=FontProperties(['neuropol X bold', 'neuropol X'])) plt.savefig('logo.png') plt.show()
bsd-2-clause
adico-somoto/deep-learning
image-classification/helper.py
29
5643
import pickle import numpy as np import matplotlib.pyplot as plt from sklearn.preprocessing import LabelBinarizer def _load_label_names(): """ Load the label names from file """ return ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] def load_cfar10_batch(cifar10_dataset_folder_path, batch_id): """ Load a batch of the dataset """ with open(cifar10_dataset_folder_path + '/data_batch_' + str(batch_id), mode='rb') as file: batch = pickle.load(file, encoding='latin1') features = batch['data'].reshape((len(batch['data']), 3, 32, 32)).transpose(0, 2, 3, 1) labels = batch['labels'] return features, labels def display_stats(cifar10_dataset_folder_path, batch_id, sample_id): """ Display Stats of the the dataset """ batch_ids = list(range(1, 6)) if batch_id not in batch_ids: print('Batch Id out of Range. Possible Batch Ids: {}'.format(batch_ids)) return None features, labels = load_cfar10_batch(cifar10_dataset_folder_path, batch_id) if not (0 <= sample_id < len(features)): print('{} samples in batch {}. {} is out of range.'.format(len(features), batch_id, sample_id)) return None print('\nStats of batch {}:'.format(batch_id)) print('Samples: {}'.format(len(features))) print('Label Counts: {}'.format(dict(zip(*np.unique(labels, return_counts=True))))) print('First 20 Labels: {}'.format(labels[:20])) sample_image = features[sample_id] sample_label = labels[sample_id] label_names = _load_label_names() print('\nExample of Image {}:'.format(sample_id)) print('Image - Min Value: {} Max Value: {}'.format(sample_image.min(), sample_image.max())) print('Image - Shape: {}'.format(sample_image.shape)) print('Label - Label Id: {} Name: {}'.format(sample_label, label_names[sample_label])) plt.axis('off') plt.imshow(sample_image) def _preprocess_and_save(normalize, one_hot_encode, features, labels, filename): """ Preprocess data and save it to file """ features = normalize(features) labels = one_hot_encode(labels) pickle.dump((features, labels), open(filename, 'wb')) def preprocess_and_save_data(cifar10_dataset_folder_path, normalize, one_hot_encode): """ Preprocess Training and Validation Data """ n_batches = 5 valid_features = [] valid_labels = [] for batch_i in range(1, n_batches + 1): features, labels = load_cfar10_batch(cifar10_dataset_folder_path, batch_i) validation_count = int(len(features) * 0.1) # Prprocess and save a batch of training data _preprocess_and_save( normalize, one_hot_encode, features[:-validation_count], labels[:-validation_count], 'preprocess_batch_' + str(batch_i) + '.p') # Use a portion of training batch for validation valid_features.extend(features[-validation_count:]) valid_labels.extend(labels[-validation_count:]) # Preprocess and Save all validation data _preprocess_and_save( normalize, one_hot_encode, np.array(valid_features), np.array(valid_labels), 'preprocess_validation.p') with open(cifar10_dataset_folder_path + '/test_batch', mode='rb') as file: batch = pickle.load(file, encoding='latin1') # load the training data test_features = batch['data'].reshape((len(batch['data']), 3, 32, 32)).transpose(0, 2, 3, 1) test_labels = batch['labels'] # Preprocess and Save all training data _preprocess_and_save( normalize, one_hot_encode, np.array(test_features), np.array(test_labels), 'preprocess_training.p') def batch_features_labels(features, labels, batch_size): """ Split features and labels into batches """ for start in range(0, len(features), batch_size): end = min(start + batch_size, len(features)) yield features[start:end], labels[start:end] def load_preprocess_training_batch(batch_id, batch_size): """ Load the Preprocessed Training data and return them in batches of <batch_size> or less """ filename = 'preprocess_batch_' + str(batch_id) + '.p' features, labels = pickle.load(open(filename, mode='rb')) # Return the training data in batches of size <batch_size> or less return batch_features_labels(features, labels, batch_size) def display_image_predictions(features, labels, predictions): n_classes = 10 label_names = _load_label_names() label_binarizer = LabelBinarizer() label_binarizer.fit(range(n_classes)) label_ids = label_binarizer.inverse_transform(np.array(labels)) fig, axies = plt.subplots(nrows=4, ncols=2) fig.tight_layout() fig.suptitle('Softmax Predictions', fontsize=20, y=1.1) n_predictions = 3 margin = 0.05 ind = np.arange(n_predictions) width = (1. - 2. * margin) / n_predictions for image_i, (feature, label_id, pred_indicies, pred_values) in enumerate(zip(features, label_ids, predictions.indices, predictions.values)): pred_names = [label_names[pred_i] for pred_i in pred_indicies] correct_name = label_names[label_id] axies[image_i][0].imshow(feature) axies[image_i][0].set_title(correct_name) axies[image_i][0].set_axis_off() axies[image_i][1].barh(ind + margin, pred_values[::-1], width) axies[image_i][1].set_yticks(ind + margin) axies[image_i][1].set_yticklabels(pred_names[::-1]) axies[image_i][1].set_xticks([0, 0.5, 1.0])
mit
JoseBlanca/franklin
scripts/stats/hist_from_number_list.py
1
2589
#!/usr/bin/env python 'Given a column with numbers in a file or stdin it plots an histogram' # Copyright 2009 Jose Blanca, Peio Ziarsolo, COMAV-Univ. Politecnica Valencia # This file is part of project. # franklin is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # franklin is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # You should have received a copy of the GNU Affero General Public License # along with franklin. If not, see <http://www.gnu.org/licenses/>. from optparse import OptionParser from sys import stdin import matplotlib.pyplot as plt def main(): ''' Main''' parser = OptionParser('usage: %prog [-v] -nNODES ...', version='%prog 1.0') parser.add_option('-i', '--infile', dest='infile', help='Input file') parser.add_option('-o', '--outfile', dest='outfile', help='Output file') parser.add_option('-M', '--max', dest='max', type="float", help='Maximun limit') parser.add_option('-m', '--min', dest='min', type="float", help='Minimun Limit') parser.add_option('-t', '--interval', dest = 'interval', type='int', help = 'plot interval?' ) options = parser.parse_args()[0] if options.infile is None: ifhand = stdin else: ifname = options.infile ifhand = open(ifname,'rt') file_content = ifhand.read() if options.interval is not None: interval = options.interval else: interval = 20 data_list = [] for line in file_content.split('\n'): line.strip() if line.isspace() or line == '': continue number = float(line) data_list.append(number) if options.max is None: opt_max = max(data_list) else: opt_max = options.max if options.min is None: opt_min = min(data_list) else: opt_min = options.min plot_range = opt_min, opt_max #ploting the figure fig = plt.figure() axes = fig.add_subplot(111) axes.hist(data_list, bins=interval, range=plot_range, facecolor='green', alpha=0.75) plt.show() if __name__ == '__main__': main()
agpl-3.0
chapmanb/cloudbiolinux
installed_files/ipython_config.py
15
14156
# Configuration file for ipython. c = get_config() c.InteractiveShell.autoindent = True c.InteractiveShell.colors = 'Linux' c.InteractiveShell.confirm_exit = False c.AliasManager.user_aliases = [ ('ll', 'ls -l'), ('lt', 'ls -ltr'), ] #------------------------------------------------------------------------------ # InteractiveShellApp configuration #------------------------------------------------------------------------------ # A Mixin for applications that start InteractiveShell instances. # # Provides configurables for loading extensions and executing files as part of # configuring a Shell environment. # # Provides init_extensions() and init_code() methods, to be called after # init_shell(), which must be implemented by subclasses. # Execute the given command string. # c.InteractiveShellApp.code_to_run = '' # lines of code to run at IPython startup. # c.InteractiveShellApp.exec_lines = [] # If true, an 'import *' is done from numpy and pylab, when using pylab # c.InteractiveShellApp.pylab_import_all = True # A list of dotted module names of IPython extensions to load. # c.InteractiveShellApp.extensions = [] # dotted module name of an IPython extension to load. # c.InteractiveShellApp.extra_extension = '' # List of files to run at IPython startup. # c.InteractiveShellApp.exec_files = [] # A file to be run # c.InteractiveShellApp.file_to_run = '' #------------------------------------------------------------------------------ # TerminalIPythonApp configuration #------------------------------------------------------------------------------ # TerminalIPythonApp will inherit config from: BaseIPythonApplication, # Application, InteractiveShellApp # Execute the given command string. # c.TerminalIPythonApp.code_to_run = '' # The IPython profile to use. # c.TerminalIPythonApp.profile = u'default' # Set the log level by value or name. # c.TerminalIPythonApp.log_level = 30 # lines of code to run at IPython startup. # c.TerminalIPythonApp.exec_lines = [] # Enable GUI event loop integration ('qt', 'wx', 'gtk', 'glut', 'pyglet'). # c.TerminalIPythonApp.gui = None # Pre-load matplotlib and numpy for interactive use, selecting a particular # matplotlib backend and loop integration. # c.TerminalIPythonApp.pylab = None # Suppress warning messages about legacy config files # c.TerminalIPythonApp.ignore_old_config = False # Create a massive crash report when IPython enconters what may be an internal # error. The default is to append a short message to the usual traceback # c.TerminalIPythonApp.verbose_crash = False # If a command or file is given via the command-line, e.g. 'ipython foo.py # c.TerminalIPythonApp.force_interact = False # If true, an 'import *' is done from numpy and pylab, when using pylab # c.TerminalIPythonApp.pylab_import_all = True # The name of the IPython directory. This directory is used for logging # configuration (through profiles), history storage, etc. The default is usually # $HOME/.ipython. This options can also be specified through the environment # variable IPYTHON_DIR. # c.TerminalIPythonApp.ipython_dir = u'/home/ubuntu/.ipython' # Whether to display a banner upon starting IPython. # c.TerminalIPythonApp.display_banner = True # Start IPython quickly by skipping the loading of config files. # c.TerminalIPythonApp.quick = False # A list of dotted module names of IPython extensions to load. # c.TerminalIPythonApp.extensions = [] # Whether to install the default config files into the profile dir. If a new # profile is being created, and IPython contains config files for that profile, # then they will be staged into the new directory. Otherwise, default config # files will be automatically generated. # c.TerminalIPythonApp.copy_config_files = False # dotted module name of an IPython extension to load. # c.TerminalIPythonApp.extra_extension = '' # List of files to run at IPython startup. # c.TerminalIPythonApp.exec_files = [] # Whether to overwrite existing config files when copying # c.TerminalIPythonApp.overwrite = False # A file to be run # c.TerminalIPythonApp.file_to_run = '' #------------------------------------------------------------------------------ # TerminalInteractiveShell configuration #------------------------------------------------------------------------------ # TerminalInteractiveShell will inherit config from: InteractiveShell # auto editing of files with syntax errors. # c.TerminalInteractiveShell.autoedit_syntax = False # Use colors for displaying information about objects. Because this information # is passed through a pager (like 'less'), and some pagers get confused with # color codes, this capability can be turned off. # c.TerminalInteractiveShell.color_info = True # # c.TerminalInteractiveShell.history_length = 10000 # Don't call post-execute functions that have failed in the past. # c.TerminalInteractiveShell.disable_failing_post_execute = False # Show rewritten input, e.g. for autocall. # c.TerminalInteractiveShell.show_rewritten_input = True # Set the color scheme (NoColor, Linux, or LightBG). # c.TerminalInteractiveShell.colors = 'LightBG' # Autoindent IPython code entered interactively. # c.TerminalInteractiveShell.autoindent = True # # c.TerminalInteractiveShell.separate_in = '\n' # Deprecated, use PromptManager.in2_template # c.TerminalInteractiveShell.prompt_in2 = ' .\\D.: ' # # c.TerminalInteractiveShell.separate_out = '' # Deprecated, use PromptManager.in_template # c.TerminalInteractiveShell.prompt_in1 = 'In [\\#]: ' # Enable deep (recursive) reloading by default. IPython can use the deep_reload # module which reloads changes in modules recursively (it replaces the reload() # function, so you don't need to change anything to use it). deep_reload() # forces a full reload of modules whose code may have changed, which the default # reload() function does not. When deep_reload is off, IPython will use the # normal reload(), but deep_reload will still be available as dreload(). # c.TerminalInteractiveShell.deep_reload = False # Make IPython automatically call any callable object even if you didn't type # explicit parentheses. For example, 'str 43' becomes 'str(43)' automatically. # The value can be '0' to disable the feature, '1' for 'smart' autocall, where # it is not applied if there are no more arguments on the line, and '2' for # 'full' autocall, where all callable objects are automatically called (even if # no arguments are present). # c.TerminalInteractiveShell.autocall = 0 # Number of lines of your screen, used to control printing of very long strings. # Strings longer than this number of lines will be sent through a pager instead # of directly printed. The default value for this is 0, which means IPython # will auto-detect your screen size every time it needs to print certain # potentially long strings (this doesn't change the behavior of the 'print' # keyword, it's only triggered internally). If for some reason this isn't # working well (it needs curses support), specify it yourself. Otherwise don't # change the default. # c.TerminalInteractiveShell.screen_length = 0 # Set the editor used by IPython (default to $EDITOR/vi/notepad). # c.TerminalInteractiveShell.editor = 'vi' # Deprecated, use PromptManager.justify # c.TerminalInteractiveShell.prompts_pad_left = True # The part of the banner to be printed before the profile # c.TerminalInteractiveShell.banner1 = 'Python 2.7.1 (r271:86832, Jun 25 2011, 05:09:01) \nType "copyright", "credits" or "license" for more information.\n\nIPython 0.12 -- An enhanced Interactive Python.\n? -> Introduction and overview of IPython\'s features.\n%quickref -> Quick reference.\nhelp -> Python\'s own help system.\nobject? -> Details about \'object\', use \'object??\' for extra details.\n' # # c.TerminalInteractiveShell.readline_parse_and_bind = ['tab: complete', '"\\C-l": clear-screen', 'set show-all-if-ambiguous on', '"\\C-o": tab-insert', '"\\C-r": reverse-search-history', '"\\C-s": forward-search-history', '"\\C-p": history-search-backward', '"\\C-n": history-search-forward', '"\\e[A": history-search-backward', '"\\e[B": history-search-forward', '"\\C-k": kill-line', '"\\C-u": unix-line-discard'] # The part of the banner to be printed after the profile # c.TerminalInteractiveShell.banner2 = '' # # c.TerminalInteractiveShell.separate_out2 = '' # # c.TerminalInteractiveShell.wildcards_case_sensitive = True # # c.TerminalInteractiveShell.debug = False # Set to confirm when you try to exit IPython with an EOF (Control-D in Unix, # Control-Z/Enter in Windows). By typing 'exit' or 'quit', you can force a # direct exit without any confirmation. # c.TerminalInteractiveShell.confirm_exit = True # # c.TerminalInteractiveShell.ipython_dir = '' # # c.TerminalInteractiveShell.readline_remove_delims = '-/~' # Start logging to the default log file. # c.TerminalInteractiveShell.logstart = False # The name of the logfile to use. # c.TerminalInteractiveShell.logfile = '' # The shell program to be used for paging. # c.TerminalInteractiveShell.pager = 'less' # Enable magic commands to be called without the leading %. # c.TerminalInteractiveShell.automagic = True # Save multi-line entries as one entry in readline history # c.TerminalInteractiveShell.multiline_history = True # # c.TerminalInteractiveShell.readline_use = True # Start logging to the given file in append mode. # c.TerminalInteractiveShell.logappend = '' # # c.TerminalInteractiveShell.xmode = 'Context' # # c.TerminalInteractiveShell.quiet = False # Enable auto setting the terminal title. # c.TerminalInteractiveShell.term_title = False # # c.TerminalInteractiveShell.object_info_string_level = 0 # Deprecated, use PromptManager.out_template # c.TerminalInteractiveShell.prompt_out = 'Out[\\#]: ' # Set the size of the output cache. The default is 1000, you can change it # permanently in your config file. Setting it to 0 completely disables the # caching system, and the minimum value accepted is 20 (if you provide a value # less than 20, it is reset to 0 and a warning is issued). This limit is # defined because otherwise you'll spend more time re-flushing a too small cache # than working # c.TerminalInteractiveShell.cache_size = 1000 # Automatically call the pdb debugger after every exception. # c.TerminalInteractiveShell.pdb = False #------------------------------------------------------------------------------ # PromptManager configuration #------------------------------------------------------------------------------ # This is the primary interface for producing IPython's prompts. # Output prompt. '\#' will be transformed to the prompt number # c.PromptManager.out_template = 'Out[\\#]: ' # Continuation prompt. # c.PromptManager.in2_template = ' .\\D.: ' # If True (default), each prompt will be right-aligned with the preceding one. # c.PromptManager.justify = True # Input prompt. '\#' will be transformed to the prompt number # c.PromptManager.in_template = 'In [\\#]: ' # # c.PromptManager.color_scheme = 'Linux' #------------------------------------------------------------------------------ # ProfileDir configuration #------------------------------------------------------------------------------ # An object to manage the profile directory and its resources. # # The profile directory is used by all IPython applications, to manage # configuration, logging and security. # # This object knows how to find, create and manage these directories. This # should be used by any code that wants to handle profiles. # Set the profile location directly. This overrides the logic used by the # `profile` option. # c.ProfileDir.location = u'' #------------------------------------------------------------------------------ # PlainTextFormatter configuration #------------------------------------------------------------------------------ # The default pretty-printer. # # This uses :mod:`IPython.external.pretty` to compute the format data of the # object. If the object cannot be pretty printed, :func:`repr` is used. See the # documentation of :mod:`IPython.external.pretty` for details on how to write # pretty printers. Here is a simple example:: # # def dtype_pprinter(obj, p, cycle): # if cycle: # return p.text('dtype(...)') # if hasattr(obj, 'fields'): # if obj.fields is None: # p.text(repr(obj)) # else: # p.begin_group(7, 'dtype([') # for i, field in enumerate(obj.descr): # if i > 0: # p.text(',') # p.breakable() # p.pretty(field) # p.end_group(7, '])') # PlainTextFormatter will inherit config from: BaseFormatter # # c.PlainTextFormatter.type_printers = {} # # c.PlainTextFormatter.newline = '\n' # # c.PlainTextFormatter.float_precision = '' # # c.PlainTextFormatter.verbose = False # # c.PlainTextFormatter.deferred_printers = {} # # c.PlainTextFormatter.pprint = True # # c.PlainTextFormatter.max_width = 79 # # c.PlainTextFormatter.singleton_printers = {} #------------------------------------------------------------------------------ # IPCompleter configuration #------------------------------------------------------------------------------ # Extension of the completer class with IPython-specific features # IPCompleter will inherit config from: Completer # Instruct the completer to omit private method names # # Specifically, when completing on ``object.<tab>``. # # When 2 [default]: all names that start with '_' will be excluded. # # When 1: all 'magic' names (``__foo__``) will be excluded. # # When 0: nothing will be excluded. # c.IPCompleter.omit__names = 2 # Whether to merge completion results into a single list # # If False, only the completion results from the first non-empty completer will # be returned. # c.IPCompleter.merge_completions = True # Activate greedy completion # # This will enable completion on elements of lists, results of function calls, # etc., but can be unsafe because the code is actually evaluated on TAB. # c.IPCompleter.greedy = False
mit
jmschrei/scikit-learn
examples/cluster/plot_birch_vs_minibatchkmeans.py
333
3694
""" ================================= Compare BIRCH and MiniBatchKMeans ================================= This example compares the timing of Birch (with and without the global clustering step) and MiniBatchKMeans on a synthetic dataset having 100,000 samples and 2 features generated using make_blobs. If ``n_clusters`` is set to None, the data is reduced from 100,000 samples to a set of 158 clusters. This can be viewed as a preprocessing step before the final (global) clustering step that further reduces these 158 clusters to 100 clusters. """ # Authors: Manoj Kumar <manojkumarsivaraj334@gmail.com # Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr> # License: BSD 3 clause print(__doc__) from itertools import cycle from time import time import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as colors from sklearn.preprocessing import StandardScaler from sklearn.cluster import Birch, MiniBatchKMeans from sklearn.datasets.samples_generator import make_blobs # Generate centers for the blobs so that it forms a 10 X 10 grid. xx = np.linspace(-22, 22, 10) yy = np.linspace(-22, 22, 10) xx, yy = np.meshgrid(xx, yy) n_centres = np.hstack((np.ravel(xx)[:, np.newaxis], np.ravel(yy)[:, np.newaxis])) # Generate blobs to do a comparison between MiniBatchKMeans and Birch. X, y = make_blobs(n_samples=100000, centers=n_centres, random_state=0) # Use all colors that matplotlib provides by default. colors_ = cycle(colors.cnames.keys()) fig = plt.figure(figsize=(12, 4)) fig.subplots_adjust(left=0.04, right=0.98, bottom=0.1, top=0.9) # Compute clustering with Birch with and without the final clustering step # and plot. birch_models = [Birch(threshold=1.7, n_clusters=None), Birch(threshold=1.7, n_clusters=100)] final_step = ['without global clustering', 'with global clustering'] for ind, (birch_model, info) in enumerate(zip(birch_models, final_step)): t = time() birch_model.fit(X) time_ = time() - t print("Birch %s as the final step took %0.2f seconds" % ( info, (time() - t))) # Plot result labels = birch_model.labels_ centroids = birch_model.subcluster_centers_ n_clusters = np.unique(labels).size print("n_clusters : %d" % n_clusters) ax = fig.add_subplot(1, 3, ind + 1) for this_centroid, k, col in zip(centroids, range(n_clusters), colors_): mask = labels == k ax.plot(X[mask, 0], X[mask, 1], 'w', markerfacecolor=col, marker='.') if birch_model.n_clusters is None: ax.plot(this_centroid[0], this_centroid[1], '+', markerfacecolor=col, markeredgecolor='k', markersize=5) ax.set_ylim([-25, 25]) ax.set_xlim([-25, 25]) ax.set_autoscaley_on(False) ax.set_title('Birch %s' % info) # Compute clustering with MiniBatchKMeans. mbk = MiniBatchKMeans(init='k-means++', n_clusters=100, batch_size=100, n_init=10, max_no_improvement=10, verbose=0, random_state=0) t0 = time() mbk.fit(X) t_mini_batch = time() - t0 print("Time taken to run MiniBatchKMeans %0.2f seconds" % t_mini_batch) mbk_means_labels_unique = np.unique(mbk.labels_) ax = fig.add_subplot(1, 3, 3) for this_centroid, k, col in zip(mbk.cluster_centers_, range(n_clusters), colors_): mask = mbk.labels_ == k ax.plot(X[mask, 0], X[mask, 1], 'w', markerfacecolor=col, marker='.') ax.plot(this_centroid[0], this_centroid[1], '+', markeredgecolor='k', markersize=5) ax.set_xlim([-25, 25]) ax.set_ylim([-25, 25]) ax.set_title("MiniBatchKMeans") ax.set_autoscaley_on(False) plt.show()
bsd-3-clause
AdrienGuille/GrowingNeuralGas
gng.py
1
10351
# coding: utf-8 import numpy as np from scipy import spatial import networkx as nx import matplotlib.pyplot as plt from sklearn import decomposition __authors__ = 'Adrien Guille' __email__ = 'adrien.guille@univ-lyon2.fr' ''' Simple implementation of the Growing Neural Gas algorithm, based on: A Growing Neural Gas Network Learns Topologies. B. Fritzke, Advances in Neural Information Processing Systems 7, 1995. ''' class GrowingNeuralGas: def __init__(self, input_data): self.network = None self.data = input_data self.units_created = 0 plt.style.use('ggplot') def find_nearest_units(self, observation): distance = [] for u, attributes in self.network.nodes(data=True): vector = attributes['vector'] dist = spatial.distance.euclidean(vector, observation) distance.append((u, dist)) distance.sort(key=lambda x: x[1]) ranking = [u for u, dist in distance] return ranking def prune_connections(self, a_max): nodes_to_remove = [] for u, v, attributes in self.network.edges(data=True): if attributes['age'] > a_max: nodes_to_remove.append((u, v)) for u, v in nodes_to_remove: self.network.remove_edge(u, v) nodes_to_remove = [] for u in self.network.nodes(): if self.network.degree(u) == 0: nodes_to_remove.append(u) for u in nodes_to_remove: self.network.remove_node(u) def fit_network(self, e_b, e_n, a_max, l, a, d, passes=1, plot_evolution=False): # logging variables accumulated_local_error = [] global_error = [] network_order = [] network_size = [] total_units = [] self.units_created = 0 # 0. start with two units a and b at random position w_a and w_b w_a = [np.random.uniform(-2, 2) for _ in range(np.shape(self.data)[1])] w_b = [np.random.uniform(-2, 2) for _ in range(np.shape(self.data)[1])] self.network = nx.Graph() self.network.add_node(self.units_created, vector=w_a, error=0) self.units_created += 1 self.network.add_node(self.units_created, vector=w_b, error=0) self.units_created += 1 # 1. iterate through the data sequence = 0 for p in range(passes): print(' Pass #%d' % (p + 1)) np.random.shuffle(self.data) steps = 0 for observation in self.data: # 2. find the nearest unit s_1 and the second nearest unit s_2 nearest_units = self.find_nearest_units(observation) s_1 = nearest_units[0] s_2 = nearest_units[1] # 3. increment the age of all edges emanating from s_1 for u, v, attributes in self.network.edges(data=True, nbunch=[s_1]): self.network.add_edge(u, v, age=attributes['age']+1) # 4. add the squared distance between the observation and the nearest unit in input space self.network.node[s_1]['error'] += spatial.distance.euclidean(observation, self.network.node[s_1]['vector'])**2 # 5 .move s_1 and its direct topological neighbors towards the observation by the fractions # e_b and e_n, respectively, of the total distance update_w_s_1 = self.e_b * \ (np.subtract(observation, self.network.node[s_1]['vector'])) self.network.node[s_1]['vector'] = np.add( self.network.node[s_1]['vector'], update_w_s_1) for neighbor in self.network.neighbors(s_1): update_w_s_n = self.e_n * \ (np.subtract(observation, self.network.node[neighbor]['vector'])) self.network.node[neighbor]['vector'] = np.add( self.network.node[neighbor]['vector'], update_w_s_n) # 6. if s_1 and s_2 are connected by an edge, set the age of this edge to zero # if such an edge doesn't exist, create it self.network.add_edge(s_1, s_2, age=0) # 7. remove edges with an age larger than a_max # if this results in units having no emanating edges, remove them as well self.prune_connections(a_max) # 8. if the number of steps so far is an integer multiple of parameter l, insert a new unit steps += 1 if steps % l == 0: if plot_evolution: self.plot_network('visualization/sequence/' + str(sequence) + '.png') sequence += 1 # 8.a determine the unit q with the maximum accumulated error q = 0 error_max = 0 for u in self.network.nodes(): if self.network.node[u]['error'] > error_max: error_max = self.network.node[u]['error'] q = u # 8.b insert a new unit r halfway between q and its neighbor f with the largest error variable f = -1 largest_error = -1 for u in self.network.neighbors(q): if self.network.node[u]['error'] > largest_error: largest_error = self.network.node[u]['error'] f = u w_r = 0.5 * (np.add(self.network.node[q]['vector'], self.network.node[f]['vector'])) r = self.units_created self.units_created += 1 # 8.c insert edges connecting the new unit r with q and f # remove the original edge between q and f self.network.add_node(r, vector=w_r, error=0) self.network.add_edge(r, q, age=0) self.network.add_edge(r, f, age=0) self.network.remove_edge(q, f) # 8.d decrease the error variables of q and f by multiplying them with a # initialize the error variable of r with the new value of the error variable of q self.network.node[q]['error'] *= a self.network.node[f]['error'] *= a self.network.node[r]['error'] = self.network.node[q]['error'] # 9. decrease all error variables by multiplying them with a constant d error = 0 for u in self.network.nodes(): error += self.network.node[u]['error'] accumulated_local_error.append(error) network_order.append(self.network.order()) network_size.append(self.network.size()) total_units.append(self.units_created) for u in self.network.nodes(): self.network.node[u]['error'] *= d if self.network.degree(nbunch=[u]) == 0: print(u) global_error.append(self.compute_global_error()) plt.clf() plt.title('Accumulated local error') plt.xlabel('iterations') plt.plot(range(len(accumulated_local_error)), accumulated_local_error) plt.savefig('visualization/accumulated_local_error.png') plt.clf() plt.title('Global error') plt.xlabel('passes') plt.plot(range(len(global_error)), global_error) plt.savefig('visualization/global_error.png') plt.clf() plt.title('Neural network properties') plt.plot(range(len(network_order)), network_order, label='Network order') plt.plot(range(len(network_size)), network_size, label='Network size') plt.legend() plt.savefig('visualization/network_properties.png') def plot_network(self, file_path): plt.clf() plt.scatter(self.data[:, 0], self.data[:, 1]) node_pos = {} for u in self.network.nodes(): vector = self.network.node[u]['vector'] node_pos[u] = (vector[0], vector[1]) nx.draw(self.network, pos=node_pos) plt.draw() plt.savefig(file_path) def number_of_clusters(self): return nx.number_connected_components(self.network) def cluster_data(self): unit_to_cluster = np.zeros(self.units_created) cluster = 0 for c in nx.connected_components(self.network): for unit in c: unit_to_cluster[unit] = cluster cluster += 1 clustered_data = [] for observation in self.data: nearest_units = self.find_nearest_units(observation) s = nearest_units[0] clustered_data.append((observation, unit_to_cluster[s])) return clustered_data def reduce_dimension(self, clustered_data): transformed_clustered_data = [] svd = decomposition.PCA(n_components=2) transformed_observations = svd.fit_transform(self.data) for i in range(len(clustered_data)): transformed_clustered_data.append((transformed_observations[i], clustered_data[i][1])) return transformed_clustered_data def plot_clusters(self, clustered_data): number_of_clusters = nx.number_connected_components(self.network) plt.clf() plt.title('Cluster affectation') color = ['r', 'b', 'g', 'k', 'm', 'r', 'b', 'g', 'k', 'm'] for i in range(number_of_clusters): observations = [observation for observation, s in clustered_data if s == i] if len(observations) > 0: observations = np.array(observations) plt.scatter(observations[:, 0], observations[:, 1], color=color[i], label='cluster #'+str(i)) plt.legend() plt.savefig('visualization/clusters.png') def compute_global_error(self): global_error = 0 for observation in self.data: nearest_units = self.find_nearest_units(observation) s_1 = nearest_units[0] global_error += spatial.distance.euclidean(observation, self.network.node[s_1]['vector'])**2 return global_error
mit
camallen/aggregation
experimental/condor/cluster.py
2
2726
#!/usr/bin/env python __author__ = 'greghines' import numpy as np from sklearn.cluster import DBSCAN import matplotlib.pyplot as plt import csv import sys import os import pymongo import urllib import matplotlib.cbook as cbook sys.path.append("/home/greg/github/reduction/experimental/clusteringAlg") import agglomerativeClustering client = pymongo.MongoClient() db = client['condor_2014-09-19'] collection = db["condor_classifications"] i = 0 condor_pts = {} condors_per_user = {} classification_count = {} check1 = 5 condors_at_1 = {} check2 = 10 condors_at_2 = {} total = 0 maxDiff = {} check = [{} for i in range(0,11)] for r in collection.find({"$and" : [{"tutorial":False}, {"subjects": {"$ne": []}} ]}): #zooniverse_id = r["zooniverse_id"] user_ip = r["user_ip"] zooniverse_id = r["subjects"][0]["zooniverse_id"] if not(zooniverse_id in condor_pts): condor_pts[zooniverse_id] = set() #condor_user_id[zooniverse_id] = [] classification_count[zooniverse_id] = 0 condors_per_user[zooniverse_id] = [] classification_count[zooniverse_id] += 1 condor_count = 0 if "marks" in r["annotations"][-1]: markings = r["annotations"][-1].values()[0] for marking_index in markings: marking = markings[marking_index] try: if marking["animal"] == "condor": scale = 1.875 x = scale*float(marking["x"]) y = scale*float(marking["y"]) condor_pts[zooniverse_id].add(((x,y),user_ip)) #condor_user_id[zooniverse_id].append(user_ip) condor_count += 1 except KeyError: continue condors_per_user[zooniverse_id].append(condor_count) #if (classification_count[zooniverse_id] == 5) and (condor_pts[zooniverse_id] != []): if (np.mean(condors_per_user[zooniverse_id]) > 2) and (len(condors_per_user[zooniverse_id]) > 4): if condor_pts[zooniverse_id] != set([]): object_id = str(r["subjects"][0]["id"]) url = r["subjects"][0]["location"]["standard"] cluster_center = agglomerativeClustering.agglomerativeClustering(condor_pts[zooniverse_id]) break if not(os.path.isfile("/home/greg/Databases/condors/images/"+object_id+".JPG")): urllib.urlretrieve (url, "/home/greg/Databases/condors/images/"+object_id+".JPG") image_file = cbook.get_sample_data("/home/greg/Databases/condors/images/"+object_id+".JPG") image = plt.imread(image_file) fig, ax = plt.subplots() im = ax.imshow(image) #plt.show() # if cluster_center != []: x,y = zip(*cluster_center) plt.plot(x,y,'.',color='blue') plt.show()
apache-2.0
cxxgtxy/tensorflow
tensorflow/contrib/learn/python/learn/learn_io/io_test.py
137
5063
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """tf.learn IO operation tests.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import random # pylint: disable=wildcard-import from tensorflow.contrib.learn.python import learn from tensorflow.contrib.learn.python.learn import datasets from tensorflow.contrib.learn.python.learn.estimators._sklearn import accuracy_score from tensorflow.contrib.learn.python.learn.learn_io import * from tensorflow.python.platform import test # pylint: enable=wildcard-import class IOTest(test.TestCase): # pylint: disable=undefined-variable """tf.learn IO operation tests.""" def test_pandas_dataframe(self): if HAS_PANDAS: import pandas as pd # pylint: disable=g-import-not-at-top random.seed(42) iris = datasets.load_iris() data = pd.DataFrame(iris.data) labels = pd.DataFrame(iris.target) classifier = learn.LinearClassifier( feature_columns=learn.infer_real_valued_columns_from_input(data), n_classes=3) classifier.fit(data, labels, steps=100) score = accuracy_score(labels[0], list(classifier.predict_classes(data))) self.assertGreater(score, 0.5, "Failed with score = {0}".format(score)) else: print("No pandas installed. pandas-related tests are skipped.") def test_pandas_series(self): if HAS_PANDAS: import pandas as pd # pylint: disable=g-import-not-at-top random.seed(42) iris = datasets.load_iris() data = pd.DataFrame(iris.data) labels = pd.Series(iris.target) classifier = learn.LinearClassifier( feature_columns=learn.infer_real_valued_columns_from_input(data), n_classes=3) classifier.fit(data, labels, steps=100) score = accuracy_score(labels, list(classifier.predict_classes(data))) self.assertGreater(score, 0.5, "Failed with score = {0}".format(score)) def test_string_data_formats(self): if HAS_PANDAS: import pandas as pd # pylint: disable=g-import-not-at-top with self.assertRaises(ValueError): learn.io.extract_pandas_data(pd.DataFrame({"Test": ["A", "B"]})) with self.assertRaises(ValueError): learn.io.extract_pandas_labels(pd.DataFrame({"Test": ["A", "B"]})) def test_dask_io(self): if HAS_DASK and HAS_PANDAS: import pandas as pd # pylint: disable=g-import-not-at-top import dask.dataframe as dd # pylint: disable=g-import-not-at-top # test dask.dataframe df = pd.DataFrame( dict( a=list("aabbcc"), b=list(range(6))), index=pd.date_range( start="20100101", periods=6)) ddf = dd.from_pandas(df, npartitions=3) extracted_ddf = extract_dask_data(ddf) self.assertEqual( extracted_ddf.divisions, (0, 2, 4, 6), "Failed with divisions = {0}".format(extracted_ddf.divisions)) self.assertEqual( extracted_ddf.columns.tolist(), ["a", "b"], "Failed with columns = {0}".format(extracted_ddf.columns)) # test dask.series labels = ddf["a"] extracted_labels = extract_dask_labels(labels) self.assertEqual( extracted_labels.divisions, (0, 2, 4, 6), "Failed with divisions = {0}".format(extracted_labels.divisions)) # labels should only have one column with self.assertRaises(ValueError): extract_dask_labels(ddf) else: print("No dask installed. dask-related tests are skipped.") def test_dask_iris_classification(self): if HAS_DASK and HAS_PANDAS: import pandas as pd # pylint: disable=g-import-not-at-top import dask.dataframe as dd # pylint: disable=g-import-not-at-top random.seed(42) iris = datasets.load_iris() data = pd.DataFrame(iris.data) data = dd.from_pandas(data, npartitions=2) labels = pd.DataFrame(iris.target) labels = dd.from_pandas(labels, npartitions=2) classifier = learn.LinearClassifier( feature_columns=learn.infer_real_valued_columns_from_input(data), n_classes=3) classifier.fit(data, labels, steps=100) predictions = data.map_partitions(classifier.predict).compute() score = accuracy_score(labels.compute(), predictions) self.assertGreater(score, 0.5, "Failed with score = {0}".format(score)) if __name__ == "__main__": test.main()
apache-2.0
q1ang/tushare
tushare/datayes/future.py
17
1740
# -*- coding:utf-8 -*- """ 通联数据 Created on 2015/08/24 @author: Jimmy Liu @group : waditu @contact: jimmysoa@sina.cn """ from pandas.compat import StringIO import pandas as pd from tushare.util import vars as vs from tushare.util.common import Client from tushare.util import upass as up class Future(): def __init__(self, client=None): if client is None: self.client = Client(up.get_token()) else: self.client = client def Futu(self, exchangeCD='', secID='', ticker='', contractObject='', field=''): """ 获取国内四大期货交易所期货合约的基本要素信息, 包括合约名称、合约代码、合约类型、合约标的、报价单位、最小变动价位、涨跌停板幅度、交易货币、 合约乘数、交易保证金、上市日期、最后交易日、交割日期、交割方式、交易手续费、交割手续费、挂牌基准价、合约状态等。 """ code, result = self.client.getData(vs.FUTU%(exchangeCD, secID, ticker, contractObject, field)) return _ret_data(code, result) def FutuConvf(self, secID='', ticker='', field=''): """ 获取国债期货转换因子信息,包括合约可交割国债名称、可交割国债交易代码、转换因子等。 """ code, result = self.client.getData(vs.FUTUCONVF%(secID, ticker, field)) return _ret_data(code, result) def _ret_data(code, result): if code==200: result = result.decode('utf-8') if vs.PY3 else result df = pd.read_csv(StringIO(result)) return df else: print(result) return None
bsd-3-clause
asnorkin/sentiment_analysis
site/lib/python2.7/site-packages/sklearn/utils/tests/test_utils.py
47
9089
import warnings import numpy as np import scipy.sparse as sp from scipy.linalg import pinv2 from itertools import chain from sklearn.utils.testing import (assert_equal, assert_raises, assert_true, assert_almost_equal, assert_array_equal, SkipTest, assert_raises_regex, assert_greater_equal) from sklearn.utils import check_random_state from sklearn.utils import deprecated from sklearn.utils import resample from sklearn.utils import safe_mask from sklearn.utils import column_or_1d from sklearn.utils import safe_indexing from sklearn.utils import shuffle from sklearn.utils import gen_even_slices from sklearn.utils.extmath import pinvh from sklearn.utils.arpack import eigsh from sklearn.utils.mocking import MockDataFrame from sklearn.utils.graph import graph_laplacian def test_make_rng(): # Check the check_random_state utility function behavior assert_true(check_random_state(None) is np.random.mtrand._rand) assert_true(check_random_state(np.random) is np.random.mtrand._rand) rng_42 = np.random.RandomState(42) assert_true(check_random_state(42).randint(100) == rng_42.randint(100)) rng_42 = np.random.RandomState(42) assert_true(check_random_state(rng_42) is rng_42) rng_42 = np.random.RandomState(42) assert_true(check_random_state(43).randint(100) != rng_42.randint(100)) assert_raises(ValueError, check_random_state, "some invalid seed") def test_deprecated(): # Test whether the deprecated decorator issues appropriate warnings # Copied almost verbatim from http://docs.python.org/library/warnings.html # First a function... with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") @deprecated() def ham(): return "spam" spam = ham() assert_equal(spam, "spam") # function must remain usable assert_equal(len(w), 1) assert_true(issubclass(w[0].category, DeprecationWarning)) assert_true("deprecated" in str(w[0].message).lower()) # ... then a class. with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") @deprecated("don't use this") class Ham(object): SPAM = 1 ham = Ham() assert_true(hasattr(ham, "SPAM")) assert_equal(len(w), 1) assert_true(issubclass(w[0].category, DeprecationWarning)) assert_true("deprecated" in str(w[0].message).lower()) def test_resample(): # Border case not worth mentioning in doctests assert_true(resample() is None) # Check that invalid arguments yield ValueError assert_raises(ValueError, resample, [0], [0, 1]) assert_raises(ValueError, resample, [0, 1], [0, 1], replace=False, n_samples=3) assert_raises(ValueError, resample, [0, 1], [0, 1], meaning_of_life=42) # Issue:6581, n_samples can be more when replace is True (default). assert_equal(len(resample([1, 2], n_samples=5)), 5) def test_safe_mask(): random_state = check_random_state(0) X = random_state.rand(5, 4) X_csr = sp.csr_matrix(X) mask = [False, False, True, True, True] mask = safe_mask(X, mask) assert_equal(X[mask].shape[0], 3) mask = safe_mask(X_csr, mask) assert_equal(X_csr[mask].shape[0], 3) def test_pinvh_simple_real(): a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 10]], dtype=np.float64) a = np.dot(a, a.T) a_pinv = pinvh(a) assert_almost_equal(np.dot(a, a_pinv), np.eye(3)) def test_pinvh_nonpositive(): a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.float64) a = np.dot(a, a.T) u, s, vt = np.linalg.svd(a) s[0] *= -1 a = np.dot(u * s, vt) # a is now symmetric non-positive and singular a_pinv = pinv2(a) a_pinvh = pinvh(a) assert_almost_equal(a_pinv, a_pinvh) def test_pinvh_simple_complex(): a = (np.array([[1, 2, 3], [4, 5, 6], [7, 8, 10]]) + 1j * np.array([[10, 8, 7], [6, 5, 4], [3, 2, 1]])) a = np.dot(a, a.conj().T) a_pinv = pinvh(a) assert_almost_equal(np.dot(a, a_pinv), np.eye(3)) def test_arpack_eigsh_initialization(): # Non-regression test that shows null-space computation is better with # initialization of eigsh from [-1,1] instead of [0,1] random_state = check_random_state(42) A = random_state.rand(50, 50) A = np.dot(A.T, A) # create s.p.d. matrix A = graph_laplacian(A) + 1e-7 * np.identity(A.shape[0]) k = 5 # Test if eigsh is working correctly # New initialization [-1,1] (as in original ARPACK) # Was [0,1] before, with which this test could fail v0 = random_state.uniform(-1,1, A.shape[0]) w, _ = eigsh(A, k=k, sigma=0.0, v0=v0) # Eigenvalues of s.p.d. matrix should be nonnegative, w[0] is smallest assert_greater_equal(w[0], 0) def test_column_or_1d(): EXAMPLES = [ ("binary", ["spam", "egg", "spam"]), ("binary", [0, 1, 0, 1]), ("continuous", np.arange(10) / 20.), ("multiclass", [1, 2, 3]), ("multiclass", [0, 1, 2, 2, 0]), ("multiclass", [[1], [2], [3]]), ("multilabel-indicator", [[0, 1, 0], [0, 0, 1]]), ("multiclass-multioutput", [[1, 2, 3]]), ("multiclass-multioutput", [[1, 1], [2, 2], [3, 1]]), ("multiclass-multioutput", [[5, 1], [4, 2], [3, 1]]), ("multiclass-multioutput", [[1, 2, 3]]), ("continuous-multioutput", np.arange(30).reshape((-1, 3))), ] for y_type, y in EXAMPLES: if y_type in ["binary", 'multiclass', "continuous"]: assert_array_equal(column_or_1d(y), np.ravel(y)) else: assert_raises(ValueError, column_or_1d, y) def test_safe_indexing(): X = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] inds = np.array([1, 2]) X_inds = safe_indexing(X, inds) X_arrays = safe_indexing(np.array(X), inds) assert_array_equal(np.array(X_inds), X_arrays) assert_array_equal(np.array(X_inds), np.array(X)[inds]) def test_safe_indexing_pandas(): try: import pandas as pd except ImportError: raise SkipTest("Pandas not found") X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) X_df = pd.DataFrame(X) inds = np.array([1, 2]) X_df_indexed = safe_indexing(X_df, inds) X_indexed = safe_indexing(X_df, inds) assert_array_equal(np.array(X_df_indexed), X_indexed) # fun with read-only data in dataframes # this happens in joblib memmapping X.setflags(write=False) X_df_readonly = pd.DataFrame(X) with warnings.catch_warnings(record=True): X_df_ro_indexed = safe_indexing(X_df_readonly, inds) assert_array_equal(np.array(X_df_ro_indexed), X_indexed) def test_safe_indexing_mock_pandas(): X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) X_df = MockDataFrame(X) inds = np.array([1, 2]) X_df_indexed = safe_indexing(X_df, inds) X_indexed = safe_indexing(X_df, inds) assert_array_equal(np.array(X_df_indexed), X_indexed) def test_shuffle_on_ndim_equals_three(): def to_tuple(A): # to make the inner arrays hashable return tuple(tuple(tuple(C) for C in B) for B in A) A = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) # A.shape = (2,2,2) S = set(to_tuple(A)) shuffle(A) # shouldn't raise a ValueError for dim = 3 assert_equal(set(to_tuple(A)), S) def test_shuffle_dont_convert_to_array(): # Check that shuffle does not try to convert to numpy arrays with float # dtypes can let any indexable datastructure pass-through. a = ['a', 'b', 'c'] b = np.array(['a', 'b', 'c'], dtype=object) c = [1, 2, 3] d = MockDataFrame(np.array([['a', 0], ['b', 1], ['c', 2]], dtype=object)) e = sp.csc_matrix(np.arange(6).reshape(3, 2)) a_s, b_s, c_s, d_s, e_s = shuffle(a, b, c, d, e, random_state=0) assert_equal(a_s, ['c', 'b', 'a']) assert_equal(type(a_s), list) assert_array_equal(b_s, ['c', 'b', 'a']) assert_equal(b_s.dtype, object) assert_equal(c_s, [3, 2, 1]) assert_equal(type(c_s), list) assert_array_equal(d_s, np.array([['c', 2], ['b', 1], ['a', 0]], dtype=object)) assert_equal(type(d_s), MockDataFrame) assert_array_equal(e_s.toarray(), np.array([[4, 5], [2, 3], [0, 1]])) def test_gen_even_slices(): # check that gen_even_slices contains all samples some_range = range(10) joined_range = list(chain(*[some_range[slice] for slice in gen_even_slices(10, 3)])) assert_array_equal(some_range, joined_range) # check that passing negative n_chunks raises an error slices = gen_even_slices(10, -1) assert_raises_regex(ValueError, "gen_even_slices got n_packs=-1, must be" " >=1", next, slices)
mit
dhruv13J/scikit-learn
sklearn/tree/tests/test_tree.py
72
47440
""" Testing for the tree module (sklearn.tree). """ import pickle from functools import partial from itertools import product import platform import numpy as np from scipy.sparse import csc_matrix from scipy.sparse import csr_matrix from scipy.sparse import coo_matrix from sklearn.random_projection import sparse_random_matrix from sklearn.metrics import accuracy_score from sklearn.metrics import mean_squared_error from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_in from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_greater_equal from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_true from sklearn.utils.testing import raises from sklearn.utils.validation import check_random_state from sklearn.utils.validation import NotFittedError from sklearn.tree import DecisionTreeClassifier from sklearn.tree import DecisionTreeRegressor from sklearn.tree import ExtraTreeClassifier from sklearn.tree import ExtraTreeRegressor from sklearn import tree from sklearn.tree.tree import SPARSE_SPLITTERS from sklearn.tree._tree import TREE_LEAF from sklearn import datasets from sklearn.preprocessing._weights import _balance_weights CLF_CRITERIONS = ("gini", "entropy") REG_CRITERIONS = ("mse", ) CLF_TREES = { "DecisionTreeClassifier": DecisionTreeClassifier, "Presort-DecisionTreeClassifier": partial(DecisionTreeClassifier, splitter="presort-best"), "ExtraTreeClassifier": ExtraTreeClassifier, } REG_TREES = { "DecisionTreeRegressor": DecisionTreeRegressor, "Presort-DecisionTreeRegressor": partial(DecisionTreeRegressor, splitter="presort-best"), "ExtraTreeRegressor": ExtraTreeRegressor, } ALL_TREES = dict() ALL_TREES.update(CLF_TREES) ALL_TREES.update(REG_TREES) SPARSE_TREES = [name for name, Tree in ALL_TREES.items() if Tree().splitter in SPARSE_SPLITTERS] X_small = np.array([ [0, 0, 4, 0, 0, 0, 1, -14, 0, -4, 0, 0, 0, 0, ], [0, 0, 5, 3, 0, -4, 0, 0, 1, -5, 0.2, 0, 4, 1, ], [-1, -1, 0, 0, -4.5, 0, 0, 2.1, 1, 0, 0, -4.5, 0, 1, ], [-1, -1, 0, -1.2, 0, 0, 0, 0, 0, 0, 0.2, 0, 0, 1, ], [-1, -1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1, ], [-1, -2, 0, 4, -3, 10, 4, 0, -3.2, 0, 4, 3, -4, 1, ], [2.11, 0, -6, -0.5, 0, 11, 0, 0, -3.2, 6, 0.5, 0, -3, 1, ], [2.11, 0, -6, -0.5, 0, 11, 0, 0, -3.2, 6, 0, 0, -2, 1, ], [2.11, 8, -6, -0.5, 0, 11, 0, 0, -3.2, 6, 0, 0, -2, 1, ], [2.11, 8, -6, -0.5, 0, 11, 0, 0, -3.2, 6, 0.5, 0, -1, 0, ], [2, 8, 5, 1, 0.5, -4, 10, 0, 1, -5, 3, 0, 2, 0, ], [2, 0, 1, 1, 1, -1, 1, 0, 0, -2, 3, 0, 1, 0, ], [2, 0, 1, 2, 3, -1, 10, 2, 0, -1, 1, 2, 2, 0, ], [1, 1, 0, 2, 2, -1, 1, 2, 0, -5, 1, 2, 3, 0, ], [3, 1, 0, 3, 0, -4, 10, 0, 1, -5, 3, 0, 3, 1, ], [2.11, 8, -6, -0.5, 0, 1, 0, 0, -3.2, 6, 0.5, 0, -3, 1, ], [2.11, 8, -6, -0.5, 0, 1, 0, 0, -3.2, 6, 1.5, 1, -1, -1, ], [2.11, 8, -6, -0.5, 0, 10, 0, 0, -3.2, 6, 0.5, 0, -1, -1, ], [2, 0, 5, 1, 0.5, -2, 10, 0, 1, -5, 3, 1, 0, -1, ], [2, 0, 1, 1, 1, -2, 1, 0, 0, -2, 0, 0, 0, 1, ], [2, 1, 1, 1, 2, -1, 10, 2, 0, -1, 0, 2, 1, 1, ], [1, 1, 0, 0, 1, -3, 1, 2, 0, -5, 1, 2, 1, 1, ], [3, 1, 0, 1, 0, -4, 1, 0, 1, -2, 0, 0, 1, 0, ]]) y_small = [1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0] y_small_reg = [1.0, 2.1, 1.2, 0.05, 10, 2.4, 3.1, 1.01, 0.01, 2.98, 3.1, 1.1, 0.0, 1.2, 2, 11, 0, 0, 4.5, 0.201, 1.06, 0.9, 0] # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] true_result = [-1, 1, 1] # also load the iris dataset # and randomly permute it iris = datasets.load_iris() rng = np.random.RandomState(1) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] # also load the boston dataset # and randomly permute it boston = datasets.load_boston() perm = rng.permutation(boston.target.size) boston.data = boston.data[perm] boston.target = boston.target[perm] digits = datasets.load_digits() perm = rng.permutation(digits.target.size) digits.data = digits.data[perm] digits.target = digits.target[perm] random_state = check_random_state(0) X_multilabel, y_multilabel = datasets.make_multilabel_classification( random_state=0, return_indicator=True, n_samples=30, n_features=10) X_sparse_pos = random_state.uniform(size=(20, 5)) X_sparse_pos[X_sparse_pos <= 0.8] = 0. y_random = random_state.randint(0, 4, size=(20, )) X_sparse_mix = sparse_random_matrix(20, 10, density=0.25, random_state=0) DATASETS = { "iris": {"X": iris.data, "y": iris.target}, "boston": {"X": boston.data, "y": boston.target}, "digits": {"X": digits.data, "y": digits.target}, "toy": {"X": X, "y": y}, "clf_small": {"X": X_small, "y": y_small}, "reg_small": {"X": X_small, "y": y_small_reg}, "multilabel": {"X": X_multilabel, "y": y_multilabel}, "sparse-pos": {"X": X_sparse_pos, "y": y_random}, "sparse-neg": {"X": - X_sparse_pos, "y": y_random}, "sparse-mix": {"X": X_sparse_mix, "y": y_random}, "zeros": {"X": np.zeros((20, 3)), "y": y_random} } for name in DATASETS: DATASETS[name]["X_sparse"] = csc_matrix(DATASETS[name]["X"]) def assert_tree_equal(d, s, message): assert_equal(s.node_count, d.node_count, "{0}: inequal number of node ({1} != {2})" "".format(message, s.node_count, d.node_count)) assert_array_equal(d.children_right, s.children_right, message + ": inequal children_right") assert_array_equal(d.children_left, s.children_left, message + ": inequal children_left") external = d.children_right == TREE_LEAF internal = np.logical_not(external) assert_array_equal(d.feature[internal], s.feature[internal], message + ": inequal features") assert_array_equal(d.threshold[internal], s.threshold[internal], message + ": inequal threshold") assert_array_equal(d.n_node_samples.sum(), s.n_node_samples.sum(), message + ": inequal sum(n_node_samples)") assert_array_equal(d.n_node_samples, s.n_node_samples, message + ": inequal n_node_samples") assert_almost_equal(d.impurity, s.impurity, err_msg=message + ": inequal impurity") assert_array_almost_equal(d.value[external], s.value[external], err_msg=message + ": inequal value") def test_classification_toy(): # Check classification on a toy dataset. for name, Tree in CLF_TREES.items(): clf = Tree(random_state=0) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result, "Failed with {0}".format(name)) clf = Tree(max_features=1, random_state=1) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result, "Failed with {0}".format(name)) def test_weighted_classification_toy(): # Check classification on a weighted toy dataset. for name, Tree in CLF_TREES.items(): clf = Tree(random_state=0) clf.fit(X, y, sample_weight=np.ones(len(X))) assert_array_equal(clf.predict(T), true_result, "Failed with {0}".format(name)) clf.fit(X, y, sample_weight=np.ones(len(X)) * 0.5) assert_array_equal(clf.predict(T), true_result, "Failed with {0}".format(name)) def test_regression_toy(): # Check regression on a toy dataset. for name, Tree in REG_TREES.items(): reg = Tree(random_state=1) reg.fit(X, y) assert_almost_equal(reg.predict(T), true_result, err_msg="Failed with {0}".format(name)) clf = Tree(max_features=1, random_state=1) clf.fit(X, y) assert_almost_equal(reg.predict(T), true_result, err_msg="Failed with {0}".format(name)) def test_xor(): # Check on a XOR problem y = np.zeros((10, 10)) y[:5, :5] = 1 y[5:, 5:] = 1 gridx, gridy = np.indices(y.shape) X = np.vstack([gridx.ravel(), gridy.ravel()]).T y = y.ravel() for name, Tree in CLF_TREES.items(): clf = Tree(random_state=0) clf.fit(X, y) assert_equal(clf.score(X, y), 1.0, "Failed with {0}".format(name)) clf = Tree(random_state=0, max_features=1) clf.fit(X, y) assert_equal(clf.score(X, y), 1.0, "Failed with {0}".format(name)) def test_iris(): # Check consistency on dataset iris. for (name, Tree), criterion in product(CLF_TREES.items(), CLF_CRITERIONS): clf = Tree(criterion=criterion, random_state=0) clf.fit(iris.data, iris.target) score = accuracy_score(clf.predict(iris.data), iris.target) assert_greater(score, 0.9, "Failed with {0}, criterion = {1} and score = {2}" "".format(name, criterion, score)) clf = Tree(criterion=criterion, max_features=2, random_state=0) clf.fit(iris.data, iris.target) score = accuracy_score(clf.predict(iris.data), iris.target) assert_greater(score, 0.5, "Failed with {0}, criterion = {1} and score = {2}" "".format(name, criterion, score)) def test_boston(): # Check consistency on dataset boston house prices. for (name, Tree), criterion in product(REG_TREES.items(), REG_CRITERIONS): reg = Tree(criterion=criterion, random_state=0) reg.fit(boston.data, boston.target) score = mean_squared_error(boston.target, reg.predict(boston.data)) assert_less(score, 1, "Failed with {0}, criterion = {1} and score = {2}" "".format(name, criterion, score)) # using fewer features reduces the learning ability of this tree, # but reduces training time. reg = Tree(criterion=criterion, max_features=6, random_state=0) reg.fit(boston.data, boston.target) score = mean_squared_error(boston.target, reg.predict(boston.data)) assert_less(score, 2, "Failed with {0}, criterion = {1} and score = {2}" "".format(name, criterion, score)) def test_probability(): # Predict probabilities using DecisionTreeClassifier. for name, Tree in CLF_TREES.items(): clf = Tree(max_depth=1, max_features=1, random_state=42) clf.fit(iris.data, iris.target) prob_predict = clf.predict_proba(iris.data) assert_array_almost_equal(np.sum(prob_predict, 1), np.ones(iris.data.shape[0]), err_msg="Failed with {0}".format(name)) assert_array_equal(np.argmax(prob_predict, 1), clf.predict(iris.data), err_msg="Failed with {0}".format(name)) assert_almost_equal(clf.predict_proba(iris.data), np.exp(clf.predict_log_proba(iris.data)), 8, err_msg="Failed with {0}".format(name)) def test_arrayrepr(): # Check the array representation. # Check resize X = np.arange(10000)[:, np.newaxis] y = np.arange(10000) for name, Tree in REG_TREES.items(): reg = Tree(max_depth=None, random_state=0) reg.fit(X, y) def test_pure_set(): # Check when y is pure. X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [1, 1, 1, 1, 1, 1] for name, TreeClassifier in CLF_TREES.items(): clf = TreeClassifier(random_state=0) clf.fit(X, y) assert_array_equal(clf.predict(X), y, err_msg="Failed with {0}".format(name)) for name, TreeRegressor in REG_TREES.items(): reg = TreeRegressor(random_state=0) reg.fit(X, y) assert_almost_equal(clf.predict(X), y, err_msg="Failed with {0}".format(name)) def test_numerical_stability(): # Check numerical stability. X = np.array([ [152.08097839, 140.40744019, 129.75102234, 159.90493774], [142.50700378, 135.81935120, 117.82884979, 162.75781250], [127.28772736, 140.40744019, 129.75102234, 159.90493774], [132.37025452, 143.71923828, 138.35694885, 157.84558105], [103.10237122, 143.71928406, 138.35696411, 157.84559631], [127.71276855, 143.71923828, 138.35694885, 157.84558105], [120.91514587, 140.40744019, 129.75102234, 159.90493774]]) y = np.array( [1., 0.70209277, 0.53896582, 0., 0.90914464, 0.48026916, 0.49622521]) with np.errstate(all="raise"): for name, Tree in REG_TREES.items(): reg = Tree(random_state=0) reg.fit(X, y) reg.fit(X, -y) reg.fit(-X, y) reg.fit(-X, -y) def test_importances(): # Check variable importances. X, y = datasets.make_classification(n_samples=2000, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, shuffle=False, random_state=0) for name, Tree in CLF_TREES.items(): clf = Tree(random_state=0) clf.fit(X, y) importances = clf.feature_importances_ n_important = np.sum(importances > 0.1) assert_equal(importances.shape[0], 10, "Failed with {0}".format(name)) assert_equal(n_important, 3, "Failed with {0}".format(name)) X_new = clf.transform(X, threshold="mean") assert_less(0, X_new.shape[1], "Failed with {0}".format(name)) assert_less(X_new.shape[1], X.shape[1], "Failed with {0}".format(name)) # Check on iris that importances are the same for all builders clf = DecisionTreeClassifier(random_state=0) clf.fit(iris.data, iris.target) clf2 = DecisionTreeClassifier(random_state=0, max_leaf_nodes=len(iris.data)) clf2.fit(iris.data, iris.target) assert_array_equal(clf.feature_importances_, clf2.feature_importances_) @raises(ValueError) def test_importances_raises(): # Check if variable importance before fit raises ValueError. clf = DecisionTreeClassifier() clf.feature_importances_ def test_importances_gini_equal_mse(): # Check that gini is equivalent to mse for binary output variable X, y = datasets.make_classification(n_samples=2000, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, shuffle=False, random_state=0) # The gini index and the mean square error (variance) might differ due # to numerical instability. Since those instabilities mainly occurs at # high tree depth, we restrict this maximal depth. clf = DecisionTreeClassifier(criterion="gini", max_depth=5, random_state=0).fit(X, y) reg = DecisionTreeRegressor(criterion="mse", max_depth=5, random_state=0).fit(X, y) assert_almost_equal(clf.feature_importances_, reg.feature_importances_) assert_array_equal(clf.tree_.feature, reg.tree_.feature) assert_array_equal(clf.tree_.children_left, reg.tree_.children_left) assert_array_equal(clf.tree_.children_right, reg.tree_.children_right) assert_array_equal(clf.tree_.n_node_samples, reg.tree_.n_node_samples) def test_max_features(): # Check max_features. for name, TreeRegressor in REG_TREES.items(): reg = TreeRegressor(max_features="auto") reg.fit(boston.data, boston.target) assert_equal(reg.max_features_, boston.data.shape[1]) for name, TreeClassifier in CLF_TREES.items(): clf = TreeClassifier(max_features="auto") clf.fit(iris.data, iris.target) assert_equal(clf.max_features_, 2) for name, TreeEstimator in ALL_TREES.items(): est = TreeEstimator(max_features="sqrt") est.fit(iris.data, iris.target) assert_equal(est.max_features_, int(np.sqrt(iris.data.shape[1]))) est = TreeEstimator(max_features="log2") est.fit(iris.data, iris.target) assert_equal(est.max_features_, int(np.log2(iris.data.shape[1]))) est = TreeEstimator(max_features=1) est.fit(iris.data, iris.target) assert_equal(est.max_features_, 1) est = TreeEstimator(max_features=3) est.fit(iris.data, iris.target) assert_equal(est.max_features_, 3) est = TreeEstimator(max_features=0.01) est.fit(iris.data, iris.target) assert_equal(est.max_features_, 1) est = TreeEstimator(max_features=0.5) est.fit(iris.data, iris.target) assert_equal(est.max_features_, int(0.5 * iris.data.shape[1])) est = TreeEstimator(max_features=1.0) est.fit(iris.data, iris.target) assert_equal(est.max_features_, iris.data.shape[1]) est = TreeEstimator(max_features=None) est.fit(iris.data, iris.target) assert_equal(est.max_features_, iris.data.shape[1]) # use values of max_features that are invalid est = TreeEstimator(max_features=10) assert_raises(ValueError, est.fit, X, y) est = TreeEstimator(max_features=-1) assert_raises(ValueError, est.fit, X, y) est = TreeEstimator(max_features=0.0) assert_raises(ValueError, est.fit, X, y) est = TreeEstimator(max_features=1.5) assert_raises(ValueError, est.fit, X, y) est = TreeEstimator(max_features="foobar") assert_raises(ValueError, est.fit, X, y) def test_error(): # Test that it gives proper exception on deficient input. for name, TreeEstimator in CLF_TREES.items(): # predict before fit est = TreeEstimator() assert_raises(NotFittedError, est.predict_proba, X) est.fit(X, y) X2 = [-2, -1, 1] # wrong feature shape for sample assert_raises(ValueError, est.predict_proba, X2) for name, TreeEstimator in ALL_TREES.items(): # Invalid values for parameters assert_raises(ValueError, TreeEstimator(min_samples_leaf=-1).fit, X, y) assert_raises(ValueError, TreeEstimator(min_weight_fraction_leaf=-1).fit, X, y) assert_raises(ValueError, TreeEstimator(min_weight_fraction_leaf=0.51).fit, X, y) assert_raises(ValueError, TreeEstimator(min_samples_split=-1).fit, X, y) assert_raises(ValueError, TreeEstimator(max_depth=-1).fit, X, y) assert_raises(ValueError, TreeEstimator(max_features=42).fit, X, y) # Wrong dimensions est = TreeEstimator() y2 = y[:-1] assert_raises(ValueError, est.fit, X, y2) # Test with arrays that are non-contiguous. Xf = np.asfortranarray(X) est = TreeEstimator() est.fit(Xf, y) assert_almost_equal(est.predict(T), true_result) # predict before fitting est = TreeEstimator() assert_raises(NotFittedError, est.predict, T) # predict on vector with different dims est.fit(X, y) t = np.asarray(T) assert_raises(ValueError, est.predict, t[:, 1:]) # wrong sample shape Xt = np.array(X).T est = TreeEstimator() est.fit(np.dot(X, Xt), y) assert_raises(ValueError, est.predict, X) assert_raises(ValueError, est.apply, X) clf = TreeEstimator() clf.fit(X, y) assert_raises(ValueError, clf.predict, Xt) assert_raises(ValueError, clf.apply, Xt) # apply before fitting est = TreeEstimator() assert_raises(NotFittedError, est.apply, T) def test_min_samples_leaf(): # Test if leaves contain more than leaf_count training examples X = np.asfortranarray(iris.data.astype(tree._tree.DTYPE)) y = iris.target # test both DepthFirstTreeBuilder and BestFirstTreeBuilder # by setting max_leaf_nodes for max_leaf_nodes in (None, 1000): for name, TreeEstimator in ALL_TREES.items(): est = TreeEstimator(min_samples_leaf=5, max_leaf_nodes=max_leaf_nodes, random_state=0) est.fit(X, y) out = est.tree_.apply(X) node_counts = np.bincount(out) # drop inner nodes leaf_count = node_counts[node_counts != 0] assert_greater(np.min(leaf_count), 4, "Failed with {0}".format(name)) def check_min_weight_fraction_leaf(name, datasets, sparse=False): """Test if leaves contain at least min_weight_fraction_leaf of the training set""" if sparse: X = DATASETS[datasets]["X_sparse"].astype(np.float32) else: X = DATASETS[datasets]["X"].astype(np.float32) y = DATASETS[datasets]["y"] weights = rng.rand(X.shape[0]) total_weight = np.sum(weights) TreeEstimator = ALL_TREES[name] # test both DepthFirstTreeBuilder and BestFirstTreeBuilder # by setting max_leaf_nodes for max_leaf_nodes, frac in product((None, 1000), np.linspace(0, 0.5, 6)): est = TreeEstimator(min_weight_fraction_leaf=frac, max_leaf_nodes=max_leaf_nodes, random_state=0) est.fit(X, y, sample_weight=weights) if sparse: out = est.tree_.apply(X.tocsr()) else: out = est.tree_.apply(X) node_weights = np.bincount(out, weights=weights) # drop inner nodes leaf_weights = node_weights[node_weights != 0] assert_greater_equal( np.min(leaf_weights), total_weight * est.min_weight_fraction_leaf, "Failed with {0} " "min_weight_fraction_leaf={1}".format( name, est.min_weight_fraction_leaf)) def test_min_weight_fraction_leaf(): # Check on dense input for name in ALL_TREES: yield check_min_weight_fraction_leaf, name, "iris" # Check on sparse input for name in SPARSE_TREES: yield check_min_weight_fraction_leaf, name, "multilabel", True def test_pickle(): # Check that tree estimator are pickable for name, TreeClassifier in CLF_TREES.items(): clf = TreeClassifier(random_state=0) clf.fit(iris.data, iris.target) score = clf.score(iris.data, iris.target) serialized_object = pickle.dumps(clf) clf2 = pickle.loads(serialized_object) assert_equal(type(clf2), clf.__class__) score2 = clf2.score(iris.data, iris.target) assert_equal(score, score2, "Failed to generate same score " "after pickling (classification) " "with {0}".format(name)) for name, TreeRegressor in REG_TREES.items(): reg = TreeRegressor(random_state=0) reg.fit(boston.data, boston.target) score = reg.score(boston.data, boston.target) serialized_object = pickle.dumps(reg) reg2 = pickle.loads(serialized_object) assert_equal(type(reg2), reg.__class__) score2 = reg2.score(boston.data, boston.target) assert_equal(score, score2, "Failed to generate same score " "after pickling (regression) " "with {0}".format(name)) def test_multioutput(): # Check estimators on multi-output problems. X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1], [-2, 1], [-1, 1], [-1, 2], [2, -1], [1, -1], [1, -2]] y = [[-1, 0], [-1, 0], [-1, 0], [1, 1], [1, 1], [1, 1], [-1, 2], [-1, 2], [-1, 2], [1, 3], [1, 3], [1, 3]] T = [[-1, -1], [1, 1], [-1, 1], [1, -1]] y_true = [[-1, 0], [1, 1], [-1, 2], [1, 3]] # toy classification problem for name, TreeClassifier in CLF_TREES.items(): clf = TreeClassifier(random_state=0) y_hat = clf.fit(X, y).predict(T) assert_array_equal(y_hat, y_true) assert_equal(y_hat.shape, (4, 2)) proba = clf.predict_proba(T) assert_equal(len(proba), 2) assert_equal(proba[0].shape, (4, 2)) assert_equal(proba[1].shape, (4, 4)) log_proba = clf.predict_log_proba(T) assert_equal(len(log_proba), 2) assert_equal(log_proba[0].shape, (4, 2)) assert_equal(log_proba[1].shape, (4, 4)) # toy regression problem for name, TreeRegressor in REG_TREES.items(): reg = TreeRegressor(random_state=0) y_hat = reg.fit(X, y).predict(T) assert_almost_equal(y_hat, y_true) assert_equal(y_hat.shape, (4, 2)) def test_classes_shape(): # Test that n_classes_ and classes_ have proper shape. for name, TreeClassifier in CLF_TREES.items(): # Classification, single output clf = TreeClassifier(random_state=0) clf.fit(X, y) assert_equal(clf.n_classes_, 2) assert_array_equal(clf.classes_, [-1, 1]) # Classification, multi-output _y = np.vstack((y, np.array(y) * 2)).T clf = TreeClassifier(random_state=0) clf.fit(X, _y) assert_equal(len(clf.n_classes_), 2) assert_equal(len(clf.classes_), 2) assert_array_equal(clf.n_classes_, [2, 2]) assert_array_equal(clf.classes_, [[-1, 1], [-2, 2]]) def test_unbalanced_iris(): # Check class rebalancing. unbalanced_X = iris.data[:125] unbalanced_y = iris.target[:125] sample_weight = _balance_weights(unbalanced_y) for name, TreeClassifier in CLF_TREES.items(): clf = TreeClassifier(random_state=0) clf.fit(unbalanced_X, unbalanced_y, sample_weight=sample_weight) assert_almost_equal(clf.predict(unbalanced_X), unbalanced_y) def test_memory_layout(): # Check that it works no matter the memory layout for (name, TreeEstimator), dtype in product(ALL_TREES.items(), [np.float64, np.float32]): est = TreeEstimator(random_state=0) # Nothing X = np.asarray(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # C-order X = np.asarray(iris.data, order="C", dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # F-order X = np.asarray(iris.data, order="F", dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # Contiguous X = np.ascontiguousarray(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) if est.splitter in SPARSE_SPLITTERS: # csr matrix X = csr_matrix(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # csc_matrix X = csc_matrix(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # Strided X = np.asarray(iris.data[::3], dtype=dtype) y = iris.target[::3] assert_array_equal(est.fit(X, y).predict(X), y) def test_sample_weight(): # Check sample weighting. # Test that zero-weighted samples are not taken into account X = np.arange(100)[:, np.newaxis] y = np.ones(100) y[:50] = 0.0 sample_weight = np.ones(100) sample_weight[y == 0] = 0.0 clf = DecisionTreeClassifier(random_state=0) clf.fit(X, y, sample_weight=sample_weight) assert_array_equal(clf.predict(X), np.ones(100)) # Test that low weighted samples are not taken into account at low depth X = np.arange(200)[:, np.newaxis] y = np.zeros(200) y[50:100] = 1 y[100:200] = 2 X[100:200, 0] = 200 sample_weight = np.ones(200) sample_weight[y == 2] = .51 # Samples of class '2' are still weightier clf = DecisionTreeClassifier(max_depth=1, random_state=0) clf.fit(X, y, sample_weight=sample_weight) assert_equal(clf.tree_.threshold[0], 149.5) sample_weight[y == 2] = .5 # Samples of class '2' are no longer weightier clf = DecisionTreeClassifier(max_depth=1, random_state=0) clf.fit(X, y, sample_weight=sample_weight) assert_equal(clf.tree_.threshold[0], 49.5) # Threshold should have moved # Test that sample weighting is the same as having duplicates X = iris.data y = iris.target duplicates = rng.randint(0, X.shape[0], 200) clf = DecisionTreeClassifier(random_state=1) clf.fit(X[duplicates], y[duplicates]) sample_weight = np.bincount(duplicates, minlength=X.shape[0]) clf2 = DecisionTreeClassifier(random_state=1) clf2.fit(X, y, sample_weight=sample_weight) internal = clf.tree_.children_left != tree._tree.TREE_LEAF assert_array_almost_equal(clf.tree_.threshold[internal], clf2.tree_.threshold[internal]) def test_sample_weight_invalid(): # Check sample weighting raises errors. X = np.arange(100)[:, np.newaxis] y = np.ones(100) y[:50] = 0.0 clf = DecisionTreeClassifier(random_state=0) sample_weight = np.random.rand(100, 1) assert_raises(ValueError, clf.fit, X, y, sample_weight=sample_weight) sample_weight = np.array(0) assert_raises(ValueError, clf.fit, X, y, sample_weight=sample_weight) sample_weight = np.ones(101) assert_raises(ValueError, clf.fit, X, y, sample_weight=sample_weight) sample_weight = np.ones(99) assert_raises(ValueError, clf.fit, X, y, sample_weight=sample_weight) def check_class_weights(name): """Check class_weights resemble sample_weights behavior.""" TreeClassifier = CLF_TREES[name] # Iris is balanced, so no effect expected for using 'balanced' weights clf1 = TreeClassifier(random_state=0) clf1.fit(iris.data, iris.target) clf2 = TreeClassifier(class_weight='balanced', random_state=0) clf2.fit(iris.data, iris.target) assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) # Make a multi-output problem with three copies of Iris iris_multi = np.vstack((iris.target, iris.target, iris.target)).T # Create user-defined weights that should balance over the outputs clf3 = TreeClassifier(class_weight=[{0: 2., 1: 2., 2: 1.}, {0: 2., 1: 1., 2: 2.}, {0: 1., 1: 2., 2: 2.}], random_state=0) clf3.fit(iris.data, iris_multi) assert_almost_equal(clf2.feature_importances_, clf3.feature_importances_) # Check against multi-output "auto" which should also have no effect clf4 = TreeClassifier(class_weight='balanced', random_state=0) clf4.fit(iris.data, iris_multi) assert_almost_equal(clf3.feature_importances_, clf4.feature_importances_) # Inflate importance of class 1, check against user-defined weights sample_weight = np.ones(iris.target.shape) sample_weight[iris.target == 1] *= 100 class_weight = {0: 1., 1: 100., 2: 1.} clf1 = TreeClassifier(random_state=0) clf1.fit(iris.data, iris.target, sample_weight) clf2 = TreeClassifier(class_weight=class_weight, random_state=0) clf2.fit(iris.data, iris.target) assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) # Check that sample_weight and class_weight are multiplicative clf1 = TreeClassifier(random_state=0) clf1.fit(iris.data, iris.target, sample_weight ** 2) clf2 = TreeClassifier(class_weight=class_weight, random_state=0) clf2.fit(iris.data, iris.target, sample_weight) assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) def test_class_weights(): for name in CLF_TREES: yield check_class_weights, name def check_class_weight_errors(name): # Test if class_weight raises errors and warnings when expected. TreeClassifier = CLF_TREES[name] _y = np.vstack((y, np.array(y) * 2)).T # Invalid preset string clf = TreeClassifier(class_weight='the larch', random_state=0) assert_raises(ValueError, clf.fit, X, y) assert_raises(ValueError, clf.fit, X, _y) # Not a list or preset for multi-output clf = TreeClassifier(class_weight=1, random_state=0) assert_raises(ValueError, clf.fit, X, _y) # Incorrect length list for multi-output clf = TreeClassifier(class_weight=[{-1: 0.5, 1: 1.}], random_state=0) assert_raises(ValueError, clf.fit, X, _y) def test_class_weight_errors(): for name in CLF_TREES: yield check_class_weight_errors, name def test_max_leaf_nodes(): # Test greedy trees with max_depth + 1 leafs. from sklearn.tree._tree import TREE_LEAF X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) k = 4 for name, TreeEstimator in ALL_TREES.items(): est = TreeEstimator(max_depth=None, max_leaf_nodes=k + 1).fit(X, y) tree = est.tree_ assert_equal((tree.children_left == TREE_LEAF).sum(), k + 1) # max_leaf_nodes in (0, 1) should raise ValueError est = TreeEstimator(max_depth=None, max_leaf_nodes=0) assert_raises(ValueError, est.fit, X, y) est = TreeEstimator(max_depth=None, max_leaf_nodes=1) assert_raises(ValueError, est.fit, X, y) est = TreeEstimator(max_depth=None, max_leaf_nodes=0.1) assert_raises(ValueError, est.fit, X, y) def test_max_leaf_nodes_max_depth(): # Test preceedence of max_leaf_nodes over max_depth. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) k = 4 for name, TreeEstimator in ALL_TREES.items(): est = TreeEstimator(max_depth=1, max_leaf_nodes=k).fit(X, y) tree = est.tree_ assert_greater(tree.max_depth, 1) def test_arrays_persist(): # Ensure property arrays' memory stays alive when tree disappears # non-regression for #2726 for attr in ['n_classes', 'value', 'children_left', 'children_right', 'threshold', 'impurity', 'feature', 'n_node_samples']: value = getattr(DecisionTreeClassifier().fit([[0]], [0]).tree_, attr) # if pointing to freed memory, contents may be arbitrary assert_true(-2 <= value.flat[0] < 2, 'Array points to arbitrary memory') def test_only_constant_features(): random_state = check_random_state(0) X = np.zeros((10, 20)) y = random_state.randint(0, 2, (10, )) for name, TreeEstimator in ALL_TREES.items(): est = TreeEstimator(random_state=0) est.fit(X, y) assert_equal(est.tree_.max_depth, 0) def test_with_only_one_non_constant_features(): X = np.hstack([np.array([[1.], [1.], [0.], [0.]]), np.zeros((4, 1000))]) y = np.array([0., 1., 0., 1.0]) for name, TreeEstimator in CLF_TREES.items(): est = TreeEstimator(random_state=0, max_features=1) est.fit(X, y) assert_equal(est.tree_.max_depth, 1) assert_array_equal(est.predict_proba(X), 0.5 * np.ones((4, 2))) for name, TreeEstimator in REG_TREES.items(): est = TreeEstimator(random_state=0, max_features=1) est.fit(X, y) assert_equal(est.tree_.max_depth, 1) assert_array_equal(est.predict(X), 0.5 * np.ones((4, ))) def test_big_input(): # Test if the warning for too large inputs is appropriate. X = np.repeat(10 ** 40., 4).astype(np.float64).reshape(-1, 1) clf = DecisionTreeClassifier() try: clf.fit(X, [0, 1, 0, 1]) except ValueError as e: assert_in("float32", str(e)) def test_realloc(): from sklearn.tree._tree import _realloc_test assert_raises(MemoryError, _realloc_test) def test_huge_allocations(): n_bits = int(platform.architecture()[0].rstrip('bit')) X = np.random.randn(10, 2) y = np.random.randint(0, 2, 10) # Sanity check: we cannot request more memory than the size of the address # space. Currently raises OverflowError. huge = 2 ** (n_bits + 1) clf = DecisionTreeClassifier(splitter='best', max_leaf_nodes=huge) assert_raises(Exception, clf.fit, X, y) # Non-regression test: MemoryError used to be dropped by Cython # because of missing "except *". huge = 2 ** (n_bits - 1) - 1 clf = DecisionTreeClassifier(splitter='best', max_leaf_nodes=huge) assert_raises(MemoryError, clf.fit, X, y) def check_sparse_input(tree, dataset, max_depth=None): TreeEstimator = ALL_TREES[tree] X = DATASETS[dataset]["X"] X_sparse = DATASETS[dataset]["X_sparse"] y = DATASETS[dataset]["y"] # Gain testing time if dataset in ["digits", "boston"]: n_samples = X.shape[0] // 5 X = X[:n_samples] X_sparse = X_sparse[:n_samples] y = y[:n_samples] for sparse_format in (csr_matrix, csc_matrix, coo_matrix): X_sparse = sparse_format(X_sparse) # Check the default (depth first search) d = TreeEstimator(random_state=0, max_depth=max_depth).fit(X, y) s = TreeEstimator(random_state=0, max_depth=max_depth).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) y_pred = d.predict(X) if tree in CLF_TREES: y_proba = d.predict_proba(X) y_log_proba = d.predict_log_proba(X) for sparse_matrix in (csr_matrix, csc_matrix, coo_matrix): X_sparse_test = sparse_matrix(X_sparse, dtype=np.float32) assert_array_almost_equal(s.predict(X_sparse_test), y_pred) if tree in CLF_TREES: assert_array_almost_equal(s.predict_proba(X_sparse_test), y_proba) assert_array_almost_equal(s.predict_log_proba(X_sparse_test), y_log_proba) def test_sparse_input(): for tree, dataset in product(SPARSE_TREES, ("clf_small", "toy", "digits", "multilabel", "sparse-pos", "sparse-neg", "sparse-mix", "zeros")): max_depth = 3 if dataset == "digits" else None yield (check_sparse_input, tree, dataset, max_depth) # Due to numerical instability of MSE and too strict test, we limit the # maximal depth for tree, dataset in product(REG_TREES, ["boston", "reg_small"]): if tree in SPARSE_TREES: yield (check_sparse_input, tree, dataset, 2) def check_sparse_parameters(tree, dataset): TreeEstimator = ALL_TREES[tree] X = DATASETS[dataset]["X"] X_sparse = DATASETS[dataset]["X_sparse"] y = DATASETS[dataset]["y"] # Check max_features d = TreeEstimator(random_state=0, max_features=1, max_depth=2).fit(X, y) s = TreeEstimator(random_state=0, max_features=1, max_depth=2).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) assert_array_almost_equal(s.predict(X), d.predict(X)) # Check min_samples_split d = TreeEstimator(random_state=0, max_features=1, min_samples_split=10).fit(X, y) s = TreeEstimator(random_state=0, max_features=1, min_samples_split=10).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) assert_array_almost_equal(s.predict(X), d.predict(X)) # Check min_samples_leaf d = TreeEstimator(random_state=0, min_samples_leaf=X_sparse.shape[0] // 2).fit(X, y) s = TreeEstimator(random_state=0, min_samples_leaf=X_sparse.shape[0] // 2).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) assert_array_almost_equal(s.predict(X), d.predict(X)) # Check best-first search d = TreeEstimator(random_state=0, max_leaf_nodes=3).fit(X, y) s = TreeEstimator(random_state=0, max_leaf_nodes=3).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) assert_array_almost_equal(s.predict(X), d.predict(X)) def test_sparse_parameters(): for tree, dataset in product(SPARSE_TREES, ["sparse-pos", "sparse-neg", "sparse-mix", "zeros"]): yield (check_sparse_parameters, tree, dataset) def check_sparse_criterion(tree, dataset): TreeEstimator = ALL_TREES[tree] X = DATASETS[dataset]["X"] X_sparse = DATASETS[dataset]["X_sparse"] y = DATASETS[dataset]["y"] # Check various criterion CRITERIONS = REG_CRITERIONS if tree in REG_TREES else CLF_CRITERIONS for criterion in CRITERIONS: d = TreeEstimator(random_state=0, max_depth=3, criterion=criterion).fit(X, y) s = TreeEstimator(random_state=0, max_depth=3, criterion=criterion).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) assert_array_almost_equal(s.predict(X), d.predict(X)) def test_sparse_criterion(): for tree, dataset in product(SPARSE_TREES, ["sparse-pos", "sparse-neg", "sparse-mix", "zeros"]): yield (check_sparse_criterion, tree, dataset) def check_explicit_sparse_zeros(tree, max_depth=3, n_features=10): TreeEstimator = ALL_TREES[tree] # n_samples set n_feature to ease construction of a simultaneous # construction of a csr and csc matrix n_samples = n_features samples = np.arange(n_samples) # Generate X, y random_state = check_random_state(0) indices = [] data = [] offset = 0 indptr = [offset] for i in range(n_features): n_nonzero_i = random_state.binomial(n_samples, 0.5) indices_i = random_state.permutation(samples)[:n_nonzero_i] indices.append(indices_i) data_i = random_state.binomial(3, 0.5, size=(n_nonzero_i, )) - 1 data.append(data_i) offset += n_nonzero_i indptr.append(offset) indices = np.concatenate(indices) data = np.array(np.concatenate(data), dtype=np.float32) X_sparse = csc_matrix((data, indices, indptr), shape=(n_samples, n_features)) X = X_sparse.toarray() X_sparse_test = csr_matrix((data, indices, indptr), shape=(n_samples, n_features)) X_test = X_sparse_test.toarray() y = random_state.randint(0, 3, size=(n_samples, )) # Ensure that X_sparse_test owns its data, indices and indptr array X_sparse_test = X_sparse_test.copy() # Ensure that we have explicit zeros assert_greater((X_sparse.data == 0.).sum(), 0) assert_greater((X_sparse_test.data == 0.).sum(), 0) # Perform the comparison d = TreeEstimator(random_state=0, max_depth=max_depth).fit(X, y) s = TreeEstimator(random_state=0, max_depth=max_depth).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) Xs = (X_test, X_sparse_test) for X1, X2 in product(Xs, Xs): assert_array_almost_equal(s.tree_.apply(X1), d.tree_.apply(X2)) assert_array_almost_equal(s.apply(X1), d.apply(X2)) assert_array_almost_equal(s.apply(X1), s.tree_.apply(X1)) assert_array_almost_equal(s.predict(X1), d.predict(X2)) if tree in CLF_TREES: assert_array_almost_equal(s.predict_proba(X1), d.predict_proba(X2)) def test_explicit_sparse_zeros(): for tree in SPARSE_TREES: yield (check_explicit_sparse_zeros, tree) def check_raise_error_on_1d_input(name): TreeEstimator = ALL_TREES[name] X = iris.data[:, 0].ravel() X_2d = iris.data[:, 0].reshape((-1, 1)) y = iris.target assert_raises(ValueError, TreeEstimator(random_state=0).fit, X, y) est = TreeEstimator(random_state=0) est.fit(X_2d, y) assert_raises(ValueError, est.predict, X) def test_1d_input(): for name in ALL_TREES: yield check_raise_error_on_1d_input, name def _check_min_weight_leaf_split_level(TreeEstimator, X, y, sample_weight): # Private function to keep pretty printing in nose yielded tests est = TreeEstimator(random_state=0) est.fit(X, y, sample_weight=sample_weight) assert_equal(est.tree_.max_depth, 1) est = TreeEstimator(random_state=0, min_weight_fraction_leaf=0.4) est.fit(X, y, sample_weight=sample_weight) assert_equal(est.tree_.max_depth, 0) def check_min_weight_leaf_split_level(name): TreeEstimator = ALL_TREES[name] X = np.array([[0], [0], [0], [0], [1]]) y = [0, 0, 0, 0, 1] sample_weight = [0.2, 0.2, 0.2, 0.2, 0.2] _check_min_weight_leaf_split_level(TreeEstimator, X, y, sample_weight) if TreeEstimator().splitter in SPARSE_SPLITTERS: _check_min_weight_leaf_split_level(TreeEstimator, csc_matrix(X), y, sample_weight) def test_min_weight_leaf_split_level(): for name in ALL_TREES: yield check_min_weight_leaf_split_level, name def check_public_apply(name): X_small32 = X_small.astype(tree._tree.DTYPE) est = ALL_TREES[name]() est.fit(X_small, y_small) assert_array_equal(est.apply(X_small), est.tree_.apply(X_small32)) def check_public_apply_sparse(name): X_small32 = csr_matrix(X_small.astype(tree._tree.DTYPE)) est = ALL_TREES[name]() est.fit(X_small, y_small) assert_array_equal(est.apply(X_small), est.tree_.apply(X_small32)) def test_public_apply(): for name in ALL_TREES: yield (check_public_apply, name) for name in SPARSE_TREES: yield (check_public_apply_sparse, name)
bsd-3-clause
etkirsch/scikit-learn
sklearn/linear_model/least_angle.py
61
54324
""" Least Angle Regression algorithm. See the documentation on the Generalized Linear Model for a complete discussion. """ from __future__ import print_function # Author: Fabian Pedregosa <fabian.pedregosa@inria.fr> # Alexandre Gramfort <alexandre.gramfort@inria.fr> # Gael Varoquaux # # License: BSD 3 clause from math import log import sys import warnings from distutils.version import LooseVersion import numpy as np from scipy import linalg, interpolate from scipy.linalg.lapack import get_lapack_funcs from .base import LinearModel from ..base import RegressorMixin from ..utils import arrayfuncs, as_float_array, check_X_y from ..cross_validation import check_cv from ..utils import ConvergenceWarning from ..externals.joblib import Parallel, delayed from ..externals.six.moves import xrange import scipy solve_triangular_args = {} if LooseVersion(scipy.__version__) >= LooseVersion('0.12'): solve_triangular_args = {'check_finite': False} def lars_path(X, y, Xy=None, Gram=None, max_iter=500, alpha_min=0, method='lar', copy_X=True, eps=np.finfo(np.float).eps, copy_Gram=True, verbose=0, return_path=True, return_n_iter=False, positive=False): """Compute Least Angle Regression or Lasso path using LARS algorithm [1] The optimization objective for the case method='lasso' is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 in the case of method='lars', the objective function is only known in the form of an implicit equation (see discussion in [1]) Read more in the :ref:`User Guide <least_angle_regression>`. Parameters ----------- X : array, shape: (n_samples, n_features) Input data. y : array, shape: (n_samples) Input targets. positive : boolean (default=False) Restrict coefficients to be >= 0. When using this option together with method 'lasso' the model coefficients will not converge to the ordinary-least-squares solution for small values of alpha (neither will they when using method 'lar' ..). Only coeffiencts up to the smallest alpha value (``alphas_[alphas_ > 0.].min()`` when fit_path=True) reached by the stepwise Lars-Lasso algorithm are typically in congruence with the solution of the coordinate descent lasso_path function. max_iter : integer, optional (default=500) Maximum number of iterations to perform, set to infinity for no limit. Gram : None, 'auto', array, shape: (n_features, n_features), optional Precomputed Gram matrix (X' * X), if ``'auto'``, the Gram matrix is precomputed from the given X, if there are more samples than features. alpha_min : float, optional (default=0) Minimum correlation along the path. It corresponds to the regularization parameter alpha parameter in the Lasso. method : {'lar', 'lasso'}, optional (default='lar') Specifies the returned model. Select ``'lar'`` for Least Angle Regression, ``'lasso'`` for the Lasso. eps : float, optional (default=``np.finfo(np.float).eps``) The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. copy_X : bool, optional (default=True) If ``False``, ``X`` is overwritten. copy_Gram : bool, optional (default=True) If ``False``, ``Gram`` is overwritten. verbose : int (default=0) Controls output verbosity. return_path : bool, optional (default=True) If ``return_path==True`` returns the entire path, else returns only the last point of the path. return_n_iter : bool, optional (default=False) Whether to return the number of iterations. Returns -------- alphas : array, shape: [n_alphas + 1] Maximum of covariances (in absolute value) at each iteration. ``n_alphas`` is either ``max_iter``, ``n_features`` or the number of nodes in the path with ``alpha >= alpha_min``, whichever is smaller. active : array, shape [n_alphas] Indices of active variables at the end of the path. coefs : array, shape (n_features, n_alphas + 1) Coefficients along the path n_iter : int Number of iterations run. Returned only if return_n_iter is set to True. See also -------- lasso_path LassoLars Lars LassoLarsCV LarsCV sklearn.decomposition.sparse_encode References ---------- .. [1] "Least Angle Regression", Effron et al. http://www-stat.stanford.edu/~tibs/ftp/lars.pdf .. [2] `Wikipedia entry on the Least-angle regression <http://en.wikipedia.org/wiki/Least-angle_regression>`_ .. [3] `Wikipedia entry on the Lasso <http://en.wikipedia.org/wiki/Lasso_(statistics)#Lasso_method>`_ """ n_features = X.shape[1] n_samples = y.size max_features = min(max_iter, n_features) if return_path: coefs = np.zeros((max_features + 1, n_features)) alphas = np.zeros(max_features + 1) else: coef, prev_coef = np.zeros(n_features), np.zeros(n_features) alpha, prev_alpha = np.array([0.]), np.array([0.]) # better ideas? n_iter, n_active = 0, 0 active, indices = list(), np.arange(n_features) # holds the sign of covariance sign_active = np.empty(max_features, dtype=np.int8) drop = False # will hold the cholesky factorization. Only lower part is # referenced. # We are initializing this to "zeros" and not empty, because # it is passed to scipy linalg functions and thus if it has NaNs, # even if they are in the upper part that it not used, we # get errors raised. # Once we support only scipy > 0.12 we can use check_finite=False and # go back to "empty" L = np.zeros((max_features, max_features), dtype=X.dtype) swap, nrm2 = linalg.get_blas_funcs(('swap', 'nrm2'), (X,)) solve_cholesky, = get_lapack_funcs(('potrs',), (X,)) if Gram is None: if copy_X: # force copy. setting the array to be fortran-ordered # speeds up the calculation of the (partial) Gram matrix # and allows to easily swap columns X = X.copy('F') elif Gram == 'auto': Gram = None if X.shape[0] > X.shape[1]: Gram = np.dot(X.T, X) elif copy_Gram: Gram = Gram.copy() if Xy is None: Cov = np.dot(X.T, y) else: Cov = Xy.copy() if verbose: if verbose > 1: print("Step\t\tAdded\t\tDropped\t\tActive set size\t\tC") else: sys.stdout.write('.') sys.stdout.flush() tiny = np.finfo(np.float).tiny # to avoid division by 0 warning tiny32 = np.finfo(np.float32).tiny # to avoid division by 0 warning equality_tolerance = np.finfo(np.float32).eps while True: if Cov.size: if positive: C_idx = np.argmax(Cov) else: C_idx = np.argmax(np.abs(Cov)) C_ = Cov[C_idx] if positive: C = C_ else: C = np.fabs(C_) else: C = 0. if return_path: alpha = alphas[n_iter, np.newaxis] coef = coefs[n_iter] prev_alpha = alphas[n_iter - 1, np.newaxis] prev_coef = coefs[n_iter - 1] alpha[0] = C / n_samples if alpha[0] <= alpha_min + equality_tolerance: # early stopping if abs(alpha[0] - alpha_min) > equality_tolerance: # interpolation factor 0 <= ss < 1 if n_iter > 0: # In the first iteration, all alphas are zero, the formula # below would make ss a NaN ss = ((prev_alpha[0] - alpha_min) / (prev_alpha[0] - alpha[0])) coef[:] = prev_coef + ss * (coef - prev_coef) alpha[0] = alpha_min if return_path: coefs[n_iter] = coef break if n_iter >= max_iter or n_active >= n_features: break if not drop: ########################################################## # Append x_j to the Cholesky factorization of (Xa * Xa') # # # # ( L 0 ) # # L -> ( ) , where L * w = Xa' x_j # # ( w z ) and z = ||x_j|| # # # ########################################################## if positive: sign_active[n_active] = np.ones_like(C_) else: sign_active[n_active] = np.sign(C_) m, n = n_active, C_idx + n_active Cov[C_idx], Cov[0] = swap(Cov[C_idx], Cov[0]) indices[n], indices[m] = indices[m], indices[n] Cov_not_shortened = Cov Cov = Cov[1:] # remove Cov[0] if Gram is None: X.T[n], X.T[m] = swap(X.T[n], X.T[m]) c = nrm2(X.T[n_active]) ** 2 L[n_active, :n_active] = \ np.dot(X.T[n_active], X.T[:n_active].T) else: # swap does only work inplace if matrix is fortran # contiguous ... Gram[m], Gram[n] = swap(Gram[m], Gram[n]) Gram[:, m], Gram[:, n] = swap(Gram[:, m], Gram[:, n]) c = Gram[n_active, n_active] L[n_active, :n_active] = Gram[n_active, :n_active] # Update the cholesky decomposition for the Gram matrix if n_active: linalg.solve_triangular(L[:n_active, :n_active], L[n_active, :n_active], trans=0, lower=1, overwrite_b=True, **solve_triangular_args) v = np.dot(L[n_active, :n_active], L[n_active, :n_active]) diag = max(np.sqrt(np.abs(c - v)), eps) L[n_active, n_active] = diag if diag < 1e-7: # The system is becoming too ill-conditioned. # We have degenerate vectors in our active set. # We'll 'drop for good' the last regressor added. # Note: this case is very rare. It is no longer triggered by the # test suite. The `equality_tolerance` margin added in 0.16.0 to # get early stopping to work consistently on all versions of # Python including 32 bit Python under Windows seems to make it # very difficult to trigger the 'drop for good' strategy. warnings.warn('Regressors in active set degenerate. ' 'Dropping a regressor, after %i iterations, ' 'i.e. alpha=%.3e, ' 'with an active set of %i regressors, and ' 'the smallest cholesky pivot element being %.3e' % (n_iter, alpha, n_active, diag), ConvergenceWarning) # XXX: need to figure a 'drop for good' way Cov = Cov_not_shortened Cov[0] = 0 Cov[C_idx], Cov[0] = swap(Cov[C_idx], Cov[0]) continue active.append(indices[n_active]) n_active += 1 if verbose > 1: print("%s\t\t%s\t\t%s\t\t%s\t\t%s" % (n_iter, active[-1], '', n_active, C)) if method == 'lasso' and n_iter > 0 and prev_alpha[0] < alpha[0]: # alpha is increasing. This is because the updates of Cov are # bringing in too much numerical error that is greater than # than the remaining correlation with the # regressors. Time to bail out warnings.warn('Early stopping the lars path, as the residues ' 'are small and the current value of alpha is no ' 'longer well controlled. %i iterations, alpha=%.3e, ' 'previous alpha=%.3e, with an active set of %i ' 'regressors.' % (n_iter, alpha, prev_alpha, n_active), ConvergenceWarning) break # least squares solution least_squares, info = solve_cholesky(L[:n_active, :n_active], sign_active[:n_active], lower=True) if least_squares.size == 1 and least_squares == 0: # This happens because sign_active[:n_active] = 0 least_squares[...] = 1 AA = 1. else: # is this really needed ? AA = 1. / np.sqrt(np.sum(least_squares * sign_active[:n_active])) if not np.isfinite(AA): # L is too ill-conditioned i = 0 L_ = L[:n_active, :n_active].copy() while not np.isfinite(AA): L_.flat[::n_active + 1] += (2 ** i) * eps least_squares, info = solve_cholesky( L_, sign_active[:n_active], lower=True) tmp = max(np.sum(least_squares * sign_active[:n_active]), eps) AA = 1. / np.sqrt(tmp) i += 1 least_squares *= AA if Gram is None: # equiangular direction of variables in the active set eq_dir = np.dot(X.T[:n_active].T, least_squares) # correlation between each unactive variables and # eqiangular vector corr_eq_dir = np.dot(X.T[n_active:], eq_dir) else: # if huge number of features, this takes 50% of time, I # think could be avoided if we just update it using an # orthogonal (QR) decomposition of X corr_eq_dir = np.dot(Gram[:n_active, n_active:].T, least_squares) g1 = arrayfuncs.min_pos((C - Cov) / (AA - corr_eq_dir + tiny)) if positive: gamma_ = min(g1, C / AA) else: g2 = arrayfuncs.min_pos((C + Cov) / (AA + corr_eq_dir + tiny)) gamma_ = min(g1, g2, C / AA) # TODO: better names for these variables: z drop = False z = -coef[active] / (least_squares + tiny32) z_pos = arrayfuncs.min_pos(z) if z_pos < gamma_: # some coefficients have changed sign idx = np.where(z == z_pos)[0][::-1] # update the sign, important for LAR sign_active[idx] = -sign_active[idx] if method == 'lasso': gamma_ = z_pos drop = True n_iter += 1 if return_path: if n_iter >= coefs.shape[0]: del coef, alpha, prev_alpha, prev_coef # resize the coefs and alphas array add_features = 2 * max(1, (max_features - n_active)) coefs = np.resize(coefs, (n_iter + add_features, n_features)) alphas = np.resize(alphas, n_iter + add_features) coef = coefs[n_iter] prev_coef = coefs[n_iter - 1] alpha = alphas[n_iter, np.newaxis] prev_alpha = alphas[n_iter - 1, np.newaxis] else: # mimic the effect of incrementing n_iter on the array references prev_coef = coef prev_alpha[0] = alpha[0] coef = np.zeros_like(coef) coef[active] = prev_coef[active] + gamma_ * least_squares # update correlations Cov -= gamma_ * corr_eq_dir # See if any coefficient has changed sign if drop and method == 'lasso': # handle the case when idx is not length of 1 [arrayfuncs.cholesky_delete(L[:n_active, :n_active], ii) for ii in idx] n_active -= 1 m, n = idx, n_active # handle the case when idx is not length of 1 drop_idx = [active.pop(ii) for ii in idx] if Gram is None: # propagate dropped variable for ii in idx: for i in range(ii, n_active): X.T[i], X.T[i + 1] = swap(X.T[i], X.T[i + 1]) # yeah this is stupid indices[i], indices[i + 1] = indices[i + 1], indices[i] # TODO: this could be updated residual = y - np.dot(X[:, :n_active], coef[active]) temp = np.dot(X.T[n_active], residual) Cov = np.r_[temp, Cov] else: for ii in idx: for i in range(ii, n_active): indices[i], indices[i + 1] = indices[i + 1], indices[i] Gram[i], Gram[i + 1] = swap(Gram[i], Gram[i + 1]) Gram[:, i], Gram[:, i + 1] = swap(Gram[:, i], Gram[:, i + 1]) # Cov_n = Cov_j + x_j * X + increment(betas) TODO: # will this still work with multiple drops ? # recompute covariance. Probably could be done better # wrong as Xy is not swapped with the rest of variables # TODO: this could be updated residual = y - np.dot(X, coef) temp = np.dot(X.T[drop_idx], residual) Cov = np.r_[temp, Cov] sign_active = np.delete(sign_active, idx) sign_active = np.append(sign_active, 0.) # just to maintain size if verbose > 1: print("%s\t\t%s\t\t%s\t\t%s\t\t%s" % (n_iter, '', drop_idx, n_active, abs(temp))) if return_path: # resize coefs in case of early stop alphas = alphas[:n_iter + 1] coefs = coefs[:n_iter + 1] if return_n_iter: return alphas, active, coefs.T, n_iter else: return alphas, active, coefs.T else: if return_n_iter: return alpha, active, coef, n_iter else: return alpha, active, coef ############################################################################### # Estimator classes class Lars(LinearModel, RegressorMixin): """Least Angle Regression model a.k.a. LAR Read more in the :ref:`User Guide <least_angle_regression>`. Parameters ---------- n_nonzero_coefs : int, optional Target number of non-zero coefficients. Use ``np.inf`` for no limit. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). positive : boolean (default=False) Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept which is set True by default. verbose : boolean or integer, optional Sets the verbosity amount normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the ``tol`` parameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization. fit_path : boolean If True the full path is stored in the ``coef_path_`` attribute. If you compute the solution for a large problem or many targets, setting ``fit_path`` to ``False`` will lead to a speedup, especially with a small alpha. Attributes ---------- alphas_ : array, shape (n_alphas + 1,) | list of n_targets such arrays Maximum of covariances (in absolute value) at each iteration. \ ``n_alphas`` is either ``n_nonzero_coefs`` or ``n_features``, \ whichever is smaller. active_ : list, length = n_alphas | list of n_targets such lists Indices of active variables at the end of the path. coef_path_ : array, shape (n_features, n_alphas + 1) \ | list of n_targets such arrays The varying values of the coefficients along the path. It is not present if the ``fit_path`` parameter is ``False``. coef_ : array, shape (n_features,) or (n_targets, n_features) Parameter vector (w in the formulation formula). intercept_ : float | array, shape (n_targets,) Independent term in decision function. n_iter_ : array-like or int The number of iterations taken by lars_path to find the grid of alphas for each target. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.Lars(n_nonzero_coefs=1) >>> clf.fit([[-1, 1], [0, 0], [1, 1]], [-1.1111, 0, -1.1111]) ... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE Lars(copy_X=True, eps=..., fit_intercept=True, fit_path=True, n_nonzero_coefs=1, normalize=True, positive=False, precompute='auto', verbose=False) >>> print(clf.coef_) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE [ 0. -1.11...] See also -------- lars_path, LarsCV sklearn.decomposition.sparse_encode """ def __init__(self, fit_intercept=True, verbose=False, normalize=True, precompute='auto', n_nonzero_coefs=500, eps=np.finfo(np.float).eps, copy_X=True, fit_path=True, positive=False): self.fit_intercept = fit_intercept self.verbose = verbose self.normalize = normalize self.method = 'lar' self.precompute = precompute self.n_nonzero_coefs = n_nonzero_coefs self.positive = positive self.eps = eps self.copy_X = copy_X self.fit_path = fit_path def _get_gram(self): # precompute if n_samples > n_features precompute = self.precompute if hasattr(precompute, '__array__'): Gram = precompute elif precompute == 'auto': Gram = 'auto' else: Gram = None return Gram def fit(self, X, y, Xy=None): """Fit the model using X, y as training data. parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values. Xy : array-like, shape (n_samples,) or (n_samples, n_targets), \ optional Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomputed. returns ------- self : object returns an instance of self. """ X, y = check_X_y(X, y, y_numeric=True, multi_output=True) n_features = X.shape[1] X, y, X_mean, y_mean, X_std = self._center_data(X, y, self.fit_intercept, self.normalize, self.copy_X) if y.ndim == 1: y = y[:, np.newaxis] n_targets = y.shape[1] alpha = getattr(self, 'alpha', 0.) if hasattr(self, 'n_nonzero_coefs'): alpha = 0. # n_nonzero_coefs parametrization takes priority max_iter = self.n_nonzero_coefs else: max_iter = self.max_iter precompute = self.precompute if not hasattr(precompute, '__array__') and ( precompute is True or (precompute == 'auto' and X.shape[0] > X.shape[1]) or (precompute == 'auto' and y.shape[1] > 1)): Gram = np.dot(X.T, X) else: Gram = self._get_gram() self.alphas_ = [] self.n_iter_ = [] if self.fit_path: self.coef_ = [] self.active_ = [] self.coef_path_ = [] for k in xrange(n_targets): this_Xy = None if Xy is None else Xy[:, k] alphas, active, coef_path, n_iter_ = lars_path( X, y[:, k], Gram=Gram, Xy=this_Xy, copy_X=self.copy_X, copy_Gram=True, alpha_min=alpha, method=self.method, verbose=max(0, self.verbose - 1), max_iter=max_iter, eps=self.eps, return_path=True, return_n_iter=True, positive=self.positive) self.alphas_.append(alphas) self.active_.append(active) self.n_iter_.append(n_iter_) self.coef_path_.append(coef_path) self.coef_.append(coef_path[:, -1]) if n_targets == 1: self.alphas_, self.active_, self.coef_path_, self.coef_ = [ a[0] for a in (self.alphas_, self.active_, self.coef_path_, self.coef_)] self.n_iter_ = self.n_iter_[0] else: self.coef_ = np.empty((n_targets, n_features)) for k in xrange(n_targets): this_Xy = None if Xy is None else Xy[:, k] alphas, _, self.coef_[k], n_iter_ = lars_path( X, y[:, k], Gram=Gram, Xy=this_Xy, copy_X=self.copy_X, copy_Gram=True, alpha_min=alpha, method=self.method, verbose=max(0, self.verbose - 1), max_iter=max_iter, eps=self.eps, return_path=False, return_n_iter=True, positive=self.positive) self.alphas_.append(alphas) self.n_iter_.append(n_iter_) if n_targets == 1: self.alphas_ = self.alphas_[0] self.n_iter_ = self.n_iter_[0] self._set_intercept(X_mean, y_mean, X_std) return self class LassoLars(Lars): """Lasso model fit with Least Angle Regression a.k.a. Lars It is a Linear Model trained with an L1 prior as regularizer. The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 Read more in the :ref:`User Guide <least_angle_regression>`. Parameters ---------- alpha : float Constant that multiplies the penalty term. Defaults to 1.0. ``alpha = 0`` is equivalent to an ordinary least square, solved by :class:`LinearRegression`. For numerical reasons, using ``alpha = 0`` with the LassoLars object is not advised and you should prefer the LinearRegression object. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). positive : boolean (default=False) Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept which is set True by default. Under the positive restriction the model coefficients will not converge to the ordinary-least-squares solution for small values of alpha. Only coeffiencts up to the smallest alpha value (``alphas_[alphas_ > 0.].min()`` when fit_path=True) reached by the stepwise Lars-Lasso algorithm are typically in congruence with the solution of the coordinate descent Lasso estimator. verbose : boolean or integer, optional Sets the verbosity amount normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter : integer, optional Maximum number of iterations to perform. eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the ``tol`` parameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization. fit_path : boolean If ``True`` the full path is stored in the ``coef_path_`` attribute. If you compute the solution for a large problem or many targets, setting ``fit_path`` to ``False`` will lead to a speedup, especially with a small alpha. Attributes ---------- alphas_ : array, shape (n_alphas + 1,) | list of n_targets such arrays Maximum of covariances (in absolute value) at each iteration. \ ``n_alphas`` is either ``max_iter``, ``n_features``, or the number of \ nodes in the path with correlation greater than ``alpha``, whichever \ is smaller. active_ : list, length = n_alphas | list of n_targets such lists Indices of active variables at the end of the path. coef_path_ : array, shape (n_features, n_alphas + 1) or list If a list is passed it's expected to be one of n_targets such arrays. The varying values of the coefficients along the path. It is not present if the ``fit_path`` parameter is ``False``. coef_ : array, shape (n_features,) or (n_targets, n_features) Parameter vector (w in the formulation formula). intercept_ : float | array, shape (n_targets,) Independent term in decision function. n_iter_ : array-like or int. The number of iterations taken by lars_path to find the grid of alphas for each target. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.LassoLars(alpha=0.01) >>> clf.fit([[-1, 1], [0, 0], [1, 1]], [-1, 0, -1]) ... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE LassoLars(alpha=0.01, copy_X=True, eps=..., fit_intercept=True, fit_path=True, max_iter=500, normalize=True, positive=False, precompute='auto', verbose=False) >>> print(clf.coef_) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE [ 0. -0.963257...] See also -------- lars_path lasso_path Lasso LassoCV LassoLarsCV sklearn.decomposition.sparse_encode """ def __init__(self, alpha=1.0, fit_intercept=True, verbose=False, normalize=True, precompute='auto', max_iter=500, eps=np.finfo(np.float).eps, copy_X=True, fit_path=True, positive=False): self.alpha = alpha self.fit_intercept = fit_intercept self.max_iter = max_iter self.verbose = verbose self.normalize = normalize self.method = 'lasso' self.positive = positive self.precompute = precompute self.copy_X = copy_X self.eps = eps self.fit_path = fit_path ############################################################################### # Cross-validated estimator classes def _check_copy_and_writeable(array, copy=False): if copy or not array.flags.writeable: return array.copy() return array def _lars_path_residues(X_train, y_train, X_test, y_test, Gram=None, copy=True, method='lars', verbose=False, fit_intercept=True, normalize=True, max_iter=500, eps=np.finfo(np.float).eps, positive=False): """Compute the residues on left-out data for a full LARS path Parameters ----------- X_train : array, shape (n_samples, n_features) The data to fit the LARS on y_train : array, shape (n_samples) The target variable to fit LARS on X_test : array, shape (n_samples, n_features) The data to compute the residues on y_test : array, shape (n_samples) The target variable to compute the residues on Gram : None, 'auto', array, shape: (n_features, n_features), optional Precomputed Gram matrix (X' * X), if ``'auto'``, the Gram matrix is precomputed from the given X, if there are more samples than features copy : boolean, optional Whether X_train, X_test, y_train and y_test should be copied; if False, they may be overwritten. method : 'lar' | 'lasso' Specifies the returned model. Select ``'lar'`` for Least Angle Regression, ``'lasso'`` for the Lasso. verbose : integer, optional Sets the amount of verbosity fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). positive : boolean (default=False) Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept which is set True by default. See reservations for using this option in combination with method 'lasso' for expected small values of alpha in the doc of LassoLarsCV and LassoLarsIC. normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. max_iter : integer, optional Maximum number of iterations to perform. eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the ``tol`` parameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization. Returns -------- alphas : array, shape (n_alphas,) Maximum of covariances (in absolute value) at each iteration. ``n_alphas`` is either ``max_iter`` or ``n_features``, whichever is smaller. active : list Indices of active variables at the end of the path. coefs : array, shape (n_features, n_alphas) Coefficients along the path residues : array, shape (n_alphas, n_samples) Residues of the prediction on the test data """ X_train = _check_copy_and_writeable(X_train, copy) y_train = _check_copy_and_writeable(y_train, copy) X_test = _check_copy_and_writeable(X_test, copy) y_test = _check_copy_and_writeable(y_test, copy) if fit_intercept: X_mean = X_train.mean(axis=0) X_train -= X_mean X_test -= X_mean y_mean = y_train.mean(axis=0) y_train = as_float_array(y_train, copy=False) y_train -= y_mean y_test = as_float_array(y_test, copy=False) y_test -= y_mean if normalize: norms = np.sqrt(np.sum(X_train ** 2, axis=0)) nonzeros = np.flatnonzero(norms) X_train[:, nonzeros] /= norms[nonzeros] alphas, active, coefs = lars_path( X_train, y_train, Gram=Gram, copy_X=False, copy_Gram=False, method=method, verbose=max(0, verbose - 1), max_iter=max_iter, eps=eps, positive=positive) if normalize: coefs[nonzeros] /= norms[nonzeros][:, np.newaxis] residues = np.dot(X_test, coefs) - y_test[:, np.newaxis] return alphas, active, coefs, residues.T class LarsCV(Lars): """Cross-validated Least Angle Regression model Read more in the :ref:`User Guide <least_angle_regression>`. Parameters ---------- fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). positive : boolean (default=False) Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept which is set True by default. verbose : boolean or integer, optional Sets the verbosity amount normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter: integer, optional Maximum number of iterations to perform. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. max_n_alphas : integer, optional The maximum number of points on the path used to compute the residuals in the cross-validation n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Attributes ---------- coef_ : array, shape (n_features,) parameter vector (w in the formulation formula) intercept_ : float independent term in decision function coef_path_ : array, shape (n_features, n_alphas) the varying values of the coefficients along the path alpha_ : float the estimated regularization parameter alpha alphas_ : array, shape (n_alphas,) the different values of alpha along the path cv_alphas_ : array, shape (n_cv_alphas,) all the values of alpha along the path for the different folds cv_mse_path_ : array, shape (n_folds, n_cv_alphas) the mean square error on left-out for each fold along the path (alpha values given by ``cv_alphas``) n_iter_ : array-like or int the number of iterations run by Lars with the optimal alpha. See also -------- lars_path, LassoLars, LassoLarsCV """ method = 'lar' def __init__(self, fit_intercept=True, verbose=False, max_iter=500, normalize=True, precompute='auto', cv=None, max_n_alphas=1000, n_jobs=1, eps=np.finfo(np.float).eps, copy_X=True, positive=False): self.fit_intercept = fit_intercept self.positive = positive self.max_iter = max_iter self.verbose = verbose self.normalize = normalize self.precompute = precompute self.copy_X = copy_X self.cv = cv self.max_n_alphas = max_n_alphas self.n_jobs = n_jobs self.eps = eps def fit(self, X, y): """Fit the model using X, y as training data. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) Target values. Returns ------- self : object returns an instance of self. """ self.fit_path = True X, y = check_X_y(X, y, y_numeric=True) # init cross-validation generator cv = check_cv(self.cv, X, y, classifier=False) Gram = 'auto' if self.precompute else None cv_paths = Parallel(n_jobs=self.n_jobs, verbose=self.verbose)( delayed(_lars_path_residues)( X[train], y[train], X[test], y[test], Gram=Gram, copy=False, method=self.method, verbose=max(0, self.verbose - 1), normalize=self.normalize, fit_intercept=self.fit_intercept, max_iter=self.max_iter, eps=self.eps, positive=self.positive) for train, test in cv) all_alphas = np.concatenate(list(zip(*cv_paths))[0]) # Unique also sorts all_alphas = np.unique(all_alphas) # Take at most max_n_alphas values stride = int(max(1, int(len(all_alphas) / float(self.max_n_alphas)))) all_alphas = all_alphas[::stride] mse_path = np.empty((len(all_alphas), len(cv_paths))) for index, (alphas, active, coefs, residues) in enumerate(cv_paths): alphas = alphas[::-1] residues = residues[::-1] if alphas[0] != 0: alphas = np.r_[0, alphas] residues = np.r_[residues[0, np.newaxis], residues] if alphas[-1] != all_alphas[-1]: alphas = np.r_[alphas, all_alphas[-1]] residues = np.r_[residues, residues[-1, np.newaxis]] this_residues = interpolate.interp1d(alphas, residues, axis=0)(all_alphas) this_residues **= 2 mse_path[:, index] = np.mean(this_residues, axis=-1) mask = np.all(np.isfinite(mse_path), axis=-1) all_alphas = all_alphas[mask] mse_path = mse_path[mask] # Select the alpha that minimizes left-out error i_best_alpha = np.argmin(mse_path.mean(axis=-1)) best_alpha = all_alphas[i_best_alpha] # Store our parameters self.alpha_ = best_alpha self.cv_alphas_ = all_alphas self.cv_mse_path_ = mse_path # Now compute the full model # it will call a lasso internally when self if LassoLarsCV # as self.method == 'lasso' Lars.fit(self, X, y) return self @property def alpha(self): # impedance matching for the above Lars.fit (should not be documented) return self.alpha_ class LassoLarsCV(LarsCV): """Cross-validated Lasso, using the LARS algorithm The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 Read more in the :ref:`User Guide <least_angle_regression>`. Parameters ---------- fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). positive : boolean (default=False) Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept which is set True by default. Under the positive restriction the model coefficients do not converge to the ordinary-least-squares solution for small values of alpha. Only coeffiencts up to the smallest alpha value (``alphas_[alphas_ > 0.].min()`` when fit_path=True) reached by the stepwise Lars-Lasso algorithm are typically in congruence with the solution of the coordinate descent Lasso estimator. As a consequence using LassoLarsCV only makes sense for problems where a sparse solution is expected and/or reached. verbose : boolean or integer, optional Sets the verbosity amount normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter : integer, optional Maximum number of iterations to perform. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. max_n_alphas : integer, optional The maximum number of points on the path used to compute the residuals in the cross-validation n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. Attributes ---------- coef_ : array, shape (n_features,) parameter vector (w in the formulation formula) intercept_ : float independent term in decision function. coef_path_ : array, shape (n_features, n_alphas) the varying values of the coefficients along the path alpha_ : float the estimated regularization parameter alpha alphas_ : array, shape (n_alphas,) the different values of alpha along the path cv_alphas_ : array, shape (n_cv_alphas,) all the values of alpha along the path for the different folds cv_mse_path_ : array, shape (n_folds, n_cv_alphas) the mean square error on left-out for each fold along the path (alpha values given by ``cv_alphas``) n_iter_ : array-like or int the number of iterations run by Lars with the optimal alpha. Notes ----- The object solves the same problem as the LassoCV object. However, unlike the LassoCV, it find the relevant alphas values by itself. In general, because of this property, it will be more stable. However, it is more fragile to heavily multicollinear datasets. It is more efficient than the LassoCV if only a small number of features are selected compared to the total number, for instance if there are very few samples compared to the number of features. See also -------- lars_path, LassoLars, LarsCV, LassoCV """ method = 'lasso' class LassoLarsIC(LassoLars): """Lasso model fit with Lars using BIC or AIC for model selection The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 AIC is the Akaike information criterion and BIC is the Bayes Information criterion. Such criteria are useful to select the value of the regularization parameter by making a trade-off between the goodness of fit and the complexity of the model. A good model should explain well the data while being simple. Read more in the :ref:`User Guide <least_angle_regression>`. Parameters ---------- criterion : 'bic' | 'aic' The type of criterion to use. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). positive : boolean (default=False) Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept which is set True by default. Under the positive restriction the model coefficients do not converge to the ordinary-least-squares solution for small values of alpha. Only coeffiencts up to the smallest alpha value (``alphas_[alphas_ > 0.].min()`` when fit_path=True) reached by the stepwise Lars-Lasso algorithm are typically in congruence with the solution of the coordinate descent Lasso estimator. As a consequence using LassoLarsIC only makes sense for problems where a sparse solution is expected and/or reached. verbose : boolean or integer, optional Sets the verbosity amount normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter : integer, optional Maximum number of iterations to perform. Can be used for early stopping. eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the ``tol`` parameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization. Attributes ---------- coef_ : array, shape (n_features,) parameter vector (w in the formulation formula) intercept_ : float independent term in decision function. alpha_ : float the alpha parameter chosen by the information criterion n_iter_ : int number of iterations run by lars_path to find the grid of alphas. criterion_ : array, shape (n_alphas,) The value of the information criteria ('aic', 'bic') across all alphas. The alpha which has the smallest information criteria is chosen. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.LassoLarsIC(criterion='bic') >>> clf.fit([[-1, 1], [0, 0], [1, 1]], [-1.1111, 0, -1.1111]) ... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE LassoLarsIC(copy_X=True, criterion='bic', eps=..., fit_intercept=True, max_iter=500, normalize=True, positive=False, precompute='auto', verbose=False) >>> print(clf.coef_) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE [ 0. -1.11...] Notes ----- The estimation of the number of degrees of freedom is given by: "On the degrees of freedom of the lasso" Hui Zou, Trevor Hastie, and Robert Tibshirani Ann. Statist. Volume 35, Number 5 (2007), 2173-2192. http://en.wikipedia.org/wiki/Akaike_information_criterion http://en.wikipedia.org/wiki/Bayesian_information_criterion See also -------- lars_path, LassoLars, LassoLarsCV """ def __init__(self, criterion='aic', fit_intercept=True, verbose=False, normalize=True, precompute='auto', max_iter=500, eps=np.finfo(np.float).eps, copy_X=True, positive=False): self.criterion = criterion self.fit_intercept = fit_intercept self.positive = positive self.max_iter = max_iter self.verbose = verbose self.normalize = normalize self.copy_X = copy_X self.precompute = precompute self.eps = eps def fit(self, X, y, copy_X=True): """Fit the model using X, y as training data. Parameters ---------- X : array-like, shape (n_samples, n_features) training data. y : array-like, shape (n_samples,) target values. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. Returns ------- self : object returns an instance of self. """ self.fit_path = True X, y = check_X_y(X, y, y_numeric=True) X, y, Xmean, ymean, Xstd = LinearModel._center_data( X, y, self.fit_intercept, self.normalize, self.copy_X) max_iter = self.max_iter Gram = self._get_gram() alphas_, active_, coef_path_, self.n_iter_ = lars_path( X, y, Gram=Gram, copy_X=copy_X, copy_Gram=True, alpha_min=0.0, method='lasso', verbose=self.verbose, max_iter=max_iter, eps=self.eps, return_n_iter=True, positive=self.positive) n_samples = X.shape[0] if self.criterion == 'aic': K = 2 # AIC elif self.criterion == 'bic': K = log(n_samples) # BIC else: raise ValueError('criterion should be either bic or aic') R = y[:, np.newaxis] - np.dot(X, coef_path_) # residuals mean_squared_error = np.mean(R ** 2, axis=0) df = np.zeros(coef_path_.shape[1], dtype=np.int) # Degrees of freedom for k, coef in enumerate(coef_path_.T): mask = np.abs(coef) > np.finfo(coef.dtype).eps if not np.any(mask): continue # get the number of degrees of freedom equal to: # Xc = X[:, mask] # Trace(Xc * inv(Xc.T, Xc) * Xc.T) ie the number of non-zero coefs df[k] = np.sum(mask) self.alphas_ = alphas_ with np.errstate(divide='ignore'): self.criterion_ = n_samples * np.log(mean_squared_error) + K * df n_best = np.argmin(self.criterion_) self.alpha_ = alphas_[n_best] self.coef_ = coef_path_[:, n_best] self._set_intercept(Xmean, ymean, Xstd) return self
bsd-3-clause
cmap/cmapPy
cmapPy/pandasGEXpress/tests/python2_tests/test_write_gctx.py
1
11644
import logging import cmapPy.pandasGEXpress.setup_GCToo_logger as setup_logger import unittest import h5py import os import numpy import cmapPy.pandasGEXpress.parse_gctx as parse_gctx import cmapPy.pandasGEXpress.write_gctx as write_gctx import cmapPy.pandasGEXpress.mini_gctoo_for_testing as mini_gctoo_for_testing __author__ = "Oana Enache" __email__ = "oana@broadinstitute.org" FUNCTIONAL_TESTS_PATH = "cmapPy/pandasGEXpress/tests/functional_tests/" # instantiate logger logger = logging.getLogger(setup_logger.LOGGER_NAME) class TestWriteGctx(unittest.TestCase): def test_add_gctx_to_out_name(self): name1 = "my_cool_file" name2 = "my_other_cool_file.gctx" # case 1: out file name doesn't end in gctx out_name1 = write_gctx.add_gctx_to_out_name(name1) self.assertTrue(out_name1 == name1 + ".gctx", ("out name should be my_cool_file.gctx, not {}").format(out_name1)) # case 2: out file name does end in gctx out_name2 = write_gctx.add_gctx_to_out_name(name2) self.assertTrue(out_name2 == name2, ("out name should be my_other_cool_file.gctx, not {}").format(out_name2)) def test_write_src(self): # case 1: gctoo obj doesn't have src mini1 = mini_gctoo_for_testing.make() mini1.src = None write_gctx.write(mini1, "no_src_example") hdf5_file = h5py.File("no_src_example.gctx") hdf5_src1 = hdf5_file.attrs[write_gctx.src_attr] hdf5_file.close() self.assertEqual(hdf5_src1, "no_src_example.gctx") os.remove("no_src_example.gctx") # case 2: gctoo obj does have src mini2 = mini_gctoo_for_testing.make() write_gctx.write(mini2, "with_src_example.gctx") hdf5_file = h5py.File("with_src_example.gctx") hdf5_src2 = hdf5_file.attrs[write_gctx.src_attr] hdf5_file.close() self.assertEqual(hdf5_src2, "mini_gctoo.gctx") os.remove("with_src_example.gctx") def test_write_version(self): # TODO @oana refactor this test so it just calls the write_version method # case 1: gctoo obj doesn't have version mini1 = mini_gctoo_for_testing.make() mini1.version = None fn = "no_version_provided_example.gctx" write_gctx.write(mini1, fn) hdf5_file = h5py.File(fn) hdf5_v1 = hdf5_file.attrs[write_gctx.version_attr] hdf5_file.close() self.assertEqual(hdf5_v1, write_gctx.version_number) os.remove(fn) # case 2: gctoo obj does have version, but it is not used when writing mini2 = mini_gctoo_for_testing.make() mini2.version = "MY_VERSION" fn = "with_version_provided_example.gctx" write_gctx.write(mini2, fn) hdf5_file = h5py.File(fn) hdf5_v2 = hdf5_file.attrs[write_gctx.version_attr] hdf5_file.close() self.assertEqual(hdf5_v2, write_gctx.version_number) os.remove(fn) def test_calculate_elem_per_kb(self): max_chunk_kb = 1024 # dtype is numpy.float32 dtype1 = numpy.float32 correct_elem_per_kb1 = 256 elem_per_kb1 = write_gctx.calculate_elem_per_kb(max_chunk_kb, dtype1) self.assertEqual(elem_per_kb1, correct_elem_per_kb1) # dtype is numpy.float64 dtype2 = numpy.float64 correct_elem_per_kb2 = 128 elem_per_kb2 = write_gctx.calculate_elem_per_kb(max_chunk_kb, dtype2) self.assertEqual(elem_per_kb2, correct_elem_per_kb2) # dtype is somethign else dtype3 = numpy.int with self.assertRaises(Exception) as context: write_gctx.calculate_elem_per_kb(max_chunk_kb, dtype3) self.assertTrue("only numpy.float32 and numpy.float64 are currently supported" in str(context.exception)) def test_set_data_matrix_chunk_size(self): max_chunk_kb = 1024 elem_per_kb = 256 sample_data_shape = (978, 1000) expected_chunk_size = (978, 268) calculated_chunk_size = write_gctx.set_data_matrix_chunk_size(sample_data_shape, max_chunk_kb, elem_per_kb) self.assertEqual(calculated_chunk_size, expected_chunk_size) def test_write_metadata(self): """ CASE 1: - write metadata (has '-666') to file, do not convert -666 - parse in written metadata, don't convert -666 """ mini_gctoo = mini_gctoo_for_testing.make(convert_neg_666=False) hdf5_writer = h5py.File(FUNCTIONAL_TESTS_PATH + "/mini_gctoo_metadata.gctx", "w") write_gctx.write_metadata(hdf5_writer, "row", mini_gctoo.row_metadata_df, False, 6) write_gctx.write_metadata(hdf5_writer, "col", mini_gctoo.col_metadata_df, False, 6) hdf5_writer.close() logger.debug("Wrote mini_gctoo_metadata.gctx to {}".format( os.path.join(FUNCTIONAL_TESTS_PATH, "mini_gctoo_metadata.gctx"))) # read in written metadata, then close and delete file mini_gctoo_col_metadata = parse_gctx.get_column_metadata(FUNCTIONAL_TESTS_PATH + "/mini_gctoo_metadata.gctx", convert_neg_666=False) mini_gctoo_row_metadata = parse_gctx.get_row_metadata(FUNCTIONAL_TESTS_PATH + "/mini_gctoo_metadata.gctx", convert_neg_666=False) os.remove(FUNCTIONAL_TESTS_PATH + "/mini_gctoo_metadata.gctx") # check row metadata self.assertTrue(set(mini_gctoo.row_metadata_df.columns) == set(mini_gctoo_row_metadata.columns), "Mismatch between expected row metadata columns {} and column values written to file: {}".format( mini_gctoo.row_metadata_df.columns, mini_gctoo_row_metadata.columns)) self.assertTrue(set(mini_gctoo.row_metadata_df.index) == set(mini_gctoo.col_metadata_df.index), "Mismatch between expect row metadata index {} and index values written to file: {}".format( mini_gctoo.row_metadata_df.index, mini_gctoo_row_metadata.index)) for c in list(mini_gctoo.row_metadata_df.columns): logger.debug("C1: For column name: {}".format(c)) logger.debug("C1: populated values: {}".format(set(mini_gctoo_row_metadata[c]))) logger.debug("C1: mini_gctoo values: {}".format(set(mini_gctoo.row_metadata_df[c]))) self.assertTrue(set(mini_gctoo.row_metadata_df[c]) == set(mini_gctoo_row_metadata[c]), "Values in column {} differ between expected metadata and written row metadata: {} vs {}".format( c, set(mini_gctoo.row_metadata_df[c]), set(mini_gctoo_row_metadata[c]))) # check col metadata self.assertTrue(set(mini_gctoo.col_metadata_df.columns) == set(mini_gctoo_col_metadata.columns), "Mismatch between expected col metadata columns {} and column values written to file: {}".format( mini_gctoo.col_metadata_df.columns, mini_gctoo_col_metadata.columns)) self.assertTrue(set(mini_gctoo.col_metadata_df.index) == set(mini_gctoo.col_metadata_df.index), "Mismatch between expect col metadata index {} and index values written to file: {}".format( mini_gctoo.col_metadata_df.index, mini_gctoo_col_metadata.index)) for c in list(mini_gctoo.col_metadata_df.columns): self.assertTrue(set(mini_gctoo.col_metadata_df[c]) == set(mini_gctoo_col_metadata[c]), "Values in column {} differ between expected metadata and written col metadata!".format(c)) """ CASE 2: - write metadata (has NaN, not '-666') to file, do convert NaN back to '-666' - parse in written metadata, don't convert -666 """ # first convert mini_gctoo's row & col metadata dfs -666s to NaN converted_row_metadata = mini_gctoo.row_metadata_df.replace([-666, "-666", -666.0], [numpy.nan, numpy.nan, numpy.nan]) logger.debug("First row of converted_row_metadata: {}".format(converted_row_metadata.iloc[0])) converted_col_metadata = mini_gctoo.col_metadata_df.replace([-666, "-666", -666.0], [numpy.nan, numpy.nan, numpy.nan]) # write row and col metadata fields from mini_gctoo_for_testing instance to file # Note this time does convert back to -666 hdf5_writer = h5py.File(FUNCTIONAL_TESTS_PATH + "/mini_gctoo_metadata.gctx", "w") write_gctx.write_metadata(hdf5_writer, "row", converted_row_metadata, True, 6) write_gctx.write_metadata(hdf5_writer, "col", converted_col_metadata, True, 6) hdf5_writer.close() # read in written metadata, then close and delete file mini_gctoo_col_metadata = parse_gctx.get_column_metadata(FUNCTIONAL_TESTS_PATH + "/mini_gctoo_metadata.gctx", convert_neg_666=False) mini_gctoo_row_metadata = parse_gctx.get_row_metadata(FUNCTIONAL_TESTS_PATH + "/mini_gctoo_metadata.gctx", convert_neg_666=False) os.remove(FUNCTIONAL_TESTS_PATH + "/mini_gctoo_metadata.gctx") # check row metadata self.assertTrue(set(mini_gctoo.row_metadata_df.columns) == set(mini_gctoo_row_metadata.columns), "Mismatch between expected row metadata columns {} and column values written to file: {}".format( mini_gctoo.row_metadata_df.columns, mini_gctoo_row_metadata.columns)) self.assertTrue(set(mini_gctoo.row_metadata_df.index) == set(mini_gctoo.col_metadata_df.index), "Mismatch between expect row metadata index {} and index values written to file: {}".format( mini_gctoo.row_metadata_df.index, mini_gctoo_row_metadata.index)) for c in list(mini_gctoo.row_metadata_df.columns): logger.debug("C2: For column name: {}".format(c)) logger.debug("C2: populated values: {}".format(set(mini_gctoo_row_metadata[c]))) logger.debug("C2: mini_gctoo values: {}".format(set(mini_gctoo.row_metadata_df[c]))) self.assertTrue(set(mini_gctoo.row_metadata_df[c]) == set(mini_gctoo_row_metadata[c]), "Values in column {} differ between expected metadata and written row metadata!".format(c)) # check col metadata self.assertTrue(set(mini_gctoo.col_metadata_df.columns) == set(mini_gctoo_col_metadata.columns), "Mismatch between expected col metadata columns {} and column values written to file: {}".format( mini_gctoo.col_metadata_df.columns, mini_gctoo_col_metadata.columns)) self.assertTrue(set(mini_gctoo.col_metadata_df.index) == set(mini_gctoo.col_metadata_df.index), "Mismatch between expect col metadata index {} and index values written to file: {}".format( mini_gctoo.col_metadata_df.index, mini_gctoo_col_metadata.index)) for c in list(mini_gctoo.col_metadata_df.columns): self.assertTrue(set(mini_gctoo.col_metadata_df[c]) == set(mini_gctoo_col_metadata[c]), "Values in column {} differ between expected metadata and written col metadata!".format(c)) if __name__ == "__main__": setup_logger.setup(verbose=True) unittest.main()
bsd-3-clause
Garrett-R/scikit-learn
sklearn/semi_supervised/label_propagation.py
15
15050
# coding=utf8 """ Label propagation in the context of this module refers to a set of semisupervised classification algorithms. In the high level, these algorithms work by forming a fully-connected graph between all points given and solving for the steady-state distribution of labels at each point. These algorithms perform very well in practice. The cost of running can be very expensive, at approximately O(N^3) where N is the number of (labeled and unlabeled) points. The theory (why they perform so well) is motivated by intuitions from random walk algorithms and geometric relationships in the data. For more information see the references below. Model Features -------------- Label clamping: The algorithm tries to learn distributions of labels over the dataset. In the "Hard Clamp" mode, the true ground labels are never allowed to change. They are clamped into position. In the "Soft Clamp" mode, they are allowed some wiggle room, but some alpha of their original value will always be retained. Hard clamp is the same as soft clamping with alpha set to 1. Kernel: A function which projects a vector into some higher dimensional space. This implementation supprots RBF and KNN kernels. Using the RBF kernel generates a dense matrix of size O(N^2). KNN kernel will generate a sparse matrix of size O(k*N) which will run much faster. See the documentation for SVMs for more info on kernels. Examples -------- >>> from sklearn import datasets >>> from sklearn.semi_supervised import LabelPropagation >>> label_prop_model = LabelPropagation() >>> iris = datasets.load_iris() >>> random_unlabeled_points = np.where(np.random.random_integers(0, 1, ... size=len(iris.target))) >>> labels = np.copy(iris.target) >>> labels[random_unlabeled_points] = -1 >>> label_prop_model.fit(iris.data, labels) ... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS LabelPropagation(...) Notes ----- References: [1] Yoshua Bengio, Olivier Delalleau, Nicolas Le Roux. In Semi-Supervised Learning (2006), pp. 193-216 [2] Olivier Delalleau, Yoshua Bengio, Nicolas Le Roux. Efficient Non-Parametric Function Induction in Semi-Supervised Learning. AISTAT 2005 """ # Authors: Clay Woolam <clay@woolam.org> # Licence: BSD from abc import ABCMeta, abstractmethod from scipy import sparse import numpy as np from ..base import BaseEstimator, ClassifierMixin from ..metrics.pairwise import rbf_kernel from ..utils.graph import graph_laplacian from ..utils.extmath import safe_sparse_dot from ..utils.validation import check_X_y from ..externals import six from ..neighbors.unsupervised import NearestNeighbors ### Helper functions def _not_converged(y_truth, y_prediction, tol=1e-3): """basic convergence check""" return np.abs(y_truth - y_prediction).sum() > tol class BaseLabelPropagation(six.with_metaclass(ABCMeta, BaseEstimator, ClassifierMixin)): """Base class for label propagation module. Parameters ---------- kernel : {'knn', 'rbf'} String identifier for kernel function to use. Only 'rbf' and 'knn' kernels are currently supported.. gamma : float Parameter for rbf kernel alpha : float Clamping factor max_iter : float Change maximum number of iterations allowed tol : float Convergence tolerance: threshold to consider the system at steady state """ def __init__(self, kernel='rbf', gamma=20, n_neighbors=7, alpha=1, max_iter=30, tol=1e-3): self.max_iter = max_iter self.tol = tol # kernel parameters self.kernel = kernel self.gamma = gamma self.n_neighbors = n_neighbors # clamping factor self.alpha = alpha def _get_kernel(self, X, y=None): if self.kernel == "rbf": if y is None: return rbf_kernel(X, X, gamma=self.gamma) else: return rbf_kernel(X, y, gamma=self.gamma) elif self.kernel == "knn": if self.nn_fit is None: self.nn_fit = NearestNeighbors(self.n_neighbors).fit(X) if y is None: return self.nn_fit.kneighbors_graph(self.nn_fit._fit_X, self.n_neighbors, mode='connectivity') else: return self.nn_fit.kneighbors(y, return_distance=False) else: raise ValueError("%s is not a valid kernel. Only rbf and knn" " are supported at this time" % self.kernel) @abstractmethod def _build_graph(self): raise NotImplementedError("Graph construction must be implemented" " to fit a label propagation model.") def predict(self, X): """Performs inductive inference across the model. Parameters ---------- X : array_like, shape = [n_samples, n_features] Returns ------- y : array_like, shape = [n_samples] Predictions for input data """ probas = self.predict_proba(X) return self.classes_[np.argmax(probas, axis=1)].ravel() def predict_proba(self, X): """Predict probability for each possible outcome. Compute the probability estimates for each single sample in X and each possible outcome seen during training (categorical distribution). Parameters ---------- X : array_like, shape = [n_samples, n_features] Returns ------- probabilities : array, shape = [n_samples, n_classes] Normalized probability distributions across class labels """ if sparse.isspmatrix(X): X_2d = X else: X_2d = np.atleast_2d(X) weight_matrices = self._get_kernel(self.X_, X_2d) if self.kernel == 'knn': probabilities = [] for weight_matrix in weight_matrices: ine = np.sum(self.label_distributions_[weight_matrix], axis=0) probabilities.append(ine) probabilities = np.array(probabilities) else: weight_matrices = weight_matrices.T probabilities = np.dot(weight_matrices, self.label_distributions_) normalizer = np.atleast_2d(np.sum(probabilities, axis=1)).T probabilities /= normalizer return probabilities def fit(self, X, y): """Fit a semi-supervised label propagation model based All the input data is provided matrix X (labeled and unlabeled) and corresponding label matrix y with a dedicated marker value for unlabeled samples. Parameters ---------- X : array-like, shape = [n_samples, n_features] A {n_samples by n_samples} size matrix will be created from this y : array_like, shape = [n_samples] n_labeled_samples (unlabeled points are marked as -1) All unlabeled samples will be transductively assigned labels Returns ------- self : returns an instance of self. """ X, y = check_X_y(X, y) self.X_ = X # actual graph construction (implementations should override this) graph_matrix = self._build_graph() # label construction # construct a categorical distribution for classification only classes = np.unique(y) classes = (classes[classes != -1]) self.classes_ = classes n_samples, n_classes = len(y), len(classes) y = np.asarray(y) unlabeled = y == -1 clamp_weights = np.ones((n_samples, 1)) clamp_weights[unlabeled, 0] = self.alpha # initialize distributions self.label_distributions_ = np.zeros((n_samples, n_classes)) for label in classes: self.label_distributions_[y == label, classes == label] = 1 y_static = np.copy(self.label_distributions_) if self.alpha > 0.: y_static *= 1 - self.alpha y_static[unlabeled] = 0 l_previous = np.zeros((self.X_.shape[0], n_classes)) remaining_iter = self.max_iter if sparse.isspmatrix(graph_matrix): graph_matrix = graph_matrix.tocsr() while (_not_converged(self.label_distributions_, l_previous, self.tol) and remaining_iter > 1): l_previous = self.label_distributions_ self.label_distributions_ = safe_sparse_dot( graph_matrix, self.label_distributions_) # clamp self.label_distributions_ = np.multiply( clamp_weights, self.label_distributions_) + y_static remaining_iter -= 1 normalizer = np.sum(self.label_distributions_, axis=1)[:, np.newaxis] self.label_distributions_ /= normalizer # set the transduction item transduction = self.classes_[np.argmax(self.label_distributions_, axis=1)] self.transduction_ = transduction.ravel() self.n_iter_ = self.max_iter - remaining_iter return self class LabelPropagation(BaseLabelPropagation): """Label Propagation classifier Parameters ---------- kernel : {'knn', 'rbf'} String identifier for kernel function to use. Only 'rbf' and 'knn' kernels are currently supported.. gamma : float parameter for rbf kernel n_neighbors : integer > 0 parameter for knn kernel alpha : float clamping factor max_iter : float change maximum number of iterations allowed tol : float Convergence tolerance: threshold to consider the system at steady state Attributes ---------- X_ : array, shape = [n_samples, n_features] Input array. classes_ : array, shape = [n_classes] The distinct labels used in classifying instances. label_distributions_ : array, shape = [n_samples, n_classes] Categorical distribution for each item. transduction_ : array, shape = [n_samples] Label assigned to each item via the transduction. n_iter_ : int Number of iterations run. Examples -------- >>> from sklearn import datasets >>> from sklearn.semi_supervised import LabelPropagation >>> label_prop_model = LabelPropagation() >>> iris = datasets.load_iris() >>> random_unlabeled_points = np.where(np.random.random_integers(0, 1, ... size=len(iris.target))) >>> labels = np.copy(iris.target) >>> labels[random_unlabeled_points] = -1 >>> label_prop_model.fit(iris.data, labels) ... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS LabelPropagation(...) References ---------- Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with label propagation. Technical Report CMU-CALD-02-107, Carnegie Mellon University, 2002 http://pages.cs.wisc.edu/~jerryzhu/pub/CMU-CALD-02-107.pdf See Also -------- LabelSpreading : Alternate label propagation strategy more robust to noise """ def _build_graph(self): """Matrix representing a fully connected graph between each sample This basic implementation creates a non-stochastic affinity matrix, so class distributions will exceed 1 (normalization may be desired). """ if self.kernel == 'knn': self.nn_fit = None affinity_matrix = self._get_kernel(self.X_) normalizer = affinity_matrix.sum(axis=0) if sparse.isspmatrix(affinity_matrix): affinity_matrix.data /= np.diag(np.array(normalizer)) else: affinity_matrix /= normalizer[:, np.newaxis] return affinity_matrix class LabelSpreading(BaseLabelPropagation): """LabelSpreading model for semi-supervised learning This model is similar to the basic Label Propgation algorithm, but uses affinity matrix based on the normalized graph Laplacian and soft clamping across the labels. Parameters ---------- kernel : {'knn', 'rbf'} String identifier for kernel function to use. Only 'rbf' and 'knn' kernels are currently supported. gamma : float parameter for rbf kernel n_neighbors : integer > 0 parameter for knn kernel alpha : float clamping factor max_iter : float maximum number of iterations allowed tol : float Convergence tolerance: threshold to consider the system at steady state Attributes ---------- X_ : array, shape = [n_samples, n_features] Input array. classes_ : array, shape = [n_classes] The distinct labels used in classifying instances. label_distributions_ : array, shape = [n_samples, n_classes] Categorical distribution for each item. transduction_ : array, shape = [n_samples] Label assigned to each item via the transduction. n_iter_ : int Number of iterations run. Examples -------- >>> from sklearn import datasets >>> from sklearn.semi_supervised import LabelSpreading >>> label_prop_model = LabelSpreading() >>> iris = datasets.load_iris() >>> random_unlabeled_points = np.where(np.random.random_integers(0, 1, ... size=len(iris.target))) >>> labels = np.copy(iris.target) >>> labels[random_unlabeled_points] = -1 >>> label_prop_model.fit(iris.data, labels) ... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS LabelSpreading(...) References ---------- Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston, Bernhard Schoelkopf. Learning with local and global consistency (2004) http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.115.3219 See Also -------- LabelPropagation : Unregularized graph based semi-supervised learning """ def __init__(self, kernel='rbf', gamma=20, n_neighbors=7, alpha=0.2, max_iter=30, tol=1e-3): # this one has different base parameters super(LabelSpreading, self).__init__(kernel=kernel, gamma=gamma, n_neighbors=n_neighbors, alpha=alpha, max_iter=max_iter, tol=tol) def _build_graph(self): """Graph matrix for Label Spreading computes the graph laplacian""" # compute affinity matrix (or gram matrix) if self.kernel == 'knn': self.nn_fit = None n_samples = self.X_.shape[0] affinity_matrix = self._get_kernel(self.X_) laplacian = graph_laplacian(affinity_matrix, normed=True) laplacian = -laplacian if sparse.isspmatrix(laplacian): diag_mask = (laplacian.row == laplacian.col) laplacian.data[diag_mask] = 0.0 else: laplacian.flat[::n_samples + 1] = 0.0 # set diag to 0.0 return laplacian
bsd-3-clause
paninski-lab/yass
src/yass/pipeline_nn_training.py
1
6973
""" Built-in pipeline """ import time import logging import logging.config import shutil import os import matplotlib matplotlib.use('Agg') # supress PCA unpickle userwarning # Cat: TODO: this is dangersous, may wish to fix the problem in cluster.py # import warnings # warnings.filterwarnings("ignore", category=UserWarning) try: # py3 from collections.abc import Mapping except ImportError: from collections import Mapping import numpy as np import yaml import yass from yass import set_config from yass import read_config from yass.config import Config from yass import (preprocess, detect, cluster, postprocess, augment) from yass.neuralnetwork import Detect, Denoise from yass.util import (load_yaml, save_metadata, load_logging_config_file, human_readable_time) def run(config, logger_level='INFO', clean=False, output_dir='tmp/'): """Run YASS built-in pipeline Parameters ---------- config: str or mapping (such as dictionary) Path to YASS configuration file or mapping object logger_level: str Logger level clean: bool, optional Delete CONFIG.data.root_folder/output_dir/ before running output_dir: str, optional Output directory (if relative, it makes it relative to CONFIG.data.root_folder) to store the output data, defaults to tmp/. If absolute, it leaves it as it is. complete: bool, optional Generates extra files (needed to generate phy files) Notes ----- Running the preprocessor will generate the followiing files in CONFIG.data.root_folder/output_directory/: * ``config.yaml`` - Copy of the configuration file * ``metadata.yaml`` - Experiment metadata * ``filtered.bin`` - Filtered recordings (from preprocess) * ``filtered.yaml`` - Filtered recordings metadata (from preprocess) * ``standardized.bin`` - Standarized recordings (from preprocess) * ``standardized.yaml`` - Standarized recordings metadata (from preprocess) * ``whitening.npy`` - Whitening filter (from preprocess) Returns ------- numpy.ndarray Spike train """ # load yass configuration parameters CONFIG = Config.from_yaml(config) #CONFIG._data['cluster']['min_fr'] = 0.5 CONFIG._data['cluster']['knn_triage'] = 0.2 CONFIG._data['neuralnetwork']['apply_nn'] = False CONFIG._data['detect']['threshold'] = 4 #CONFIG._data['clean_up']['min_ptp'] = 5 if CONFIG._data['neuralnetwork']['training']['spike_size_ms'] is not None: CONFIG._data['recordings']['spike_size_ms'] = CONFIG._data['neuralnetwork']['training']['spike_size_ms'] CONFIG._data['neuralnetwork']['apply_nn'] = False set_config(CONFIG._data, output_dir) CONFIG = read_config() TMP_FOLDER = CONFIG.path_to_output_directory # remove tmp folder if needed if os.path.exists(TMP_FOLDER) and clean: shutil.rmtree(TMP_FOLDER) # create TMP_FOLDER if needed if not os.path.exists(TMP_FOLDER): os.makedirs(TMP_FOLDER) # load logging config file logging_config = load_logging_config_file() logging_config['handlers']['file']['filename'] = os.path.join( TMP_FOLDER,'yass.log') logging_config['root']['level'] = logger_level # configure logging logging.config.dictConfig(logging_config) # instantiate logger logger = logging.getLogger(__name__) # print yass version logger.info('YASS version: %s', yass.__version__) ''' ********************************************** ******** SET ENVIRONMENT VARIABLES *********** ********************************************** ''' os.environ["OPENBLAS_NUM_THREADS"] = "1" os.environ["MKL_NUM_THREADS"] = "1" os.environ["GIO_EXTRA_MODULES"] = "/usr/lib/x86_64-linux-gnu/gio/modules/" # TODO: if input spike train is None, run yass with threshold detector #if fname_spike_train is None: # logger.info('Not available yet. You must input spike train') # return ''' ********************************************** ************** PREPROCESS ******************** ********************************************** ''' # preprocess start = time.time() (standardized_path, standardized_dtype) = preprocess.run( os.path.join(TMP_FOLDER, 'preprocess')) TMP_FOLDER = os.path.join(TMP_FOLDER, 'nn_train') if not os.path.exists(TMP_FOLDER): os.makedirs(TMP_FOLDER) if CONFIG.neuralnetwork.training.input_spike_train_filname is None: # run on 10 minutes of data rec_len = np.min((CONFIG.rec_len/CONFIG.recordings.sampling_rate, 600)) # detect logger.info('DETECTION') spike_index_path = detect.run( standardized_path, standardized_dtype, os.path.join(TMP_FOLDER, 'detect'), run_chunk_sec=[0, rec_len]) logger.info('CLUSTERING') # cluster raw_data = True full_run = False fname_templates, fname_spike_train = cluster.run( os.path.join(TMP_FOLDER, 'cluster'), standardized_path, standardized_dtype, fname_spike_index=spike_index_path, raw_data=True, full_run=True) methods = ['off_center', 'low_ptp', 'duplicate', 'high_mad', 'low_ptp'] (_, fname_spike_train, _, _, _) = postprocess.run( methods, os.path.join(TMP_FOLDER, 'cluster_post_process'), standardized_path, standardized_dtype, fname_templates, fname_spike_train) else: # if there is an input spike train, use it fname_spike_train = CONFIG.neuralnetwork.training.input_spike_train_filname # Get training data maker DetectTD, DenoTD = augment.run( standardized_path, standardized_dtype, fname_spike_train, os.path.join(TMP_FOLDER, 'augment')) # Train Detector detector = Detect(CONFIG.neuralnetwork.detect.n_filters, CONFIG.spike_size_nn, CONFIG.channel_index, CONFIG).cuda() fname_detect = os.path.join(TMP_FOLDER, 'detect.pt') detector.train(fname_detect, DetectTD) # Train Denoiser denoiser = Denoise(CONFIG.neuralnetwork.denoise.n_filters, CONFIG.neuralnetwork.denoise.filter_sizes, CONFIG.spike_size_nn, CONFIG).cuda() fname_denoise = os.path.join(TMP_FOLDER, 'denoise.pt') denoiser.train(fname_denoise, DenoTD) output_folder = os.path.join(CONFIG.path_to_output_directory, 'output') if not os.path.exists(output_folder): os.makedirs(output_folder) shutil.copyfile(fname_detect, os.path.join(output_folder, 'detect.pt')) shutil.copyfile(fname_denoise, os.path.join(output_folder, 'denoise.pt'))
apache-2.0
collbb/ThinkStats2
code/hinc.py
67
1494
"""This file contains code used in "Think Stats", by Allen B. Downey, available from greenteapress.com Copyright 2014 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ from __future__ import print_function import numpy as np import pandas import thinkplot import thinkstats2 def Clean(s): """Converts dollar amounts to integers.""" try: return int(s.lstrip('$').replace(',', '')) except ValueError: if s == 'Under': return 0 elif s == 'over': return np.inf return None def ReadData(filename='hinc06.csv'): """Reads filename and returns populations in thousands filename: string returns: pandas Series of populations in thousands """ data = pandas.read_csv(filename, header=None, skiprows=9) cols = data[[0, 1]] res = [] for _, row in cols.iterrows(): label, freq = row.values freq = int(freq.replace(',', '')) t = label.split() low, high = Clean(t[0]), Clean(t[-1]) res.append((high, freq)) df = pandas.DataFrame(res) # correct the first range df[0][0] -= 1 # compute the cumulative sum of the freqs df[2] = df[1].cumsum() # normalize the cumulative freqs total = df[2][41] df[3] = df[2] / total # add column names df.columns = ['income', 'freq', 'cumsum', 'ps'] return df def main(): df = ReadData() print(df) if __name__ == "__main__": main()
gpl-3.0
jmausolf/Python_Tutorials
Machine_Learning/run.py
1
1446
import sys, argparse, textwrap sys.path.append('sklearn_magicloops') from magicloops import * ############################################################ # 1. USER INPUT: Define Your Data, Outcome, and Features ############################################################ #Define Data dataset = 'data/gss2014.csv' outcome = 'partyid_str_rep' features = ['age', 'sex', 'race', 'educ', 'rincome'] ############################################################ # 2. RUN THE MODELS ############################################################ # Save Changes and Open Terminal # In terminal: # python run.py #Runs for defined features # python run.py -a True #Runs all possible features # Help: # python run.py -h ############################################################ if __name__=="__main__": parser = argparse.ArgumentParser(description='Prepare input file', formatter_class=argparse.RawTextHelpFormatter) parser.add_argument('-a', '--all_features', default=False, type=bool, help=textwrap.dedent("""\ Option to run magic loop for all features in dataset except for the outcome variable. @ False | Runs only specified features (defined in run.py) @ True | Runs all features except outcome (defined in run.py) """ )) args = parser.parse_args() main(dataset, outcome, features, args.all_features)
mit
ishanic/scikit-learn
examples/semi_supervised/plot_label_propagation_digits.py
268
2723
""" =================================================== Label Propagation digits: Demonstrating performance =================================================== This example demonstrates the power of semisupervised learning by training a Label Spreading model to classify handwritten digits with sets of very few labels. The handwritten digit dataset has 1797 total points. The model will be trained using all points, but only 30 will be labeled. Results in the form of a confusion matrix and a series of metrics over each class will be very good. At the end, the top 10 most uncertain predictions will be shown. """ print(__doc__) # Authors: Clay Woolam <clay@woolam.org> # Licence: BSD import numpy as np import matplotlib.pyplot as plt from scipy import stats from sklearn import datasets from sklearn.semi_supervised import label_propagation from sklearn.metrics import confusion_matrix, classification_report digits = datasets.load_digits() rng = np.random.RandomState(0) indices = np.arange(len(digits.data)) rng.shuffle(indices) X = digits.data[indices[:330]] y = digits.target[indices[:330]] images = digits.images[indices[:330]] n_total_samples = len(y) n_labeled_points = 30 indices = np.arange(n_total_samples) unlabeled_set = indices[n_labeled_points:] # shuffle everything around y_train = np.copy(y) y_train[unlabeled_set] = -1 ############################################################################### # Learn with LabelSpreading lp_model = label_propagation.LabelSpreading(gamma=0.25, max_iter=5) lp_model.fit(X, y_train) predicted_labels = lp_model.transduction_[unlabeled_set] true_labels = y[unlabeled_set] cm = confusion_matrix(true_labels, predicted_labels, labels=lp_model.classes_) print("Label Spreading model: %d labeled & %d unlabeled points (%d total)" % (n_labeled_points, n_total_samples - n_labeled_points, n_total_samples)) print(classification_report(true_labels, predicted_labels)) print("Confusion matrix") print(cm) # calculate uncertainty values for each transduced distribution pred_entropies = stats.distributions.entropy(lp_model.label_distributions_.T) # pick the top 10 most uncertain labels uncertainty_index = np.argsort(pred_entropies)[-10:] ############################################################################### # plot f = plt.figure(figsize=(7, 5)) for index, image_index in enumerate(uncertainty_index): image = images[image_index] sub = f.add_subplot(2, 5, index + 1) sub.imshow(image, cmap=plt.cm.gray_r) plt.xticks([]) plt.yticks([]) sub.set_title('predict: %i\ntrue: %i' % ( lp_model.transduction_[image_index], y[image_index])) f.suptitle('Learning with small amount of labeled data') plt.show()
bsd-3-clause
reinvantveer/Topology-Learning
model/building_convnet_fixed.py
1
4922
""" This script executes the task of estimating the building type, based solely on the geometry for that building. The data for this script can be found at http://hdl.handle.net/10411/GYPPBR. """ import os import socket import sys from datetime import datetime, timedelta from pathlib import Path from time import time from urllib.request import urlretrieve import numpy as np from keras import Input from keras.callbacks import TensorBoard from keras.engine import Model from keras.layers import Dense, Conv1D, GlobalAveragePooling1D, Dropout from keras.optimizers import Adam from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split from topoml_util import geom_scaler from topoml_util.slack_send import notify SCRIPT_VERSION = '2.0.3' SCRIPT_NAME = os.path.basename(__file__) TIMESTAMP = str(datetime.now()).replace(':', '.') SIGNATURE = SCRIPT_NAME + ' ' + SCRIPT_VERSION + ' ' + TIMESTAMP DATA_FOLDER = '../files/buildings/' TRAIN_DATA_FILE = 'buildings_train_v7.npz' TEST_DATA_FILE = 'buildings_test_v7.npz' TRAIN_DATA_URL = 'https://dataverse.nl/api/access/datafile/11381' TEST_DATA_URL = 'https://dataverse.nl/api/access/datafile/11380' SCRIPT_START = time() # Hyperparameters hp = { 'BATCH_SIZE': int(os.getenv('BATCH_SIZE', 32)), 'TRAIN_VALIDATE_SPLIT': float(os.getenv('TRAIN_VALIDATE_SPLIT', 0.1)), 'REPEAT_DEEP_ARCH': int(os.getenv('REPEAT_DEEP_ARCH', 0)), 'DENSE_SIZE': int(os.getenv('DENSE_SIZE', 32)), 'EPOCHS': int(os.getenv('EPOCHS', 200)), 'LEARNING_RATE': float(os.getenv('LEARNING_RATE', 1e-4)), 'DROPOUT': float(os.getenv('DROPOUT', 0.0)), 'GEOM_SCALE': float(os.getenv("GEOM_SCALE", 0)), # If no default or 0: overridden when data is known } OPTIMIZER = Adam(lr=hp['LEARNING_RATE']) # Load training data path = Path(DATA_FOLDER + TRAIN_DATA_FILE) if not path.exists(): print("Retrieving training data from web...") urlretrieve(TRAIN_DATA_URL, DATA_FOLDER + TRAIN_DATA_FILE) train_loaded = np.load(DATA_FOLDER + TRAIN_DATA_FILE) train_geoms = train_loaded['fixed_size_geoms'] train_labels = train_loaded['building_type'] # Determine final test mode or standard if len(sys.argv) > 1 and sys.argv[1] in ['-t', '--test']: print('Training in final test mode') path = Path(DATA_FOLDER + TEST_DATA_FILE) if not path.exists(): print("Retrieving test data from web...") urlretrieve(TEST_DATA_URL, DATA_FOLDER + TEST_DATA_FILE) test_loaded = np.load(DATA_FOLDER + TEST_DATA_FILE) test_geoms = test_loaded['fixed_size_geoms'] test_labels = test_loaded['building_type'] else: print('Training in standard training mode') # Split the training data in random seen/unseen sets train_geoms, test_geoms, train_labels, test_labels = train_test_split(train_geoms, train_labels, test_size=0.1) # Normalize geom_scale = hp['GEOM_SCALE'] or geom_scaler.scale(train_geoms) train_geoms = geom_scaler.transform(train_geoms, geom_scale) test_geoms = geom_scaler.transform(test_geoms, geom_scale) # re-use variance from training # Map types to one-hot vectors # noinspection PyUnresolvedReferences train_targets = np.zeros((len(train_labels), train_labels.max() + 1)) for index, building_type in enumerate(train_labels): train_targets[index, building_type] = 1 # Shape determination geom_max_points, geom_vector_len = train_geoms.shape[1:] output_size = train_targets.shape[-1] # Build model inputs = Input(shape=(geom_max_points, geom_vector_len)) model = Conv1D(filters=32, kernel_size=(5,), activation='relu')(inputs) model = Conv1D(filters=48, kernel_size=(5,), activation='relu', strides=2)(model) model = Conv1D(filters=64, kernel_size=(5,), activation='relu', strides=2)(model) model = GlobalAveragePooling1D()(model) model = Dense(hp['DENSE_SIZE'], activation='relu')(model) model = Dropout(hp['DROPOUT'])(model) model = Dense(output_size, activation='softmax')(model) model = Model(inputs=inputs, outputs=model) model.compile( loss='categorical_crossentropy', metrics=['accuracy'], optimizer=OPTIMIZER), model.summary() # Callbacks callbacks = [TensorBoard(log_dir='./tensorboard_log/' + SIGNATURE, write_graph=False)] history = model.fit( x=train_geoms, y=train_targets, epochs=hp['EPOCHS'], batch_size=hp['BATCH_SIZE'], validation_split=hp['TRAIN_VALIDATE_SPLIT'], callbacks=callbacks).history # Run on unseen test data test_pred = [np.argmax(prediction) for prediction in model.predict(test_geoms)] accuracy = accuracy_score(test_labels, test_pred) runtime = time() - SCRIPT_START message = 'on {} completed with accuracy of \n{:f} \nin {} in {} epochs\n'.format( socket.gethostname(), accuracy, timedelta(seconds=runtime), len(history['val_loss'])) for key, value in sorted(hp.items()): message += '{}: {}\t'.format(key, value) notify(SIGNATURE, message) print(SCRIPT_NAME, 'finished successfully with', message)
mit
PyRsw/PyRsw
examples/example_1D_BickleyJet.py
1
2832
import numpy as np import matplotlib.pyplot as plt import sys # Add the PyRsw tools to the path # At the moment it is given explicitely. # In the future, it could also be added to the # pythonpath environment variable sys.path.append('../src') import Steppers as Step import Fluxes as Flux from PyRsw import Simulation from constants import minute, hour, day sim = Simulation() # Create a simulation object sim.run_name = '1D Bickley Jet' # Geometry and Model Equations sim.geomx = 'periodic' # Geometry Types: 'periodic' or 'walls' sim.geomy = 'walls' sim.stepper = Step.AB3 # Time-stepping algorithm: Euler, AB2, RK4 sim.method = 'Spectral' # Numerical method: 'Spectral' sim.dynamics = 'Nonlinear' # Dynamics: 'Nonlinear' or 'Linear' sim.flux_method = Flux.spectral_sw # Flux method: spectral_sw is only option currently # Specify paramters sim.Lx = 200e3 # Domain extent (m) sim.Ly = 200e3 # Domain extent (m) sim.Nx = 1 # Grid points in x sim.Ny = 128 # Grid points in y sim.Nz = 1 # Number of layers sim.g = 9.81 # Gravity (m/sec^2) sim.f0 = 1.e-4 # Coriolis (1/sec) sim.beta = 0e-10 # Coriolis beta (1/m/sec) sim.cfl = 0.1 # CFL coefficient (m) sim.Hs = [100.] # Vector of mean layer depths (m) sim.rho = [1025.] # Vector of layer densities (kg/m^3) sim.end_time = 14*24.*hour # End Time (sec) # Parallel? Only applies to the FFTWs sim.num_threads = 4 # Plotting parameters sim.plott = 30.*minute # Period of plots sim.animate = 'Save' # 'Save' to create video frames, # 'Anim' to animate, # 'None' otherwise sim.plot_vars = ['h'] sim.ylims=[[-0.1,0.1]] #sim.plot_vars = ['vort','div'] #sim.clims = [ [-0.8, 0.8],[-0.1, 0.1]] # Output parameters sim.output = False # True or False sim.savet = 1.*hour # Time between saves # Diagnostics parameters sim.diagt = 2.*minute # Time for output sim.diagnose = False # True or False # Initialize the grid and zero solutions sim.initialize() for ii in range(sim.Nz): # Set mean depths sim.soln.h[:,:,ii] = sim.Hs[ii] # Bickley Jet initial conditions # First we define the jet Ljet = 10e3 # Jet width amp = 0.1 # Elevation of free-surface in basic state sim.soln.h[:,:,0] += -amp*np.tanh(sim.Y/Ljet) sim.soln.u[:,:,0] = sim.g*amp/(sim.f0*Ljet)/(np.cosh(sim.Y/Ljet)**2) # Then we add on a random perturbation sim.soln.u[:,:,0] += 0e-3*np.exp(-(sim.Y/Ljet)**2)*np.random.randn(sim.Nx,sim.Ny) sim.run() # Run the simulation
mit
spbguru/repo1
external/linux32/lib/python2.6/site-packages/matplotlib/delaunay/interpolate.py
73
7068
import numpy as np from matplotlib._delaunay import compute_planes, linear_interpolate_grid, nn_interpolate_grid from matplotlib._delaunay import nn_interpolate_unstructured __all__ = ['LinearInterpolator', 'NNInterpolator'] def slice2gridspec(key): """Convert a 2-tuple of slices to start,stop,steps for x and y. key -- (slice(ystart,ystop,ystep), slice(xtart, xstop, xstep)) For now, the only accepted step values are imaginary integers (interpreted in the same way numpy.mgrid, etc. do). """ if ((len(key) != 2) or (not isinstance(key[0], slice)) or (not isinstance(key[1], slice))): raise ValueError("only 2-D slices, please") x0 = key[1].start x1 = key[1].stop xstep = key[1].step if not isinstance(xstep, complex) or int(xstep.real) != xstep.real: raise ValueError("only the [start:stop:numsteps*1j] form supported") xstep = int(xstep.imag) y0 = key[0].start y1 = key[0].stop ystep = key[0].step if not isinstance(ystep, complex) or int(ystep.real) != ystep.real: raise ValueError("only the [start:stop:numsteps*1j] form supported") ystep = int(ystep.imag) return x0, x1, xstep, y0, y1, ystep class LinearInterpolator(object): """Interpolate a function defined on the nodes of a triangulation by using the planes defined by the three function values at each corner of the triangles. LinearInterpolator(triangulation, z, default_value=numpy.nan) triangulation -- Triangulation instance z -- the function values at each node of the triangulation default_value -- a float giving the default value should the interpolating point happen to fall outside of the convex hull of the triangulation At the moment, the only regular rectangular grids are supported for interpolation. vals = interp[ystart:ystop:ysteps*1j, xstart:xstop:xsteps*1j] vals would then be a (ysteps, xsteps) array containing the interpolated values. These arguments are interpreted the same way as numpy.mgrid. Attributes: planes -- (ntriangles, 3) array of floats specifying the plane for each triangle. Linear Interpolation -------------------- Given the Delauany triangulation (or indeed *any* complete triangulation) we can interpolate values inside the convex hull by locating the enclosing triangle of the interpolation point and returning the value at that point of the plane defined by the three node values. f = planes[tri,0]*x + planes[tri,1]*y + planes[tri,2] The interpolated function is C0 continuous across the convex hull of the input points. It is C1 continuous across the convex hull except for the nodes and the edges of the triangulation. """ def __init__(self, triangulation, z, default_value=np.nan): self.triangulation = triangulation self.z = np.asarray(z, dtype=np.float64) self.default_value = default_value self.planes = compute_planes(triangulation.x, triangulation.y, self.z, triangulation.triangle_nodes) def __getitem__(self, key): x0, x1, xstep, y0, y1, ystep = slice2gridspec(key) grid = linear_interpolate_grid(x0, x1, xstep, y0, y1, ystep, self.default_value, self.planes, self.triangulation.x, self.triangulation.y, self.triangulation.triangle_nodes, self.triangulation.triangle_neighbors) return grid class NNInterpolator(object): """Interpolate a function defined on the nodes of a triangulation by the natural neighbors method. NNInterpolator(triangulation, z, default_value=numpy.nan) triangulation -- Triangulation instance z -- the function values at each node of the triangulation default_value -- a float giving the default value should the interpolating point happen to fall outside of the convex hull of the triangulation At the moment, the only regular rectangular grids are supported for interpolation. vals = interp[ystart:ystop:ysteps*1j, xstart:xstop:xsteps*1j] vals would then be a (ysteps, xsteps) array containing the interpolated values. These arguments are interpreted the same way as numpy.mgrid. Natural Neighbors Interpolation ------------------------------- One feature of the Delaunay triangulation is that for each triangle, its circumcircle contains no other point (although in degenerate cases, like squares, other points may be *on* the circumcircle). One can also construct what is called the Voronoi diagram from a Delaunay triangulation by connecting the circumcenters of the triangles to those of their neighbors to form a tesselation of irregular polygons covering the plane and containing only one node from the triangulation. Each point in one node's Voronoi polygon is closer to that node than any other node. To compute the Natural Neighbors interpolant, we consider adding the interpolation point to the triangulation. We define the natural neighbors of this point as the set of nodes participating in Delaunay triangles whose circumcircles contain the point. To restore the Delaunay-ness of the triangulation, one would only have to alter those triangles and Voronoi polygons. The new Voronooi diagram would have a polygon around the inserted point. This polygon would "steal" area from the original Voronoi polygons. For each node i in the natural neighbors set, we compute the area stolen from its original Voronoi polygon, stolen[i]. We define the natural neighbors coordinates phi[i] = stolen[i] / sum(stolen,axis=0) We then use these phi[i] to weight the corresponding function values from the input data z to compute the interpolated value. The interpolated surface is C1-continuous except at the nodes themselves across the convex hull of the input points. One can find the set of points that a given node will affect by computing the union of the areas covered by the circumcircles of each Delaunay triangle that node participates in. """ def __init__(self, triangulation, z, default_value=np.nan): self.triangulation = triangulation self.z = np.asarray(z, dtype=np.float64) self.default_value = default_value def __getitem__(self, key): x0, x1, xstep, y0, y1, ystep = slice2gridspec(key) grid = nn_interpolate_grid(x0, x1, xstep, y0, y1, ystep, self.default_value, self.triangulation.x, self.triangulation.y, self.z, self.triangulation.circumcenters, self.triangulation.triangle_nodes, self.triangulation.triangle_neighbors) return grid def __call__(self, intx, inty): intz = nn_interpolate_unstructured(intx, inty, self.default_value, self.triangulation.x, self.triangulation.y, self.z, self.triangulation.circumcenters, self.triangulation.triangle_nodes, self.triangulation.triangle_neighbors) return intz
gpl-3.0
ForTozs/py3radar
setup.py
1
3447
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 2012 - 2013 # Matías Herranz <matiasherranz@gmail.com> # Joaquín Tita <joaquintita@gmail.com> # # https://github.com/PyRadar/pyradar # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 3 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library. If not, see <http://www.gnu.org/licenses/>. #=============================================================================== # DOCS #=============================================================================== """This file is for distribute pyradar with setuptools """ #=============================================================================== # IMPORTS #=============================================================================== import sys from ez_setup import use_setuptools use_setuptools() from setuptools import setup, find_packages import pyradar #=============================================================================== # CONSTANTS #=============================================================================== PYPI_REQUIRE = [ "Pillow", "numpy", "matplotlib", "scipy" ] MANUAL_REQUIRE = { "gdal" : "http://gdal.org/", } # sugerido pero no importante SUGESTED = { } #=============================================================================== # WARNINGS FOR MANUAL REQUIRES AND SUGGESTED #=============================================================================== def validate_modules(requires): not_found = [] for name, url in list(requires.items()): try: __import__(name) except ImportError: not_found.append("{} requires '{}' ({})".format(pyradar.PRJ, name, url)) return not_found def print_not_found(not_found, msg): limits = "=" * max(list(map(len, not_found))) print(("\n{}\n{}\n{}\n{}\n".format(msg, limits, "\n".join(not_found), limits))) not_found = validate_modules(MANUAL_REQUIRE) if not_found: print_not_found(not_found, "ERROR") sys.exit(1) not_found = validate_modules(SUGESTED) if not_found: print_not_found(not_found, "WARNING") #=============================================================================== # FUNCTIONS #=============================================================================== setup( name=pyradar.PRJ.lower(), version=pyradar.STR_VERSION, description=pyradar.SHORT_DESCRIPTION, author=pyradar.AUTHOR, author_email=pyradar.EMAIL, url=pyradar.URL, license=pyradar.LICENSE, keywords=pyradar.KEYWORDS, classifiers=pyradar.CLASSIFIERS, packages=[pkg for pkg in find_packages() if pkg.startswith("pyradar")], include_package_data=True, package_data={ 'ExampleImages': ['pyradar/simulate/ExampleImages/*'], 'DemoSet' : ['pyradar/simulate/DemoSet/*'], }, py_modules=["ez_setup"], install_requires=PYPI_REQUIRE, )
lgpl-3.0