repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
boland1992/seissuite_iran
build/lib.linux-x86_64-2.7/seissuite/azimuth/heatinterpolate.py
8
3647
#!/usr/bin/env python # combining density estimation and delaunay interpolation for confidence-weighted value mapping # Dan Stowell, April 2013 import numpy as np from numpy import random from math import exp, log from scipy import stats, mgrid, c_, reshape, rot90 import matplotlib.delaunay import matplotlib.tri as tri import matplotlib.delaunay.interpolate import matplotlib.pyplot as plt import matplotlib.cm as cm from colorsys import hls_to_rgb ############################# # user settings n = 100 gridsize = 100 fontsize = 'xx-small' ############################# # first generate some random [x,y,z] data -- random locations but closest to the middle, and random z-values data = random.randn(3, n) * 100. # we will add some correlation to the z-values data[2,:] += data[1,:] data[2,:] += data[0,:] # scale the z-values to 0--1 for convenience zmin = np.min(data[2,:]) zmax = np.max(data[2,:]) data[2,:] = (data[2,:] - zmin) / (zmax - zmin) xmin = np.min(data[0,:]) xmax = np.max(data[0,:]) ymin = np.min(data[1,:]) ymax = np.max(data[1,:]) zmin = np.min(data[2,:]) zmax = np.max(data[2,:]) ################################################## # plot it simply plt.figure() fig = plt.subplot(2,2,1) for datum in data.T: plt.plot(datum[0], datum[1], 'x', color=str(1.0 - datum[2])) plt.title("scatter", fontsize=fontsize) plt.xticks(fontsize=fontsize) plt.yticks(fontsize=fontsize) ################################################## # now make a KDE of it and plot that fig = plt.subplot(2,2,2) kdeX, kdeY = mgrid[xmin:xmax:gridsize*1j, ymin:ymax:gridsize*1j] positions = c_[kdeX.ravel(), kdeY.ravel()] values = c_[data[0,:], data[1,:]] kernel = stats.kde.gaussian_kde(values.T) kdeZ = reshape(kernel(positions.T).T, kdeX.T.shape) plt.imshow(rot90(kdeZ), cmap=cm.binary, aspect='auto') plt.title("density of points", fontsize=fontsize) plt.xticks(fontsize=fontsize) plt.yticks(fontsize=fontsize) ################################################## # now make a delaunay triangulation of it and plot that fig = plt.subplot(2,2,3) tt = matplotlib.delaunay.triangulate.Triangulation(data[0,:], data[1,:]) #triang = tri.Triangulation(data[0,:], data[1,:]) #plt.triplot(triang, 'bo-') # this plots the actual triangles of the triangulation. I'm more interested in their interpolated values #extrap = tt.linear_extrapolator(data[2,:]) extrap = tt.nn_extrapolator(data[2,:]) interped = extrap[xmin:xmax:gridsize*1j, ymin:ymax:gridsize*1j] plt.imshow(rot90(interped), cmap=cm.gist_earth_r, aspect='auto') plt.title("interpolated values", fontsize=fontsize) plt.xticks(fontsize=fontsize) plt.yticks(fontsize=fontsize) ################################################## # now combine delaunay with KDE fig = plt.subplot(2,2,4) colours = np.zeros((gridsize, gridsize, 4)) kdeZmin = np.min(kdeZ) kdeZmax = np.max(kdeZ) confdepth = 0.45 for x in range(gridsize): for y in range(gridsize): conf = (kdeZ[x,y] - kdeZmin) / (kdeZmax - kdeZmin) val = min(1., max(0., interped[x,y])) colour = list(cm.gist_earth_r(val)) # now fade it out to white according to conf for index in [0,1,2]: colour[index] = (colour[index] * conf) + (1.0 * (1. -conf)) colours[x,y,:] = colour #colours[x,y,:] = np.hstack((hls_to_rgb(val, 0.5 + confdepth - (confdepth * conf), 1.0), 1.0)) #colours[x,y,:] = [conf, conf, 1.0-conf, val] plt.imshow(rot90(colours), cmap=cm.gist_earth_r, aspect='auto') plt.title("interpolated & confidence-shaded", fontsize=fontsize) plt.xticks(fontsize=fontsize) plt.yticks(fontsize=fontsize) ############################################ plt.savefig("output/plot_heati_simple.pdf", papertype='A4', format='pdf')
gpl-3.0
palandatarxcom/sklearn_tutorial_cn
notebooks/fig_code/svm_gui.py
47
11549
""" ========== Libsvm GUI ========== A simple graphical frontend for Libsvm mainly intended for didactic purposes. You can create data points by point and click and visualize the decision region induced by different kernels and parameter settings. To create positive examples click the left mouse button; to create negative examples click the right button. If all examples are from the same class, it uses a one-class SVM. """ from __future__ import division, print_function print(__doc__) # Author: Peter Prettenhoer <peter.prettenhofer@gmail.com> # # License: BSD 3 clause import matplotlib matplotlib.use('TkAgg') from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg from matplotlib.backends.backend_tkagg import NavigationToolbar2TkAgg from matplotlib.figure import Figure from matplotlib.contour import ContourSet import Tkinter as Tk import sys import numpy as np from sklearn import svm from sklearn.datasets import dump_svmlight_file from sklearn.externals.six.moves import xrange y_min, y_max = -50, 50 x_min, x_max = -50, 50 class Model(object): """The Model which hold the data. It implements the observable in the observer pattern and notifies the registered observers on change event. """ def __init__(self): self.observers = [] self.surface = None self.data = [] self.cls = None self.surface_type = 0 def changed(self, event): """Notify the observers. """ for observer in self.observers: observer.update(event, self) def add_observer(self, observer): """Register an observer. """ self.observers.append(observer) def set_surface(self, surface): self.surface = surface def dump_svmlight_file(self, file): data = np.array(self.data) X = data[:, 0:2] y = data[:, 2] dump_svmlight_file(X, y, file) class Controller(object): def __init__(self, model): self.model = model self.kernel = Tk.IntVar() self.surface_type = Tk.IntVar() # Whether or not a model has been fitted self.fitted = False def fit(self): print("fit the model") train = np.array(self.model.data) X = train[:, 0:2] y = train[:, 2] C = float(self.complexity.get()) gamma = float(self.gamma.get()) coef0 = float(self.coef0.get()) degree = int(self.degree.get()) kernel_map = {0: "linear", 1: "rbf", 2: "poly"} if len(np.unique(y)) == 1: clf = svm.OneClassSVM(kernel=kernel_map[self.kernel.get()], gamma=gamma, coef0=coef0, degree=degree) clf.fit(X) else: clf = svm.SVC(kernel=kernel_map[self.kernel.get()], C=C, gamma=gamma, coef0=coef0, degree=degree) clf.fit(X, y) if hasattr(clf, 'score'): print("Accuracy:", clf.score(X, y) * 100) X1, X2, Z = self.decision_surface(clf) self.model.clf = clf self.model.set_surface((X1, X2, Z)) self.model.surface_type = self.surface_type.get() self.fitted = True self.model.changed("surface") def decision_surface(self, cls): delta = 1 x = np.arange(x_min, x_max + delta, delta) y = np.arange(y_min, y_max + delta, delta) X1, X2 = np.meshgrid(x, y) Z = cls.decision_function(np.c_[X1.ravel(), X2.ravel()]) Z = Z.reshape(X1.shape) return X1, X2, Z def clear_data(self): self.model.data = [] self.fitted = False self.model.changed("clear") def add_example(self, x, y, label): self.model.data.append((x, y, label)) self.model.changed("example_added") # update decision surface if already fitted. self.refit() def refit(self): """Refit the model if already fitted. """ if self.fitted: self.fit() class View(object): """Test docstring. """ def __init__(self, root, controller): f = Figure() ax = f.add_subplot(111) ax.set_xticks([]) ax.set_yticks([]) ax.set_xlim((x_min, x_max)) ax.set_ylim((y_min, y_max)) canvas = FigureCanvasTkAgg(f, master=root) canvas.show() canvas.get_tk_widget().pack(side=Tk.TOP, fill=Tk.BOTH, expand=1) canvas._tkcanvas.pack(side=Tk.TOP, fill=Tk.BOTH, expand=1) canvas.mpl_connect('key_press_event', self.onkeypress) canvas.mpl_connect('key_release_event', self.onkeyrelease) canvas.mpl_connect('button_press_event', self.onclick) toolbar = NavigationToolbar2TkAgg(canvas, root) toolbar.update() self.shift_down = False self.controllbar = ControllBar(root, controller) self.f = f self.ax = ax self.canvas = canvas self.controller = controller self.contours = [] self.c_labels = None self.plot_kernels() def plot_kernels(self): self.ax.text(-50, -60, "Linear: $u^T v$") self.ax.text(-20, -60, "RBF: $\exp (-\gamma \| u-v \|^2)$") self.ax.text(10, -60, "Poly: $(\gamma \, u^T v + r)^d$") def onkeypress(self, event): if event.key == "shift": self.shift_down = True def onkeyrelease(self, event): if event.key == "shift": self.shift_down = False def onclick(self, event): if event.xdata and event.ydata: if self.shift_down or event.button == 3: self.controller.add_example(event.xdata, event.ydata, -1) elif event.button == 1: self.controller.add_example(event.xdata, event.ydata, 1) def update_example(self, model, idx): x, y, l = model.data[idx] if l == 1: color = 'w' elif l == -1: color = 'k' self.ax.plot([x], [y], "%so" % color, scalex=0.0, scaley=0.0) def update(self, event, model): if event == "examples_loaded": for i in xrange(len(model.data)): self.update_example(model, i) if event == "example_added": self.update_example(model, -1) if event == "clear": self.ax.clear() self.ax.set_xticks([]) self.ax.set_yticks([]) self.contours = [] self.c_labels = None self.plot_kernels() if event == "surface": self.remove_surface() self.plot_support_vectors(model.clf.support_vectors_) self.plot_decision_surface(model.surface, model.surface_type) self.canvas.draw() def remove_surface(self): """Remove old decision surface.""" if len(self.contours) > 0: for contour in self.contours: if isinstance(contour, ContourSet): for lineset in contour.collections: lineset.remove() else: contour.remove() self.contours = [] def plot_support_vectors(self, support_vectors): """Plot the support vectors by placing circles over the corresponding data points and adds the circle collection to the contours list.""" cs = self.ax.scatter(support_vectors[:, 0], support_vectors[:, 1], s=80, edgecolors="k", facecolors="none") self.contours.append(cs) def plot_decision_surface(self, surface, type): X1, X2, Z = surface if type == 0: levels = [-1.0, 0.0, 1.0] linestyles = ['dashed', 'solid', 'dashed'] colors = 'k' self.contours.append(self.ax.contour(X1, X2, Z, levels, colors=colors, linestyles=linestyles)) elif type == 1: self.contours.append(self.ax.contourf(X1, X2, Z, 10, cmap=matplotlib.cm.bone, origin='lower', alpha=0.85)) self.contours.append(self.ax.contour(X1, X2, Z, [0.0], colors='k', linestyles=['solid'])) else: raise ValueError("surface type unknown") class ControllBar(object): def __init__(self, root, controller): fm = Tk.Frame(root) kernel_group = Tk.Frame(fm) Tk.Radiobutton(kernel_group, text="Linear", variable=controller.kernel, value=0, command=controller.refit).pack(anchor=Tk.W) Tk.Radiobutton(kernel_group, text="RBF", variable=controller.kernel, value=1, command=controller.refit).pack(anchor=Tk.W) Tk.Radiobutton(kernel_group, text="Poly", variable=controller.kernel, value=2, command=controller.refit).pack(anchor=Tk.W) kernel_group.pack(side=Tk.LEFT) valbox = Tk.Frame(fm) controller.complexity = Tk.StringVar() controller.complexity.set("1.0") c = Tk.Frame(valbox) Tk.Label(c, text="C:", anchor="e", width=7).pack(side=Tk.LEFT) Tk.Entry(c, width=6, textvariable=controller.complexity).pack( side=Tk.LEFT) c.pack() controller.gamma = Tk.StringVar() controller.gamma.set("0.01") g = Tk.Frame(valbox) Tk.Label(g, text="gamma:", anchor="e", width=7).pack(side=Tk.LEFT) Tk.Entry(g, width=6, textvariable=controller.gamma).pack(side=Tk.LEFT) g.pack() controller.degree = Tk.StringVar() controller.degree.set("3") d = Tk.Frame(valbox) Tk.Label(d, text="degree:", anchor="e", width=7).pack(side=Tk.LEFT) Tk.Entry(d, width=6, textvariable=controller.degree).pack(side=Tk.LEFT) d.pack() controller.coef0 = Tk.StringVar() controller.coef0.set("0") r = Tk.Frame(valbox) Tk.Label(r, text="coef0:", anchor="e", width=7).pack(side=Tk.LEFT) Tk.Entry(r, width=6, textvariable=controller.coef0).pack(side=Tk.LEFT) r.pack() valbox.pack(side=Tk.LEFT) cmap_group = Tk.Frame(fm) Tk.Radiobutton(cmap_group, text="Hyperplanes", variable=controller.surface_type, value=0, command=controller.refit).pack(anchor=Tk.W) Tk.Radiobutton(cmap_group, text="Surface", variable=controller.surface_type, value=1, command=controller.refit).pack(anchor=Tk.W) cmap_group.pack(side=Tk.LEFT) train_button = Tk.Button(fm, text='Fit', width=5, command=controller.fit) train_button.pack() fm.pack(side=Tk.LEFT) Tk.Button(fm, text='Clear', width=5, command=controller.clear_data).pack(side=Tk.LEFT) def get_parser(): from optparse import OptionParser op = OptionParser() op.add_option("--output", action="store", type="str", dest="output", help="Path where to dump data.") return op def main(argv): op = get_parser() opts, args = op.parse_args(argv[1:]) root = Tk.Tk() model = Model() controller = Controller(model) root.wm_title("Scikit-learn Libsvm GUI") view = View(root, controller) model.add_observer(view) Tk.mainloop() if opts.output: model.dump_svmlight_file(opts.output) if __name__ == "__main__": main(sys.argv)
bsd-3-clause
samidabeast/VideoGeni
full_stuffs.py
1
2835
import sys import scipy as sp import scipy.misc as pil import matplotlib.pyplot as plot filepath = sys.argv[1] im = pil.imread(filepath) RMAX = 255 RMIN = 140 GMAX = 140 GMIN = 30 #green*3 >= red BMAX = 80 BMIN = 0 def query(mx, mn): return (mn, mx-mn) crange = [query(RMAX,RMIN), query(GMAX,GMIN), query(BMAX,BMIN)] #determine size of each block #should this be based on size of image? d = 25 def block(box): """Analyze block with center at (x,y)""" avg = [] for i in range(3): avg.append(sp.average(box[...,i])) #sp.around , decimals=0 #right now this is truncating, might want to think about edge cases more return sp.array(avg, dtype='uint8') #return avg, but as an array def inColorRange(c): """checks if average of block is in the "fire range""" for i in range(3): if not (crange[i][0] <= c[i] <= crange[i][0]+crange[i][1]): return False return True def isFire(img): """Checks for fire: MAIN FUNCTION""" # Find middle of image (initial block center) xmax = im.shape[0] ymax = im.shape[1] x = xmax//2 y = ymax//2 fedex = sp.array([],dtype='uint8') c = 0 #count, how many i's are there? i = 0 #iteration, which i are we on? while True: xd = x+d yd = y+d #Clipping code (needs refactoring) if xd > xmax: if x < xmax: xd = xmax else: return False if x < 0: if x+d > 0: x = 0 else: return False if yd > ymax: if y < ymax: yd = ymax else: return False if y < 0: if y+d > 0: y = 0 else: return False box = im[x:xd, y:yd, :] avg = block(box) box[:] = avg[None,None,:] #sets box to average color #sp.newaxis if inColorRange(avg): plot.imshow(box) plot.show() return True else: if i==0: i = c//2 + 1 c+=1 if c%2 == 0: x = x+d if c%4 == 0 else x-d else: y = y+d if c%4 == 3 else y-d i -= 1 #change x,y to point to next block #have end case when we've checked whole image? plot.imshow(im) plot.show() if isFire(im): print("fire colors were detected") else: print("no fire colors were detected") plot.imshow(im) plot.show() # numpy.empty_like (b) #how to make shapes with pixelated data... #color range needs to be fixed #slope>1 #instead of returning True, add it to an array (index array) #read page on numpy advanced indexing #paging sytem: for example 50 chunks per array
mit
aktech/sympy
sympy/plotting/plot_implicit.py
83
14400
"""Implicit plotting module for SymPy The module implements a data series called ImplicitSeries which is used by ``Plot`` class to plot implicit plots for different backends. The module, by default, implements plotting using interval arithmetic. It switches to a fall back algorithm if the expression cannot be plotted using interval arithmetic. It is also possible to specify to use the fall back algorithm for all plots. Boolean combinations of expressions cannot be plotted by the fall back algorithm. See Also ======== sympy.plotting.plot References ========== - Jeffrey Allen Tupper. Reliable Two-Dimensional Graphing Methods for Mathematical Formulae with Two Free Variables. - Jeffrey Allen Tupper. Graphing Equations with Generalized Interval Arithmetic. Master's thesis. University of Toronto, 1996 """ from __future__ import print_function, division from .plot import BaseSeries, Plot from .experimental_lambdify import experimental_lambdify, vectorized_lambdify from .intervalmath import interval from sympy.core.relational import (Equality, GreaterThan, LessThan, Relational, StrictLessThan, StrictGreaterThan) from sympy import Eq, Tuple, sympify, Symbol, Dummy from sympy.external import import_module from sympy.logic.boolalg import BooleanFunction from sympy.polys.polyutils import _sort_gens from sympy.utilities.decorator import doctest_depends_on from sympy.utilities.iterables import flatten import warnings class ImplicitSeries(BaseSeries): """ Representation for Implicit plot """ is_implicit = True def __init__(self, expr, var_start_end_x, var_start_end_y, has_equality, use_interval_math, depth, nb_of_points, line_color): super(ImplicitSeries, self).__init__() self.expr = sympify(expr) self.var_x = sympify(var_start_end_x[0]) self.start_x = float(var_start_end_x[1]) self.end_x = float(var_start_end_x[2]) self.var_y = sympify(var_start_end_y[0]) self.start_y = float(var_start_end_y[1]) self.end_y = float(var_start_end_y[2]) self.get_points = self.get_raster self.has_equality = has_equality # If the expression has equality, i.e. #Eq, Greaterthan, LessThan. self.nb_of_points = nb_of_points self.use_interval_math = use_interval_math self.depth = 4 + depth self.line_color = line_color def __str__(self): return ('Implicit equation: %s for ' '%s over %s and %s over %s') % ( str(self.expr), str(self.var_x), str((self.start_x, self.end_x)), str(self.var_y), str((self.start_y, self.end_y))) def get_raster(self): func = experimental_lambdify((self.var_x, self.var_y), self.expr, use_interval=True) xinterval = interval(self.start_x, self.end_x) yinterval = interval(self.start_y, self.end_y) try: temp = func(xinterval, yinterval) except AttributeError: if self.use_interval_math: warnings.warn("Adaptive meshing could not be applied to the" " expression. Using uniform meshing.") self.use_interval_math = False if self.use_interval_math: return self._get_raster_interval(func) else: return self._get_meshes_grid() def _get_raster_interval(self, func): """ Uses interval math to adaptively mesh and obtain the plot""" k = self.depth interval_list = [] #Create initial 32 divisions np = import_module('numpy') xsample = np.linspace(self.start_x, self.end_x, 33) ysample = np.linspace(self.start_y, self.end_y, 33) #Add a small jitter so that there are no false positives for equality. # Ex: y==x becomes True for x interval(1, 2) and y interval(1, 2) #which will draw a rectangle. jitterx = (np.random.rand( len(xsample)) * 2 - 1) * (self.end_x - self.start_x) / 2**20 jittery = (np.random.rand( len(ysample)) * 2 - 1) * (self.end_y - self.start_y) / 2**20 xsample += jitterx ysample += jittery xinter = [interval(x1, x2) for x1, x2 in zip(xsample[:-1], xsample[1:])] yinter = [interval(y1, y2) for y1, y2 in zip(ysample[:-1], ysample[1:])] interval_list = [[x, y] for x in xinter for y in yinter] plot_list = [] #recursive call refinepixels which subdivides the intervals which are #neither True nor False according to the expression. def refine_pixels(interval_list): """ Evaluates the intervals and subdivides the interval if the expression is partially satisfied.""" temp_interval_list = [] plot_list = [] for intervals in interval_list: #Convert the array indices to x and y values intervalx = intervals[0] intervaly = intervals[1] func_eval = func(intervalx, intervaly) #The expression is valid in the interval. Change the contour #array values to 1. if func_eval[1] is False or func_eval[0] is False: pass elif func_eval == (True, True): plot_list.append([intervalx, intervaly]) elif func_eval[1] is None or func_eval[0] is None: #Subdivide avgx = intervalx.mid avgy = intervaly.mid a = interval(intervalx.start, avgx) b = interval(avgx, intervalx.end) c = interval(intervaly.start, avgy) d = interval(avgy, intervaly.end) temp_interval_list.append([a, c]) temp_interval_list.append([a, d]) temp_interval_list.append([b, c]) temp_interval_list.append([b, d]) return temp_interval_list, plot_list while k >= 0 and len(interval_list): interval_list, plot_list_temp = refine_pixels(interval_list) plot_list.extend(plot_list_temp) k = k - 1 #Check whether the expression represents an equality #If it represents an equality, then none of the intervals #would have satisfied the expression due to floating point #differences. Add all the undecided values to the plot. if self.has_equality: for intervals in interval_list: intervalx = intervals[0] intervaly = intervals[1] func_eval = func(intervalx, intervaly) if func_eval[1] and func_eval[0] is not False: plot_list.append([intervalx, intervaly]) return plot_list, 'fill' def _get_meshes_grid(self): """Generates the mesh for generating a contour. In the case of equality, ``contour`` function of matplotlib can be used. In other cases, matplotlib's ``contourf`` is used. """ equal = False if isinstance(self.expr, Equality): expr = self.expr.lhs - self.expr.rhs equal = True elif isinstance(self.expr, (GreaterThan, StrictGreaterThan)): expr = self.expr.lhs - self.expr.rhs elif isinstance(self.expr, (LessThan, StrictLessThan)): expr = self.expr.rhs - self.expr.lhs else: raise NotImplementedError("The expression is not supported for " "plotting in uniform meshed plot.") np = import_module('numpy') xarray = np.linspace(self.start_x, self.end_x, self.nb_of_points) yarray = np.linspace(self.start_y, self.end_y, self.nb_of_points) x_grid, y_grid = np.meshgrid(xarray, yarray) func = vectorized_lambdify((self.var_x, self.var_y), expr) z_grid = func(x_grid, y_grid) z_grid[np.ma.where(z_grid < 0)] = -1 z_grid[np.ma.where(z_grid > 0)] = 1 if equal: return xarray, yarray, z_grid, 'contour' else: return xarray, yarray, z_grid, 'contourf' @doctest_depends_on(modules=('matplotlib',)) def plot_implicit(expr, x_var=None, y_var=None, **kwargs): """A plot function to plot implicit equations / inequalities. Arguments ========= - ``expr`` : The equation / inequality that is to be plotted. - ``x_var`` (optional) : symbol to plot on x-axis or tuple giving symbol and range as ``(symbol, xmin, xmax)`` - ``y_var`` (optional) : symbol to plot on y-axis or tuple giving symbol and range as ``(symbol, ymin, ymax)`` If neither ``x_var`` nor ``y_var`` are given then the free symbols in the expression will be assigned in the order they are sorted. The following keyword arguments can also be used: - ``adaptive``. Boolean. The default value is set to True. It has to be set to False if you want to use a mesh grid. - ``depth`` integer. The depth of recursion for adaptive mesh grid. Default value is 0. Takes value in the range (0, 4). - ``points`` integer. The number of points if adaptive mesh grid is not used. Default value is 200. - ``title`` string .The title for the plot. - ``xlabel`` string. The label for the x-axis - ``ylabel`` string. The label for the y-axis Aesthetics options: - ``line_color``: float or string. Specifies the color for the plot. See ``Plot`` to see how to set color for the plots. plot_implicit, by default, uses interval arithmetic to plot functions. If the expression cannot be plotted using interval arithmetic, it defaults to a generating a contour using a mesh grid of fixed number of points. By setting adaptive to False, you can force plot_implicit to use the mesh grid. The mesh grid method can be effective when adaptive plotting using interval arithmetic, fails to plot with small line width. Examples ======== Plot expressions: >>> from sympy import plot_implicit, cos, sin, symbols, Eq, And >>> x, y = symbols('x y') Without any ranges for the symbols in the expression >>> p1 = plot_implicit(Eq(x**2 + y**2, 5)) With the range for the symbols >>> p2 = plot_implicit(Eq(x**2 + y**2, 3), ... (x, -3, 3), (y, -3, 3)) With depth of recursion as argument. >>> p3 = plot_implicit(Eq(x**2 + y**2, 5), ... (x, -4, 4), (y, -4, 4), depth = 2) Using mesh grid and not using adaptive meshing. >>> p4 = plot_implicit(Eq(x**2 + y**2, 5), ... (x, -5, 5), (y, -2, 2), adaptive=False) Using mesh grid with number of points as input. >>> p5 = plot_implicit(Eq(x**2 + y**2, 5), ... (x, -5, 5), (y, -2, 2), ... adaptive=False, points=400) Plotting regions. >>> p6 = plot_implicit(y > x**2) Plotting Using boolean conjunctions. >>> p7 = plot_implicit(And(y > x, y > -x)) When plotting an expression with a single variable (y - 1, for example), specify the x or the y variable explicitly: >>> p8 = plot_implicit(y - 1, y_var=y) >>> p9 = plot_implicit(x - 1, x_var=x) """ has_equality = False # Represents whether the expression contains an Equality, #GreaterThan or LessThan def arg_expand(bool_expr): """ Recursively expands the arguments of an Boolean Function """ for arg in bool_expr.args: if isinstance(arg, BooleanFunction): arg_expand(arg) elif isinstance(arg, Relational): arg_list.append(arg) arg_list = [] if isinstance(expr, BooleanFunction): arg_expand(expr) #Check whether there is an equality in the expression provided. if any(isinstance(e, (Equality, GreaterThan, LessThan)) for e in arg_list): has_equality = True elif not isinstance(expr, Relational): expr = Eq(expr, 0) has_equality = True elif isinstance(expr, (Equality, GreaterThan, LessThan)): has_equality = True xyvar = [i for i in (x_var, y_var) if i is not None] free_symbols = expr.free_symbols range_symbols = Tuple(*flatten(xyvar)).free_symbols undeclared = free_symbols - range_symbols if len(free_symbols & range_symbols) > 2: raise NotImplementedError("Implicit plotting is not implemented for " "more than 2 variables") #Create default ranges if the range is not provided. default_range = Tuple(-5, 5) def _range_tuple(s): if isinstance(s, Symbol): return Tuple(s) + default_range if len(s) == 3: return Tuple(*s) raise ValueError('symbol or `(symbol, min, max)` expected but got %s' % s) if len(xyvar) == 0: xyvar = list(_sort_gens(free_symbols)) var_start_end_x = _range_tuple(xyvar[0]) x = var_start_end_x[0] if len(xyvar) != 2: if x in undeclared or not undeclared: xyvar.append(Dummy('f(%s)' % x.name)) else: xyvar.append(undeclared.pop()) var_start_end_y = _range_tuple(xyvar[1]) use_interval = kwargs.pop('adaptive', True) nb_of_points = kwargs.pop('points', 300) depth = kwargs.pop('depth', 0) line_color = kwargs.pop('line_color', "blue") #Check whether the depth is greater than 4 or less than 0. if depth > 4: depth = 4 elif depth < 0: depth = 0 series_argument = ImplicitSeries(expr, var_start_end_x, var_start_end_y, has_equality, use_interval, depth, nb_of_points, line_color) show = kwargs.pop('show', True) #set the x and y limits kwargs['xlim'] = tuple(float(x) for x in var_start_end_x[1:]) kwargs['ylim'] = tuple(float(y) for y in var_start_end_y[1:]) # set the x and y labels kwargs.setdefault('xlabel', var_start_end_x[0].name) kwargs.setdefault('ylabel', var_start_end_y[0].name) p = Plot(series_argument, **kwargs) if show: p.show() return p
bsd-3-clause
kbarbary/extinction
docs/conf.py
1
3734
# -*- coding: utf-8 -*- # # build requires sphinx_rtd_theme and numpydoc. import sys import os import sphinx_rtd_theme import matplotlib.sphinxext.plot_directive import extinction # ensure that plot helper is on the path sys.path.insert(0, os.path.abspath(__file__)) # generate api directory if it doesn't already exist if not os.path.exists('api'): os.mkdir('api') # -- General configuration ------------------------------------------------ intersphinx_mapping = { 'python': ('http://docs.python.org/', None), 'numpy': ('http://docs.scipy.org/doc/numpy/', None)} extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.intersphinx', 'sphinx.ext.mathjax', 'numpydoc', matplotlib.sphinxext.plot_directive.__name__] numpydoc_show_class_members = False autosummary_generate = True autoclass_content = "class" autodoc_default_flags = ["members", "no-special-members"] # The suffix of source filenames. source_suffix = '.rst' # The master toctree document. master_doc = 'index' # General information about the project. project = u'extinction' copyright = u'2016, Kyle Barbary and contributors' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # THe short X.Y version. version = '.'.join(extinction.__version__.split('.')[0:2]) # The full version, including alpha/beta/rc tags. release = extinction.__version__ # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all # documents. default_role = 'obj' # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = "sphinx_rtd_theme" html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = [] # Output file base name for HTML help builder. htmlhelp_basename = 'extinctiondoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ ('index', 'extinction.tex', u'extinction Documentation', u'Kyle Barbary', 'manual'), ] # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'extinction', u'extinction Documentation', [u'Kyle Barbary'], 1) ] # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'extinction', u'extinction Documentation', u'Kyle Barbary', 'extinction', 'One line description of project.', 'Miscellaneous'), ]
mit
jayflo/scikit-learn
sklearn/metrics/tests/test_ranking.py
75
40883
from __future__ import division, print_function import numpy as np from itertools import product import warnings from scipy.sparse import csr_matrix from sklearn import datasets from sklearn import svm from sklearn import ensemble from sklearn.datasets import make_multilabel_classification from sklearn.random_projection import sparse_random_matrix from sklearn.utils.validation import check_array, check_consistent_length from sklearn.utils.validation import check_random_state from sklearn.utils.testing import assert_raises, clean_warning_registry from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_warns from sklearn.metrics import auc from sklearn.metrics import average_precision_score from sklearn.metrics import coverage_error from sklearn.metrics import label_ranking_average_precision_score from sklearn.metrics import precision_recall_curve from sklearn.metrics import label_ranking_loss from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_curve from sklearn.metrics.base import UndefinedMetricWarning ############################################################################### # Utilities for testing def make_prediction(dataset=None, binary=False): """Make some classification predictions on a toy dataset using a SVC If binary is True restrict to a binary classification problem instead of a multiclass classification problem """ if dataset is None: # import some data to play with dataset = datasets.load_iris() X = dataset.data y = dataset.target if binary: # restrict to a binary classification task X, y = X[y < 2], y[y < 2] n_samples, n_features = X.shape p = np.arange(n_samples) rng = check_random_state(37) rng.shuffle(p) X, y = X[p], y[p] half = int(n_samples / 2) # add noisy features to make the problem harder and avoid perfect results rng = np.random.RandomState(0) X = np.c_[X, rng.randn(n_samples, 200 * n_features)] # run classifier, get class probabilities and label predictions clf = svm.SVC(kernel='linear', probability=True, random_state=0) probas_pred = clf.fit(X[:half], y[:half]).predict_proba(X[half:]) if binary: # only interested in probabilities of the positive case # XXX: do we really want a special API for the binary case? probas_pred = probas_pred[:, 1] y_pred = clf.predict(X[half:]) y_true = y[half:] return y_true, y_pred, probas_pred ############################################################################### # Tests def _auc(y_true, y_score): """Alternative implementation to check for correctness of `roc_auc_score`.""" pos_label = np.unique(y_true)[1] # Count the number of times positive samples are correctly ranked above # negative samples. pos = y_score[y_true == pos_label] neg = y_score[y_true != pos_label] diff_matrix = pos.reshape(1, -1) - neg.reshape(-1, 1) n_correct = np.sum(diff_matrix > 0) return n_correct / float(len(pos) * len(neg)) def _average_precision(y_true, y_score): """Alternative implementation to check for correctness of `average_precision_score`.""" pos_label = np.unique(y_true)[1] n_pos = np.sum(y_true == pos_label) order = np.argsort(y_score)[::-1] y_score = y_score[order] y_true = y_true[order] score = 0 for i in range(len(y_score)): if y_true[i] == pos_label: # Compute precision up to document i # i.e, percentage of relevant documents up to document i. prec = 0 for j in range(0, i + 1): if y_true[j] == pos_label: prec += 1.0 prec /= (i + 1.0) score += prec return score / n_pos def test_roc_curve(): # Test Area under Receiver Operating Characteristic (ROC) curve y_true, _, probas_pred = make_prediction(binary=True) fpr, tpr, thresholds = roc_curve(y_true, probas_pred) roc_auc = auc(fpr, tpr) expected_auc = _auc(y_true, probas_pred) assert_array_almost_equal(roc_auc, expected_auc, decimal=2) assert_almost_equal(roc_auc, roc_auc_score(y_true, probas_pred)) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) def test_roc_curve_end_points(): # Make sure that roc_curve returns a curve start at 0 and ending and # 1 even in corner cases rng = np.random.RandomState(0) y_true = np.array([0] * 50 + [1] * 50) y_pred = rng.randint(3, size=100) fpr, tpr, thr = roc_curve(y_true, y_pred) assert_equal(fpr[0], 0) assert_equal(fpr[-1], 1) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thr.shape) def test_roc_returns_consistency(): # Test whether the returned threshold matches up with tpr # make small toy dataset y_true, _, probas_pred = make_prediction(binary=True) fpr, tpr, thresholds = roc_curve(y_true, probas_pred) # use the given thresholds to determine the tpr tpr_correct = [] for t in thresholds: tp = np.sum((probas_pred >= t) & y_true) p = np.sum(y_true) tpr_correct.append(1.0 * tp / p) # compare tpr and tpr_correct to see if the thresholds' order was correct assert_array_almost_equal(tpr, tpr_correct, decimal=2) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) def test_roc_nonrepeating_thresholds(): # Test to ensure that we don't return spurious repeating thresholds. # Duplicated thresholds can arise due to machine precision issues. dataset = datasets.load_digits() X = dataset['data'] y = dataset['target'] # This random forest classifier can only return probabilities # significant to two decimal places clf = ensemble.RandomForestClassifier(n_estimators=100, random_state=0) # How well can the classifier predict whether a digit is less than 5? # This task contributes floating point roundoff errors to the probabilities train, test = slice(None, None, 2), slice(1, None, 2) probas_pred = clf.fit(X[train], y[train]).predict_proba(X[test]) y_score = probas_pred[:, :5].sum(axis=1) # roundoff errors begin here y_true = [yy < 5 for yy in y[test]] # Check for repeating values in the thresholds fpr, tpr, thresholds = roc_curve(y_true, y_score) assert_equal(thresholds.size, np.unique(np.round(thresholds, 2)).size) def test_roc_curve_multi(): # roc_curve not applicable for multi-class problems y_true, _, probas_pred = make_prediction(binary=False) assert_raises(ValueError, roc_curve, y_true, probas_pred) def test_roc_curve_confidence(): # roc_curve for confidence scores y_true, _, probas_pred = make_prediction(binary=True) fpr, tpr, thresholds = roc_curve(y_true, probas_pred - 0.5) roc_auc = auc(fpr, tpr) assert_array_almost_equal(roc_auc, 0.90, decimal=2) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) def test_roc_curve_hard(): # roc_curve for hard decisions y_true, pred, probas_pred = make_prediction(binary=True) # always predict one trivial_pred = np.ones(y_true.shape) fpr, tpr, thresholds = roc_curve(y_true, trivial_pred) roc_auc = auc(fpr, tpr) assert_array_almost_equal(roc_auc, 0.50, decimal=2) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) # always predict zero trivial_pred = np.zeros(y_true.shape) fpr, tpr, thresholds = roc_curve(y_true, trivial_pred) roc_auc = auc(fpr, tpr) assert_array_almost_equal(roc_auc, 0.50, decimal=2) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) # hard decisions fpr, tpr, thresholds = roc_curve(y_true, pred) roc_auc = auc(fpr, tpr) assert_array_almost_equal(roc_auc, 0.78, decimal=2) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) def test_roc_curve_one_label(): y_true = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] y_pred = [0, 1, 0, 1, 0, 1, 0, 1, 0, 1] # assert there are warnings w = UndefinedMetricWarning fpr, tpr, thresholds = assert_warns(w, roc_curve, y_true, y_pred) # all true labels, all fpr should be nan assert_array_equal(fpr, np.nan * np.ones(len(thresholds))) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) # assert there are warnings fpr, tpr, thresholds = assert_warns(w, roc_curve, [1 - x for x in y_true], y_pred) # all negative labels, all tpr should be nan assert_array_equal(tpr, np.nan * np.ones(len(thresholds))) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) def test_roc_curve_toydata(): # Binary classification y_true = [0, 1] y_score = [0, 1] tpr, fpr, _ = roc_curve(y_true, y_score) roc_auc = roc_auc_score(y_true, y_score) assert_array_almost_equal(tpr, [0, 1]) assert_array_almost_equal(fpr, [1, 1]) assert_almost_equal(roc_auc, 1.) y_true = [0, 1] y_score = [1, 0] tpr, fpr, _ = roc_curve(y_true, y_score) roc_auc = roc_auc_score(y_true, y_score) assert_array_almost_equal(tpr, [0, 1, 1]) assert_array_almost_equal(fpr, [0, 0, 1]) assert_almost_equal(roc_auc, 0.) y_true = [1, 0] y_score = [1, 1] tpr, fpr, _ = roc_curve(y_true, y_score) roc_auc = roc_auc_score(y_true, y_score) assert_array_almost_equal(tpr, [0, 1]) assert_array_almost_equal(fpr, [0, 1]) assert_almost_equal(roc_auc, 0.5) y_true = [1, 0] y_score = [1, 0] tpr, fpr, _ = roc_curve(y_true, y_score) roc_auc = roc_auc_score(y_true, y_score) assert_array_almost_equal(tpr, [0, 1]) assert_array_almost_equal(fpr, [1, 1]) assert_almost_equal(roc_auc, 1.) y_true = [1, 0] y_score = [0.5, 0.5] tpr, fpr, _ = roc_curve(y_true, y_score) roc_auc = roc_auc_score(y_true, y_score) assert_array_almost_equal(tpr, [0, 1]) assert_array_almost_equal(fpr, [0, 1]) assert_almost_equal(roc_auc, .5) y_true = [0, 0] y_score = [0.25, 0.75] tpr, fpr, _ = roc_curve(y_true, y_score) assert_raises(ValueError, roc_auc_score, y_true, y_score) assert_array_almost_equal(tpr, [0., 0.5, 1.]) assert_array_almost_equal(fpr, [np.nan, np.nan, np.nan]) y_true = [1, 1] y_score = [0.25, 0.75] tpr, fpr, _ = roc_curve(y_true, y_score) assert_raises(ValueError, roc_auc_score, y_true, y_score) assert_array_almost_equal(tpr, [np.nan, np.nan]) assert_array_almost_equal(fpr, [0.5, 1.]) # Multi-label classification task y_true = np.array([[0, 1], [0, 1]]) y_score = np.array([[0, 1], [0, 1]]) assert_raises(ValueError, roc_auc_score, y_true, y_score, average="macro") assert_raises(ValueError, roc_auc_score, y_true, y_score, average="weighted") assert_almost_equal(roc_auc_score(y_true, y_score, average="samples"), 1.) assert_almost_equal(roc_auc_score(y_true, y_score, average="micro"), 1.) y_true = np.array([[0, 1], [0, 1]]) y_score = np.array([[0, 1], [1, 0]]) assert_raises(ValueError, roc_auc_score, y_true, y_score, average="macro") assert_raises(ValueError, roc_auc_score, y_true, y_score, average="weighted") assert_almost_equal(roc_auc_score(y_true, y_score, average="samples"), 0.5) assert_almost_equal(roc_auc_score(y_true, y_score, average="micro"), 0.5) y_true = np.array([[1, 0], [0, 1]]) y_score = np.array([[0, 1], [1, 0]]) assert_almost_equal(roc_auc_score(y_true, y_score, average="macro"), 0) assert_almost_equal(roc_auc_score(y_true, y_score, average="weighted"), 0) assert_almost_equal(roc_auc_score(y_true, y_score, average="samples"), 0) assert_almost_equal(roc_auc_score(y_true, y_score, average="micro"), 0) y_true = np.array([[1, 0], [0, 1]]) y_score = np.array([[0.5, 0.5], [0.5, 0.5]]) assert_almost_equal(roc_auc_score(y_true, y_score, average="macro"), .5) assert_almost_equal(roc_auc_score(y_true, y_score, average="weighted"), .5) assert_almost_equal(roc_auc_score(y_true, y_score, average="samples"), .5) assert_almost_equal(roc_auc_score(y_true, y_score, average="micro"), .5) def test_auc(): # Test Area Under Curve (AUC) computation x = [0, 1] y = [0, 1] assert_array_almost_equal(auc(x, y), 0.5) x = [1, 0] y = [0, 1] assert_array_almost_equal(auc(x, y), 0.5) x = [1, 0, 0] y = [0, 1, 1] assert_array_almost_equal(auc(x, y), 0.5) x = [0, 1] y = [1, 1] assert_array_almost_equal(auc(x, y), 1) x = [0, 0.5, 1] y = [0, 0.5, 1] assert_array_almost_equal(auc(x, y), 0.5) def test_auc_duplicate_values(): # Test Area Under Curve (AUC) computation with duplicate values # auc() was previously sorting the x and y arrays according to the indices # from numpy.argsort(x), which was reordering the tied 0's in this example # and resulting in an incorrect area computation. This test detects the # error. x = [-2.0, 0.0, 0.0, 0.0, 1.0] y1 = [2.0, 0.0, 0.5, 1.0, 1.0] y2 = [2.0, 1.0, 0.0, 0.5, 1.0] y3 = [2.0, 1.0, 0.5, 0.0, 1.0] for y in (y1, y2, y3): assert_array_almost_equal(auc(x, y, reorder=True), 3.0) def test_auc_errors(): # Incompatible shapes assert_raises(ValueError, auc, [0.0, 0.5, 1.0], [0.1, 0.2]) # Too few x values assert_raises(ValueError, auc, [0.0], [0.1]) # x is not in order assert_raises(ValueError, auc, [1.0, 0.0, 0.5], [0.0, 0.0, 0.0]) def test_auc_score_non_binary_class(): # Test that roc_auc_score function returns an error when trying # to compute AUC for non-binary class values. rng = check_random_state(404) y_pred = rng.rand(10) # y_true contains only one class value y_true = np.zeros(10, dtype="int") assert_raise_message(ValueError, "ROC AUC score is not defined", roc_auc_score, y_true, y_pred) y_true = np.ones(10, dtype="int") assert_raise_message(ValueError, "ROC AUC score is not defined", roc_auc_score, y_true, y_pred) y_true = -np.ones(10, dtype="int") assert_raise_message(ValueError, "ROC AUC score is not defined", roc_auc_score, y_true, y_pred) # y_true contains three different class values y_true = rng.randint(0, 3, size=10) assert_raise_message(ValueError, "multiclass format is not supported", roc_auc_score, y_true, y_pred) clean_warning_registry() with warnings.catch_warnings(record=True): rng = check_random_state(404) y_pred = rng.rand(10) # y_true contains only one class value y_true = np.zeros(10, dtype="int") assert_raise_message(ValueError, "ROC AUC score is not defined", roc_auc_score, y_true, y_pred) y_true = np.ones(10, dtype="int") assert_raise_message(ValueError, "ROC AUC score is not defined", roc_auc_score, y_true, y_pred) y_true = -np.ones(10, dtype="int") assert_raise_message(ValueError, "ROC AUC score is not defined", roc_auc_score, y_true, y_pred) # y_true contains three different class values y_true = rng.randint(0, 3, size=10) assert_raise_message(ValueError, "multiclass format is not supported", roc_auc_score, y_true, y_pred) def test_precision_recall_curve(): y_true, _, probas_pred = make_prediction(binary=True) _test_precision_recall_curve(y_true, probas_pred) # Use {-1, 1} for labels; make sure original labels aren't modified y_true[np.where(y_true == 0)] = -1 y_true_copy = y_true.copy() _test_precision_recall_curve(y_true, probas_pred) assert_array_equal(y_true_copy, y_true) labels = [1, 0, 0, 1] predict_probas = [1, 2, 3, 4] p, r, t = precision_recall_curve(labels, predict_probas) assert_array_almost_equal(p, np.array([0.5, 0.33333333, 0.5, 1., 1.])) assert_array_almost_equal(r, np.array([1., 0.5, 0.5, 0.5, 0.])) assert_array_almost_equal(t, np.array([1, 2, 3, 4])) assert_equal(p.size, r.size) assert_equal(p.size, t.size + 1) def test_precision_recall_curve_pos_label(): y_true, _, probas_pred = make_prediction(binary=False) pos_label = 2 p, r, thresholds = precision_recall_curve(y_true, probas_pred[:, pos_label], pos_label=pos_label) p2, r2, thresholds2 = precision_recall_curve(y_true == pos_label, probas_pred[:, pos_label]) assert_array_almost_equal(p, p2) assert_array_almost_equal(r, r2) assert_array_almost_equal(thresholds, thresholds2) assert_equal(p.size, r.size) assert_equal(p.size, thresholds.size + 1) def _test_precision_recall_curve(y_true, probas_pred): # Test Precision-Recall and aread under PR curve p, r, thresholds = precision_recall_curve(y_true, probas_pred) precision_recall_auc = auc(r, p) assert_array_almost_equal(precision_recall_auc, 0.85, 2) assert_array_almost_equal(precision_recall_auc, average_precision_score(y_true, probas_pred)) assert_almost_equal(_average_precision(y_true, probas_pred), precision_recall_auc, 1) assert_equal(p.size, r.size) assert_equal(p.size, thresholds.size + 1) # Smoke test in the case of proba having only one value p, r, thresholds = precision_recall_curve(y_true, np.zeros_like(probas_pred)) precision_recall_auc = auc(r, p) assert_array_almost_equal(precision_recall_auc, 0.75, 3) assert_equal(p.size, r.size) assert_equal(p.size, thresholds.size + 1) def test_precision_recall_curve_errors(): # Contains non-binary labels assert_raises(ValueError, precision_recall_curve, [0, 1, 2], [[0.0], [1.0], [1.0]]) def test_precision_recall_curve_toydata(): with np.errstate(all="raise"): # Binary classification y_true = [0, 1] y_score = [0, 1] p, r, _ = precision_recall_curve(y_true, y_score) auc_prc = average_precision_score(y_true, y_score) assert_array_almost_equal(p, [1, 1]) assert_array_almost_equal(r, [1, 0]) assert_almost_equal(auc_prc, 1.) y_true = [0, 1] y_score = [1, 0] p, r, _ = precision_recall_curve(y_true, y_score) auc_prc = average_precision_score(y_true, y_score) assert_array_almost_equal(p, [0.5, 0., 1.]) assert_array_almost_equal(r, [1., 0., 0.]) assert_almost_equal(auc_prc, 0.25) y_true = [1, 0] y_score = [1, 1] p, r, _ = precision_recall_curve(y_true, y_score) auc_prc = average_precision_score(y_true, y_score) assert_array_almost_equal(p, [0.5, 1]) assert_array_almost_equal(r, [1., 0]) assert_almost_equal(auc_prc, .75) y_true = [1, 0] y_score = [1, 0] p, r, _ = precision_recall_curve(y_true, y_score) auc_prc = average_precision_score(y_true, y_score) assert_array_almost_equal(p, [1, 1]) assert_array_almost_equal(r, [1, 0]) assert_almost_equal(auc_prc, 1.) y_true = [1, 0] y_score = [0.5, 0.5] p, r, _ = precision_recall_curve(y_true, y_score) auc_prc = average_precision_score(y_true, y_score) assert_array_almost_equal(p, [0.5, 1]) assert_array_almost_equal(r, [1, 0.]) assert_almost_equal(auc_prc, .75) y_true = [0, 0] y_score = [0.25, 0.75] assert_raises(Exception, precision_recall_curve, y_true, y_score) assert_raises(Exception, average_precision_score, y_true, y_score) y_true = [1, 1] y_score = [0.25, 0.75] p, r, _ = precision_recall_curve(y_true, y_score) assert_almost_equal(average_precision_score(y_true, y_score), 1.) assert_array_almost_equal(p, [1., 1., 1.]) assert_array_almost_equal(r, [1, 0.5, 0.]) # Multi-label classification task y_true = np.array([[0, 1], [0, 1]]) y_score = np.array([[0, 1], [0, 1]]) assert_raises(Exception, average_precision_score, y_true, y_score, average="macro") assert_raises(Exception, average_precision_score, y_true, y_score, average="weighted") assert_almost_equal(average_precision_score(y_true, y_score, average="samples"), 1.) assert_almost_equal(average_precision_score(y_true, y_score, average="micro"), 1.) y_true = np.array([[0, 1], [0, 1]]) y_score = np.array([[0, 1], [1, 0]]) assert_raises(Exception, average_precision_score, y_true, y_score, average="macro") assert_raises(Exception, average_precision_score, y_true, y_score, average="weighted") assert_almost_equal(average_precision_score(y_true, y_score, average="samples"), 0.625) assert_almost_equal(average_precision_score(y_true, y_score, average="micro"), 0.625) y_true = np.array([[1, 0], [0, 1]]) y_score = np.array([[0, 1], [1, 0]]) assert_almost_equal(average_precision_score(y_true, y_score, average="macro"), 0.25) assert_almost_equal(average_precision_score(y_true, y_score, average="weighted"), 0.25) assert_almost_equal(average_precision_score(y_true, y_score, average="samples"), 0.25) assert_almost_equal(average_precision_score(y_true, y_score, average="micro"), 0.25) y_true = np.array([[1, 0], [0, 1]]) y_score = np.array([[0.5, 0.5], [0.5, 0.5]]) assert_almost_equal(average_precision_score(y_true, y_score, average="macro"), 0.75) assert_almost_equal(average_precision_score(y_true, y_score, average="weighted"), 0.75) assert_almost_equal(average_precision_score(y_true, y_score, average="samples"), 0.75) assert_almost_equal(average_precision_score(y_true, y_score, average="micro"), 0.75) def test_score_scale_invariance(): # Test that average_precision_score and roc_auc_score are invariant by # the scaling or shifting of probabilities y_true, _, probas_pred = make_prediction(binary=True) roc_auc = roc_auc_score(y_true, probas_pred) roc_auc_scaled = roc_auc_score(y_true, 100 * probas_pred) roc_auc_shifted = roc_auc_score(y_true, probas_pred - 10) assert_equal(roc_auc, roc_auc_scaled) assert_equal(roc_auc, roc_auc_shifted) pr_auc = average_precision_score(y_true, probas_pred) pr_auc_scaled = average_precision_score(y_true, 100 * probas_pred) pr_auc_shifted = average_precision_score(y_true, probas_pred - 10) assert_equal(pr_auc, pr_auc_scaled) assert_equal(pr_auc, pr_auc_shifted) def check_lrap_toy(lrap_score): # Check on several small example that it works assert_almost_equal(lrap_score([[0, 1]], [[0.25, 0.75]]), 1) assert_almost_equal(lrap_score([[0, 1]], [[0.75, 0.25]]), 1 / 2) assert_almost_equal(lrap_score([[1, 1]], [[0.75, 0.25]]), 1) assert_almost_equal(lrap_score([[0, 0, 1]], [[0.25, 0.5, 0.75]]), 1) assert_almost_equal(lrap_score([[0, 1, 0]], [[0.25, 0.5, 0.75]]), 1 / 2) assert_almost_equal(lrap_score([[0, 1, 1]], [[0.25, 0.5, 0.75]]), 1) assert_almost_equal(lrap_score([[1, 0, 0]], [[0.25, 0.5, 0.75]]), 1 / 3) assert_almost_equal(lrap_score([[1, 0, 1]], [[0.25, 0.5, 0.75]]), (2 / 3 + 1 / 1) / 2) assert_almost_equal(lrap_score([[1, 1, 0]], [[0.25, 0.5, 0.75]]), (2 / 3 + 1 / 2) / 2) assert_almost_equal(lrap_score([[0, 0, 1]], [[0.75, 0.5, 0.25]]), 1 / 3) assert_almost_equal(lrap_score([[0, 1, 0]], [[0.75, 0.5, 0.25]]), 1 / 2) assert_almost_equal(lrap_score([[0, 1, 1]], [[0.75, 0.5, 0.25]]), (1 / 2 + 2 / 3) / 2) assert_almost_equal(lrap_score([[1, 0, 0]], [[0.75, 0.5, 0.25]]), 1) assert_almost_equal(lrap_score([[1, 0, 1]], [[0.75, 0.5, 0.25]]), (1 + 2 / 3) / 2) assert_almost_equal(lrap_score([[1, 1, 0]], [[0.75, 0.5, 0.25]]), 1) assert_almost_equal(lrap_score([[1, 1, 1]], [[0.75, 0.5, 0.25]]), 1) assert_almost_equal(lrap_score([[0, 0, 1]], [[0.5, 0.75, 0.25]]), 1 / 3) assert_almost_equal(lrap_score([[0, 1, 0]], [[0.5, 0.75, 0.25]]), 1) assert_almost_equal(lrap_score([[0, 1, 1]], [[0.5, 0.75, 0.25]]), (1 + 2 / 3) / 2) assert_almost_equal(lrap_score([[1, 0, 0]], [[0.5, 0.75, 0.25]]), 1 / 2) assert_almost_equal(lrap_score([[1, 0, 1]], [[0.5, 0.75, 0.25]]), (1 / 2 + 2 / 3) / 2) assert_almost_equal(lrap_score([[1, 1, 0]], [[0.5, 0.75, 0.25]]), 1) assert_almost_equal(lrap_score([[1, 1, 1]], [[0.5, 0.75, 0.25]]), 1) # Tie handling assert_almost_equal(lrap_score([[1, 0]], [[0.5, 0.5]]), 0.5) assert_almost_equal(lrap_score([[0, 1]], [[0.5, 0.5]]), 0.5) assert_almost_equal(lrap_score([[1, 1]], [[0.5, 0.5]]), 1) assert_almost_equal(lrap_score([[0, 0, 1]], [[0.25, 0.5, 0.5]]), 0.5) assert_almost_equal(lrap_score([[0, 1, 0]], [[0.25, 0.5, 0.5]]), 0.5) assert_almost_equal(lrap_score([[0, 1, 1]], [[0.25, 0.5, 0.5]]), 1) assert_almost_equal(lrap_score([[1, 0, 0]], [[0.25, 0.5, 0.5]]), 1 / 3) assert_almost_equal(lrap_score([[1, 0, 1]], [[0.25, 0.5, 0.5]]), (2 / 3 + 1 / 2) / 2) assert_almost_equal(lrap_score([[1, 1, 0]], [[0.25, 0.5, 0.5]]), (2 / 3 + 1 / 2) / 2) assert_almost_equal(lrap_score([[1, 1, 1]], [[0.25, 0.5, 0.5]]), 1) assert_almost_equal(lrap_score([[1, 1, 0]], [[0.5, 0.5, 0.5]]), 2 / 3) assert_almost_equal(lrap_score([[1, 1, 1, 0]], [[0.5, 0.5, 0.5, 0.5]]), 3 / 4) def check_zero_or_all_relevant_labels(lrap_score): random_state = check_random_state(0) for n_labels in range(2, 5): y_score = random_state.uniform(size=(1, n_labels)) y_score_ties = np.zeros_like(y_score) # No relevant labels y_true = np.zeros((1, n_labels)) assert_equal(lrap_score(y_true, y_score), 1.) assert_equal(lrap_score(y_true, y_score_ties), 1.) # Only relevant labels y_true = np.ones((1, n_labels)) assert_equal(lrap_score(y_true, y_score), 1.) assert_equal(lrap_score(y_true, y_score_ties), 1.) # Degenerate case: only one label assert_almost_equal(lrap_score([[1], [0], [1], [0]], [[0.5], [0.5], [0.5], [0.5]]), 1.) def check_lrap_error_raised(lrap_score): # Raise value error if not appropriate format assert_raises(ValueError, lrap_score, [0, 1, 0], [0.25, 0.3, 0.2]) assert_raises(ValueError, lrap_score, [0, 1, 2], [[0.25, 0.75, 0.0], [0.7, 0.3, 0.0], [0.8, 0.2, 0.0]]) assert_raises(ValueError, lrap_score, [(0), (1), (2)], [[0.25, 0.75, 0.0], [0.7, 0.3, 0.0], [0.8, 0.2, 0.0]]) # Check that that y_true.shape != y_score.shape raise the proper exception assert_raises(ValueError, lrap_score, [[0, 1], [0, 1]], [0, 1]) assert_raises(ValueError, lrap_score, [[0, 1], [0, 1]], [[0, 1]]) assert_raises(ValueError, lrap_score, [[0, 1], [0, 1]], [[0], [1]]) assert_raises(ValueError, lrap_score, [[0, 1]], [[0, 1], [0, 1]]) assert_raises(ValueError, lrap_score, [[0], [1]], [[0, 1], [0, 1]]) assert_raises(ValueError, lrap_score, [[0, 1], [0, 1]], [[0], [1]]) def check_lrap_only_ties(lrap_score): # Check tie handling in score # Basic check with only ties and increasing label space for n_labels in range(2, 10): y_score = np.ones((1, n_labels)) # Check for growing number of consecutive relevant for n_relevant in range(1, n_labels): # Check for a bunch of positions for pos in range(n_labels - n_relevant): y_true = np.zeros((1, n_labels)) y_true[0, pos:pos + n_relevant] = 1 assert_almost_equal(lrap_score(y_true, y_score), n_relevant / n_labels) def check_lrap_without_tie_and_increasing_score(lrap_score): # Check that Label ranking average precision works for various # Basic check with increasing label space size and decreasing score for n_labels in range(2, 10): y_score = n_labels - (np.arange(n_labels).reshape((1, n_labels)) + 1) # First and last y_true = np.zeros((1, n_labels)) y_true[0, 0] = 1 y_true[0, -1] = 1 assert_almost_equal(lrap_score(y_true, y_score), (2 / n_labels + 1) / 2) # Check for growing number of consecutive relevant label for n_relevant in range(1, n_labels): # Check for a bunch of position for pos in range(n_labels - n_relevant): y_true = np.zeros((1, n_labels)) y_true[0, pos:pos + n_relevant] = 1 assert_almost_equal(lrap_score(y_true, y_score), sum((r + 1) / ((pos + r + 1) * n_relevant) for r in range(n_relevant))) def _my_lrap(y_true, y_score): """Simple implementation of label ranking average precision""" check_consistent_length(y_true, y_score) y_true = check_array(y_true) y_score = check_array(y_score) n_samples, n_labels = y_true.shape score = np.empty((n_samples, )) for i in range(n_samples): # The best rank correspond to 1. Rank higher than 1 are worse. # The best inverse ranking correspond to n_labels. unique_rank, inv_rank = np.unique(y_score[i], return_inverse=True) n_ranks = unique_rank.size rank = n_ranks - inv_rank # Rank need to be corrected to take into account ties # ex: rank 1 ex aequo means that both label are rank 2. corr_rank = np.bincount(rank, minlength=n_ranks + 1).cumsum() rank = corr_rank[rank] relevant = y_true[i].nonzero()[0] if relevant.size == 0 or relevant.size == n_labels: score[i] = 1 continue score[i] = 0. for label in relevant: # Let's count the number of relevant label with better rank # (smaller rank). n_ranked_above = sum(rank[r] <= rank[label] for r in relevant) # Weight by the rank of the actual label score[i] += n_ranked_above / rank[label] score[i] /= relevant.size return score.mean() def check_alternative_lrap_implementation(lrap_score, n_classes=5, n_samples=20, random_state=0): _, y_true = make_multilabel_classification(n_features=1, allow_unlabeled=False, return_indicator=True, random_state=random_state, n_classes=n_classes, n_samples=n_samples) # Score with ties y_score = sparse_random_matrix(n_components=y_true.shape[0], n_features=y_true.shape[1], random_state=random_state) if hasattr(y_score, "toarray"): y_score = y_score.toarray() score_lrap = label_ranking_average_precision_score(y_true, y_score) score_my_lrap = _my_lrap(y_true, y_score) assert_almost_equal(score_lrap, score_my_lrap) # Uniform score random_state = check_random_state(random_state) y_score = random_state.uniform(size=(n_samples, n_classes)) score_lrap = label_ranking_average_precision_score(y_true, y_score) score_my_lrap = _my_lrap(y_true, y_score) assert_almost_equal(score_lrap, score_my_lrap) def test_label_ranking_avp(): for fn in [label_ranking_average_precision_score, _my_lrap]: yield check_lrap_toy, fn yield check_lrap_without_tie_and_increasing_score, fn yield check_lrap_only_ties, fn yield check_zero_or_all_relevant_labels, fn yield check_lrap_error_raised, label_ranking_average_precision_score for n_samples, n_classes, random_state in product((1, 2, 8, 20), (2, 5, 10), range(1)): yield (check_alternative_lrap_implementation, label_ranking_average_precision_score, n_classes, n_samples, random_state) def test_coverage_error(): # Toy case assert_almost_equal(coverage_error([[0, 1]], [[0.25, 0.75]]), 1) assert_almost_equal(coverage_error([[0, 1]], [[0.75, 0.25]]), 2) assert_almost_equal(coverage_error([[1, 1]], [[0.75, 0.25]]), 2) assert_almost_equal(coverage_error([[0, 0]], [[0.75, 0.25]]), 0) assert_almost_equal(coverage_error([[0, 0, 0]], [[0.25, 0.5, 0.75]]), 0) assert_almost_equal(coverage_error([[0, 0, 1]], [[0.25, 0.5, 0.75]]), 1) assert_almost_equal(coverage_error([[0, 1, 0]], [[0.25, 0.5, 0.75]]), 2) assert_almost_equal(coverage_error([[0, 1, 1]], [[0.25, 0.5, 0.75]]), 2) assert_almost_equal(coverage_error([[1, 0, 0]], [[0.25, 0.5, 0.75]]), 3) assert_almost_equal(coverage_error([[1, 0, 1]], [[0.25, 0.5, 0.75]]), 3) assert_almost_equal(coverage_error([[1, 1, 0]], [[0.25, 0.5, 0.75]]), 3) assert_almost_equal(coverage_error([[1, 1, 1]], [[0.25, 0.5, 0.75]]), 3) assert_almost_equal(coverage_error([[0, 0, 0]], [[0.75, 0.5, 0.25]]), 0) assert_almost_equal(coverage_error([[0, 0, 1]], [[0.75, 0.5, 0.25]]), 3) assert_almost_equal(coverage_error([[0, 1, 0]], [[0.75, 0.5, 0.25]]), 2) assert_almost_equal(coverage_error([[0, 1, 1]], [[0.75, 0.5, 0.25]]), 3) assert_almost_equal(coverage_error([[1, 0, 0]], [[0.75, 0.5, 0.25]]), 1) assert_almost_equal(coverage_error([[1, 0, 1]], [[0.75, 0.5, 0.25]]), 3) assert_almost_equal(coverage_error([[1, 1, 0]], [[0.75, 0.5, 0.25]]), 2) assert_almost_equal(coverage_error([[1, 1, 1]], [[0.75, 0.5, 0.25]]), 3) assert_almost_equal(coverage_error([[0, 0, 0]], [[0.5, 0.75, 0.25]]), 0) assert_almost_equal(coverage_error([[0, 0, 1]], [[0.5, 0.75, 0.25]]), 3) assert_almost_equal(coverage_error([[0, 1, 0]], [[0.5, 0.75, 0.25]]), 1) assert_almost_equal(coverage_error([[0, 1, 1]], [[0.5, 0.75, 0.25]]), 3) assert_almost_equal(coverage_error([[1, 0, 0]], [[0.5, 0.75, 0.25]]), 2) assert_almost_equal(coverage_error([[1, 0, 1]], [[0.5, 0.75, 0.25]]), 3) assert_almost_equal(coverage_error([[1, 1, 0]], [[0.5, 0.75, 0.25]]), 2) assert_almost_equal(coverage_error([[1, 1, 1]], [[0.5, 0.75, 0.25]]), 3) # Non trival case assert_almost_equal(coverage_error([[0, 1, 0], [1, 1, 0]], [[0.1, 10., -3], [0, 1, 3]]), (1 + 3) / 2.) assert_almost_equal(coverage_error([[0, 1, 0], [1, 1, 0], [0, 1, 1]], [[0.1, 10, -3], [0, 1, 3], [0, 2, 0]]), (1 + 3 + 3) / 3.) assert_almost_equal(coverage_error([[0, 1, 0], [1, 1, 0], [0, 1, 1]], [[0.1, 10, -3], [3, 1, 3], [0, 2, 0]]), (1 + 3 + 3) / 3.) def test_coverage_tie_handling(): assert_almost_equal(coverage_error([[0, 0]], [[0.5, 0.5]]), 0) assert_almost_equal(coverage_error([[1, 0]], [[0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[0, 1]], [[0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[1, 1]], [[0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[0, 0, 0]], [[0.25, 0.5, 0.5]]), 0) assert_almost_equal(coverage_error([[0, 0, 1]], [[0.25, 0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[0, 1, 0]], [[0.25, 0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[0, 1, 1]], [[0.25, 0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[1, 0, 0]], [[0.25, 0.5, 0.5]]), 3) assert_almost_equal(coverage_error([[1, 0, 1]], [[0.25, 0.5, 0.5]]), 3) assert_almost_equal(coverage_error([[1, 1, 0]], [[0.25, 0.5, 0.5]]), 3) assert_almost_equal(coverage_error([[1, 1, 1]], [[0.25, 0.5, 0.5]]), 3) def test_label_ranking_loss(): assert_almost_equal(label_ranking_loss([[0, 1]], [[0.25, 0.75]]), 0) assert_almost_equal(label_ranking_loss([[0, 1]], [[0.75, 0.25]]), 1) assert_almost_equal(label_ranking_loss([[0, 0, 1]], [[0.25, 0.5, 0.75]]), 0) assert_almost_equal(label_ranking_loss([[0, 1, 0]], [[0.25, 0.5, 0.75]]), 1 / 2) assert_almost_equal(label_ranking_loss([[0, 1, 1]], [[0.25, 0.5, 0.75]]), 0) assert_almost_equal(label_ranking_loss([[1, 0, 0]], [[0.25, 0.5, 0.75]]), 2 / 2) assert_almost_equal(label_ranking_loss([[1, 0, 1]], [[0.25, 0.5, 0.75]]), 1 / 2) assert_almost_equal(label_ranking_loss([[1, 1, 0]], [[0.25, 0.5, 0.75]]), 2 / 2) # Undefined metrics - the ranking doesn't matter assert_almost_equal(label_ranking_loss([[0, 0]], [[0.75, 0.25]]), 0) assert_almost_equal(label_ranking_loss([[1, 1]], [[0.75, 0.25]]), 0) assert_almost_equal(label_ranking_loss([[0, 0]], [[0.5, 0.5]]), 0) assert_almost_equal(label_ranking_loss([[1, 1]], [[0.5, 0.5]]), 0) assert_almost_equal(label_ranking_loss([[0, 0, 0]], [[0.5, 0.75, 0.25]]), 0) assert_almost_equal(label_ranking_loss([[1, 1, 1]], [[0.5, 0.75, 0.25]]), 0) assert_almost_equal(label_ranking_loss([[0, 0, 0]], [[0.25, 0.5, 0.5]]), 0) assert_almost_equal(label_ranking_loss([[1, 1, 1]], [[0.25, 0.5, 0.5]]), 0) # Non trival case assert_almost_equal(label_ranking_loss([[0, 1, 0], [1, 1, 0]], [[0.1, 10., -3], [0, 1, 3]]), (0 + 2 / 2) / 2.) assert_almost_equal(label_ranking_loss( [[0, 1, 0], [1, 1, 0], [0, 1, 1]], [[0.1, 10, -3], [0, 1, 3], [0, 2, 0]]), (0 + 2 / 2 + 1 / 2) / 3.) assert_almost_equal(label_ranking_loss( [[0, 1, 0], [1, 1, 0], [0, 1, 1]], [[0.1, 10, -3], [3, 1, 3], [0, 2, 0]]), (0 + 2 / 2 + 1 / 2) / 3.) # Sparse csr matrices assert_almost_equal(label_ranking_loss( csr_matrix(np.array([[0, 1, 0], [1, 1, 0]])), [[0.1, 10, -3], [3, 1, 3]]), (0 + 2 / 2) / 2.) def test_ranking_appropriate_input_shape(): # Check that that y_true.shape != y_score.shape raise the proper exception assert_raises(ValueError, label_ranking_loss, [[0, 1], [0, 1]], [0, 1]) assert_raises(ValueError, label_ranking_loss, [[0, 1], [0, 1]], [[0, 1]]) assert_raises(ValueError, label_ranking_loss, [[0, 1], [0, 1]], [[0], [1]]) assert_raises(ValueError, label_ranking_loss, [[0, 1]], [[0, 1], [0, 1]]) assert_raises(ValueError, label_ranking_loss, [[0], [1]], [[0, 1], [0, 1]]) assert_raises(ValueError, label_ranking_loss, [[0, 1], [0, 1]], [[0], [1]]) def test_ranking_loss_ties_handling(): # Tie handling assert_almost_equal(label_ranking_loss([[1, 0]], [[0.5, 0.5]]), 1) assert_almost_equal(label_ranking_loss([[0, 1]], [[0.5, 0.5]]), 1) assert_almost_equal(label_ranking_loss([[0, 0, 1]], [[0.25, 0.5, 0.5]]), 1 / 2) assert_almost_equal(label_ranking_loss([[0, 1, 0]], [[0.25, 0.5, 0.5]]), 1 / 2) assert_almost_equal(label_ranking_loss([[0, 1, 1]], [[0.25, 0.5, 0.5]]), 0) assert_almost_equal(label_ranking_loss([[1, 0, 0]], [[0.25, 0.5, 0.5]]), 1) assert_almost_equal(label_ranking_loss([[1, 0, 1]], [[0.25, 0.5, 0.5]]), 1) assert_almost_equal(label_ranking_loss([[1, 1, 0]], [[0.25, 0.5, 0.5]]), 1)
bsd-3-clause
trohit/stackedBarChart
stackedBarChart.py
1
4808
#!/usr/bin/env python # a stacked bar plot with errorbars import numpy as np import matplotlib.pyplot as plt from operator import add from pprint import pprint # # LEGEND # Read cndl as Candle # Read lbl as Label # # In normal config # cndlsMasterLbl sits parallel to X Axis # valuesMasterLbl sits parallel to Y Axis # # TITLE # ^ # | # Y | +-+ # | | | # | +-+ | | # | +-+ | | | | # | | | | | | | # +--+-+---+-+---+-+-------> # X Axis cndlsMasterLbl # Legend # lyrColors -> lyrNames # def stackedBarChart(Title, cndlsMasterLbl, valuesMasterLbl, cndlThickness, minValue, maxValue, cndlCount, cndlLbls, arrVals, lyrNames, lyrColors): #draw bar chart print("cndlCount:"+str(cndlCount)) assert( len(arrVals) == len(lyrColors)) # XXX: Perhaps cndlCount can be derived from cndlLbls assert( (cndlCount) == len(cndlLbls)) minReading = minValue # just so that the maximum value doesn't get missed maxReading = maxValue + 1 # gradual gradient markers to help read the values stepSize = (maxReading - minReading) /10 ind = np.arange(cndlCount) # the x locations for the groups emptyArr = [0] * cndlCount sumArr = emptyArr containerArr = [] graphBottom = None p = [] # list of bar properties plt.subplots_adjust(bottom=0.2) #make room for the legend for i in xrange(len(arrVals)): selectedColor = lyrColors[i] print("Adding color " + selectedColor) tmpContainer = plt.bar(ind, arrVals[i], cndlThickness, color=selectedColor, bottom=graphBottom) containerArr.append(tmpContainer) tmpArr = arrVals[i] sumArr = [tmpArr[j] + sumArr[j] for j in range(cndlCount)] graphBottom = sumArr pprint(graphBottom) plt.ylabel(valuesMasterLbl) plt.xlabel(cndlsMasterLbl) plt.title(Title) #plt.xticks(ind+cndlThickness/2., cndlLbls) spacing = ind+cndlThickness/2. pprint(spacing) plt.xticks(spacing, cndlLbls) legArr = [] print(type(legArr)) plt.yticks(np.arange(minReading, maxReading, stepSize)) #plt.legend( (p1[0], p2[0], p3[0], p4[0]), lyrNames) #TODO: solve the part of passing variable length args to a function print("len(containerArr):" + str(len(containerArr))) for zz in range(0, len(containerArr)): legArr.append(containerArr[zz]) # its called the splat operator # http://stackoverflow.com/questions/7745952/python-expand-list-to-function-arguments # http://stackoverflow.com/questions/12720450/unpacking-arguments-only-named-arguments-may-follow-expression plt.legend( bbox_to_anchor=(0.5, -0.3), loc='lower center', ncol=7,labels=(lyrNames),*legArr) plt.grid() plt.show() if __name__ == "__main__": Title = 'Visitors by block and day' cndlsMasterLbl = 'Date' valuesMasterLbl = 'No. of Visitors' cndlThickness = 0.30 # the cndlThickness of the bars: can also be len(x) sequence # Mo, Tu, We, Th, Fr, Sa, Su blkCntAr = (10, 30, 30, 35, 27, 67, 21) blkCntBr = (20, 32, 34, 20, 25, 76, 21) blkCntEl = (30, 34, 34, 20, 25, 76, 21) blkCntGl = (40, 36, 34, 20, 25, 76, 21) blkCntHl = (25, 32, 34, 20, 25, 76, 21) blkCntJg = (25, 32, 34, 20, 25, 76, 21) blkCntJl = (25, 32, 34, 20, 25, 76, 21) blkCntZr = (25, 32, 34, 20, 25, 76, 21) blkCntMB = (25, 32, 34, 20, 25, 76, 21) blkCntMR = (25, 32, 34, 20, 25, 76, 21) blkCntMT = (25, 32, 34, 20, 25, 76, 21) blkCntRs = (25, 32, 34, 20, 25, 76, 21) blkCntOh = (25, 32, 34, 20, 25, 76, 21) minValue = 0 maxValue = 1000 # XXX: Round off to nearest bracket ..multiple of 10..50..100..500..1000 maxObsValue = max(map(sum,zip(blkCntAr,blkCntBr,blkCntEl,blkCntGl,blkCntHl,blkCntJg,blkCntJl,blkCntZr,blkCntMB,blkCntMR,blkCntMT,blkCntRs,blkCntOh))) assert(maxValue > maxObsValue),"Max val " + str(maxValue) + " < max observed val " + str(maxObsValue) cndlCount = len(blkCntAr) # count of elements in each category blocks=["Ar","Br","El","Gl","Hl","Jl","Jg","Zr","MB","MR","MT","Rs","Oh"] lyrNames = blocks cndlLbls = ('Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun') arrVals = blkCntAr,blkCntBr,blkCntEl,blkCntGl,blkCntHl,blkCntJg,blkCntJl,blkCntZr,blkCntMB,blkCntMR,blkCntMT,blkCntRs,blkCntOh lyrColors = ('r','g','b','c','m','y','k','Brown', 'Crimson','w','BlueViolet', 'DarkOrange','DeepPink') # days -> cndls -> X # blocks -> lyrs -> Y # len(arrVals) = len(lyrColors) stackedBarChart(Title, cndlsMasterLbl, valuesMasterLbl, cndlThickness, minValue, maxValue, cndlCount, cndlLbls, arrVals, lyrNames, lyrColors)
mit
arahuja/scikit-learn
examples/ensemble/plot_adaboost_regression.py
26
1523
""" ====================================== Decision Tree Regression with AdaBoost ====================================== A decision tree is boosted using the AdaBoost.R2 [1] algorithm on a 1D sinusoidal dataset with a small amount of Gaussian noise. 299 boosts (300 decision trees) is compared with a single decision tree regressor. As the number of boosts is increased the regressor can fit more detail. .. [1] H. Drucker, "Improving Regressors using Boosting Techniques", 1997. """ print(__doc__) # Author: Noel Dawe <noel.dawe@gmail.com> # # License: BSD 3 clause # importing necessary libraries import numpy as np import matplotlib.pyplot as plt from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import AdaBoostRegressor # Create the dataset rng = np.random.RandomState(1) X = np.linspace(0, 6, 100)[:, np.newaxis] y = np.sin(X).ravel() + np.sin(6 * X).ravel() + rng.normal(0, 0.1, X.shape[0]) # Fit regression model clf_1 = DecisionTreeRegressor(max_depth=4) clf_2 = AdaBoostRegressor(DecisionTreeRegressor(max_depth=4), n_estimators=300, random_state=rng) clf_1.fit(X, y) clf_2.fit(X, y) # Predict y_1 = clf_1.predict(X) y_2 = clf_2.predict(X) # Plot the results plt.figure() plt.scatter(X, y, c="k", label="training samples") plt.plot(X, y_1, c="g", label="n_estimators=1", linewidth=2) plt.plot(X, y_2, c="r", label="n_estimators=300", linewidth=2) plt.xlabel("data") plt.ylabel("target") plt.title("Boosted Decision Tree Regression") plt.legend() plt.show()
bsd-3-clause
lidalei/IR-Project
src/CoAuthor/CoAuthors.py
1
4315
''' Created on Oct 15, 2015 @author: Dalei ''' import json, nltk import networkx as nx import matplotlib.pyplot as plt # This module is used to extract co-authors of articles ## we only need authors information # articles_authors = {} # # with open('../Dataset/metadata.json') as f: # metadata = json.load(f) # for year in metadata: # one_year_articles = metadata[year] # for article_ID in one_year_articles: # # convert authors string to list # articles_authors[article_ID] = one_year_articles[article_ID]['authors'].split(';') # f.close() ## end get authors information only ## begin get articles_authors # with open('../../Dataset/Local/articles_authors.json', 'r') as f: # articles_authors = json.load(f) # f.close() ## end get articles_authors ## begin get single authors from file # with open('../../Dataset/Local/single_authors.json', 'r') as f: # authors = json.load(f) # f.close() ## end get single authors from file ## begin single authors # how to get single authors from articles_authors # # authors = {} # # for article_ID in articles_authors: # for author in articles_authors[article_ID]: # if author not in authors: # authors[author] = 1 # else: # authors[author] += 1 # # with open('../Dataset/Local/single_authors.json', 'w') as f: # json.dump(authors, f) # f.close() ## end single authors ## begin building graph # authors_graph = {} # # for author in authors: # authors_graph[author] = {} # # for article_ID in articles_authors: # # article_authors = articles_authors[article_ID] # # # author exists in the article # if author in article_authors: # for author_ in article_authors: # if author_ != author: # if author_ not in authors_graph[author]: # authors_graph[author][author_] = 1 # else: # authors_graph[author][author_] += 1 # removing less relation # notably_authors_graph = {} # # for author in authors_graph: # notably_authors_graph[author] = {} # for adjacent_author in authors_graph[author]: # if authors_graph[author][adjacent_author] >= 2: # notably_authors_graph[author][adjacent_author] = authors_graph[author][adjacent_author] # # for author in authors_graph: # if len(notably_authors_graph[author]) < 1: # del notably_authors_graph[author] # # # with open('authors_graph.json', 'w') as f: # json.dump(authors_graph, f) # f.close() ## end building graph ## begin building a visual graph from the graph file with open('../../Dataset/Local/authors_graph.json', 'r') as f: authors_graph = json.load(f) f.close() coauthor_network = nx.Graph() coauthor_network.add_nodes_from(authors_graph.keys()) weighted_edges = [(node, adjacent_node, {'weight':authors_graph[node][adjacent_node]}) for node in authors_graph for adjacent_node in authors_graph[node]] coauthor_network.add_edges_from(weighted_edges) nx.write_gml(coauthor_network, 'coauthor_network.graph') edges = [(node, adjacent_node) for node in authors_graph for adjacent_node in authors_graph[node]] position = nx.spring_layout(coauthor_network) nx.draw_networkx_nodes(coauthor_network, position, node_size = 2) nx.draw_networkx_edges(coauthor_network, position, edge_list = edges, edge_color = 'r') # plt.show() plt.savefig('authors_graph.png', dpi = 1200) ## end building a visual graph from the grapg file # with open('single_authors.json', 'r') as f: # authors = json.load(f) # f.close() # # authors_support = [] # # for author_index, author in zip(range(len(authors)), authors): # authors_support.append([author, 0]) # for article_ID in articles_authors: # for author_ in articles_authors[article_ID]: # if author == author_: # authors_support[author_index][1] += 1 # break # # authors_support = sorted(authors_support, reverse = True, key=lambda author: author[1]) # # with open('authors_support.json', 'w') as f: # json.dump(authors_support, f) # f.close() # associative rule mining if __name__ == '__main__': pass
gpl-2.0
sunzhxjs/JobGIS
lib/python2.7/site-packages/pandas/computation/ops.py
9
15234
"""Operator classes for eval. """ import operator as op from functools import partial from datetime import datetime import numpy as np import pandas as pd from pandas.compat import PY3, string_types, text_type import pandas.core.common as com from pandas.core.base import StringMixin from pandas.computation.common import _ensure_decoded, _result_type_many from pandas.computation.scope import _DEFAULT_GLOBALS _reductions = 'sum', 'prod' _unary_math_ops = ('sin', 'cos', 'exp', 'log', 'expm1', 'log1p', 'sqrt', 'sinh', 'cosh', 'tanh', 'arcsin', 'arccos', 'arctan', 'arccosh', 'arcsinh', 'arctanh', 'abs') _binary_math_ops = ('arctan2',) _mathops = _unary_math_ops + _binary_math_ops _LOCAL_TAG = '__pd_eval_local_' class UndefinedVariableError(NameError): """NameError subclass for local variables.""" def __init__(self, name, is_local): if is_local: msg = 'local variable {0!r} is not defined' else: msg = 'name {0!r} is not defined' super(UndefinedVariableError, self).__init__(msg.format(name)) class Term(StringMixin): def __new__(cls, name, env, side=None, encoding=None): klass = Constant if not isinstance(name, string_types) else cls supr_new = super(Term, klass).__new__ return supr_new(klass) def __init__(self, name, env, side=None, encoding=None): self._name = name self.env = env self.side = side tname = text_type(name) self.is_local = (tname.startswith(_LOCAL_TAG) or tname in _DEFAULT_GLOBALS) self._value = self._resolve_name() self.encoding = encoding @property def local_name(self): return self.name.replace(_LOCAL_TAG, '') def __unicode__(self): return com.pprint_thing(self.name) def __call__(self, *args, **kwargs): return self.value def evaluate(self, *args, **kwargs): return self def _resolve_name(self): res = self.env.resolve(self.local_name, is_local=self.is_local) self.update(res) if hasattr(res, 'ndim') and res.ndim > 2: raise NotImplementedError("N-dimensional objects, where N > 2," " are not supported with eval") return res def update(self, value): """ search order for local (i.e., @variable) variables: scope, key_variable [('locals', 'local_name'), ('globals', 'local_name'), ('locals', 'key'), ('globals', 'key')] """ key = self.name # if it's a variable name (otherwise a constant) if isinstance(key, string_types): self.env.swapkey(self.local_name, key, new_value=value) self.value = value @property def isscalar(self): return np.isscalar(self._value) @property def type(self): try: # potentially very slow for large, mixed dtype frames return self._value.values.dtype except AttributeError: try: # ndarray return self._value.dtype except AttributeError: # scalar return type(self._value) return_type = type @property def raw(self): return com.pprint_thing('{0}(name={1!r}, type={2})' ''.format(self.__class__.__name__, self.name, self.type)) @property def is_datetime(self): try: t = self.type.type except AttributeError: t = self.type return issubclass(t, (datetime, np.datetime64)) @property def value(self): return self._value @value.setter def value(self, new_value): self._value = new_value @property def name(self): return self._name @name.setter def name(self, new_name): self._name = new_name @property def ndim(self): return self._value.ndim class Constant(Term): def __init__(self, value, env, side=None, encoding=None): super(Constant, self).__init__(value, env, side=side, encoding=encoding) def _resolve_name(self): return self._name @property def name(self): return self.value _bool_op_map = {'not': '~', 'and': '&', 'or': '|'} class Op(StringMixin): """Hold an operator of arbitrary arity """ def __init__(self, op, operands, *args, **kwargs): self.op = _bool_op_map.get(op, op) self.operands = operands self.encoding = kwargs.get('encoding', None) def __iter__(self): return iter(self.operands) def __unicode__(self): """Print a generic n-ary operator and its operands using infix notation""" # recurse over the operands parened = ('({0})'.format(com.pprint_thing(opr)) for opr in self.operands) return com.pprint_thing(' {0} '.format(self.op).join(parened)) @property def return_type(self): # clobber types to bool if the op is a boolean operator if self.op in (_cmp_ops_syms + _bool_ops_syms): return np.bool_ return _result_type_many(*(term.type for term in com.flatten(self))) @property def has_invalid_return_type(self): types = self.operand_types obj_dtype_set = frozenset([np.dtype('object')]) return self.return_type == object and types - obj_dtype_set @property def operand_types(self): return frozenset(term.type for term in com.flatten(self)) @property def isscalar(self): return all(operand.isscalar for operand in self.operands) @property def is_datetime(self): try: t = self.return_type.type except AttributeError: t = self.return_type return issubclass(t, (datetime, np.datetime64)) def _in(x, y): """Compute the vectorized membership of ``x in y`` if possible, otherwise use Python. """ try: return x.isin(y) except AttributeError: if com.is_list_like(x): try: return y.isin(x) except AttributeError: pass return x in y def _not_in(x, y): """Compute the vectorized membership of ``x not in y`` if possible, otherwise use Python. """ try: return ~x.isin(y) except AttributeError: if com.is_list_like(x): try: return ~y.isin(x) except AttributeError: pass return x not in y _cmp_ops_syms = '>', '<', '>=', '<=', '==', '!=', 'in', 'not in' _cmp_ops_funcs = op.gt, op.lt, op.ge, op.le, op.eq, op.ne, _in, _not_in _cmp_ops_dict = dict(zip(_cmp_ops_syms, _cmp_ops_funcs)) _bool_ops_syms = '&', '|', 'and', 'or' _bool_ops_funcs = op.and_, op.or_, op.and_, op.or_ _bool_ops_dict = dict(zip(_bool_ops_syms, _bool_ops_funcs)) _arith_ops_syms = '+', '-', '*', '/', '**', '//', '%' _arith_ops_funcs = (op.add, op.sub, op.mul, op.truediv if PY3 else op.div, op.pow, op.floordiv, op.mod) _arith_ops_dict = dict(zip(_arith_ops_syms, _arith_ops_funcs)) _special_case_arith_ops_syms = '**', '//', '%' _special_case_arith_ops_funcs = op.pow, op.floordiv, op.mod _special_case_arith_ops_dict = dict(zip(_special_case_arith_ops_syms, _special_case_arith_ops_funcs)) _binary_ops_dict = {} for d in (_cmp_ops_dict, _bool_ops_dict, _arith_ops_dict): _binary_ops_dict.update(d) def _cast_inplace(terms, dtype): """Cast an expression inplace. Parameters ---------- terms : Op The expression that should cast. dtype : str or numpy.dtype The dtype to cast to. """ dt = np.dtype(dtype) for term in terms: try: new_value = term.value.astype(dt) except AttributeError: new_value = dt.type(term.value) term.update(new_value) def is_term(obj): return isinstance(obj, Term) class BinOp(Op): """Hold a binary operator and its operands Parameters ---------- op : str left : Term or Op right : Term or Op """ def __init__(self, op, lhs, rhs, **kwargs): super(BinOp, self).__init__(op, (lhs, rhs)) self.lhs = lhs self.rhs = rhs self._disallow_scalar_only_bool_ops() self.convert_values() try: self.func = _binary_ops_dict[op] except KeyError: # has to be made a list for python3 keys = list(_binary_ops_dict.keys()) raise ValueError('Invalid binary operator {0!r}, valid' ' operators are {1}'.format(op, keys)) def __call__(self, env): """Recursively evaluate an expression in Python space. Parameters ---------- env : Scope Returns ------- object The result of an evaluated expression. """ # handle truediv if self.op == '/' and env.scope['truediv']: self.func = op.truediv # recurse over the left/right nodes left = self.lhs(env) right = self.rhs(env) return self.func(left, right) def evaluate(self, env, engine, parser, term_type, eval_in_python): """Evaluate a binary operation *before* being passed to the engine. Parameters ---------- env : Scope engine : str parser : str term_type : type eval_in_python : list Returns ------- term_type The "pre-evaluated" expression as an instance of ``term_type`` """ if engine == 'python': res = self(env) else: # recurse over the left/right nodes left = self.lhs.evaluate(env, engine=engine, parser=parser, term_type=term_type, eval_in_python=eval_in_python) right = self.rhs.evaluate(env, engine=engine, parser=parser, term_type=term_type, eval_in_python=eval_in_python) # base cases if self.op in eval_in_python: res = self.func(left.value, right.value) else: res = pd.eval(self, local_dict=env, engine=engine, parser=parser) name = env.add_tmp(res) return term_type(name, env=env) def convert_values(self): """Convert datetimes to a comparable value in an expression. """ def stringify(value): if self.encoding is not None: encoder = partial(com.pprint_thing_encoded, encoding=self.encoding) else: encoder = com.pprint_thing return encoder(value) lhs, rhs = self.lhs, self.rhs if is_term(lhs) and lhs.is_datetime and is_term(rhs) and rhs.isscalar: v = rhs.value if isinstance(v, (int, float)): v = stringify(v) v = pd.Timestamp(_ensure_decoded(v)) if v.tz is not None: v = v.tz_convert('UTC') self.rhs.update(v) if is_term(rhs) and rhs.is_datetime and is_term(lhs) and lhs.isscalar: v = lhs.value if isinstance(v, (int, float)): v = stringify(v) v = pd.Timestamp(_ensure_decoded(v)) if v.tz is not None: v = v.tz_convert('UTC') self.lhs.update(v) def _disallow_scalar_only_bool_ops(self): if ((self.lhs.isscalar or self.rhs.isscalar) and self.op in _bool_ops_dict and (not (issubclass(self.rhs.return_type, (bool, np.bool_)) and issubclass(self.lhs.return_type, (bool, np.bool_))))): raise NotImplementedError("cannot evaluate scalar only bool ops") def isnumeric(dtype): return issubclass(np.dtype(dtype).type, np.number) class Div(BinOp): """Div operator to special case casting. Parameters ---------- lhs, rhs : Term or Op The Terms or Ops in the ``/`` expression. truediv : bool Whether or not to use true division. With Python 3 this happens regardless of the value of ``truediv``. """ def __init__(self, lhs, rhs, truediv, *args, **kwargs): super(Div, self).__init__('/', lhs, rhs, *args, **kwargs) if not isnumeric(lhs.return_type) or not isnumeric(rhs.return_type): raise TypeError("unsupported operand type(s) for {0}:" " '{1}' and '{2}'".format(self.op, lhs.return_type, rhs.return_type)) if truediv or PY3: _cast_inplace(com.flatten(self), np.float_) _unary_ops_syms = '+', '-', '~', 'not' _unary_ops_funcs = op.pos, op.neg, op.invert, op.invert _unary_ops_dict = dict(zip(_unary_ops_syms, _unary_ops_funcs)) class UnaryOp(Op): """Hold a unary operator and its operands Parameters ---------- op : str The token used to represent the operator. operand : Term or Op The Term or Op operand to the operator. Raises ------ ValueError * If no function associated with the passed operator token is found. """ def __init__(self, op, operand): super(UnaryOp, self).__init__(op, (operand,)) self.operand = operand try: self.func = _unary_ops_dict[op] except KeyError: raise ValueError('Invalid unary operator {0!r}, valid operators ' 'are {1}'.format(op, _unary_ops_syms)) def __call__(self, env): operand = self.operand(env) return self.func(operand) def __unicode__(self): return com.pprint_thing('{0}({1})'.format(self.op, self.operand)) @property def return_type(self): operand = self.operand if operand.return_type == np.dtype('bool'): return np.dtype('bool') if (isinstance(operand, Op) and (operand.op in _cmp_ops_dict or operand.op in _bool_ops_dict)): return np.dtype('bool') return np.dtype('int') class MathCall(Op): def __init__(self, func, args): super(MathCall, self).__init__(func.name, args) self.func = func def __call__(self, env): operands = [op(env) for op in self.operands] return self.func.func(*operands) def __unicode__(self): operands = map(str, self.operands) return com.pprint_thing('{0}({1})'.format(self.op, ','.join(operands))) class FuncNode(object): def __init__(self, name): if name not in _mathops: raise ValueError("\"{0}\" is not a supported function".format(name)) self.name = name self.func = getattr(np, name) def __call__(self, *args): return MathCall(self, args)
mit
sumspr/scikit-learn
examples/calibration/plot_compare_calibration.py
241
5008
""" ======================================== Comparison of Calibration of Classifiers ======================================== Well calibrated classifiers are probabilistic classifiers for which the output of the predict_proba method can be directly interpreted as a confidence level. For instance a well calibrated (binary) classifier should classify the samples such that among the samples to which it gave a predict_proba value close to 0.8, approx. 80% actually belong to the positive class. LogisticRegression returns well calibrated predictions as it directly optimizes log-loss. In contrast, the other methods return biased probilities, with different biases per method: * GaussianNaiveBayes tends to push probabilties to 0 or 1 (note the counts in the histograms). This is mainly because it makes the assumption that features are conditionally independent given the class, which is not the case in this dataset which contains 2 redundant features. * RandomForestClassifier shows the opposite behavior: the histograms show peaks at approx. 0.2 and 0.9 probability, while probabilities close to 0 or 1 are very rare. An explanation for this is given by Niculescu-Mizil and Caruana [1]: "Methods such as bagging and random forests that average predictions from a base set of models can have difficulty making predictions near 0 and 1 because variance in the underlying base models will bias predictions that should be near zero or one away from these values. Because predictions are restricted to the interval [0,1], errors caused by variance tend to be one- sided near zero and one. For example, if a model should predict p = 0 for a case, the only way bagging can achieve this is if all bagged trees predict zero. If we add noise to the trees that bagging is averaging over, this noise will cause some trees to predict values larger than 0 for this case, thus moving the average prediction of the bagged ensemble away from 0. We observe this effect most strongly with random forests because the base-level trees trained with random forests have relatively high variance due to feature subseting." As a result, the calibration curve shows a characteristic sigmoid shape, indicating that the classifier could trust its "intuition" more and return probabilties closer to 0 or 1 typically. * Support Vector Classification (SVC) shows an even more sigmoid curve as the RandomForestClassifier, which is typical for maximum-margin methods (compare Niculescu-Mizil and Caruana [1]), which focus on hard samples that are close to the decision boundary (the support vectors). .. topic:: References: .. [1] Predicting Good Probabilities with Supervised Learning, A. Niculescu-Mizil & R. Caruana, ICML 2005 """ print(__doc__) # Author: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de> # License: BSD Style. import numpy as np np.random.seed(0) import matplotlib.pyplot as plt from sklearn import datasets from sklearn.naive_bayes import GaussianNB from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.svm import LinearSVC from sklearn.calibration import calibration_curve X, y = datasets.make_classification(n_samples=100000, n_features=20, n_informative=2, n_redundant=2) train_samples = 100 # Samples used for training the models X_train = X[:train_samples] X_test = X[train_samples:] y_train = y[:train_samples] y_test = y[train_samples:] # Create classifiers lr = LogisticRegression() gnb = GaussianNB() svc = LinearSVC(C=1.0) rfc = RandomForestClassifier(n_estimators=100) ############################################################################### # Plot calibration plots plt.figure(figsize=(10, 10)) ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2) ax2 = plt.subplot2grid((3, 1), (2, 0)) ax1.plot([0, 1], [0, 1], "k:", label="Perfectly calibrated") for clf, name in [(lr, 'Logistic'), (gnb, 'Naive Bayes'), (svc, 'Support Vector Classification'), (rfc, 'Random Forest')]: clf.fit(X_train, y_train) if hasattr(clf, "predict_proba"): prob_pos = clf.predict_proba(X_test)[:, 1] else: # use decision function prob_pos = clf.decision_function(X_test) prob_pos = \ (prob_pos - prob_pos.min()) / (prob_pos.max() - prob_pos.min()) fraction_of_positives, mean_predicted_value = \ calibration_curve(y_test, prob_pos, n_bins=10) ax1.plot(mean_predicted_value, fraction_of_positives, "s-", label="%s" % (name, )) ax2.hist(prob_pos, range=(0, 1), bins=10, label=name, histtype="step", lw=2) ax1.set_ylabel("Fraction of positives") ax1.set_ylim([-0.05, 1.05]) ax1.legend(loc="lower right") ax1.set_title('Calibration plots (reliability curve)') ax2.set_xlabel("Mean predicted value") ax2.set_ylabel("Count") ax2.legend(loc="upper center", ncol=2) plt.tight_layout() plt.show()
bsd-3-clause
aktech/sympy
sympy/physics/quantum/tests/test_circuitplot.py
93
2065
from sympy.physics.quantum.circuitplot import labeller, render_label, Mz, CreateOneQubitGate,\ CreateCGate from sympy.physics.quantum.gate import CNOT, H, SWAP, CGate, S, T from sympy.external import import_module from sympy.utilities.pytest import skip mpl = import_module('matplotlib') def test_render_label(): assert render_label('q0') == r'$|q0\rangle$' assert render_label('q0', {'q0': '0'}) == r'$|q0\rangle=|0\rangle$' def test_Mz(): assert str(Mz(0)) == 'Mz(0)' def test_create1(): Qgate = CreateOneQubitGate('Q') assert str(Qgate(0)) == 'Q(0)' def test_createc(): Qgate = CreateCGate('Q') assert str(Qgate([1],0)) == 'C((1),Q(0))' def test_labeller(): """Test the labeller utility""" assert labeller(2) == ['q_1', 'q_0'] assert labeller(3,'j') == ['j_2', 'j_1', 'j_0'] def test_cnot(): """Test a simple cnot circuit. Right now this only makes sure the code doesn't raise an exception, and some simple properties """ if not mpl: skip("matplotlib not installed") else: from sympy.physics.quantum.circuitplot import CircuitPlot c = CircuitPlot(CNOT(1,0),2,labels=labeller(2)) assert c.ngates == 2 assert c.nqubits == 2 assert c.labels == ['q_1', 'q_0'] c = CircuitPlot(CNOT(1,0),2) assert c.ngates == 2 assert c.nqubits == 2 assert c.labels == [] def test_ex1(): if not mpl: skip("matplotlib not installed") else: from sympy.physics.quantum.circuitplot import CircuitPlot c = CircuitPlot(CNOT(1,0)*H(1),2,labels=labeller(2)) assert c.ngates == 2 assert c.nqubits == 2 assert c.labels == ['q_1', 'q_0'] def test_ex4(): if not mpl: skip("matplotlib not installed") else: from sympy.physics.quantum.circuitplot import CircuitPlot c = CircuitPlot(SWAP(0,2)*H(0)* CGate((0,),S(1)) *H(1)*CGate((0,),T(2))\ *CGate((1,),S(2))*H(2),3,labels=labeller(3,'j')) assert c.ngates == 7 assert c.nqubits == 3 assert c.labels == ['j_2', 'j_1', 'j_0']
bsd-3-clause
keflavich/mpld3
examples/linked_brush.py
21
1136
""" Linked Brushing Example ======================= This example uses the standard Iris dataset and plots it with a linked brushing tool for dynamically exploring the data. The paintbrush button at the bottom left can be used to enable and disable the behavior. """ import numpy as np import matplotlib import matplotlib.pyplot as plt from sklearn.datasets import load_iris import mpld3 from mpld3 import plugins, utils data = load_iris() X = data.data y = data.target # dither the data for clearer plotting X += 0.1 * np.random.random(X.shape) fig, ax = plt.subplots(4, 4, sharex="col", sharey="row", figsize=(8, 8)) fig.subplots_adjust(left=0.05, right=0.95, bottom=0.05, top=0.95, hspace=0.1, wspace=0.1) for i in range(4): for j in range(4): points = ax[3 - i, j].scatter(X[:, j], X[:, i], c=y, s=40, alpha=0.6) # remove tick labels for axi in ax.flat: for axis in [axi.xaxis, axi.yaxis]: axis.set_major_formatter(plt.NullFormatter()) # Here we connect the linked brush plugin plugins.connect(fig, plugins.LinkedBrush(points)) mpld3.show()
bsd-3-clause
moonbury/pythonanywhere
github/MasteringMatplotlib/eros.py
2
2549
""" Sample Python library for working with the Landsat data from EROS/USGS. """ import glob import os.path import typecheck import numpy as np import matplotlib.pyplot as plt from skimage import io, exposure import skimage as ski BAND_COASTAL_AEROSOL = 1 BAND_BLUE = 2 BAND_GREEN = 3 BAND_RED = 4 BAND_NEAR_IR = 5 BAND_SW_IR_1 = 6 BAND_SW_IR_2 = 7 BAND_PANCHROM = 8 BAND_CIRRUS = 9 BAND_LW_IR_1 = 10 BAND_LW_IR_2 = 11 def inclusive(min, max): return lambda x: x in range(min, max + 1) @typecheck.typecheck def read_band(path, scene_id, n: inclusive(1, 11)): """Load Landsat 8 band Input: path - full path to the scene data directory scene_id - Landsat scene ID n - integer in the range 1-11 Output: img - 2D array of uint16 type""" ext = ".TIF" band_name = "_B" + str(n) + ext if path.startswith("http"): filename = os.path.join(path, scene_id + band_name) else: filename = os.path.join(path, scene_id, scene_id + band_name) return ski.io.imread(filename) def extract_rgb(path, scene_id): red = read_band(path, scene_id, BAND_RED) green = read_band(path, scene_id, BAND_GREEN) blue = read_band(path, scene_id, BAND_BLUE) return np.dstack((red, green, blue)) def extract_swir2nirg(path, scene_id): red = read_band(path, scene_id, BAND_SW_IR_2) green = read_band(path, scene_id, BAND_NEAR_IR) blue = read_band(path, scene_id, BAND_COASTAL_AEROSOL) return np.dstack((red, green, blue)) def show_image(img, title="", filename="", **kwargs): """Show image Input: img - 3D array of uint16 type title - string""" fig = plt.figure(**kwargs) fig.set_facecolor('white') plt.imshow(img / 65535) plt.title(title) if filename: plt.savefig(filename) else: plt.show() def show_color_hist(rgb_image, xlim=None, ylim=None, **kwargs): (fig, axes) = plt.subplots(**kwargs) fig.set_facecolor('white') for color, channel in zip('rgb', np.rollaxis(rgb_image, axis=-1)): counts, centers = ski.exposure.histogram(channel) plt.plot(centers[1::], counts[1::], color=color) if xlim: axes.set_xlim(xlim) if ylim: axes.set_ylim(ylim) plt.show() def update_image(image, r_limits, g_limits, b_limits): image_he = np.empty(image.shape, dtype='uint16') for channel, lim in enumerate([r_limits, g_limits, b_limits]): image_he[:, :, channel] = ski.exposure.rescale_intensity( image[:, :, channel], lim) return image_he
gpl-3.0
prheenan/Research
Perkins/AnalysisUtil/ForceExtensionAnalysis/FEC_Plot.py
1
9081
# force floating point division. Can still use integer with // from __future__ import division # This file is used for importing the common utilities classes. import numpy as np import matplotlib.pyplot as plt import sys from Research.Perkins.AnalysisUtil.ForceExtensionAnalysis import FEC_Util import GeneralUtil.python.PlotUtilities as PlotUtilities from GeneralUtil.python.IgorUtil import SavitskyFilter import copy def_conversion_opts =dict(ConvertX = lambda x: x*1e9, ConvertY = lambda y: y*1e12) def _fec_base_plot(x,y,n_filter_points=None,label="", style_data=dict(color='k',alpha=0.3), style_filtered=None): """ base function; plots x and y (and their filtered versions) Args: x/y: the x and y to use for plotting n_filter_points: how many points for the savitsky golay style_<data/filtered>: plt.plot options for the raw and filtered data. defaults to filtered just being alpha=1 (not transparent) Returns: x and y, filtered versions """ if (style_filtered is None): style_filtered = dict(**style_data) style_filtered['alpha'] = 1 style_filtered['label'] = label if (n_filter_points is None): n_filter_points = int(np.ceil(x.size * FEC_Util.default_filter_pct)) x_filtered = SavitskyFilter(x,nSmooth=n_filter_points) y_filtered = SavitskyFilter(y,nSmooth=n_filter_points) plt.plot(x,y,**style_data) plt.plot(x_filtered,y_filtered,**style_filtered) return x_filtered,y_filtered def _ApproachRetractCurve(Appr,Retr,NFilterPoints=100, x_func = lambda x: x.Separation, y_func = lambda y: y.Force, ApproachLabel="Approach", RetractLabel="Retract"): """ Most of the brains for the approach/retract curve. does *not* show anything Args: TimeSepForceObject: what we are plotting NFilterPoints: how many points to filter down ApproachLabel: label to put on the approach RetractLabel: label to put on the retract """ # plot the separation and force, with their filtered counterparts _fec_base_plot(x_func(Appr),y_func(Appr),n_filter_points=NFilterPoints, style_data=dict(color='r',alpha=0.3),label=ApproachLabel) _fec_base_plot(x_func(Retr),y_func(Retr),n_filter_points=NFilterPoints, style_data=dict(color='b',alpha=0.3),label=RetractLabel) def FEC_AlreadySplit(Appr,Retr, XLabel = "Separation (nm)", YLabel = "Force (pN)", ConversionOpts=def_conversion_opts, PlotLabelOpts=dict(), PreProcess=False, NFilterPoints=50, LegendOpts=dict(loc='best'), **kwargs): """ Args: XLabel: label for x axis YLabel: label for y axis ConversionOpts: see FEC_Util.SplitAndProcess PlotLabelOpts: see arguments after filtering of ApproachRetractCurve PreProcess: if true, pre-processes the approach and retract separately (ie: to zero and flip the y axis). NFilterPoints: see FEC_Util.SplitAndProcess, for Savitsky-golay PreProcess: passed to """ ApprCopy = FEC_Util.UnitConvert(Appr,**ConversionOpts) RetrCopy = FEC_Util.UnitConvert(Retr,**ConversionOpts) if (PreProcess): ApprCopy,RetrCopy = FEC_Util.PreProcessApproachAndRetract(ApprCopy, RetrCopy, **kwargs) _ApproachRetractCurve(ApprCopy,RetrCopy, NFilterPoints=NFilterPoints,**PlotLabelOpts) PlotUtilities.lazyLabel(XLabel,YLabel,"") PlotUtilities.legend(**LegendOpts) def z_sensor_vs_time(time_sep_force,**kwargs): """ plots z sensor versus time. See force_versus_time """ plot_labels = dict(x_func=lambda x : x.Time, y_func=lambda x : x.ZSnsr) FEC(time_sep_force, PlotLabelOpts=plot_labels, XLabel="Time (s)", YLabel="ZSnsr (nm)",**kwargs) def force_versus_time(time_sep_force,**kwargs): """ Plots force versus time Args: **kwargs: see FEC """ plot_labels = dict(x_func=lambda x : x.Time, y_func=lambda x: x.Force) FEC(time_sep_force, PlotLabelOpts=plot_labels, XLabel="Time (s)", YLabel="Force (pN)",**kwargs) def FEC(TimeSepForceObj,NFilterPoints=50, PreProcessDict=dict(), **kwargs): """ Plots a force extension curve. Splits the curve into approach and Retract and pre-processes by default Args: TimeSepForceObj: 'Raw' TimeSepForce Object PreProcessDict: passed directly to FEC_Util.PreProcessFEC **kwargs: passed directly to FEC_Plot.FEC_AlreadySplit """ Appr,Retr= FEC_Util.PreProcessFEC(TimeSepForceObj, NFilterPoints=NFilterPoints, **PreProcessDict) # plot the approach and retract with the appropriate units FEC_AlreadySplit(Appr,Retr,NFilterPoints=NFilterPoints,**kwargs) def heat_map_fec(time_sep_force_objects,num_bins=(100,100), separation_max = None,n_filter_func=None,use_colorbar=True, ConversionOpts=def_conversion_opts,cmap='afmhot'): """ Plots a force extension curve. Splits the curve into approach and Retract and pre-processes by default Args: time_sep_force_objects: list of (zeroed, but SI) TimeSepForce Object num_bins: tuple of <x,y> bins. Passed to hist2d n_filter_func: if not none, histograms the savitsky-golay *filtered* versuon of the objects given, with n_filter_func being a function taking in the TimeSepForce object and returning an integer number of points use_colorbar: if true, add a color bar separation_max: if not None, only histogram up to and including this separation. should be in units *after* conversion (default: nanometers) ConversionOpts: passed to UnitConvert. Default converts x to nano<X> and y to pico<Y> """ # convert everything... objs = [FEC_Util.UnitConvert(r,**ConversionOpts) for r in time_sep_force_objects] if n_filter_func is not None: objs = [FEC_Util.GetFilteredForce(o,n_filter_func(o)) for o in objs] filtered_data = [(retr.Separation,retr.Force) for retr in objs] separations = np.concatenate([r[0] for r in filtered_data]) forces = np.concatenate([r[1] for r in filtered_data]) if (separation_max is not None): idx_use = np.where(separations < separation_max) else: # use everything idx_use = slice(0,None,1) separations = separations[idx_use] forces = forces[idx_use] # make a heat map, essentially counts, xedges, yedges, Image = plt.hist2d(separations, forces, bins=num_bins,cmap=cmap) PlotUtilities.lazyLabel("Separation (nm)", "Force (pN)", "Force-Extension Heatmap") if (use_colorbar): cbar = plt.colorbar() label = '# of points in (Force,Separation) Bin' cbar.set_label(label,labelpad=10,rotation=270) def _n_rows_and_cols(processed,n_cols=3): n_rows = int(np.ceil(len(processed)/n_cols)) return n_rows,n_cols def gallery_fec(processed,xlim_nm,ylim_pN,NFilterPoints=100,n_cols=3, x_label="Separation (nm)",y_label="Force (pN)", approach_label="Approach", retract_label="Retract"): n_rows,n_cols = _n_rows_and_cols(processed,n_cols) for i,r in enumerate(processed): plt.subplot(n_rows,n_cols,(i+1)) appr,retr = r is_labelled = i == 0 is_first = (i % n_cols == 0) is_bottom = ((i + (n_cols)) >= len(processed)) XLabel = x_label if is_bottom else "" YLabel = y_label if is_first else "" ApproachLabel = approach_label if is_labelled else "" RetractLabel = retract_label if is_labelled else "" PlotLabelOpts = dict(ApproachLabel=ApproachLabel, RetractLabel=RetractLabel) LegendOpts = dict(loc='upper left',frameon=True) FEC_AlreadySplit(appr,retr,XLabel=XLabel,YLabel=YLabel, LegendOpts=LegendOpts, PlotLabelOpts=PlotLabelOpts, NFilterPoints=NFilterPoints) plt.xlim(xlim_nm) plt.ylim(ylim_pN) ax = plt.gca() if (not is_bottom): ax.tick_params(labelbottom='off') if (not is_first): ax.tick_params(labelleft='off')
gpl-3.0
rodrigoduranna/frogsounds
plots.py
1
2507
import glob import os import librosa import numpy as np import time import matplotlib.pyplot as plt import librosa.display from matplotlib.pyplot import specgram plt.style.use('ggplot') #Tamanho dos plots . Caso as imagens estiverem muito grandes ou pequenas, alterar aqui H_SIZE = 10 V_SIZE = 22 DDPI = 96 #Parametros de fonte dos graficos plt.rcParams['font.size'] = 12 plt.rcParams['axes.labelsize'] = 11 plt.rcParams['axes.labelweight'] = 'bold' plt.rcParams['axes.titlesize'] = 14 plt.rcParams['xtick.labelsize'] = 10 plt.rcParams['ytick.labelsize'] = 10 plt.rcParams['legend.fontsize'] = 11 plt.rcParams['figure.titlesize'] = 13 #carrega os arquivos de som def load_sound_files(file_paths): raw_sounds = [] for fp in file_paths: X,sr = librosa.load(fp) raw_sounds.append(X) return raw_sounds #plota o grafico de waveform def plot_waves(sound_names,raw_sounds): i = 1 fig = plt.figure(figsize=(H_SIZE,V_SIZE), dpi = DDPI) for n,f in zip(sound_names,raw_sounds): plt.subplot(10,1,i) librosa.display.waveplot(np.array(f),sr=22050) plt.title(n.title()) i += 1 plt.suptitle('Figura 1: Waveform',x=0.5, y=0.915,fontsize=12) plt.show() #plota o grafico de espectograma def plot_specgram(sound_names,raw_sounds): i = 1 fig = plt.figure(figsize=(H_SIZE,V_SIZE), dpi = DDPI) for n,f in zip(sound_names,raw_sounds): plt.subplot(10,1,i) specgram(np.array(f), Fs=22050) plt.title(n.title()) i += 1 plt.suptitle('Figura 2: Espectograma',x=0.5, y=0.915,fontsize=12) plt.show() #plota o grafico de power log espectograma def plot_log_power_specgram(sound_names,raw_sounds): i = 1 fig = plt.figure(figsize=(H_SIZE,V_SIZE), dpi = DDPI) for n,f in zip(sound_names,raw_sounds): plt.subplot(10,1,i) D = librosa.logamplitude(np.abs(librosa.stft(f))**2, ref_power=np.max) librosa.display.specshow(D,x_axis='time' ,y_axis='log') plt.title(n.title()) i += 1 plt.suptitle('Figur4 3: Espectograma Logaritmico',x=0.5, y=0.915,fontsize=12) plt.show() #arquivos de som a serem criados os graficos sound_file_paths = ["Perereca-grande (Hypsiboas raniceps).wav"] sound_names = ["Perereca-grande (Hypsiboas raniceps)"] #carrega os arquivos de som raw_sounds = load_sound_files(sound_file_paths) #plota os graficos plot_waves(sound_names,raw_sounds) plot_specgram(sound_names,raw_sounds) plot_log_power_specgram(sound_names,raw_sounds)
mit
carlvlewis/bokeh
bokeh/charts/builder/donut_builder.py
31
8206
"""This is the Bokeh charts interface. It gives you a high level API to build complex plot is a simple way. This is the Donut class which lets you build your Donut charts just passing the arguments to the Chart class and calling the proper functions. It also add a new chained stacked method. """ #----------------------------------------------------------------------------- # Copyright (c) 2012 - 2014, Continuum Analytics, Inc. All rights reserved. # # Powered by the Bokeh Development Team. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- from __future__ import absolute_import, division from math import pi import pandas as pd from ..utils import cycle_colors, polar_to_cartesian from .._builder import Builder, create_and_build from ...models import ColumnDataSource, GlyphRenderer, Range1d from ...models.glyphs import AnnularWedge, Text, Wedge from ...properties import Any, Bool, Either, List #----------------------------------------------------------------------------- # Classes and functions #----------------------------------------------------------------------------- def Donut(values, cat=None, width=800, height=800, xgrid=False, ygrid=False, **kws): """ Creates a Donut chart using :class:`DonutBuilder <bokeh.charts.builder.donut_builder.DonutBuilder>` to render the geometry from values and cat. Args: values (iterable): iterable 2d representing the data series values matrix. cat (list or bool, optional): list of string representing the categories. Defaults to None. In addition the the parameters specific to this chart, :ref:`userguide_charts_generic_arguments` are also accepted as keyword parameters. Returns: a new :class:`Chart <bokeh.charts.Chart>` Examples: .. bokeh-plot:: :source-position: above from bokeh.charts import Donut, output_file, show # dict, OrderedDict, lists, arrays and DataFrames are valid inputs xyvalues = [[2., 5., 3.], [4., 1., 4.], [6., 4., 3.]] donut = Donut(xyvalues, ['cpu1', 'cpu2', 'cpu3']) output_file('donut.html') show(donut) """ return create_and_build( DonutBuilder, values, cat=cat, width=width, height=height, xgrid=xgrid, ygrid=ygrid, **kws ) class DonutBuilder(Builder): """This is the Donut class and it is in charge of plotting Donut chart in an easy and intuitive way. Essentially, it provides a way to ingest the data, make the proper calculations and push the references into a source object. We additionally make calculations for the donut slices and angles. And finally add the needed glyphs (Wedges and AnnularWedges) taking the references from the source. """ cat = Either(Bool, List(Any), help=""" List of string representing the categories. (Defaults to None.) """) def _process_data(self): """Take the chart data from self._values. It calculates the chart properties accordingly (start/end angles). Then build a dict containing references to all the calculated points to be used by the Wedge glyph inside the ``_yield_renderers`` method. """ dd = dict(zip(self._values.keys(), self._values.values())) self._df = df = pd.DataFrame(dd) self._groups = df.index = self.cat df.columns = self._values.keys() # Get the sum per category aggregated = df.T.sum() # Get the total (sum of all categories) self._total_units = total = aggregated.sum() radians = lambda x: 2*pi*(x/total) angles = aggregated.map(radians).cumsum() end_angles = angles.tolist() start_angles = [0] + end_angles[:-1] colors = cycle_colors(self.cat, self.palette) self.set_and_get("", "colors", colors) self.set_and_get("", "end", end_angles) self.set_and_get("", "start", start_angles) def _set_sources(self): """Push the Donut data into the ColumnDataSource and calculate the proper ranges. """ self._source = ColumnDataSource(self._data) self.x_range = Range1d(start=-2, end=2) self.y_range = Range1d(start=-2, end=2) def draw_central_wedge(self): """Draw the central part of the donut wedge from donut.source and its calculated start and end angles. """ glyph = Wedge( x=0, y=0, radius=1, start_angle="start", end_angle="end", line_color="white", line_width=2, fill_color="colors" ) yield GlyphRenderer(data_source=self._source, glyph=glyph) def draw_central_descriptions(self): """Draw the descriptions to be placed on the central part of the donut wedge """ text = ["%s" % cat for cat in self.cat] x, y = polar_to_cartesian(0.7, self._data["start"], self._data["end"]) text_source = ColumnDataSource(dict(text=text, x=x, y=y)) glyph = Text( x="x", y="y", text="text", text_align="center", text_baseline="middle" ) yield GlyphRenderer(data_source=text_source, glyph=glyph) def draw_external_ring(self, colors=None): """Draw the external part of the donut wedge from donut.source and its related descriptions """ if colors is None: colors = cycle_colors(self.cat, self.palette) first = True for i, (cat, start_angle, end_angle) in enumerate(zip( self.cat, self._data['start'], self._data['end'])): details = self._df.ix[i] radians = lambda x: 2*pi*(x/self._total_units) angles = details.map(radians).cumsum() + start_angle end = angles.tolist() + [end_angle] start = [start_angle] + end[:-1] base_color = colors[i] #fill = [ base_color.lighten(i*0.05) for i in range(len(details) + 1) ] fill = [base_color for i in range(len(details) + 1)] text = [rowlabel for rowlabel in details.index] x, y = polar_to_cartesian(1.25, start, end) source = ColumnDataSource(dict(start=start, end=end, fill=fill)) glyph = AnnularWedge( x=0, y=0, inner_radius=1, outer_radius=1.5, start_angle="start", end_angle="end", line_color="white", line_width=2, fill_color="fill" ) yield GlyphRenderer(data_source=source, glyph=glyph) text_angle = [(start[i]+end[i])/2 for i in range(len(start))] text_angle = [angle + pi if pi/2 < angle < 3*pi/2 else angle for angle in text_angle] if first and text: text.insert(0, '') offset = pi / 48 text_angle.insert(0, text_angle[0] - offset) start.insert(0, start[0] - offset) end.insert(0, end[0] - offset) x, y = polar_to_cartesian(1.25, start, end) first = False data = dict(text=text, x=x, y=y, angle=text_angle) text_source = ColumnDataSource(data) glyph = Text( x="x", y="y", text="text", angle="angle", text_align="center", text_baseline="middle" ) yield GlyphRenderer(data_source=text_source, glyph=glyph) def _yield_renderers(self): """Use the AnnularWedge and Wedge glyphs to display the wedges. Takes reference points from data loaded at the ColumnDataSurce. """ # build the central round area of the donut renderers = [] renderers += self.draw_central_wedge() # write central descriptions renderers += self.draw_central_descriptions() # build external donut ring renderers += self.draw_external_ring() return renderers
bsd-3-clause
PaulGrimal/peach
tutorial/neural-networks/self-organizing-maps.py
6
2858
################################################################################ # Peach - Computational Intelligence for Python # Jose Alexandre Nalon # # This file: tutorial/self-organizing-maps.py # Extended example on self-organizing maps ################################################################################ # We import numpy for arrays and peach for the library. Actually, peach also # imports the numpy module, but we want numpy in a separate namespace. We will # also need the random module: from numpy import * import random import peach as p # A self-organizing map has the ability to automatically recognize and classify # patterns. This tutorial shows graphically how this happens. We have a set of # points in the cartesian plane, each coordinate obtained from a central point # plus a random (gaussian, average 0, small variance) shift in some direction. # We use this set to build the network. # First, we create the training set: train_size = 300 centers = [ array([ 1.0, 0.0 ], dtype=float), array([ 1.0, 1.0 ], dtype=float), array([ 0.0, 1.0 ], dtype=float), array([-1.0, 1.0 ], dtype=float), array([-1.0, 0.0 ], dtype=float) ] xs = [ ] for i in range(train_size): x1 = random.gauss(0.0, 0.1) x2 = random.gauss(0.0, 0.1) xs.append(centers[i%5] + array([ x1, x2 ], dtype=float)) # Since we are working on the plane, each example and each neuron will have two # coordinates. We will use five neurons (since we have five centers). The # self-organizing map is created by the line below. Our goal is to show how the # weights converge to the mass center of the point clouds, so we initialize the # weights to show it: nn = p.SOM((5, 2)) for i in range(5): nn.weights[i, 0] = 0.3 * cos(i*pi/4) nn.weights[i, 1] = 0.3 * sin(i*pi/4) # We use these lists to track the variation of each neuron: wlog = [ [ nn.weights[0] ], [ nn.weights[1] ], [ nn.weights[2] ], [ nn.weights[3] ], [ nn.weights[4] ] ] # Here we feed and update the network. We could use the ``train`` method, but # we want to track the weights: for x in xs: y = nn(x) nn.learn(x) wlog[y].append(array(nn.weights[y])) # If the system has the plot package matplotlib, this tutorial tries to plot # and save the convergence of synaptic weights and error. The plot is saved in # the file ``self-organizing-maps.png``. try: from matplotlib import * from matplotlib.pylab import * figure(1).set_size_inches(8, 4) a1 = axes([ 0.125, 0.10, 0.775, 0.8 ]) a1.hold(True) for x in xs: plot( [x[0]], [x[1]], 'ko') for w in wlog: w = array(w[1:]) plot( w[:, 0], w[:, 1], '-x') savefig("self-organizing-maps.png") except ImportError: print "After %d iterations:" % (train_size,) print nn.weights
lgpl-2.1
openconnectome/m2g
MR-OCP/mrcap/lcc.py
2
11171
# Copyright 2014 Open Connectome Project (http://openconnecto.me) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ''' Created on Mar 12, 2012 @author: dsussman ''' import pyximport; pyximport.install() import numpy as np from scipy import sparse as sp import mrcap.roi as roi import mrcap.fibergraph as fibergraph import zindex from scipy.io import loadmat, savemat from collections import Counter #from mayavi import mlab # DM - commented out import itertools as itt # from matplotlib import pyplot as plt # DM - commented out import mrcap.fa as fa #import mprage # DM - commented out import argparse import os class ConnectedComponent(object): vertexCC = None ccsize = None ncc = 0 n = 0 def __init__(self,G=None, fn=None): if G is not None: self.get_from_fiber_graph(G) elif fn is not None: self.load_from_file(fn) def get_from_fiber_graph(self,G): self.ncc,vertexCC = sp.cs_graph_components(G+G.transpose()) self.n = vertexCC.shape[0] noniso = np.nonzero(np.not_equal(vertexCC,-2))[0] cccounter = Counter(vertexCC[noniso]) cc_badLabel,_ = zip(*cccounter.most_common()) cc_dict = dict(zip(cc_badLabel, np.arange(self.ncc)+1)) cc_dict[-2] = 0 self.vertexCC = np.array([cc_dict[v] for v in vertexCC]) self.ccsize = Counter(vertexCC) def save(self,fn, suffix=True): if suffix: np.save(fn+'_concomp.npy',sp.lil_matrix(self.vertexCC)) else: np.save(fn,sp.lil_matrix(self.vertexCC)) def load_from_file(self,fn): self.vertexCC = np.load(fn).item().toarray() self.n = self.vertexCC.shape[1] self.vertexCC = self.vertexCC.reshape(self.n) def induced_subgraph(self, G, cc=1): incc = np.equal(self.vertexCC,cc).nonzero()[0] return G[:,incc][incc,:] def __getitem__(self,key): if type(key) is int: return self.get_cc(key) elif type(key) is tuple: return self.get_coord_cc(key) def get_cc(self,v): return self.vertexCC[v] def get_coord_cc(self,xyz): return self.get_cc(zindex.XYZMorton(xyz)) def get_3d_cc(self,shape): """Takes a shape which is the shape of the new 3d image and 'colors' the image by connected component Input ===== shape -- 3-tuple Output ====== cc3d -- array of with shape=shape. colored so that ccz[x,y,z]=vcc[i] where x,y,z is the XYZ coordinates for Morton index i """ cc3d = np.NaN*np.zeros(shape) allCoord = itt.product(*[xrange(sz) for sz in shape]) [cc3d.itemset((xyz), self.vertexCC[zindex.XYZMorton(xyz)]) for xyz in allCoord if not self.vertexCC[zindex.XYZMorton(xyz)]==0]; return cc3d def get_coords_for_lccs(self, ncc): """Computes coordinates for each voxel in the top ncc connected components""" inlcc = (np.less_equal(self.vertexCC,ncc)*np.greater(self.vertexCC,0)).nonzero()[0] coord = np.array([zindex.MortonXYZ(v) for v in inlcc]) return np.concatenate((coord,self.vertexCC[inlcc][np.newaxis].T),axis=1) def _load_fibergraph(roi_fn, mat_fn): """Load fibergraph from roi_fn and mat_fn""" roix = roi.ROIXML(roi_fn+'.xml') rois = roi.ROIData(roi_fn+'.raw', roix.getShape()) fg = fibergraph.FiberGraph(roix.getShape(),rois,[]) fg.loadFromMatlab('fibergraph', mat_fn) return fg def cc_for_each_brain(graphDir, roiDir, ccDir, figDir): """Go through the directory graphDir and find the connected components Saves the all connected component info in ccDir and saves some 3d-pics into figDir If figDir is None then it does not save """ fiberSfx = '_fiber.mat' roiSfx = '_roi' brainFiles = [fn.split('_')[0] for fn in os.listdir(graphDir)] for brainFn in brainFiles: print "Processing brain "+brainFn fg = _load_fibergraph(roiDir+brainFn+roiSfx,graphDir+brainFn+fiberSfx) print 'Processing connected components' vcc = ConnectedComponent(fg.graph) vcc.save(ccDir+brainFn) print 'ncc='+repr(vcc.ncc) if figDir: save_figures(vcc.get_coords_for_lccs(10), figDir+brainFn) del fg ''' Created on June 29, 2012 @author: dmhembe1 Determine lcc on a single big graph a provided my a remote user This is for use in the one-click processing pipeline to be found at http://www.openconnecto.me/STUB ''' def process_single_brain(graph_fn, lccOutputFileName): print "Computint LCC for single brain... " vcc = ConnectedComponent(loadmat(graph_fn)['fibergraph']) if not os.path.exists(os.path.dirname(lccOutputFileName)): print "Creating lcc directory %s" % os.path.dirname(lccOutputFileName) os.makedirs(os.path.dirname(lccOutputFileName)) lcc = sp.lil_matrix(vcc.vertexCC) np.save(lccOutputFileName, lcc) # save as .npy return lcc def get_slice(img3d, s, xyz): if xyz=='xy': return img3d[:,:,s] if xyz=='xz': return img3d[:,s,::-1].T if xyz=='yz': return img3d[s,::-1,::-1].T print 'Not a valid view' def show_overlay(img3d, cc3d, ncc=10, s=85, xyz = 'xy',alpha=.8): """Shows the connected components overlayed over img3d Input ====== img3d -- 3d array cc3d -- 3d array ( preferably of same shape as img3d, use get_3d_cc(...) ) ncc -- where to cut off the color scale s -- slice to show xyz -- which projection to use in {'xy','xz','yz'} """ cc = get_slice(cc3d,s,xyz) img = get_slice(img3d,s,xyz) notcc = np.isnan(cc) incc = np.not_equal(notcc,True) img4 = plt.cm.gray(img/np.nanmax(img)) if ncc is not np.Inf: cc = plt.cm.jet(cc/float(ncc)) else: cc = plt.cm.jet(np.log(cc)/np.log(np.nanmax(cc))) cc[notcc,:]=img4[notcc,:] cc[incc,3] = 1-img[incc]/(2*np.nanmax(img)) plt.imshow(cc) #if ncc is not np.Inf: # plt.imshow(cc,cmap=plt.cm.jet,clim=(1,ncc)) #else: # plt.imshow(np.log(cc),cmap=plt.cm.jet) #plt.imshow(img,alpha=alpha,cmap=plt.cm.gray) def save_fa_overlay(faDir, ccDir, figDir, slist, orientationList): brainFiles = [fn.split('_')[0] for fn in os.listdir(ccDir)] f = plt.figure(); for bfn in brainFiles: vcc = ConnectedComponent(fn=ccDir+bfn+'_concomp.npy') fax = fa.FAXML(faDir+bfn+'_fa.xml') fas = fa.FAData(faDir+bfn+'_fa.raw',fax.getShape()) cc3d = vcc.get_3d_cc(fax.getShape()) for view,s,xyz in zip(np.arange(len(slist)),slist,orientationList): show_overlay(fas.data,cc3d,np.Inf,s,xyz,.5) plt.savefig(figDir+bfn+'_ccfaOverlay_view'+repr(view)+'.pdf',) plt.clf() plt.close(f) def save_overlay(faDir, mprDir, ccDir, figDir, slist, orientationList): brainFiles = [fn.split('_')[0] for fn in os.listdir(ccDir)] f = plt.figure(figsize=(14,9)); for bfn in brainFiles: vcc = ConnectedComponent(fn=ccDir+bfn+'_concomp.npy') fax = fa.FAXML(faDir+bfn+'_fa.xml') fas = fa.FAData(faDir+bfn+'_fa.raw',fax.getShape()) mpx = mprage.MPRAGEXML(mprDir+'mprage_'+bfn+'_ss_crop.xml') mpd = mprage.MPRAGEData(mprDir+'mprage_'+bfn+'_ss_crop.raw',mpx.getShape()) cc3d = vcc.get_3d_cc(fax.getShape()) for view,s,xyz in zip(np.arange(len(slist)),slist,orientationList): plt.clf() plt.subplot(221); plt.title('FA Overlay') show_overlay(fas.data,cc3d,np.Inf,s,xyz,.5) plt.subplot(222); plt.title('FA Original; '+bfn+', '+xyz+'-slice '+repr(s)) plt.imshow(get_slice(fas.data,s,xyz),cmap=plt.cm.gray) plt.colorbar() plt.subplot(223); plt.title('MPRAGE Overlay') show_overlay(mpd.data,cc3d,np.Inf,s,xyz,.5) plt.subplot(224); plt.title('MPRAGE Original') plt.imshow(get_slice(mpd.data,s,xyz),cmap=plt.cm.gray) plt.colorbar() #plt.tight_layout() plt.savefig(figDir+bfn+'_ccfaOverlay_view'+repr(view)+'.pdf') plt.close(f) ''' def save_figures(coord, fn): """Saves 3 images which are 3d color representations of the coordinates in coord Input ===== coord -- an nx4 array of x,y,z coordinates and another scalar that gives color fn -- save filename prefix""" x,y,z,c = np.hsplit(coord,4) f = mlab.figure() mlab.points3d(x,y,z,c, mask_points=50, scale_mode='none',scale_factor=2.0) mlab.view(0,180) mlab.savefig(fn+'_view0,180.png',figure=f,magnification=4) mlab.view(0,90) mlab.savefig(fn+'_view0,90.png',figure=f,magnification=4) mlab.view(90,90) mlab.savefig(fn+'_view90,90.png',figure=f,magnification=4) mlab.close(f) ''' def get_3d_cc(vcc,shape): """Takes an array vcc and shape which is the shape of the new 3d image and 'colors' the image by connected component For some reason this is 3 times as fast as the same thing in the ConnectedComponet class ? Input ===== vcc 1d array shape 3tuple Output ====== cc3d array of with shape=shape. colored so that ccz[x,y,z]=vcc[i] where x,y,z is the XYZ coordinates for Morton index i """ cc3d = np.NaN*np.zeros(shape) allCoord = itt.product(*[xrange(sz) for sz in shape]) [cc3d.itemset((xyz), vcc[zindex.XYZMorton(xyz)]) for xyz in allCoord if not vcc[zindex.XYZMorton(xyz)]==0]; return cc3d def main (): parser = argparse.ArgumentParser(description='Draw the ROI map of a brain.') parser.add_argument('roixmlfile', action="store") parser.add_argument('roirawfile', action="store") parser.add_argument('fibergraphfile', action="store") parser.add_argument('ccfile', action="store") result = parser.parse_args() roix = roi.ROIXML(result.roixmlfile) rois = roi.ROIData(result.roirawfile, roix.getShape()) fg = fibergraph.FiberGraph(roix.getShape(),rois,[]) fg.loadFromMatlab('fibergraph', result.fibergraphfile) vcc = ConnectedComponent(G=fg.graph) vcc.save(results.ccfile) if __name__=='__main__': # Added for -h flag # DM parser = argparse.ArgumentParser(description="Largest connected component generator") result = parser.parse_args() graphDir = '/mnt/braingraph1data/projects/MRN/graphs/biggraphs/' roiDir = '/mnt/braingraph1data/projects/will/mar12data/roi/' ccDir = '/data/biggraphs/connectedcomp/' figDir = '/home/dsussman/Dropbox/Figures/DTMRI/lccPics/' cc_for_each_brain(graphDir, roiDir, ccDir, figDir)
apache-2.0
LEX2016WoKaGru/pyClamster
examples/clustering/cloud_clustering.py
1
3075
# -*- coding: utf-8 -*- """ Created on 13.06.16 Created for pyclamster @author: Tobias Sebastian Finn, tobias.sebastian.finn@studium.uni-hamburg.de Copyright (C) {2016} {Tobias Sebastian Finn} This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. """ # System modules import pickle import warnings import glob import os import time # External modules import numpy as np import scipy.misc import scipy.ndimage from sklearn.cluster import MiniBatchKMeans from sklearn.preprocessing import StandardScaler from skimage.feature import match_template from skimage.segmentation import random_walker from skimage.morphology import watershed from skimage.feature import peak_local_max from skimage import morphology # Internal modules from pyclamster import Image, Labels from pyclamster.matching.cloud import Cloud, SpatialCloud from pyclamster.clustering.preprocess import LCN, ZCA from pyclamster.clustering.kmeans import KMeans from pyclamster.functions import localBrightness, rbDetection warnings.catch_warnings() warnings.filterwarnings('ignore') BASE_DIR = os.path.dirname(os.path.dirname(os.path.dirname(__file__))) image_directory = os.path.join(BASE_DIR, "examples", "images", 'wettermast') trained_models = os.path.join(BASE_DIR, "data") good_angle = 45 center = int(1920/2) good_angle_dpi = int(np.round(1920 / 180 * good_angle)) denoising_ratio = 10 all_images = glob.glob(os.path.join(image_directory, "Image_*.jpg")) predictor = pickle.load(open(os.path.join(trained_models, "kmeans.pk"), "rb")) for image_path in all_images: image = Image(image_path) image.cut([center - good_angle_dpi, center-good_angle_dpi, center+good_angle_dpi, center + good_angle_dpi]).save('test.jpg') image.data = LCN(size=(50,50,3), scale=False).fit_transform(image.data) image.data = image.data[center - good_angle_dpi:center + good_angle_dpi, center - good_angle_dpi:center + good_angle_dpi] raw_image = rbDetection(image.data) w, h = original_shape = tuple(raw_image[:, :].shape) raw_image = np.reshape(raw_image, (w * h, 1)) label = predictor.predict(raw_image) label.reshape((960, 960), replace=True) scipy.misc.imsave("cloud.png", label.labels) masks = label.getMaskStore() masks.denoise([1], 960) cloud_labels, _ = masks.labelMask([1,]) scipy.misc.imsave("labels.png", cloud_labels.labels) scipy.misc.imshow(cloud_labels.labels) cloud_store = cloud_labels.getMaskStore()
gpl-3.0
Jianlong-Peng/pytools
PMF/bin1/pls_train.py
1
8247
''' #============================================================================= # FileName: pls_train.py # Desc: # Author: jlpeng # Email: jlpeng1201@gmail.com # HomePage: # Created: 2014-08-21 14:10:24 # LastChange: 2014-08-22 13:12:34 # History: #============================================================================= ''' import sys import pickle from getopt import getopt import numpy as np try: from sklearn.cross_decomposition import PLSRegression except ImportError: from sklearn.pls import PLSRegression from sklearn.base import clone from sklearn.cross_validation import KFold train_y_file = None nijr_file = None n_comp = 0 cv = 0 verbose = False model_file = None USE_KFOLD = False def parse_arguments(argv): options,args = getopt(argv[1:], 'n:', ['try=','nijr=','cv=','verbose']) global train_y_file global nijr_file global n_comp global cv global verbose global model_file for opt,val in options: if opt == '--try': train_y_file = val elif opt == '--nijr': nijr_file = val elif opt == '-n': n_comp = int(val) assert n_comp > 0 elif opt == '--cv': cv = int(val) assert cv > 1 elif opt == '--verbose': verbose = True else: print >>sys.sderr, "Error: invalid option",opt sys.exit(1) if train_y_file is None: print >>sys.stderr, "Error: '--try' is needed" sys.exit(1) if nijr_file is None: print >>sys.stderr, "Error: '--nijr' should be given" sys.exit(1) if cv > 0: if n_comp==0: print >>sys.stderr, "Error: '-n' is needed when '--cv' is given" sys.exit(1) else: assert len(args) == 1 model_file = args[0] def exit_with_help(name): print "\nUsage:" print " %s [options] output.model"%name print "\n[options]" print " --try file: each line should be `name y-value`" print " --nijr file: generated by get_nijr.py" print " -n n_comp: specify the number of components to be used" print " if not given, then it'll be optimized using cross-validation" print " to get the number of components yielding smallest RMSE" print " --cv n: <optional>" print " do {n}-fold cross-validation" print " in this case, '-n' must be given" print " --verbose : if given, additional information will be displayed" print " e.g. the predicting result of each sample will be displayed" print " show the number of components being tested" print " ..." print "" sys.exit(1) def main(argv=sys.argv): if len(argv) < 2: exit_with_help(argv[0]) #parse options parse_arguments(argv) global train_y_file global nijr_file global n_comp global cv global verbose global model_file #read training set train_list = [] train_ys = [] inf = open(train_y_file,'r') for line in inf: if line.startswith('#'): continue name,val = line.split() train_list.append(name) train_ys.append(float(val)) inf.close() train_ys = np.asarray(train_ys) if verbose: print "train_ys.shape:",train_ys.shape #read nijr #each item `i,j,n` ==> Xs[][j*len(DC_TYPES)+i] = n inf = open(nijr_file,'r') line = inf.readline() num_DC_TYPES = int(line.split(',')[0].split('=')[-1]) num_bins = int(line.split('=')[-1]) train_Xs = np.zeros((len(train_list), num_DC_TYPES*num_bins)) count = 0 for line in inf: if line.startswith('#'): continue line = line.split() if line[0] in train_list: k = train_list.index(line[0]) for item in line[1:]: i,j,n = map(int, item.split(',')) index = j*num_DC_TYPES+i train_Xs[k, index] = n count += 1 else: print line[0],"not found in",train_y_file sys.exit(1) inf.close() if count != len(train_list): print >>sys.stderr, "Error: number of samples(%d) in %s not equal to those(%d) in %s"%(count, nijr_file, len(train_list), train_y_file) sys.exit(1) if verbose: print "train_Xs.shape:",train_Xs.shape #do cross-validation only if cv > 0: print "do %d-fold cross-validation"%cv actualY,predY = doCV(train_Xs, train_ys, n_comp, cv) mae = calcMAE(actualY,predY) rmse = calcRMSE(actualY,predY) r = calcR(actualY, predY) print "\n statistics of %d-fold CV"%cv print " MAE=%g, RMSE=%g, r=%g\n"%(mae, rmse, r) return #train PLS model if n_comp > 0: if n_comp > train_Xs.shape[1]: print "Error: the number of components specified(%d) is larger than the number of predictors(%d)"%(n_comp, train_Xs.shape[1]) sys.exit(1) print "\nPLS will be trained using %d components"%n_comp pls1 = PLSRegression(n_components=n_comp) else: n_components,best_val = search_n_components(train_Xs, train_ys, verbose) print "\nPLS will be trained using %d components, with RMSE=%g of 5-fold CV"%(n_components, best_val) pls1 = PLSRegression(n_components=n_components) pls1.fit(train_Xs,train_ys) print "\nto apply the PLS model to training set" predict_and_display(pls1, train_Xs, train_ys, train_list, verbose) #save model outf = open(model_file,'w') pickle.dump(pls1, outf) outf.close() calcMAE = lambda actualY, predictY: np.mean(np.abs(actualY-predictY)) calcRMSE = lambda actualY, predictY: np.sqrt(np.mean(np.power(actualY-predictY,2))) calcR = lambda actualY, predictY: np.corrcoef(actualY, predictY)[0][1] def predict_and_display(pls1, Xs, ys, names, verbose): predY = pls1.predict(Xs) predY = np.ndarray.flatten(predY) rmse = calcRMSE(ys, predY) mae = calcMAE(ys, predY) r = calcR(ys, predY) if verbose: print "name actualY predictY" for i in xrange(len(names)): print names[i],ys[i],predY[i] print "" print " RMSE=%g, MAE=%g, r=%g\n"%(rmse, mae, r) def search_n_components(Xs, Ys, verbose=False): best_val = 1e38 best_n = 0 if verbose: print "\nsearch for the best number of components" for i in xrange(1, Xs.shape[1]+1): if verbose: print "> to use %d components"%i, actualY,predY = doCV(Xs, Ys, i, 5) val = calcRMSE(actualY, predY) r = calcR(actualY, predY) if verbose: print " => result of 5-fold CV: RMSE=%g, r=%g"%(val,r) if val < best_val: best_val = val best_n = i if verbose: print "best_n_components=%d, best_val=%g"%(best_n, best_val) return best_n,best_val def doCV(Xs, Ys, n_components, nfold): global USE_KFOLD if USE_KFOLD: print "using KFold" kf = KFold(Xs.shape[0], n_folds=nfold, shuffle=True) else: kf = MyFold(Xs.shape[0], nfold) actualY = [] predictY = [] for train,test in kf: X_train,X_test = Xs[train],Xs[test] y_train,y_test = Ys[train],Ys[test] pls1 = PLSRegression(n_components=n_components) pls1.fit(X_train,y_train) y_test_pred = pls1.predict(X_test) actualY.extend(list(y_test)) predictY.extend(list(np.ndarray.flatten(y_test_pred))) return np.asarray(actualY), np.asarray(predictY) class MyFold: def __init__(self, length, nfolds): self.length = length self.nfolds = nfolds self.i = 0 def __iter__(self): return self def next(self): self.i += 1 if self.i > self.nfolds: raise StopIteration tr_idx = [] te_idx = [] for i in xrange(self.length): if i%(self.nfolds) == self.i-1: te_idx.append(i) else: tr_idx.append(i) return (tr_idx,te_idx) if __name__ == "__main__": main()
gpl-2.0
mikkkee/Bubble
bubble.py
1
44991
from __future__ import print_function from itertools import islice, product import logging import MDAnalysis as md import math import random import numpy as np import pandas as pd import plotly import plotly.graph_objs as go import subprocess import scipy import scipy.stats import string import time import settings class Atom(object): def __init__(self, identifier, **kwargs): self.id = identifier self.type = kwargs.get('type', None) self.element = kwargs.get('element', None) self.xyz = kwargs.get('xyz', None) self.stress = kwargs.get('stress', None) self.normal = kwargs.get('normal', False) self.distance = None self.sin_theta = None self.cos_theta = None self.sin_phi = None self.cos_phi = None self.spherical_stress = None self.voro_volume = 0 def calc_spherical_stress(self): """ Calculate spherical stress tensor from cartesian one ref: http://www.brown.edu/Departments/Engineering/Courses/En221/Notes/Polar_Coords/Polar_Coords.htm """ xx, yy, zz, xy, xz, yz = self.stress cart = np.array( [ [xx, xy, xz], [xy, yy, yz], [xz, yz, zz] ] ) # 1 for theta, the angle between xyz and z axis, 2 for phi, # angle between x axis and the projection on xy-plane sin1 = self.sin_theta cos1 = self.cos_theta sin2 = self.sin_phi cos2 = self.cos_phi conv = np.array( [ [sin1*cos2, cos1*cos2, -sin2], [sin1*sin2, cos1*sin2, -cos2], [cos1, -sin1, 0], ] ) sphe = np.dot( conv, cart.dot( np.transpose(conv) ) ) # Of format [ [rr, rTheta, rPhi], [rTheta, thetaTheta, thetaPhi], [rPhi, thetaPhi, phiPhi] ] self.spherical_stress = sphe class Box(object): PI = 3.1415926 def __init__(self, timestep=0, radius=None, use_atomic_volume=True, average_on_atom=False, **kwargs): # Current timestep. self.timestep = timestep # Maximum bubble radius in box. self.radius = radius self.count = 0 # XYZ boundaries. self.bx = kwargs.get('bx', None) self.by = kwargs.get('by', None) self.bz = kwargs.get('bz', None) # Bubble center coordinates. self._center = kwargs.get('center', None) # All atoms. self.atoms = [] # Container of atoms for each element. self._elements = {} # Container of shell stress for each element. self._shell_stress = {} self._shell_stress_r = {} self._shell_stress_theta = {} self._shell_stress_phi = { } # Container of shell atom count for each element. self.nbins = None self._shell_atoms = {} self._shell_atom_objs = [] self._shell_volumes = {} # Indicator of stats status. self._stats_finished = False self._measured = False # Dump atom coordinates to calculate voro tessellation volume self.voro_file_name = 'atom_coors' self.use_atomic_volume = use_atomic_volume self.average_on_atom = average_on_atom @property def measured(self): """Returns true if all atoms have a distance (to bubble center).""" if all([x.distance for x in self.atoms]): self._measured = True else: self._measured = False return self._measured @property def center(self): return self._center @center.setter def center(self, coor): self._center = coor self._measured = False self._stats_finished = False def combine_water_atoms(self): """ Combine H and O together into a new particle stress = S_h + S_o coor = center of mass The sequency of H and O atoms are O H H """ self._old_atoms = self.atoms self.atoms = [] self._old_atoms.sort( key=lambda x: x.id ) water = [] for atom in self._old_atoms: if atom.element not in ['H', 'O']: self.atoms.append( atom ) else: water.append(atom) if len( water ) == 3: # need to combine the 3 atoms into 1 now assert [ _ele.element for _ele in water ] == ['O', 'H', 'H'] new_stress = [a+b+c for a, b, c in zip(water[0].stress, water[1].stress, water[2].stress)] new_volume = sum( _ele.voro_volume for _ele in water ) masses = [ 16 if _ele.element == 'O' else 1 for _ele in water ] xs = [ _ele.xyz[0] for _ele in water] ys = [ _ele.xyz[ 1 ] for _ele in water ] zs = [ _ele.xyz[ 2 ] for _ele in water ] cx = sum( m*x for m,x in zip(masses, xs) ) / sum(masses) cy = sum( m * y for m, y in zip( masses, ys ) ) / sum( masses ) cz = sum( m * z for m, z in zip( masses, zs ) ) / sum( masses ) new_xyz = (cx, cy, cz) new_id = water[0].id normal = water[0].normal self.atoms.append( Atom(new_id, type=3, element='H', xyz=new_xyz, stress=new_stress, normal=normal) ) water = [] def dump_atoms_for_voro( self, length=None ): ''' Dump atom coordinates so we can calculate Voronoi tessellation using Voro++ from http://math.lbl.gov/voro++/ The input file format for voro++ is <atom id> <x> <y> <z> and output file format is <atom id> <x> <y> <z> <tessellation volume> ''' logging.info( 'Dump atom coordinates to {}'.format( self.voro_file_name ) ) fmt = '{} {} {} {}\n' if length: xmin, xmax = self.center[0] - length, self.center[0] + length ymin, ymax = self.center[1] - length, self.center[1] + length zmin, zmax = self.center[2] - length, self.center[2] + length with open( self.voro_file_name, 'w' ) as output: for atom in self.atoms: x, y, z = atom.xyz if length: if xmin <= x <= xmax and ymin<= y <= ymax and zmin <= z <= zmax: output.write( fmt.format( atom.id, x, y, z ) ) else: output.write( fmt.format( atom.id, x, y, z ) ) def voro_cmd( self, gnuplot=False, length=None ): ''' CMD to run voro++ in bash gnuplot=True will also export gnu plot file. Be careful when system is large as this file will be extremely large default to use -o to preserve the atom order. This has small memory and performance impact as the documentation says. ''' # when have length -o will not work cmd = 'voro++' if length else 'voro++ -o' fmt = cmd + ' {opts} {{xmin}} {{xmax}} {{ymin}} {{ymax}} {{zmin}} {{zmax}} {{infile}}' opts = '-g' if gnuplot else '' fmt = fmt.format( opts=opts ) if length: xmin, xmax = self.center[0] - length, self.center[0] + length ymin, ymax = self.center[1] - length, self.center[1] + length zmin, zmax = self.center[2] - length, self.center[2] + length else: xmin, xmax = self.bx ymin, ymax = self.by zmin, zmax = self.bz return fmt.format( xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, infile=self.voro_file_name) def run_voro_cmd( self, gnuplot=False, length=None ): logging.info( 'Calculating voro volumes for atoms' ) cmd = self.voro_cmd( gnuplot=gnuplot, length=length ) logging.info( "Running: {}".format( cmd )) sp = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = sp.communicate() if err: raise Exception(err) logging.info( "Finished: {}".format( cmd ) ) def read_voro_volumes( self ): voro_out = self.voro_file_name + '.vol' logging.info( 'Reading voro volumes from {}'.format( voro_out ) ) with open( voro_out, 'r' ) as volumes: idx = 0 for line in volumes: atom_id, x, y, z, vol = [ float(ele) for ele in line.split() ] atom_id = int( atom_id ) atom = self.atoms[ idx ] try: assert( atom.id == atom_id ) except Exception as e: print( atom.id, atom_id ) raise e atom.voro_volume = vol idx += 1 def calc_voro_volumes( self, gnuplot=False, length=None ): ''' Calculate voro tessellation volume using voro ''' self.dump_atoms_for_voro( length=length ) self.run_voro_cmd( gnuplot=gnuplot, length=length ) if not length: self.read_voro_volumes() def adjust_water_vol(self, ratio=(0.5, 0.25)): """ Adjust volume of H and O in water. For pure water system only """ satoms = sorted( self.atoms, key= lambda x: x.id) assert( len( satoms ) % 3 == 0 ) assert( ratio[0] + 2 * ratio[1] == 1.0) for idx in xrange( len(satoms) / 3): o = satoms[ idx * 3 ] h1 = satoms[ idx * 3 + 1 ] h2 = satoms[ idx * 3 + 2 ] vsum = sum( ele.voro_volume for ele in [o, h1, h2]) vo = ratio[0] * vsum vh = ratio[1] * vsum o.adj_vol = vo h1.adj_vol = vh h2.adj_vol = vh def set_boundary(self, bx, by, bz): """Set bx by bz together.""" self.bx = bx self.by = by self.bz = bz def add_atom(self, atom): self.atoms.append(atom) self.count += 1 # Need to run stats after new atom added. self._stats_finished = False if atom.element in self._elements: self._elements[atom.element].append(atom) else: self._elements[atom.element] = [atom] def measure(self): """Measure distance to bubble center for each atom.""" for atom in self.atoms: coor = np.array(atom.xyz) atom.distance = np.linalg.norm(coor - self.center) if atom.normal: # Calculate sin cos for theta and phi dx = coor[0] - self.center[0] dy = coor[1] - self.center[1] dz = coor[2] - self.center[2] xy_square = math.sqrt(dx*dx + dy*dy) atom.sin_theta = xy_square / atom.distance atom.cos_theta = dz / atom.distance atom.sin_phi = dy / xy_square atom.cos_phi = dx / xy_square self.calc_voro_volumes() def stats(self, dr, normal): """ System stats. Generate data for atom stats and stress stats for each element. self._shell_atoms = {} self._shell_stress = {} """ if not self.measured: raise AtomUnmeasuredError("Some atoms are unmeasuerd") self.nbins = int(math.ceil(self.radius / float(dr))) self._shell_atom_objs = [ { } for x in range( self.nbins ) ] for ele, atoms in self._elements.iteritems(): # Do stats for each element. for atom in atoms: if atom.distance < self.radius: shell_idx = int( atom.distance / dr ) self._shell_atom_objs[ shell_idx ].setdefault(ele, []).append( atom ) if normal: atom.calc_spherical_stress() self._stats_finished = True def atom_stats(self, element, dr): """Atom ratio stats inside bubble.""" if not self._stats_finished: self.stats(dr) nbins = len(self._shell_atoms[element]) bubble_atoms = {} # Init bubble atoms by copying shell atoms for ele, count in self._shell_atoms.iteritems(): bubble_atoms[ele] = [x for x in count] for i in range(1, nbins): bubble_atoms[ele][i] += bubble_atoms[ele][i - 1] bubble_atoms[ele] = np.array(bubble_atoms[ele]) return bubble_atoms[element] / sum(bubble_atoms.values()) def pressure_stats(self, elements, dr): """Average pressure stats inside bubble for species in elements.""" if not self._stats_finished: self.stats(dr) nbins = len(self._shell_stress[elements[0]]) # Calculate stress for all element in elements as whole. # Convert numpy.Array to mutable list. stress_in = [x for x in sum([self._shell_stress[ele] for ele in elements])] stress_out = [x for x in stress_in] for i in range(1, nbins): # Cumulative stress. stress_in[i] += stress_in[i-1] stress_out[nbins - 1 - i] += stress_out[nbins - i] for i in range(1, nbins): # Stress -> pressure. stress_in[i] = 0 - stress_in[i] / self.vol_sphere((i+1)*dr) / 3.0 stress_out[nbins-1-i] = 0 - stress_out[nbins-1-i] / (self.vol_sphere(self.radius) - self.vol_sphere((nbins-i-1)*dr)) / 3 # Head and tail. stress_in[0] = 0 - stress_in[0] / self.vol_sphere(dr) / 3 stress_out[nbins - 1] = 0 - stress_out[nbins - 1] / (self.vol_sphere(self.radius) - self.vol_sphere((nbins - 1)*dr)) / 3 return {'in': stress_in, 'out': stress_out} def shell_pressure_stats(self, elements, dr, normal=False): """Average pressure of elements inside shell.""" self.stats(dr, normal=normal) print( "NNNNNumber of bins: {}".format(self.nbins) ) if not normal: # atom.stress has 3 elements, xx yy zz components if self.use_atomic_volume: if self.average_on_atom: # atomic volume is used, pressure is calculated for each atom and then averaged together stress = [] for idx, shell_atoms in enumerate(self._shell_atom_objs): pressure_raw = {} for element, atoms in shell_atoms.iteritems(): if element in elements: # P = -(S_xx + S_yy + S_zz)/3/V pressure_raw[element] = [ - sum(atom.stress)/atom.voro_volume/3.0 for atom in atoms ] # Average pressure = sum(Pressure)/n_atoms n_atoms = sum( len(_ele) for _ele in pressure_raw.values() ) if n_atoms != 0: pressure_ave = sum( sum(_ele) for _ele in pressure_raw.values() ) / n_atoms else: pressure_ave = 0 stress.append(pressure_ave) return stress else: # pressure is calculated as sum(atom stress in a shell) / sum(atom volume in a shell) stress = [] for idx, shell_atoms in enumerate( self._shell_atom_objs ): stress_all = 0 volume_all = 0 for element, atoms in shell_atoms.iteritems(): if element in elements: stress_all += sum( sum(atom.stress[:3]) for atom in atoms ) volume_all += sum( atom.voro_volume for atom in atoms ) if volume_all != 0: pressure_ave = - stress_all / 3.0 / volume_all else: pressure_ave = 0 stress.append( pressure_ave ) return stress else: # use shell volume stress = [ ] for idx, shell_atoms in enumerate( self._shell_atom_objs ): r_min, r_max = idx * dr, (idx + 1)*dr stress_all = 0 volume_all = self.vol_sphere(r_max) - self.vol_sphere(r_min) for element, atoms in shell_atoms.iteritems(): if element in elements: stress_all += sum( sum( atom.stress[:3] ) for atom in atoms ) pressure_ave = - stress_all / 3.0 / volume_all stress.append( pressure_ave ) return stress else: # normal pressure, atom.spherical_stress has 6 items: xx, yy, zz, xy, xz, yz. stress_r = [] stress_theta = [] stress_phi = [] if self.use_atomic_volume: if self.average_on_atom: # Pressure is calculate as average of pressure on each atom for idx, shell_atoms in enumerate( self._shell_atom_objs ): pressure_r_raw = {} pressure_theta_raw = {} pressure_phi_raw = {} for element, atoms in shell_atoms.iteritems(): if element in elements: pressure_r_raw[element] = [ - atom.spherical_stress[0][0] / atom.voro_volume for atom in atoms ] pressure_theta_raw[element] = [ - atom.spherical_stress[1][1] / atom.voro_volume for atom in atoms ] pressure_phi_raw[element] = [ - atom.spherical_stress[2][2] / atom.voro_volume for atom in atoms ] n_atoms = sum( len( _ele ) for _ele in pressure_r_raw.values() ) if n_atoms != 0: pressure_r_ave = sum( sum(_ele) for _ele in pressure_r_raw.values() ) / n_atoms pressure_theta_ave = sum( sum(_ele) for _ele in pressure_theta_raw.values() ) / n_atoms pressure_phi_ave = sum( sum(_ele) for _ele in pressure_phi_raw.values() ) / n_atoms else: pressure_r_ave = pressure_theta_ave = pressure_phi_ave = 0 stress_r.append( pressure_r_ave ) stress_theta.append( pressure_theta_ave ) stress_phi.append( pressure_phi_ave ) return { 'r': stress_r, 'theta': stress_theta, 'phi': stress_phi, } else: # Pressure is calculated as sum(stress)/sum(atomic_volume) for idx, shell_atoms in enumerate( self._shell_atom_objs ): stress_r_all = 0 stress_theta_all = 0 stress_phi_all = 0 volume_all = 0 for element, atoms in shell_atoms.iteritems(): if element in elements: stress_r_all += sum( atom.spherical_stress[0][0] for atom in atoms ) stress_theta_all += sum( atom.spherical_stress[1][1] for atom in atoms ) stress_phi_all += sum( atom.spherical_stress[2][2] for atom in atoms ) volume_all += sum( atom.voro_volume for atom in atoms ) if volume_all != 0: pressure_r_ave = - stress_r_all / volume_all pressure_theta_ave = - stress_theta_all / volume_all pressure_phi_ave = - stress_phi_all / volume_all else: pressure_r_ave = pressure_theta_ave = pressure_phi_ave = 0 stress_r.append( pressure_r_ave ) stress_theta.append( pressure_theta_ave ) stress_phi.append( pressure_phi_ave ) return { 'r': stress_r, 'theta': stress_theta, 'phi': stress_phi, } else: # Use shell volume for idx, shell_atoms in enumerate( self._shell_atom_objs ): r_min, r_max = idx * dr, (idx+1) * dr stress_r_all = 0 stress_theta_all = 0 stress_phi_all = 0 volume_all = self.vol_sphere(r_max) - self.vol_sphere(r_min) for element, atoms in shell_atoms.iteritems(): if element in elements: stress_r_all += sum( atom.spherical_stress[ 0 ][ 0 ] for atom in atoms ) stress_theta_all += sum( atom.spherical_stress[ 1 ][ 1 ] for atom in atoms ) stress_phi_all += sum( atom.spherical_stress[ 2 ][ 2 ] for atom in atoms ) pressure_r_ave = - stress_r_all / volume_all pressure_theta_ave = - stress_theta_all / volume_all pressure_phi_ave = - stress_phi_all / volume_all stress_r.append( pressure_r_ave ) stress_theta.append( pressure_theta_ave ) stress_phi.append( pressure_phi_ave ) return { 'r': stress_r, 'theta': stress_theta, 'phi': stress_phi, } def pressure_between(self, rlow, rhigh): """Return the average pressure and number of atoms between rlow and rhigh.""" stress = 0 count = 0 for atom in self.atoms: if atom.distance > rlow and atom.distance <= rhigh: count += 1 stress += sum(atom.stress) volume = self.vol_sphere(rhigh) - self.vol_sphere(rlow) return stress / volume / 3, count def shell_density(self, elements, mole, dr): """Shell density for species inside elements. mole unit - g/cm^3 dr unit - angstrom """ # Usually density_dr is different from stats_dr. self.stats(dr) # Avogadro constant. Modified by coefficient used to # convert angstrom^3 to cm^3. NA = 6.022 / 10 nbins = len(self._shell_atoms[elements[0]]) # Calculate atom count for all species in elements as whole. # Convert numpy.Array to mutable list. count = [x for x in sum([self._shell_atoms[ele] for ele in elements])] # Calculate density. for i in range(nbins): r_low = i * dr r_high = r_low + dr # Volume unit is Angstrom^3. volume = self.vol_sphere(r_high) - self.vol_sphere(r_low) count[i] = count[i] / NA / volume return count def bubble_density(self, elements, mole, dr): pass def xyz_density(self, elements, mole, dx): """Density distribution along x, y, and z inside box.""" # Avogadro constant. Modified by coefficient used to # convert angstrom^3 to cm^3. NA = 6.022 / 10 nx = int(math.ceil((self.bx[1] - self.bx[0]) / dx)) ny = int(math.ceil((self.by[1] - self.by[0]) / dx)) nz = int(math.ceil((self.bz[1] - self.bz[0]) / dx)) dist = {} dist['x'] = [0 for x in range(nx)] dist['y'] = [0 for y in range(ny)] dist['z'] = [0 for z in range(nz)] for ele in elements: # Count atoms. for atom in self._elements[ele]: dist['x'][int(atom.xyz[0] / dx)] += 1 dist['y'][int(atom.xyz[1] / dx)] += 1 dist['z'][int(atom.xyz[2] / dx)] += 1 volx = (self.by[1] - self.by[0]) * (self.bz[1] - self.bz[0]) * dx voly = (self.bx[1] - self.bx[0]) * (self.bz[1] - self.bz[0]) * dx volz = (self.by[1] - self.by[0]) * (self.bx[1] - self.bx[0]) * dx for i in range(nx): # Calculate density. dist['x'][i] = dist['x'][i] / NA / volx dist['y'][i] = dist['y'][i] / NA / voly dist['z'][i] = dist['z'][i] / NA / volz return dist def vol_sphere(self, r): """Volume of sphere with radius r.""" return 4.0/3 * Box.PI * (r ** 3) def volume(self): """ Box volume """ return (self.bx[1] - self.bx[0]) * (self.by[1] - self.by[0]) * (self.bz[1] - self.bz[0]) class Trajectory( object ): '''Gas molecule trajectory class''' def __init__( self, pdbPath, xtcPath ): self.universe = md.Universe( pdbPath, xtcPath ) self.set_density_params() @property def n_frames( self ): return self.universe.trajectory.n_frames @property def frame( self ): return self.universe.trajectory.frame def set_density_params(self, low=0.4, high=0.5, length=60 ): ''' Generate grid with length of dnesity_grid_length at x,y,z directions. Grids whose density are between low * max_density and high * max_density will be used for radius calculation. d ''' self.density_low = low self.density_high = high self.density_grid_length = length def set_frame( self, frame ): self.universe.trajectory[ frame ] def radius( self, frame ): ''' Bubble radius at one frame. Method: 1. Load the snapshot at frame 2. Load x, y, z coordinates 3. Calculate density grid mesh at grid points 4. Filter the shell grids with density between low * max density and high * max density 5. Calculate the average radius ''' start = time.clock() self.set_frame( frame ) # Load x, y, z coordinates data = pd.DataFrame( list(self.universe.coord), columns=['x','y','z']) x = data[ 'x' ].values y = data[ 'y' ].values z = data[ 'z' ].values # Density grid xyz = scipy.vstack( [ x, y, z ] ) kde = scipy.stats.gaussian_kde( xyz ) xmin, ymin, zmin = x.min(), y.min(), z.min() xmax, ymax, zmax = x.max(), y.max(), z.max() NI = complex( imag=self.density_grid_length) xi, yi, zi = scipy.mgrid[ xmin:xmax:NI, ymin:ymax:NI, zmin:zmax:NI ] coords = scipy.vstack([item.ravel() for item in [xi, yi, zi]]) density = kde(coords).reshape(xi.shape) # Filter density grid density_max = density.max() density_low = self.density_low * density_max density_high = self.density_high * density_max xyzs = [] N = self.density_grid_length for idx, idy, idz in product( xrange(N), xrange(N), xrange(N) ): if density_low < density[ idx, idy, idz ] <= density_high: xyzs.append( [ xi[ idx, idy, idz ], yi[ idx, idy, idz ], zi[ idx, idy, idz ] ] ) xyzs = np.array( xyzs ) # Average radius center = xyzs.mean( axis=0 ) rs = [] for xyz_ele in xyzs: rs.append( np.linalg.norm( center - xyz_ele ) ) duration = time.clock() - start print( "Radius for frame {} calculated in {:.2f} seconds".format( frame, duration ) ) return center, scipy.mean( rs ) def radius_for_frames( self, start, end, step=1 ): ret = [] for frame in xrange( start, end, step ): center, radius = self.radius( frame ) ret.append( [ frame, radius ] ) return ret def all_radius( self ): return self.radius_for_frames( 0, self.n_frames, 1 ) def regression( self, radiusList ): ''' Input (frame, radius) lists and do linear regression on the data ''' ts = [ ele[0] for ele in radiusList ] rs = [ ele[1] for ele in radiusList ] slope, intercept, r_value, p_value, std_err = scipy.stats.linregress( ts, rs ) return slope, intercept, r_value, p_value, std_err def plot_radius( self, rs, notebook=False ): ''' plot dots and linear regression results ''' xs = [ ele[0] for ele in rs ] ys = [ ele[1] for ele in rs ] x_min = min( xs ) x_max = max( xs ) x_min = x_min - ( x_max - x_min ) * 0.05 x_max = x_max + ( x_max - x_min ) * 0.05 slope, intercept, r_value, p_value, std_err = self.regression( rs ) xs_line = [ x_min ] + xs + [ x_max ] ys_line = [ ele * slope + intercept for ele in xs_line ] # Scatter plot scatter = go.Scatter( x = [ele[0] for ele in rs], y = [ele[1] for ele in rs], mode = 'markers', name = 'Radius' ) reg_line = go.Scatter( x = xs_line, y = ys_line, mode='lines', name='y={:.4f}x+{:.4f}, p-value={:.2f}, StdErr={:.3f}'.format(slope, intercept, p_value, std_err) ) data = go.Data([scatter, reg_line]) plot = plotly.offline.iplot if notebook else plotly.offline.plot plot( { 'data': data, 'layout': go.Layout( title='Radius vs Frame', xaxis={'title':'Frame'}, yaxis={'title':'Radius'} ) } ) def flux_info( self, start, end, step=1 ): ''' Flux info for frames [start:end:step]. Info are, for each step, nframe, center, radius, n atoms inside sphere ''' info = [] for nframe in xrange( start, end, step ): center, radius = self.radius( nframe ) # Selector for AtomGroup in MDAnalysis selector = 'point ' + ' '.join( str( ele ) for ele in list( center ) + [ radius ] ) # Explicitly set frame here self.set_frame( nframe ) atoms = self.universe.select_atoms( selector ) natoms = atoms.n_atoms info.append( (nframe, center, radius, natoms) ) return info ################################################# ################# Exceptions #################### ################################################# class AtomUnmeasuredError(Exception): pass ################################################ ################## Functions ################### ################################################ def next_n_lines(file_opened, N, strip='right'): strip_dic = { 'right': string.rstrip, 'left': string.lstrip, 'both': string.strip } if strip: return [strip_dic[strip](x) for x in islice(file_opened, N)] else: return list(islice(file_opened, N)) def read_stress(stress_file, N=settings.NLINES, normalPressure=False): """ Read dump file into a list of atoms, which have type / coordinates / stresses info stored as Atom properties. Dump file data format: atom_id atom_type x y z stress_x stress_y stress_z """ atoms = {} count = 0 data = next_n_lines(stress_file, N)[9:] while data: atoms[count] = [] for line in data: line = line.strip().split() identifier = int(line[0]) atom_type = int(line[1]) element = settings.ELEMENTS[atom_type] xyz = tuple([float(x) for x in line[2:5]]) if normalPressure: # To calculate normal pressure, we need xx, yy, zz, xy, xz, yz stress = tuple([float(x) for x in line[5:11]]) else: # To calculate pressure, we need xx, yy, zz stress = tuple([float(x) for x in line[5:8]]) atom = Atom(identifier, type=atom_type, element=element, xyz=xyz, stress=stress, normal=normalPressure) atoms[count].append(atom) # Process next N lines. data = next_n_lines(stress_file, N)[9:] count += 1 return atoms def read_pdb(filename): """ Read pdb file as a list of atoms """ logging.info( "Reading {}".format(filename) ) atoms_lines = [] with open(filename, 'r') as pdbfile: for line in pdbfile: if line.startswith('CRYST'): cryst_line = line elif line.startswith('ATOM'): atoms_lines.append( line ) x, y, z = [float(ele) for ele in cryst_line.strip().split()[1:4] ] atoms = [] for line in atoms_lines: data = line.strip().split() idx = int(data[1]) element = data[2][:2] coor = [ float(ele) for ele in data[5:8] ] atoms.append( Atom(identifier=idx, element=element, xyz=coor) ) return atoms, (x,y,z) def combine_water(atoms, remove=True): """ Combine water atoms """ combined = [] ne = [ ele for ele in atoms if ele.element == 'Ne' ] wat = [ele for ele in atoms if ele.element != 'Ne' ] logging.info("Before:: {} Ne, {} Water atoms".format(len(ne), len(wat))) idx_wat = len(ne) + 1 comb_wat = [] for idx in range( len( wat ) / 3 ): coor1 = np.array( wat[ idx * 3 ].xyz ) coor2 = np.array( wat[ idx * 3 + 1 ].xyz ) coor3 = np.array( wat[ idx * 3 + 2 ].xyz ) coor = (coor1 + coor2 + coor3) / 3. comb_wat.append(Atom(identifier=idx_wat, element='W', xyz=coor)) idx_wat += 1 if remove: selected = random.sample(comb_wat, len(comb_wat)/4) else: selected = comb_wat n_ne = len(ne) for idx in xrange(len(selected)): selected[idx].id = idx + 1 + n_ne logging.info("After:: {} Ne, {} Water atoms".format(len(ne), len(selected))) return ne + selected def write_lammps_data(atoms, xyz, filename): """ LAMMPS data format: atom idx, molecule idx, atom type, x, y, z, """ atom_types = {'Ne':1, 'W':2} x, y, z = xyz header = "LAMMPS bubble\n\n" \ "{n_atoms} atoms\n\n" \ "{n_types} atom types\n" \ "0 bond types\n" \ "0 angle types\n\n" \ "0 {x} xlo xhi\n0 {y} ylo yhi\n0 {z} zlo zhi\n\n"\ "Atoms\n\n".format(n_atoms=len(atoms), n_types=2,x=x,y=y,z=z) print(header) fmt = "{idx} {mol} {atype} {charge} {x} {y} {z}\n" for idx, atom in enumerate(atoms): header += fmt.format(idx=atom.id, mol=atom.id, atype=atom_types[atom.element], charge=0, x=atom.xyz[0], y=atom.xyz[1], z=atom.xyz[2]) with open(filename, 'w') as output: output.write(header) def average_atom_stress(write=True, step=0, *args): """Calculates averaged stress from multiple stress files. write determines whether to write output or not. step determines which timestep to average.""" n_files = float(len(args)) stress_list = [] for ele in args: stress_list.append(read_stress(ele)[step]) # Sort atoms by id. stress_list[-1].sort(key=lambda x: x.id) n_atoms = len(stress_list[0]) atoms = [] # Average stress for each atom id. for i in range(n_atoms): sx = sum([x[i].stress[0] for x in stress_list]) / n_files sy = sum([x[i].stress[1] for x in stress_list]) / n_files sz = sum([x[i].stress[2] for x in stress_list]) / n_files atom = stress_list[0][i] atoms.append( Atom(atom.id, type=atom.type, element=atom.element, xyz=atom.xyz, stress=(sx, sy, sz)) ) # Write averaged stress to file. if write: out_name = '.'.join(args[0].name.split('.')[:-1]) + '_averaged.dat' with open(out_name, 'w') as output: # Write header lines to be compatitable with LAMMPS dump files. output.write('Header line\n' * 9) for atom in atoms: # Do not write element here to be compatitable with # LAMMPS dump files. output.write("{} {} {} {} {} {} {} {}\n".format( atom.id, atom.type, atom.xyz[0], atom.xyz[1], atom.xyz[2], atom.stress[0], atom.stress[1], atom.stress[2])) print("Average Stress saved to {}.".format(out_name)) return atoms def build_box(atoms, timestep, radius, center, use_atomic_volume, average_on_atom, bx, by, bz): """Build a box from a list of atoms.""" box = Box(timestep, radius=radius, center=center, use_atomic_volume=use_atomic_volume, average_on_atom=average_on_atom) for atom in atoms: box.add_atom(atom) box.set_boundary(bx=bx, by=by, bz=bz) box.measure() return box def write_density(density, dr, outname, header): """Write density (both shell and xyz density) stats to output file. One density list at a time. """ with open(outname, 'w') as output: output.write(header) for i, item in enumerate(density): low = i * dr high = low + dr output.write('{l:.3f}\t{h:.3f}\t{d:.13f}\n'.format(l=low, h=high, d=item)) def write_pressure(pressure, dr, outname, header, bubble=False): """Write pressure (both bubble and shell pressure) stats to output file. If bubble is True, r_low is always zero. """ logging.info( "Writing output to {}".format(outname) ) if bubble: # Bubble pressure has in pressure and out pressure. with open(outname, 'w') as output: output.write(header) nbins = len(pressure['in']) for i in range(nbins): low = 0 high = (i + 1) * dr if i < nbins - 1: output.write('{l:.3f}\t{h:.3f}\t{pin:.13f}\t{pout:.13f}\n'.format( l=low, h=high, pin=pressure['in'][i], pout=pressure['out'][i+1] )) else: output.write('{l:.3f}\t{h:.3f}\t{pin:.13f}\t{pout:.13f}\n'.format( l=low, h=high, pin=pressure['in'][i], pout=0 )) else: # Shell pressure. with open(outname, 'w') as output: output.write(header) for i, item in enumerate(pressure): low = i * dr high = low + dr output.write('{l:.3f}\t{h:.3f}\t{p:.13f}\n'.format(l=low, h=high, p=item)) def write_ratio(ratio, dr, outname, header, bubble=True): """Write atom ratio stats to output file. If bubble is True, r_low is always zero. """ with open(outname, 'w') as output: output.write(header) for i, item in enumerate(ratio): low = 0 if bubble else i * dr high = (i + 1) * dr output.write('{l:.3f}\t{h:.3f}\t{r:.13f}\n'.format(l=low, h=high, r=item)) def bubble_ratio(box, elements, out_fmt, header, dr, time, container, debug=False): """Calculate bubble ratio stats and write results to disk.""" for eles in elements: # Ratio stats for each element. e = ''.join(eles) print('Bubble ratio stats for {e}'.format(e=e)) # Calculate ratio. ratio = box.atom_stats(eles[0], dr) # Write to file. outname = out_fmt.format(time=time, ele=e) write_ratio(ratio, dr, outname, header, bubble=True) if debug: # For testing. with open(container, 'a') as cc: cc.write(outname + '\n') def shell_ratio(box, elements, out_fmt, header, dr, time, container, debug=False): """Calculate shell ratio stats and write results to disk.""" pass def bubble_pressure(box, elements, out_fmt, header, dr, time, container, debug=False): """Calculate bubble pressure and write results to disk.""" for eles in elements: # Bubble pressure stats for each group of specified elements. e = ''.join(eles) print("Bubble pressure stats for {e}\n".format(e=e)) # Calculate bubble pressure. bubble_pressure = box.pressure_stats(eles, dr) # Write bubble pressure. outname = out_fmt.format(time=time, ele=e) write_pressure(bubble_pressure, dr, outname, header, bubble=True) if debug: # For testing. with open(container, 'a') as cc: cc.write(outname + '\n') def shell_pressure(box, elements, out_fmt, header, dr, time, container, normal=False, debug=False): """Calculate shell pressure and write results to disk.""" for eles in elements: # Shell pressure stats for each group of specified elements. e = ''.join(eles) print('Shell pressure stats for {e}\n'.format(e=e)) # Shell pressure. if not normal: shell_pressure = box.shell_pressure_stats(eles, dr, normal=normal) # Write to disk. outname = out_fmt.format(time=time, ele=e) write_pressure(shell_pressure, dr, outname, header, bubble=False) if debug: # For testing. with open(container, 'a') as cc: cc.write(outname + '\n') else: shell_pressure = box.shell_pressure_stats(eles, dr, normal=normal) shell_r, shell_theta, shell_phi = shell_pressure['r'], shell_pressure['theta'], shell_pressure['phi'] # Write to disk. outname1 = out_fmt.format(time=time, ele=e) + '_r' outname2 = out_fmt.format(time=time, ele=e) + '_theta' outname3 = out_fmt.format( time=time, ele=e ) + '_phi' write_pressure(shell_r, dr, outname1, header, bubble=False) write_pressure(shell_theta, dr, outname2, header, bubble=False) write_pressure( shell_phi, dr, outname3, header, bubble=False ) if debug: # For testing. with open(container, 'a') as cc: cc.write( outname1 + '\n' ) cc.write( outname2 + '\n' ) cc.write( outname3 + '\n' ) def bubble_density(box, elements, mole, out_fmt, header, dr, time, container, debug=False): """Calculate bubble density stats and write results to disk.""" for eles in elements: # Bubble density stats for each group of specified elements. e = ''.join(eles) print('Bubble density stats for {e}\n'.format(e=e)) # Bubble density. bubble_density = box.bubble_density(eles, mole, dr) # Write to disk. outname = out_fmt.format(time=time, ele=e) write_density(bubble_density, dr, outname, header) if debug: # For testing. with open(container, 'a') as cc: cc.write(outname + '\n') def shell_density(box, elements, mole, out_fmt, header, dr, time, container, debug=False): """Calculate shell density stats and write results to disk.""" for eles in elements: # Shell density stats for each group of specified elements. e = ''.join(eles) print('Shell density stats for {e}\n'.format(e=e)) # Shell density. shell_density = box.shell_density(eles, mole, dr) # Write to disk. outname = out_fmt.format(time=time, ele=e) write_density(shell_density, dr, outname, header) if debug: # For testing. with open(container, 'a') as cc: cc.write(outname + '\n') def xyz_density(box, elements, mole, out_fmt, header, dr, time, container, debug=False): """Calculate xyz density stats and write results to disk.""" for eles in elements: # XYZ density stats for each group of specified elements. e = ''.join(eles) print('XYZ density stats for {e}\n'.format(e=e)) # XYZ density. xyz_density = box.xyz_density(eles, mole, dr) # Write to disk. xout = out_fmt.format(time=time, ele=e, xyz='x') yout = out_fmt.format(time=time, ele=e, xyz='y') zout = out_fmt.format(time=time, ele=e, xyz='z') write_density(xyz_density['x'], dr, xout, header) write_density(xyz_density['y'], dr, yout, header) write_density(xyz_density['z'], dr, zout, header) if debug: # For testing. with open(container, 'a') as cc: out = '\n'.join([xout, yout, zout, '']) cc.write(out) def get_radius(box, element, dr, n=1, ratio=0.5): """Get the radius of a bubble. Radius is determined to be r with closest value of n_element / n_atoms to ratio, i.e. within radius, n_element / n_atoms should be as close to ratio as possible. n specifies number of radiuses to return, i.e. n radiuses that have n_element / n_atoms values closest to ratio.""" bubble_ratio = box.atom_stats(element, dr) deltas = [abs(x - ratio) for x in bubble_ratio] # Use nanmin to ignore NaNs in ratio vector. # Do not select radiuses smaller than 10 angstrom. min_index = deltas.index(np.nanmin(deltas)) n = n / 2 ret = [] for i in range(-n, n + 1): index = min_index + i ret.append((dr * (index + 1), bubble_ratio[index])) return ret
mit
AlexanderFabisch/scikit-learn
examples/calibration/plot_compare_calibration.py
241
5008
""" ======================================== Comparison of Calibration of Classifiers ======================================== Well calibrated classifiers are probabilistic classifiers for which the output of the predict_proba method can be directly interpreted as a confidence level. For instance a well calibrated (binary) classifier should classify the samples such that among the samples to which it gave a predict_proba value close to 0.8, approx. 80% actually belong to the positive class. LogisticRegression returns well calibrated predictions as it directly optimizes log-loss. In contrast, the other methods return biased probilities, with different biases per method: * GaussianNaiveBayes tends to push probabilties to 0 or 1 (note the counts in the histograms). This is mainly because it makes the assumption that features are conditionally independent given the class, which is not the case in this dataset which contains 2 redundant features. * RandomForestClassifier shows the opposite behavior: the histograms show peaks at approx. 0.2 and 0.9 probability, while probabilities close to 0 or 1 are very rare. An explanation for this is given by Niculescu-Mizil and Caruana [1]: "Methods such as bagging and random forests that average predictions from a base set of models can have difficulty making predictions near 0 and 1 because variance in the underlying base models will bias predictions that should be near zero or one away from these values. Because predictions are restricted to the interval [0,1], errors caused by variance tend to be one- sided near zero and one. For example, if a model should predict p = 0 for a case, the only way bagging can achieve this is if all bagged trees predict zero. If we add noise to the trees that bagging is averaging over, this noise will cause some trees to predict values larger than 0 for this case, thus moving the average prediction of the bagged ensemble away from 0. We observe this effect most strongly with random forests because the base-level trees trained with random forests have relatively high variance due to feature subseting." As a result, the calibration curve shows a characteristic sigmoid shape, indicating that the classifier could trust its "intuition" more and return probabilties closer to 0 or 1 typically. * Support Vector Classification (SVC) shows an even more sigmoid curve as the RandomForestClassifier, which is typical for maximum-margin methods (compare Niculescu-Mizil and Caruana [1]), which focus on hard samples that are close to the decision boundary (the support vectors). .. topic:: References: .. [1] Predicting Good Probabilities with Supervised Learning, A. Niculescu-Mizil & R. Caruana, ICML 2005 """ print(__doc__) # Author: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de> # License: BSD Style. import numpy as np np.random.seed(0) import matplotlib.pyplot as plt from sklearn import datasets from sklearn.naive_bayes import GaussianNB from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.svm import LinearSVC from sklearn.calibration import calibration_curve X, y = datasets.make_classification(n_samples=100000, n_features=20, n_informative=2, n_redundant=2) train_samples = 100 # Samples used for training the models X_train = X[:train_samples] X_test = X[train_samples:] y_train = y[:train_samples] y_test = y[train_samples:] # Create classifiers lr = LogisticRegression() gnb = GaussianNB() svc = LinearSVC(C=1.0) rfc = RandomForestClassifier(n_estimators=100) ############################################################################### # Plot calibration plots plt.figure(figsize=(10, 10)) ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2) ax2 = plt.subplot2grid((3, 1), (2, 0)) ax1.plot([0, 1], [0, 1], "k:", label="Perfectly calibrated") for clf, name in [(lr, 'Logistic'), (gnb, 'Naive Bayes'), (svc, 'Support Vector Classification'), (rfc, 'Random Forest')]: clf.fit(X_train, y_train) if hasattr(clf, "predict_proba"): prob_pos = clf.predict_proba(X_test)[:, 1] else: # use decision function prob_pos = clf.decision_function(X_test) prob_pos = \ (prob_pos - prob_pos.min()) / (prob_pos.max() - prob_pos.min()) fraction_of_positives, mean_predicted_value = \ calibration_curve(y_test, prob_pos, n_bins=10) ax1.plot(mean_predicted_value, fraction_of_positives, "s-", label="%s" % (name, )) ax2.hist(prob_pos, range=(0, 1), bins=10, label=name, histtype="step", lw=2) ax1.set_ylabel("Fraction of positives") ax1.set_ylim([-0.05, 1.05]) ax1.legend(loc="lower right") ax1.set_title('Calibration plots (reliability curve)') ax2.set_xlabel("Mean predicted value") ax2.set_ylabel("Count") ax2.legend(loc="upper center", ncol=2) plt.tight_layout() plt.show()
bsd-3-clause
ewmoore/numpy
numpy/lib/function_base.py
1
115391
__docformat__ = "restructuredtext en" __all__ = ['select', 'piecewise', 'trim_zeros', 'copy', 'iterable', 'percentile', 'diff', 'gradient', 'angle', 'unwrap', 'sort_complex', 'disp', 'extract', 'place', 'nansum', 'nanmax', 'nanargmax', 'nanargmin', 'nanmin', 'vectorize', 'asarray_chkfinite', 'average', 'histogram', 'histogramdd', 'bincount', 'digitize', 'cov', 'corrcoef', 'msort', 'median', 'sinc', 'hamming', 'hanning', 'bartlett', 'blackman', 'kaiser', 'trapz', 'i0', 'add_newdoc', 'add_docstring', 'meshgrid', 'delete', 'insert', 'append', 'interp', 'add_newdoc_ufunc'] import warnings import types import sys import numpy.core.numeric as _nx from numpy.core import linspace from numpy.core.numeric import ones, zeros, arange, concatenate, array, \ asarray, asanyarray, empty, empty_like, ndarray, around from numpy.core.numeric import ScalarType, dot, where, newaxis, intp, \ integer, isscalar from numpy.core.umath import pi, multiply, add, arctan2, \ frompyfunc, isnan, cos, less_equal, sqrt, sin, mod, exp, log10 from numpy.core.fromnumeric import ravel, nonzero, choose, sort, mean from numpy.core.numerictypes import typecodes, number from numpy.core import atleast_1d, atleast_2d from numpy.lib.twodim_base import diag from _compiled_base import _insert, add_docstring from _compiled_base import digitize, bincount, interp as compiled_interp from arraysetops import setdiff1d from utils import deprecate from _compiled_base import add_newdoc_ufunc import numpy as np def iterable(y): """ Check whether or not an object can be iterated over. Parameters ---------- y : object Input object. Returns ------- b : {0, 1} Return 1 if the object has an iterator method or is a sequence, and 0 otherwise. Examples -------- >>> np.iterable([1, 2, 3]) 1 >>> np.iterable(2) 0 """ try: iter(y) except: return 0 return 1 def histogram(a, bins=10, range=None, normed=False, weights=None, density=None): """ Compute the histogram of a set of data. Parameters ---------- a : array_like Input data. The histogram is computed over the flattened array. bins : int or sequence of scalars, optional If `bins` is an int, it defines the number of equal-width bins in the given range (10, by default). If `bins` is a sequence, it defines the bin edges, including the rightmost edge, allowing for non-uniform bin widths. range : (float, float), optional The lower and upper range of the bins. If not provided, range is simply ``(a.min(), a.max())``. Values outside the range are ignored. normed : bool, optional This keyword is deprecated in Numpy 1.6 due to confusing/buggy behavior. It will be removed in Numpy 2.0. Use the density keyword instead. If False, the result will contain the number of samples in each bin. If True, the result is the value of the probability *density* function at the bin, normalized such that the *integral* over the range is 1. Note that this latter behavior is known to be buggy with unequal bin widths; use `density` instead. weights : array_like, optional An array of weights, of the same shape as `a`. Each value in `a` only contributes its associated weight towards the bin count (instead of 1). If `normed` is True, the weights are normalized, so that the integral of the density over the range remains 1 density : bool, optional If False, the result will contain the number of samples in each bin. If True, the result is the value of the probability *density* function at the bin, normalized such that the *integral* over the range is 1. Note that the sum of the histogram values will not be equal to 1 unless bins of unity width are chosen; it is not a probability *mass* function. Overrides the `normed` keyword if given. Returns ------- hist : array The values of the histogram. See `normed` and `weights` for a description of the possible semantics. bin_edges : array of dtype float Return the bin edges ``(length(hist)+1)``. See Also -------- histogramdd, bincount, searchsorted, digitize Notes ----- All but the last (righthand-most) bin is half-open. In other words, if `bins` is:: [1, 2, 3, 4] then the first bin is ``[1, 2)`` (including 1, but excluding 2) and the second ``[2, 3)``. The last bin, however, is ``[3, 4]``, which *includes* 4. Examples -------- >>> np.histogram([1, 2, 1], bins=[0, 1, 2, 3]) (array([0, 2, 1]), array([0, 1, 2, 3])) >>> np.histogram(np.arange(4), bins=np.arange(5), density=True) (array([ 0.25, 0.25, 0.25, 0.25]), array([0, 1, 2, 3, 4])) >>> np.histogram([[1, 2, 1], [1, 0, 1]], bins=[0,1,2,3]) (array([1, 4, 1]), array([0, 1, 2, 3])) >>> a = np.arange(5) >>> hist, bin_edges = np.histogram(a, density=True) >>> hist array([ 0.5, 0. , 0.5, 0. , 0. , 0.5, 0. , 0.5, 0. , 0.5]) >>> hist.sum() 2.4999999999999996 >>> np.sum(hist*np.diff(bin_edges)) 1.0 """ a = asarray(a) if weights is not None: weights = asarray(weights) if np.any(weights.shape != a.shape): raise ValueError( 'weights should have the same shape as a.') weights = weights.ravel() a = a.ravel() if (range is not None): mn, mx = range if (mn > mx): raise AttributeError( 'max must be larger than min in range parameter.') if not iterable(bins): if np.isscalar(bins) and bins < 1: raise ValueError("`bins` should be a positive integer.") if range is None: if a.size == 0: # handle empty arrays. Can't determine range, so use 0-1. range = (0, 1) else: range = (a.min(), a.max()) mn, mx = [mi+0.0 for mi in range] if mn == mx: mn -= 0.5 mx += 0.5 bins = linspace(mn, mx, bins+1, endpoint=True) else: bins = asarray(bins) if (np.diff(bins) < 0).any(): raise AttributeError( 'bins must increase monotonically.') # Histogram is an integer or a float array depending on the weights. if weights is None: ntype = int else: ntype = weights.dtype n = np.zeros(bins.shape, ntype) block = 65536 if weights is None: for i in arange(0, len(a), block): sa = sort(a[i:i+block]) n += np.r_[sa.searchsorted(bins[:-1], 'left'), \ sa.searchsorted(bins[-1], 'right')] else: zero = array(0, dtype=ntype) for i in arange(0, len(a), block): tmp_a = a[i:i+block] tmp_w = weights[i:i+block] sorting_index = np.argsort(tmp_a) sa = tmp_a[sorting_index] sw = tmp_w[sorting_index] cw = np.concatenate(([zero,], sw.cumsum())) bin_index = np.r_[sa.searchsorted(bins[:-1], 'left'), \ sa.searchsorted(bins[-1], 'right')] n += cw[bin_index] n = np.diff(n) if density is not None: if density: db = array(np.diff(bins), float) return n/db/n.sum(), bins else: return n, bins else: # deprecated, buggy behavior. Remove for Numpy 2.0 if normed: db = array(np.diff(bins), float) return n/(n*db).sum(), bins else: return n, bins def histogramdd(sample, bins=10, range=None, normed=False, weights=None): """ Compute the multidimensional histogram of some data. Parameters ---------- sample : array_like The data to be histogrammed. It must be an (N,D) array or data that can be converted to such. The rows of the resulting array are the coordinates of points in a D dimensional polytope. bins : sequence or int, optional The bin specification: * A sequence of arrays describing the bin edges along each dimension. * The number of bins for each dimension (nx, ny, ... =bins) * The number of bins for all dimensions (nx=ny=...=bins). range : sequence, optional A sequence of lower and upper bin edges to be used if the edges are not given explicitely in `bins`. Defaults to the minimum and maximum values along each dimension. normed : bool, optional If False, returns the number of samples in each bin. If True, returns the bin density, ie, the bin count divided by the bin hypervolume. weights : array_like (N,), optional An array of values `w_i` weighing each sample `(x_i, y_i, z_i, ...)`. Weights are normalized to 1 if normed is True. If normed is False, the values of the returned histogram are equal to the sum of the weights belonging to the samples falling into each bin. Returns ------- H : ndarray The multidimensional histogram of sample x. See normed and weights for the different possible semantics. edges : list A list of D arrays describing the bin edges for each dimension. See Also -------- histogram: 1-D histogram histogram2d: 2-D histogram Examples -------- >>> r = np.random.randn(100,3) >>> H, edges = np.histogramdd(r, bins = (5, 8, 4)) >>> H.shape, edges[0].size, edges[1].size, edges[2].size ((5, 8, 4), 6, 9, 5) """ try: # Sample is an ND-array. N, D = sample.shape except (AttributeError, ValueError): # Sample is a sequence of 1D arrays. sample = atleast_2d(sample).T N, D = sample.shape nbin = empty(D, int) edges = D*[None] dedges = D*[None] if weights is not None: weights = asarray(weights) try: M = len(bins) if M != D: raise AttributeError( 'The dimension of bins must be equal'\ ' to the dimension of the sample x.') except TypeError: # bins is an integer bins = D*[bins] # Select range for each dimension # Used only if number of bins is given. if range is None: # Handle empty input. Range can't be determined in that case, use 0-1. if N == 0: smin = zeros(D) smax = ones(D) else: smin = atleast_1d(array(sample.min(0), float)) smax = atleast_1d(array(sample.max(0), float)) else: smin = zeros(D) smax = zeros(D) for i in arange(D): smin[i], smax[i] = range[i] # Make sure the bins have a finite width. for i in arange(len(smin)): if smin[i] == smax[i]: smin[i] = smin[i] - .5 smax[i] = smax[i] + .5 # Create edge arrays for i in arange(D): if isscalar(bins[i]): if bins[i] < 1: raise ValueError("Element at index %s in `bins` should be " "a positive integer." % i) nbin[i] = bins[i] + 2 # +2 for outlier bins edges[i] = linspace(smin[i], smax[i], nbin[i]-1) else: edges[i] = asarray(bins[i], float) nbin[i] = len(edges[i])+1 # +1 for outlier bins dedges[i] = diff(edges[i]) if np.any(np.asarray(dedges[i]) <= 0): raise ValueError(""" Found bin edge of size <= 0. Did you specify `bins` with non-monotonic sequence?""") nbin = asarray(nbin) # Handle empty input. if N == 0: return np.zeros(nbin-2), edges # Compute the bin number each sample falls into. Ncount = {} for i in arange(D): Ncount[i] = digitize(sample[:,i], edges[i]) # Using digitize, values that fall on an edge are put in the right bin. # For the rightmost bin, we want values equal to the right # edge to be counted in the last bin, and not as an outlier. for i in arange(D): # Rounding precision mindiff = dedges[i].min() if not np.isinf(mindiff): decimal = int(-log10(mindiff)) + 6 # Find which points are on the rightmost edge. on_edge = where(around(sample[:,i], decimal) == around(edges[i][-1], decimal))[0] # Shift these points one bin to the left. Ncount[i][on_edge] -= 1 # Flattened histogram matrix (1D) # Reshape is used so that overlarge arrays # will raise an error. hist = zeros(nbin, float).reshape(-1) # Compute the sample indices in the flattened histogram matrix. ni = nbin.argsort() xy = zeros(N, int) for i in arange(0, D-1): xy += Ncount[ni[i]] * nbin[ni[i+1:]].prod() xy += Ncount[ni[-1]] # Compute the number of repetitions in xy and assign it to the # flattened histmat. if len(xy) == 0: return zeros(nbin-2, int), edges flatcount = bincount(xy, weights) a = arange(len(flatcount)) hist[a] = flatcount # Shape into a proper matrix hist = hist.reshape(sort(nbin)) for i in arange(nbin.size): j = ni.argsort()[i] hist = hist.swapaxes(i,j) ni[i],ni[j] = ni[j],ni[i] # Remove outliers (indices 0 and -1 for each dimension). core = D*[slice(1,-1)] hist = hist[core] # Normalize if normed is True if normed: s = hist.sum() for i in arange(D): shape = ones(D, int) shape[i] = nbin[i] - 2 hist = hist / dedges[i].reshape(shape) hist /= s if (hist.shape != nbin - 2).any(): raise RuntimeError( "Internal Shape Error") return hist, edges def average(a, axis=None, weights=None, returned=False): """ Compute the weighted average along the specified axis. Parameters ---------- a : array_like Array containing data to be averaged. If `a` is not an array, a conversion is attempted. axis : int, optional Axis along which to average `a`. If `None`, averaging is done over the flattened array. weights : array_like, optional An array of weights associated with the values in `a`. Each value in `a` contributes to the average according to its associated weight. The weights array can either be 1-D (in which case its length must be the size of `a` along the given axis) or of the same shape as `a`. If `weights=None`, then all data in `a` are assumed to have a weight equal to one. returned : bool, optional Default is `False`. If `True`, the tuple (`average`, `sum_of_weights`) is returned, otherwise only the average is returned. If `weights=None`, `sum_of_weights` is equivalent to the number of elements over which the average is taken. Returns ------- average, [sum_of_weights] : {array_type, double} Return the average along the specified axis. When returned is `True`, return a tuple with the average as the first element and the sum of the weights as the second element. The return type is `Float` if `a` is of integer type, otherwise it is of the same type as `a`. `sum_of_weights` is of the same type as `average`. Raises ------ ZeroDivisionError When all weights along axis are zero. See `numpy.ma.average` for a version robust to this type of error. TypeError When the length of 1D `weights` is not the same as the shape of `a` along axis. See Also -------- mean ma.average : average for masked arrays -- useful if your data contains "missing" values Examples -------- >>> data = range(1,5) >>> data [1, 2, 3, 4] >>> np.average(data) 2.5 >>> np.average(range(1,11), weights=range(10,0,-1)) 4.0 >>> data = np.arange(6).reshape((3,2)) >>> data array([[0, 1], [2, 3], [4, 5]]) >>> np.average(data, axis=1, weights=[1./4, 3./4]) array([ 0.75, 2.75, 4.75]) >>> np.average(data, weights=[1./4, 3./4]) Traceback (most recent call last): ... TypeError: Axis must be specified when shapes of a and weights differ. """ if not isinstance(a, np.matrix) : a = np.asarray(a) if weights is None : avg = a.mean(axis) scl = avg.dtype.type(a.size/avg.size) else : a = a + 0.0 wgt = np.array(weights, dtype=a.dtype, copy=0) # Sanity checks if a.shape != wgt.shape : if axis is None : raise TypeError( "Axis must be specified when shapes of a "\ "and weights differ.") if wgt.ndim != 1 : raise TypeError( "1D weights expected when shapes of a and "\ "weights differ.") if wgt.shape[0] != a.shape[axis] : raise ValueError( "Length of weights not compatible with "\ "specified axis.") # setup wgt to broadcast along axis wgt = np.array(wgt, copy=0, ndmin=a.ndim).swapaxes(-1, axis) scl = wgt.sum(axis=axis) if (scl == 0.0).any(): raise ZeroDivisionError( "Weights sum to zero, can't be normalized") avg = np.multiply(a, wgt).sum(axis)/scl if returned: scl = np.multiply(avg, 0) + scl return avg, scl else: return avg def asarray_chkfinite(a, dtype=None, order=None): """ Convert the input to an array, checking for NaNs or Infs. Parameters ---------- a : array_like Input data, in any form that can be converted to an array. This includes lists, lists of tuples, tuples, tuples of tuples, tuples of lists and ndarrays. Success requires no NaNs or Infs. dtype : data-type, optional By default, the data-type is inferred from the input data. order : {'C', 'F'}, optional Whether to use row-major ('C') or column-major ('FORTRAN') memory representation. Defaults to 'C'. Returns ------- out : ndarray Array interpretation of `a`. No copy is performed if the input is already an ndarray. If `a` is a subclass of ndarray, a base class ndarray is returned. Raises ------ ValueError Raises ValueError if `a` contains NaN (Not a Number) or Inf (Infinity). See Also -------- asarray : Create and array. asanyarray : Similar function which passes through subclasses. ascontiguousarray : Convert input to a contiguous array. asfarray : Convert input to a floating point ndarray. asfortranarray : Convert input to an ndarray with column-major memory order. fromiter : Create an array from an iterator. fromfunction : Construct an array by executing a function on grid positions. Examples -------- Convert a list into an array. If all elements are finite ``asarray_chkfinite`` is identical to ``asarray``. >>> a = [1, 2] >>> np.asarray_chkfinite(a, dtype=float) array([1., 2.]) Raises ValueError if array_like contains Nans or Infs. >>> a = [1, 2, np.inf] >>> try: ... np.asarray_chkfinite(a) ... except ValueError: ... print 'ValueError' ... ValueError """ a = asarray(a, dtype=dtype, order=order) if a.dtype.char in typecodes['AllFloat'] and not np.isfinite(a).all(): raise ValueError( "array must not contain infs or NaNs") return a def piecewise(x, condlist, funclist, *args, **kw): """ Evaluate a piecewise-defined function. Given a set of conditions and corresponding functions, evaluate each function on the input data wherever its condition is true. Parameters ---------- x : ndarray The input domain. condlist : list of bool arrays Each boolean array corresponds to a function in `funclist`. Wherever `condlist[i]` is True, `funclist[i](x)` is used as the output value. Each boolean array in `condlist` selects a piece of `x`, and should therefore be of the same shape as `x`. The length of `condlist` must correspond to that of `funclist`. If one extra function is given, i.e. if ``len(funclist) - len(condlist) == 1``, then that extra function is the default value, used wherever all conditions are false. funclist : list of callables, f(x,*args,**kw), or scalars Each function is evaluated over `x` wherever its corresponding condition is True. It should take an array as input and give an array or a scalar value as output. If, instead of a callable, a scalar is provided then a constant function (``lambda x: scalar``) is assumed. args : tuple, optional Any further arguments given to `piecewise` are passed to the functions upon execution, i.e., if called ``piecewise(..., ..., 1, 'a')``, then each function is called as ``f(x, 1, 'a')``. kw : dict, optional Keyword arguments used in calling `piecewise` are passed to the functions upon execution, i.e., if called ``piecewise(..., ..., lambda=1)``, then each function is called as ``f(x, lambda=1)``. Returns ------- out : ndarray The output is the same shape and type as x and is found by calling the functions in `funclist` on the appropriate portions of `x`, as defined by the boolean arrays in `condlist`. Portions not covered by any condition have undefined values. See Also -------- choose, select, where Notes ----- This is similar to choose or select, except that functions are evaluated on elements of `x` that satisfy the corresponding condition from `condlist`. The result is:: |-- |funclist[0](x[condlist[0]]) out = |funclist[1](x[condlist[1]]) |... |funclist[n2](x[condlist[n2]]) |-- Examples -------- Define the sigma function, which is -1 for ``x < 0`` and +1 for ``x >= 0``. >>> x = np.linspace(-2.5, 2.5, 6) >>> np.piecewise(x, [x < 0, x >= 0], [-1, 1]) array([-1., -1., -1., 1., 1., 1.]) Define the absolute value, which is ``-x`` for ``x <0`` and ``x`` for ``x >= 0``. >>> np.piecewise(x, [x < 0, x >= 0], [lambda x: -x, lambda x: x]) array([ 2.5, 1.5, 0.5, 0.5, 1.5, 2.5]) """ x = asanyarray(x) n2 = len(funclist) if isscalar(condlist) or \ not (isinstance(condlist[0], list) or isinstance(condlist[0], ndarray)): condlist = [condlist] condlist = [asarray(c, dtype=bool) for c in condlist] n = len(condlist) if n == n2-1: # compute the "otherwise" condition. totlist = condlist[0] for k in range(1, n): totlist |= condlist[k] condlist.append(~totlist) n += 1 if (n != n2): raise ValueError( "function list and condition list must be the same") zerod = False # This is a hack to work around problems with NumPy's # handling of 0-d arrays and boolean indexing with # numpy.bool_ scalars if x.ndim == 0: x = x[None] zerod = True newcondlist = [] for k in range(n): if condlist[k].ndim == 0: condition = condlist[k][None] else: condition = condlist[k] newcondlist.append(condition) condlist = newcondlist y = zeros(x.shape, x.dtype) for k in range(n): item = funclist[k] if not callable(item): y[condlist[k]] = item else: vals = x[condlist[k]] if vals.size > 0: y[condlist[k]] = item(vals, *args, **kw) if zerod: y = y.squeeze() return y def select(condlist, choicelist, default=0): """ Return an array drawn from elements in choicelist, depending on conditions. Parameters ---------- condlist : list of bool ndarrays The list of conditions which determine from which array in `choicelist` the output elements are taken. When multiple conditions are satisfied, the first one encountered in `condlist` is used. choicelist : list of ndarrays The list of arrays from which the output elements are taken. It has to be of the same length as `condlist`. default : scalar, optional The element inserted in `output` when all conditions evaluate to False. Returns ------- output : ndarray The output at position m is the m-th element of the array in `choicelist` where the m-th element of the corresponding array in `condlist` is True. See Also -------- where : Return elements from one of two arrays depending on condition. take, choose, compress, diag, diagonal Examples -------- >>> x = np.arange(10) >>> condlist = [x<3, x>5] >>> choicelist = [x, x**2] >>> np.select(condlist, choicelist) array([ 0, 1, 2, 0, 0, 0, 36, 49, 64, 81]) """ n = len(condlist) n2 = len(choicelist) if n2 != n: raise ValueError( "list of cases must be same length as list of conditions") choicelist = [default] + choicelist S = 0 pfac = 1 for k in range(1, n+1): S += k * pfac * asarray(condlist[k-1]) if k < n: pfac *= (1-asarray(condlist[k-1])) # handle special case of a 1-element condition but # a multi-element choice if type(S) in ScalarType or max(asarray(S).shape)==1: pfac = asarray(1) for k in range(n2+1): pfac = pfac + asarray(choicelist[k]) if type(S) in ScalarType: S = S*ones(asarray(pfac).shape, type(S)) else: S = S*ones(asarray(pfac).shape, S.dtype) return choose(S, tuple(choicelist)) def copy(a, order='K'): """ Return an array copy of the given object. Parameters ---------- a : array_like Input data. order : {'C', 'F', 'A', 'K'}, optional Controls the memory layout of the copy. 'C' means C-order, 'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous, 'C' otherwise. 'K' means match the layout of `a` as closely as possible. (Note that this function and :meth:ndarray.copy are very similar, but have different default values for their order= arguments.) Returns ------- arr : ndarray Array interpretation of `a`. Notes ----- This is equivalent to >>> np.array(a, copy=True) #doctest: +SKIP Examples -------- Create an array x, with a reference y and a copy z: >>> x = np.array([1, 2, 3]) >>> y = x >>> z = np.copy(x) Note that, when we modify x, y changes, but not z: >>> x[0] = 10 >>> x[0] == y[0] True >>> x[0] == z[0] False """ return array(a, order=order, copy=True) # Basic operations def gradient(f, *varargs): """ Return the gradient of an N-dimensional array. The gradient is computed using central differences in the interior and first differences at the boundaries. The returned gradient hence has the same shape as the input array. Parameters ---------- f : array_like An N-dimensional array containing samples of a scalar function. `*varargs` : scalars 0, 1, or N scalars specifying the sample distances in each direction, that is: `dx`, `dy`, `dz`, ... The default distance is 1. Returns ------- gradient : ndarray N arrays of the same shape as `f` giving the derivative of `f` with respect to each dimension. Examples -------- >>> x = np.array([1, 2, 4, 7, 11, 16], dtype=np.float) >>> np.gradient(x) array([ 1. , 1.5, 2.5, 3.5, 4.5, 5. ]) >>> np.gradient(x, 2) array([ 0.5 , 0.75, 1.25, 1.75, 2.25, 2.5 ]) >>> np.gradient(np.array([[1, 2, 6], [3, 4, 5]], dtype=np.float)) [array([[ 2., 2., -1.], [ 2., 2., -1.]]), array([[ 1. , 2.5, 4. ], [ 1. , 1. , 1. ]])] """ f = np.asanyarray(f) N = len(f.shape) # number of dimensions n = len(varargs) if n == 0: dx = [1.0]*N elif n == 1: dx = [varargs[0]]*N elif n == N: dx = list(varargs) else: raise SyntaxError( "invalid number of arguments") # use central differences on interior and first differences on endpoints outvals = [] # create slice objects --- initially all are [:, :, ..., :] slice1 = [slice(None)]*N slice2 = [slice(None)]*N slice3 = [slice(None)]*N otype = f.dtype.char if otype not in ['f', 'd', 'F', 'D', 'm', 'M']: otype = 'd' # Difference of datetime64 elements results in timedelta64 if otype == 'M' : # Need to use the full dtype name because it contains unit information otype = f.dtype.name.replace('datetime', 'timedelta') elif otype == 'm' : # Needs to keep the specific units, can't be a general unit otype = f.dtype for axis in range(N): # select out appropriate parts for this dimension out = np.empty_like(f, dtype=otype) slice1[axis] = slice(1, -1) slice2[axis] = slice(2, None) slice3[axis] = slice(None, -2) # 1D equivalent -- out[1:-1] = (f[2:] - f[:-2])/2.0 out[slice1] = (f[slice2] - f[slice3])/2.0 slice1[axis] = 0 slice2[axis] = 1 slice3[axis] = 0 # 1D equivalent -- out[0] = (f[1] - f[0]) out[slice1] = (f[slice2] - f[slice3]) slice1[axis] = -1 slice2[axis] = -1 slice3[axis] = -2 # 1D equivalent -- out[-1] = (f[-1] - f[-2]) out[slice1] = (f[slice2] - f[slice3]) # divide by step size outvals.append(out / dx[axis]) # reset the slice object in this dimension to ":" slice1[axis] = slice(None) slice2[axis] = slice(None) slice3[axis] = slice(None) if N == 1: return outvals[0] else: return outvals def diff(a, n=1, axis=-1): """ Calculate the n-th order discrete difference along given axis. The first order difference is given by ``out[n] = a[n+1] - a[n]`` along the given axis, higher order differences are calculated by using `diff` recursively. Parameters ---------- a : array_like Input array n : int, optional The number of times values are differenced. axis : int, optional The axis along which the difference is taken, default is the last axis. Returns ------- diff : ndarray The `n` order differences. The shape of the output is the same as `a` except along `axis` where the dimension is smaller by `n`. See Also -------- gradient, ediff1d Examples -------- >>> x = np.array([1, 2, 4, 7, 0]) >>> np.diff(x) array([ 1, 2, 3, -7]) >>> np.diff(x, n=2) array([ 1, 1, -10]) >>> x = np.array([[1, 3, 6, 10], [0, 5, 6, 8]]) >>> np.diff(x) array([[2, 3, 4], [5, 1, 2]]) >>> np.diff(x, axis=0) array([[-1, 2, 0, -2]]) """ if n == 0: return a if n < 0: raise ValueError( "order must be non-negative but got " + repr(n)) a = asanyarray(a) nd = len(a.shape) slice1 = [slice(None)]*nd slice2 = [slice(None)]*nd slice1[axis] = slice(1, None) slice2[axis] = slice(None, -1) slice1 = tuple(slice1) slice2 = tuple(slice2) if n > 1: return diff(a[slice1]-a[slice2], n-1, axis=axis) else: return a[slice1]-a[slice2] def interp(x, xp, fp, left=None, right=None): """ One-dimensional linear interpolation. Returns the one-dimensional piecewise linear interpolant to a function with given values at discrete data-points. Parameters ---------- x : array_like The x-coordinates of the interpolated values. xp : 1-D sequence of floats The x-coordinates of the data points, must be increasing. fp : 1-D sequence of floats The y-coordinates of the data points, same length as `xp`. left : float, optional Value to return for `x < xp[0]`, default is `fp[0]`. right : float, optional Value to return for `x > xp[-1]`, defaults is `fp[-1]`. Returns ------- y : {float, ndarray} The interpolated values, same shape as `x`. Raises ------ ValueError If `xp` and `fp` have different length Notes ----- Does not check that the x-coordinate sequence `xp` is increasing. If `xp` is not increasing, the results are nonsense. A simple check for increasingness is:: np.all(np.diff(xp) > 0) Examples -------- >>> xp = [1, 2, 3] >>> fp = [3, 2, 0] >>> np.interp(2.5, xp, fp) 1.0 >>> np.interp([0, 1, 1.5, 2.72, 3.14], xp, fp) array([ 3. , 3. , 2.5 , 0.56, 0. ]) >>> UNDEF = -99.0 >>> np.interp(3.14, xp, fp, right=UNDEF) -99.0 Plot an interpolant to the sine function: >>> x = np.linspace(0, 2*np.pi, 10) >>> y = np.sin(x) >>> xvals = np.linspace(0, 2*np.pi, 50) >>> yinterp = np.interp(xvals, x, y) >>> import matplotlib.pyplot as plt >>> plt.plot(x, y, 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.plot(xvals, yinterp, '-x') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.show() """ if isinstance(x, (float, int, number)): return compiled_interp([x], xp, fp, left, right).item() elif isinstance(x, np.ndarray) and x.ndim == 0: return compiled_interp([x], xp, fp, left, right).item() else: return compiled_interp(x, xp, fp, left, right) def angle(z, deg=0): """ Return the angle of the complex argument. Parameters ---------- z : array_like A complex number or sequence of complex numbers. deg : bool, optional Return angle in degrees if True, radians if False (default). Returns ------- angle : {ndarray, scalar} The counterclockwise angle from the positive real axis on the complex plane, with dtype as numpy.float64. See Also -------- arctan2 absolute Examples -------- >>> np.angle([1.0, 1.0j, 1+1j]) # in radians array([ 0. , 1.57079633, 0.78539816]) >>> np.angle(1+1j, deg=True) # in degrees 45.0 """ if deg: fact = 180/pi else: fact = 1.0 z = asarray(z) if (issubclass(z.dtype.type, _nx.complexfloating)): zimag = z.imag zreal = z.real else: zimag = 0 zreal = z return arctan2(zimag, zreal) * fact def unwrap(p, discont=pi, axis=-1): """ Unwrap by changing deltas between values to 2*pi complement. Unwrap radian phase `p` by changing absolute jumps greater than `discont` to their 2*pi complement along the given axis. Parameters ---------- p : array_like Input array. discont : float, optional Maximum discontinuity between values, default is ``pi``. axis : int, optional Axis along which unwrap will operate, default is the last axis. Returns ------- out : ndarray Output array. See Also -------- rad2deg, deg2rad Notes ----- If the discontinuity in `p` is smaller than ``pi``, but larger than `discont`, no unwrapping is done because taking the 2*pi complement would only make the discontinuity larger. Examples -------- >>> phase = np.linspace(0, np.pi, num=5) >>> phase[3:] += np.pi >>> phase array([ 0. , 0.78539816, 1.57079633, 5.49778714, 6.28318531]) >>> np.unwrap(phase) array([ 0. , 0.78539816, 1.57079633, -0.78539816, 0. ]) """ p = asarray(p) nd = len(p.shape) dd = diff(p, axis=axis) slice1 = [slice(None, None)]*nd # full slices slice1[axis] = slice(1, None) ddmod = mod(dd+pi, 2*pi)-pi _nx.copyto(ddmod, pi, where=(ddmod==-pi) & (dd > 0)) ph_correct = ddmod - dd; _nx.copyto(ph_correct, 0, where=abs(dd)<discont) up = array(p, copy=True, dtype='d') up[slice1] = p[slice1] + ph_correct.cumsum(axis) return up def sort_complex(a): """ Sort a complex array using the real part first, then the imaginary part. Parameters ---------- a : array_like Input array Returns ------- out : complex ndarray Always returns a sorted complex array. Examples -------- >>> np.sort_complex([5, 3, 6, 2, 1]) array([ 1.+0.j, 2.+0.j, 3.+0.j, 5.+0.j, 6.+0.j]) >>> np.sort_complex([1 + 2j, 2 - 1j, 3 - 2j, 3 - 3j, 3 + 5j]) array([ 1.+2.j, 2.-1.j, 3.-3.j, 3.-2.j, 3.+5.j]) """ b = array(a,copy=True) b.sort() if not issubclass(b.dtype.type, _nx.complexfloating): if b.dtype.char in 'bhBH': return b.astype('F') elif b.dtype.char == 'g': return b.astype('G') else: return b.astype('D') else: return b def trim_zeros(filt, trim='fb'): """ Trim the leading and/or trailing zeros from a 1-D array or sequence. Parameters ---------- filt : 1-D array or sequence Input array. trim : str, optional A string with 'f' representing trim from front and 'b' to trim from back. Default is 'fb', trim zeros from both front and back of the array. Returns ------- trimmed : 1-D array or sequence The result of trimming the input. The input data type is preserved. Examples -------- >>> a = np.array((0, 0, 0, 1, 2, 3, 0, 2, 1, 0)) >>> np.trim_zeros(a) array([1, 2, 3, 0, 2, 1]) >>> np.trim_zeros(a, 'b') array([0, 0, 0, 1, 2, 3, 0, 2, 1]) The input data type is preserved, list/tuple in means list/tuple out. >>> np.trim_zeros([0, 1, 2, 0]) [1, 2] """ first = 0 trim = trim.upper() if 'F' in trim: for i in filt: if i != 0.: break else: first = first + 1 last = len(filt) if 'B' in trim: for i in filt[::-1]: if i != 0.: break else: last = last - 1 return filt[first:last] import sys if sys.hexversion < 0x2040000: from sets import Set as set @deprecate def unique(x): """ This function is deprecated. Use numpy.lib.arraysetops.unique() instead. """ try: tmp = x.flatten() if tmp.size == 0: return tmp tmp.sort() idx = concatenate(([True],tmp[1:]!=tmp[:-1])) return tmp[idx] except AttributeError: items = list(set(x)) items.sort() return asarray(items) def extract(condition, arr): """ Return the elements of an array that satisfy some condition. This is equivalent to ``np.compress(ravel(condition), ravel(arr))``. If `condition` is boolean ``np.extract`` is equivalent to ``arr[condition]``. Parameters ---------- condition : array_like An array whose nonzero or True entries indicate the elements of `arr` to extract. arr : array_like Input array of the same size as `condition`. Returns ------- extract : ndarray Rank 1 array of values from `arr` where `condition` is True. See Also -------- take, put, copyto, compress Examples -------- >>> arr = np.arange(12).reshape((3, 4)) >>> arr array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]) >>> condition = np.mod(arr, 3)==0 >>> condition array([[ True, False, False, True], [False, False, True, False], [False, True, False, False]], dtype=bool) >>> np.extract(condition, arr) array([0, 3, 6, 9]) If `condition` is boolean: >>> arr[condition] array([0, 3, 6, 9]) """ return _nx.take(ravel(arr), nonzero(ravel(condition))[0]) def place(arr, mask, vals): """ Change elements of an array based on conditional and input values. Similar to ``np.copyto(arr, vals, where=mask)``, the difference is that `place` uses the first N elements of `vals`, where N is the number of True values in `mask`, while `copyto` uses the elements where `mask` is True. Note that `extract` does the exact opposite of `place`. Parameters ---------- arr : array_like Array to put data into. mask : array_like Boolean mask array. Must have the same size as `a`. vals : 1-D sequence Values to put into `a`. Only the first N elements are used, where N is the number of True values in `mask`. If `vals` is smaller than N it will be repeated. See Also -------- copyto, put, take, extract Examples -------- >>> arr = np.arange(6).reshape(2, 3) >>> np.place(arr, arr>2, [44, 55]) >>> arr array([[ 0, 1, 2], [44, 55, 44]]) """ return _insert(arr, mask, vals) def _nanop(op, fill, a, axis=None): """ General operation on arrays with not-a-number values. Parameters ---------- op : callable Operation to perform. fill : float NaN values are set to fill before doing the operation. a : array-like Input array. axis : {int, None}, optional Axis along which the operation is computed. By default the input is flattened. Returns ------- y : {ndarray, scalar} Processed data. """ y = array(a, subok=True) # We only need to take care of NaN's in floating point arrays dt = y.dtype if np.issubdtype(dt, np.integer) or np.issubdtype(dt, np.bool_): return op(y, axis=axis) mask = isnan(a) # y[mask] = fill # We can't use fancy indexing here as it'll mess w/ MaskedArrays # Instead, let's fill the array directly... np.copyto(y, fill, where=mask) res = op(y, axis=axis) mask_all_along_axis = mask.all(axis=axis) # Along some axes, only nan's were encountered. As such, any values # calculated along that axis should be set to nan. if mask_all_along_axis.any(): if np.isscalar(res): res = np.nan else: res[mask_all_along_axis] = np.nan return res def nansum(a, axis=None): """ Return the sum of array elements over a given axis treating Not a Numbers (NaNs) as zero. Parameters ---------- a : array_like Array containing numbers whose sum is desired. If `a` is not an array, a conversion is attempted. axis : int, optional Axis along which the sum is computed. The default is to compute the sum of the flattened array. Returns ------- y : ndarray An array with the same shape as a, with the specified axis removed. If a is a 0-d array, or if axis is None, a scalar is returned with the same dtype as `a`. See Also -------- numpy.sum : Sum across array including Not a Numbers. isnan : Shows which elements are Not a Number (NaN). isfinite: Shows which elements are not: Not a Number, positive and negative infinity Notes ----- Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a Number is not equivalent to infinity. If positive or negative infinity are present the result is positive or negative infinity. But if both positive and negative infinity are present, the result is Not A Number (NaN). Arithmetic is modular when using integer types (all elements of `a` must be finite i.e. no elements that are NaNs, positive infinity and negative infinity because NaNs are floating point types), and no error is raised on overflow. Examples -------- >>> np.nansum(1) 1 >>> np.nansum([1]) 1 >>> np.nansum([1, np.nan]) 1.0 >>> a = np.array([[1, 1], [1, np.nan]]) >>> np.nansum(a) 3.0 >>> np.nansum(a, axis=0) array([ 2., 1.]) When positive infinity and negative infinity are present >>> np.nansum([1, np.nan, np.inf]) inf >>> np.nansum([1, np.nan, np.NINF]) -inf >>> np.nansum([1, np.nan, np.inf, np.NINF]) nan """ return _nanop(np.sum, 0, a, axis) def nanmin(a, axis=None): """ Return the minimum of an array or minimum along an axis ignoring any NaNs. Parameters ---------- a : array_like Array containing numbers whose minimum is desired. axis : int, optional Axis along which the minimum is computed.The default is to compute the minimum of the flattened array. Returns ------- nanmin : ndarray A new array or a scalar array with the result. See Also -------- numpy.amin : Minimum across array including any Not a Numbers. numpy.nanmax : Maximum across array ignoring any Not a Numbers. isnan : Shows which elements are Not a Number (NaN). isfinite: Shows which elements are not: Not a Number, positive and negative infinity Notes ----- Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a Number is not equivalent to infinity. Positive infinity is treated as a very large number and negative infinity is treated as a very small (i.e. negative) number. If the input has a integer type the function is equivalent to np.min. Examples -------- >>> a = np.array([[1, 2], [3, np.nan]]) >>> np.nanmin(a) 1.0 >>> np.nanmin(a, axis=0) array([ 1., 2.]) >>> np.nanmin(a, axis=1) array([ 1., 3.]) When positive infinity and negative infinity are present: >>> np.nanmin([1, 2, np.nan, np.inf]) 1.0 >>> np.nanmin([1, 2, np.nan, np.NINF]) -inf """ a = np.asanyarray(a) if axis is not None: return np.fmin.reduce(a, axis) else: return np.fmin.reduce(a.flat) def nanargmin(a, axis=None): """ Return indices of the minimum values over an axis, ignoring NaNs. Parameters ---------- a : array_like Input data. axis : int, optional Axis along which to operate. By default flattened input is used. Returns ------- index_array : ndarray An array of indices or a single index value. See Also -------- argmin, nanargmax Examples -------- >>> a = np.array([[np.nan, 4], [2, 3]]) >>> np.argmin(a) 0 >>> np.nanargmin(a) 2 >>> np.nanargmin(a, axis=0) array([1, 1]) >>> np.nanargmin(a, axis=1) array([1, 0]) """ return _nanop(np.argmin, np.inf, a, axis) def nanmax(a, axis=None): """ Return the maximum of an array or maximum along an axis ignoring any NaNs. Parameters ---------- a : array_like Array containing numbers whose maximum is desired. If `a` is not an array, a conversion is attempted. axis : int, optional Axis along which the maximum is computed. The default is to compute the maximum of the flattened array. Returns ------- nanmax : ndarray An array with the same shape as `a`, with the specified axis removed. If `a` is a 0-d array, or if axis is None, a ndarray scalar is returned. The the same dtype as `a` is returned. See Also -------- numpy.amax : Maximum across array including any Not a Numbers. numpy.nanmin : Minimum across array ignoring any Not a Numbers. isnan : Shows which elements are Not a Number (NaN). isfinite: Shows which elements are not: Not a Number, positive and negative infinity Notes ----- Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a Number is not equivalent to infinity. Positive infinity is treated as a very large number and negative infinity is treated as a very small (i.e. negative) number. If the input has a integer type the function is equivalent to np.max. Examples -------- >>> a = np.array([[1, 2], [3, np.nan]]) >>> np.nanmax(a) 3.0 >>> np.nanmax(a, axis=0) array([ 3., 2.]) >>> np.nanmax(a, axis=1) array([ 2., 3.]) When positive infinity and negative infinity are present: >>> np.nanmax([1, 2, np.nan, np.NINF]) 2.0 >>> np.nanmax([1, 2, np.nan, np.inf]) inf """ a = np.asanyarray(a) if axis is not None: return np.fmax.reduce(a, axis) else: return np.fmax.reduce(a.flat) def nanargmax(a, axis=None): """ Return indices of the maximum values over an axis, ignoring NaNs. Parameters ---------- a : array_like Input data. axis : int, optional Axis along which to operate. By default flattened input is used. Returns ------- index_array : ndarray An array of indices or a single index value. See Also -------- argmax, nanargmin Examples -------- >>> a = np.array([[np.nan, 4], [2, 3]]) >>> np.argmax(a) 0 >>> np.nanargmax(a) 1 >>> np.nanargmax(a, axis=0) array([1, 0]) >>> np.nanargmax(a, axis=1) array([1, 1]) """ return _nanop(np.argmax, -np.inf, a, axis) def disp(mesg, device=None, linefeed=True): """ Display a message on a device. Parameters ---------- mesg : str Message to display. device : object Device to write message. If None, defaults to ``sys.stdout`` which is very similar to ``print``. `device` needs to have ``write()`` and ``flush()`` methods. linefeed : bool, optional Option whether to print a line feed or not. Defaults to True. Raises ------ AttributeError If `device` does not have a ``write()`` or ``flush()`` method. Examples -------- Besides ``sys.stdout``, a file-like object can also be used as it has both required methods: >>> from StringIO import StringIO >>> buf = StringIO() >>> np.disp('"Display" in a file', device=buf) >>> buf.getvalue() '"Display" in a file\\n' """ if device is None: import sys device = sys.stdout if linefeed: device.write('%s\n' % mesg) else: device.write('%s' % mesg) device.flush() return class vectorize(object): """ vectorize(pyfunc, otypes='', doc=None, excluded=None, cache=False) Generalized function class. Define a vectorized function which takes a nested sequence of objects or numpy arrays as inputs and returns a numpy array as output. The vectorized function evaluates `pyfunc` over successive tuples of the input arrays like the python map function, except it uses the broadcasting rules of numpy. The data type of the output of `vectorized` is determined by calling the function with the first element of the input. This can be avoided by specifying the `otypes` argument. Parameters ---------- pyfunc : callable A python function or method. otypes : str or list of dtypes, optional The output data type. It must be specified as either a string of typecode characters or a list of data type specifiers. There should be one data type specifier for each output. doc : str, optional The docstring for the function. If `None`, the docstring will be the ``pyfunc.__doc__``. excluded : set, optional Set of strings or integers representing the positional or keyword arguments for which the function will not be vectorized. These will be passed directly to `pyfunc` unmodified. .. versionadded:: 1.7.0 cache : bool, optional If `True`, then cache the first function call that determines the number of outputs if `otypes` is not provided. .. versionadded:: 1.7.0 Returns ------- vectorized : callable Vectorized function. Examples -------- >>> def myfunc(a, b): ... "Return a-b if a>b, otherwise return a+b" ... if a > b: ... return a - b ... else: ... return a + b >>> vfunc = np.vectorize(myfunc) >>> vfunc([1, 2, 3, 4], 2) array([3, 4, 1, 2]) The docstring is taken from the input function to `vectorize` unless it is specified >>> vfunc.__doc__ 'Return a-b if a>b, otherwise return a+b' >>> vfunc = np.vectorize(myfunc, doc='Vectorized `myfunc`') >>> vfunc.__doc__ 'Vectorized `myfunc`' The output type is determined by evaluating the first element of the input, unless it is specified >>> out = vfunc([1, 2, 3, 4], 2) >>> type(out[0]) <type 'numpy.int32'> >>> vfunc = np.vectorize(myfunc, otypes=[np.float]) >>> out = vfunc([1, 2, 3, 4], 2) >>> type(out[0]) <type 'numpy.float64'> The `excluded` argument can be used to prevent vectorizing over certain arguments. This can be useful for array-like arguments of a fixed length such as the coefficients for a polynomial as in `polyval`: >>> def mypolyval(p, x): ... _p = list(p) ... res = _p.pop(0) ... while _p: ... res = res*x + _p.pop(0) ... return res >>> vpolyval = np.vectorize(mypolyval, excluded=['p']) >>> vpolyval(p=[1, 2, 3], x=[0, 1]) array([3, 6]) Positional arguments may also be excluded by specifying their position: >>> vpolyval.excluded.add(0) >>> vpolyval([1, 2, 3], x=[0, 1]) array([3, 6]) Notes ----- The `vectorize` function is provided primarily for convenience, not for performance. The implementation is essentially a for loop. If `otypes` is not specified, then a call to the function with the first argument will be used to determine the number of outputs. The results of this call will be cached if `cache` is `True` to prevent calling the function twice. However, to implement the cache, the original function must be wrapped which will slow down subsequent calls, so only do this if your function is expensive. The new keyword argument interface and `excluded` argument support further degrades performance. """ def __init__(self, pyfunc, otypes='', doc=None, excluded=None, cache=False): self.pyfunc = pyfunc self.cache = cache if doc is None: self.__doc__ = pyfunc.__doc__ else: self.__doc__ = doc if isinstance(otypes, str): self.otypes = otypes for char in self.otypes: if char not in typecodes['All']: raise ValueError("Invalid otype specified: %s" % (char,)) elif iterable(otypes): self.otypes = ''.join([_nx.dtype(x).char for x in otypes]) else: raise ValueError("Invalid otype specification") # Excluded variable support if excluded is None: excluded = set() self.excluded = set(excluded) if self.otypes and not self.excluded: self._ufunc = None # Caching to improve default performance def __call__(self, *args, **kwargs): """ Return arrays with the results of `pyfunc` broadcast (vectorized) over `args` and `kwargs` not in `excluded`. """ excluded = self.excluded if not kwargs and not excluded: func = self.pyfunc vargs = args else: # The wrapper accepts only positional arguments: we use `names` and # `inds` to mutate `the_args` and `kwargs` to pass to the original # function. nargs = len(args) names = [_n for _n in kwargs if _n not in excluded] inds = [_i for _i in range(nargs) if _i not in excluded] the_args = list(args) def func(*vargs): for _n, _i in enumerate(inds): the_args[_i] = vargs[_n] kwargs.update(zip(names, vargs[len(inds):])) return self.pyfunc(*the_args, **kwargs) vargs = [args[_i] for _i in inds] vargs.extend([kwargs[_n] for _n in names]) return self._vectorize_call(func=func, args=vargs) def _get_ufunc_and_otypes(self, func, args): """Return (ufunc, otypes).""" # frompyfunc will fail if args is empty assert args if self.otypes: otypes = self.otypes nout = len(otypes) # Note logic here: We only *use* self._ufunc if func is self.pyfunc # even though we set self._ufunc regardless. if func is self.pyfunc and self._ufunc is not None: ufunc = self._ufunc else: ufunc = self._ufunc = frompyfunc(func, len(args), nout) else: # Get number of outputs and output types by calling the function on # the first entries of args. We also cache the result to prevent # the subsequent call when the ufunc is evaluated. # Assumes that ufunc first evaluates the 0th elements in the input # arrays (the input values are not checked to ensure this) inputs = [asarray(_a).flat[0] for _a in args] outputs = func(*inputs) # Performance note: profiling indicates that -- for simple functions # at least -- this wrapping can almost double the execution time. # Hence we make it optional. if self.cache: _cache = [outputs] def _func(*vargs): if _cache: return _cache.pop() else: return func(*vargs) else: _func = func if isinstance(outputs, tuple): nout = len(outputs) else: nout = 1 outputs = (outputs,) otypes = ''.join([asarray(outputs[_k]).dtype.char for _k in range(nout)]) # Performance note: profiling indicates that creating the ufunc is # not a significant cost compared with wrapping so it seems not # worth trying to cache this. ufunc = frompyfunc(_func, len(args), nout) return ufunc, otypes def _vectorize_call(self, func, args): """Vectorized call to `func` over positional `args`.""" if not args: _res = func() else: ufunc, otypes = self._get_ufunc_and_otypes(func=func, args=args) # Convert args to object arrays first inputs = [array(_a, copy=False, subok=True, dtype=object) for _a in args] outputs = ufunc(*inputs) if ufunc.nout == 1: _res = array(outputs, copy=False, subok=True, dtype=otypes[0]) else: _res = tuple([array(_x, copy=False, subok=True, dtype=_t) for _x, _t in zip(outputs, otypes)]) return _res def cov(m, y=None, rowvar=1, bias=0, ddof=None): """ Estimate a covariance matrix, given data. Covariance indicates the level to which two variables vary together. If we examine N-dimensional samples, :math:`X = [x_1, x_2, ... x_N]^T`, then the covariance matrix element :math:`C_{ij}` is the covariance of :math:`x_i` and :math:`x_j`. The element :math:`C_{ii}` is the variance of :math:`x_i`. Parameters ---------- m : array_like A 1-D or 2-D array containing multiple variables and observations. Each row of `m` represents a variable, and each column a single observation of all those variables. Also see `rowvar` below. y : array_like, optional An additional set of variables and observations. `y` has the same form as that of `m`. rowvar : int, optional If `rowvar` is non-zero (default), then each row represents a variable, with observations in the columns. Otherwise, the relationship is transposed: each column represents a variable, while the rows contain observations. bias : int, optional Default normalization is by ``(N - 1)``, where ``N`` is the number of observations given (unbiased estimate). If `bias` is 1, then normalization is by ``N``. These values can be overridden by using the keyword ``ddof`` in numpy versions >= 1.5. ddof : int, optional .. versionadded:: 1.5 If not ``None`` normalization is by ``(N - ddof)``, where ``N`` is the number of observations; this overrides the value implied by ``bias``. The default value is ``None``. Returns ------- out : ndarray The covariance matrix of the variables. See Also -------- corrcoef : Normalized covariance matrix Examples -------- Consider two variables, :math:`x_0` and :math:`x_1`, which correlate perfectly, but in opposite directions: >>> x = np.array([[0, 2], [1, 1], [2, 0]]).T >>> x array([[0, 1, 2], [2, 1, 0]]) Note how :math:`x_0` increases while :math:`x_1` decreases. The covariance matrix shows this clearly: >>> np.cov(x) array([[ 1., -1.], [-1., 1.]]) Note that element :math:`C_{0,1}`, which shows the correlation between :math:`x_0` and :math:`x_1`, is negative. Further, note how `x` and `y` are combined: >>> x = [-2.1, -1, 4.3] >>> y = [3, 1.1, 0.12] >>> X = np.vstack((x,y)) >>> print np.cov(X) [[ 11.71 -4.286 ] [ -4.286 2.14413333]] >>> print np.cov(x, y) [[ 11.71 -4.286 ] [ -4.286 2.14413333]] >>> print np.cov(x) 11.71 """ # Check inputs if ddof is not None and ddof != int(ddof): raise ValueError("ddof must be integer") X = array(m, ndmin=2, dtype=float) if X.size == 0: # handle empty arrays return np.array(m) if X.shape[0] == 1: rowvar = 1 if rowvar: axis = 0 tup = (slice(None),newaxis) else: axis = 1 tup = (newaxis, slice(None)) if y is not None: y = array(y, copy=False, ndmin=2, dtype=float) X = concatenate((X,y), axis) X -= X.mean(axis=1-axis)[tup] if rowvar: N = X.shape[1] else: N = X.shape[0] if ddof is None: if bias == 0: ddof = 1 else: ddof = 0 fact = float(N - ddof) if not rowvar: return (dot(X.T, X.conj()) / fact).squeeze() else: return (dot(X, X.T.conj()) / fact).squeeze() def corrcoef(x, y=None, rowvar=1, bias=0, ddof=None): """ Return correlation coefficients. Please refer to the documentation for `cov` for more detail. The relationship between the correlation coefficient matrix, `P`, and the covariance matrix, `C`, is .. math:: P_{ij} = \\frac{ C_{ij} } { \\sqrt{ C_{ii} * C_{jj} } } The values of `P` are between -1 and 1, inclusive. Parameters ---------- x : array_like A 1-D or 2-D array containing multiple variables and observations. Each row of `m` represents a variable, and each column a single observation of all those variables. Also see `rowvar` below. y : array_like, optional An additional set of variables and observations. `y` has the same shape as `m`. rowvar : int, optional If `rowvar` is non-zero (default), then each row represents a variable, with observations in the columns. Otherwise, the relationship is transposed: each column represents a variable, while the rows contain observations. bias : int, optional Default normalization is by ``(N - 1)``, where ``N`` is the number of observations (unbiased estimate). If `bias` is 1, then normalization is by ``N``. These values can be overridden by using the keyword ``ddof`` in numpy versions >= 1.5. ddof : {None, int}, optional .. versionadded:: 1.5 If not ``None`` normalization is by ``(N - ddof)``, where ``N`` is the number of observations; this overrides the value implied by ``bias``. The default value is ``None``. Returns ------- out : ndarray The correlation coefficient matrix of the variables. See Also -------- cov : Covariance matrix """ c = cov(x, y, rowvar, bias, ddof) if c.size == 0: # handle empty arrays return c try: d = diag(c) except ValueError: # scalar covariance return 1 return c/sqrt(multiply.outer(d,d)) def blackman(M): """ Return the Blackman window. The Blackman window is a taper formed by using the the first three terms of a summation of cosines. It was designed to have close to the minimal leakage possible. It is close to optimal, only slightly worse than a Kaiser window. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. Returns ------- out : ndarray The window, with the maximum value normalized to one (the value one appears only if the number of samples is odd). See Also -------- bartlett, hamming, hanning, kaiser Notes ----- The Blackman window is defined as .. math:: w(n) = 0.42 - 0.5 \\cos(2\\pi n/M) + 0.08 \\cos(4\\pi n/M) Most references to the Blackman window come from the signal processing literature, where it is used as one of many windowing functions for smoothing values. It is also known as an apodization (which means "removing the foot", i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function. It is known as a "near optimal" tapering function, almost as good (by some measures) as the kaiser window. References ---------- Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra, Dover Publications, New York. Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing. Upper Saddle River, NJ: Prentice-Hall, 1999, pp. 468-471. Examples -------- >>> np.blackman(12) array([ -1.38777878e-17, 3.26064346e-02, 1.59903635e-01, 4.14397981e-01, 7.36045180e-01, 9.67046769e-01, 9.67046769e-01, 7.36045180e-01, 4.14397981e-01, 1.59903635e-01, 3.26064346e-02, -1.38777878e-17]) Plot the window and the frequency response: >>> from numpy.fft import fft, fftshift >>> window = np.blackman(51) >>> plt.plot(window) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Blackman window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Amplitude") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Sample") <matplotlib.text.Text object at 0x...> >>> plt.show() >>> plt.figure() <matplotlib.figure.Figure object at 0x...> >>> A = fft(window, 2048) / 25.5 >>> mag = np.abs(fftshift(A)) >>> freq = np.linspace(-0.5, 0.5, len(A)) >>> response = 20 * np.log10(mag) >>> response = np.clip(response, -100, 100) >>> plt.plot(freq, response) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Frequency response of Blackman window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Magnitude [dB]") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Normalized frequency [cycles per sample]") <matplotlib.text.Text object at 0x...> >>> plt.axis('tight') (-0.5, 0.5, -100.0, ...) >>> plt.show() """ if M < 1: return array([]) if M == 1: return ones(1, float) n = arange(0,M) return 0.42-0.5*cos(2.0*pi*n/(M-1)) + 0.08*cos(4.0*pi*n/(M-1)) def bartlett(M): """ Return the Bartlett window. The Bartlett window is very similar to a triangular window, except that the end points are at zero. It is often used in signal processing for tapering a signal, without generating too much ripple in the frequency domain. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. Returns ------- out : array The triangular window, with the maximum value normalized to one (the value one appears only if the number of samples is odd), with the first and last samples equal to zero. See Also -------- blackman, hamming, hanning, kaiser Notes ----- The Bartlett window is defined as .. math:: w(n) = \\frac{2}{M-1} \\left( \\frac{M-1}{2} - \\left|n - \\frac{M-1}{2}\\right| \\right) Most references to the Bartlett window come from the signal processing literature, where it is used as one of many windowing functions for smoothing values. Note that convolution with this window produces linear interpolation. It is also known as an apodization (which means"removing the foot", i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function. The fourier transform of the Bartlett is the product of two sinc functions. Note the excellent discussion in Kanasewich. References ---------- .. [1] M.S. Bartlett, "Periodogram Analysis and Continuous Spectra", Biometrika 37, 1-16, 1950. .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The University of Alberta Press, 1975, pp. 109-110. .. [3] A.V. Oppenheim and R.W. Schafer, "Discrete-Time Signal Processing", Prentice-Hall, 1999, pp. 468-471. .. [4] Wikipedia, "Window function", http://en.wikipedia.org/wiki/Window_function .. [5] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, "Numerical Recipes", Cambridge University Press, 1986, page 429. Examples -------- >>> np.bartlett(12) array([ 0. , 0.18181818, 0.36363636, 0.54545455, 0.72727273, 0.90909091, 0.90909091, 0.72727273, 0.54545455, 0.36363636, 0.18181818, 0. ]) Plot the window and its frequency response (requires SciPy and matplotlib): >>> from numpy.fft import fft, fftshift >>> window = np.bartlett(51) >>> plt.plot(window) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Bartlett window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Amplitude") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Sample") <matplotlib.text.Text object at 0x...> >>> plt.show() >>> plt.figure() <matplotlib.figure.Figure object at 0x...> >>> A = fft(window, 2048) / 25.5 >>> mag = np.abs(fftshift(A)) >>> freq = np.linspace(-0.5, 0.5, len(A)) >>> response = 20 * np.log10(mag) >>> response = np.clip(response, -100, 100) >>> plt.plot(freq, response) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Frequency response of Bartlett window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Magnitude [dB]") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Normalized frequency [cycles per sample]") <matplotlib.text.Text object at 0x...> >>> plt.axis('tight') (-0.5, 0.5, -100.0, ...) >>> plt.show() """ if M < 1: return array([]) if M == 1: return ones(1, float) n = arange(0,M) return where(less_equal(n,(M-1)/2.0),2.0*n/(M-1),2.0-2.0*n/(M-1)) def hanning(M): """ Return the Hanning window. The Hanning window is a taper formed by using a weighted cosine. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. Returns ------- out : ndarray, shape(M,) The window, with the maximum value normalized to one (the value one appears only if `M` is odd). See Also -------- bartlett, blackman, hamming, kaiser Notes ----- The Hanning window is defined as .. math:: w(n) = 0.5 - 0.5cos\\left(\\frac{2\\pi{n}}{M-1}\\right) \\qquad 0 \\leq n \\leq M-1 The Hanning was named for Julius van Hann, an Austrian meterologist. It is also known as the Cosine Bell. Some authors prefer that it be called a Hann window, to help avoid confusion with the very similar Hamming window. Most references to the Hanning window come from the signal processing literature, where it is used as one of many windowing functions for smoothing values. It is also known as an apodization (which means "removing the foot", i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function. References ---------- .. [1] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra, Dover Publications, New York. .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The University of Alberta Press, 1975, pp. 106-108. .. [3] Wikipedia, "Window function", http://en.wikipedia.org/wiki/Window_function .. [4] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, "Numerical Recipes", Cambridge University Press, 1986, page 425. Examples -------- >>> np.hanning(12) array([ 0. , 0.07937323, 0.29229249, 0.57115742, 0.82743037, 0.97974649, 0.97974649, 0.82743037, 0.57115742, 0.29229249, 0.07937323, 0. ]) Plot the window and its frequency response: >>> from numpy.fft import fft, fftshift >>> window = np.hanning(51) >>> plt.plot(window) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Hann window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Amplitude") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Sample") <matplotlib.text.Text object at 0x...> >>> plt.show() >>> plt.figure() <matplotlib.figure.Figure object at 0x...> >>> A = fft(window, 2048) / 25.5 >>> mag = np.abs(fftshift(A)) >>> freq = np.linspace(-0.5, 0.5, len(A)) >>> response = 20 * np.log10(mag) >>> response = np.clip(response, -100, 100) >>> plt.plot(freq, response) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Frequency response of the Hann window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Magnitude [dB]") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Normalized frequency [cycles per sample]") <matplotlib.text.Text object at 0x...> >>> plt.axis('tight') (-0.5, 0.5, -100.0, ...) >>> plt.show() """ if M < 1: return array([]) if M == 1: return ones(1, float) n = arange(0,M) return 0.5-0.5*cos(2.0*pi*n/(M-1)) def hamming(M): """ Return the Hamming window. The Hamming window is a taper formed by using a weighted cosine. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. Returns ------- out : ndarray The window, with the maximum value normalized to one (the value one appears only if the number of samples is odd). See Also -------- bartlett, blackman, hanning, kaiser Notes ----- The Hamming window is defined as .. math:: w(n) = 0.54 - 0.46cos\\left(\\frac{2\\pi{n}}{M-1}\\right) \\qquad 0 \\leq n \\leq M-1 The Hamming was named for R. W. Hamming, an associate of J. W. Tukey and is described in Blackman and Tukey. It was recommended for smoothing the truncated autocovariance function in the time domain. Most references to the Hamming window come from the signal processing literature, where it is used as one of many windowing functions for smoothing values. It is also known as an apodization (which means "removing the foot", i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function. References ---------- .. [1] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra, Dover Publications, New York. .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The University of Alberta Press, 1975, pp. 109-110. .. [3] Wikipedia, "Window function", http://en.wikipedia.org/wiki/Window_function .. [4] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, "Numerical Recipes", Cambridge University Press, 1986, page 425. Examples -------- >>> np.hamming(12) array([ 0.08 , 0.15302337, 0.34890909, 0.60546483, 0.84123594, 0.98136677, 0.98136677, 0.84123594, 0.60546483, 0.34890909, 0.15302337, 0.08 ]) Plot the window and the frequency response: >>> from numpy.fft import fft, fftshift >>> window = np.hamming(51) >>> plt.plot(window) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Hamming window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Amplitude") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Sample") <matplotlib.text.Text object at 0x...> >>> plt.show() >>> plt.figure() <matplotlib.figure.Figure object at 0x...> >>> A = fft(window, 2048) / 25.5 >>> mag = np.abs(fftshift(A)) >>> freq = np.linspace(-0.5, 0.5, len(A)) >>> response = 20 * np.log10(mag) >>> response = np.clip(response, -100, 100) >>> plt.plot(freq, response) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Frequency response of Hamming window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Magnitude [dB]") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Normalized frequency [cycles per sample]") <matplotlib.text.Text object at 0x...> >>> plt.axis('tight') (-0.5, 0.5, -100.0, ...) >>> plt.show() """ if M < 1: return array([]) if M == 1: return ones(1,float) n = arange(0,M) return 0.54-0.46*cos(2.0*pi*n/(M-1)) ## Code from cephes for i0 _i0A = [ -4.41534164647933937950E-18, 3.33079451882223809783E-17, -2.43127984654795469359E-16, 1.71539128555513303061E-15, -1.16853328779934516808E-14, 7.67618549860493561688E-14, -4.85644678311192946090E-13, 2.95505266312963983461E-12, -1.72682629144155570723E-11, 9.67580903537323691224E-11, -5.18979560163526290666E-10, 2.65982372468238665035E-9, -1.30002500998624804212E-8, 6.04699502254191894932E-8, -2.67079385394061173391E-7, 1.11738753912010371815E-6, -4.41673835845875056359E-6, 1.64484480707288970893E-5, -5.75419501008210370398E-5, 1.88502885095841655729E-4, -5.76375574538582365885E-4, 1.63947561694133579842E-3, -4.32430999505057594430E-3, 1.05464603945949983183E-2, -2.37374148058994688156E-2, 4.93052842396707084878E-2, -9.49010970480476444210E-2, 1.71620901522208775349E-1, -3.04682672343198398683E-1, 6.76795274409476084995E-1] _i0B = [ -7.23318048787475395456E-18, -4.83050448594418207126E-18, 4.46562142029675999901E-17, 3.46122286769746109310E-17, -2.82762398051658348494E-16, -3.42548561967721913462E-16, 1.77256013305652638360E-15, 3.81168066935262242075E-15, -9.55484669882830764870E-15, -4.15056934728722208663E-14, 1.54008621752140982691E-14, 3.85277838274214270114E-13, 7.18012445138366623367E-13, -1.79417853150680611778E-12, -1.32158118404477131188E-11, -3.14991652796324136454E-11, 1.18891471078464383424E-11, 4.94060238822496958910E-10, 3.39623202570838634515E-9, 2.26666899049817806459E-8, 2.04891858946906374183E-7, 2.89137052083475648297E-6, 6.88975834691682398426E-5, 3.36911647825569408990E-3, 8.04490411014108831608E-1] def _chbevl(x, vals): b0 = vals[0] b1 = 0.0 for i in xrange(1,len(vals)): b2 = b1 b1 = b0 b0 = x*b1 - b2 + vals[i] return 0.5*(b0 - b2) def _i0_1(x): return exp(x) * _chbevl(x/2.0-2, _i0A) def _i0_2(x): return exp(x) * _chbevl(32.0/x - 2.0, _i0B) / sqrt(x) def i0(x): """ Modified Bessel function of the first kind, order 0. Usually denoted :math:`I_0`. This function does broadcast, but will *not* "up-cast" int dtype arguments unless accompanied by at least one float or complex dtype argument (see Raises below). Parameters ---------- x : array_like, dtype float or complex Argument of the Bessel function. Returns ------- out : ndarray, shape = x.shape, dtype = x.dtype The modified Bessel function evaluated at each of the elements of `x`. Raises ------ TypeError: array cannot be safely cast to required type If argument consists exclusively of int dtypes. See Also -------- scipy.special.iv, scipy.special.ive Notes ----- We use the algorithm published by Clenshaw [1]_ and referenced by Abramowitz and Stegun [2]_, for which the function domain is partitioned into the two intervals [0,8] and (8,inf), and Chebyshev polynomial expansions are employed in each interval. Relative error on the domain [0,30] using IEEE arithmetic is documented [3]_ as having a peak of 5.8e-16 with an rms of 1.4e-16 (n = 30000). References ---------- .. [1] C. W. Clenshaw, "Chebyshev series for mathematical functions", in *National Physical Laboratory Mathematical Tables*, vol. 5, London: Her Majesty's Stationery Office, 1962. .. [2] M. Abramowitz and I. A. Stegun, *Handbook of Mathematical Functions*, 10th printing, New York: Dover, 1964, pp. 379. http://www.math.sfu.ca/~cbm/aands/page_379.htm .. [3] http://kobesearch.cpan.org/htdocs/Math-Cephes/Math/Cephes.html Examples -------- >>> np.i0([0.]) array(1.0) >>> np.i0([0., 1. + 2j]) array([ 1.00000000+0.j , 0.18785373+0.64616944j]) """ x = atleast_1d(x).copy() y = empty_like(x) ind = (x<0) x[ind] = -x[ind] ind = (x<=8.0) y[ind] = _i0_1(x[ind]) ind2 = ~ind y[ind2] = _i0_2(x[ind2]) return y.squeeze() ## End of cephes code for i0 def kaiser(M,beta): """ Return the Kaiser window. The Kaiser window is a taper formed by using a Bessel function. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. beta : float Shape parameter for window. Returns ------- out : array The window, with the maximum value normalized to one (the value one appears only if the number of samples is odd). See Also -------- bartlett, blackman, hamming, hanning Notes ----- The Kaiser window is defined as .. math:: w(n) = I_0\\left( \\beta \\sqrt{1-\\frac{4n^2}{(M-1)^2}} \\right)/I_0(\\beta) with .. math:: \\quad -\\frac{M-1}{2} \\leq n \\leq \\frac{M-1}{2}, where :math:`I_0` is the modified zeroth-order Bessel function. The Kaiser was named for Jim Kaiser, who discovered a simple approximation to the DPSS window based on Bessel functions. The Kaiser window is a very good approximation to the Digital Prolate Spheroidal Sequence, or Slepian window, which is the transform which maximizes the energy in the main lobe of the window relative to total energy. The Kaiser can approximate many other windows by varying the beta parameter. ==== ======================= beta Window shape ==== ======================= 0 Rectangular 5 Similar to a Hamming 6 Similar to a Hanning 8.6 Similar to a Blackman ==== ======================= A beta value of 14 is probably a good starting point. Note that as beta gets large, the window narrows, and so the number of samples needs to be large enough to sample the increasingly narrow spike, otherwise NaNs will get returned. Most references to the Kaiser window come from the signal processing literature, where it is used as one of many windowing functions for smoothing values. It is also known as an apodization (which means "removing the foot", i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function. References ---------- .. [1] J. F. Kaiser, "Digital Filters" - Ch 7 in "Systems analysis by digital computer", Editors: F.F. Kuo and J.F. Kaiser, p 218-285. John Wiley and Sons, New York, (1966). .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The University of Alberta Press, 1975, pp. 177-178. .. [3] Wikipedia, "Window function", http://en.wikipedia.org/wiki/Window_function Examples -------- >>> np.kaiser(12, 14) array([ 7.72686684e-06, 3.46009194e-03, 4.65200189e-02, 2.29737120e-01, 5.99885316e-01, 9.45674898e-01, 9.45674898e-01, 5.99885316e-01, 2.29737120e-01, 4.65200189e-02, 3.46009194e-03, 7.72686684e-06]) Plot the window and the frequency response: >>> from numpy.fft import fft, fftshift >>> window = np.kaiser(51, 14) >>> plt.plot(window) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Kaiser window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Amplitude") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Sample") <matplotlib.text.Text object at 0x...> >>> plt.show() >>> plt.figure() <matplotlib.figure.Figure object at 0x...> >>> A = fft(window, 2048) / 25.5 >>> mag = np.abs(fftshift(A)) >>> freq = np.linspace(-0.5, 0.5, len(A)) >>> response = 20 * np.log10(mag) >>> response = np.clip(response, -100, 100) >>> plt.plot(freq, response) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Frequency response of Kaiser window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Magnitude [dB]") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Normalized frequency [cycles per sample]") <matplotlib.text.Text object at 0x...> >>> plt.axis('tight') (-0.5, 0.5, -100.0, ...) >>> plt.show() """ from numpy.dual import i0 if M == 1: return np.array([1.]) n = arange(0,M) alpha = (M-1)/2.0 return i0(beta * sqrt(1-((n-alpha)/alpha)**2.0))/i0(float(beta)) def sinc(x): """ Return the sinc function. The sinc function is :math:`\\sin(\\pi x)/(\\pi x)`. Parameters ---------- x : ndarray Array (possibly multi-dimensional) of values for which to to calculate ``sinc(x)``. Returns ------- out : ndarray ``sinc(x)``, which has the same shape as the input. Notes ----- ``sinc(0)`` is the limit value 1. The name sinc is short for "sine cardinal" or "sinus cardinalis". The sinc function is used in various signal processing applications, including in anti-aliasing, in the construction of a Lanczos resampling filter, and in interpolation. For bandlimited interpolation of discrete-time signals, the ideal interpolation kernel is proportional to the sinc function. References ---------- .. [1] Weisstein, Eric W. "Sinc Function." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/SincFunction.html .. [2] Wikipedia, "Sinc function", http://en.wikipedia.org/wiki/Sinc_function Examples -------- >>> x = np.linspace(-4, 4, 41) >>> np.sinc(x) array([ -3.89804309e-17, -4.92362781e-02, -8.40918587e-02, -8.90384387e-02, -5.84680802e-02, 3.89804309e-17, 6.68206631e-02, 1.16434881e-01, 1.26137788e-01, 8.50444803e-02, -3.89804309e-17, -1.03943254e-01, -1.89206682e-01, -2.16236208e-01, -1.55914881e-01, 3.89804309e-17, 2.33872321e-01, 5.04551152e-01, 7.56826729e-01, 9.35489284e-01, 1.00000000e+00, 9.35489284e-01, 7.56826729e-01, 5.04551152e-01, 2.33872321e-01, 3.89804309e-17, -1.55914881e-01, -2.16236208e-01, -1.89206682e-01, -1.03943254e-01, -3.89804309e-17, 8.50444803e-02, 1.26137788e-01, 1.16434881e-01, 6.68206631e-02, 3.89804309e-17, -5.84680802e-02, -8.90384387e-02, -8.40918587e-02, -4.92362781e-02, -3.89804309e-17]) >>> plt.plot(x, np.sinc(x)) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Sinc Function") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Amplitude") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("X") <matplotlib.text.Text object at 0x...> >>> plt.show() It works in 2-D as well: >>> x = np.linspace(-4, 4, 401) >>> xx = np.outer(x, x) >>> plt.imshow(np.sinc(xx)) <matplotlib.image.AxesImage object at 0x...> """ x = np.asanyarray(x) y = pi* where(x == 0, 1.0e-20, x) return sin(y)/y def msort(a): """ Return a copy of an array sorted along the first axis. Parameters ---------- a : array_like Array to be sorted. Returns ------- sorted_array : ndarray Array of the same type and shape as `a`. See Also -------- sort Notes ----- ``np.msort(a)`` is equivalent to ``np.sort(a, axis=0)``. """ b = array(a,subok=True,copy=True) b.sort(0) return b def median(a, axis=None, out=None, overwrite_input=False): """ Compute the median along the specified axis. Returns the median of the array elements. Parameters ---------- a : array_like Input array or object that can be converted to an array. axis : int, optional Axis along which the medians are computed. The default (axis=None) is to compute the median along a flattened version of the array. out : ndarray, optional Alternative output array in which to place the result. It must have the same shape and buffer length as the expected output, but the type (of the output) will be cast if necessary. overwrite_input : bool optional If True, then allow use of memory of input array (a) for calculations. The input array will be modified by the call to median. This will save memory when you do not need to preserve the contents of the input array. Treat the input as undefined, but it will probably be fully or partially sorted. Default is False. Note that, if `overwrite_input` is True and the input is not already an ndarray, an error will be raised. Returns ------- median : ndarray A new array holding the result (unless `out` is specified, in which case that array is returned instead). If the input contains integers, or floats of smaller precision than 64, then the output data-type is float64. Otherwise, the output data-type is the same as that of the input. See Also -------- mean, percentile Notes ----- Given a vector V of length N, the median of V is the middle value of a sorted copy of V, ``V_sorted`` - i.e., ``V_sorted[(N-1)/2]``, when N is odd. When N is even, it is the average of the two middle values of ``V_sorted``. Examples -------- >>> a = np.array([[10, 7, 4], [3, 2, 1]]) >>> a array([[10, 7, 4], [ 3, 2, 1]]) >>> np.median(a) 3.5 >>> np.median(a, axis=0) array([ 6.5, 4.5, 2.5]) >>> np.median(a, axis=1) array([ 7., 2.]) >>> m = np.median(a, axis=0) >>> out = np.zeros_like(m) >>> np.median(a, axis=0, out=m) array([ 6.5, 4.5, 2.5]) >>> m array([ 6.5, 4.5, 2.5]) >>> b = a.copy() >>> np.median(b, axis=1, overwrite_input=True) array([ 7., 2.]) >>> assert not np.all(a==b) >>> b = a.copy() >>> np.median(b, axis=None, overwrite_input=True) 3.5 >>> assert not np.all(a==b) """ if overwrite_input: if axis is None: sorted = a.ravel() sorted.sort() else: a.sort(axis=axis) sorted = a else: sorted = sort(a, axis=axis) if sorted.shape == (): # make 0-D arrays work return sorted.item() if axis is None: axis = 0 indexer = [slice(None)] * sorted.ndim index = int(sorted.shape[axis]/2) if sorted.shape[axis] % 2 == 1: # index with slice to allow mean (below) to work indexer[axis] = slice(index, index+1) else: indexer[axis] = slice(index-1, index+1) # Use mean in odd and even case to coerce data type # and check, use out array. return mean(sorted[indexer], axis=axis, out=out) def percentile(a, q, axis=None, out=None, overwrite_input=False): """ Compute the qth percentile of the data along the specified axis. Returns the qth percentile of the array elements. Parameters ---------- a : array_like Input array or object that can be converted to an array. q : float in range of [0,100] (or sequence of floats) Percentile to compute which must be between 0 and 100 inclusive. axis : int, optional Axis along which the percentiles are computed. The default (None) is to compute the median along a flattened version of the array. out : ndarray, optional Alternative output array in which to place the result. It must have the same shape and buffer length as the expected output, but the type (of the output) will be cast if necessary. overwrite_input : bool, optional If True, then allow use of memory of input array `a` for calculations. The input array will be modified by the call to median. This will save memory when you do not need to preserve the contents of the input array. Treat the input as undefined, but it will probably be fully or partially sorted. Default is False. Note that, if `overwrite_input` is True and the input is not already an array, an error will be raised. Returns ------- pcntile : ndarray A new array holding the result (unless `out` is specified, in which case that array is returned instead). If the input contains integers, or floats of smaller precision than 64, then the output data-type is float64. Otherwise, the output data-type is the same as that of the input. See Also -------- mean, median Notes ----- Given a vector V of length N, the qth percentile of V is the qth ranked value in a sorted copy of V. A weighted average of the two nearest neighbors is used if the normalized ranking does not match q exactly. The same as the median if ``q=50``, the same as the minimum if ``q=0`` and the same as the maximum if ``q=100``. Examples -------- >>> a = np.array([[10, 7, 4], [3, 2, 1]]) >>> a array([[10, 7, 4], [ 3, 2, 1]]) >>> np.percentile(a, 50) 3.5 >>> np.percentile(a, 50, axis=0) array([ 6.5, 4.5, 2.5]) >>> np.percentile(a, 50, axis=1) array([ 7., 2.]) >>> m = np.percentile(a, 50, axis=0) >>> out = np.zeros_like(m) >>> np.percentile(a, 50, axis=0, out=m) array([ 6.5, 4.5, 2.5]) >>> m array([ 6.5, 4.5, 2.5]) >>> b = a.copy() >>> np.percentile(b, 50, axis=1, overwrite_input=True) array([ 7., 2.]) >>> assert not np.all(a==b) >>> b = a.copy() >>> np.percentile(b, 50, axis=None, overwrite_input=True) 3.5 """ a = np.asarray(a) if q == 0: return a.min(axis=axis, out=out) elif q == 100: return a.max(axis=axis, out=out) if overwrite_input: if axis is None: sorted = a.ravel() sorted.sort() else: a.sort(axis=axis) sorted = a else: sorted = sort(a, axis=axis) if axis is None: axis = 0 return _compute_qth_percentile(sorted, q, axis, out) # handle sequence of q's without calling sort multiple times def _compute_qth_percentile(sorted, q, axis, out): if not isscalar(q): p = [_compute_qth_percentile(sorted, qi, axis, None) for qi in q] if out is not None: out.flat = p return p q = q / 100.0 if (q < 0) or (q > 1): raise ValueError("percentile must be either in the range [0,100]") indexer = [slice(None)] * sorted.ndim Nx = sorted.shape[axis] index = q*(Nx-1) i = int(index) if i == index: indexer[axis] = slice(i, i+1) weights = array(1) sumval = 1.0 else: indexer[axis] = slice(i, i+2) j = i + 1 weights = array([(j - index), (index - i)],float) wshape = [1]*sorted.ndim wshape[axis] = 2 weights.shape = wshape sumval = weights.sum() # Use add.reduce in both cases to coerce data type as well as # check and use out array. return add.reduce(sorted[indexer]*weights, axis=axis, out=out)/sumval def trapz(y, x=None, dx=1.0, axis=-1): """ Integrate along the given axis using the composite trapezoidal rule. Integrate `y` (`x`) along given axis. Parameters ---------- y : array_like Input array to integrate. x : array_like, optional If `x` is None, then spacing between all `y` elements is `dx`. dx : scalar, optional If `x` is None, spacing given by `dx` is assumed. Default is 1. axis : int, optional Specify the axis. Returns ------- trapz : float Definite integral as approximated by trapezoidal rule. See Also -------- sum, cumsum Notes ----- Image [2]_ illustrates trapezoidal rule -- y-axis locations of points will be taken from `y` array, by default x-axis distances between points will be 1.0, alternatively they can be provided with `x` array or with `dx` scalar. Return value will be equal to combined area under the red lines. References ---------- .. [1] Wikipedia page: http://en.wikipedia.org/wiki/Trapezoidal_rule .. [2] Illustration image: http://en.wikipedia.org/wiki/File:Composite_trapezoidal_rule_illustration.png Examples -------- >>> np.trapz([1,2,3]) 4.0 >>> np.trapz([1,2,3], x=[4,6,8]) 8.0 >>> np.trapz([1,2,3], dx=2) 8.0 >>> a = np.arange(6).reshape(2, 3) >>> a array([[0, 1, 2], [3, 4, 5]]) >>> np.trapz(a, axis=0) array([ 1.5, 2.5, 3.5]) >>> np.trapz(a, axis=1) array([ 2., 8.]) """ y = asanyarray(y) if x is None: d = dx else: x = asanyarray(x) if x.ndim == 1: d = diff(x) # reshape to correct shape shape = [1]*y.ndim shape[axis] = d.shape[0] d = d.reshape(shape) else: d = diff(x, axis=axis) nd = len(y.shape) slice1 = [slice(None)]*nd slice2 = [slice(None)]*nd slice1[axis] = slice(1,None) slice2[axis] = slice(None,-1) try: ret = (d * (y[slice1] +y [slice2]) / 2.0).sum(axis) except ValueError: # Operations didn't work, cast to ndarray d = np.asarray(d) y = np.asarray(y) ret = add.reduce(d * (y[slice1]+y[slice2])/2.0, axis) return ret #always succeed def add_newdoc(place, obj, doc): """Adds documentation to obj which is in module place. If doc is a string add it to obj as a docstring If doc is a tuple, then the first element is interpreted as an attribute of obj and the second as the docstring (method, docstring) If doc is a list, then each element of the list should be a sequence of length two --> [(method1, docstring1), (method2, docstring2), ...] This routine never raises an error. This routine cannot modify read-only docstrings, as appear in new-style classes or built-in functions. Because this routine never raises an error the caller must check manually that the docstrings were changed. """ try: new = {} exec 'from %s import %s' % (place, obj) in new if isinstance(doc, str): add_docstring(new[obj], doc.strip()) elif isinstance(doc, tuple): add_docstring(getattr(new[obj], doc[0]), doc[1].strip()) elif isinstance(doc, list): for val in doc: add_docstring(getattr(new[obj], val[0]), val[1].strip()) except: pass # Based on scitools meshgrid def meshgrid(*xi, **kwargs): """ Return coordinate matrices from two or more coordinate vectors. Make N-D coordinate arrays for vectorized evaluations of N-D scalar/vector fields over N-D grids, given one-dimensional coordinate arrays x1, x2,..., xn. Parameters ---------- x1, x2,..., xn : array_like 1-D arrays representing the coordinates of a grid. indexing : {'xy', 'ij'}, optional Cartesian ('xy', default) or matrix ('ij') indexing of output. See Notes for more details. sparse : bool, optional If True a sparse grid is returned in order to conserve memory. Default is False. copy : bool, optional If False, a view into the original arrays are returned in order to conserve memory. Default is True. Please note that ``sparse=False, copy=False`` will likely return non-contiguous arrays. Furthermore, more than one element of a broadcast array may refer to a single memory location. If you need to write to the arrays, make copies first. Returns ------- X1, X2,..., XN : ndarray For vectors `x1`, `x2`,..., 'xn' with lengths ``Ni=len(xi)`` , return ``(N1, N2, N3,...Nn)`` shaped arrays if indexing='ij' or ``(N2, N1, N3,...Nn)`` shaped arrays if indexing='xy' with the elements of `xi` repeated to fill the matrix along the first dimension for `x1`, the second for `x2` and so on. Notes ----- This function supports both indexing conventions through the indexing keyword argument. Giving the string 'ij' returns a meshgrid with matrix indexing, while 'xy' returns a meshgrid with Cartesian indexing. In the 2-D case with inputs of length M and N, the outputs are of shape (N, M) for 'xy' indexing and (M, N) for 'ij' indexing. In the 3-D case with inputs of length M, N and P, outputs are of shape (N, M, P) for 'xy' indexing and (M, N, P) for 'ij' indexing. The difference is illustrated by the following code snippet:: xv, yv = meshgrid(x, y, sparse=False, indexing='ij') for i in range(nx): for j in range(ny): # treat xv[i,j], yv[i,j] xv, yv = meshgrid(x, y, sparse=False, indexing='xy') for i in range(nx): for j in range(ny): # treat xv[j,i], yv[j,i] See Also -------- index_tricks.mgrid : Construct a multi-dimensional "meshgrid" using indexing notation. index_tricks.ogrid : Construct an open multi-dimensional "meshgrid" using indexing notation. Examples -------- >>> nx, ny = (3, 2) >>> x = np.linspace(0, 1, nx) >>> y = np.linspace(0, 1, ny) >>> xv, yv = meshgrid(x, y) >>> xv array([[ 0. , 0.5, 1. ], [ 0. , 0.5, 1. ]]) >>> yv array([[ 0., 0., 0.], [ 1., 1., 1.]]) >>> xv, yv = meshgrid(x, y, sparse=True) # make sparse output arrays >>> xv array([[ 0. , 0.5, 1. ]]) >>> yv array([[ 0.], [ 1.]]) `meshgrid` is very useful to evaluate functions on a grid. >>> x = np.arange(-5, 5, 0.1) >>> y = np.arange(-5, 5, 0.1) >>> xx, yy = meshgrid(x, y, sparse=True) >>> z = np.sin(xx**2 + yy**2) / (xx**2 + yy**2) >>> h = plt.contourf(x,y,z) """ if len(xi) < 2: msg = 'meshgrid() takes 2 or more arguments (%d given)' % int(len(xi) > 0) raise ValueError(msg) args = np.atleast_1d(*xi) ndim = len(args) copy_ = kwargs.get('copy', True) sparse = kwargs.get('sparse', False) indexing = kwargs.get('indexing', 'xy') if not indexing in ['xy', 'ij']: raise ValueError("Valid values for `indexing` are 'xy' and 'ij'.") s0 = (1,) * ndim output = [x.reshape(s0[:i] + (-1,) + s0[i + 1::]) for i, x in enumerate(args)] shape = [x.size for x in output] if indexing == 'xy': # switch first and second axis output[0].shape = (1, -1) + (1,)*(ndim - 2) output[1].shape = (-1, 1) + (1,)*(ndim - 2) shape[0], shape[1] = shape[1], shape[0] if sparse: if copy_: return [x.copy() for x in output] else: return output else: # Return the full N-D matrix (not only the 1-D vector) if copy_: mult_fact = np.ones(shape, dtype=int) return [x * mult_fact for x in output] else: return np.broadcast_arrays(*output) def delete(arr, obj, axis=None): """ Return a new array with sub-arrays along an axis deleted. Parameters ---------- arr : array_like Input array. obj : slice, int or array of ints Indicate which sub-arrays to remove. axis : int, optional The axis along which to delete the subarray defined by `obj`. If `axis` is None, `obj` is applied to the flattened array. Returns ------- out : ndarray A copy of `arr` with the elements specified by `obj` removed. Note that `delete` does not occur in-place. If `axis` is None, `out` is a flattened array. See Also -------- insert : Insert elements into an array. append : Append elements at the end of an array. Examples -------- >>> arr = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]]) >>> arr array([[ 1, 2, 3, 4], [ 5, 6, 7, 8], [ 9, 10, 11, 12]]) >>> np.delete(arr, 1, 0) array([[ 1, 2, 3, 4], [ 9, 10, 11, 12]]) >>> np.delete(arr, np.s_[::2], 1) array([[ 2, 4], [ 6, 8], [10, 12]]) >>> np.delete(arr, [1,3,5], None) array([ 1, 3, 5, 7, 8, 9, 10, 11, 12]) """ wrap = None if type(arr) is not ndarray: try: wrap = arr.__array_wrap__ except AttributeError: pass arr = asarray(arr) ndim = arr.ndim if axis is None: if ndim != 1: arr = arr.ravel() ndim = arr.ndim; axis = ndim-1; if ndim == 0: if wrap: return wrap(arr) else: return arr.copy() slobj = [slice(None)]*ndim N = arr.shape[axis] newshape = list(arr.shape) if isinstance(obj, (int, long, integer)): if (obj < 0): obj += N if (obj < 0 or obj >=N): raise ValueError( "invalid entry") newshape[axis]-=1; new = empty(newshape, arr.dtype, arr.flags.fnc) slobj[axis] = slice(None, obj) new[slobj] = arr[slobj] slobj[axis] = slice(obj,None) slobj2 = [slice(None)]*ndim slobj2[axis] = slice(obj+1,None) new[slobj] = arr[slobj2] elif isinstance(obj, slice): start, stop, step = obj.indices(N) numtodel = len(xrange(start, stop, step)) if numtodel <= 0: if wrap: return wrap(new) else: return arr.copy() newshape[axis] -= numtodel new = empty(newshape, arr.dtype, arr.flags.fnc) # copy initial chunk if start == 0: pass else: slobj[axis] = slice(None, start) new[slobj] = arr[slobj] # copy end chunck if stop == N: pass else: slobj[axis] = slice(stop-numtodel,None) slobj2 = [slice(None)]*ndim slobj2[axis] = slice(stop, None) new[slobj] = arr[slobj2] # copy middle pieces if step == 1: pass else: # use array indexing. obj = arange(start, stop, step, dtype=intp) all = arange(start, stop, dtype=intp) obj = setdiff1d(all, obj) slobj[axis] = slice(start, stop-numtodel) slobj2 = [slice(None)]*ndim slobj2[axis] = obj new[slobj] = arr[slobj2] else: # default behavior obj = array(obj, dtype=intp, copy=0, ndmin=1) all = arange(N, dtype=intp) obj = setdiff1d(all, obj) slobj[axis] = obj new = arr[slobj] if wrap: return wrap(new) else: return new def insert(arr, obj, values, axis=None): """ Insert values along the given axis before the given indices. Parameters ---------- arr : array_like Input array. obj : int, slice or sequence of ints Object that defines the index or indices before which `values` is inserted. values : array_like Values to insert into `arr`. If the type of `values` is different from that of `arr`, `values` is converted to the type of `arr`. axis : int, optional Axis along which to insert `values`. If `axis` is None then `arr` is flattened first. Returns ------- out : ndarray A copy of `arr` with `values` inserted. Note that `insert` does not occur in-place: a new array is returned. If `axis` is None, `out` is a flattened array. See Also -------- append : Append elements at the end of an array. delete : Delete elements from an array. Examples -------- >>> a = np.array([[1, 1], [2, 2], [3, 3]]) >>> a array([[1, 1], [2, 2], [3, 3]]) >>> np.insert(a, 1, 5) array([1, 5, 1, 2, 2, 3, 3]) >>> np.insert(a, 1, 5, axis=1) array([[1, 5, 1], [2, 5, 2], [3, 5, 3]]) >>> b = a.flatten() >>> b array([1, 1, 2, 2, 3, 3]) >>> np.insert(b, [2, 2], [5, 6]) array([1, 1, 5, 6, 2, 2, 3, 3]) >>> np.insert(b, slice(2, 4), [5, 6]) array([1, 1, 5, 2, 6, 2, 3, 3]) >>> np.insert(b, [2, 2], [7.13, False]) # type casting array([1, 1, 7, 0, 2, 2, 3, 3]) >>> x = np.arange(8).reshape(2, 4) >>> idx = (1, 3) >>> np.insert(x, idx, 999, axis=1) array([[ 0, 999, 1, 2, 999, 3], [ 4, 999, 5, 6, 999, 7]]) """ wrap = None if type(arr) is not ndarray: try: wrap = arr.__array_wrap__ except AttributeError: pass arr = asarray(arr) ndim = arr.ndim if axis is None: if ndim != 1: arr = arr.ravel() ndim = arr.ndim axis = ndim-1 if (ndim == 0): arr = arr.copy() arr[...] = values if wrap: return wrap(arr) else: return arr slobj = [slice(None)]*ndim N = arr.shape[axis] newshape = list(arr.shape) if isinstance(obj, (int, long, integer)): if (obj < 0): obj += N if obj < 0 or obj > N: raise ValueError( "index (%d) out of range (0<=index<=%d) "\ "in dimension %d" % (obj, N, axis)) if isscalar(values): obj = [obj] else: values = asarray(values) if ndim > values.ndim: obj = [obj] else: obj = [obj] * len(values) elif isinstance(obj, slice): # turn it into a range object obj = arange(*obj.indices(N),**{'dtype':intp}) # get two sets of indices # one is the indices which will hold the new stuff # two is the indices where arr will be copied over obj = asarray(obj, dtype=intp) numnew = len(obj) index1 = obj + arange(numnew) index2 = setdiff1d(arange(numnew+N),index1) newshape[axis] += numnew new = empty(newshape, arr.dtype, arr.flags.fnc) slobj2 = [slice(None)]*ndim slobj[axis] = index1 slobj2[axis] = index2 new[slobj] = values new[slobj2] = arr if wrap: return wrap(new) return new def append(arr, values, axis=None): """ Append values to the end of an array. Parameters ---------- arr : array_like Values are appended to a copy of this array. values : array_like These values are appended to a copy of `arr`. It must be of the correct shape (the same shape as `arr`, excluding `axis`). If `axis` is not specified, `values` can be any shape and will be flattened before use. axis : int, optional The axis along which `values` are appended. If `axis` is not given, both `arr` and `values` are flattened before use. Returns ------- append : ndarray A copy of `arr` with `values` appended to `axis`. Note that `append` does not occur in-place: a new array is allocated and filled. If `axis` is None, `out` is a flattened array. See Also -------- insert : Insert elements into an array. delete : Delete elements from an array. Examples -------- >>> np.append([1, 2, 3], [[4, 5, 6], [7, 8, 9]]) array([1, 2, 3, 4, 5, 6, 7, 8, 9]) When `axis` is specified, `values` must have the correct shape. >>> np.append([[1, 2, 3], [4, 5, 6]], [[7, 8, 9]], axis=0) array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> np.append([[1, 2, 3], [4, 5, 6]], [7, 8, 9], axis=0) Traceback (most recent call last): ... ValueError: arrays must have same number of dimensions """ arr = asanyarray(arr) if axis is None: if arr.ndim != 1: arr = arr.ravel() values = ravel(values) axis = arr.ndim-1 return concatenate((arr, values), axis=axis)
bsd-3-clause
ravindrapanda/tensorflow
tensorflow/python/estimator/canned/dnn_test.py
25
16780
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for dnn.py.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import shutil import tempfile import numpy as np import six from tensorflow.core.example import example_pb2 from tensorflow.core.example import feature_pb2 from tensorflow.python.estimator.canned import dnn from tensorflow.python.estimator.canned import dnn_testing_utils from tensorflow.python.estimator.canned import prediction_keys from tensorflow.python.estimator.export import export from tensorflow.python.estimator.inputs import numpy_io from tensorflow.python.estimator.inputs import pandas_io from tensorflow.python.feature_column import feature_column from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import parsing_ops from tensorflow.python.platform import gfile from tensorflow.python.platform import test from tensorflow.python.summary.writer import writer_cache from tensorflow.python.training import input as input_lib from tensorflow.python.training import queue_runner try: # pylint: disable=g-import-not-at-top import pandas as pd HAS_PANDAS = True except IOError: # Pandas writes a temporary file during import. If it fails, don't use pandas. HAS_PANDAS = False except ImportError: HAS_PANDAS = False def _dnn_classifier_fn(*args, **kwargs): return dnn.DNNClassifier(*args, **kwargs) class DNNModelFnTest(dnn_testing_utils.BaseDNNModelFnTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNModelFnTest.__init__(self, dnn._dnn_model_fn) class DNNLogitFnTest(dnn_testing_utils.BaseDNNLogitFnTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNLogitFnTest.__init__(self, dnn._dnn_logit_fn_builder) class DNNWarmStartingTest(dnn_testing_utils.BaseDNNWarmStartingTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNWarmStartingTest.__init__(self, _dnn_classifier_fn, _dnn_regressor_fn) class DNNClassifierEvaluateTest( dnn_testing_utils.BaseDNNClassifierEvaluateTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNClassifierEvaluateTest.__init__( self, _dnn_classifier_fn) class DNNClassifierPredictTest( dnn_testing_utils.BaseDNNClassifierPredictTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNClassifierPredictTest.__init__( self, _dnn_classifier_fn) class DNNClassifierTrainTest( dnn_testing_utils.BaseDNNClassifierTrainTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNClassifierTrainTest.__init__( self, _dnn_classifier_fn) def _dnn_regressor_fn(*args, **kwargs): return dnn.DNNRegressor(*args, **kwargs) class DNNRegressorEvaluateTest( dnn_testing_utils.BaseDNNRegressorEvaluateTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNRegressorEvaluateTest.__init__( self, _dnn_regressor_fn) class DNNRegressorPredictTest( dnn_testing_utils.BaseDNNRegressorPredictTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNRegressorPredictTest.__init__( self, _dnn_regressor_fn) class DNNRegressorTrainTest( dnn_testing_utils.BaseDNNRegressorTrainTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNRegressorTrainTest.__init__( self, _dnn_regressor_fn) def _queue_parsed_features(feature_map): tensors_to_enqueue = [] keys = [] for key, tensor in six.iteritems(feature_map): keys.append(key) tensors_to_enqueue.append(tensor) queue_dtypes = [x.dtype for x in tensors_to_enqueue] input_queue = data_flow_ops.FIFOQueue(capacity=100, dtypes=queue_dtypes) queue_runner.add_queue_runner( queue_runner.QueueRunner( input_queue, [input_queue.enqueue(tensors_to_enqueue)])) dequeued_tensors = input_queue.dequeue() return {keys[i]: dequeued_tensors[i] for i in range(len(dequeued_tensors))} class DNNRegressorIntegrationTest(test.TestCase): def setUp(self): self._model_dir = tempfile.mkdtemp() def tearDown(self): if self._model_dir: writer_cache.FileWriterCache.clear() shutil.rmtree(self._model_dir) def _test_complete_flow( self, train_input_fn, eval_input_fn, predict_input_fn, input_dimension, label_dimension, batch_size): feature_columns = [ feature_column.numeric_column('x', shape=(input_dimension,))] est = dnn.DNNRegressor( hidden_units=(2, 2), feature_columns=feature_columns, label_dimension=label_dimension, model_dir=self._model_dir) # TRAIN num_steps = 10 est.train(train_input_fn, steps=num_steps) # EVALUTE scores = est.evaluate(eval_input_fn) self.assertEqual(num_steps, scores[ops.GraphKeys.GLOBAL_STEP]) self.assertIn('loss', six.iterkeys(scores)) # PREDICT predictions = np.array([ x[prediction_keys.PredictionKeys.PREDICTIONS] for x in est.predict(predict_input_fn) ]) self.assertAllEqual((batch_size, label_dimension), predictions.shape) # EXPORT feature_spec = feature_column.make_parse_example_spec(feature_columns) serving_input_receiver_fn = export.build_parsing_serving_input_receiver_fn( feature_spec) export_dir = est.export_savedmodel(tempfile.mkdtemp(), serving_input_receiver_fn) self.assertTrue(gfile.Exists(export_dir)) def test_numpy_input_fn(self): """Tests complete flow with numpy_input_fn.""" label_dimension = 2 batch_size = 10 data = np.linspace(0., 2., batch_size * label_dimension, dtype=np.float32) data = data.reshape(batch_size, label_dimension) # learn y = x train_input_fn = numpy_io.numpy_input_fn( x={'x': data}, y=data, batch_size=batch_size, num_epochs=None, shuffle=True) eval_input_fn = numpy_io.numpy_input_fn( x={'x': data}, y=data, batch_size=batch_size, shuffle=False) predict_input_fn = numpy_io.numpy_input_fn( x={'x': data}, batch_size=batch_size, shuffle=False) self._test_complete_flow( train_input_fn=train_input_fn, eval_input_fn=eval_input_fn, predict_input_fn=predict_input_fn, input_dimension=label_dimension, label_dimension=label_dimension, batch_size=batch_size) def test_pandas_input_fn(self): """Tests complete flow with pandas_input_fn.""" if not HAS_PANDAS: return label_dimension = 1 batch_size = 10 data = np.linspace(0., 2., batch_size, dtype=np.float32) x = pd.DataFrame({'x': data}) y = pd.Series(data) train_input_fn = pandas_io.pandas_input_fn( x=x, y=y, batch_size=batch_size, num_epochs=None, shuffle=True) eval_input_fn = pandas_io.pandas_input_fn( x=x, y=y, batch_size=batch_size, shuffle=False) predict_input_fn = pandas_io.pandas_input_fn( x=x, batch_size=batch_size, shuffle=False) self._test_complete_flow( train_input_fn=train_input_fn, eval_input_fn=eval_input_fn, predict_input_fn=predict_input_fn, input_dimension=label_dimension, label_dimension=label_dimension, batch_size=batch_size) def test_input_fn_from_parse_example(self): """Tests complete flow with input_fn constructed from parse_example.""" label_dimension = 2 batch_size = 10 data = np.linspace(0., 2., batch_size * label_dimension, dtype=np.float32) data = data.reshape(batch_size, label_dimension) serialized_examples = [] for datum in data: example = example_pb2.Example(features=feature_pb2.Features( feature={ 'x': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=datum)), 'y': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=datum)), })) serialized_examples.append(example.SerializeToString()) feature_spec = { 'x': parsing_ops.FixedLenFeature([label_dimension], dtypes.float32), 'y': parsing_ops.FixedLenFeature([label_dimension], dtypes.float32), } def _train_input_fn(): feature_map = parsing_ops.parse_example(serialized_examples, feature_spec) features = _queue_parsed_features(feature_map) labels = features.pop('y') return features, labels def _eval_input_fn(): feature_map = parsing_ops.parse_example( input_lib.limit_epochs(serialized_examples, num_epochs=1), feature_spec) features = _queue_parsed_features(feature_map) labels = features.pop('y') return features, labels def _predict_input_fn(): feature_map = parsing_ops.parse_example( input_lib.limit_epochs(serialized_examples, num_epochs=1), feature_spec) features = _queue_parsed_features(feature_map) features.pop('y') return features, None self._test_complete_flow( train_input_fn=_train_input_fn, eval_input_fn=_eval_input_fn, predict_input_fn=_predict_input_fn, input_dimension=label_dimension, label_dimension=label_dimension, batch_size=batch_size) class DNNClassifierIntegrationTest(test.TestCase): def setUp(self): self._model_dir = tempfile.mkdtemp() def tearDown(self): if self._model_dir: writer_cache.FileWriterCache.clear() shutil.rmtree(self._model_dir) def _as_label(self, data_in_float): return np.rint(data_in_float).astype(np.int64) def _test_complete_flow( self, train_input_fn, eval_input_fn, predict_input_fn, input_dimension, n_classes, batch_size): feature_columns = [ feature_column.numeric_column('x', shape=(input_dimension,))] est = dnn.DNNClassifier( hidden_units=(2, 2), feature_columns=feature_columns, n_classes=n_classes, model_dir=self._model_dir) # TRAIN num_steps = 10 est.train(train_input_fn, steps=num_steps) # EVALUTE scores = est.evaluate(eval_input_fn) self.assertEqual(num_steps, scores[ops.GraphKeys.GLOBAL_STEP]) self.assertIn('loss', six.iterkeys(scores)) # PREDICT predicted_proba = np.array([ x[prediction_keys.PredictionKeys.PROBABILITIES] for x in est.predict(predict_input_fn) ]) self.assertAllEqual((batch_size, n_classes), predicted_proba.shape) # EXPORT feature_spec = feature_column.make_parse_example_spec(feature_columns) serving_input_receiver_fn = export.build_parsing_serving_input_receiver_fn( feature_spec) export_dir = est.export_savedmodel(tempfile.mkdtemp(), serving_input_receiver_fn) self.assertTrue(gfile.Exists(export_dir)) def test_numpy_input_fn(self): """Tests complete flow with numpy_input_fn.""" n_classes = 3 input_dimension = 2 batch_size = 10 data = np.linspace( 0., n_classes - 1., batch_size * input_dimension, dtype=np.float32) x_data = data.reshape(batch_size, input_dimension) y_data = np.reshape(self._as_label(data[:batch_size]), (batch_size, 1)) # learn y = x train_input_fn = numpy_io.numpy_input_fn( x={'x': x_data}, y=y_data, batch_size=batch_size, num_epochs=None, shuffle=True) eval_input_fn = numpy_io.numpy_input_fn( x={'x': x_data}, y=y_data, batch_size=batch_size, shuffle=False) predict_input_fn = numpy_io.numpy_input_fn( x={'x': x_data}, batch_size=batch_size, shuffle=False) self._test_complete_flow( train_input_fn=train_input_fn, eval_input_fn=eval_input_fn, predict_input_fn=predict_input_fn, input_dimension=input_dimension, n_classes=n_classes, batch_size=batch_size) def test_pandas_input_fn(self): """Tests complete flow with pandas_input_fn.""" if not HAS_PANDAS: return input_dimension = 1 n_classes = 3 batch_size = 10 data = np.linspace(0., n_classes - 1., batch_size, dtype=np.float32) x = pd.DataFrame({'x': data}) y = pd.Series(self._as_label(data)) train_input_fn = pandas_io.pandas_input_fn( x=x, y=y, batch_size=batch_size, num_epochs=None, shuffle=True) eval_input_fn = pandas_io.pandas_input_fn( x=x, y=y, batch_size=batch_size, shuffle=False) predict_input_fn = pandas_io.pandas_input_fn( x=x, batch_size=batch_size, shuffle=False) self._test_complete_flow( train_input_fn=train_input_fn, eval_input_fn=eval_input_fn, predict_input_fn=predict_input_fn, input_dimension=input_dimension, n_classes=n_classes, batch_size=batch_size) def test_input_fn_from_parse_example(self): """Tests complete flow with input_fn constructed from parse_example.""" input_dimension = 2 n_classes = 3 batch_size = 10 data = np.linspace( 0., n_classes - 1., batch_size * input_dimension, dtype=np.float32) data = data.reshape(batch_size, input_dimension) serialized_examples = [] for datum in data: example = example_pb2.Example(features=feature_pb2.Features( feature={ 'x': feature_pb2.Feature(float_list=feature_pb2.FloatList( value=datum)), 'y': feature_pb2.Feature(int64_list=feature_pb2.Int64List( value=self._as_label(datum[:1]))), })) serialized_examples.append(example.SerializeToString()) feature_spec = { 'x': parsing_ops.FixedLenFeature([input_dimension], dtypes.float32), 'y': parsing_ops.FixedLenFeature([1], dtypes.int64), } def _train_input_fn(): feature_map = parsing_ops.parse_example(serialized_examples, feature_spec) features = _queue_parsed_features(feature_map) labels = features.pop('y') return features, labels def _eval_input_fn(): feature_map = parsing_ops.parse_example( input_lib.limit_epochs(serialized_examples, num_epochs=1), feature_spec) features = _queue_parsed_features(feature_map) labels = features.pop('y') return features, labels def _predict_input_fn(): feature_map = parsing_ops.parse_example( input_lib.limit_epochs(serialized_examples, num_epochs=1), feature_spec) features = _queue_parsed_features(feature_map) features.pop('y') return features, None self._test_complete_flow( train_input_fn=_train_input_fn, eval_input_fn=_eval_input_fn, predict_input_fn=_predict_input_fn, input_dimension=input_dimension, n_classes=n_classes, batch_size=batch_size) if __name__ == '__main__': test.main()
apache-2.0
formalmethods/intrepyd
intrepyd/atg/mcdc.py
1
11337
""" Copyright (C) 2017 Roberto Bruttomesso <roberto.bruttomesso@gmail.com> This file is distributed under the terms of the 3-clause BSD License. A copy of the license can be found in the root directory or at https://opensource.org/licenses/BSD-3-Clause. Author: Roberto Bruttomesso <roberto.bruttomesso@gmail.com> Date: 27/03/2017 This module implements a toolbox for Automated Test Generation """ import pandas as pd from intrepyd.engine import EngineResult def compute_mcdc(context, class_, decisions, max_depth): """ Computes MC/DC tests in form of a table. Args: context: the intrepyd context to use class_ (class): a python class that defines the circuit decisions (Dictionary): each key of the dictionary is the name of a decision, and the values are the corresponding conditions { netName : [netName, ...] } ^ ^ the decision the list of conditions Returns: (Dictionary) the MC/DC tables, one per each decision """ # Fetches and duplicates the circuit inst_a = class_(context, 'InstA') inst_b = class_(context, 'InstB') inst_a.mk_circuit(True) inst_b.mk_circuit(True) # Flattens inputs and outputs into nets, for simplicity inst_a.nets.update(inst_a.inputs) inst_a.nets.update(inst_a.outputs) inst_b.nets.update(inst_b.inputs) inst_b.nets.update(inst_b.outputs) # Creates test objectives decision2testobjectives = {decision :\ compute_mcdc_targets(context, inst_a, inst_b, decision, conditions)\ for decision, conditions in decisions.iteritems()} # Compute MC/DC traces: this is the computationally # expensive part that calls model checking routines decision2traces, trace2condition, decision2unreachable =\ solve_mcdc_targets(context, decision2testobjectives, max_depth) # Compute MC/DC tables from traces decision2table, decision2independencepairs =\ compute_mcdc_tables(context, inst_a, inst_b, decision2traces, trace2condition, decisions) return decision2table, decision2independencepairs, decision2unreachable def compute_mcdc_targets(context, inst_a, inst_b, decision, conditions): """ Computes the MC/DC reachability target for the two copies of the circuit. Args: context: the intrepyd context to use inst_a: an instance of the circuit inst_b: an instance of the circuit decision: the name of a decision conditions: the list of names of the conditions Returns: a map from targets to conditions for which target is an independence pair """ decision_a = inst_a.nets[decision] decision_b = inst_b.nets[decision] decisiona_diff_decisionb = context.mk_neq(decision_a, decision_b) conditiona_neq_conditionb = [] conditions_a = [] conditions_b = [] for condition in conditions: condition_a = inst_a.nets[condition] conditions_a.append(condition_a) condition_b = inst_b.nets[condition] conditions_b.append(condition_b) conditiona_neq_conditionb.append(context.mk_neq(condition_a, condition_b)) targets = {} for i in range(len(conditions)): # Building test objective for the i-th condition condition_a = conditions_a[i] condition_b = conditions_b[i] # i-th condition must differ in A and B conj1 = conditiona_neq_conditionb[i] # test objective must differ in A and B conj2 = decisiona_diff_decisionb # decisionA[not(cA)/cA] != decisionA not_condition_a = context.mk_not(condition_a) decisiona_not_ca = context.mk_substitute(decision_a, not_condition_a, condition_a) conj3 = context.mk_neq(decisiona_not_ca, decision_a) # decisionB[not(cB)/cB] != decisionB not_condition_b = context.mk_not(condition_b) decisiona_not_cb = context.mk_substitute(decision_b, not_condition_b, condition_b) conj4 = context.mk_neq(decisiona_not_cb, decision_b) # Creates final conjunction tmp1 = context.mk_and(conj1, conj2) tmp2 = context.mk_and(tmp1, conj3) target = context.mk_and(tmp2, conj4) targets[target] = i return targets def solve_mcdc_targets(context, decision2testobjectives, max_depth): """ Solves the MC/DC targets, maximizing the number of solved test objectives per each call. """ # Bmc engine will be used to compute counterexamples bmc = context.mk_optimizing_bmc() testobjectives2decision = {} testobjectives2condition = {} decision2traces = {} decision2unreachable = {} targets = [] for decision, tos in decision2testobjectives.iteritems(): decision2traces[decision] = [] decision2unreachable[decision] = [] for test_objective, condition in tos.iteritems(): testobjectives2decision[test_objective] = decision testobjectives2condition[test_objective] = condition targets.append(test_objective) assert len(testobjectives2decision) == len(testobjectives2condition) total_targets = len(targets) # Compute unreachable targets first total_unreached = 0 total_reached = 0 for target in targets: breach = context.mk_backward_reach() breach.add_target(target) result = breach.reach_targets() if result == EngineResult.UNREACHABLE: decision = testobjectives2decision[target] decision2unreachable[decision].append(target) total_unreached += 1 elif result == EngineResult.REACHABLE: bmc.add_target(target) total_reached += 1 # print 'There are', totalTargets, 'test objectives:' # print '-', totalUnreached, 'unreachable test objectives' # print '-', totalReached, 'reachable test objectives' if total_unreached == total_targets: return decision2traces, decision2unreachable trace2condition = {} # Compute counterexamples for reachable targets done = False depth = 0 bmc_total_reached = 0 while not done: bmc.set_current_depth(depth) result = bmc.reach_targets() if result != EngineResult.REACHABLE: if depth == max_depth: done = True depth += 1 continue reached = bmc.get_last_reached_targets() trace = bmc.get_last_trace() for reached_target in reached: decision = testobjectives2decision[reached_target] decision2traces[decision].append(trace) trace2condition[trace] = testobjectives2condition[reached_target] bmc_total_reached += 1 bmc.remove_last_reached_targets() if bmc_total_reached == total_reached: done = True total_undecided = total_reached - bmc_total_reached if total_undecided != 0: print 'There are', total_undecided, 'undecided test objectives within depth', max_depth return decision2traces, trace2condition, decision2unreachable def compute_mcdc_tables(context, inst_a, inst_b, decision2traces, trace2condition, decisions): """ Computes MC/DC tables out of counterexamples. """ decision2table = {} decision2independencepairs = {} seen = {} for decision, traces in decision2traces.iteritems(): inst_a_conds_dec = [inst_a.nets[cond] for cond in decisions[decision]] + [inst_a.nets[decision]] inst_a_testnets = inst_a.inputs.values() + inst_a_conds_dec inst_b_conds_dec = [inst_b.nets[cond] for cond in decisions[decision]] + [inst_b.nets[decision]] inst_b_testnets = inst_b.inputs.values() + inst_b_conds_dec header = [cond for cond in decisions[decision]] header.append(decision) header_nets_a = set(inst_a_conds_dec) # Enable this to include inputs in the tests (but you need to add also names in headers) # header_nets_a = set(inst_a_testnets) header_nets_b = set(inst_b_conds_dec) # Enable this to include inputs in the tests (but you need to add also names in headers) # header_nets_b = set(inst_b_testnets) decision2table[decision] = [header] decision2independencepairs[decision] = {} test_number = 0 for trace in traces: test_a_number = None test_b_number = None # Enrich the traces with the value of the output # by performing a simulation simulator = context.mk_simulator() for net in inst_a_testnets: simulator.add_watch(net) for net in inst_b_testnets: simulator.add_watch(net) simulator.simulate(trace, trace.get_max_depth()) full_test_a = trace.get_as_net_dictionary() full_test_b = trace.get_as_net_dictionary() test_a_candidate = [v[0] for k, v in full_test_a.iteritems() if (k in inst_a_testnets and k in header_nets_a)] test_b_candidate = [v[0] for k, v in full_test_b.iteritems() if (k in inst_b_testnets and k in header_nets_b)] test_a_hash = compute_hash(test_a_candidate) test_b_hash = compute_hash(test_b_candidate) if test_a_hash in seen: _, test_a_number = seen[test_a_hash] else: seen[test_a_hash] = (test_a_candidate, test_number) decision2table[decision].append(test_a_candidate) test_a_number = test_number test_number += 1 if test_b_hash in seen: _, test_b_number = seen[test_b_hash] else: seen[test_b_hash] = (test_b_candidate, test_number) decision2table[decision].append(test_b_candidate) test_b_number = test_number test_number += 1 condition = trace2condition[trace] condition = decisions[decision][condition] decision2independencepairs[decision][condition] = (test_a_number, test_b_number) return decision2table, decision2independencepairs def compute_hash(test): """ Computes a unique hash for a test """ result = "" for val in test: result += val return result def compute_pretty_tables(decision2table): """ Postprocess raw MC/DC tables to get something presentation ready. """ decision2prettytable = {} first = True for decision, table in decision2table.iteritems(): pretty_table = [] for row in table: if first: first = False pretty_table.append(row) else: pretty_table.append(row[0]) pretty_table.append(row[1]) decision2prettytable[decision] = pretty_table return decision2prettytable def get_tables_as_dataframe(decision2table): """ Postprocess table to turn into a dataframe """ result = {} for decision, table in decision2table.iteritems(): if len(table) == 1: continue dataframe = pd.DataFrame(table[1:], columns=table[0]) dataframe = dataframe.drop_duplicates() result[decision] = dataframe return result
bsd-3-clause
nhejazi/scikit-learn
examples/classification/plot_digits_classification.py
82
2414
""" ================================ Recognizing hand-written digits ================================ An example showing how the scikit-learn can be used to recognize images of hand-written digits. This example is commented in the :ref:`tutorial section of the user manual <introduction>`. """ print(__doc__) # Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org> # License: BSD 3 clause # Standard scientific Python imports import matplotlib.pyplot as plt # Import datasets, classifiers and performance metrics from sklearn import datasets, svm, metrics # The digits dataset digits = datasets.load_digits() # The data that we are interested in is made of 8x8 images of digits, let's # have a look at the first 4 images, stored in the `images` attribute of the # dataset. If we were working from image files, we could load them using # matplotlib.pyplot.imread. Note that each image must have the same size. For these # images, we know which digit they represent: it is given in the 'target' of # the dataset. images_and_labels = list(zip(digits.images, digits.target)) for index, (image, label) in enumerate(images_and_labels[:4]): plt.subplot(2, 4, index + 1) plt.axis('off') plt.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest') plt.title('Training: %i' % label) # To apply a classifier on this data, we need to flatten the image, to # turn the data in a (samples, feature) matrix: n_samples = len(digits.images) data = digits.images.reshape((n_samples, -1)) # Create a classifier: a support vector classifier classifier = svm.SVC(gamma=0.001) # We learn the digits on the first half of the digits classifier.fit(data[:n_samples // 2], digits.target[:n_samples // 2]) # Now predict the value of the digit on the second half: expected = digits.target[n_samples // 2:] predicted = classifier.predict(data[n_samples // 2:]) print("Classification report for classifier %s:\n%s\n" % (classifier, metrics.classification_report(expected, predicted))) print("Confusion matrix:\n%s" % metrics.confusion_matrix(expected, predicted)) images_and_predictions = list(zip(digits.images[n_samples // 2:], predicted)) for index, (image, prediction) in enumerate(images_and_predictions[:4]): plt.subplot(2, 4, index + 5) plt.axis('off') plt.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest') plt.title('Prediction: %i' % prediction) plt.show()
bsd-3-clause
dimroc/tensorflow-mnist-tutorial
lib/python3.6/site-packages/mpl_toolkits/gtktools.py
10
19272
""" Some gtk specific tools and widgets * rec2gtk : put record array in GTK treeview - requires gtk Example usage import matplotlib.mlab as mlab import mpl_toolkits.gtktools as gtktools r = mlab.csv2rec('somefile.csv', checkrows=0) formatd = dict( weight = mlab.FormatFloat(2), change = mlab.FormatPercent(2), cost = mlab.FormatThousands(2), ) exceltools.rec2excel(r, 'test.xls', formatd=formatd) mlab.rec2csv(r, 'test.csv', formatd=formatd) import gtk scroll = gtktools.rec2gtk(r, formatd=formatd) win = gtk.Window() win.set_size_request(600,800) win.add(scroll) win.show_all() gtk.main() """ from __future__ import (absolute_import, division, print_function, unicode_literals) import six from six.moves import xrange, zip import copy import gtk, gobject import numpy as np import matplotlib.cbook as cbook from matplotlib.cbook import warn_deprecated import matplotlib.mlab as mlab warn_deprecated("2.0", name="mpl_toolkits.gtktools", obj_type="module") def error_message(msg, parent=None, title=None): """ create an error message dialog with string msg. Optionally set the parent widget and dialog title """ dialog = gtk.MessageDialog( parent = None, type = gtk.MESSAGE_ERROR, buttons = gtk.BUTTONS_OK, message_format = msg) if parent is not None: dialog.set_transient_for(parent) if title is not None: dialog.set_title(title) else: dialog.set_title('Error!') dialog.show() dialog.run() dialog.destroy() return None def simple_message(msg, parent=None, title=None): """ create a simple message dialog with string msg. Optionally set the parent widget and dialog title """ dialog = gtk.MessageDialog( parent = None, type = gtk.MESSAGE_INFO, buttons = gtk.BUTTONS_OK, message_format = msg) if parent is not None: dialog.set_transient_for(parent) if title is not None: dialog.set_title(title) dialog.show() dialog.run() dialog.destroy() return None def gtkformat_factory(format, colnum): """ copy the format, perform any overrides, and attach an gtk style attrs xalign = 0. cell = None """ if format is None: return None format = copy.copy(format) format.xalign = 0. format.cell = None def negative_red_cell(column, cell, model, thisiter): val = model.get_value(thisiter, colnum) try: val = float(val) except: cell.set_property('foreground', 'black') else: if val<0: cell.set_property('foreground', 'red') else: cell.set_property('foreground', 'black') if isinstance(format, mlab.FormatFloat) or isinstance(format, mlab.FormatInt): format.cell = negative_red_cell format.xalign = 1. elif isinstance(format, mlab.FormatDate): format.xalign = 1. return format class SortedStringsScrolledWindow(gtk.ScrolledWindow): """ A simple treeview/liststore assuming all columns are strings. Supports ascending/descending sort by clicking on column header """ def __init__(self, colheaders, formatterd=None): """ xalignd if not None, is a dict mapping col header to xalignent (default 1) formatterd if not None, is a dict mapping col header to a ColumnFormatter """ gtk.ScrolledWindow.__init__(self) self.colheaders = colheaders self.seq = None # not initialized with accts self.set_shadow_type(gtk.SHADOW_ETCHED_IN) self.set_policy(gtk.POLICY_AUTOMATIC, gtk.POLICY_AUTOMATIC) types = [gobject.TYPE_STRING] * len(colheaders) model = self.model = gtk.ListStore(*types) treeview = gtk.TreeView(self.model) treeview.show() treeview.get_selection().set_mode(gtk.SELECTION_MULTIPLE) treeview.set_rules_hint(True) class Clicked: def __init__(self, parent, i): self.parent = parent self.i = i self.num = 0 def __call__(self, column): ind = [] dsu = [] for rownum, thisiter in enumerate(self.parent.iters): val = model.get_value(thisiter, self.i) try: val = float(val.strip().rstrip('%')) except ValueError: pass if mlab.safe_isnan(val): val = np.inf # force nan to sort uniquely dsu.append((val, rownum)) dsu.sort() if not self.num%2: dsu.reverse() vals, otherind = list(zip(*dsu)) ind.extend(otherind) self.parent.model.reorder(ind) newiters = [] for i in ind: newiters.append(self.parent.iters[i]) self.parent.iters = newiters[:] for i, thisiter in enumerate(self.parent.iters): key = tuple([self.parent.model.get_value(thisiter, j) for j in range(len(colheaders))]) self.parent.rownumd[i] = key self.num+=1 if formatterd is None: formatterd = dict() formatterd = formatterd.copy() for i, header in enumerate(colheaders): renderer = gtk.CellRendererText() if header not in formatterd: formatterd[header] = ColumnFormatter() formatter = formatterd[header] column = gtk.TreeViewColumn(header, renderer, text=i) renderer.set_property('xalign', formatter.xalign) renderer.set_property('editable', True) renderer.connect("edited", self.position_edited, i) column.connect('clicked', Clicked(self, i)) column.set_property('clickable', True) if formatter.cell is not None: column.set_cell_data_func(renderer, formatter.cell) treeview.append_column(column) self.formatterd = formatterd self.lastcol = column self.add(treeview) self.treeview = treeview self.clear() def position_edited(self, renderer, path, newtext, position): #print path, position self.model[path][position] = newtext def clear(self): self.iterd = dict() self.iters = [] # an ordered list of iters self.rownumd = dict() # a map from rownum -> symbol self.model.clear() self.datad = dict() def flat(self, row): seq = [] for i,val in enumerate(row): formatter = self.formatterd.get(self.colheaders[i]) seq.extend([i,formatter.tostr(val)]) return seq def __delete_selected(self, *unused): # untested keyd = dict([(thisiter, key) for key, thisiter in self.iterd.values()]) for row in self.get_selected(): key = tuple(row) thisiter = self.iterd[key] self.model.remove(thisiter) del self.datad[key] del self.iterd[key] self.iters.remove(thisiter) for i, thisiter in enumerate(self.iters): self.rownumd[i] = keyd[thisiter] def delete_row(self, row): key = tuple(row) thisiter = self.iterd[key] self.model.remove(thisiter) del self.datad[key] del self.iterd[key] self.rownumd[len(self.iters)] = key self.iters.remove(thisiter) for rownum, thiskey in list(six.iteritems(self.rownumd)): if thiskey==key: del self.rownumd[rownum] def add_row(self, row): thisiter = self.model.append() self.model.set(thisiter, *self.flat(row)) key = tuple(row) self.datad[key] = row self.iterd[key] = thisiter self.rownumd[len(self.iters)] = key self.iters.append(thisiter) def update_row(self, rownum, newrow): key = self.rownumd[rownum] thisiter = self.iterd[key] newkey = tuple(newrow) self.rownumd[rownum] = newkey del self.datad[key] del self.iterd[key] self.datad[newkey] = newrow self.iterd[newkey] = thisiter self.model.set(thisiter, *self.flat(newrow)) def get_row(self, rownum): key = self.rownumd[rownum] return self.datad[key] def get_selected(self): selected = [] def foreach(model, path, iter, selected): selected.append(model.get_value(iter, 0)) self.treeview.get_selection().selected_foreach(foreach, selected) return selected def rec2gtk(r, formatd=None, rownum=0, autowin=True): """ formatd is a dictionary mapping dtype name -> mlab.Format instances This function creates a SortedStringsScrolledWindow (derived from gtk.ScrolledWindow) and returns it. if autowin is True, a gtk.Window is created, attached to the SortedStringsScrolledWindow instance, shown and returned. If autowin=False, the caller is responsible for adding the SortedStringsScrolledWindow instance to a gtk widget and showing it. """ if formatd is None: formatd = dict() formats = [] for i, name in enumerate(r.dtype.names): dt = r.dtype[name] format = formatd.get(name) if format is None: format = mlab.defaultformatd.get(dt.type, mlab.FormatObj()) format = gtkformat_factory(format, i) formatd[name] = format colheaders = r.dtype.names scroll = SortedStringsScrolledWindow(colheaders, formatd) for row in r: scroll.add_row(row) if autowin: win = gtk.Window() win.set_default_size(800,600) #win.set_geometry_hints(scroll) win.add(scroll) win.show_all() scroll.win = win return scroll class RecListStore(gtk.ListStore): """ A liststore as a model of an editable record array. attributes: * r - the record array with the edited values * formatd - the list of mlab.FormatObj instances, with gtk attachments * stringd - a dict mapping dtype names to a list of valid strings for the combo drop downs * callbacks - a matplotlib.cbook.CallbackRegistry. Connect to the cell_changed with def mycallback(liststore, rownum, colname, oldval, newval): print('verify: old=%s, new=%s, rec=%s'%(oldval, newval, liststore.r[rownum][colname])) cid = liststore.callbacks.connect('cell_changed', mycallback) """ def __init__(self, r, formatd=None, stringd=None): """ r is a numpy record array formatd is a dict mapping dtype name to mlab.FormatObj instances stringd, if not None, is a dict mapping dtype names to a list of valid strings for a combo drop down editor """ if stringd is None: stringd = dict() if formatd is None: formatd = mlab.get_formatd(r) self.stringd = stringd self.callbacks = cbook.CallbackRegistry() self.r = r self.headers = r.dtype.names self.formats = [gtkformat_factory(formatd.get(name, mlab.FormatObj()),i) for i,name in enumerate(self.headers)] # use the gtk attached versions self.formatd = formatd = dict(zip(self.headers, self.formats)) types = [] for format in self.formats: if isinstance(format, mlab.FormatBool): types.append(gobject.TYPE_BOOLEAN) else: types.append(gobject.TYPE_STRING) self.combod = dict() if len(stringd): types.extend([gobject.TYPE_INT]*len(stringd)) keys = list(six.iterkeys(stringd)) keys.sort() valid = set(r.dtype.names) for ikey, key in enumerate(keys): assert(key in valid) combostore = gtk.ListStore(gobject.TYPE_STRING) for s in stringd[key]: combostore.append([s]) self.combod[key] = combostore, len(self.headers)+ikey gtk.ListStore.__init__(self, *types) for row in r: vals = [] for formatter, val in zip(self.formats, row): if isinstance(formatter, mlab.FormatBool): vals.append(val) else: vals.append(formatter.tostr(val)) if len(stringd): # todo, get correct index here? vals.extend([0]*len(stringd)) self.append(vals) def position_edited(self, renderer, path, newtext, position): position = int(position) format = self.formats[position] rownum = int(path) colname = self.headers[position] oldval = self.r[rownum][colname] try: newval = format.fromstr(newtext) except ValueError: msg = cbook.exception_to_str('Error converting "%s"'%newtext) error_message(msg, title='Error') return self.r[rownum][colname] = newval self[path][position] = format.tostr(newval) self.callbacks.process('cell_changed', self, rownum, colname, oldval, newval) def position_toggled(self, cellrenderer, path, position): position = int(position) format = self.formats[position] newval = not cellrenderer.get_active() rownum = int(path) colname = self.headers[position] oldval = self.r[rownum][colname] self.r[rownum][colname] = newval self[path][position] = newval self.callbacks.process('cell_changed', self, rownum, colname, oldval, newval) class RecTreeView(gtk.TreeView): """ An editable tree view widget for record arrays """ def __init__(self, recliststore, constant=None): """ build a gtk.TreeView to edit a RecListStore constant, if not None, is a list of dtype names which are not editable """ self.recliststore = recliststore gtk.TreeView.__init__(self, recliststore) combostrings = set(recliststore.stringd.keys()) if constant is None: constant = [] constant = set(constant) for i, header in enumerate(recliststore.headers): formatter = recliststore.formatd[header] coltype = recliststore.get_column_type(i) if coltype==gobject.TYPE_BOOLEAN: renderer = gtk.CellRendererToggle() if header not in constant: renderer.connect("toggled", recliststore.position_toggled, i) renderer.set_property('activatable', True) elif header in combostrings: renderer = gtk.CellRendererCombo() renderer.connect("edited", recliststore.position_edited, i) combostore, listind = recliststore.combod[header] renderer.set_property("model", combostore) renderer.set_property('editable', True) else: renderer = gtk.CellRendererText() if header not in constant: renderer.connect("edited", recliststore.position_edited, i) renderer.set_property('editable', True) if formatter is not None: renderer.set_property('xalign', formatter.xalign) tvcol = gtk.TreeViewColumn(header) self.append_column(tvcol) tvcol.pack_start(renderer, True) if coltype == gobject.TYPE_STRING: tvcol.add_attribute(renderer, 'text', i) if header in combostrings: combostore, listind = recliststore.combod[header] tvcol.add_attribute(renderer, 'text-column', listind) elif coltype == gobject.TYPE_BOOLEAN: tvcol.add_attribute(renderer, 'active', i) if formatter is not None and formatter.cell is not None: tvcol.set_cell_data_func(renderer, formatter.cell) self.connect("button-release-event", self.on_selection_changed) #self.set_grid_lines(gtk.TREE_VIEW_GRID_LINES_BOTH) self.get_selection().set_mode(gtk.SELECTION_BROWSE) self.get_selection().set_select_function(self.on_select) def on_select(self, *args): return False def on_selection_changed(self, *args): (path, col) = self.get_cursor() ren = col.get_cell_renderers()[0] if isinstance(ren, gtk.CellRendererText): self.set_cursor_on_cell(path, col, ren, start_editing=True) def edit_recarray(r, formatd=None, stringd=None, constant=None, autowin=True): """ create a RecListStore and RecTreeView and return them. If autowin is True, create a gtk.Window, insert the treeview into it, and return it (return value will be (liststore, treeview, win) See RecListStore and RecTreeView for a description of the keyword args """ liststore = RecListStore(r, formatd=formatd, stringd=stringd) treeview = RecTreeView(liststore, constant=constant) if autowin: win = gtk.Window() win.add(treeview) win.show_all() return liststore, treeview, win else: return liststore, treeview if __name__=='__main__': import datetime N = 10 today = datetime.date.today() dates = [today+datetime.timedelta(days=i) for i in range(N)] # datetimes weekdays = [d.strftime('%a') for d in dates] # strings gains = np.random.randn(N) # floats prices = np.random.rand(N)*1e7 # big numbers up = gains>0 # bools clientid = list(xrange(N)) # ints r = np.rec.fromarrays([clientid, dates, weekdays, gains, prices, up], names=str('clientid,date,weekdays,gains,prices,up')) # some custom formatters formatd = mlab.get_formatd(r) formatd['date'] = mlab.FormatDate('%Y-%m-%d') formatd['prices'] = mlab.FormatMillions(precision=1) formatd['gain'] = mlab.FormatPercent(precision=2) # use a drop down combo for weekdays stringd = dict(weekdays=['Sun', 'Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat']) constant = ['clientid'] # block editing of this field liststore = RecListStore(r, formatd=formatd, stringd=stringd) treeview = RecTreeView(liststore, constant=constant) def mycallback(liststore, rownum, colname, oldval, newval): print('verify: old=%s, new=%s, rec=%s'%(oldval, newval, liststore.r[rownum][colname])) liststore.callbacks.connect('cell_changed', mycallback) win = gtk.Window() win.set_title('with full customization') win.add(treeview) win.show_all() # or you just use the defaults r2 = r.copy() ls, tv, win2 = edit_recarray(r2) win2.set_title('with all defaults') gtk.main()
apache-2.0
atcemgil/notes
html_utils_tester.py
1
1757
from IPython.display import display, Math, Latex, HTML import numpy as np import matplotlib.pylab as plt import matplotlib as mpl MAX = 40 nf = mpl.colors.Normalize(vmin=0, vmax=1.5*MAX, clip=True) cmap = plt.cm.ScalarMappable(cmap=plt.cm.hot_r, norm=nf) M = 10 N = 20 data = np.random.choice(range(MAX),replace=True, size=(M,N)) htmlTable = Table() for i in range(M): row = [] for j in range(N): col = mpl.colors.rgb2hex(cmap.to_rgba(data[i,j])) htmlCell = TableCell(data[i,j],style='background-color:'+col) row.append(htmlCell) htmlTableRow = TableRow(row) htmlTable.rows.append(htmlTableRow) #print(str(htmlTable)) display(HTML(str(htmlTable)) ) #------------------ t = Table() t.rows.append(TableRow(['A', 'B', 'C'], header=True)) t.rows.append(TableRow(['D', 'E', 'F'])) t.rows.append(('i', 'j', 'k')) display(HTML(str(t))) # ---------- t2 = Table([ ('1', '2'), ['3', '4'] ], width='100%', header_row=('col1', 'col2'), col_width=('', '75%')) display(HTML(str(t2))) t2.rows.append(['5', '6']) t2.rows[1][1] = TableCell('new', bgcolor='red') t2.rows.append(TableRow(['7', '8'], attribs={'align': 'center'})) display(HTML(str(t2))) # ---------- # sample table with column attributes and styles: table_data = [ ['Smith', 'John', 30, 4.5], ['Carpenter', 'Jack', 47], ['Johnson', 'Paul', 62, 10.55], ] htmlcode = make_htmlTable(table_data, header_row = ['Last name', 'First name', 'Age', 'Score'], col_width=['', '1%', '5%', '5%'], col_align=['left', 'center', 'right', 'char'], col_styles=['font-size: large', '', 'font-size: small', 'background-color:yellow']) HTML(str(htmlcode))
mit
peterbrook/assetjet
app/src/assetjet/services/prices/getByTicker.py
1
3688
from pandas import DataFrame import pandas as pd from datetime import date, datetime from assetjet.cfg import db from assetjet.log import log import sqlalchemy.orm as orm import json import dateutil.parser from bottle import route, request @route('/services/Prices/GetByTicker/') def getByTicker(): ticker = request.query.ticker startDate = dateutil.parser.parse(request.query.startDate) endDate = dateutil.parser.parse(request.query.endDate) period = request.query.period closePrices, seriesbegin = getAdjClosePrices([ticker], startDate, endDate) pricesRebased = getPricesRebased(closePrices, seriesbegin, base=100, asjson=True) return "_jqjsp(" + pricesRebased + ");" def getPricesRebased(prices, startdates, base=100, asjson=False, frequency=None): """ Returns a pandas dataframe (in json format if asjson=True) with prices rebased to base, optionally with a new frequency: e.g. 'D','M', 'W-FRI' for daily, end of month or friday-weekly data """ # Returns returns = prices.pct_change() # Rebasing pricesRebased = (1 + returns).cumprod() # requires NumPy 1.7 !! (1.6 doesn't translate datetime correctly) for col in pricesRebased: pricesRebased.ix[startdates.ix[col,0],col] = 1 pricesRebased = pricesRebased * base if frequency: pricesRebased = pricesRebased.asfreq(frequency, method='ffill') if asjson: # dataframe to_json() method is still pending, therefore: return tojson(pricesRebased.reset_index()) else: return pricesRebased def tojson(df): """ convert a pandas data frame into a JSON object """ d = [ dict([(colname, row[i]) for i, colname in enumerate(df.columns)]) for row in df.values ] # json cannot deal with datetime objects, therefore convert into string dthandler = lambda obj: obj.isoformat() if isinstance(obj, datetime) else None ret = json.dumps(d, default=dthandler, indent=4) # print ret # must be disabled for freezing return ret #return json.dumps(d, indent=4) def getAdjClosePrices(tickers, startdate, enddate): """ returns a ready to use pandas DataFrame and a Series with the startDate """ Session = orm.sessionmaker(bind=db.GetEngine()) session = Session() conn = db.GetEngine().connect() # Query conn.execute("""CREATE TEMP TABLE Tickers (Cd Text)""") conn.execute("""INSERT INTO Tickers VALUES(?)""", zip(tickers)) result = conn.execute("""SELECT ts.Cd, Date, AdjClose FROM TimeSeries ts INNER JOIN Tickers t ON ts.Cd = t.Cd WHERE ts.Date >= ? AND ts.Date <= ?""", (startdate, enddate)) rows = result.fetchall() # Create a pandas DataFrame pricesRaw = DataFrame.from_records(rows, columns=['Cd', 'Date', 'AdjClose']) # Convert Date strings into datetime so pandas can do time series stuff pricesRaw.Date = pd.to_datetime(pricesRaw.Date) seriesbegin = pricesRaw[['Cd','Date']].groupby('Cd').min() # Pivot DataFrame prices = pricesRaw.pivot(index='Date', columns='Cd', values='AdjClose') # Close DB and Cursor conn.close() return prices, seriesbegin if __name__ == "__main__": tickers = [ 'AAPL','MMM', 'ACE', 'ABT', 'ANF', 'ACN', 'ADBE', 'ADT', 'AMD', 'AES', 'AET' ] startdate = '2011-01-01' enddate = date.today() # Get rebased prices closePrices, seriesbegin = getAdjClosePrices(tickers, startdate, enddate) pricesRebased = getPricesRebased(closePrices, seriesbegin, base=100, asjson=True, frequency='D') print pricesRebased
gpl-3.0
MPC-Berkeley/barc
workspace/src/labs/src/lab2/plot.py
2
1152
import rosbag import numpy as np import matplotlib.pyplot as plt import os import matplotlib.patches as patches bag = rosbag.Bag(os.path.expanduser("~/FILENAMEHERE.bag")) topics = bag.get_type_and_topic_info()[1].keys() types = [] for i in range(0,len(bag.get_type_and_topic_info()[1].values())): types.append(bag.get_type_and_topic_info()[1].values()[i][0]) if bag.get_type_and_topic_info()[1].values()[i][0] == 'barc/ECU': dimEcu = bag.get_type_and_topic_info()[1].values()[i][1] if bag.get_type_and_topic_info()[1].values()[i][0] == 'labs/Z_DynBkMdl': dimxy = bag.get_type_and_topic_info()[1].values()[i][1] x_raw = np.zeros((dimxy, 1)) v_raw = np.zeros((dimxy, 1)) v_des = 8*np.ones((dimxy,1)) counter = 0 for counter, (topic, msg, t) in enumerate( bag.read_messages(topics=['/z_vhcl']) ) : x_raw[counter] = msg.x v_raw[counter] = msg.v_x plt.figure(1) plt.plot(x_raw, v_raw, label = 'Actual Velocity') plt.plot(x_raw, v_des, label = 'Desired Velocity') plt.ylabel('Velocity [m/s]') plt.ylim((0,12)) plt.xlabel('Longitudinal position [m]') plt.title('Longitudinal Velocity Tracking') plt.legend() plt.show() bag.close()
mit
mkomeichi/BuildingMLSystemsWithPython
ch09/fft.py
24
3673
# This code is supporting material for the book # Building Machine Learning Systems with Python # by Willi Richert and Luis Pedro Coelho # published by PACKT Publishing # # It is made available under the MIT License import sys import os import glob import numpy as np import scipy import scipy.io.wavfile from utils import GENRE_DIR, CHART_DIR import matplotlib.pyplot as plt from matplotlib.ticker import EngFormatter def write_fft(fft_features, fn): """ Write the FFT features to separate files to speed up processing. """ base_fn, ext = os.path.splitext(fn) data_fn = base_fn + ".fft" np.save(data_fn, fft_features) print("Written "%data_fn) def create_fft(fn): sample_rate, X = scipy.io.wavfile.read(fn) fft_features = abs(scipy.fft(X)[:1000]) write_fft(fft_features, fn) def read_fft(genre_list, base_dir=GENRE_DIR): X = [] y = [] for label, genre in enumerate(genre_list): genre_dir = os.path.join(base_dir, genre, "*.fft.npy") file_list = glob.glob(genre_dir) assert(file_list), genre_dir for fn in file_list: fft_features = np.load(fn) X.append(fft_features[:2000]) y.append(label) return np.array(X), np.array(y) def plot_wav_fft(wav_filename, desc=None): plt.clf() plt.figure(num=None, figsize=(6, 4)) sample_rate, X = scipy.io.wavfile.read(wav_filename) spectrum = np.fft.fft(X) freq = np.fft.fftfreq(len(X), 1.0 / sample_rate) plt.subplot(211) num_samples = 200.0 plt.xlim(0, num_samples / sample_rate) plt.xlabel("time [s]") plt.title(desc or wav_filename) plt.plot(np.arange(num_samples) / sample_rate, X[:num_samples]) plt.grid(True) plt.subplot(212) plt.xlim(0, 5000) plt.xlabel("frequency [Hz]") plt.xticks(np.arange(5) * 1000) if desc: desc = desc.strip() fft_desc = desc[0].lower() + desc[1:] else: fft_desc = wav_filename plt.title("FFT of %s" % fft_desc) plt.plot(freq, abs(spectrum), linewidth=5) plt.grid(True) plt.tight_layout() rel_filename = os.path.split(wav_filename)[1] plt.savefig("%s_wav_fft.png" % os.path.splitext(rel_filename)[0], bbox_inches='tight') plt.show() def plot_wav_fft_demo(): plot_wav_fft("sine_a.wav", "400Hz sine wave") plot_wav_fft("sine_b.wav", "3,000Hz sine wave") plot_wav_fft("sine_mix.wav", "Mixed sine wave") def plot_specgram(ax, fn): sample_rate, X = scipy.io.wavfile.read(fn) ax.specgram(X, Fs=sample_rate, xextent=(0, 30)) def plot_specgrams(base_dir=CHART_DIR): """ Plot a bunch of spectrograms of wav files in different genres """ plt.clf() genres = ["classical", "jazz", "country", "pop", "rock", "metal"] num_files = 3 f, axes = plt.subplots(len(genres), num_files) for genre_idx, genre in enumerate(genres): for idx, fn in enumerate(glob.glob(os.path.join(GENRE_DIR, genre, "*.wav"))): if idx == num_files: break axis = axes[genre_idx, idx] axis.yaxis.set_major_formatter(EngFormatter()) axis.set_title("%s song %i" % (genre, idx + 1)) plot_specgram(axis, fn) specgram_file = os.path.join(base_dir, "Spectrogram_Genres.png") plt.savefig(specgram_file, bbox_inches="tight") plt.show() if __name__ == "__main__": # for fn in glob.glob(os.path.join(sys.argv[1], "*.wav")): # create_fft(fn) # plot_decomp() if len(sys.argv) > 1: plot_wav_fft(sys.argv[1], desc="some sample song") else: plot_wav_fft_demo() plot_specgrams()
mit
gnu-sandhi/sandhi
modules/gr36/gr-filter/examples/channelize.py
13
6790
#!/usr/bin/env python # # Copyright 2009,2012 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from gnuradio import gr, blks2 from gnuradio import filter import sys, time try: import scipy from scipy import fftpack except ImportError: print "Error: Program requires scipy (see: www.scipy.org)." sys.exit(1) try: import pylab from pylab import mlab except ImportError: print "Error: Program requires matplotlib (see: matplotlib.sourceforge.net)." sys.exit(1) class pfb_top_block(gr.top_block): def __init__(self): gr.top_block.__init__(self) self._N = 2000000 # number of samples to use self._fs = 1000 # initial sampling rate self._M = M = 9 # Number of channels to channelize self._ifs = M*self._fs # initial sampling rate # Create a set of taps for the PFB channelizer self._taps = filter.firdes.low_pass_2(1, self._ifs, 475.50, 50, attenuation_dB=100, window=filter.firdes.WIN_BLACKMAN_hARRIS) # Calculate the number of taps per channel for our own information tpc = scipy.ceil(float(len(self._taps)) / float(self._M)) print "Number of taps: ", len(self._taps) print "Number of channels: ", self._M print "Taps per channel: ", tpc # Create a set of signals at different frequencies # freqs lists the frequencies of the signals that get stored # in the list "signals", which then get summed together self.signals = list() self.add = gr.add_cc() freqs = [-70, -50, -30, -10, 10, 20, 40, 60, 80] for i in xrange(len(freqs)): f = freqs[i] + (M/2-M+i+1)*self._fs self.signals.append(gr.sig_source_c(self._ifs, gr.GR_SIN_WAVE, f, 1)) self.connect(self.signals[i], (self.add,i)) self.head = gr.head(gr.sizeof_gr_complex, self._N) # Construct the channelizer filter self.pfb = filter.pfb.channelizer_ccf(self._M, self._taps, 1) # Construct a vector sink for the input signal to the channelizer self.snk_i = gr.vector_sink_c() # Connect the blocks self.connect(self.add, self.head, self.pfb) self.connect(self.add, self.snk_i) # Use this to play with the channel mapping #self.pfb.set_channel_map([5,6,7,8,0,1,2,3,4]) # Create a vector sink for each of M output channels of the filter and connect it self.snks = list() for i in xrange(self._M): self.snks.append(gr.vector_sink_c()) self.connect((self.pfb, i), self.snks[i]) def main(): tstart = time.time() tb = pfb_top_block() tb.run() tend = time.time() print "Run time: %f" % (tend - tstart) if 1: fig_in = pylab.figure(1, figsize=(16,9), facecolor="w") fig1 = pylab.figure(2, figsize=(16,9), facecolor="w") fig2 = pylab.figure(3, figsize=(16,9), facecolor="w") Ns = 1000 Ne = 10000 fftlen = 8192 winfunc = scipy.blackman fs = tb._ifs # Plot the input signal on its own figure d = tb.snk_i.data()[Ns:Ne] spin_f = fig_in.add_subplot(2, 1, 1) X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs, window = lambda d: d*winfunc(fftlen), scale_by_freq=True) X_in = 10.0*scipy.log10(abs(X)) f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size)) pin_f = spin_f.plot(f_in, X_in, "b") spin_f.set_xlim([min(f_in), max(f_in)+1]) spin_f.set_ylim([-200.0, 50.0]) spin_f.set_title("Input Signal", weight="bold") spin_f.set_xlabel("Frequency (Hz)") spin_f.set_ylabel("Power (dBW)") Ts = 1.0/fs Tmax = len(d)*Ts t_in = scipy.arange(0, Tmax, Ts) x_in = scipy.array(d) spin_t = fig_in.add_subplot(2, 1, 2) pin_t = spin_t.plot(t_in, x_in.real, "b") pin_t = spin_t.plot(t_in, x_in.imag, "r") spin_t.set_xlabel("Time (s)") spin_t.set_ylabel("Amplitude") Ncols = int(scipy.floor(scipy.sqrt(tb._M))) Nrows = int(scipy.floor(tb._M / Ncols)) if(tb._M % Ncols != 0): Nrows += 1 # Plot each of the channels outputs. Frequencies on Figure 2 and # time signals on Figure 3 fs_o = tb._fs Ts_o = 1.0/fs_o Tmax_o = len(d)*Ts_o for i in xrange(len(tb.snks)): # remove issues with the transients at the beginning # also remove some corruption at the end of the stream # this is a bug, probably due to the corner cases d = tb.snks[i].data()[Ns:Ne] sp1_f = fig1.add_subplot(Nrows, Ncols, 1+i) X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs_o, window = lambda d: d*winfunc(fftlen), scale_by_freq=True) X_o = 10.0*scipy.log10(abs(X)) f_o = scipy.arange(-fs_o/2.0, fs_o/2.0, fs_o/float(X_o.size)) p2_f = sp1_f.plot(f_o, X_o, "b") sp1_f.set_xlim([min(f_o), max(f_o)+1]) sp1_f.set_ylim([-200.0, 50.0]) sp1_f.set_title(("Channel %d" % i), weight="bold") sp1_f.set_xlabel("Frequency (Hz)") sp1_f.set_ylabel("Power (dBW)") x_o = scipy.array(d) t_o = scipy.arange(0, Tmax_o, Ts_o) sp2_o = fig2.add_subplot(Nrows, Ncols, 1+i) p2_o = sp2_o.plot(t_o, x_o.real, "b") p2_o = sp2_o.plot(t_o, x_o.imag, "r") sp2_o.set_xlim([min(t_o), max(t_o)+1]) sp2_o.set_ylim([-2, 2]) sp2_o.set_title(("Channel %d" % i), weight="bold") sp2_o.set_xlabel("Time (s)") sp2_o.set_ylabel("Amplitude") pylab.show() if __name__ == "__main__": try: main() except KeyboardInterrupt: pass
gpl-3.0
annarev/tensorflow
tensorflow/python/autograph/core/config.py
11
1959
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Global configuration.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.autograph.core import config_lib Action = config_lib.Action Convert = config_lib.Convert DoNotConvert = config_lib.DoNotConvert # This list is evaluated in order and stops at the first rule that tests True # for a definitely_convert of definitely_bypass call. CONVERSION_RULES = ( # Known packages Convert('tensorflow.python.training.experimental'), # Builtin modules DoNotConvert('collections'), DoNotConvert('copy'), DoNotConvert('cProfile'), DoNotConvert('inspect'), DoNotConvert('ipdb'), DoNotConvert('linecache'), DoNotConvert('mock'), DoNotConvert('pathlib'), DoNotConvert('pdb'), DoNotConvert('posixpath'), DoNotConvert('pstats'), DoNotConvert('re'), DoNotConvert('threading'), DoNotConvert('urllib'), # Known libraries DoNotConvert('matplotlib'), DoNotConvert('numpy'), DoNotConvert('pandas'), DoNotConvert('tensorflow'), DoNotConvert('PIL'), # TODO(b/133417201): Remove. DoNotConvert('tensorflow_probability'), # TODO(b/133842282): Remove. DoNotConvert('tensorflow_datasets.core'), )
apache-2.0
bsipocz/scikit-image
skimage/io/tests/test_plugin.py
24
3393
from contextlib import contextmanager from numpy.testing import assert_equal, raises from skimage import io from skimage.io import manage_plugins io.use_plugin('pil') priority_plugin = 'pil' def setup_module(): manage_plugins.use_plugin('test') # see ../_plugins/test_plugin.py def teardown_module(): io.reset_plugins() @contextmanager def protect_preferred_plugins(): """Contexts where `preferred_plugins` can be modified w/o side-effects.""" preferred_plugins = manage_plugins.preferred_plugins.copy() try: yield finally: manage_plugins.preferred_plugins = preferred_plugins def test_read(): io.imread('test.png', as_grey=True, dtype='i4', plugin='test') def test_save(): io.imsave('test.png', [1, 2, 3], plugin='test') def test_show(): io.imshow([1, 2, 3], plugin_arg=(1, 2), plugin='test') def test_collection(): io.imread_collection('*.png', conserve_memory=False, plugin='test') def test_use(): manage_plugins.use_plugin('test') manage_plugins.use_plugin('test', 'imshow') @raises(ValueError) def test_failed_use(): manage_plugins.use_plugin('asd') def test_use_priority(): manage_plugins.use_plugin(priority_plugin) plug, func = manage_plugins.plugin_store['imread'][0] assert_equal(plug, priority_plugin) manage_plugins.use_plugin('test') plug, func = manage_plugins.plugin_store['imread'][0] assert_equal(plug, 'test') def test_use_priority_with_func(): manage_plugins.use_plugin('pil') plug, func = manage_plugins.plugin_store['imread'][0] assert_equal(plug, 'pil') manage_plugins.use_plugin('test', 'imread') plug, func = manage_plugins.plugin_store['imread'][0] assert_equal(plug, 'test') plug, func = manage_plugins.plugin_store['imsave'][0] assert_equal(plug, 'pil') manage_plugins.use_plugin('test') plug, func = manage_plugins.plugin_store['imsave'][0] assert_equal(plug, 'test') def test_plugin_order(): p = io.plugin_order() assert 'imread' in p assert 'test' in p['imread'] def test_available(): assert 'qt' in io.available_plugins assert 'test' in io.find_available_plugins(loaded=True) def test_load_preferred_plugins_all(): from skimage.io._plugins import pil_plugin, matplotlib_plugin with protect_preferred_plugins(): manage_plugins.preferred_plugins = {'all': ['pil'], 'imshow': ['matplotlib']} manage_plugins.reset_plugins() for plugin_type in ('imread', 'imsave'): plug, func = manage_plugins.plugin_store[plugin_type][0] assert func == getattr(pil_plugin, plugin_type) plug, func = manage_plugins.plugin_store['imshow'][0] assert func == getattr(matplotlib_plugin, 'imshow') def test_load_preferred_plugins_imread(): from skimage.io._plugins import pil_plugin, matplotlib_plugin with protect_preferred_plugins(): manage_plugins.preferred_plugins['imread'] = ['pil'] manage_plugins.reset_plugins() plug, func = manage_plugins.plugin_store['imread'][0] assert func == pil_plugin.imread plug, func = manage_plugins.plugin_store['imshow'][0] assert func == matplotlib_plugin.imshow, func.__module__ if __name__ == "__main__": from numpy.testing import run_module_suite run_module_suite()
bsd-3-clause
Mendeley/mrec
mrec/item_similarity/knn.py
3
3868
""" Brute-force k-nearest neighbour recommenders intended to provide evaluation baselines. """ import numpy as np from sklearn.metrics.pairwise import cosine_similarity from recommender import ItemSimilarityRecommender class KNNRecommender(ItemSimilarityRecommender): """ Abstract base class for k-nn recommenders. You must supply an implementation of the compute_all_similarities() method. Parameters ========== k : int The number of nearest neighbouring items to retain """ def __init__(self,k): self.k = k def compute_similarities(self,dataset,j): A = dataset.X a = dataset.fast_get_col(j) d = self.compute_all_similarities(A,a) d[j] = 0 # zero out self-similarity # now zero out similarities for all but top-k items nn = d.argsort()[-1:-1-self.k:-1] w = np.zeros(A.shape[1]) w[nn] = d[nn] return w def compute_all_similarities(self,A,a): """ Compute similarity scores between item vector a and all the rows of A. Parameters ========== A : scipy.sparse.csr_matrix Matrix of item vectors. a : array_like The item vector to be compared to each row of A. Returns ======= similarities : numpy.ndarray Vector of similarity scores. """ pass class DotProductKNNRecommender(KNNRecommender): """ Similarity between two items is their dot product (i.e. cooccurrence count if input data is binary). """ def compute_all_similarities(self,A,a): return A.T.dot(a).toarray().flatten() def __str__(self): return 'DotProductKNNRecommender(k={0})'.format(self.k) class CosineKNNRecommender(KNNRecommender): """ Similarity between two items is their cosine distance. """ def compute_all_similarities(self,A,a): return cosine_similarity(A.T,a.T).flatten() def __str__(self): return 'CosineKNNRecommender(k={0})'.format(self.k) if __name__ == '__main__': # use knn models like this: import random import StringIO from mrec import load_fast_sparse_matrix random.seed(0) print 'loading test data...' data = """\ %%MatrixMarket matrix coordinate real general 3 5 9 1 1 1 1 2 1 1 3 1 1 4 1 2 2 1 2 3 1 2 5 1 3 3 1 3 4 1 """ print data dataset = load_fast_sparse_matrix('mm',StringIO.StringIO(data)) num_users,num_items = dataset.shape model = CosineKNNRecommender(k=2) num_samples = 2 def output(i,j,val): # convert back to 1-indexed print '{0}\t{1}\t{2:.3f}'.format(i+1,j+1,val) print 'computing some item similarities...' print 'item\tsim\tweight' # if we want we can compute these individually without calling fit() for i in random.sample(xrange(num_items),num_samples): for j,weight in model.get_similar_items(i,max_similar_items=2,dataset=dataset): output(i,j,weight) print 'learning entire similarity matrix...' # more usually we just call train() on the entire dataset model = CosineKNNRecommender(k=2) model.fit(dataset) print 'making some recommendations...' print 'user\trec\tscore' for u in random.sample(xrange(num_users),num_samples): for i,score in model.recommend_items(dataset.X,u,max_items=10): output(u,i,score) print 'making batch recommendations...' recs = model.batch_recommend_items(dataset.X) for u in xrange(num_users): for i,score in recs[u]: output(u,i,score) print 'making range recommendations...' for start,end in [(0,2),(2,3)]: recs = model.range_recommend_items(dataset.X,start,end) for u in xrange(start,end): for i,score in recs[u-start]: output(u,i,score)
bsd-3-clause
aabadie/scikit-learn
examples/gaussian_process/plot_gpr_prior_posterior.py
104
2878
""" ========================================================================== Illustration of prior and posterior Gaussian process for different kernels ========================================================================== This example illustrates the prior and posterior of a GPR with different kernels. Mean, standard deviation, and 10 samples are shown for both prior and posterior. """ print(__doc__) # Authors: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de> # # License: BSD 3 clause import numpy as np from matplotlib import pyplot as plt from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import (RBF, Matern, RationalQuadratic, ExpSineSquared, DotProduct, ConstantKernel) kernels = [1.0 * RBF(length_scale=1.0, length_scale_bounds=(1e-1, 10.0)), 1.0 * RationalQuadratic(length_scale=1.0, alpha=0.1), 1.0 * ExpSineSquared(length_scale=1.0, periodicity=3.0, length_scale_bounds=(0.1, 10.0), periodicity_bounds=(1.0, 10.0)), ConstantKernel(0.1, (0.01, 10.0)) * (DotProduct(sigma_0=1.0, sigma_0_bounds=(0.0, 10.0)) ** 2), 1.0 * Matern(length_scale=1.0, length_scale_bounds=(1e-1, 10.0), nu=1.5)] for fig_index, kernel in enumerate(kernels): # Specify Gaussian Process gp = GaussianProcessRegressor(kernel=kernel) # Plot prior plt.figure(fig_index, figsize=(8, 8)) plt.subplot(2, 1, 1) X_ = np.linspace(0, 5, 100) y_mean, y_std = gp.predict(X_[:, np.newaxis], return_std=True) plt.plot(X_, y_mean, 'k', lw=3, zorder=9) plt.fill_between(X_, y_mean - y_std, y_mean + y_std, alpha=0.5, color='k') y_samples = gp.sample_y(X_[:, np.newaxis], 10) plt.plot(X_, y_samples, lw=1) plt.xlim(0, 5) plt.ylim(-3, 3) plt.title("Prior (kernel: %s)" % kernel, fontsize=12) # Generate data and fit GP rng = np.random.RandomState(4) X = rng.uniform(0, 5, 10)[:, np.newaxis] y = np.sin((X[:, 0] - 2.5) ** 2) gp.fit(X, y) # Plot posterior plt.subplot(2, 1, 2) X_ = np.linspace(0, 5, 100) y_mean, y_std = gp.predict(X_[:, np.newaxis], return_std=True) plt.plot(X_, y_mean, 'k', lw=3, zorder=9) plt.fill_between(X_, y_mean - y_std, y_mean + y_std, alpha=0.5, color='k') y_samples = gp.sample_y(X_[:, np.newaxis], 10) plt.plot(X_, y_samples, lw=1) plt.scatter(X[:, 0], y, c='r', s=50, zorder=10) plt.xlim(0, 5) plt.ylim(-3, 3) plt.title("Posterior (kernel: %s)\n Log-Likelihood: %.3f" % (gp.kernel_, gp.log_marginal_likelihood(gp.kernel_.theta)), fontsize=12) plt.tight_layout() plt.show()
bsd-3-clause
MichaelChatzidakis/Mn_Classifier_CNNs
train_crossval_mixed_states.py
1
13779
import os import sys import numpy as np np.random.seed(23087) import pandas as pd from keras.utils import np_utils from keras.optimizers import Adam from keras.models import Sequential from matplotlib import pyplot as plt from sklearn.decomposition import PCA from keras.callbacks import ModelCheckpoint from sklearn.metrics import confusion_matrix from sklearn.cross_validation import train_test_split from keras.layers.pooling import GlobalAveragePooling1D from keras.layers.normalization import BatchNormalization from keras.layers import Dropout, Activation, Dense, Flatten from keras.layers.convolutional import Convolution1D,AveragePooling1D,MaxPooling1D from sklearn.utils import class_weight def train(argv): #Params epochs = 100 batch_size = 2048 train_test_percent = 0.15 #optional folds = 1 if argv[2] != None: root_path = os.path.join("weights","cross_validation_results", argv[2]) if not os.path.exists(root_path): os.mkdir(root_path) Mn_All,labels = load_data_mixed(num=1500) class_weights = class_weight.compute_class_weight('balanced', np.unique(labels), labels) class_weights = dict(enumerate(class_weights)) for fold in range(folds): model = build_neural_network_graph(graph_type=argv[1]) (X_train, y_train), (X_test, y_test) = preprocess_crossval_aug(Mn_All, labels, fold=fold, n_splits=folds, pca_aug = True) save_dir = os.path.join(root_path,"weights_"+str(fold)) if not os.path.exists(save_dir): os.mkdir(save_dir) if folds == 1: (X_test,y_test)= load_ditized_spectra() best_model_file = save_dir+"/highest_val_acc_weights_epoch{epoch:02d}-valacc{val_acc:.3f}_.h5" best_model = ModelCheckpoint(best_model_file, monitor='val_acc', verbose = 1, save_best_only = True) hist = model.fit(X_train, y_train, nb_epoch=epochs, batch_size=batch_size, callbacks = [best_model], validation_data=(X_test, y_test), class_weight = class_weights, shuffle = True, verbose=1) else: best_model_file = save_dir+"/highest_val_acc_weights_epoch{epoch:02d}-valacc{val_acc:.3f}_.h5" best_model = ModelCheckpoint(best_model_file, monitor='val_acc', verbose = 1, save_best_only = True) hist = model.fit(X_train, y_train, validation_data=(X_test, y_test), nb_epoch=epochs, batch_size=batch_size, callbacks = [best_model], class_weight = class_weights, shuffle = True, verbose=1) training_graphs(save_dir, hist) def load_data_mixed(num=1000): path_to_input = 'input_spectra' Mn2_C = np.array(pd.read_pickle(os.path.join(path_to_input, 'Mn2_615-685eV_thinnest_448.pkl'))) Mn3_C = np.array(pd.read_pickle(os.path.join(path_to_input, 'Mn3_615-685eV_thin_765.pkl'))) Mn4_C = np.array(pd.read_pickle(os.path.join(path_to_input, 'Mn4_615-685eV_thin_788.pkl'))) Mn23_2 = apply_mixed_aug(Mn2_C,Mn3_C, 0.5, 0.5, num) Mn34_2 = apply_mixed_aug(Mn3_C,Mn4_C, 0.5, 0.5, num) Mn_All=np.concatenate((Mn2_C[:,200:500], Mn23_2, Mn3_C[:,200:500], Mn34_2, Mn4_C[:,200:500])) labels = ([0]*len(Mn2_C) + [1]*len(Mn23_2) + [2]*len(Mn3_C) + [3]*len(Mn34_2) + [4]*len(Mn4_C) ) labels = np.array(labels) return Mn_All, labels ''' def load_data_mixed(num): path_to_input = 'input_spectra' Mn2_C = np.array(pd.read_pickle(os.path.join(path_to_input, 'Mn2_615-685eV_thinnest_448.pkl'))) Mn3_C = np.array(pd.read_pickle(os.path.join(path_to_input, 'Mn3_615-685eV_thin_765.pkl'))) Mn4_C = np.array(pd.read_pickle(os.path.join(path_to_input, 'Mn4_615-685eV_thin_788.pkl'))) Mn23_1 = apply_mixed_aug(Mn2_C,Mn3_C, 0.33, 0.66, num) Mn23_2 = apply_mixed_aug(Mn2_C,Mn3_C, 0.66, 0.33, num) Mn34_1 = apply_mixed_aug(Mn3_C,Mn4_C, 0.33, 0.66, num) Mn34_2 = apply_mixed_aug(Mn3_C,Mn4_C, 0.66, 0.33, num) Mn_All=np.concatenate((Mn2_C[:,200:500], Mn23_1, Mn23_2, Mn3_C[:,200:500], Mn34_1, Mn34_2, Mn4_C[:,200:500])) labels = ([0]*len(Mn2_C) + [1]*len(Mn23_1) + [2]*len(Mn23_2) + [3]*len(Mn3_C) + [4]*len(Mn34_1) + [5]*len(Mn34_2) + [6]*len(Mn4_C) ) labels = np.array(labels) return Mn_All, labels ''' def apply_mixed_aug(Mn_1, Mn_2, Mn_1_frac, Mn_2_frac, num): Mn_sum_list = [] for i in range(num): rn1 = np.random.choice(len(Mn_1)) rn2 = np.random.choice(len(Mn_2)) rn_crop1 = np.random.choice(np.arange(-10, 10)) rn_crop2 = np.random.choice(np.arange(-10, 10)) spectra1 = Mn_1[rn1][200+rn_crop1: 500+rn_crop1] spectra2 = Mn_2[rn2][200+rn_crop2: 500+rn_crop2] Mn_sum = Mn_1_frac*spectra1 + Mn_2_frac*spectra2 Mn_sum /= np.max(Mn_sum) Mn_sum_list.append(Mn_sum) Mn_sum_list = np.array(Mn_sum_list) return Mn_sum_list def preprocess_crossval_aug(x, y, fold=None, n_splits=0, train_test_percent=0.25, pca_aug = False): if n_splits > 3: from sklearn.model_selection import StratifiedKFold cv = StratifiedKFold(n_splits=n_splits, random_state=13, shuffle=False) X_train = [x[train_index] for train_index, test_index in cv.split(x, y)] X_test = [x[test_index] for train_index, test_index in cv.split(x, y)] y_train = [y[train_index] for train_index, test_index in cv.split(x, y)] y_test = [y[test_index] for train_index, test_index in cv.split(x, y)] X_train, X_test, y_train, y_test = X_train[fold], X_test[fold], y_train[fold], y_test[fold] print("Samples will be from fold", (fold+1), " out of the", n_splits, " n_splits") print('Param train_test_percent will be ignored since folds are being used.') elif n_splits == 1: X_train = x y_train = y X_test = np.zeros((x.shape[0],x.shape[1])) y_test = y elif n_splits == 2: X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=train_test_percent, random_state=13, stratify=y) if pca_aug == True: X_train, y_train = apply_pca_aug(X_train, y_train, snr_steps=25) X_train, X_test, y_train, y_test = preprocess(X_train, X_test, y_train, y_test, mean_center = True, norm = True ) return (X_train, y_train), (X_test, y_test) def apply_pca_aug(X_train, y_train, snr_steps): from sklearn.decomposition import PCA noise = np.copy(X_train) mu = np.mean(noise, axis=0) pca = PCA() noise_model = pca.fit(noise) nComp = 10 Xhat = np.dot(pca.transform(noise)[:,:nComp], pca.components_[:nComp,:]) noise_level = np.dot(pca.transform(noise)[:,nComp:], pca.components_[nComp:,:]) Xhat += mu SNR = np.linspace(0,5,snr_steps) noise_aug = [] for i in range(len(SNR)): noise_aug.append(SNR[i]*noise_level + Xhat) j = 0 for spectra in noise_aug[i]: noise_aug[i][j] = spectra/np.max(spectra) j += 1 X_train = np.array(noise_aug).reshape(snr_steps*X_train.shape[0], X_train.shape[1]) y_train = [item for i in range(snr_steps) for item in y_train] return X_train, y_train def load_ditized_spectra(): data_path = '/home/mike/Mn_Valences/Mn_Classifier_CV_Good_Copy/Data/Digitized_Mn_Usecases.pkl' data = pd.read_pickle(data_path) benchmark = np.concatenate((data[1], data[2], data[0])) labels = [0]*len(data[1])+ [2]*len(data[2])+ [4]*len(data[0]) X_test = np.zeros( (len(benchmark),300) ) i=0 for spectra in benchmark: x = spectra['Energy'] y = spectra['Intensity'] min_energy, max_energy= np.min(x), np.max(x) new_energy=np.linspace(min_energy,max_energy,300) new_intensity = np.interp(new_energy, x, y) new_intensity -= np.mean(new_intensity) new_intensity /= np.max(new_intensity) X_test[i] = new_intensity i+=1 X_test = X_test.reshape(X_test.shape + (1,)) y_test = np.array(labels) y_test = np_utils.to_categorical(y_test) return (X_test,y_test) def preprocess(X_train, X_test, y_train, y_test, mean_center = False, norm = True): X_train = np.array(X_train).astype('float32') X_test = np.array(X_test).astype('float32') if mean_center == True: X_train -= np.mean(X_train) X_test -= np.mean(X_test) print( 'Data mean-centered') if norm == True: X_train /= np.max(X_train) X_test /= np.max(X_test) print( 'Data normalized') X_test = X_test.reshape(X_test.shape + (1,)) X_train = X_train.reshape(X_train.shape + (1,)) y_train = np.array(y_train) y_test = np.array(y_test) y_train = np_utils.to_categorical(y_train) y_test = np_utils.to_categorical(y_test) print( 'Data one-hot encoded') print("Total of "+str(y_test.shape[1])+" classes.") print("Total of "+str(len(X_train))+" training samples.") print("Total of "+str(len(X_test))+" testing samples.") return X_train, X_test, y_train, y_test def build_neural_network_graph(graph_type): if graph_type == 'cnn': model = Sequential() activation = 'relu' model.add(Convolution1D(2, 9, input_shape=(300,1))) model.add(BatchNormalization()) model.add(Activation(activation)) model.add(AveragePooling1D()) model.add(Convolution1D(2, 7)) model.add(BatchNormalization()) model.add(Activation(activation)) model.add(AveragePooling1D()) model.add(Convolution1D(4, 7)) model.add(BatchNormalization()) model.add(Activation(activation)) model.add(AveragePooling1D()) model.add(Convolution1D(8, 5)) model.add(BatchNormalization()) model.add(Activation(activation)) model.add(AveragePooling1D()) model.add(Convolution1D(12, 3)) model.add(BatchNormalization()) model.add(Activation(activation)) model.add(AveragePooling1D()) model.add(Dropout(0.1, seed=23087)) model.add(Convolution1D(5, 1)) model.add(BatchNormalization()) model.add(GlobalAveragePooling1D()) model.add(Activation('softmax', name='loss')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) print(model.summary()) print("CNN Model created.") return model elif graph_type=='MLP': model = Sequential() model.add(Flatten(input_shape=(300,1))) model.add(Dropout(0.5, seed=23087, name='drop1')) model.add(Dense(32, activation='relu')) model.add(BatchNormalization()) model.add(Dropout(0.5, seed=23087, name='drop9')) model.add(Dense(32,activation='relu')) model.add(BatchNormalization()) model.add(Dense(5, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) print(model.summary()) print("CNN Model created.") return model else: print('Custom Model') model = Sequential() activation = 'relu' model.add(Convolution1D(4, 9, input_shape=(300,1), activation=activation)) model.add(BatchNormalization()) model.add(AveragePooling1D()) model.add(Convolution1D(4, 7, activation=activation)) model.add(BatchNormalization()) model.add(AveragePooling1D()) model.add(Convolution1D(8, 7, activation=activation)) model.add(BatchNormalization()) model.add(AveragePooling1D()) model.add(Convolution1D(16, 5, activation=activation)) model.add(BatchNormalization()) model.add(AveragePooling1D()) model.add(Convolution1D(32, 3, activation=activation)) model.add(BatchNormalization()) model.add(AveragePooling1D()) model.add(Flatten()) model.add(Dropout(0.5, seed=23087, name='drop1')) model.add(Dense(16, activation='relu')) model.add(BatchNormalization()) model.add(Dropout(0.5, seed=23087, name='drop9')) model.add(Dense(16,activation='relu')) model.add(BatchNormalization()) model.add(Dense(5, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) print(model.summary()) print("CNN Model created.") return model def training_graphs(save_dir, hist): #summarize history for accuracy plt.figure(figsize=(15, 5)) plt.rcParams.update({'font.size': 16}) plt.subplot(1, 2, 1) plt.plot(hist.history['acc'], linewidth = 3) plt.title('Model Training Accuracy') plt.ylabel('Training Accuracy') plt.xlabel('Epoch') # summarize history for loss plt.subplot(1, 2, 2) plt.plot(hist.history['loss'], linewidth = 3) plt.title('Model Training Loss') plt.ylabel('Cross Entropy Loss') plt.xlabel('Epoch') plt.savefig(os.path.join(save_dir, 'training_accuracy.png')) plt.figure(figsize=(10, 8)) plt.plot(hist.history['val_acc'], linewidth = 3) plt.plot(hist.history['acc'], linewidth = 3) plt.title('Model Accuracy') plt.ylabel('Accuracy') plt.xlabel('Epoch') plt.legend(['Test', 'Train'], loc='lower right') plt.savefig(os.path.join(save_dir, 'test_accuracy.png')) if __name__ == "__main__": train(sys.argv)
mit
DailyActie/Surrogate-Model
01-codes/scikit-learn-master/examples/mixture/plot_gmm_pdf.py
1
1528
""" ============================================= Density Estimation for a mixture of Gaussians ============================================= Plot the density estimation of a mixture of two Gaussians. Data is generated from two Gaussians with different centers and covariance matrices. """ import matplotlib.pyplot as plt import numpy as np from matplotlib.colors import LogNorm from sklearn import mixture n_samples = 300 # generate random sample, two components np.random.seed(0) # generate spherical data centered on (20, 20) shifted_gaussian = np.random.randn(n_samples, 2) + np.array([20, 20]) # generate zero centered stretched Gaussian data C = np.array([[0., -0.7], [3.5, .7]]) stretched_gaussian = np.dot(np.random.randn(n_samples, 2), C) # concatenate the two datasets into the final training set X_train = np.vstack([shifted_gaussian, stretched_gaussian]) # fit a Gaussian Mixture Model with two components clf = mixture.GMM(n_components=2, covariance_type='full') clf.fit(X_train) # display predicted scores by the model as a contour plot x = np.linspace(-20.0, 30.0) y = np.linspace(-20.0, 40.0) X, Y = np.meshgrid(x, y) XX = np.array([X.ravel(), Y.ravel()]).T Z = -clf.score_samples(XX)[0] Z = Z.reshape(X.shape) CS = plt.contour(X, Y, Z, norm=LogNorm(vmin=1.0, vmax=1000.0), levels=np.logspace(0, 3, 10)) CB = plt.colorbar(CS, shrink=0.8, extend='both') plt.scatter(X_train[:, 0], X_train[:, 1], .8) plt.title('Negative log-likelihood predicted by a GMM') plt.axis('tight') plt.show()
mit
Djabbz/scikit-learn
sklearn/preprocessing/tests/test_data.py
1
56774
# Authors: # # Giorgio Patrini # # License: BSD 3 clause import warnings import numpy as np import numpy.linalg as la from scipy import sparse from distutils.version import LooseVersion from sklearn.utils import gen_batches from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import clean_warning_registry from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_less from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_greater_equal from sklearn.utils.testing import assert_less_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raises_regex from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import assert_no_warnings from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_allclose from sklearn.utils.sparsefuncs import mean_variance_axis from sklearn.preprocessing.data import _transform_selected from sklearn.preprocessing.data import _handle_zeros_in_scale from sklearn.preprocessing.data import Binarizer from sklearn.preprocessing.data import KernelCenterer from sklearn.preprocessing.data import Normalizer from sklearn.preprocessing.data import normalize from sklearn.preprocessing.data import OneHotEncoder from sklearn.preprocessing.data import StandardScaler from sklearn.preprocessing.data import scale from sklearn.preprocessing.data import MinMaxScaler from sklearn.preprocessing.data import minmax_scale from sklearn.preprocessing.data import MaxAbsScaler from sklearn.preprocessing.data import maxabs_scale from sklearn.preprocessing.data import RobustScaler from sklearn.preprocessing.data import robust_scale from sklearn.preprocessing.data import add_dummy_feature from sklearn.preprocessing.data import PolynomialFeatures from sklearn.exceptions import DataConversionWarning from sklearn import datasets iris = datasets.load_iris() # Make some data to be used many times rng = np.random.RandomState(0) n_features = 30 n_samples = 1000 offsets = rng.uniform(-1, 1, size=n_features) scales = rng.uniform(1, 10, size=n_features) X_2d = rng.randn(n_samples, n_features) * scales + offsets X_1row = X_2d[0, :].reshape(1, n_features) X_1col = X_2d[:, 0].reshape(n_samples, 1) X_list_1row = X_1row.tolist() X_list_1col = X_1col.tolist() def toarray(a): if hasattr(a, "toarray"): a = a.toarray() return a def _check_dim_1axis(a): if isinstance(a, list): return np.array(a).shape[0] return a.shape[0] def assert_correct_incr(i, batch_start, batch_stop, n, chunk_size, n_samples_seen): if batch_stop != n: assert_equal((i + 1) * chunk_size, n_samples_seen) else: assert_equal(i * chunk_size + (batch_stop - batch_start), n_samples_seen) def test_polynomial_features(): # Test Polynomial Features X1 = np.arange(6)[:, np.newaxis] P1 = np.hstack([np.ones_like(X1), X1, X1 ** 2, X1 ** 3]) deg1 = 3 X2 = np.arange(6).reshape((3, 2)) x1 = X2[:, :1] x2 = X2[:, 1:] P2 = np.hstack([x1 ** 0 * x2 ** 0, x1 ** 1 * x2 ** 0, x1 ** 0 * x2 ** 1, x1 ** 2 * x2 ** 0, x1 ** 1 * x2 ** 1, x1 ** 0 * x2 ** 2]) deg2 = 2 for (deg, X, P) in [(deg1, X1, P1), (deg2, X2, P2)]: P_test = PolynomialFeatures(deg, include_bias=True).fit_transform(X) assert_array_almost_equal(P_test, P) P_test = PolynomialFeatures(deg, include_bias=False).fit_transform(X) assert_array_almost_equal(P_test, P[:, 1:]) interact = PolynomialFeatures(2, interaction_only=True, include_bias=True) X_poly = interact.fit_transform(X) assert_array_almost_equal(X_poly, P2[:, [0, 1, 2, 4]]) def test_standard_scaler_1d(): # Test scaling of dataset along single axis for X in [X_1row, X_1col, X_list_1row, X_list_1row]: scaler = StandardScaler() X_scaled = scaler.fit(X).transform(X, copy=True) if isinstance(X, list): X = np.array(X) # cast only after scaling done if _check_dim_1axis(X) == 1: assert_almost_equal(scaler.mean_, X.ravel()) assert_almost_equal(scaler.scale_, np.ones(n_features)) assert_array_almost_equal(X_scaled.mean(axis=0), np.zeros_like(n_features)) assert_array_almost_equal(X_scaled.std(axis=0), np.zeros_like(n_features)) else: assert_almost_equal(scaler.mean_, X.mean()) assert_almost_equal(scaler.scale_, X.std()) assert_array_almost_equal(X_scaled.mean(axis=0), np.zeros_like(n_features)) assert_array_almost_equal(X_scaled.mean(axis=0), .0) assert_array_almost_equal(X_scaled.std(axis=0), 1.) assert_equal(scaler.n_samples_seen_, X.shape[0]) # check inverse transform X_scaled_back = scaler.inverse_transform(X_scaled) assert_array_almost_equal(X_scaled_back, X) # Constant feature X = np.ones(5).reshape(5, 1) scaler = StandardScaler() X_scaled = scaler.fit(X).transform(X, copy=True) assert_almost_equal(scaler.mean_, 1.) assert_almost_equal(scaler.scale_, 1.) assert_array_almost_equal(X_scaled.mean(axis=0), .0) assert_array_almost_equal(X_scaled.std(axis=0), .0) assert_equal(scaler.n_samples_seen_, X.shape[0]) def test_scale_1d(): # 1-d inputs X_list = [1., 3., 5., 0.] X_arr = np.array(X_list) for X in [X_list, X_arr]: X_scaled = scale(X) assert_array_almost_equal(X_scaled.mean(), 0.0) assert_array_almost_equal(X_scaled.std(), 1.0) assert_array_equal(scale(X, with_mean=False, with_std=False), X) def test_standard_scaler_numerical_stability(): """Test numerical stability of scaling""" # np.log(1e-5) is taken because of its floating point representation # was empirically found to cause numerical problems with np.mean & np.std. x = np.zeros(8, dtype=np.float64) + np.log(1e-5, dtype=np.float64) if LooseVersion(np.__version__) >= LooseVersion('1.9'): # This does not raise a warning as the number of samples is too low # to trigger the problem in recent numpy x_scaled = assert_no_warnings(scale, x) assert_array_almost_equal(scale(x), np.zeros(8)) else: w = "standard deviation of the data is probably very close to 0" x_scaled = assert_warns_message(UserWarning, w, scale, x) assert_array_almost_equal(x_scaled, np.zeros(8)) # with 2 more samples, the std computation run into numerical issues: x = np.zeros(10, dtype=np.float64) + np.log(1e-5, dtype=np.float64) w = "standard deviation of the data is probably very close to 0" x_scaled = assert_warns_message(UserWarning, w, scale, x) assert_array_almost_equal(x_scaled, np.zeros(10)) x = np.ones(10, dtype=np.float64) * 1e-100 x_small_scaled = assert_no_warnings(scale, x) assert_array_almost_equal(x_small_scaled, np.zeros(10)) # Large values can cause (often recoverable) numerical stability issues: x_big = np.ones(10, dtype=np.float64) * 1e100 w = "Dataset may contain too large values" x_big_scaled = assert_warns_message(UserWarning, w, scale, x_big) assert_array_almost_equal(x_big_scaled, np.zeros(10)) assert_array_almost_equal(x_big_scaled, x_small_scaled) x_big_centered = assert_warns_message(UserWarning, w, scale, x_big, with_std=False) assert_array_almost_equal(x_big_centered, np.zeros(10)) assert_array_almost_equal(x_big_centered, x_small_scaled) def test_scaler_2d_arrays(): # Test scaling of 2d array along first axis rng = np.random.RandomState(0) n_features = 5 n_samples = 4 X = rng.randn(n_samples, n_features) X[:, 0] = 0.0 # first feature is always of zero scaler = StandardScaler() X_scaled = scaler.fit(X).transform(X, copy=True) assert_false(np.any(np.isnan(X_scaled))) assert_equal(scaler.n_samples_seen_, n_samples) assert_array_almost_equal(X_scaled.mean(axis=0), n_features * [0.0]) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) # Check that X has been copied assert_true(X_scaled is not X) # check inverse transform X_scaled_back = scaler.inverse_transform(X_scaled) assert_true(X_scaled_back is not X) assert_true(X_scaled_back is not X_scaled) assert_array_almost_equal(X_scaled_back, X) X_scaled = scale(X, axis=1, with_std=False) assert_false(np.any(np.isnan(X_scaled))) assert_array_almost_equal(X_scaled.mean(axis=1), n_samples * [0.0]) X_scaled = scale(X, axis=1, with_std=True) assert_false(np.any(np.isnan(X_scaled))) assert_array_almost_equal(X_scaled.mean(axis=1), n_samples * [0.0]) assert_array_almost_equal(X_scaled.std(axis=1), n_samples * [1.0]) # Check that the data hasn't been modified assert_true(X_scaled is not X) X_scaled = scaler.fit(X).transform(X, copy=False) assert_false(np.any(np.isnan(X_scaled))) assert_array_almost_equal(X_scaled.mean(axis=0), n_features * [0.0]) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) # Check that X has not been copied assert_true(X_scaled is X) X = rng.randn(4, 5) X[:, 0] = 1.0 # first feature is a constant, non zero feature scaler = StandardScaler() X_scaled = scaler.fit(X).transform(X, copy=True) assert_false(np.any(np.isnan(X_scaled))) assert_array_almost_equal(X_scaled.mean(axis=0), n_features * [0.0]) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) # Check that X has not been copied assert_true(X_scaled is not X) def test_handle_zeros_in_scale(): s1 = np.array([0, 1, 2, 3]) s2 = _handle_zeros_in_scale(s1, copy=True) assert_false(s1[0] == s2[0]) assert_array_equal(s1, np.array([0, 1, 2, 3])) assert_array_equal(s2, np.array([1, 1, 2, 3])) def test_minmax_scaler_partial_fit(): # Test if partial_fit run over many batches of size 1 and 50 # gives the same results as fit X = X_2d n = X.shape[0] for chunk_size in [1, 2, 50, n, n + 42]: # Test mean at the end of the process scaler_batch = MinMaxScaler().fit(X) scaler_incr = MinMaxScaler() for batch in gen_batches(n_samples, chunk_size): scaler_incr = scaler_incr.partial_fit(X[batch]) assert_array_almost_equal(scaler_batch.data_min_, scaler_incr.data_min_) assert_array_almost_equal(scaler_batch.data_max_, scaler_incr.data_max_) assert_equal(scaler_batch.n_samples_seen_, scaler_incr.n_samples_seen_) assert_array_almost_equal(scaler_batch.data_range_, scaler_incr.data_range_) assert_array_almost_equal(scaler_batch.scale_, scaler_incr.scale_) assert_array_almost_equal(scaler_batch.min_, scaler_incr.min_) # Test std after 1 step batch0 = slice(0, chunk_size) scaler_batch = MinMaxScaler().fit(X[batch0]) scaler_incr = MinMaxScaler().partial_fit(X[batch0]) assert_array_almost_equal(scaler_batch.data_min_, scaler_incr.data_min_) assert_array_almost_equal(scaler_batch.data_max_, scaler_incr.data_max_) assert_equal(scaler_batch.n_samples_seen_, scaler_incr.n_samples_seen_) assert_array_almost_equal(scaler_batch.data_range_, scaler_incr.data_range_) assert_array_almost_equal(scaler_batch.scale_, scaler_incr.scale_) assert_array_almost_equal(scaler_batch.min_, scaler_incr.min_) # Test std until the end of partial fits, and scaler_batch = MinMaxScaler().fit(X) scaler_incr = MinMaxScaler() # Clean estimator for i, batch in enumerate(gen_batches(n_samples, chunk_size)): scaler_incr = scaler_incr.partial_fit(X[batch]) assert_correct_incr(i, batch_start=batch.start, batch_stop=batch.stop, n=n, chunk_size=chunk_size, n_samples_seen=scaler_incr.n_samples_seen_) def test_standard_scaler_partial_fit(): # Test if partial_fit run over many batches of size 1 and 50 # gives the same results as fit X = X_2d n = X.shape[0] for chunk_size in [1, 2, 50, n, n + 42]: # Test mean at the end of the process scaler_batch = StandardScaler(with_std=False).fit(X) scaler_incr = StandardScaler(with_std=False) for batch in gen_batches(n_samples, chunk_size): scaler_incr = scaler_incr.partial_fit(X[batch]) assert_array_almost_equal(scaler_batch.mean_, scaler_incr.mean_) assert_equal(scaler_batch.var_, scaler_incr.var_) # Nones assert_equal(scaler_batch.n_samples_seen_, scaler_incr.n_samples_seen_) # Test std after 1 step batch0 = slice(0, chunk_size) scaler_incr = StandardScaler().partial_fit(X[batch0]) if chunk_size == 1: assert_array_almost_equal(np.zeros(n_features, dtype=np.float64), scaler_incr.var_) assert_array_almost_equal(np.ones(n_features, dtype=np.float64), scaler_incr.scale_) else: assert_array_almost_equal(np.var(X[batch0], axis=0), scaler_incr.var_) assert_array_almost_equal(np.std(X[batch0], axis=0), scaler_incr.scale_) # no constants # Test std until the end of partial fits, and scaler_batch = StandardScaler().fit(X) scaler_incr = StandardScaler() # Clean estimator for i, batch in enumerate(gen_batches(n_samples, chunk_size)): scaler_incr = scaler_incr.partial_fit(X[batch]) assert_correct_incr(i, batch_start=batch.start, batch_stop=batch.stop, n=n, chunk_size=chunk_size, n_samples_seen=scaler_incr.n_samples_seen_) assert_array_almost_equal(scaler_batch.var_, scaler_incr.var_) assert_equal(scaler_batch.n_samples_seen_, scaler_incr.n_samples_seen_) def test_standard_scaler_partial_fit_numerical_stability(): # Test if the incremental computation introduces significative errors # for large datasets with values of large magniture rng = np.random.RandomState(0) n_features = 2 n_samples = 100 offsets = rng.uniform(-1e15, 1e15, size=n_features) scales = rng.uniform(1e3, 1e6, size=n_features) X = rng.randn(n_samples, n_features) * scales + offsets scaler_batch = StandardScaler().fit(X) scaler_incr = StandardScaler() for chunk in X: scaler_incr = scaler_incr.partial_fit(chunk.reshape(1, n_features)) # Regardless of abs values, they must not be more diff 6 significant digits tol = 10 ** (-6) assert_allclose(scaler_incr.mean_, scaler_batch.mean_, rtol=tol) assert_allclose(scaler_incr.var_, scaler_batch.var_, rtol=tol) assert_allclose(scaler_incr.scale_, scaler_batch.scale_, rtol=tol) # NOTE Be aware that for much larger offsets std is very unstable (last # assert) while mean is OK. # Sparse input size = (100, 3) scale = 1e20 X = rng.random_integers(0, 1, size).astype(np.float64) * scale X_csr = sparse.csr_matrix(X) X_csc = sparse.csc_matrix(X) for X in [X_csr, X_csc]: # with_mean=False is required with sparse input scaler = StandardScaler(with_mean=False).fit(X) scaler_incr = StandardScaler(with_mean=False) for chunk in X: # chunk = sparse.csr_matrix(data_chunks) scaler_incr = scaler_incr.partial_fit(chunk) # Regardless of magnitude, they must not differ more than of 6 digits tol = 10 ** (-6) assert_true(scaler.mean_ is not None) assert_allclose(scaler_incr.var_, scaler.var_, rtol=tol) assert_allclose(scaler_incr.scale_, scaler.scale_, rtol=tol) def test_partial_fit_sparse_input(): # Check that sparsity is not destroyed X = np.array([[1.], [0.], [0.], [5.]]) X_csr = sparse.csr_matrix(X) X_csc = sparse.csc_matrix(X) null_transform = StandardScaler(with_mean=False, with_std=False, copy=True) for X in [X_csr, X_csc]: X_null = null_transform.partial_fit(X).transform(X) assert_array_equal(X_null.data, X.data) X_orig = null_transform.inverse_transform(X_null) assert_array_equal(X_orig.data, X_null.data) assert_array_equal(X_orig.data, X.data) def test_standard_scaler_trasform_with_partial_fit(): # Check some postconditions after applying partial_fit and transform X = X_2d[:100, :] scaler_incr = StandardScaler() for i, batch in enumerate(gen_batches(X.shape[0], 1)): X_sofar = X[:(i+1), :] chunks_copy = X_sofar.copy() scaled_batch = StandardScaler().fit_transform(X_sofar) scaler_incr = scaler_incr.partial_fit(X[batch]) scaled_incr = scaler_incr.transform(X_sofar) assert_array_almost_equal(scaled_batch, scaled_incr) assert_array_almost_equal(X_sofar, chunks_copy) # No change right_input = scaler_incr.inverse_transform(scaled_incr) assert_array_almost_equal(X_sofar, right_input) zero = np.zeros(X.shape[1]) epsilon = np.nextafter(0, 1) assert_array_less(zero, scaler_incr.var_ + epsilon) # as less or equal assert_array_less(zero, scaler_incr.scale_ + epsilon) # (i+1) because the Scaler has been already fitted assert_equal((i + 1), scaler_incr.n_samples_seen_) def test_min_max_scaler_iris(): X = iris.data scaler = MinMaxScaler() # default params X_trans = scaler.fit_transform(X) assert_array_almost_equal(X_trans.min(axis=0), 0) assert_array_almost_equal(X_trans.max(axis=0), 1) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) # not default params: min=1, max=2 scaler = MinMaxScaler(feature_range=(1, 2)) X_trans = scaler.fit_transform(X) assert_array_almost_equal(X_trans.min(axis=0), 1) assert_array_almost_equal(X_trans.max(axis=0), 2) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) # min=-.5, max=.6 scaler = MinMaxScaler(feature_range=(-.5, .6)) X_trans = scaler.fit_transform(X) assert_array_almost_equal(X_trans.min(axis=0), -.5) assert_array_almost_equal(X_trans.max(axis=0), .6) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) # raises on invalid range scaler = MinMaxScaler(feature_range=(2, 1)) assert_raises(ValueError, scaler.fit, X) def test_min_max_scaler_zero_variance_features(): # Check min max scaler on toy data with zero variance features X = [[0., 1., +0.5], [0., 1., -0.1], [0., 1., +1.1]] X_new = [[+0., 2., 0.5], [-1., 1., 0.0], [+0., 1., 1.5]] # default params scaler = MinMaxScaler() X_trans = scaler.fit_transform(X) X_expected_0_1 = [[0., 0., 0.5], [0., 0., 0.0], [0., 0., 1.0]] assert_array_almost_equal(X_trans, X_expected_0_1) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) X_trans_new = scaler.transform(X_new) X_expected_0_1_new = [[+0., 1., 0.500], [-1., 0., 0.083], [+0., 0., 1.333]] assert_array_almost_equal(X_trans_new, X_expected_0_1_new, decimal=2) # not default params scaler = MinMaxScaler(feature_range=(1, 2)) X_trans = scaler.fit_transform(X) X_expected_1_2 = [[1., 1., 1.5], [1., 1., 1.0], [1., 1., 2.0]] assert_array_almost_equal(X_trans, X_expected_1_2) # function interface X_trans = minmax_scale(X) assert_array_almost_equal(X_trans, X_expected_0_1) X_trans = minmax_scale(X, feature_range=(1, 2)) assert_array_almost_equal(X_trans, X_expected_1_2) def test_minmax_scale_axis1(): X = iris.data X_trans = minmax_scale(X, axis=1) assert_array_almost_equal(np.min(X_trans, axis=1), 0) assert_array_almost_equal(np.max(X_trans, axis=1), 1) def test_min_max_scaler_1d(): # Test scaling of dataset along single axis for X in [X_1row, X_1col, X_list_1row, X_list_1row]: scaler = MinMaxScaler(copy=True) X_scaled = scaler.fit(X).transform(X) if isinstance(X, list): X = np.array(X) # cast only after scaling done if _check_dim_1axis(X) == 1: assert_array_almost_equal(X_scaled.min(axis=0), np.zeros(n_features)) assert_array_almost_equal(X_scaled.max(axis=0), np.zeros(n_features)) else: assert_array_almost_equal(X_scaled.min(axis=0), .0) assert_array_almost_equal(X_scaled.max(axis=0), 1.) assert_equal(scaler.n_samples_seen_, X.shape[0]) # check inverse transform X_scaled_back = scaler.inverse_transform(X_scaled) assert_array_almost_equal(X_scaled_back, X) # Constant feature X = np.ones(5).reshape(5, 1) scaler = MinMaxScaler() X_scaled = scaler.fit(X).transform(X) assert_greater_equal(X_scaled.min(), 0.) assert_less_equal(X_scaled.max(), 1.) assert_equal(scaler.n_samples_seen_, X.shape[0]) # Function interface X_1d = X_1row.ravel() min_ = X_1d.min() max_ = X_1d.max() assert_array_almost_equal((X_1d - min_) / (max_ - min_), minmax_scale(X_1d, copy=True)) def test_scaler_without_centering(): rng = np.random.RandomState(42) X = rng.randn(4, 5) X[:, 0] = 0.0 # first feature is always of zero X_csr = sparse.csr_matrix(X) X_csc = sparse.csc_matrix(X) assert_raises(ValueError, StandardScaler().fit, X_csr) assert_raises(ValueError, StandardScaler().fit, X_csc) null_transform = StandardScaler(with_mean=False, with_std=False, copy=True) X_null = null_transform.fit_transform(X_csr) assert_array_equal(X_null.data, X_csr.data) X_orig = null_transform.inverse_transform(X_null) assert_array_equal(X_orig.data, X_csr.data) scaler = StandardScaler(with_mean=False).fit(X) X_scaled = scaler.transform(X, copy=True) assert_false(np.any(np.isnan(X_scaled))) scaler_csr = StandardScaler(with_mean=False).fit(X_csr) X_csr_scaled = scaler_csr.transform(X_csr, copy=True) assert_false(np.any(np.isnan(X_csr_scaled.data))) scaler_csc = StandardScaler(with_mean=False).fit(X_csc) X_csc_scaled = scaler_csc.transform(X_csc, copy=True) assert_false(np.any(np.isnan(X_csc_scaled.data))) assert_array_almost_equal(scaler.mean_, scaler_csr.mean_) assert_array_almost_equal(scaler.var_, scaler_csr.var_) assert_array_almost_equal(scaler.scale_, scaler_csr.scale_) assert_array_almost_equal(scaler.mean_, scaler_csc.mean_) assert_array_almost_equal(scaler.var_, scaler_csc.var_) assert_array_almost_equal(scaler.scale_, scaler_csc.scale_) assert_array_almost_equal( X_scaled.mean(axis=0), [0., -0.01, 2.24, -0.35, -0.78], 2) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) X_csr_scaled_mean, X_csr_scaled_std = mean_variance_axis(X_csr_scaled, 0) assert_array_almost_equal(X_csr_scaled_mean, X_scaled.mean(axis=0)) assert_array_almost_equal(X_csr_scaled_std, X_scaled.std(axis=0)) # Check that X has not been modified (copy) assert_true(X_scaled is not X) assert_true(X_csr_scaled is not X_csr) X_scaled_back = scaler.inverse_transform(X_scaled) assert_true(X_scaled_back is not X) assert_true(X_scaled_back is not X_scaled) assert_array_almost_equal(X_scaled_back, X) X_csr_scaled_back = scaler_csr.inverse_transform(X_csr_scaled) assert_true(X_csr_scaled_back is not X_csr) assert_true(X_csr_scaled_back is not X_csr_scaled) assert_array_almost_equal(X_csr_scaled_back.toarray(), X) X_csc_scaled_back = scaler_csr.inverse_transform(X_csc_scaled.tocsc()) assert_true(X_csc_scaled_back is not X_csc) assert_true(X_csc_scaled_back is not X_csc_scaled) assert_array_almost_equal(X_csc_scaled_back.toarray(), X) def test_scaler_int(): # test that scaler converts integer input to floating # for both sparse and dense matrices rng = np.random.RandomState(42) X = rng.randint(20, size=(4, 5)) X[:, 0] = 0 # first feature is always of zero X_csr = sparse.csr_matrix(X) X_csc = sparse.csc_matrix(X) null_transform = StandardScaler(with_mean=False, with_std=False, copy=True) clean_warning_registry() with warnings.catch_warnings(record=True): X_null = null_transform.fit_transform(X_csr) assert_array_equal(X_null.data, X_csr.data) X_orig = null_transform.inverse_transform(X_null) assert_array_equal(X_orig.data, X_csr.data) clean_warning_registry() with warnings.catch_warnings(record=True): scaler = StandardScaler(with_mean=False).fit(X) X_scaled = scaler.transform(X, copy=True) assert_false(np.any(np.isnan(X_scaled))) clean_warning_registry() with warnings.catch_warnings(record=True): scaler_csr = StandardScaler(with_mean=False).fit(X_csr) X_csr_scaled = scaler_csr.transform(X_csr, copy=True) assert_false(np.any(np.isnan(X_csr_scaled.data))) clean_warning_registry() with warnings.catch_warnings(record=True): scaler_csc = StandardScaler(with_mean=False).fit(X_csc) X_csc_scaled = scaler_csc.transform(X_csc, copy=True) assert_false(np.any(np.isnan(X_csc_scaled.data))) assert_array_almost_equal(scaler.mean_, scaler_csr.mean_) assert_array_almost_equal(scaler.var_, scaler_csr.var_) assert_array_almost_equal(scaler.scale_, scaler_csr.scale_) assert_array_almost_equal(scaler.mean_, scaler_csc.mean_) assert_array_almost_equal(scaler.var_, scaler_csc.var_) assert_array_almost_equal(scaler.scale_, scaler_csc.scale_) assert_array_almost_equal( X_scaled.mean(axis=0), [0., 1.109, 1.856, 21., 1.559], 2) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) X_csr_scaled_mean, X_csr_scaled_std = mean_variance_axis( X_csr_scaled.astype(np.float), 0) assert_array_almost_equal(X_csr_scaled_mean, X_scaled.mean(axis=0)) assert_array_almost_equal(X_csr_scaled_std, X_scaled.std(axis=0)) # Check that X has not been modified (copy) assert_true(X_scaled is not X) assert_true(X_csr_scaled is not X_csr) X_scaled_back = scaler.inverse_transform(X_scaled) assert_true(X_scaled_back is not X) assert_true(X_scaled_back is not X_scaled) assert_array_almost_equal(X_scaled_back, X) X_csr_scaled_back = scaler_csr.inverse_transform(X_csr_scaled) assert_true(X_csr_scaled_back is not X_csr) assert_true(X_csr_scaled_back is not X_csr_scaled) assert_array_almost_equal(X_csr_scaled_back.toarray(), X) X_csc_scaled_back = scaler_csr.inverse_transform(X_csc_scaled.tocsc()) assert_true(X_csc_scaled_back is not X_csc) assert_true(X_csc_scaled_back is not X_csc_scaled) assert_array_almost_equal(X_csc_scaled_back.toarray(), X) def test_scaler_without_copy(): # Check that StandardScaler.fit does not change input rng = np.random.RandomState(42) X = rng.randn(4, 5) X[:, 0] = 0.0 # first feature is always of zero X_csr = sparse.csr_matrix(X) X_csc = sparse.csc_matrix(X) X_copy = X.copy() StandardScaler(copy=False).fit(X) assert_array_equal(X, X_copy) X_csr_copy = X_csr.copy() StandardScaler(with_mean=False, copy=False).fit(X_csr) assert_array_equal(X_csr.toarray(), X_csr_copy.toarray()) X_csc_copy = X_csc.copy() StandardScaler(with_mean=False, copy=False).fit(X_csc) assert_array_equal(X_csc.toarray(), X_csc_copy.toarray()) def test_scale_sparse_with_mean_raise_exception(): rng = np.random.RandomState(42) X = rng.randn(4, 5) X_csr = sparse.csr_matrix(X) X_csc = sparse.csc_matrix(X) # check scaling and fit with direct calls on sparse data assert_raises(ValueError, scale, X_csr, with_mean=True) assert_raises(ValueError, StandardScaler(with_mean=True).fit, X_csr) assert_raises(ValueError, scale, X_csc, with_mean=True) assert_raises(ValueError, StandardScaler(with_mean=True).fit, X_csc) # check transform and inverse_transform after a fit on a dense array scaler = StandardScaler(with_mean=True).fit(X) assert_raises(ValueError, scaler.transform, X_csr) assert_raises(ValueError, scaler.transform, X_csc) X_transformed_csr = sparse.csr_matrix(scaler.transform(X)) assert_raises(ValueError, scaler.inverse_transform, X_transformed_csr) X_transformed_csc = sparse.csc_matrix(scaler.transform(X)) assert_raises(ValueError, scaler.inverse_transform, X_transformed_csc) def test_scale_input_finiteness_validation(): # Check if non finite inputs raise ValueError X = [np.nan, 5, 6, 7, 8] assert_raises_regex(ValueError, "Input contains NaN, infinity or a value too large", scale, X) X = [np.inf, 5, 6, 7, 8] assert_raises_regex(ValueError, "Input contains NaN, infinity or a value too large", scale, X) def test_robust_scaler_2d_arrays(): """Test robust scaling of 2d array along first axis""" rng = np.random.RandomState(0) X = rng.randn(4, 5) X[:, 0] = 0.0 # first feature is always of zero scaler = RobustScaler() X_scaled = scaler.fit(X).transform(X) assert_array_almost_equal(np.median(X_scaled, axis=0), 5 * [0.0]) assert_array_almost_equal(X_scaled.std(axis=0)[0], 0) def test_robust_scaler_iris(): X = iris.data scaler = RobustScaler() X_trans = scaler.fit_transform(X) assert_array_almost_equal(np.median(X_trans, axis=0), 0) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) q = np.percentile(X_trans, q=(25, 75), axis=0) iqr = q[1] - q[0] assert_array_almost_equal(iqr, 1) def test_scale_function_without_centering(): rng = np.random.RandomState(42) X = rng.randn(4, 5) X[:, 0] = 0.0 # first feature is always of zero X_csr = sparse.csr_matrix(X) X_scaled = scale(X, with_mean=False) assert_false(np.any(np.isnan(X_scaled))) X_csr_scaled = scale(X_csr, with_mean=False) assert_false(np.any(np.isnan(X_csr_scaled.data))) # test csc has same outcome X_csc_scaled = scale(X_csr.tocsc(), with_mean=False) assert_array_almost_equal(X_scaled, X_csc_scaled.toarray()) # raises value error on axis != 0 assert_raises(ValueError, scale, X_csr, with_mean=False, axis=1) assert_array_almost_equal(X_scaled.mean(axis=0), [0., -0.01, 2.24, -0.35, -0.78], 2) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) # Check that X has not been copied assert_true(X_scaled is not X) X_csr_scaled_mean, X_csr_scaled_std = mean_variance_axis(X_csr_scaled, 0) assert_array_almost_equal(X_csr_scaled_mean, X_scaled.mean(axis=0)) assert_array_almost_equal(X_csr_scaled_std, X_scaled.std(axis=0)) # null scale X_csr_scaled = scale(X_csr, with_mean=False, with_std=False, copy=True) assert_array_almost_equal(X_csr.data, X_csr_scaled.data) def test_robust_scale_axis1(): X = iris.data X_trans = robust_scale(X, axis=1) assert_array_almost_equal(np.median(X_trans, axis=1), 0) q = np.percentile(X_trans, q=(25, 75), axis=1) iqr = q[1] - q[0] assert_array_almost_equal(iqr, 1) def test_robust_scaler_zero_variance_features(): """Check RobustScaler on toy data with zero variance features""" X = [[0., 1., +0.5], [0., 1., -0.1], [0., 1., +1.1]] scaler = RobustScaler() X_trans = scaler.fit_transform(X) # NOTE: for such a small sample size, what we expect in the third column # depends HEAVILY on the method used to calculate quantiles. The values # here were calculated to fit the quantiles produces by np.percentile # using numpy 1.9 Calculating quantiles with # scipy.stats.mstats.scoreatquantile or scipy.stats.mstats.mquantiles # would yield very different results! X_expected = [[0., 0., +0.0], [0., 0., -1.0], [0., 0., +1.0]] assert_array_almost_equal(X_trans, X_expected) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) # make sure new data gets transformed correctly X_new = [[+0., 2., 0.5], [-1., 1., 0.0], [+0., 1., 1.5]] X_trans_new = scaler.transform(X_new) X_expected_new = [[+0., 1., +0.], [-1., 0., -0.83333], [+0., 0., +1.66667]] assert_array_almost_equal(X_trans_new, X_expected_new, decimal=3) def test_maxabs_scaler_zero_variance_features(): """Check MaxAbsScaler on toy data with zero variance features""" X = [[0., 1., +0.5], [0., 1., -0.3], [0., 1., +1.5], [0., 0., +0.0]] scaler = MaxAbsScaler() X_trans = scaler.fit_transform(X) X_expected = [[0., 1., 1.0 / 3.0], [0., 1., -0.2], [0., 1., 1.0], [0., 0., 0.0]] assert_array_almost_equal(X_trans, X_expected) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) # make sure new data gets transformed correctly X_new = [[+0., 2., 0.5], [-1., 1., 0.0], [+0., 1., 1.5]] X_trans_new = scaler.transform(X_new) X_expected_new = [[+0., 2.0, 1.0 / 3.0], [-1., 1.0, 0.0], [+0., 1.0, 1.0]] assert_array_almost_equal(X_trans_new, X_expected_new, decimal=2) # function interface X_trans = maxabs_scale(X) assert_array_almost_equal(X_trans, X_expected) # sparse data X_csr = sparse.csr_matrix(X) X_csc = sparse.csc_matrix(X) X_trans_csr = scaler.fit_transform(X_csr) X_trans_csc = scaler.fit_transform(X_csc) X_expected = [[0., 1., 1.0 / 3.0], [0., 1., -0.2], [0., 1., 1.0], [0., 0., 0.0]] assert_array_almost_equal(X_trans_csr.A, X_expected) assert_array_almost_equal(X_trans_csc.A, X_expected) X_trans_csr_inv = scaler.inverse_transform(X_trans_csr) X_trans_csc_inv = scaler.inverse_transform(X_trans_csc) assert_array_almost_equal(X, X_trans_csr_inv.A) assert_array_almost_equal(X, X_trans_csc_inv.A) def test_maxabs_scaler_large_negative_value(): """Check MaxAbsScaler on toy data with a large negative value""" X = [[0., 1., +0.5, -1.0], [0., 1., -0.3, -0.5], [0., 1., -100.0, 0.0], [0., 0., +0.0, -2.0]] scaler = MaxAbsScaler() X_trans = scaler.fit_transform(X) X_expected = [[0., 1., 0.005, -0.5], [0., 1., -0.003, -0.25], [0., 1., -1.0, 0.0], [0., 0., 0.0, -1.0]] assert_array_almost_equal(X_trans, X_expected) @ignore_warnings def test_deprecation_minmax_scaler(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) scaler = MinMaxScaler().fit(X) depr_message = ("Attribute data_range will be removed in " "0.19. Use data_range_ instead") data_range = assert_warns_message(DeprecationWarning, depr_message, getattr, scaler, "data_range") assert_array_equal(data_range, scaler.data_range) depr_message = ("Attribute data_min will be removed in " "0.19. Use data_min_ instead") data_min = assert_warns_message(DeprecationWarning, depr_message, getattr, scaler, "data_min") assert_array_equal(data_min, scaler.data_min) def test_warning_scaling_integers(): # Check warning when scaling integer data X = np.array([[1, 2, 0], [0, 0, 0]], dtype=np.uint8) w = "Data with input dtype uint8 was converted to float64" clean_warning_registry() assert_warns_message(DataConversionWarning, w, scale, X) assert_warns_message(DataConversionWarning, w, StandardScaler().fit, X) assert_warns_message(DataConversionWarning, w, MinMaxScaler().fit, X) def test_maxabs_scaler_1d(): # Test scaling of dataset along single axis for X in [X_1row, X_1col, X_list_1row, X_list_1row]: scaler = MaxAbsScaler(copy=True) X_scaled = scaler.fit(X).transform(X) if isinstance(X, list): X = np.array(X) # cast only after scaling done if _check_dim_1axis(X) == 1: assert_array_almost_equal(np.abs(X_scaled.max(axis=0)), np.ones(n_features)) else: assert_array_almost_equal(np.abs(X_scaled.max(axis=0)), 1.) assert_equal(scaler.n_samples_seen_, X.shape[0]) # check inverse transform X_scaled_back = scaler.inverse_transform(X_scaled) assert_array_almost_equal(X_scaled_back, X) # Constant feature X = np.ones(5).reshape(5, 1) scaler = MaxAbsScaler() X_scaled = scaler.fit(X).transform(X) assert_array_almost_equal(np.abs(X_scaled.max(axis=0)), 1.) assert_equal(scaler.n_samples_seen_, X.shape[0]) # function interface X_1d = X_1row.ravel() max_abs = np.abs(X_1d).max() assert_array_almost_equal(X_1d / max_abs, maxabs_scale(X_1d, copy=True)) def test_maxabs_scaler_partial_fit(): # Test if partial_fit run over many batches of size 1 and 50 # gives the same results as fit X = X_2d[:100, :] n = X.shape[0] for chunk_size in [1, 2, 50, n, n + 42]: # Test mean at the end of the process scaler_batch = MaxAbsScaler().fit(X) scaler_incr = MaxAbsScaler() scaler_incr_csr = MaxAbsScaler() scaler_incr_csc = MaxAbsScaler() for batch in gen_batches(n, chunk_size): scaler_incr = scaler_incr.partial_fit(X[batch]) X_csr = sparse.csr_matrix(X[batch]) scaler_incr_csr = scaler_incr_csr.partial_fit(X_csr) X_csc = sparse.csc_matrix(X[batch]) scaler_incr_csc = scaler_incr_csc.partial_fit(X_csc) assert_array_almost_equal(scaler_batch.max_abs_, scaler_incr.max_abs_) assert_array_almost_equal(scaler_batch.max_abs_, scaler_incr_csr.max_abs_) assert_array_almost_equal(scaler_batch.max_abs_, scaler_incr_csc.max_abs_) assert_equal(scaler_batch.n_samples_seen_, scaler_incr.n_samples_seen_) assert_equal(scaler_batch.n_samples_seen_, scaler_incr_csr.n_samples_seen_) assert_equal(scaler_batch.n_samples_seen_, scaler_incr_csc.n_samples_seen_) assert_array_almost_equal(scaler_batch.scale_, scaler_incr.scale_) assert_array_almost_equal(scaler_batch.scale_, scaler_incr_csr.scale_) assert_array_almost_equal(scaler_batch.scale_, scaler_incr_csc.scale_) assert_array_almost_equal(scaler_batch.transform(X), scaler_incr.transform(X)) # Test std after 1 step batch0 = slice(0, chunk_size) scaler_batch = MaxAbsScaler().fit(X[batch0]) scaler_incr = MaxAbsScaler().partial_fit(X[batch0]) assert_array_almost_equal(scaler_batch.max_abs_, scaler_incr.max_abs_) assert_equal(scaler_batch.n_samples_seen_, scaler_incr.n_samples_seen_) assert_array_almost_equal(scaler_batch.scale_, scaler_incr.scale_) assert_array_almost_equal(scaler_batch.transform(X), scaler_incr.transform(X)) # Test std until the end of partial fits, and scaler_batch = MaxAbsScaler().fit(X) scaler_incr = MaxAbsScaler() # Clean estimator for i, batch in enumerate(gen_batches(n, chunk_size)): scaler_incr = scaler_incr.partial_fit(X[batch]) assert_correct_incr(i, batch_start=batch.start, batch_stop=batch.stop, n=n, chunk_size=chunk_size, n_samples_seen=scaler_incr.n_samples_seen_) def test_normalizer_l1(): rng = np.random.RandomState(0) X_dense = rng.randn(4, 5) X_sparse_unpruned = sparse.csr_matrix(X_dense) # set the row number 3 to zero X_dense[3, :] = 0.0 # set the row number 3 to zero without pruning (can happen in real life) indptr_3 = X_sparse_unpruned.indptr[3] indptr_4 = X_sparse_unpruned.indptr[4] X_sparse_unpruned.data[indptr_3:indptr_4] = 0.0 # build the pruned variant using the regular constructor X_sparse_pruned = sparse.csr_matrix(X_dense) # check inputs that support the no-copy optim for X in (X_dense, X_sparse_pruned, X_sparse_unpruned): normalizer = Normalizer(norm='l1', copy=True) X_norm = normalizer.transform(X) assert_true(X_norm is not X) X_norm1 = toarray(X_norm) normalizer = Normalizer(norm='l1', copy=False) X_norm = normalizer.transform(X) assert_true(X_norm is X) X_norm2 = toarray(X_norm) for X_norm in (X_norm1, X_norm2): row_sums = np.abs(X_norm).sum(axis=1) for i in range(3): assert_almost_equal(row_sums[i], 1.0) assert_almost_equal(row_sums[3], 0.0) # check input for which copy=False won't prevent a copy for init in (sparse.coo_matrix, sparse.csc_matrix, sparse.lil_matrix): X = init(X_dense) X_norm = normalizer = Normalizer(norm='l2', copy=False).transform(X) assert_true(X_norm is not X) assert_true(isinstance(X_norm, sparse.csr_matrix)) X_norm = toarray(X_norm) for i in range(3): assert_almost_equal(row_sums[i], 1.0) assert_almost_equal(la.norm(X_norm[3]), 0.0) def test_normalizer_l2(): rng = np.random.RandomState(0) X_dense = rng.randn(4, 5) X_sparse_unpruned = sparse.csr_matrix(X_dense) # set the row number 3 to zero X_dense[3, :] = 0.0 # set the row number 3 to zero without pruning (can happen in real life) indptr_3 = X_sparse_unpruned.indptr[3] indptr_4 = X_sparse_unpruned.indptr[4] X_sparse_unpruned.data[indptr_3:indptr_4] = 0.0 # build the pruned variant using the regular constructor X_sparse_pruned = sparse.csr_matrix(X_dense) # check inputs that support the no-copy optim for X in (X_dense, X_sparse_pruned, X_sparse_unpruned): normalizer = Normalizer(norm='l2', copy=True) X_norm1 = normalizer.transform(X) assert_true(X_norm1 is not X) X_norm1 = toarray(X_norm1) normalizer = Normalizer(norm='l2', copy=False) X_norm2 = normalizer.transform(X) assert_true(X_norm2 is X) X_norm2 = toarray(X_norm2) for X_norm in (X_norm1, X_norm2): for i in range(3): assert_almost_equal(la.norm(X_norm[i]), 1.0) assert_almost_equal(la.norm(X_norm[3]), 0.0) # check input for which copy=False won't prevent a copy for init in (sparse.coo_matrix, sparse.csc_matrix, sparse.lil_matrix): X = init(X_dense) X_norm = normalizer = Normalizer(norm='l2', copy=False).transform(X) assert_true(X_norm is not X) assert_true(isinstance(X_norm, sparse.csr_matrix)) X_norm = toarray(X_norm) for i in range(3): assert_almost_equal(la.norm(X_norm[i]), 1.0) assert_almost_equal(la.norm(X_norm[3]), 0.0) def test_normalizer_max(): rng = np.random.RandomState(0) X_dense = rng.randn(4, 5) X_sparse_unpruned = sparse.csr_matrix(X_dense) # set the row number 3 to zero X_dense[3, :] = 0.0 # set the row number 3 to zero without pruning (can happen in real life) indptr_3 = X_sparse_unpruned.indptr[3] indptr_4 = X_sparse_unpruned.indptr[4] X_sparse_unpruned.data[indptr_3:indptr_4] = 0.0 # build the pruned variant using the regular constructor X_sparse_pruned = sparse.csr_matrix(X_dense) # check inputs that support the no-copy optim for X in (X_dense, X_sparse_pruned, X_sparse_unpruned): normalizer = Normalizer(norm='max', copy=True) X_norm1 = normalizer.transform(X) assert_true(X_norm1 is not X) X_norm1 = toarray(X_norm1) normalizer = Normalizer(norm='max', copy=False) X_norm2 = normalizer.transform(X) assert_true(X_norm2 is X) X_norm2 = toarray(X_norm2) for X_norm in (X_norm1, X_norm2): row_maxs = X_norm.max(axis=1) for i in range(3): assert_almost_equal(row_maxs[i], 1.0) assert_almost_equal(row_maxs[3], 0.0) # check input for which copy=False won't prevent a copy for init in (sparse.coo_matrix, sparse.csc_matrix, sparse.lil_matrix): X = init(X_dense) X_norm = normalizer = Normalizer(norm='l2', copy=False).transform(X) assert_true(X_norm is not X) assert_true(isinstance(X_norm, sparse.csr_matrix)) X_norm = toarray(X_norm) for i in range(3): assert_almost_equal(row_maxs[i], 1.0) assert_almost_equal(la.norm(X_norm[3]), 0.0) def test_normalize(): # Test normalize function # Only tests functionality not used by the tests for Normalizer. X = np.random.RandomState(37).randn(3, 2) assert_array_equal(normalize(X, copy=False), normalize(X.T, axis=0, copy=False).T) assert_raises(ValueError, normalize, [[0]], axis=2) assert_raises(ValueError, normalize, [[0]], norm='l3') def test_binarizer(): X_ = np.array([[1, 0, 5], [2, 3, -1]]) for init in (np.array, list, sparse.csr_matrix, sparse.csc_matrix): X = init(X_.copy()) binarizer = Binarizer(threshold=2.0, copy=True) X_bin = toarray(binarizer.transform(X)) assert_equal(np.sum(X_bin == 0), 4) assert_equal(np.sum(X_bin == 1), 2) X_bin = binarizer.transform(X) assert_equal(sparse.issparse(X), sparse.issparse(X_bin)) binarizer = Binarizer(copy=True).fit(X) X_bin = toarray(binarizer.transform(X)) assert_true(X_bin is not X) assert_equal(np.sum(X_bin == 0), 2) assert_equal(np.sum(X_bin == 1), 4) binarizer = Binarizer(copy=True) X_bin = binarizer.transform(X) assert_true(X_bin is not X) X_bin = toarray(X_bin) assert_equal(np.sum(X_bin == 0), 2) assert_equal(np.sum(X_bin == 1), 4) binarizer = Binarizer(copy=False) X_bin = binarizer.transform(X) if init is not list: assert_true(X_bin is X) binarizer = Binarizer(copy=False) X_float = np.array([[1, 0, 5], [2, 3, -1]], dtype=np.float64) X_bin = binarizer.transform(X_float) if init is not list: assert_true(X_bin is X_float) X_bin = toarray(X_bin) assert_equal(np.sum(X_bin == 0), 2) assert_equal(np.sum(X_bin == 1), 4) binarizer = Binarizer(threshold=-0.5, copy=True) for init in (np.array, list): X = init(X_.copy()) X_bin = toarray(binarizer.transform(X)) assert_equal(np.sum(X_bin == 0), 1) assert_equal(np.sum(X_bin == 1), 5) X_bin = binarizer.transform(X) # Cannot use threshold < 0 for sparse assert_raises(ValueError, binarizer.transform, sparse.csc_matrix(X)) def test_center_kernel(): # Test that KernelCenterer is equivalent to StandardScaler # in feature space rng = np.random.RandomState(0) X_fit = rng.random_sample((5, 4)) scaler = StandardScaler(with_std=False) scaler.fit(X_fit) X_fit_centered = scaler.transform(X_fit) K_fit = np.dot(X_fit, X_fit.T) # center fit time matrix centerer = KernelCenterer() K_fit_centered = np.dot(X_fit_centered, X_fit_centered.T) K_fit_centered2 = centerer.fit_transform(K_fit) assert_array_almost_equal(K_fit_centered, K_fit_centered2) # center predict time matrix X_pred = rng.random_sample((2, 4)) K_pred = np.dot(X_pred, X_fit.T) X_pred_centered = scaler.transform(X_pred) K_pred_centered = np.dot(X_pred_centered, X_fit_centered.T) K_pred_centered2 = centerer.transform(K_pred) assert_array_almost_equal(K_pred_centered, K_pred_centered2) def test_fit_transform(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) for obj in ((StandardScaler(), Normalizer(), Binarizer())): X_transformed = obj.fit(X).transform(X) X_transformed2 = obj.fit_transform(X) assert_array_equal(X_transformed, X_transformed2) def test_deprecation_standard_scaler(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) scaler = StandardScaler().fit(X) depr_message = ("Function std_ is deprecated; Attribute std_ will be " "removed in 0.19. Use scale_ instead") std_ = assert_warns_message(DeprecationWarning, depr_message, getattr, scaler, "std_") assert_array_equal(std_, scaler.scale_) def test_add_dummy_feature(): X = [[1, 0], [0, 1], [0, 1]] X = add_dummy_feature(X) assert_array_equal(X, [[1, 1, 0], [1, 0, 1], [1, 0, 1]]) def test_add_dummy_feature_coo(): X = sparse.coo_matrix([[1, 0], [0, 1], [0, 1]]) X = add_dummy_feature(X) assert_true(sparse.isspmatrix_coo(X), X) assert_array_equal(X.toarray(), [[1, 1, 0], [1, 0, 1], [1, 0, 1]]) def test_add_dummy_feature_csc(): X = sparse.csc_matrix([[1, 0], [0, 1], [0, 1]]) X = add_dummy_feature(X) assert_true(sparse.isspmatrix_csc(X), X) assert_array_equal(X.toarray(), [[1, 1, 0], [1, 0, 1], [1, 0, 1]]) def test_add_dummy_feature_csr(): X = sparse.csr_matrix([[1, 0], [0, 1], [0, 1]]) X = add_dummy_feature(X) assert_true(sparse.isspmatrix_csr(X), X) assert_array_equal(X.toarray(), [[1, 1, 0], [1, 0, 1], [1, 0, 1]]) def test_one_hot_encoder_sparse(): # Test OneHotEncoder's fit and transform. X = [[3, 2, 1], [0, 1, 1]] enc = OneHotEncoder() # discover max values automatically X_trans = enc.fit_transform(X).toarray() assert_equal(X_trans.shape, (2, 5)) assert_array_equal(enc.active_features_, np.where([1, 0, 0, 1, 0, 1, 1, 0, 1])[0]) assert_array_equal(enc.feature_indices_, [0, 4, 7, 9]) # check outcome assert_array_equal(X_trans, [[0., 1., 0., 1., 1.], [1., 0., 1., 0., 1.]]) # max value given as 3 enc = OneHotEncoder(n_values=4) X_trans = enc.fit_transform(X) assert_equal(X_trans.shape, (2, 4 * 3)) assert_array_equal(enc.feature_indices_, [0, 4, 8, 12]) # max value given per feature enc = OneHotEncoder(n_values=[3, 2, 2]) X = [[1, 0, 1], [0, 1, 1]] X_trans = enc.fit_transform(X) assert_equal(X_trans.shape, (2, 3 + 2 + 2)) assert_array_equal(enc.n_values_, [3, 2, 2]) # check that testing with larger feature works: X = np.array([[2, 0, 1], [0, 1, 1]]) enc.transform(X) # test that an error is raised when out of bounds: X_too_large = [[0, 2, 1], [0, 1, 1]] assert_raises(ValueError, enc.transform, X_too_large) assert_raises(ValueError, OneHotEncoder(n_values=2).fit_transform, X) # test that error is raised when wrong number of features assert_raises(ValueError, enc.transform, X[:, :-1]) # test that error is raised when wrong number of features in fit # with prespecified n_values assert_raises(ValueError, enc.fit, X[:, :-1]) # test exception on wrong init param assert_raises(TypeError, OneHotEncoder(n_values=np.int).fit, X) enc = OneHotEncoder() # test negative input to fit assert_raises(ValueError, enc.fit, [[0], [-1]]) # test negative input to transform enc.fit([[0], [1]]) assert_raises(ValueError, enc.transform, [[0], [-1]]) def test_one_hot_encoder_dense(): # check for sparse=False X = [[3, 2, 1], [0, 1, 1]] enc = OneHotEncoder(sparse=False) # discover max values automatically X_trans = enc.fit_transform(X) assert_equal(X_trans.shape, (2, 5)) assert_array_equal(enc.active_features_, np.where([1, 0, 0, 1, 0, 1, 1, 0, 1])[0]) assert_array_equal(enc.feature_indices_, [0, 4, 7, 9]) # check outcome assert_array_equal(X_trans, np.array([[0., 1., 0., 1., 1.], [1., 0., 1., 0., 1.]])) def _check_transform_selected(X, X_expected, sel): for M in (X, sparse.csr_matrix(X)): Xtr = _transform_selected(M, Binarizer().transform, sel) assert_array_equal(toarray(Xtr), X_expected) def test_transform_selected(): X = [[3, 2, 1], [0, 1, 1]] X_expected = [[1, 2, 1], [0, 1, 1]] _check_transform_selected(X, X_expected, [0]) _check_transform_selected(X, X_expected, [True, False, False]) X_expected = [[1, 1, 1], [0, 1, 1]] _check_transform_selected(X, X_expected, [0, 1, 2]) _check_transform_selected(X, X_expected, [True, True, True]) _check_transform_selected(X, X_expected, "all") _check_transform_selected(X, X, []) _check_transform_selected(X, X, [False, False, False]) def _run_one_hot(X, X2, cat): enc = OneHotEncoder(categorical_features=cat) Xtr = enc.fit_transform(X) X2tr = enc.transform(X2) return Xtr, X2tr def _check_one_hot(X, X2, cat, n_features): ind = np.where(cat)[0] # With mask A, B = _run_one_hot(X, X2, cat) # With indices C, D = _run_one_hot(X, X2, ind) # Check shape assert_equal(A.shape, (2, n_features)) assert_equal(B.shape, (1, n_features)) assert_equal(C.shape, (2, n_features)) assert_equal(D.shape, (1, n_features)) # Check that mask and indices give the same results assert_array_equal(toarray(A), toarray(C)) assert_array_equal(toarray(B), toarray(D)) def test_one_hot_encoder_categorical_features(): X = np.array([[3, 2, 1], [0, 1, 1]]) X2 = np.array([[1, 1, 1]]) cat = [True, False, False] _check_one_hot(X, X2, cat, 4) # Edge case: all non-categorical cat = [False, False, False] _check_one_hot(X, X2, cat, 3) # Edge case: all categorical cat = [True, True, True] _check_one_hot(X, X2, cat, 5) def test_one_hot_encoder_unknown_transform(): X = np.array([[0, 2, 1], [1, 0, 3], [1, 0, 2]]) y = np.array([[4, 1, 1]]) # Test that one hot encoder raises error for unknown features # present during transform. oh = OneHotEncoder(handle_unknown='error') oh.fit(X) assert_raises(ValueError, oh.transform, y) # Test the ignore option, ignores unknown features. oh = OneHotEncoder(handle_unknown='ignore') oh.fit(X) assert_array_equal( oh.transform(y).toarray(), np.array([[0., 0., 0., 0., 1., 0., 0.]]) ) # Raise error if handle_unknown is neither ignore or error. oh = OneHotEncoder(handle_unknown='42') oh.fit(X) assert_raises(ValueError, oh.transform, y) def test_fit_cold_start(): X = iris.data X_2d = X[:, :2] # Scalers that have a partial_fit method scalers = [StandardScaler(with_mean=False, with_std=False), MinMaxScaler(), MaxAbsScaler()] for scaler in scalers: scaler.fit_transform(X) # with a different shape, this may break the scaler unless the internal # state is reset scaler.fit_transform(X_2d)
bsd-3-clause
matousc89/padasip
padasip/filters/lms.py
1
7179
""" .. versionadded:: 0.1 .. versionchanged:: 1.0.0 The least-mean-squares (LMS) adaptive filter :cite:`sayed2003fundamentals` is the most popular adaptive filter. The LMS filter can be created as follows >>> import padasip as pa >>> pa.filters.FilterLMS(n) where :code:`n` is the size (number of taps) of the filter. Content of this page: .. contents:: :local: :depth: 1 .. seealso:: :ref:`filters` Algorithm Explanation ========================== The LMS adaptive filter could be described as :math:`y(k) = w_1 \cdot x_{1}(k) + ... + w_n \cdot x_{n}(k)`, or in a vector form :math:`y(k) = \\textbf{x}^T(k) \\textbf{w}(k)`, where :math:`k` is discrete time index, :math:`(.)^T` denotes the transposition, :math:`y(k)` is filtered signal, :math:`\\textbf{w}` is vector of filter adaptive parameters and :math:`\\textbf{x}` is input vector (for a filter of size :math:`n`) as follows :math:`\\textbf{x}(k) = [x_1(k), ..., x_n(k)]`. The LMS weights adaptation could be described as follows :math:`\\textbf{w}(k+1) = \\textbf{w}(k) + \Delta \\textbf{w}(k)`, where :math:`\Delta \\textbf{w}(k)` is :math:`\Delta \\textbf{w}(k) = \\frac{1}{2} \mu \\frac{\partial e^2(k)} { \partial \\textbf{w}(k)}\ = \mu \cdot e(k) \cdot \\textbf{x}(k)`, where :math:`\mu` is the learning rate (step size) and :math:`e(k)` is error defined as :math:`e(k) = d(k) - y(k)`. Stability and Optimal Performance ================================== The general stability criteria of LMS stands as follows :math:`|1 - \mu \cdot ||\\textbf{x}(k)||^2 | \leq 1`. In practice the key argument :code:`mu` should be set to really small number in most of the cases (recomended value can be something in range from 0.1 to 0.00001). If you have still problems stability or performance of the filter, then try the normalized LMS (:ref:`filter-nlms`). Minimal Working Examples ============================== If you have measured data you may filter it as follows .. code-block:: python import numpy as np import matplotlib.pylab as plt import padasip as pa # creation of data N = 500 x = np.random.normal(0, 1, (N, 4)) # input matrix v = np.random.normal(0, 0.1, N) # noise d = 2*x[:,0] + 0.1*x[:,1] - 4*x[:,2] + 0.5*x[:,3] + v # target # identification f = pa.filters.FilterLMS(n=4, mu=0.1, w="random") y, e, w = f.run(d, x) # show results plt.figure(figsize=(15,9)) plt.subplot(211);plt.title("Adaptation");plt.xlabel("samples - k") plt.plot(d,"b", label="d - target") plt.plot(y,"g", label="y - output");plt.legend() plt.subplot(212);plt.title("Filter error");plt.xlabel("samples - k") plt.plot(10*np.log10(e**2),"r", label="e - error [dB]");plt.legend() plt.tight_layout() plt.show() An example how to filter data measured in real-time .. code-block:: python import numpy as np import matplotlib.pylab as plt import padasip as pa # these two function supplement your online measurment def measure_x(): # it produces input vector of size 3 x = np.random.random(3) return x def measure_d(x): # meausure system output d = 2*x[0] + 1*x[1] - 1.5*x[2] return d N = 100 log_d = np.zeros(N) log_y = np.zeros(N) filt = pa.filters.FilterLMS(3, mu=1.) for k in range(N): # measure input x = measure_x() # predict new value y = filt.predict(x) # do the important stuff with prediction output pass # measure output d = measure_d(x) # update filter filt.adapt(d, x) # log values log_d[k] = d log_y[k] = y ### show results plt.figure(figsize=(15,9)) plt.subplot(211);plt.title("Adaptation");plt.xlabel("samples - k") plt.plot(log_d,"b", label="d - target") plt.plot(log_y,"g", label="y - output");plt.legend() plt.subplot(212);plt.title("Filter error");plt.xlabel("samples - k") plt.plot(10*np.log10((log_d-log_y)**2),"r", label="e - error [dB]") plt.legend(); plt.tight_layout(); plt.show() References ============ .. bibliography:: lms.bib :style: plain Code Explanation ==================== """ import numpy as np from padasip.filters.base_filter import AdaptiveFilter class FilterLMS(AdaptiveFilter): """ This class represents an adaptive LMS filter. **Args:** * `n` : length of filter (integer) - how many input is input array (row of input matrix) **Kwargs:** * `mu` : learning rate (float). Also known as step size. If it is too slow, the filter may have bad performance. If it is too high, the filter will be unstable. The default value can be unstable for ill-conditioned input data. * `w` : initial weights of filter. Possible values are: * array with initial weights (1 dimensional array) of filter size * "random" : create random weights * "zeros" : create zero value weights """ def __init__(self, n, mu=0.01, w="random"): self.kind = "LMS filter" if type(n) == int: self.n = n else: raise ValueError('The size of filter must be an integer') self.mu = self.check_float_param(mu, 0, 1000, "mu") self.init_weights(w, self.n) self.w_history = False def adapt(self, d, x): """ Adapt weights according one desired value and its input. **Args:** * `d` : desired value (float) * `x` : input array (1-dimensional array) """ y = np.dot(self.w, x) e = d - y self.w += self.mu * e * x def run(self, d, x): """ This function filters multiple samples in a row. **Args:** * `d` : desired value (1 dimensional array) * `x` : input matrix (2-dimensional array). Rows are samples, columns are input arrays. **Returns:** * `y` : output value (1 dimensional array). The size corresponds with the desired value. * `e` : filter error for every sample (1 dimensional array). The size corresponds with the desired value. * `w` : history of all weights (2 dimensional array). Every row is set of the weights for given sample. """ # measure the data and check if the dimmension agree N = len(x) if not len(d) == N: raise ValueError('The length of vector d and matrix x must agree.') self.n = len(x[0]) # prepare data try: x = np.array(x) d = np.array(d) except: raise ValueError('Impossible to convert x or d to a numpy array') # create empty arrays y = np.zeros(N) e = np.zeros(N) self.w_history = np.zeros((N,self.n)) # adaptation loop for k in range(N): self.w_history[k,:] = self.w y[k] = np.dot(self.w, x[k]) e[k] = d[k] - y[k] dw = self.mu * e[k] * x[k] self.w += dw return y, e, self.w_history
mit
mojoboss/scikit-learn
examples/cross_decomposition/plot_compare_cross_decomposition.py
142
4761
""" =================================== Compare cross decomposition methods =================================== Simple usage of various cross decomposition algorithms: - PLSCanonical - PLSRegression, with multivariate response, a.k.a. PLS2 - PLSRegression, with univariate response, a.k.a. PLS1 - CCA Given 2 multivariate covarying two-dimensional datasets, X, and Y, PLS extracts the 'directions of covariance', i.e. the components of each datasets that explain the most shared variance between both datasets. This is apparent on the **scatterplot matrix** display: components 1 in dataset X and dataset Y are maximally correlated (points lie around the first diagonal). This is also true for components 2 in both dataset, however, the correlation across datasets for different components is weak: the point cloud is very spherical. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.cross_decomposition import PLSCanonical, PLSRegression, CCA ############################################################################### # Dataset based latent variables model n = 500 # 2 latents vars: l1 = np.random.normal(size=n) l2 = np.random.normal(size=n) latents = np.array([l1, l1, l2, l2]).T X = latents + np.random.normal(size=4 * n).reshape((n, 4)) Y = latents + np.random.normal(size=4 * n).reshape((n, 4)) X_train = X[:n / 2] Y_train = Y[:n / 2] X_test = X[n / 2:] Y_test = Y[n / 2:] print("Corr(X)") print(np.round(np.corrcoef(X.T), 2)) print("Corr(Y)") print(np.round(np.corrcoef(Y.T), 2)) ############################################################################### # Canonical (symmetric) PLS # Transform data # ~~~~~~~~~~~~~~ plsca = PLSCanonical(n_components=2) plsca.fit(X_train, Y_train) X_train_r, Y_train_r = plsca.transform(X_train, Y_train) X_test_r, Y_test_r = plsca.transform(X_test, Y_test) # Scatter plot of scores # ~~~~~~~~~~~~~~~~~~~~~~ # 1) On diagonal plot X vs Y scores on each components plt.figure(figsize=(12, 8)) plt.subplot(221) plt.plot(X_train_r[:, 0], Y_train_r[:, 0], "ob", label="train") plt.plot(X_test_r[:, 0], Y_test_r[:, 0], "or", label="test") plt.xlabel("x scores") plt.ylabel("y scores") plt.title('Comp. 1: X vs Y (test corr = %.2f)' % np.corrcoef(X_test_r[:, 0], Y_test_r[:, 0])[0, 1]) plt.xticks(()) plt.yticks(()) plt.legend(loc="best") plt.subplot(224) plt.plot(X_train_r[:, 1], Y_train_r[:, 1], "ob", label="train") plt.plot(X_test_r[:, 1], Y_test_r[:, 1], "or", label="test") plt.xlabel("x scores") plt.ylabel("y scores") plt.title('Comp. 2: X vs Y (test corr = %.2f)' % np.corrcoef(X_test_r[:, 1], Y_test_r[:, 1])[0, 1]) plt.xticks(()) plt.yticks(()) plt.legend(loc="best") # 2) Off diagonal plot components 1 vs 2 for X and Y plt.subplot(222) plt.plot(X_train_r[:, 0], X_train_r[:, 1], "*b", label="train") plt.plot(X_test_r[:, 0], X_test_r[:, 1], "*r", label="test") plt.xlabel("X comp. 1") plt.ylabel("X comp. 2") plt.title('X comp. 1 vs X comp. 2 (test corr = %.2f)' % np.corrcoef(X_test_r[:, 0], X_test_r[:, 1])[0, 1]) plt.legend(loc="best") plt.xticks(()) plt.yticks(()) plt.subplot(223) plt.plot(Y_train_r[:, 0], Y_train_r[:, 1], "*b", label="train") plt.plot(Y_test_r[:, 0], Y_test_r[:, 1], "*r", label="test") plt.xlabel("Y comp. 1") plt.ylabel("Y comp. 2") plt.title('Y comp. 1 vs Y comp. 2 , (test corr = %.2f)' % np.corrcoef(Y_test_r[:, 0], Y_test_r[:, 1])[0, 1]) plt.legend(loc="best") plt.xticks(()) plt.yticks(()) plt.show() ############################################################################### # PLS regression, with multivariate response, a.k.a. PLS2 n = 1000 q = 3 p = 10 X = np.random.normal(size=n * p).reshape((n, p)) B = np.array([[1, 2] + [0] * (p - 2)] * q).T # each Yj = 1*X1 + 2*X2 + noize Y = np.dot(X, B) + np.random.normal(size=n * q).reshape((n, q)) + 5 pls2 = PLSRegression(n_components=3) pls2.fit(X, Y) print("True B (such that: Y = XB + Err)") print(B) # compare pls2.coefs with B print("Estimated B") print(np.round(pls2.coefs, 1)) pls2.predict(X) ############################################################################### # PLS regression, with univariate response, a.k.a. PLS1 n = 1000 p = 10 X = np.random.normal(size=n * p).reshape((n, p)) y = X[:, 0] + 2 * X[:, 1] + np.random.normal(size=n * 1) + 5 pls1 = PLSRegression(n_components=3) pls1.fit(X, y) # note that the number of compements exceeds 1 (the dimension of y) print("Estimated betas") print(np.round(pls1.coefs, 1)) ############################################################################### # CCA (PLS mode B with symmetric deflation) cca = CCA(n_components=2) cca.fit(X_train, Y_train) X_train_r, Y_train_r = plsca.transform(X_train, Y_train) X_test_r, Y_test_r = plsca.transform(X_test, Y_test)
bsd-3-clause
fdft/ml
ch11/demo_pca.py
25
4333
# This code is supporting material for the book # Building Machine Learning Systems with Python # by Willi Richert and Luis Pedro Coelho # published by PACKT Publishing # # It is made available under the MIT License import os from matplotlib import pylab import numpy as np from sklearn import linear_model, decomposition from sklearn import lda logistic = linear_model.LogisticRegression() from utils import CHART_DIR np.random.seed(3) x1 = np.arange(0, 10, .2) x2 = x1 + np.random.normal(scale=1, size=len(x1)) def plot_simple_demo_1(): pylab.clf() fig = pylab.figure(num=None, figsize=(10, 4)) pylab.subplot(121) title = "Original feature space" pylab.title(title) pylab.xlabel("$X_1$") pylab.ylabel("$X_2$") x1 = np.arange(0, 10, .2) x2 = x1 + np.random.normal(scale=1, size=len(x1)) good = (x1 > 5) | (x2 > 5) bad = ~good x1g = x1[good] x2g = x2[good] pylab.scatter(x1g, x2g, edgecolor="blue", facecolor="blue") x1b = x1[bad] x2b = x2[bad] pylab.scatter(x1b, x2b, edgecolor="red", facecolor="white") pylab.grid(True) pylab.subplot(122) X = np.c_[(x1, x2)] pca = decomposition.PCA(n_components=1) Xtrans = pca.fit_transform(X) Xg = Xtrans[good] Xb = Xtrans[bad] pylab.scatter( Xg[:, 0], np.zeros(len(Xg)), edgecolor="blue", facecolor="blue") pylab.scatter( Xb[:, 0], np.zeros(len(Xb)), edgecolor="red", facecolor="white") title = "Transformed feature space" pylab.title(title) pylab.xlabel("$X'$") fig.axes[1].get_yaxis().set_visible(False) print(pca.explained_variance_ratio_) pylab.grid(True) pylab.autoscale(tight=True) filename = "pca_demo_1.png" pylab.savefig(os.path.join(CHART_DIR, filename), bbox_inches="tight") def plot_simple_demo_2(): pylab.clf() fig = pylab.figure(num=None, figsize=(10, 4)) pylab.subplot(121) title = "Original feature space" pylab.title(title) pylab.xlabel("$X_1$") pylab.ylabel("$X_2$") x1 = np.arange(0, 10, .2) x2 = x1 + np.random.normal(scale=1, size=len(x1)) good = x1 > x2 bad = ~good x1g = x1[good] x2g = x2[good] pylab.scatter(x1g, x2g, edgecolor="blue", facecolor="blue") x1b = x1[bad] x2b = x2[bad] pylab.scatter(x1b, x2b, edgecolor="red", facecolor="white") pylab.grid(True) pylab.subplot(122) X = np.c_[(x1, x2)] pca = decomposition.PCA(n_components=1) Xtrans = pca.fit_transform(X) Xg = Xtrans[good] Xb = Xtrans[bad] pylab.scatter( Xg[:, 0], np.zeros(len(Xg)), edgecolor="blue", facecolor="blue") pylab.scatter( Xb[:, 0], np.zeros(len(Xb)), edgecolor="red", facecolor="white") title = "Transformed feature space" pylab.title(title) pylab.xlabel("$X'$") fig.axes[1].get_yaxis().set_visible(False) print(pca.explained_variance_ratio_) pylab.grid(True) pylab.autoscale(tight=True) filename = "pca_demo_2.png" pylab.savefig(os.path.join(CHART_DIR, filename), bbox_inches="tight") def plot_simple_demo_lda(): pylab.clf() fig = pylab.figure(num=None, figsize=(10, 4)) pylab.subplot(121) title = "Original feature space" pylab.title(title) pylab.xlabel("$X_1$") pylab.ylabel("$X_2$") good = x1 > x2 bad = ~good x1g = x1[good] x2g = x2[good] pylab.scatter(x1g, x2g, edgecolor="blue", facecolor="blue") x1b = x1[bad] x2b = x2[bad] pylab.scatter(x1b, x2b, edgecolor="red", facecolor="white") pylab.grid(True) pylab.subplot(122) X = np.c_[(x1, x2)] lda_inst = lda.LDA(n_components=1) Xtrans = lda_inst.fit_transform(X, good) Xg = Xtrans[good] Xb = Xtrans[bad] pylab.scatter( Xg[:, 0], np.zeros(len(Xg)), edgecolor="blue", facecolor="blue") pylab.scatter( Xb[:, 0], np.zeros(len(Xb)), edgecolor="red", facecolor="white") title = "Transformed feature space" pylab.title(title) pylab.xlabel("$X'$") fig.axes[1].get_yaxis().set_visible(False) pylab.grid(True) pylab.autoscale(tight=True) filename = "lda_demo.png" pylab.savefig(os.path.join(CHART_DIR, filename), bbox_inches="tight") if __name__ == '__main__': plot_simple_demo_1() plot_simple_demo_2() plot_simple_demo_lda()
mit
kavinyao/SKBPR
graphs/plot_common.py
1
1472
import numpy as np import matplotlib.pyplot as plt marker_settings = { 'Hottest': 'ro-', 'SKBPR-BC': 'gs-', 'SKBPR-BCIPF': 'b^-', 'SKBPR-BCIPF-FB': 'mD-', 'SKBPR-BC-SEQ': 'k*-', } def output_dataset(fig, title, labels, pos, dataset, axis): ax = fig.add_subplot(pos) for method, data in dataset.iteritems(): marker = marker_settings[method] x_data, y_data, yerr_minus, yerr_plus = data # plot data with lines ax.errorbar(x_data, y_data, yerr=[yerr_minus, yerr_plus], fmt=marker, label=method) for n, d in zip(x_data, y_data): # show precise number ax.text(n, d, '%.4f' % d) xlabel, ylabel = labels plt.xlabel(xlabel) plt.ylabel(ylabel) plt.title(title) plt.legend() plt.axis(axis)# doesn't care about y-axis range plt.grid(True) def output_graph(datasets, filename): """ @param datasets list of (Measure, Name, Axes, xy_data) @param filename the name of file to write to """ # default is 8x6, which is so narrow that labels overlap # so make it wider fig = plt.figure(figsize=(10, 6))# default dpi=72 ds_number = len(datasets) for i, config in enumerate(datasets, 1): measure, name, axis, dataset = config labels = ('N', measure) title = '%s Plot - %s Dataset' % (measure, name) output_dataset(fig, title, labels, '1%d%d' % (ds_number, i), dataset, axis) fig.savefig(filename)
mit
diofant/diofant
diofant/tests/external/test_plot_implicit.py
2
3552
"""Implicit plotting tests.""" import tempfile import warnings import pytest from diofant import (And, Eq, I, Or, cos, exp, pi, plot_implicit, re, sin, symbols, tan) from diofant.abc import x, y __all__ = () matplotlib = pytest.importorskip('matplotlib', minversion='1.1.0') def tmp_file(name=''): return tempfile.NamedTemporaryFile(suffix='.png').name def plot_and_save(name): # implicit plot tests plot_implicit(Eq(y, cos(x)), (x, -5, 5), (y, -2, 2)).save(tmp_file(name)) plot_implicit(Eq(y**2, x**3 - x), (x, -5, 5), (y, -4, 4), show=False).save(tmp_file(name)) plot_implicit(y > 1 / x, (x, -5, 5), (y, -2, 2), show=False).save(tmp_file(name)) plot_implicit(y < 1 / tan(x), (x, -5, 5), (y, -2, 2), show=False).save(tmp_file(name)) plot_implicit(y >= 2 * sin(x) * cos(x), (x, -5, 5), (y, -2, 2), show=False).save(tmp_file(name)) plot_implicit(y <= x**2, (x, -3, 3), (y, -1, 5), show=False).save(tmp_file(name)) plot_implicit(Or(And(x < y, x > y**2), sin(y) > x), show=False).save(tmp_file(name)) plot_implicit(Or(And(x < y, x > y**2), sin(y)), show=False).save(tmp_file(name)) plot_implicit(Or(x < y, sin(x) >= y), show=False).save(tmp_file(name)) # Test all input args for plot_implicit plot_implicit(Eq(y**2, x**3 - x), show=False).save(tmp_file(name)) plot_implicit(Eq(y**2, x**3 - x), adaptive=False, show=False).save(tmp_file(name)) plot_implicit(Eq(y**2, x**3 - x), adaptive=False, points=500, show=False).save(tmp_file(name)) plot_implicit(y > x, (x, -5, 5), show=False).save(tmp_file(name)) plot_implicit(And(y > exp(x), y > x + 2), show=False).save(tmp_file(name)) plot_implicit(Or(y > x, y > -x), show=False).save(tmp_file(name)) plot_implicit(x**2 - 1, (x, -5, 5), show=False).save(tmp_file(name)) plot_implicit(x**2 - 1, show=False).save(tmp_file(name)) plot_implicit(y > x, depth=-5, show=False).save(tmp_file(name)) plot_implicit(y > x, depth=5, show=False).save(tmp_file(name)) plot_implicit(y > cos(x), adaptive=False, show=False).save(tmp_file(name)) plot_implicit(y < cos(x), adaptive=False, show=False).save(tmp_file(name)) plot_implicit(y - cos(pi / x), show=False).save(tmp_file(name)) pytest.raises(ValueError, lambda: plot_implicit(y > x, (x, -1, 1, 2))) # issue sympy/sympy#17719 plot_implicit(((x - 1)**2 + y**2 < 2) ^ ((x + 1)**2 + y**2 < 2), show=False).save(tmp_file(name)) def test_line_color(): x, y = symbols('x, y') p = plot_implicit(x**2 + y**2 - 1, line_color='green', show=False) assert p._series[0].line_color == 'green' p = plot_implicit(x**2 + y**2 - 1, line_color='r', show=False) assert p._series[0].line_color == 'r' def test_matplotlib(): plot_and_save('test') @pytest.mark.xfail def test_matplotlib2(): name = 'test2' plot_implicit(And(y > cos(x), Or(y > x, Eq(y, x))), show=False).save(tmp_file(name)) # Test plots which cannot be rendered using the adaptive algorithm # TODO: catch the warning. plot_implicit(Eq(y, re(cos(x) + I*sin(x))), show=False).save(tmp_file(name)) with warnings.catch_warnings(record=True) as w: plot_implicit(x**2 - 1, legend='An implicit plot', show=False).save(tmp_file(name)) assert len(w) == 1 assert issubclass(w[-1].category, UserWarning) assert 'No labelled objects found' in str(w[0].message)
bsd-3-clause
rseubert/scikit-learn
sklearn/tests/test_kernel_approximation.py
6
7616
import numpy as np from scipy.sparse import csr_matrix from sklearn.utils.testing import assert_array_equal, assert_equal, assert_true from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_array_almost_equal, assert_raises from sklearn.utils.testing import assert_less_equal from sklearn.metrics.pairwise import kernel_metrics from sklearn.kernel_approximation import RBFSampler from sklearn.kernel_approximation import AdditiveChi2Sampler from sklearn.kernel_approximation import SkewedChi2Sampler from sklearn.kernel_approximation import Nystroem from sklearn.metrics.pairwise import polynomial_kernel, rbf_kernel # generate data rng = np.random.RandomState(0) X = rng.random_sample(size=(300, 50)) Y = rng.random_sample(size=(300, 50)) X /= X.sum(axis=1)[:, np.newaxis] Y /= Y.sum(axis=1)[:, np.newaxis] def test_additive_chi2_sampler(): """test that AdditiveChi2Sampler approximates kernel on random data""" # compute exact kernel # appreviations for easier formular X_ = X[:, np.newaxis, :] Y_ = Y[np.newaxis, :, :] large_kernel = 2 * X_ * Y_ / (X_ + Y_) # reduce to n_samples_x x n_samples_y by summing over features kernel = (large_kernel.sum(axis=2)) # approximate kernel mapping transform = AdditiveChi2Sampler(sample_steps=3) X_trans = transform.fit_transform(X) Y_trans = transform.transform(Y) kernel_approx = np.dot(X_trans, Y_trans.T) assert_array_almost_equal(kernel, kernel_approx, 1) X_sp_trans = transform.fit_transform(csr_matrix(X)) Y_sp_trans = transform.transform(csr_matrix(Y)) assert_array_equal(X_trans, X_sp_trans.A) assert_array_equal(Y_trans, Y_sp_trans.A) # test error is raised on negative input Y_neg = Y.copy() Y_neg[0, 0] = -1 assert_raises(ValueError, transform.transform, Y_neg) # test error on invalid sample_steps transform = AdditiveChi2Sampler(sample_steps=4) assert_raises(ValueError, transform.fit, X) # test that the sample interval is set correctly sample_steps_available = [1, 2, 3] for sample_steps in sample_steps_available: # test that the sample_interval is initialized correctly transform = AdditiveChi2Sampler(sample_steps=sample_steps) assert_equal(transform.sample_interval, None) # test that the sample_interval is changed in the fit method transform.fit(X) assert_not_equal(transform.sample_interval_, None) # test that the sample_interval is set correctly sample_interval = 0.3 transform = AdditiveChi2Sampler(sample_steps=4, sample_interval=sample_interval) assert_equal(transform.sample_interval, sample_interval) transform.fit(X) assert_equal(transform.sample_interval_, sample_interval) def test_skewed_chi2_sampler(): """test that RBFSampler approximates kernel on random data""" # compute exact kernel c = 0.03 # appreviations for easier formular X_c = (X + c)[:, np.newaxis, :] Y_c = (Y + c)[np.newaxis, :, :] # we do it in log-space in the hope that it's more stable # this array is n_samples_x x n_samples_y big x n_features log_kernel = ((np.log(X_c) / 2.) + (np.log(Y_c) / 2.) + np.log(2.) - np.log(X_c + Y_c)) # reduce to n_samples_x x n_samples_y by summing over features in log-space kernel = np.exp(log_kernel.sum(axis=2)) # approximate kernel mapping transform = SkewedChi2Sampler(skewedness=c, n_components=1000, random_state=42) X_trans = transform.fit_transform(X) Y_trans = transform.transform(Y) kernel_approx = np.dot(X_trans, Y_trans.T) assert_array_almost_equal(kernel, kernel_approx, 1) # test error is raised on negative input Y_neg = Y.copy() Y_neg[0, 0] = -1 assert_raises(ValueError, transform.transform, Y_neg) def test_rbf_sampler(): """test that RBFSampler approximates kernel on random data""" # compute exact kernel gamma = 10. kernel = rbf_kernel(X, Y, gamma=gamma) # approximate kernel mapping rbf_transform = RBFSampler(gamma=gamma, n_components=1000, random_state=42) X_trans = rbf_transform.fit_transform(X) Y_trans = rbf_transform.transform(Y) kernel_approx = np.dot(X_trans, Y_trans.T) error = kernel - kernel_approx assert_less_equal(np.abs(np.mean(error)), 0.01) # close to unbiased np.abs(error, out=error) assert_less_equal(np.max(error), 0.1) # nothing too far off assert_less_equal(np.mean(error), 0.05) # mean is fairly close def test_input_validation(): """Regression test: kernel approx. transformers should work on lists No assertions; the old versions would simply crash """ X = [[1, 2], [3, 4], [5, 6]] AdditiveChi2Sampler().fit(X).transform(X) SkewedChi2Sampler().fit(X).transform(X) RBFSampler().fit(X).transform(X) X = csr_matrix(X) RBFSampler().fit(X).transform(X) def test_nystroem_approximation(): # some basic tests rnd = np.random.RandomState(0) X = rnd.uniform(size=(10, 4)) # With n_components = n_samples this is exact X_transformed = Nystroem(n_components=X.shape[0]).fit_transform(X) K = rbf_kernel(X) assert_array_almost_equal(np.dot(X_transformed, X_transformed.T), K) trans = Nystroem(n_components=2, random_state=rnd) X_transformed = trans.fit(X).transform(X) assert_equal(X_transformed.shape, (X.shape[0], 2)) # test callable kernel linear_kernel = lambda X, Y: np.dot(X, Y.T) trans = Nystroem(n_components=2, kernel=linear_kernel, random_state=rnd) X_transformed = trans.fit(X).transform(X) assert_equal(X_transformed.shape, (X.shape[0], 2)) # test that available kernels fit and transform kernels_available = kernel_metrics() for kern in kernels_available: trans = Nystroem(n_components=2, kernel=kern, random_state=rnd) X_transformed = trans.fit(X).transform(X) assert_equal(X_transformed.shape, (X.shape[0], 2)) def test_nystroem_singular_kernel(): # test that nystroem works with singular kernel matrix rng = np.random.RandomState(0) X = rng.rand(10, 20) X = np.vstack([X] * 2) # duplicate samples gamma = 100 N = Nystroem(gamma=gamma, n_components=X.shape[0]).fit(X) X_transformed = N.transform(X) K = rbf_kernel(X, gamma=gamma) assert_array_almost_equal(K, np.dot(X_transformed, X_transformed.T)) assert_true(np.all(np.isfinite(Y))) def test_nystroem_poly_kernel_params(): """Non-regression: Nystroem should pass other parameters beside gamma.""" rnd = np.random.RandomState(37) X = rnd.uniform(size=(10, 4)) K = polynomial_kernel(X, degree=3.1, coef0=.1) nystroem = Nystroem(kernel="polynomial", n_components=X.shape[0], degree=3.1, coef0=.1) X_transformed = nystroem.fit_transform(X) assert_array_almost_equal(np.dot(X_transformed, X_transformed.T), K) def test_nystroem_callable(): """Test Nystroem on a callable.""" rnd = np.random.RandomState(42) n_samples = 10 X = rnd.uniform(size=(n_samples, 4)) def logging_histogram_kernel(x, y, log): """Histogram kernel that writes to a log.""" log.append(1) return np.minimum(x, y).sum() kernel_log = [] X = list(X) # test input validation Nystroem(kernel=logging_histogram_kernel, n_components=(n_samples - 1), kernel_params={'log': kernel_log}).fit(X) assert_equal(len(kernel_log), n_samples * (n_samples - 1) / 2)
bsd-3-clause
waterponey/scikit-learn
benchmarks/bench_random_projections.py
397
8900
""" =========================== Random projection benchmark =========================== Benchmarks for random projections. """ from __future__ import division from __future__ import print_function import gc import sys import optparse from datetime import datetime import collections import numpy as np import scipy.sparse as sp from sklearn import clone from sklearn.externals.six.moves import xrange from sklearn.random_projection import (SparseRandomProjection, GaussianRandomProjection, johnson_lindenstrauss_min_dim) def type_auto_or_float(val): if val == "auto": return "auto" else: return float(val) def type_auto_or_int(val): if val == "auto": return "auto" else: return int(val) def compute_time(t_start, delta): mu_second = 0.0 + 10 ** 6 # number of microseconds in a second return delta.seconds + delta.microseconds / mu_second def bench_scikit_transformer(X, transfomer): gc.collect() clf = clone(transfomer) # start time t_start = datetime.now() clf.fit(X) delta = (datetime.now() - t_start) # stop time time_to_fit = compute_time(t_start, delta) # start time t_start = datetime.now() clf.transform(X) delta = (datetime.now() - t_start) # stop time time_to_transform = compute_time(t_start, delta) return time_to_fit, time_to_transform # Make some random data with uniformly located non zero entries with # Gaussian distributed values def make_sparse_random_data(n_samples, n_features, n_nonzeros, random_state=None): rng = np.random.RandomState(random_state) data_coo = sp.coo_matrix( (rng.randn(n_nonzeros), (rng.randint(n_samples, size=n_nonzeros), rng.randint(n_features, size=n_nonzeros))), shape=(n_samples, n_features)) return data_coo.toarray(), data_coo.tocsr() def print_row(clf_type, time_fit, time_transform): print("%s | %s | %s" % (clf_type.ljust(30), ("%.4fs" % time_fit).center(12), ("%.4fs" % time_transform).center(12))) if __name__ == "__main__": ########################################################################### # Option parser ########################################################################### op = optparse.OptionParser() op.add_option("--n-times", dest="n_times", default=5, type=int, help="Benchmark results are average over n_times experiments") op.add_option("--n-features", dest="n_features", default=10 ** 4, type=int, help="Number of features in the benchmarks") op.add_option("--n-components", dest="n_components", default="auto", help="Size of the random subspace." " ('auto' or int > 0)") op.add_option("--ratio-nonzeros", dest="ratio_nonzeros", default=10 ** -3, type=float, help="Number of features in the benchmarks") op.add_option("--n-samples", dest="n_samples", default=500, type=int, help="Number of samples in the benchmarks") op.add_option("--random-seed", dest="random_seed", default=13, type=int, help="Seed used by the random number generators.") op.add_option("--density", dest="density", default=1 / 3, help="Density used by the sparse random projection." " ('auto' or float (0.0, 1.0]") op.add_option("--eps", dest="eps", default=0.5, type=float, help="See the documentation of the underlying transformers.") op.add_option("--transformers", dest="selected_transformers", default='GaussianRandomProjection,SparseRandomProjection', type=str, help="Comma-separated list of transformer to benchmark. " "Default: %default. Available: " "GaussianRandomProjection,SparseRandomProjection") op.add_option("--dense", dest="dense", default=False, action="store_true", help="Set input space as a dense matrix.") (opts, args) = op.parse_args() if len(args) > 0: op.error("this script takes no arguments.") sys.exit(1) opts.n_components = type_auto_or_int(opts.n_components) opts.density = type_auto_or_float(opts.density) selected_transformers = opts.selected_transformers.split(',') ########################################################################### # Generate dataset ########################################################################### n_nonzeros = int(opts.ratio_nonzeros * opts.n_features) print('Dataset statics') print("===========================") print('n_samples \t= %s' % opts.n_samples) print('n_features \t= %s' % opts.n_features) if opts.n_components == "auto": print('n_components \t= %s (auto)' % johnson_lindenstrauss_min_dim(n_samples=opts.n_samples, eps=opts.eps)) else: print('n_components \t= %s' % opts.n_components) print('n_elements \t= %s' % (opts.n_features * opts.n_samples)) print('n_nonzeros \t= %s per feature' % n_nonzeros) print('ratio_nonzeros \t= %s' % opts.ratio_nonzeros) print('') ########################################################################### # Set transformer input ########################################################################### transformers = {} ########################################################################### # Set GaussianRandomProjection input gaussian_matrix_params = { "n_components": opts.n_components, "random_state": opts.random_seed } transformers["GaussianRandomProjection"] = \ GaussianRandomProjection(**gaussian_matrix_params) ########################################################################### # Set SparseRandomProjection input sparse_matrix_params = { "n_components": opts.n_components, "random_state": opts.random_seed, "density": opts.density, "eps": opts.eps, } transformers["SparseRandomProjection"] = \ SparseRandomProjection(**sparse_matrix_params) ########################################################################### # Perform benchmark ########################################################################### time_fit = collections.defaultdict(list) time_transform = collections.defaultdict(list) print('Benchmarks') print("===========================") print("Generate dataset benchmarks... ", end="") X_dense, X_sparse = make_sparse_random_data(opts.n_samples, opts.n_features, n_nonzeros, random_state=opts.random_seed) X = X_dense if opts.dense else X_sparse print("done") for name in selected_transformers: print("Perform benchmarks for %s..." % name) for iteration in xrange(opts.n_times): print("\titer %s..." % iteration, end="") time_to_fit, time_to_transform = bench_scikit_transformer(X_dense, transformers[name]) time_fit[name].append(time_to_fit) time_transform[name].append(time_to_transform) print("done") print("") ########################################################################### # Print results ########################################################################### print("Script arguments") print("===========================") arguments = vars(opts) print("%s \t | %s " % ("Arguments".ljust(16), "Value".center(12),)) print(25 * "-" + ("|" + "-" * 14) * 1) for key, value in arguments.items(): print("%s \t | %s " % (str(key).ljust(16), str(value).strip().center(12))) print("") print("Transformer performance:") print("===========================") print("Results are averaged over %s repetition(s)." % opts.n_times) print("") print("%s | %s | %s" % ("Transformer".ljust(30), "fit".center(12), "transform".center(12))) print(31 * "-" + ("|" + "-" * 14) * 2) for name in sorted(selected_transformers): print_row(name, np.mean(time_fit[name]), np.mean(time_transform[name])) print("") print("")
bsd-3-clause
ElDeveloper/scikit-learn
sklearn/utils/metaestimators.py
283
2353
"""Utilities for meta-estimators""" # Author: Joel Nothman # Andreas Mueller # Licence: BSD from operator import attrgetter from functools import update_wrapper __all__ = ['if_delegate_has_method'] class _IffHasAttrDescriptor(object): """Implements a conditional property using the descriptor protocol. Using this class to create a decorator will raise an ``AttributeError`` if the ``attribute_name`` is not present on the base object. This allows ducktyping of the decorated method based on ``attribute_name``. See https://docs.python.org/3/howto/descriptor.html for an explanation of descriptors. """ def __init__(self, fn, attribute_name): self.fn = fn self.get_attribute = attrgetter(attribute_name) # update the docstring of the descriptor update_wrapper(self, fn) def __get__(self, obj, type=None): # raise an AttributeError if the attribute is not present on the object if obj is not None: # delegate only on instances, not the classes. # this is to allow access to the docstrings. self.get_attribute(obj) # lambda, but not partial, allows help() to work with update_wrapper out = lambda *args, **kwargs: self.fn(obj, *args, **kwargs) # update the docstring of the returned function update_wrapper(out, self.fn) return out def if_delegate_has_method(delegate): """Create a decorator for methods that are delegated to a sub-estimator This enables ducktyping by hasattr returning True according to the sub-estimator. >>> from sklearn.utils.metaestimators import if_delegate_has_method >>> >>> >>> class MetaEst(object): ... def __init__(self, sub_est): ... self.sub_est = sub_est ... ... @if_delegate_has_method(delegate='sub_est') ... def predict(self, X): ... return self.sub_est.predict(X) ... >>> class HasPredict(object): ... def predict(self, X): ... return X.sum(axis=1) ... >>> class HasNoPredict(object): ... pass ... >>> hasattr(MetaEst(HasPredict()), 'predict') True >>> hasattr(MetaEst(HasNoPredict()), 'predict') False """ return lambda fn: _IffHasAttrDescriptor(fn, '%s.%s' % (delegate, fn.__name__))
bsd-3-clause
BhallaLab/moose
moose-examples/snippets/reacDiffSpinyNeuron.py
2
10667
######################################################################### ## This program is part of 'MOOSE', the ## Messaging Object Oriented Simulation Environment. ## Copyright (C) 2013 Upinder S. Bhalla. and NCBS ## It is made available under the terms of the ## GNU Lesser General Public License version 2.1 ## See the file COPYING.LIB for the full notice. ######################################################################### import math import pylab import numpy import matplotlib.pyplot as plt import moose def makeModel(): model = moose.Neutral( '/model' ) # Make neuronal model. It has no channels, just for geometry cell = moose.loadModel( './spinyNeuron.p', '/model/cell', 'Neutral' ) # We don't want the cell to do any calculations. Disable everything. for i in moose.wildcardFind( '/model/cell/##' ): i.tick = -1 diffConst = 0.0 # create container for model model = moose.element( '/model' ) chem = moose.Neutral( '/model/chem' ) # The naming of the compartments is dicated by the places that the # chem model expects to be loaded. compt0 = moose.NeuroMesh( '/model/chem/compt0' ) compt0.separateSpines = 1 compt0.geometryPolicy = 'cylinder' compt1 = moose.SpineMesh( '/model/chem/compt1' ) moose.connect( compt0, 'spineListOut', compt1, 'spineList', 'OneToOne' ) compt2 = moose.PsdMesh( '/model/chem/compt2' ) moose.connect( compt0, 'psdListOut', compt2, 'psdList', 'OneToOne' ) #reacSystem = moose.loadModel( 'simpleOsc.g', '/model/chem', 'ee' ) makeChemModel( compt0 ) # Populate all 3 compts with the chem system. makeChemModel( compt1 ) makeChemModel( compt2 ) compt0.diffLength = 2e-6 # This will be over 100 compartments. # This is the magic command that configures the diffusion compartments. compt0.subTreePath = cell.path + "/#" moose.showfields( compt0 ) # Build the solvers. No need for diffusion in this version. ksolve0 = moose.Ksolve( '/model/chem/compt0/ksolve' ) ksolve1 = moose.Ksolve( '/model/chem/compt1/ksolve' ) ksolve2 = moose.Ksolve( '/model/chem/compt2/ksolve' ) dsolve0 = moose.Dsolve( '/model/chem/compt0/dsolve' ) dsolve1 = moose.Dsolve( '/model/chem/compt1/dsolve' ) dsolve2 = moose.Dsolve( '/model/chem/compt2/dsolve' ) stoich0 = moose.Stoich( '/model/chem/compt0/stoich' ) stoich1 = moose.Stoich( '/model/chem/compt1/stoich' ) stoich2 = moose.Stoich( '/model/chem/compt2/stoich' ) # Configure solvers stoich0.compartment = compt0 stoich1.compartment = compt1 stoich2.compartment = compt2 stoich0.ksolve = ksolve0 stoich1.ksolve = ksolve1 stoich2.ksolve = ksolve2 stoich0.dsolve = dsolve0 stoich1.dsolve = dsolve1 stoich2.dsolve = dsolve2 stoich0.path = '/model/chem/compt0/#' stoich1.path = '/model/chem/compt1/#' stoich2.path = '/model/chem/compt2/#' assert( stoich0.numVarPools == 3 ) assert( stoich0.numProxyPools == 0 ) assert( stoich0.numRates == 4 ) assert( stoich1.numVarPools == 3 ) assert( stoich1.numProxyPools == 0 ) assert( stoich1.numRates == 4 ) assert( stoich2.numVarPools == 3 ) assert( stoich2.numProxyPools == 0 ) assert( stoich2.numRates == 4 ) dsolve0.buildNeuroMeshJunctions( dsolve1, dsolve2 ) ''' stoich0.buildXreacs( stoich1 ) stoich1.buildXreacs( stoich2 ) stoich0.filterXreacs() stoich1.filterXreacs() stoich2.filterXreacs() ''' moose.element( '/model/chem/compt2/a[0]' ).concInit *= 1.5 # Create the output tables num = compt0.numDiffCompts - 1 graphs = moose.Neutral( '/model/graphs' ) moose.le( '/model/chem/compt1' ) a = moose.element( '/model/chem/compt1' ) print((a.voxelVolume)) makeTab( 'a_soma', '/model/chem/compt0/a[0]' ) makeTab( 'b_soma', '/model/chem/compt0/b[0]' ) makeTab( 'a_apical', '/model/chem/compt0/a[' + str( num ) + ']' ) makeTab( 'b_apical', '/model/chem/compt0/b[' + str( num ) + ']' ) makeTab( 'a_spine', '/model/chem/compt1/a[5]' ) makeTab( 'b_spine', '/model/chem/compt1/b[5]' ) makeTab( 'a_psd', '/model/chem/compt2/a[5]' ) makeTab( 'b_psd', '/model/chem/compt2/b[5]' ) def makeTab( plotname, molpath ): tab = moose.Table2( '/model/graphs/' + plotname ) # Make output table # connect up the tables moose.connect( tab, 'requestOut', moose.element( molpath ), 'getConc' ); def makeDisplay(): plt.ion() fig = plt.figure( figsize=(10,12) ) dend = fig.add_subplot( 411 ) plt.ylabel( 'Conc (mM)' ) plt.xlabel( 'Dend voxel #' ) plt.legend() timeLabel = plt.text(200, 0.5, 'time = 0') spine = fig.add_subplot( 412 ) plt.ylabel( 'Conc (mM)' ) plt.xlabel( 'Spine voxel #' ) plt.legend() psd = fig.add_subplot( 413 ) plt.ylabel( 'Conc (mM)' ) plt.xlabel( 'PSD voxel #' ) plt.legend() timeSeries = fig.add_subplot( 414 ) timeSeries.set_ylim( 0, 0.6 ) plt.ylabel( 'Conc (mM)' ) plt.xlabel( 'time (seconds)' ) plt.legend() a = moose.vec( '/model/chem/compt0/a' ) b = moose.vec( '/model/chem/compt0/b' ) line1, = dend.plot( list(range( len( a ))), a.conc, label='a' ) line2, = dend.plot( list(range( len( b ))), b.conc, label='b' ) dend.set_ylim( 0, 0.6 ) a = moose.vec( '/model/chem/compt1/a' ) b = moose.vec( '/model/chem/compt1/b' ) line3, = spine.plot( list(range( len( a ))), a.conc, label='a' ) line4, = spine.plot( list(range( len( b ))), b.conc, label='b' ) spine.set_ylim( 0, 0.6 ) a = moose.vec( '/model/chem/compt2/a' ) b = moose.vec( '/model/chem/compt2/b' ) line5, = psd.plot( list(range( len( a ))), a.conc, label='a' ) line6, = psd.plot( list(range( len( b ))), b.conc, label='b' ) psd.set_ylim( 0, 0.6 ) fig.canvas.draw() return ( timeSeries, dend, spine, psd, fig, line1, line2, line3, line4, line5, line6, timeLabel ) def updateDisplay( plotlist ): a = moose.vec( '/model/chem/compt0/a' ) b = moose.vec( '/model/chem/compt0/b' ) plotlist[5].set_ydata( a.conc ) plotlist[6].set_ydata( b.conc ) a = moose.vec( '/model/chem/compt1/a' ) b = moose.vec( '/model/chem/compt1/b' ) plotlist[7].set_ydata( a.conc ) plotlist[8].set_ydata( b.conc ) a = moose.vec( '/model/chem/compt2/a' ) b = moose.vec( '/model/chem/compt2/b' ) plotlist[9].set_ydata( a.conc ) plotlist[10].set_ydata( b.conc ) plotlist[4].canvas.draw() def finalizeDisplay( plotlist, cPlotDt ): for x in moose.wildcardFind( '/model/graphs/#[ISA=Table2]' ): pos = numpy.arange( 0, x.vector.size, 1 ) * cPlotDt line1, = plotlist[0].plot( pos, x.vector, label=x.name ) plotlist[4].canvas.draw() print( "Hit '0' to exit" ) eval(str(input())) def makeChemModel( compt ): """ This function setus up a simple oscillatory chemical system within the script. The reaction system is:: s ---a---> a // s goes to a, catalyzed by a. s ---a---> b // s goes to b, catalyzed by a. a ---b---> s // a goes to s, catalyzed by b. b -------> s // b is degraded irreversibly to s. in sum, **a** has a positive feedback onto itself and also forms **b**. **b** has a negative feedback onto **a**. Finally, the diffusion constant for **a** is 1/10 that of **b**. """ # create container for model diffConst = 10e-12 # m^2/sec motorRate = 1e-6 # m/sec concA = 1 # millimolar # create molecules and reactions a = moose.Pool( compt.path + '/a' ) b = moose.Pool( compt.path + '/b' ) s = moose.Pool( compt.path + '/s' ) e1 = moose.MMenz( compt.path + '/e1' ) e2 = moose.MMenz( compt.path + '/e2' ) e3 = moose.MMenz( compt.path + '/e3' ) r1 = moose.Reac( compt.path + '/r1' ) a.concInit = 0.1 b.concInit = 0.1 s.concInit = 1 moose.connect( e1, 'sub', s, 'reac' ) moose.connect( e1, 'prd', a, 'reac' ) moose.connect( a, 'nOut', e1, 'enzDest' ) e1.Km = 1 e1.kcat = 1 moose.connect( e2, 'sub', s, 'reac' ) moose.connect( e2, 'prd', b, 'reac' ) moose.connect( a, 'nOut', e2, 'enzDest' ) e2.Km = 1 e2.kcat = 0.5 moose.connect( e3, 'sub', a, 'reac' ) moose.connect( e3, 'prd', s, 'reac' ) moose.connect( b, 'nOut', e3, 'enzDest' ) e3.Km = 0.1 e3.kcat = 1 moose.connect( r1, 'sub', b, 'reac' ) moose.connect( r1, 'prd', s, 'reac' ) r1.Kf = 0.3 # 1/sec r1.Kb = 0 # 1/sec # Assign parameters a.diffConst = diffConst/10 b.diffConst = diffConst s.diffConst = 0 def main(): """ This example illustrates how to define a kinetic model embedded in the branching pseudo-1-dimensional geometry of a neuron. The model oscillates in space and time due to a Turing-like reaction-diffusion mechanism present in all compartments. For the sake of this demo, the initial conditions are set up slightly different on the PSD compartments, so as to break the symmetry and initiate oscillations in the spines. This example uses an external electrical model file with basal dendrite and three branches on the apical dendrite. One of those branches has a dozen or so spines. In this example we build an identical model in each compartment, using the makeChemModel function. One could readily define a system with distinct reactions in each compartment. The model is set up to run using the Ksolve for integration and the Dsolve for handling diffusion. The display has four parts: a. animated line plot of concentration against main compartment#. b. animated line plot of concentration against spine compartment#. c. animated line plot of concentration against psd compartment#. d. time-series plot that appears after the simulation has ended. The plot is for the last (rightmost) compartment. """ chemdt = 0.1 # Tested various dts, this is reasonable. diffdt = 0.01 plotdt = 1 animationdt = 5 runtime = 800 makeModel() plotlist = makeDisplay() # Schedule the whole lot - autoscheduling already does this. ''' for i in range( 11, 17 ): moose.setClock( i, chemdt ) # for the chem objects moose.setClock( 10, diffdt ) # for the diffusion moose.setClock( 18, plotdt ) # for the output tables. ''' moose.reinit() for i in range( 0, runtime, animationdt ): moose.start( animationdt ) plotlist[11].set_text( "time = %d" % i ) updateDisplay( plotlist ) finalizeDisplay( plotlist, plotdt ) # Run the 'main' if this script is executed standalone. if __name__ == '__main__': main()
gpl-3.0
janhahne/nest-simulator
pynest/examples/spatial/connex.py
20
2341
# -*- coding: utf-8 -*- # # connex.py # # This file is part of NEST. # # Copyright (C) 2004 The NEST Initiative # # NEST is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # NEST is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NEST. If not, see <http://www.gnu.org/licenses/>. """ Connect with circular mask, flat probability using 2 populations of iaf_psc_alpha neurons ------------------------------------------------------------------------------------------- Create two populations on a 30x30 grid of iaf_psc_alpha neurons, connect with circular mask, flat probability, visualize. BCCN Tutorial @ CNS*09 Hans Ekkehard Plesser, UMB """ import nest import matplotlib.pyplot as plt import numpy as np nest.ResetKernel() pos = nest.spatial.grid(shape=[30, 30], extent=[3., 3.]) ####################################################### # create and connect two populations a = nest.Create('iaf_psc_alpha', positions=pos) b = nest.Create('iaf_psc_alpha', positions=pos) cdict = {'rule': 'pairwise_bernoulli', 'p': 0.5, 'mask': {'circular': {'radius': 0.5}}} nest.Connect(a, b, conn_spec=cdict, syn_spec={'weight': nest.random.uniform(0.5, 2.)}) ################################################################# # plot targets of neurons in different grid locations # first, clear existing figure, get current figure plt.clf() fig = plt.gcf() # plot targets of two source neurons into same figure, with mask for src_index in [30 * 15 + 15, 0]: # obtain node id for center src = a[src_index:src_index + 1] nest.PlotTargets(src, b, mask=cdict['mask'], fig=fig) # beautify plt.axes().set_xticks(np.arange(-1.5, 1.55, 0.5)) plt.axes().set_yticks(np.arange(-1.5, 1.55, 0.5)) plt.grid(True) plt.axis([-2.0, 2.0, -2.0, 2.0]) plt.axes().set_aspect('equal', 'box') plt.title('Connection targets') plt.show() # plt.savefig('connex.pdf')
gpl-2.0
Achuth17/scikit-learn
doc/datasets/mldata_fixture.py
367
1183
"""Fixture module to skip the datasets loading when offline Mock urllib2 access to mldata.org and create a temporary data folder. """ from os import makedirs from os.path import join import numpy as np import tempfile import shutil from sklearn import datasets from sklearn.utils.testing import install_mldata_mock from sklearn.utils.testing import uninstall_mldata_mock def globs(globs): # Create a temporary folder for the data fetcher global custom_data_home custom_data_home = tempfile.mkdtemp() makedirs(join(custom_data_home, 'mldata')) globs['custom_data_home'] = custom_data_home return globs def setup_module(): # setup mock urllib2 module to avoid downloading from mldata.org install_mldata_mock({ 'mnist-original': { 'data': np.empty((70000, 784)), 'label': np.repeat(np.arange(10, dtype='d'), 7000), }, 'iris': { 'data': np.empty((150, 4)), }, 'datasets-uci-iris': { 'double0': np.empty((150, 4)), 'class': np.empty((150,)), }, }) def teardown_module(): uninstall_mldata_mock() shutil.rmtree(custom_data_home)
bsd-3-clause
chimney37/ml-snippets
cust_kmeans_shift_dynamic.py
1
5474
#! /usr/bin/env python # -*- coding:utf-8 # Custom Kmeans Shift clustering, with dynamic radius # Special thanks: Harisson@pythonprogramming.net ''' File name: cust_kmeans_shift_dynamic.py Author: chimney37 Date created: 10/30/2017 Python Version: 3.62 ''' import matplotlib.pyplot as plt from matplotlib import style import numpy as np from sklearn.datasets.samples_generator import make_blobs style.use('ggplot') X, y = make_blobs(n_samples=50, centers=3, n_features=2) """X = np.array([[1,2], [1.5,1.8], [5,8], [8,8], [1,0.6], [9,11], [8,2], [10,2], [9,3],]) """ colors = 10*["g", "r", "c", "b", "k"] class Mean_Shift: # plan is to crete a massive radius, but let it go in steps def __init__(self, radius=None, radius_norm_step=100): self.radius = radius self.radius_norm_step = radius_norm_step def fit(self, data): if self.radius is None: # find the "center" of all data all_data_centroid = np.average(data, axis=0) # take the norm of the data (maginitude of data from origin) all_data_norm = np.linalg.norm(all_data_centroid) # start with a radius (all data norm divided by step self.radius = all_data_norm / self.radius_norm_step centroids = {} # Make all datapoints centroids for i in range(len(data)): centroids[i] = data[i] # get a list from 0 to 99, reversed weights = [i for i in range(self.radius_norm_step)][::-1] while True: new_centroids = [] for i in centroids: in_bandwidth = [] centroid = centroids[i] for featureset in data: # calculate the full distance between featurset and centroid distance = np.linalg.norm(featureset-centroid) # solve an initialization problem. featureset is compared to itself if distance == 0: distance = 0.00000000001 # weight index is the index computed by entire distance divided by the radial step length # (the bigger the distance, the larger the index,)hence towards 99 weight_index = int(distance/self.radius) # if weight index is beyond maximum, all of the bounds if weight_index > self.radius_norm_step-1: weight_index = self.radius_norm_step-1 # add the "weighted" number of centroids to the in_bandwidth to_add = (weights[weight_index]**2)*[featureset] in_bandwidth += to_add new_centroid = np.average(in_bandwidth, axis=0) new_centroids.append(tuple(new_centroid)) uniques = sorted(list(set(new_centroids))) to_pop = [] # remove uniques where the difference is less than the radial step distance for i in uniques: for ii in [i for i in uniques]: if i == ii: pass elif np.linalg.norm(np.array(i)-np.array(ii)) < self.radius: to_pop.append(ii) break for i in to_pop: try: uniques.remove(i) except ValueError: pass prev_centroids = dict(centroids) centroids = {} for i in range(len(uniques)): centroids[i] = np.array(uniques[i]) optimized = True # compare previous centroids to the previous ones, and measure movement. for i in centroids: # if centroid moved, not converged if not np.array_equal(centroids[i], prev_centroids[i]): optimized = False if not optimized: break # get out of loop when converged if optimized: break # we expect fit to also classify the existing featureset self.centroids = centroids self.classifications = {} for i in range(len(self.centroids)): self.classifications[i] = [] for featureset in data: # compare data to either centroid distances = [np.linalg.norm(featureset-self.centroids[c]) for c in self.centroids] classification = (distances.index(min(distances))) # featureset that belongs to the cluster self.classifications[classification].append(featureset) def predict(self, data): # compare data to either centroid distances = [np.linalg.norm(featureset-self.centroids[centroid]) for centroid in self.centroids] classification = (distances.index(min(distances))) return classification clf = Mean_Shift() clf.fit(X) centroids = clf.centroids print(centroids) for classification in clf.classifications: color = colors[classification] for featureset in clf.classifications[classification]: plt.scatter(featureset[0], featureset[1], marker="x", color=color, s=150, linewidths=5, zorder=10) for c in centroids: plt.scatter(centroids[c][0], centroids[c][1], color='k', marker="*", s=150, linewidths=5) plt.show()
mit
musicalrunner/Geiger-Counter
cx_setup.py
2
1082
''' Creates a windows executable with cx_freeze. Run with "python cx_setup build". The package is fairly massive right now (~80 MB), partially because it includes extra libraries that are unnecessary, like QT, but one must be very careful when removing libraries, as it can cause the whole package to fail. Consequently, they are simply left in.''' import sys from cx_Freeze import setup, Executable # Packages would be excluded here if desired. build_exe_options = { "includes":[ "scipy.sparse.csgraph._validation", "scipy.io.matlab.streams", "matplotlib.backends.backend_qt4agg" ] } # GUI applications require a different base on Windows (the default is for a console application). base = None if sys.platform == "win32": base = "Win32GUI" # There are many options here that may be included later if desired. setup( name = "Geiger-Counter", version = "0.1", description = "Geiger-Counter Lab Analysis", options = {"build_exe": build_exe_options}, executables = [Executable("GUI.py", base=base)] )
mit
RobGrimm/prediction_based
Eval/functions.py
1
7025
import os import numpy as np from sklearn.manifold import TSNE from sklearn.neighbors import KNeighborsClassifier from sklearn.dummy import DummyClassifier from sklearn.metrics import classification_report, f1_score from matplotlib import pyplot # set parameters for plots pyplot.rcParams.update({'figure.figsize': (25, 20), 'font.size': 10}) # define directory for storing results save_results_to_dir = os.path.abspath(os.path.dirname(__file__)).rstrip('/Eval') + '/results/' ######################################################################################################################## # helper functions def get_pos_tag(word): # a word is a string 'word-'pos_tag' # this returns the pos tag return word.split('-')[1] def get_pos_tags(words): return [get_pos_tag(w) for w in words] def get_paras_for_centering_legend_below_plot(): # get matplotlib parameters for centering the legend below plots pyplot.legend(loc=9, bbox_to_anchor=(0.5, -0.1)) lgd = pyplot.legend(loc=9, bbox_to_anchor=(0.5, -0.1), ncol=2) art = [lgd] return art def create_dir_if_not_exists(dir): if not os.path.exists(dir): os.makedirs(dir) def save_plot_to(plot_dir, plot_name, create_folder_if_not_exists=True): if create_folder_if_not_exists: create_dir_if_not_exists(plot_dir) pyplot.savefig(plot_dir + plot_name, additional_artists=get_paras_for_centering_legend_below_plot(), bbox_inches='tight') pyplot.close() def create_graph(x, y, marker, label, e=None): # create custom matplotlib plot assert len(x) == len(y) if e is None: pyplot.plot(x, y, marker, markersize=40, linewidth=9, label=label) else: pyplot.errorbar(x, y, e, markersize=40, linewidth=9, label=label) pyplot.rcParams.update({'font.size': 50}) def plot_metric(plot_name, plot_type, ys, label, error=None): xs = range(len(ys)) create_graph(xs, ys, marker='go-', label=label, e=error) plot_dir = save_results_to_dir + '/%s/' % plot_type save_plot_to(plot_dir, plot_name) ######################################################################################################################## # functions for: retrieving results from trained models, plotting results, saving results to disk def get_f1_and_classification_report(embeddings_dict, classifier): xs, ys, y_pred = get_xs_ys_predictions(embeddings_dict, classifier) class_names = ['verbs', 'nouns', 'adjectives', 'closed class words'] report = classification_report(y_true=ys, y_pred=y_pred, target_names=class_names) micro_f1 = f1_score(y_true=ys, y_pred=y_pred, average='micro') macro_f1 = f1_score(y_true=ys, y_pred=y_pred, average='macro') return micro_f1, macro_f1, report def get_xs_ys_predictions(embeddings_dict, classifier): """ Run a classifier of type 'classifier' (one of: majority vote baseline, tratified sampling baseline, 10-NN classifier). Return: - xs: the word embeddings - ys: the gold standard labels - y_pred: the predicted labels """ assert classifier in ['majority_vote', 'stratified', '10-NN'] pos_ints = {'v': 0, 'n': 1, 'adj': 2, 'fn': 3} ys = [] xs = [] words = sorted(embeddings_dict.keys()) for w in words: xs.append(embeddings_dict[w]) # get embeddings's pos tag, look up pos tag's unique integer label = pos_ints[get_pos_tag(w)] ys.append(label) clf = None if classifier == 'majority_vote': clf = DummyClassifier(strategy='most_frequent', random_state=0) elif classifier == 'stratified': clf = DummyClassifier(strategy='stratified', random_state=0) elif classifier == '10-NN': clf = KNeighborsClassifier(n_neighbors=10, algorithm='ball_tree') clf.fit(xs, ys) y_pred = clf.predict(xs) return xs, ys, y_pred def write_preds_to_file(embeddings_dict, classfier, outfile_name): """ Write predictions made by 'classifier' and gold standard labels to file. Files can be used for further processing -- e.g. to compare predictions made by different classifiers. """ results_dir = save_results_to_dir + '/predictions/' create_dir_if_not_exists(results_dir) xs, ys, ys_pred = get_xs_ys_predictions(embeddings_dict, classfier) with open('%s%s' % (results_dir, outfile_name), 'w') as outfile: for x, y, y_pred in zip(range(len(xs)), ys, ys_pred): outfile.write('%s %s %s\n' % (x, y, y_pred)) def plot_2D_embeddings(embeddings_dict, condition, training_stage): """ Take word embeddings from last epoch. Reduce them to 2 dimensions using the TSNE algorithm. Create two plots and save to disk: - colored embeddings: color each data point by syntactic type - orthographic embeddings: plot each data point as the word's orthographic word form """ # set readable font size for orthographic embeddings pyplot.rcParams.update({'font.size': 10}) tsne = TSNE(n_components=2) color_maps = {'v': pyplot.get_cmap("Blues"), 'n': pyplot.get_cmap("Reds"), 'adj': pyplot.get_cmap("Greens"), 'fn': pyplot.get_cmap('Greys')} words = embeddings_dict.keys() vectors = embeddings_dict.values() pos_tags = get_pos_tags(words) reduced_data = tsne.fit_transform(np.array(vectors)) # plot embeddings as data points that are colored by syntactic class for xy, pos in zip(reduced_data, pos_tags): pyplot.plot(xy[0], xy[1], 'o', markersize=20, color=color_maps[pos](0.7)) # the directory for the plots plot_dir = save_results_to_dir + '/t_sne_color_embeddings/' # the name of the plot file plot_name = '%s_%s.png' % (condition, training_stage) save_plot_to(plot_dir, plot_name) # plot plain words fig = pyplot.figure() ax = fig.add_subplot(111) # plot embeddings as orthographic word forms for i, j in zip(reduced_data, words): pyplot.plot(i[0], i[1]) ax.annotate(j, xy=i) plot_dir = save_results_to_dir + '/t_sne_orthographic_embeddings/' save_plot_to(plot_dir, plot_name) def results_to_disk(micro_f1, macro_f1, classification_report, epoch, condition, training_stage, newfile): """ Write results to file. Either create a new file (newfile=True) or append to an existing file (newfile=False). """ results_dir = save_results_to_dir + '/results_over_training_stages/' create_dir_if_not_exists(results_dir) if newfile: # write to new file mode = 'w' else: # append to existing file mode = 'a' with open('%s%s.txt' % (results_dir, condition), mode) as outfile: outfile.write('%s\n\n' % training_stage) outfile.write('epoch: %s\n' % epoch) outfile.write(classification_report) outfile.write('\n\n') outfile.write('10-NN micro F1: %s\n' % micro_f1) outfile.write('10-NN macro F1: %s\n' % macro_f1) outfile.write('\n\n\n')
mit
destijl/forensicartifacts
frontend/thirdparty/networkx-1.9/examples/multigraph/chess_masters.py
54
5146
#!/usr/bin/env python """ An example of the MultiDiGraph clas The function chess_pgn_graph reads a collection of chess matches stored in the specified PGN file (PGN ="Portable Game Notation") Here the (compressed) default file --- chess_masters_WCC.pgn.bz2 --- contains all 685 World Chess Championship matches from 1886 - 1985. (data from http://chessproblem.my-free-games.com/chess/games/Download-PGN.php) The chess_pgn_graph() function returns a MultiDiGraph with multiple edges. Each node is the last name of a chess master. Each edge is directed from white to black and contains selected game info. The key statement in chess_pgn_graph below is G.add_edge(white, black, game_info) where game_info is a dict describing each game. """ # Copyright (C) 2006-2010 by # Aric Hagberg <hagberg@lanl.gov> # Dan Schult <dschult@colgate.edu> # Pieter Swart <swart@lanl.gov> # All rights reserved. # BSD license. import networkx as nx # tag names specifying what game info should be # stored in the dict on each digraph edge game_details=["Event", "Date", "Result", "ECO", "Site"] def chess_pgn_graph(pgn_file="chess_masters_WCC.pgn.bz2"): """Read chess games in pgn format in pgn_file. Filenames ending in .gz or .bz2 will be uncompressed. Return the MultiDiGraph of players connected by a chess game. Edges contain game data in a dict. """ import bz2 G=nx.MultiDiGraph() game={} datafile = bz2.BZ2File(pgn_file) lines = (line.decode().rstrip('\r\n') for line in datafile) for line in lines: if line.startswith('['): tag,value=line[1:-1].split(' ',1) game[str(tag)]=value.strip('"') else: # empty line after tag set indicates # we finished reading game info if game: white=game.pop('White') black=game.pop('Black') G.add_edge(white, black, **game) game={} return G if __name__ == '__main__': import networkx as nx G=chess_pgn_graph() ngames=G.number_of_edges() nplayers=G.number_of_nodes() print("Loaded %d chess games between %d players\n"\ % (ngames,nplayers)) # identify connected components # of the undirected version Gcc=list(nx.connected_component_subgraphs(G.to_undirected())) if len(Gcc)>1: print("Note the disconnected component consisting of:") print(Gcc[1].nodes()) # find all games with B97 opening (as described in ECO) openings=set([game_info['ECO'] for (white,black,game_info) in G.edges(data=True)]) print("\nFrom a total of %d different openings,"%len(openings)) print('the following games used the Sicilian opening') print('with the Najdorff 7...Qb6 "Poisoned Pawn" variation.\n') for (white,black,game_info) in G.edges(data=True): if game_info['ECO']=='B97': print(white,"vs",black) for k,v in game_info.items(): print(" ",k,": ",v) print("\n") try: import matplotlib.pyplot as plt except ImportError: import sys print("Matplotlib needed for drawing. Skipping") sys.exit(0) # make new undirected graph H without multi-edges H=nx.Graph(G) # edge width is proportional number of games played edgewidth=[] for (u,v,d) in H.edges(data=True): edgewidth.append(len(G.get_edge_data(u,v))) # node size is proportional to number of games won wins=dict.fromkeys(G.nodes(),0.0) for (u,v,d) in G.edges(data=True): r=d['Result'].split('-') if r[0]=='1': wins[u]+=1.0 elif r[0]=='1/2': wins[u]+=0.5 wins[v]+=0.5 else: wins[v]+=1.0 try: pos=nx.graphviz_layout(H) except: pos=nx.spring_layout(H,iterations=20) plt.rcParams['text.usetex'] = False plt.figure(figsize=(8,8)) nx.draw_networkx_edges(H,pos,alpha=0.3,width=edgewidth, edge_color='m') nodesize=[wins[v]*50 for v in H] nx.draw_networkx_nodes(H,pos,node_size=nodesize,node_color='w',alpha=0.4) nx.draw_networkx_edges(H,pos,alpha=0.4,node_size=0,width=1,edge_color='k') nx.draw_networkx_labels(H,pos,fontsize=14) font = {'fontname' : 'Helvetica', 'color' : 'k', 'fontweight' : 'bold', 'fontsize' : 14} plt.title("World Chess Championship Games: 1886 - 1985", font) # change font and write text (using data coordinates) font = {'fontname' : 'Helvetica', 'color' : 'r', 'fontweight' : 'bold', 'fontsize' : 14} plt.text(0.5, 0.97, "edge width = # games played", horizontalalignment='center', transform=plt.gca().transAxes) plt.text(0.5, 0.94, "node size = # games won", horizontalalignment='center', transform=plt.gca().transAxes) plt.axis('off') plt.savefig("chess_masters.png",dpi=75) print("Wrote chess_masters.png") plt.show() # display
apache-2.0
qusp/orange3
Orange/projection/manifold.py
2
2351
import sklearn.manifold as skl_manifold from Orange.distance import SklDistance, SpearmanDistance, PearsonDistance from Orange.projection import SklProjector __all__ = ["MDS", "Isomap", "LocallyLinearEmbedding"] class MDS(SklProjector): __wraps__ = skl_manifold.MDS name = 'mds' def __init__(self, n_components=2, metric=True, n_init=4, max_iter=300, eps=0.001, n_jobs=1, random_state=None, dissimilarity='euclidean', preprocessors=None): super().__init__(preprocessors=preprocessors) self.params = vars() self._metric = dissimilarity def __call__(self, data): distances = SklDistance, SpearmanDistance, PearsonDistance if isinstance(self._metric, distances): data = self.preprocess(data) X, Y, domain = data.X, data.Y, data.domain dist_matrix = self._metric(X).X self.params['dissimilarity'] = 'precomputed' clf = self.fit(dist_matrix, Y=Y) elif self._metric is 'precomputed': dist_matrix, Y, domain = data.X, None, None clf = self.fit(dist_matrix, Y=Y) else: data = self.preprocess(data) X, Y, domain = data.X, data.Y, data.domain clf = self.fit(X, Y=Y) clf.domain = domain return clf def fit(self, X, init=None, Y=None): proj = self.__wraps__(**self.params) return proj.fit(X, init=init, y=Y) class Isomap(SklProjector): __wraps__ = skl_manifold.Isomap name = 'isomap' def __init__(self, n_neighbors=5, n_components=2, eigen_solver='auto', max_iter=None, path_method='auto', neighbors_algorithm='auto', preprocessors=None): super().__init__(preprocessors=preprocessors) self.params = vars() class LocallyLinearEmbedding(SklProjector): __wraps__ = skl_manifold.LocallyLinearEmbedding name = 'lle' def __init__(self, n_neighbors=5, n_components=2, reg=0.001, eigen_solver='auto', tol=1e-06 , max_iter=100, method='standard', hessian_tol=0.0001, modified_tol=1e-12, neighbors_algorithm='auto', random_state=None, preprocessors=None): super().__init__(preprocessors=preprocessors) self.params = vars()
bsd-2-clause
mihaic/brainiak
tests/fcma/test_voxel_selection.py
1
4725
# Copyright 2016 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from brainiak.fcma.voxelselector import VoxelSelector from scipy.stats.mstats import zscore from sklearn import svm from sklearn.linear_model import LogisticRegression import numpy as np import math from mpi4py import MPI from numpy.random import RandomState # specify the random state to fix the random numbers prng = RandomState(1234567890) def create_epoch(): row = 12 col = 5 mat = prng.rand(row, col).astype(np.float32) mat = zscore(mat, axis=0, ddof=0) # if zscore fails (standard deviation is zero), # set all values to be zero mat = np.nan_to_num(mat) mat = mat / math.sqrt(mat.shape[0]) return mat def test_voxel_selection(): fake_raw_data = [create_epoch() for i in range(8)] labels = [0, 1, 0, 1, 0, 1, 0, 1] # 2 subjects, 4 epochs per subject vs = VoxelSelector(labels, 4, 2, fake_raw_data, voxel_unit=1) # test scipy normalization fake_corr = prng.rand(1, 4, 5).astype(np.float32) fake_corr = vs._correlation_normalization(fake_corr) if MPI.COMM_WORLD.Get_rank() == 0: expected_fake_corr = [[[1.06988919, 0.51641309, -0.46790636, -1.31926763, 0.2270218], [-1.22142744, -1.39881694, -1.2979387, 1.05702305, -0.6525566], [0.89795232, 1.27406132, 0.36460185, 0.87538344, 1.5227468], [-0.74641371, -0.39165771, 1.40124381, -0.61313909, -1.0972116]]] assert np.allclose(fake_corr, expected_fake_corr), \ 'within-subject normalization does not provide correct results' # for cross validation, use SVM with precomputed kernel # no shrinking, set C=1 clf = svm.SVC(kernel='precomputed', shrinking=False, C=1, gamma='auto') results = vs.run(clf) if MPI.COMM_WORLD.Get_rank() == 0: output = [None] * len(results) for tuple in results: output[tuple[0]] = int(8*tuple[1]) expected_output = [7, 4, 6, 4, 4] assert np.allclose(output, expected_output, atol=1), \ 'voxel selection via SVM does not provide correct results' # for cross validation, use logistic regression clf = LogisticRegression() results = vs.run(clf) if MPI.COMM_WORLD.Get_rank() == 0: output = [None] * len(results) for tuple in results: output[tuple[0]] = int(8*tuple[1]) expected_output = [6, 3, 6, 4, 4] assert np.allclose(output, expected_output, atol=1), ( "voxel selection via logistic regression does not provide correct " "results") def test_voxel_selection_with_two_masks(): fake_raw_data1 = [create_epoch() for i in range(8)] fake_raw_data2 = [create_epoch() for i in range(8)] labels = [0, 1, 0, 1, 0, 1, 0, 1] # 2 subjects, 4 epochs per subject vs = VoxelSelector(labels, 4, 2, fake_raw_data1, raw_data2=fake_raw_data2, voxel_unit=1) # for cross validation, use SVM with precomputed kernel # no shrinking, set C=1 clf = svm.SVC(kernel='precomputed', shrinking=False, C=1, gamma='auto') results = vs.run(clf) if MPI.COMM_WORLD.Get_rank() == 0: output = [None] * len(results) for tuple in results: output[tuple[0]] = int(8*tuple[1]) expected_output = [3, 3, 3, 6, 6] assert np.allclose(output, expected_output, atol=1), \ 'voxel selection via SVM does not provide correct results' # for cross validation, use logistic regression clf = LogisticRegression() results = vs.run(clf) if MPI.COMM_WORLD.Get_rank() == 0: output = [None] * len(results) for tuple in results: output[tuple[0]] = int(8*tuple[1]) expected_output = [3, 4, 4, 6, 6] assert np.allclose(output, expected_output, atol=1), ( "voxel selection via logistic regression does not provide correct " "results") if __name__ == '__main__': test_voxel_selection() test_voxel_selection_with_two_masks()
apache-2.0
chaluemwut/fbserver
venv/lib/python2.7/site-packages/sklearn/tests/test_dummy.py
2
10844
import warnings import numpy as np from sklearn.base import clone from sklearn.externals.six.moves import xrange from sklearn.utils.testing import (assert_array_equal, assert_equal, assert_almost_equal, assert_raises) from sklearn.dummy import DummyClassifier, DummyRegressor def _check_predict_proba(clf, X, y): proba = clf.predict_proba(X) with warnings.catch_warnings(): warnings.simplefilter("ignore") # We know that we can have division by zero log_proba = clf.predict_log_proba(X) y = np.atleast_1d(y) if y.ndim == 1: y = np.reshape(y, (-1, 1)) n_outputs = y.shape[1] n_samples = len(X) if n_outputs == 1: proba = [proba] log_proba = [log_proba] for k in xrange(n_outputs): assert_equal(proba[k].shape[0], n_samples) assert_equal(proba[k].shape[1], len(np.unique(y[:, k]))) assert_array_equal(proba[k].sum(axis=1), np.ones(len(X))) with warnings.catch_warnings(): warnings.simplefilter("ignore") # We know that we can have division by zero assert_array_equal(np.log(proba[k]), log_proba[k]) def _check_behavior_2d(clf): # 1d case X = np.array([[0], [0], [0], [0]]) # ignored y = np.array([1, 2, 1, 1]) est = clone(clf) est.fit(X, y) y_pred = est.predict(X) assert_equal(y.shape, y_pred.shape) # 2d case y = np.array([[1, 0], [2, 0], [1, 0], [1, 3]]) est = clone(clf) est.fit(X, y) y_pred = est.predict(X) assert_equal(y.shape, y_pred.shape) def _check_behavior_2d_for_constant(clf): # 2d case only X = np.array([[0], [0], [0], [0]]) # ignored y = np.array([[1, 0, 5, 4, 3], [2, 0, 1, 2, 5], [1, 0, 4, 5, 2], [1, 3, 3, 2, 0]]) est = clone(clf) est.fit(X, y) y_pred = est.predict(X) assert_equal(y.shape, y_pred.shape) def _check_equality_regressor(statistic, y_learn, y_pred_learn, y_test, y_pred_test): assert_array_equal(np.tile(statistic, (y_learn.shape[0], 1)), y_pred_learn) assert_array_equal(np.tile(statistic, (y_test.shape[0], 1)), y_pred_test) def test_most_frequent_strategy(): X = [[0], [0], [0], [0]] # ignored y = [1, 2, 1, 1] clf = DummyClassifier(strategy="most_frequent", random_state=0) clf.fit(X, y) assert_array_equal(clf.predict(X), np.ones(len(X))) _check_predict_proba(clf, X, y) def test_most_frequent_strategy_multioutput(): X = [[0], [0], [0], [0]] # ignored y = np.array([[1, 0], [2, 0], [1, 0], [1, 3]]) n_samples = len(X) clf = DummyClassifier(strategy="most_frequent", random_state=0) clf.fit(X, y) assert_array_equal(clf.predict(X), np.hstack([np.ones((n_samples, 1)), np.zeros((n_samples, 1))])) _check_predict_proba(clf, X, y) _check_behavior_2d(clf) def test_stratified_strategy(): X = [[0]] * 5 # ignored y = [1, 2, 1, 1, 2] clf = DummyClassifier(strategy="stratified", random_state=0) clf.fit(X, y) X = [[0]] * 500 y_pred = clf.predict(X) p = np.bincount(y_pred) / float(len(X)) assert_almost_equal(p[1], 3. / 5, decimal=1) assert_almost_equal(p[2], 2. / 5, decimal=1) _check_predict_proba(clf, X, y) def test_stratified_strategy_multioutput(): X = [[0]] * 5 # ignored y = np.array([[2, 1], [2, 2], [1, 1], [1, 2], [1, 1]]) clf = DummyClassifier(strategy="stratified", random_state=0) clf.fit(X, y) X = [[0]] * 500 y_pred = clf.predict(X) for k in xrange(y.shape[1]): p = np.bincount(y_pred[:, k]) / float(len(X)) assert_almost_equal(p[1], 3. / 5, decimal=1) assert_almost_equal(p[2], 2. / 5, decimal=1) _check_predict_proba(clf, X, y) _check_behavior_2d(clf) def test_uniform_strategy(): X = [[0]] * 4 # ignored y = [1, 2, 1, 1] clf = DummyClassifier(strategy="uniform", random_state=0) clf.fit(X, y) X = [[0]] * 500 y_pred = clf.predict(X) p = np.bincount(y_pred) / float(len(X)) assert_almost_equal(p[1], 0.5, decimal=1) assert_almost_equal(p[2], 0.5, decimal=1) _check_predict_proba(clf, X, y) def test_uniform_strategy_multioutput(): X = [[0]] * 4 # ignored y = np.array([[2, 1], [2, 2], [1, 2], [1, 1]]) clf = DummyClassifier(strategy="uniform", random_state=0) clf.fit(X, y) X = [[0]] * 500 y_pred = clf.predict(X) for k in xrange(y.shape[1]): p = np.bincount(y_pred[:, k]) / float(len(X)) assert_almost_equal(p[1], 0.5, decimal=1) assert_almost_equal(p[2], 0.5, decimal=1) _check_predict_proba(clf, X, y) _check_behavior_2d(clf) def test_string_labels(): X = [[0]] * 5 y = ["paris", "paris", "tokyo", "amsterdam", "berlin"] clf = DummyClassifier(strategy="most_frequent") clf.fit(X, y) assert_array_equal(clf.predict(X), ["paris"] * 5) def test_classifier_exceptions(): clf = DummyClassifier(strategy="unknown") assert_raises(ValueError, clf.fit, [], []) assert_raises(ValueError, clf.predict, []) assert_raises(ValueError, clf.predict_proba, []) def test_mean_strategy_regressor(): random_state = np.random.RandomState(seed=1) X = [[0]] * 4 # ignored y = random_state.randn(4) reg = DummyRegressor() reg.fit(X, y) assert_array_equal(reg.predict(X), [np.mean(y)] * len(X)) def test_mean_strategy_multioutput_regressor(): random_state = np.random.RandomState(seed=1) X_learn = random_state.randn(10, 10) y_learn = random_state.randn(10, 5) mean = np.mean(y_learn, axis=0).reshape((1, -1)) X_test = random_state.randn(20, 10) y_test = random_state.randn(20, 5) # Correctness oracle est = DummyRegressor() est.fit(X_learn, y_learn) y_pred_learn = est.predict(X_learn) y_pred_test = est.predict(X_test) _check_equality_regressor(mean, y_learn, y_pred_learn, y_test, y_pred_test) _check_behavior_2d(est) def test_regressor_exceptions(): reg = DummyRegressor() assert_raises(ValueError, reg.predict, []) def test_median_strategy_regressor(): random_state = np.random.RandomState(seed=1) X = [[0]] * 5 # ignored y = random_state.randn(5) reg = DummyRegressor(strategy="median") reg.fit(X, y) assert_array_equal(reg.predict(X), [np.median(y)] * len(X)) def test_median_strategy_multioutput_regressor(): random_state = np.random.RandomState(seed=1) X_learn = random_state.randn(10, 10) y_learn = random_state.randn(10, 5) median = np.median(y_learn, axis=0).reshape((1, -1)) X_test = random_state.randn(20, 10) y_test = random_state.randn(20, 5) # Correctness oracle est = DummyRegressor(strategy="median") est.fit(X_learn, y_learn) y_pred_learn = est.predict(X_learn) y_pred_test = est.predict(X_test) _check_equality_regressor( median, y_learn, y_pred_learn, y_test, y_pred_test) _check_behavior_2d(est) def test_constant_strategy_regressor(): random_state = np.random.RandomState(seed=1) X = [[0]] * 5 # ignored y = random_state.randn(5) reg = DummyRegressor(strategy="constant", constant=[43]) reg.fit(X, y) assert_array_equal(reg.predict(X), [43] * len(X)) reg = DummyRegressor(strategy="constant", constant=43) reg.fit(X, y) assert_array_equal(reg.predict(X), [43] * len(X)) def test_constant_strategy_multioutput_regressor(): random_state = np.random.RandomState(seed=1) X_learn = random_state.randn(10, 10) y_learn = random_state.randn(10, 5) # test with 2d array constants = random_state.randn(5) X_test = random_state.randn(20, 10) y_test = random_state.randn(20, 5) # Correctness oracle est = DummyRegressor(strategy="constant", constant=constants) est.fit(X_learn, y_learn) y_pred_learn = est.predict(X_learn) y_pred_test = est.predict(X_test) _check_equality_regressor( constants, y_learn, y_pred_learn, y_test, y_pred_test) _check_behavior_2d_for_constant(est) def test_y_mean_attribute_regressor(): X = [[0]] * 5 y = [1, 2, 4, 6, 8] # when strategy = 'mean' est = DummyRegressor(strategy='mean') est.fit(X, y) assert_equal(est.constant_, np.mean(y)) def test_unknown_strategey_regressor(): X = [[0]] * 5 y = [1, 2, 4, 6, 8] est = DummyRegressor(strategy='gona') assert_raises(ValueError, est.fit, X, y) def test_constants_not_specified_regressor(): X = [[0]] * 5 y = [1, 2, 4, 6, 8] est = DummyRegressor(strategy='constant') assert_raises(TypeError, est.fit, X, y) def test_constant_size_multioutput_regressor(): random_state = np.random.RandomState(seed=1) X = random_state.randn(10, 10) y = random_state.randn(10, 5) est = DummyRegressor(strategy='constant', constant=[1, 2, 3, 4]) assert_raises(ValueError, est.fit, X, y) def test_constant_strategy(): X = [[0], [0], [0], [0]] # ignored y = [2, 1, 2, 2] clf = DummyClassifier(strategy="constant", random_state=0, constant=1) clf.fit(X, y) assert_array_equal(clf.predict(X), np.ones(len(X))) _check_predict_proba(clf, X, y) X = [[0], [0], [0], [0]] # ignored y = ['two', 'one', 'two', 'two'] clf = DummyClassifier(strategy="constant", random_state=0, constant='one') clf.fit(X, y) assert_array_equal(clf.predict(X), np.array(['one'] * 4)) _check_predict_proba(clf, X, y) def test_constant_strategy_multioutput(): X = [[0], [0], [0], [0]] # ignored y = np.array([[2, 3], [1, 3], [2, 3], [2, 0]]) n_samples = len(X) clf = DummyClassifier(strategy="constant", random_state=0, constant=[1, 0]) clf.fit(X, y) assert_array_equal(clf.predict(X), np.hstack([np.ones((n_samples, 1)), np.zeros((n_samples, 1))])) _check_predict_proba(clf, X, y) def test_constant_strategy_exceptions(): X = [[0], [0], [0], [0]] # ignored y = [2, 1, 2, 2] clf = DummyClassifier(strategy="constant", random_state=0) assert_raises(ValueError, clf.fit, X, y) clf = DummyClassifier(strategy="constant", random_state=0, constant=[2, 0]) assert_raises(ValueError, clf.fit, X, y)
apache-2.0
SeldonIO/seldon-ucl
dcs/testing/test_clean_module.py
1
18381
import numpy as np import pandas as pd import pytest from dcs import clean d = {'col1' : pd.Series([1., 2., 3., 4.], index=[0, 1, 3, 4]), 'col2' : pd.Series([1., 2., 2., 4.], index=[0, 1, 2, 4]), 'col3' : pd.Series([1., 2., 3., 4., 5.])} df = pd.DataFrame(d) #-----------------------------(fillDown)----------------------------- #fill all columns of the dataframe def test_fill_pad1(): testing_df = df.copy() clean.fillDown(testing_df, 0, 1, 'pad') res = {'col1' : pd.Series([1., 2., 2., 3., 4.], index=[0, 1, 2, 3, 4]), 'col2' : pd.Series([1., 2., 2., 2., 4.], index=[0, 1, 2, 3, 4]), 'col3' : pd.Series([1., 2., 3., 4., 5.])} df_res = pd.DataFrame(res) assert (((testing_df.fillna(0) == df_res.fillna(0)).all()).all()) == True #fill a single column of the dataframe def test_fill_pad2(): testing_df = df.copy() clean.fillDown(testing_df, 0, 0, 'pad') res = {'col1' : pd.Series([1., 2., 2., 3., 4.], index=[0, 1, 2, 3, 4]), 'col2' : pd.Series([1., 2., 2., 4.], index=[0, 1, 2, 4]), 'col3' : pd.Series([1., 2., 3., 4., 5.,])} df_res = pd.DataFrame(res) assert (((testing_df.fillna(0) == df_res.fillna(0)).all()).all()) == True #dataframe column does not exist def test_fill_pad3(): testing_df = df.copy with pytest.raises(Exception): clean.fillDown(testing_df, 4, 4, 'pad') #dataframe columnFrom > collumnTo def test_fill_pad4(): testing_df = df.copy() clean.fillDown(testing_df, 1, 0,'pad') with pytest.raises(Exception): clean.fillDown(testing_df, 3, 3, 'pad') #fill all columns of the dataframe def test_fill_back1(): testing_df =df.copy() clean.fillDown(testing_df, 0, 1, 'bfill') res = {'col1' : pd.Series([1., 2., 3., 3., 4.], index=[0, 1, 2, 3, 4]), 'col2' : pd.Series([1., 2., 2., 4., 4.], index=[0, 1, 2, 3, 4]), 'col3' : pd.Series([1., 2., 3., 4., 5.,])} df_res = pd.DataFrame(res) assert (((testing_df.fillna(0) == df_res.fillna(0)).all()).all()) == True #fill a column that has no missing values def test_fill_back2(): testing_df = df.copy() clean.fillDown(testing_df, 2, 2, 'bfill') assert (((testing_df.fillna(0) == df.fillna(0)).all()).all()) == True #-------------------------(invalid values)---------------------------------- #test for index positions of invalid values in a dataframe def test_invalid1(): testing_df = df.copy() result = clean.invalidValuesInDataFrame(testing_df) assert (result['col1']['hasInvalidValues'] == True) assert (result['col1']['invalidIndices'] == [2]) assert (result['col2']['hasInvalidValues'] == True) assert (result['col2']['invalidIndices'] == [3]) assert (result['col3']['hasInvalidValues'] == False) #test for missing/invalid values in a dataframe without any def test_invalid2(): testing_df = df.copy() result =clean.invalidValuesInDataFrame(testing_df.dropna()) assert (result['col1']['hasInvalidValues'] == False) assert (result['col2']['hasInvalidValues'] == False) assert (result['col3']['hasInvalidValues'] == False) #test for multiple missing values in a single column def test_invalid3(): testing_df = df.copy() testing_df['col4'] = pd.Series([1., 2], index = [0, 4]) result = clean.invalidValuesInDataFrame(testing_df) assert (result['col4']['hasInvalidValues'] == True) assert (result['col4']['invalidIndices'] == [1, 2, 3]) #---------------------------(interpolation)-------------------------------- #fill a single column of dataframe def test_interpolate_polynomial1(): testing_df = df.copy() result_df = df.copy() clean.fillByInterpolation(testing_df, 0, 'polynomial', 2) result_df['col1'].interpolate(method='polynomial', order=2, inplace=True) assert (((testing_df.fillna(0) == result_df.fillna(0)).all()).all()) == True #fill a column that does not exist def test_intrpolate_polynomial2(): testing_df = df.copy() with pytest.raises(Exception): clean.fillByInterpolation(testing_df, 4, 'polynomial', 2) #fill a single column of a dataframe def test_interpolate_spline1(): testing_df = df.copy() result_df = df.copy() clean.fillByInterpolation(testing_df, 1, 'spline', 1) result_df['col2'].interpolate(method='spline', order=1, inplace=True) assert (((testing_df.fillna(0) == result_df.fillna(0)).all()).all()) == True #fill a single column of a dataframe def test_interpolate_linear1(): testing_df = df.copy() result_df = df.copy() clean.fillByInterpolation(testing_df, 1, 'linear', 6) result_df['col2'].interpolate(method='linear', inplace=True) assert (((testing_df.fillna(0) == result_df.fillna(0)).all()).all()) == True #fill a single column of a dataframe def test_interpolate_pchip1(): testing_df = df.copy() result_df = df.copy() clean.fillByInterpolation(testing_df, 0, 'PCHIP', 4) result_df['col1'].interpolate(method='pchip',inplace=True) assert (((testing_df.fillna(0) == result_df.fillna(0)).all()).all()) == True #apply to a column that has no missing values def test_interpolate_all1(): testing_df = df.copy() clean.fillByInterpolation(testing_df, 2, 'linear', 4) assert (((testing_df.fillna(0) == df.fillna(0)).all()).all()) == True #-----------------------------(custom value)------------------------------------- #fill missing values in a single column with a custom value def test_custom_value1(): testing_df = df.copy() result_df = df.copy() clean.fillWithCustomValue(testing_df, 1, 'testValue') result_df['col2'].fillna(value='testValue', inplace=True) assert (((testing_df.fillna(0) == result_df.fillna(0)).all()).all()) == True #select a column that does not exist def test_custom_value2(): testing_df = df.copy() with pytest.raises(Exception): clean.fillWithCustomValue(testing_df, 6, 'testValue') #-----------------------------(fill with average)---------------------------------- #fill missng values in a single column with mean value def test_average_mean1(): testing_df = df.copy() result_df = df.copy() clean.fillWithAverage(testing_df, 1, 'mean') average = result_df['col2'].mean() result_df['col2'].fillna(value=average, inplace=True) assert (((testing_df.fillna(0) == result_df.fillna(0)).all()).all()) == True #fill missng values in a single column with median value def test_average_median1(): testing_df = df.copy() result_df = df.copy() clean.fillWithAverage(testing_df, 1, 'median') average = result_df['col2'].median() result_df['col2'].fillna(value=average, inplace=True) assert (((testing_df.fillna(0) == result_df.fillna(0)).all()).all()) == True #fill missng values in a single column with mode value def test_average_mode1(): testing_df = df.copy() result_df = df.copy() clean.fillWithAverage(testing_df, 1, 'mode') average = 2 result_df['col2'].fillna(value=average, inplace=True) assert (((testing_df.fillna(0) == result_df.fillna(0)).all()).all()) == True #fill missng values in a single column with mode when there are multiple modes def test_average_mode2(): testing_df = df.copy() testing_df['col4'] = pd.Series([2., 2., 3., 3.], index=[0, 1, 4, 5]) result_df = testing_df.copy() clean.fillWithAverage(testing_df, 3, 'mode') average = 2 result_df['col4'].fillna(value=average, inplace=True) assert (((testing_df.fillna(0) == result_df.fillna(0)).all()).all()) == True #select a column that is already full def test_average_all2(): testing_df = df.copy() clean.fillWithAverage(testing_df, 2, 'mean') assert (((testing_df.fillna(0) == df.fillna(0)).all()).all()) == True #select a column that does not exist def test_average_all3(): testing_df = df.copy() with pytest.raises(Exception): clean.fillWithAverage(testing_df, 10, 'mean') #---------------------------------(normalize)----------------------------------------- #test normalistaion on a single column using a positive range def test_normalize1(): testing_df = df.copy() result_df = df.copy() clean.normalize(testing_df, 1, 0 ,18) result_df['col2'] = 0 + ((result_df['col2'] - result_df['col2'].min()) * (18 - 0)) / (result_df['col2'].max() - result_df['col2'].min()) assert (((testing_df.fillna(0) == result_df.fillna(0)).all()).all()) == True #test normalistaion on a single column using a negative range def test_normalize2(): testing_df = df.copy() result_df = df.copy() clean.normalize(testing_df, 1, -3 , -18) result_df['col2'] = -3 + ((result_df['col2'] - result_df['col2'].min()) * (-18 - (-3))) / (result_df['col2'].max() - result_df['col2'].min()) assert (((testing_df.fillna(0) == result_df.fillna(0)).all()).all()) == True #nomalize a column that has a range = 0 def test_normalize3(): testing_df = df.copy() testing_df['col4'] = pd.Series([1, 1, 1], index = [0, 1, 2]) result_df = testing_df.copy() clean.normalize(testing_df, 3, 0 , 18) assert (((testing_df.fillna(0) == result_df.fillna(0)).all()).all()) == True #nomalize a column that does not exist def test_normalize4(): testing_df = df.copy() with pytest.raises(Exception): clean.normalize(testing_df, 20, 0 , 18) #-----------------------------------(standardize)--------------------------------------- #test standardisation on a single column def test_standardize1(): testing_df = df.copy() result_df = df.copy() clean.standardize(testing_df, 0) result_df['col1'] = (result_df['col1'] - result_df['col1'].mean()) / result_df['col1'].std() assert (((testing_df.fillna(0) == result_df.fillna(0)).all()).all()) == True #test on a column index that does not exist def test_standaardize2(): testing_df = df.copy() with pytest.raises(Exception): clean.standardize(testing_df, 6,) #standardize a column that has a standard deviation = 0 def test_standardize3(): testing_df = df.copy() testing_df['col4'] = pd.Series([1, 1, 1], index = [0, 1, 2]) result_df = testing_df.copy() clean.standardize(testing_df, 3) assert (((testing_df.fillna(0) == result_df.fillna(0)).all()).all()) == True #-------------------------------(delete rows with na)---------------------------------- #test deleting all rows in a single column that have NA values def test_delete_na1(): testing_df = df.copy() result_df = df.copy() clean.deleteRowsWithNA(testing_df, 0) result_df.dropna(subset=['col1'], inplace=True) result_df.reset_index(drop=True, inplace=True) assert (((testing_df.fillna(0) == result_df.fillna(0)).all()).all()) == True #test deleting rows that have na on a column with no NA values def test_delete_na2(): testing_df = df.copy() result_df = df.copy() clean.deleteRowsWithNA(testing_df, 2) assert (((testing_df.fillna(0) == result_df.fillna(0)).all()).all()) == True #select a column that does not exist def test_delete_na3(): testing_df = df.copy() with pytest.raises(Exception): clean.deleteRowsWithNA(testing_df, 16) #----------------------------------(find and replace)------------------------------- #test replacing a single type of value in a single column (Numeric) def test_find_replace1(): testing_df = df.copy() result_df = df.copy() clean.findReplace(result_df, 0, [2], [8], False) testing_df['col1'].replace(to_replace=2, value=8, regex=False, inplace=True) result_df = result_df.astype(float) assert (((testing_df.fillna(0) == result_df.fillna(0)).all()).all()) == True #test replacing multiple values in a single column (Numeric) def test_find_replace2(): testing_df = df.copy() result_df = df.copy() clean.findReplace(result_df, 0, [2, 3], [8, 10], False) testing_df['col1'].replace(to_replace=2, value=8, regex=False, inplace=True) testing_df['col1'].replace(to_replace=3, value=10, regex=False, inplace=True) result_df = result_df.astype(float) assert (((testing_df.fillna(0) == result_df.fillna(0)).all()).all()) == True #test replacing a value that dose not exist in a column (Numeric) def test_find_replace3(): testing_df = df.copy() result_df = df.copy() clean.findReplace(result_df, 0, [16], [32], False) result_df = result_df.astype(float) assert (((testing_df.fillna(0) == result_df.fillna(0)).all()).all()) == True #test replacing a single type of value in a column (String) def test_find_replace4(): testing_df = df.copy() testing_df['col4'] = pd.Series(['hello', 'world', 'wild'], index = [0, 1, 2]) result_df = testing_df.copy() clean.findReplace(result_df, 0, ['hello'], ['bello'], False) testing_df['col1'].replace(to_replace='hello', value='bello', regex=False, inplace=True) assert (((testing_df.fillna(0) == result_df.fillna(0)).all()).all()) == True #test replacing a multiple values in a column (String) def test_find_replace5(): testing_df = df.copy() testing_df['col4'] = pd.Series(['hello', 'world', 'wild'], index = [0, 1, 2]) result_df = testing_df.copy() clean.findReplace(result_df, 0, ['hello', 'wild', 'world'], ['bello', 'bello', 'bello'], False) testing_df['col1'].replace(to_replace='hello', value='bello', regex=False, inplace=True) testing_df['col1'].replace(to_replace='wild', value='bello', regex=False, inplace=True) testing_df['col1'].replace(to_replace='world', value='bello', regex=False, inplace=True) assert (((testing_df.fillna(0) == result_df.fillna(0)).all()).all()) == True #test replacing all number values using regex in a column (Numeric) def test_find_replace6(): testing_df = df.copy() result_df = df.copy() clean.findReplace(result_df, 0, ["[0-9]+\.?[0-9]*"], [32], True) testing_df['col1'].replace(to_replace='[0-9]+\.?[0-9]*', value='32', regex=True, inplace=True) result_df = result_df.astype(float) assert (((testing_df.fillna(0) == result_df.fillna(0)).all()).all()) == True #test replacing all string values using regex in a column (String) def test_find_replace7(): testing_df = df.copy() testing_df['col4'] = pd.Series(['hello', 'world', 'wild'], index = [0, 1, 2]) result_df = testing_df.copy() clean.findReplace(result_df, 3, [".*"], ['hello'], True) testing_df['col4'].replace(to_replace='.*', value='hello', regex=True, inplace=True) assert (((testing_df.fillna(0) == result_df.fillna(0)).all()).all()) == True #select a column that does not exist def test_find_replace8(): testing_df = df.copy() with pytest.raises(Exception): clean.findReplace(testing_df, 30, [".*"], ['hello'], True) #------------------------------------(Geneate Dummies)---------------------------------------- #test genearting dummies on a column with NA values def test_generate_dummies1(): testing_df = df.copy() result_df = df.copy() clean.generateDummies(testing_df, 0 , False) result_df.insert(1, 'col1_1.0', [1,0,0,0,0], allow_duplicates=True) result_df.insert(2, 'col1_2.0', [0,1,0,0,0], allow_duplicates=True) result_df.insert(3, 'col1_3.0', [0,0,0,1,0], allow_duplicates=True) result_df.insert(4, 'col1_4.0', [0,0,0,0,1], allow_duplicates=True) assert (((testing_df.fillna(0) == result_df.fillna(0)).all()).all()) == True #test genearting dummies on a column with a single repeated value which is a string def test_generate_dummies2(): testing_df = df.copy() testing_df['col4'] = pd.Series(['hello'], index = [2]) result_df = testing_df.copy() clean.generateDummies(testing_df, 3 , False) result_df.insert(4, 'col4_hello', [0,0,1,0,0], allow_duplicates=True) assert (((testing_df.fillna(0) == result_df.fillna(0)).all()).all()) == True #select a column that does not exist def test_generate_dummmies3(): testing_df = df.copy() with pytest.raises(Exception): clean.generateDummies(testing_df, 30 , False) #----------------------------------(insert Duplicate Column)---------------------------------- #test adding a duplicate column to a dataframe def test_duplicate_column1(): testing_df = df.copy() result_df = df.copy() clean.insertDuplicateColumn(testing_df, 0) result_df.insert(1, 'col1_copy', result_df['col1'], allow_duplicates=True) assert (((testing_df.fillna(0) == result_df.fillna(0)).all()).all()) == True #test adding a duplicate column using a column index that does not exist def test_duplicate_column2(): testing_df = df.copy() with pytest.raises(Exception): clean.insertDuplicateColumn(testing_df, 6) #----------------------------------------(Split Column)--------------------------------------- #split a column using '.' as a delimeter def test_split_delimeter(): testing_df = df.copy() testing_df['col4'] = pd.Series(['hello.world', 'world.hello', 'p.4q', 'r', 's']) result_df = testing_df.copy() clean.splitColumn(testing_df, 3, '.', regex=False) result_df['col4_0'] = pd.Series(['hello', 'world', 'p','r', 's']) result_df['col4_1'] = pd.Series(['world', 'hello', '4q']) assert (((testing_df.fillna(0) == result_df.fillna(0)).all()).all()) == True #split a column using a delimetr that is not present in a column def test_split_delimeter2(): testing_df = df.copy() testing_df['col4'] = pd.Series(['hello.world', 'world.hello', 'p.4q', 'r', 's']) result_df = testing_df.copy() clean.splitColumn(testing_df, 3, '-', regex=False) result_df['col4_0'] = result_df['col4'] assert (((testing_df.fillna(0) == result_df.fillna(0)).all()).all()) == True #split a column using regex as delimeter def test_split_delimeter3(): testing_df = df.copy() testing_df['col4'] = pd.Series(['hello.world', 'world.hello', 'p.4q', 'r', 's']) result_df = testing_df.copy() clean.splitColumn(testing_df, 3, '\.', regex=True) result_df['col4_0'] = pd.Series(['hello', 'world', 'p','r', 's']) result_df['col4_1'] = pd.Series(['world', 'hello', '4q']) assert (((testing_df.fillna(0) == result_df.fillna(0)).all()).all()) == True #test splitting a column that dose not exist def test_split_delimeter4(): testing_df = df.copy() with pytest.raises(Exception): clean.splitColumn(testing_df, 7, '.') #--------------------------------------(Combine Columns)--------------------------------------- #test combining two columns that contain some NA values def test_combine1(): testing_df = df.copy() result_df = df.copy() clean.combineColumns(testing_df, ['col1', 'col2'], seperator=' ', newName="combined") result_df.insert(0, 'combined', ['1.0 1.0', '2.0 2.0', '2.0', '3.0', '4.0 4.0'], allow_duplicates=True) assert (((testing_df.fillna(0) == result_df.fillna(0)).all()).all()) == True #test combining less than two columns def test_combine2(): testing_df = df.copy() result_df = df.copy() with pytest.raises(Exception): clean.combineColumns(testing_df, ['col1'], seperator=' ', newName="combined") #test combining a column that exists with one that does not def test_combine3(): testing_df = df.copy() result_df = df.copy() with pytest.raises(Exception): clean.combineColumns(testing_df, ['col1', 'col16'], seperator=' ', newName="combined")
apache-2.0
crichardson17/starburst_atlas
Low_resolution_sims/DustFree_LowRes/Padova_cont/padova_cont_4/IR.py
33
7344
import csv import matplotlib.pyplot as plt from numpy import * import scipy.interpolate import math from pylab import * from matplotlib.ticker import MultipleLocator, FormatStrFormatter import matplotlib.patches as patches from matplotlib.path import Path import os # ------------------------------------------------------------------------------------------------------ #inputs for file in os.listdir('.'): if file.endswith(".grd"): inputfile = file for file in os.listdir('.'): if file.endswith(".txt"): inputfile2 = file # ------------------------------------------------------------------------------------------------------ #Patches data #for the Kewley and Levesque data verts = [ (1., 7.97712125471966000000), # left, bottom (1., 9.57712125471966000000), # left, top (2., 10.57712125471970000000), # right, top (2., 8.97712125471966000000), # right, bottom (0., 0.), # ignored ] codes = [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY, ] path = Path(verts, codes) # ------------------------ #for the Kewley 01 data verts2 = [ (2.4, 9.243038049), # left, bottom (2.4, 11.0211893), # left, top (2.6, 11.0211893), # right, top (2.6, 9.243038049), # right, bottom (0, 0.), # ignored ] path = Path(verts, codes) path2 = Path(verts2, codes) # ------------------------- #for the Moy et al data verts3 = [ (1., 6.86712125471966000000), # left, bottom (1., 10.18712125471970000000), # left, top (3., 12.18712125471970000000), # right, top (3., 8.86712125471966000000), # right, bottom (0., 0.), # ignored ] path = Path(verts, codes) path3 = Path(verts3, codes) # ------------------------------------------------------------------------------------------------------ #the routine to add patches for others peoples' data onto our plots. def add_patches(ax): patch3 = patches.PathPatch(path3, facecolor='yellow', lw=0) patch2 = patches.PathPatch(path2, facecolor='green', lw=0) patch = patches.PathPatch(path, facecolor='red', lw=0) ax1.add_patch(patch3) ax1.add_patch(patch2) ax1.add_patch(patch) # ------------------------------------------------------------------------------------------------------ #the subplot routine numplots = 12 def add_sub_plot(sub_num): plt.subplot(3,4,sub_num) rbf = scipy.interpolate.Rbf(x, y, z[:,sub_num-1], function='linear') zi = rbf(xi, yi) contour = plt.contour(xi,yi,zi, levels, colors='c', linestyles = 'dashed') contour2 = plt.contour(xi,yi,zi, levels2, colors='k', linewidths=1.5) plt.scatter(max_values[line[sub_num-1],2], max_values[line[sub_num-1],3], c ='k',marker = '*') plt.annotate(headers[line[sub_num-1]], xy=(8,11), xytext=(6,8.5), fontsize = 10) plt.annotate(max_values[line[sub_num-1],0], xy= (max_values[line[sub_num-1],2], max_values[line[sub_num-1],3]), xytext = (0, -10), textcoords = 'offset points', ha = 'right', va = 'bottom', fontsize=10) if sub_num == numplots / 2.: print "half the plots are complete" #axis limits yt_min = 8 yt_max = 23 xt_min = 0 xt_max = 12 plt.ylim(yt_min,yt_max) plt.xlim(xt_min,xt_max) plt.yticks(arange(yt_min+1,yt_max,1),fontsize=10) plt.xticks(arange(xt_min+1,xt_max,1), fontsize = 10) if sub_num in [2,3,4,6,7,8,10,11,12]: plt.tick_params(labelleft = 'off') else: plt.tick_params(labelleft = 'on') plt.ylabel('Log ($ \phi _{\mathrm{H}} $)') if sub_num in [1,2,3,4,5,6,7,8]: plt.tick_params(labelbottom = 'off') else: plt.tick_params(labelbottom = 'on') plt.xlabel('Log($n _{\mathrm{H}} $)') if sub_num == 1: plt.yticks(arange(yt_min+1,yt_max+1,1),fontsize=10) if sub_num == 9: plt.yticks(arange(yt_min,yt_max,1),fontsize=10) plt.xticks(arange(xt_min,xt_max,1), fontsize = 10) if sub_num == 12: plt.xticks(arange(xt_min+1,xt_max+1,1), fontsize = 10) # --------------------------------------------------- #this is where the grid information (phi and hdens) is read in and saved to grid. grid = []; with open(inputfile, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') for row in csvReader: grid.append(row); grid = asarray(grid) #here is where the data for each line is read in and saved to dataEmissionlines dataEmissionlines = []; with open(inputfile2, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') headers = csvReader.next() for row in csvReader: dataEmissionlines.append(row); dataEmissionlines = asarray(dataEmissionlines) print "import files complete" # --------------------------------------------------- #for grid phi_values = grid[1:len(dataEmissionlines)+1,6] hdens_values = grid[1:len(dataEmissionlines)+1,7] #for lines headers = headers[1:] Emissionlines = dataEmissionlines[:, 1:] concatenated_data = zeros((len(Emissionlines),len(Emissionlines[0]))) max_values = zeros((len(Emissionlines[0]),4)) #select the scaling factor #for 1215 #incident = Emissionlines[1:,4] #for 4860 incident = Emissionlines[:,57] #take the ratio of incident and all the lines and put it all in an array concatenated_data for i in range(len(Emissionlines)): for j in range(len(Emissionlines[0])): if math.log(4860.*(float(Emissionlines[i,j])/float(Emissionlines[i,57])), 10) > 0: concatenated_data[i,j] = math.log(4860.*(float(Emissionlines[i,j])/float(Emissionlines[i,57])), 10) else: concatenated_data[i,j] == 0 # for 1215 #for i in range(len(Emissionlines)): # for j in range(len(Emissionlines[0])): # if math.log(1215.*(float(Emissionlines[i,j])/float(Emissionlines[i,4])), 10) > 0: # concatenated_data[i,j] = math.log(1215.*(float(Emissionlines[i,j])/float(Emissionlines[i,4])), 10) # else: # concatenated_data[i,j] == 0 #find the maxima to plot onto the contour plots for j in range(len(concatenated_data[0])): max_values[j,0] = max(concatenated_data[:,j]) max_values[j,1] = argmax(concatenated_data[:,j], axis = 0) max_values[j,2] = hdens_values[max_values[j,1]] max_values[j,3] = phi_values[max_values[j,1]] #to round off the maxima max_values[:,0] = [ '%.1f' % elem for elem in max_values[:,0] ] print "data arranged" # --------------------------------------------------- #Creating the grid to interpolate with for contours. gridarray = zeros((len(Emissionlines),2)) gridarray[:,0] = hdens_values gridarray[:,1] = phi_values x = gridarray[:,0] y = gridarray[:,1] #change desired lines here! line = [75, #AR 3 7135 76, #TOTL 7325 78, #AR 3 7751 79, #6LEV 8446 80, #CA2X 8498 81, #CA2Y 8542 82, #CA2Z 8662 83, #CA 2 8579A 84, #S 3 9069 85, #H 1 9229 86, #S 3 9532 87] #H 1 9546 #create z array for this plot z = concatenated_data[:,line[:]] # --------------------------------------------------- # Interpolate print "starting interpolation" xi, yi = linspace(x.min(), x.max(), 10), linspace(y.min(), y.max(), 10) xi, yi = meshgrid(xi, yi) # --------------------------------------------------- print "interpolatation complete; now plotting" #plot plt.subplots_adjust(wspace=0, hspace=0) #remove space between plots levels = arange(10**-1,10, .2) levels2 = arange(10**-2,10**2, 1) plt.suptitle("IR Lines", fontsize=14) # --------------------------------------------------- for i in range(12): add_sub_plot(i) ax1 = plt.subplot(3,4,1) add_patches(ax1) print "complete" plt.savefig('Near_IR.pdf') plt.clf()
gpl-2.0
NelisVerhoef/scikit-learn
sklearn/cross_validation.py
13
66570
""" The :mod:`sklearn.cross_validation` module includes utilities for cross- validation and performance evaluation. """ # Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>, # Gael Varoquaux <gael.varoquaux@normalesup.org>, # Olivier Grisel <olivier.grisel@ensta.org> # License: BSD 3 clause from __future__ import print_function from __future__ import division import warnings from itertools import chain, combinations from math import ceil, floor, factorial import numbers import time from abc import ABCMeta, abstractmethod import numpy as np import scipy.sparse as sp from .base import is_classifier, clone from .utils import indexable, check_random_state, safe_indexing from .utils.validation import (_is_arraylike, _num_samples, check_array, column_or_1d) from .utils.multiclass import type_of_target from .externals.joblib import Parallel, delayed, logger from .externals.six import with_metaclass from .externals.six.moves import zip from .metrics.scorer import check_scoring from .utils.fixes import bincount __all__ = ['KFold', 'LabelKFold', 'LeaveOneLabelOut', 'LeaveOneOut', 'LeavePLabelOut', 'LeavePOut', 'ShuffleSplit', 'StratifiedKFold', 'StratifiedShuffleSplit', 'PredefinedSplit', 'LabelShuffleSplit', 'check_cv', 'cross_val_score', 'cross_val_predict', 'permutation_test_score', 'train_test_split'] class _PartitionIterator(with_metaclass(ABCMeta)): """Base class for CV iterators where train_mask = ~test_mask Implementations must define `_iter_test_masks` or `_iter_test_indices`. Parameters ---------- n : int Total number of elements in dataset. """ def __init__(self, n): if abs(n - int(n)) >= np.finfo('f').eps: raise ValueError("n must be an integer") self.n = int(n) def __iter__(self): ind = np.arange(self.n) for test_index in self._iter_test_masks(): train_index = np.logical_not(test_index) train_index = ind[train_index] test_index = ind[test_index] yield train_index, test_index # Since subclasses must implement either _iter_test_masks or # _iter_test_indices, neither can be abstract. def _iter_test_masks(self): """Generates boolean masks corresponding to test sets. By default, delegates to _iter_test_indices() """ for test_index in self._iter_test_indices(): test_mask = self._empty_mask() test_mask[test_index] = True yield test_mask def _iter_test_indices(self): """Generates integer indices corresponding to test sets.""" raise NotImplementedError def _empty_mask(self): return np.zeros(self.n, dtype=np.bool) class LeaveOneOut(_PartitionIterator): """Leave-One-Out cross validation iterator. Provides train/test indices to split data in train test sets. Each sample is used once as a test set (singleton) while the remaining samples form the training set. Note: ``LeaveOneOut(n)`` is equivalent to ``KFold(n, n_folds=n)`` and ``LeavePOut(n, p=1)``. Due to the high number of test sets (which is the same as the number of samples) this cross validation method can be very costly. For large datasets one should favor KFold, StratifiedKFold or ShuffleSplit. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n : int Total number of elements in dataset. Examples -------- >>> from sklearn import cross_validation >>> X = np.array([[1, 2], [3, 4]]) >>> y = np.array([1, 2]) >>> loo = cross_validation.LeaveOneOut(2) >>> len(loo) 2 >>> print(loo) sklearn.cross_validation.LeaveOneOut(n=2) >>> for train_index, test_index in loo: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... print(X_train, X_test, y_train, y_test) TRAIN: [1] TEST: [0] [[3 4]] [[1 2]] [2] [1] TRAIN: [0] TEST: [1] [[1 2]] [[3 4]] [1] [2] See also -------- LeaveOneLabelOut for splitting the data according to explicit, domain-specific stratification of the dataset. """ def _iter_test_indices(self): return range(self.n) def __repr__(self): return '%s.%s(n=%i)' % ( self.__class__.__module__, self.__class__.__name__, self.n, ) def __len__(self): return self.n class LeavePOut(_PartitionIterator): """Leave-P-Out cross validation iterator Provides train/test indices to split data in train test sets. This results in testing on all distinct samples of size p, while the remaining n - p samples form the training set in each iteration. Note: ``LeavePOut(n, p)`` is NOT equivalent to ``KFold(n, n_folds=n // p)`` which creates non-overlapping test sets. Due to the high number of iterations which grows combinatorically with the number of samples this cross validation method can be very costly. For large datasets one should favor KFold, StratifiedKFold or ShuffleSplit. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n : int Total number of elements in dataset. p : int Size of the test sets. Examples -------- >>> from sklearn import cross_validation >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) >>> y = np.array([1, 2, 3, 4]) >>> lpo = cross_validation.LeavePOut(4, 2) >>> len(lpo) 6 >>> print(lpo) sklearn.cross_validation.LeavePOut(n=4, p=2) >>> for train_index, test_index in lpo: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [2 3] TEST: [0 1] TRAIN: [1 3] TEST: [0 2] TRAIN: [1 2] TEST: [0 3] TRAIN: [0 3] TEST: [1 2] TRAIN: [0 2] TEST: [1 3] TRAIN: [0 1] TEST: [2 3] """ def __init__(self, n, p): super(LeavePOut, self).__init__(n) self.p = p def _iter_test_indices(self): for comb in combinations(range(self.n), self.p): yield np.array(comb) def __repr__(self): return '%s.%s(n=%i, p=%i)' % ( self.__class__.__module__, self.__class__.__name__, self.n, self.p, ) def __len__(self): return int(factorial(self.n) / factorial(self.n - self.p) / factorial(self.p)) class _BaseKFold(with_metaclass(ABCMeta, _PartitionIterator)): """Base class to validate KFold approaches""" @abstractmethod def __init__(self, n, n_folds, shuffle, random_state): super(_BaseKFold, self).__init__(n) if abs(n_folds - int(n_folds)) >= np.finfo('f').eps: raise ValueError("n_folds must be an integer") self.n_folds = n_folds = int(n_folds) if n_folds <= 1: raise ValueError( "k-fold cross validation requires at least one" " train / test split by setting n_folds=2 or more," " got n_folds={0}.".format(n_folds)) if n_folds > self.n: raise ValueError( ("Cannot have number of folds n_folds={0} greater" " than the number of samples: {1}.").format(n_folds, n)) if not isinstance(shuffle, bool): raise TypeError("shuffle must be True or False;" " got {0}".format(shuffle)) self.shuffle = shuffle self.random_state = random_state class KFold(_BaseKFold): """K-Folds cross validation iterator. Provides train/test indices to split data in train test sets. Split dataset into k consecutive folds (without shuffling by default). Each fold is then used a validation set once while the k - 1 remaining fold form the training set. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n : int Total number of elements. n_folds : int, default=3 Number of folds. Must be at least 2. shuffle : boolean, optional Whether to shuffle the data before splitting into batches. random_state : None, int or RandomState When shuffle=True, pseudo-random number generator state used for shuffling. If None, use default numpy RNG for shuffling. Examples -------- >>> from sklearn.cross_validation import KFold >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([1, 2, 3, 4]) >>> kf = KFold(4, n_folds=2) >>> len(kf) 2 >>> print(kf) # doctest: +NORMALIZE_WHITESPACE sklearn.cross_validation.KFold(n=4, n_folds=2, shuffle=False, random_state=None) >>> for train_index, test_index in kf: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [2 3] TEST: [0 1] TRAIN: [0 1] TEST: [2 3] Notes ----- The first n % n_folds folds have size n // n_folds + 1, other folds have size n // n_folds. See also -------- StratifiedKFold: take label information into account to avoid building folds with imbalanced class distributions (for binary or multiclass classification tasks). LabelKFold: K-fold iterator variant with non-overlapping labels. """ def __init__(self, n, n_folds=3, shuffle=False, random_state=None): super(KFold, self).__init__(n, n_folds, shuffle, random_state) self.idxs = np.arange(n) if shuffle: rng = check_random_state(self.random_state) rng.shuffle(self.idxs) def _iter_test_indices(self): n = self.n n_folds = self.n_folds fold_sizes = (n // n_folds) * np.ones(n_folds, dtype=np.int) fold_sizes[:n % n_folds] += 1 current = 0 for fold_size in fold_sizes: start, stop = current, current + fold_size yield self.idxs[start:stop] current = stop def __repr__(self): return '%s.%s(n=%i, n_folds=%i, shuffle=%s, random_state=%s)' % ( self.__class__.__module__, self.__class__.__name__, self.n, self.n_folds, self.shuffle, self.random_state, ) def __len__(self): return self.n_folds class LabelKFold(_BaseKFold): """K-fold iterator variant with non-overlapping labels. The same label will not appear in two different folds (the number of distinct labels has to be at least equal to the number of folds). The folds are approximately balanced in the sense that the number of distinct labels is approximately the same in each fold. Parameters ---------- labels : array-like with shape (n_samples, ) Contains a label for each sample. The folds are built so that the same label does not appear in two different folds. n_folds : int, default=3 Number of folds. Must be at least 2. shuffle : boolean, optional Whether to shuffle the data before splitting into batches. random_state : None, int or RandomState When shuffle=True, pseudo-random number generator state used for shuffling. If None, use default numpy RNG for shuffling. Examples -------- >>> from sklearn.cross_validation import LabelKFold >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) >>> y = np.array([1, 2, 3, 4]) >>> labels = np.array([0, 0, 2, 2]) >>> label_kfold = LabelKFold(labels, n_folds=2) >>> len(label_kfold) 2 >>> print(label_kfold) sklearn.cross_validation.LabelKFold(n_labels=4, n_folds=2) >>> for train_index, test_index in label_kfold: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... print(X_train, X_test, y_train, y_test) ... TRAIN: [0 1] TEST: [2 3] [[1 2] [3 4]] [[5 6] [7 8]] [1 2] [3 4] TRAIN: [2 3] TEST: [0 1] [[5 6] [7 8]] [[1 2] [3 4]] [3 4] [1 2] See also -------- LeaveOneLabelOut for splitting the data according to explicit, domain-specific stratification of the dataset. """ def __init__(self, labels, n_folds=3, shuffle=False, random_state=None): super(LabelKFold, self).__init__(len(labels), n_folds, shuffle, random_state) unique_labels, labels = np.unique(labels, return_inverse=True) n_labels = len(unique_labels) if n_folds > n_labels: raise ValueError( ("Cannot have number of folds n_folds={0} greater" " than the number of labels: {1}.").format(n_folds, n_labels)) # Weight labels by their number of occurences n_samples_per_label = np.bincount(labels) # Distribute the most frequent labels first indices = np.argsort(n_samples_per_label)[::-1] n_samples_per_label = n_samples_per_label[indices] # Total weight of each fold n_samples_per_fold = np.zeros(n_folds) # Mapping from label index to fold index label_to_fold = np.zeros(len(unique_labels)) # Distribute samples by adding the largest weight to the lightest fold for label_index, weight in enumerate(n_samples_per_label): lightest_fold = np.argmin(n_samples_per_fold) n_samples_per_fold[lightest_fold] += weight label_to_fold[indices[label_index]] = lightest_fold self.idxs = label_to_fold[labels] if shuffle: rng = check_random_state(self.random_state) rng.shuffle(self.idxs) def _iter_test_indices(self): for i in range(self.n_folds): yield (self.idxs == i) def __repr__(self): return '{0}.{1}(n_labels={2}, n_folds={3})'.format( self.__class__.__module__, self.__class__.__name__, self.n, self.n_folds, ) def __len__(self): return self.n_folds class StratifiedKFold(_BaseKFold): """Stratified K-Folds cross validation iterator Provides train/test indices to split data in train test sets. This cross-validation object is a variation of KFold that returns stratified folds. The folds are made by preserving the percentage of samples for each class. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- y : array-like, [n_samples] Samples to split in K folds. n_folds : int, default=3 Number of folds. Must be at least 2. shuffle : boolean, optional Whether to shuffle each stratification of the data before splitting into batches. random_state : None, int or RandomState When shuffle=True, pseudo-random number generator state used for shuffling. If None, use default numpy RNG for shuffling. Examples -------- >>> from sklearn.cross_validation import StratifiedKFold >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([0, 0, 1, 1]) >>> skf = StratifiedKFold(y, n_folds=2) >>> len(skf) 2 >>> print(skf) # doctest: +NORMALIZE_WHITESPACE sklearn.cross_validation.StratifiedKFold(labels=[0 0 1 1], n_folds=2, shuffle=False, random_state=None) >>> for train_index, test_index in skf: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [1 3] TEST: [0 2] TRAIN: [0 2] TEST: [1 3] Notes ----- All the folds have size trunc(n_samples / n_folds), the last one has the complementary. See also -------- LabelKFold: K-fold iterator variant with non-overlapping labels. """ def __init__(self, y, n_folds=3, shuffle=False, random_state=None): super(StratifiedKFold, self).__init__( len(y), n_folds, shuffle, random_state) y = np.asarray(y) n_samples = y.shape[0] unique_labels, y_inversed = np.unique(y, return_inverse=True) label_counts = bincount(y_inversed) min_labels = np.min(label_counts) if self.n_folds > min_labels: warnings.warn(("The least populated class in y has only %d" " members, which is too few. The minimum" " number of labels for any class cannot" " be less than n_folds=%d." % (min_labels, self.n_folds)), Warning) # don't want to use the same seed in each label's shuffle if self.shuffle: rng = check_random_state(self.random_state) else: rng = self.random_state # pre-assign each sample to a test fold index using individual KFold # splitting strategies for each label so as to respect the # balance of labels per_label_cvs = [ KFold(max(c, self.n_folds), self.n_folds, shuffle=self.shuffle, random_state=rng) for c in label_counts] test_folds = np.zeros(n_samples, dtype=np.int) for test_fold_idx, per_label_splits in enumerate(zip(*per_label_cvs)): for label, (_, test_split) in zip(unique_labels, per_label_splits): label_test_folds = test_folds[y == label] # the test split can be too big because we used # KFold(max(c, self.n_folds), self.n_folds) instead of # KFold(c, self.n_folds) to make it possible to not crash even # if the data is not 100% stratifiable for all the labels # (we use a warning instead of raising an exception) # If this is the case, let's trim it: test_split = test_split[test_split < len(label_test_folds)] label_test_folds[test_split] = test_fold_idx test_folds[y == label] = label_test_folds self.test_folds = test_folds self.y = y def _iter_test_masks(self): for i in range(self.n_folds): yield self.test_folds == i def __repr__(self): return '%s.%s(labels=%s, n_folds=%i, shuffle=%s, random_state=%s)' % ( self.__class__.__module__, self.__class__.__name__, self.y, self.n_folds, self.shuffle, self.random_state, ) def __len__(self): return self.n_folds class LeaveOneLabelOut(_PartitionIterator): """Leave-One-Label_Out cross-validation iterator Provides train/test indices to split data according to a third-party provided label. This label information can be used to encode arbitrary domain specific stratifications of the samples as integers. For instance the labels could be the year of collection of the samples and thus allow for cross-validation against time-based splits. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- labels : array-like of int with shape (n_samples,) Arbitrary domain-specific stratification of the data to be used to draw the splits. Examples -------- >>> from sklearn import cross_validation >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) >>> y = np.array([1, 2, 1, 2]) >>> labels = np.array([1, 1, 2, 2]) >>> lol = cross_validation.LeaveOneLabelOut(labels) >>> len(lol) 2 >>> print(lol) sklearn.cross_validation.LeaveOneLabelOut(labels=[1 1 2 2]) >>> for train_index, test_index in lol: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... print(X_train, X_test, y_train, y_test) TRAIN: [2 3] TEST: [0 1] [[5 6] [7 8]] [[1 2] [3 4]] [1 2] [1 2] TRAIN: [0 1] TEST: [2 3] [[1 2] [3 4]] [[5 6] [7 8]] [1 2] [1 2] See also -------- LabelKFold: K-fold iterator variant with non-overlapping labels. """ def __init__(self, labels): super(LeaveOneLabelOut, self).__init__(len(labels)) # We make a copy of labels to avoid side-effects during iteration self.labels = np.array(labels, copy=True) self.unique_labels = np.unique(labels) self.n_unique_labels = len(self.unique_labels) def _iter_test_masks(self): for i in self.unique_labels: yield self.labels == i def __repr__(self): return '%s.%s(labels=%s)' % ( self.__class__.__module__, self.__class__.__name__, self.labels, ) def __len__(self): return self.n_unique_labels class LeavePLabelOut(_PartitionIterator): """Leave-P-Label_Out cross-validation iterator Provides train/test indices to split data according to a third-party provided label. This label information can be used to encode arbitrary domain specific stratifications of the samples as integers. For instance the labels could be the year of collection of the samples and thus allow for cross-validation against time-based splits. The difference between LeavePLabelOut and LeaveOneLabelOut is that the former builds the test sets with all the samples assigned to ``p`` different values of the labels while the latter uses samples all assigned the same labels. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- labels : array-like of int with shape (n_samples,) Arbitrary domain-specific stratification of the data to be used to draw the splits. p : int Number of samples to leave out in the test split. Examples -------- >>> from sklearn import cross_validation >>> X = np.array([[1, 2], [3, 4], [5, 6]]) >>> y = np.array([1, 2, 1]) >>> labels = np.array([1, 2, 3]) >>> lpl = cross_validation.LeavePLabelOut(labels, p=2) >>> len(lpl) 3 >>> print(lpl) sklearn.cross_validation.LeavePLabelOut(labels=[1 2 3], p=2) >>> for train_index, test_index in lpl: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... print(X_train, X_test, y_train, y_test) TRAIN: [2] TEST: [0 1] [[5 6]] [[1 2] [3 4]] [1] [1 2] TRAIN: [1] TEST: [0 2] [[3 4]] [[1 2] [5 6]] [2] [1 1] TRAIN: [0] TEST: [1 2] [[1 2]] [[3 4] [5 6]] [1] [2 1] See also -------- LabelKFold: K-fold iterator variant with non-overlapping labels. """ def __init__(self, labels, p): # We make a copy of labels to avoid side-effects during iteration super(LeavePLabelOut, self).__init__(len(labels)) self.labels = np.array(labels, copy=True) self.unique_labels = np.unique(labels) self.n_unique_labels = len(self.unique_labels) self.p = p def _iter_test_masks(self): comb = combinations(range(self.n_unique_labels), self.p) for idx in comb: test_index = self._empty_mask() idx = np.array(idx) for l in self.unique_labels[idx]: test_index[self.labels == l] = True yield test_index def __repr__(self): return '%s.%s(labels=%s, p=%s)' % ( self.__class__.__module__, self.__class__.__name__, self.labels, self.p, ) def __len__(self): return int(factorial(self.n_unique_labels) / factorial(self.n_unique_labels - self.p) / factorial(self.p)) class BaseShuffleSplit(with_metaclass(ABCMeta)): """Base class for ShuffleSplit and StratifiedShuffleSplit""" def __init__(self, n, n_iter=10, test_size=0.1, train_size=None, random_state=None): self.n = n self.n_iter = n_iter self.test_size = test_size self.train_size = train_size self.random_state = random_state self.n_train, self.n_test = _validate_shuffle_split(n, test_size, train_size) def __iter__(self): for train, test in self._iter_indices(): yield train, test return @abstractmethod def _iter_indices(self): """Generate (train, test) indices""" class ShuffleSplit(BaseShuffleSplit): """Random permutation cross-validation iterator. Yields indices to split data into training and test sets. Note: contrary to other cross-validation strategies, random splits do not guarantee that all folds will be different, although this is still very likely for sizeable datasets. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n : int Total number of elements in the dataset. n_iter : int (default 10) Number of re-shuffling & splitting iterations. test_size : float (default 0.1), int, or None If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples. If None, the value is automatically set to the complement of the train size. train_size : float, int, or None (default is None) If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. If int, represents the absolute number of train samples. If None, the value is automatically set to the complement of the test size. random_state : int or RandomState Pseudo-random number generator state used for random sampling. Examples -------- >>> from sklearn import cross_validation >>> rs = cross_validation.ShuffleSplit(4, n_iter=3, ... test_size=.25, random_state=0) >>> len(rs) 3 >>> print(rs) ... # doctest: +ELLIPSIS ShuffleSplit(4, n_iter=3, test_size=0.25, ...) >>> for train_index, test_index in rs: ... print("TRAIN:", train_index, "TEST:", test_index) ... TRAIN: [3 1 0] TEST: [2] TRAIN: [2 1 3] TEST: [0] TRAIN: [0 2 1] TEST: [3] >>> rs = cross_validation.ShuffleSplit(4, n_iter=3, ... train_size=0.5, test_size=.25, random_state=0) >>> for train_index, test_index in rs: ... print("TRAIN:", train_index, "TEST:", test_index) ... TRAIN: [3 1] TEST: [2] TRAIN: [2 1] TEST: [0] TRAIN: [0 2] TEST: [3] """ def _iter_indices(self): rng = check_random_state(self.random_state) for i in range(self.n_iter): # random partition permutation = rng.permutation(self.n) ind_test = permutation[:self.n_test] ind_train = permutation[self.n_test:self.n_test + self.n_train] yield ind_train, ind_test def __repr__(self): return ('%s(%d, n_iter=%d, test_size=%s, ' 'random_state=%s)' % ( self.__class__.__name__, self.n, self.n_iter, str(self.test_size), self.random_state, )) def __len__(self): return self.n_iter def _validate_shuffle_split(n, test_size, train_size): if test_size is None and train_size is None: raise ValueError( 'test_size and train_size can not both be None') if test_size is not None: if np.asarray(test_size).dtype.kind == 'f': if test_size >= 1.: raise ValueError( 'test_size=%f should be smaller ' 'than 1.0 or be an integer' % test_size) elif np.asarray(test_size).dtype.kind == 'i': if test_size >= n: raise ValueError( 'test_size=%d should be smaller ' 'than the number of samples %d' % (test_size, n)) else: raise ValueError("Invalid value for test_size: %r" % test_size) if train_size is not None: if np.asarray(train_size).dtype.kind == 'f': if train_size >= 1.: raise ValueError("train_size=%f should be smaller " "than 1.0 or be an integer" % train_size) elif np.asarray(test_size).dtype.kind == 'f' and \ train_size + test_size > 1.: raise ValueError('The sum of test_size and train_size = %f, ' 'should be smaller than 1.0. Reduce ' 'test_size and/or train_size.' % (train_size + test_size)) elif np.asarray(train_size).dtype.kind == 'i': if train_size >= n: raise ValueError("train_size=%d should be smaller " "than the number of samples %d" % (train_size, n)) else: raise ValueError("Invalid value for train_size: %r" % train_size) if np.asarray(test_size).dtype.kind == 'f': n_test = ceil(test_size * n) elif np.asarray(test_size).dtype.kind == 'i': n_test = float(test_size) if train_size is None: n_train = n - n_test else: if np.asarray(train_size).dtype.kind == 'f': n_train = floor(train_size * n) else: n_train = float(train_size) if test_size is None: n_test = n - n_train if n_train + n_test > n: raise ValueError('The sum of train_size and test_size = %d, ' 'should be smaller than the number of ' 'samples %d. Reduce test_size and/or ' 'train_size.' % (n_train + n_test, n)) return int(n_train), int(n_test) class StratifiedShuffleSplit(BaseShuffleSplit): """Stratified ShuffleSplit cross validation iterator Provides train/test indices to split data in train test sets. This cross-validation object is a merge of StratifiedKFold and ShuffleSplit, which returns stratified randomized folds. The folds are made by preserving the percentage of samples for each class. Note: like the ShuffleSplit strategy, stratified random splits do not guarantee that all folds will be different, although this is still very likely for sizeable datasets. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- y : array, [n_samples] Labels of samples. n_iter : int (default 10) Number of re-shuffling & splitting iterations. test_size : float (default 0.1), int, or None If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples. If None, the value is automatically set to the complement of the train size. train_size : float, int, or None (default is None) If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. If int, represents the absolute number of train samples. If None, the value is automatically set to the complement of the test size. random_state : int or RandomState Pseudo-random number generator state used for random sampling. Examples -------- >>> from sklearn.cross_validation import StratifiedShuffleSplit >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([0, 0, 1, 1]) >>> sss = StratifiedShuffleSplit(y, 3, test_size=0.5, random_state=0) >>> len(sss) 3 >>> print(sss) # doctest: +ELLIPSIS StratifiedShuffleSplit(labels=[0 0 1 1], n_iter=3, ...) >>> for train_index, test_index in sss: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [1 2] TEST: [3 0] TRAIN: [0 2] TEST: [1 3] TRAIN: [0 2] TEST: [3 1] """ def __init__(self, y, n_iter=10, test_size=0.1, train_size=None, random_state=None): super(StratifiedShuffleSplit, self).__init__( len(y), n_iter, test_size, train_size, random_state) self.y = np.array(y) self.classes, self.y_indices = np.unique(y, return_inverse=True) n_cls = self.classes.shape[0] if np.min(bincount(self.y_indices)) < 2: raise ValueError("The least populated class in y has only 1" " member, which is too few. The minimum" " number of labels for any class cannot" " be less than 2.") if self.n_train < n_cls: raise ValueError('The train_size = %d should be greater or ' 'equal to the number of classes = %d' % (self.n_train, n_cls)) if self.n_test < n_cls: raise ValueError('The test_size = %d should be greater or ' 'equal to the number of classes = %d' % (self.n_test, n_cls)) def _iter_indices(self): rng = check_random_state(self.random_state) cls_count = bincount(self.y_indices) p_i = cls_count / float(self.n) n_i = np.round(self.n_train * p_i).astype(int) t_i = np.minimum(cls_count - n_i, np.round(self.n_test * p_i).astype(int)) for n in range(self.n_iter): train = [] test = [] for i, cls in enumerate(self.classes): permutation = rng.permutation(cls_count[i]) cls_i = np.where((self.y == cls))[0][permutation] train.extend(cls_i[:n_i[i]]) test.extend(cls_i[n_i[i]:n_i[i] + t_i[i]]) # Because of rounding issues (as n_train and n_test are not # dividers of the number of elements per class), we may end # up here with less samples in train and test than asked for. if len(train) < self.n_train or len(test) < self.n_test: # We complete by affecting randomly the missing indexes missing_idx = np.where(bincount(train + test, minlength=len(self.y)) == 0, )[0] missing_idx = rng.permutation(missing_idx) train.extend(missing_idx[:(self.n_train - len(train))]) test.extend(missing_idx[-(self.n_test - len(test)):]) train = rng.permutation(train) test = rng.permutation(test) yield train, test def __repr__(self): return ('%s(labels=%s, n_iter=%d, test_size=%s, ' 'random_state=%s)' % ( self.__class__.__name__, self.y, self.n_iter, str(self.test_size), self.random_state, )) def __len__(self): return self.n_iter class PredefinedSplit(_PartitionIterator): """Predefined split cross validation iterator Splits the data into training/test set folds according to a predefined scheme. Each sample can be assigned to at most one test set fold, as specified by the user through the ``test_fold`` parameter. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- test_fold : "array-like, shape (n_samples,) test_fold[i] gives the test set fold of sample i. A value of -1 indicates that the corresponding sample is not part of any test set folds, but will instead always be put into the training fold. Examples -------- >>> from sklearn.cross_validation import PredefinedSplit >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([0, 0, 1, 1]) >>> ps = PredefinedSplit(test_fold=[0, 1, -1, 1]) >>> len(ps) 2 >>> print(ps) # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS sklearn.cross_validation.PredefinedSplit(test_fold=[ 0 1 -1 1]) >>> for train_index, test_index in ps: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [1 2 3] TEST: [0] TRAIN: [0 2] TEST: [1 3] """ def __init__(self, test_fold): super(PredefinedSplit, self).__init__(len(test_fold)) self.test_fold = np.array(test_fold, dtype=np.int) self.test_fold = column_or_1d(self.test_fold) self.unique_folds = np.unique(self.test_fold) self.unique_folds = self.unique_folds[self.unique_folds != -1] def _iter_test_indices(self): for f in self.unique_folds: yield np.where(self.test_fold == f)[0] def __repr__(self): return '%s.%s(test_fold=%s)' % ( self.__class__.__module__, self.__class__.__name__, self.test_fold) def __len__(self): return len(self.unique_folds) class LabelShuffleSplit(ShuffleSplit): '''Shuffle-Labels-Out cross-validation iterator Provides randomized train/test indices to split data according to a third-party provided label. This label information can be used to encode arbitrary domain specific stratifications of the samples as integers. For instance the labels could be the year of collection of the samples and thus allow for cross-validation against time-based splits. The difference between LeavePLabelOut and LabelShuffleSplit is that the former generates splits using all subsets of size ``p`` unique labels, whereas LabelShuffleSplit generates a user-determined number of random test splits, each with a user-determined fraction of unique labels. For example, a less computationally intensive alternative to ``LeavePLabelOut(labels, p=10)`` would be ``LabelShuffleSplit(labels, test_size=10, n_iter=100)``. Note: The parameters ``test_size`` and ``train_size`` refer to labels, and not to samples, as in ShuffleSplit. Parameters ---------- labels : array, [n_samples] Labels of samples n_iter : int (default 5) Number of re-shuffling & splitting iterations. test_size : float (default 0.2), int, or None If float, should be between 0.0 and 1.0 and represent the proportion of the labels to include in the test split. If int, represents the absolute number of test labels. If None, the value is automatically set to the complement of the train size. train_size : float, int, or None (default is None) If float, should be between 0.0 and 1.0 and represent the proportion of the labels to include in the train split. If int, represents the absolute number of train labels. If None, the value is automatically set to the complement of the test size. random_state : int or RandomState Pseudo-random number generator state used for random sampling. ''' def __init__(self, labels, n_iter=5, test_size=0.2, train_size=None, random_state=None): classes, label_indices = np.unique(labels, return_inverse=True) super(LabelShuffleSplit, self).__init__( len(classes), n_iter=n_iter, test_size=test_size, train_size=train_size, random_state=random_state) self.labels = labels self.classes = classes self.label_indices = label_indices def __repr__(self): return ('%s(labels=%s, n_iter=%d, test_size=%s, ' 'random_state=%s)' % ( self.__class__.__name__, self.labels, self.n_iter, str(self.test_size), self.random_state, )) def __len__(self): return self.n_iter def _iter_indices(self): for label_train, label_test in super(LabelShuffleSplit, self)._iter_indices(): # these are the indices of classes in the partition # invert them into data indices train = np.flatnonzero(np.in1d(self.label_indices, label_train)) test = np.flatnonzero(np.in1d(self.label_indices, label_test)) yield train, test ############################################################################## def _index_param_value(X, v, indices): """Private helper function for parameter value indexing.""" if not _is_arraylike(v) or _num_samples(v) != _num_samples(X): # pass through: skip indexing return v if sp.issparse(v): v = v.tocsr() return safe_indexing(v, indices) def cross_val_predict(estimator, X, y=None, cv=None, n_jobs=1, verbose=0, fit_params=None, pre_dispatch='2*n_jobs'): """Generate cross-validated estimates for each input data point Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- estimator : estimator object implementing 'fit' and 'predict' The object to use to fit the data. X : array-like The data to fit. Can be, for example a list, or an array at least 2d. y : array-like, optional, default: None The target variable to try to predict in the case of supervised learning. cv : integer or cross-validation generator, optional, default=3 A cross-validation generator to use. If int, determines the number of folds in StratifiedKFold if estimator is a classifier and the target y is binary or multiclass, or the number of folds in KFold otherwise. Specific cross-validation objects can be passed, see sklearn.cross_validation module for the list of possible objects. This generator must include all elements in the test set exactly once. Otherwise, a ValueError is raised. n_jobs : integer, optional The number of CPUs to use to do the computation. -1 means 'all CPUs'. verbose : integer, optional The verbosity level. fit_params : dict, optional Parameters to pass to the fit method of the estimator. pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' Returns ------- preds : ndarray This is the result of calling 'predict' """ X, y = indexable(X, y) cv = check_cv(cv, X, y, classifier=is_classifier(estimator)) # We clone the estimator to make sure that all the folds are # independent, and that it is pickle-able. parallel = Parallel(n_jobs=n_jobs, verbose=verbose, pre_dispatch=pre_dispatch) preds_blocks = parallel(delayed(_fit_and_predict)(clone(estimator), X, y, train, test, verbose, fit_params) for train, test in cv) preds = [p for p, _ in preds_blocks] locs = np.concatenate([loc for _, loc in preds_blocks]) if not _check_is_partition(locs, _num_samples(X)): raise ValueError('cross_val_predict only works for partitions') inv_locs = np.empty(len(locs), dtype=int) inv_locs[locs] = np.arange(len(locs)) # Check for sparse predictions if sp.issparse(preds[0]): preds = sp.vstack(preds, format=preds[0].format) else: preds = np.concatenate(preds) return preds[inv_locs] def _fit_and_predict(estimator, X, y, train, test, verbose, fit_params): """Fit estimator and predict values for a given dataset split. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- estimator : estimator object implementing 'fit' and 'predict' The object to use to fit the data. X : array-like of shape at least 2D The data to fit. y : array-like, optional, default: None The target variable to try to predict in the case of supervised learning. train : array-like, shape (n_train_samples,) Indices of training samples. test : array-like, shape (n_test_samples,) Indices of test samples. verbose : integer The verbosity level. fit_params : dict or None Parameters that will be passed to ``estimator.fit``. Returns ------- preds : sequence Result of calling 'estimator.predict' test : array-like This is the value of the test parameter """ # Adjust length of sample weights fit_params = fit_params if fit_params is not None else {} fit_params = dict([(k, _index_param_value(X, v, train)) for k, v in fit_params.items()]) X_train, y_train = _safe_split(estimator, X, y, train) X_test, _ = _safe_split(estimator, X, y, test, train) if y_train is None: estimator.fit(X_train, **fit_params) else: estimator.fit(X_train, y_train, **fit_params) preds = estimator.predict(X_test) return preds, test def _check_is_partition(locs, n): """Check whether locs is a reordering of the array np.arange(n) Parameters ---------- locs : ndarray integer array to test n : int number of expected elements Returns ------- is_partition : bool True iff sorted(locs) is range(n) """ if len(locs) != n: return False hit = np.zeros(n, bool) hit[locs] = True if not np.all(hit): return False return True def cross_val_score(estimator, X, y=None, scoring=None, cv=None, n_jobs=1, verbose=0, fit_params=None, pre_dispatch='2*n_jobs'): """Evaluate a score by cross-validation Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- estimator : estimator object implementing 'fit' The object to use to fit the data. X : array-like The data to fit. Can be, for example a list, or an array at least 2d. y : array-like, optional, default: None The target variable to try to predict in the case of supervised learning. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. cv : integer or cross-validation generator, optional, default=3 A cross-validation generator to use. If int, determines the number of folds in StratifiedKFold if estimator is a classifier and the target y is binary or multiclass, or the number of folds in KFold otherwise. Specific cross-validation objects can be passed, see sklearn.cross_validation module for the list of possible objects. n_jobs : integer, optional The number of CPUs to use to do the computation. -1 means 'all CPUs'. verbose : integer, optional The verbosity level. fit_params : dict, optional Parameters to pass to the fit method of the estimator. pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' Returns ------- scores : array of float, shape=(len(list(cv)),) Array of scores of the estimator for each run of the cross validation. """ X, y = indexable(X, y) cv = check_cv(cv, X, y, classifier=is_classifier(estimator)) scorer = check_scoring(estimator, scoring=scoring) # We clone the estimator to make sure that all the folds are # independent, and that it is pickle-able. parallel = Parallel(n_jobs=n_jobs, verbose=verbose, pre_dispatch=pre_dispatch) scores = parallel(delayed(_fit_and_score)(clone(estimator), X, y, scorer, train, test, verbose, None, fit_params) for train, test in cv) return np.array(scores)[:, 0] class FitFailedWarning(RuntimeWarning): pass def _fit_and_score(estimator, X, y, scorer, train, test, verbose, parameters, fit_params, return_train_score=False, return_parameters=False, error_score='raise'): """Fit estimator and compute scores for a given dataset split. Parameters ---------- estimator : estimator object implementing 'fit' The object to use to fit the data. X : array-like of shape at least 2D The data to fit. y : array-like, optional, default: None The target variable to try to predict in the case of supervised learning. scorer : callable A scorer callable object / function with signature ``scorer(estimator, X, y)``. train : array-like, shape (n_train_samples,) Indices of training samples. test : array-like, shape (n_test_samples,) Indices of test samples. verbose : integer The verbosity level. error_score : 'raise' (default) or numeric Value to assign to the score if an error occurs in estimator fitting. If set to 'raise', the error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter does not affect the refit step, which will always raise the error. parameters : dict or None Parameters to be set on the estimator. fit_params : dict or None Parameters that will be passed to ``estimator.fit``. return_train_score : boolean, optional, default: False Compute and return score on training set. return_parameters : boolean, optional, default: False Return parameters that has been used for the estimator. Returns ------- train_score : float, optional Score on training set, returned only if `return_train_score` is `True`. test_score : float Score on test set. n_test_samples : int Number of test samples. scoring_time : float Time spent for fitting and scoring in seconds. parameters : dict or None, optional The parameters that have been evaluated. """ if verbose > 1: if parameters is None: msg = "no parameters to be set" else: msg = '%s' % (', '.join('%s=%s' % (k, v) for k, v in parameters.items())) print("[CV] %s %s" % (msg, (64 - len(msg)) * '.')) # Adjust length of sample weights fit_params = fit_params if fit_params is not None else {} fit_params = dict([(k, _index_param_value(X, v, train)) for k, v in fit_params.items()]) if parameters is not None: estimator.set_params(**parameters) start_time = time.time() X_train, y_train = _safe_split(estimator, X, y, train) X_test, y_test = _safe_split(estimator, X, y, test, train) try: if y_train is None: estimator.fit(X_train, **fit_params) else: estimator.fit(X_train, y_train, **fit_params) except Exception as e: if error_score == 'raise': raise elif isinstance(error_score, numbers.Number): test_score = error_score if return_train_score: train_score = error_score warnings.warn("Classifier fit failed. The score on this train-test" " partition for these parameters will be set to %f. " "Details: \n%r" % (error_score, e), FitFailedWarning) else: raise ValueError("error_score must be the string 'raise' or a" " numeric value. (Hint: if using 'raise', please" " make sure that it has been spelled correctly.)" ) else: test_score = _score(estimator, X_test, y_test, scorer) if return_train_score: train_score = _score(estimator, X_train, y_train, scorer) scoring_time = time.time() - start_time if verbose > 2: msg += ", score=%f" % test_score if verbose > 1: end_msg = "%s -%s" % (msg, logger.short_format_time(scoring_time)) print("[CV] %s %s" % ((64 - len(end_msg)) * '.', end_msg)) ret = [train_score] if return_train_score else [] ret.extend([test_score, _num_samples(X_test), scoring_time]) if return_parameters: ret.append(parameters) return ret def _safe_split(estimator, X, y, indices, train_indices=None): """Create subset of dataset and properly handle kernels.""" if hasattr(estimator, 'kernel') and callable(estimator.kernel): # cannot compute the kernel values with custom function raise ValueError("Cannot use a custom kernel function. " "Precompute the kernel matrix instead.") if not hasattr(X, "shape"): if getattr(estimator, "_pairwise", False): raise ValueError("Precomputed kernels or affinity matrices have " "to be passed as arrays or sparse matrices.") X_subset = [X[idx] for idx in indices] else: if getattr(estimator, "_pairwise", False): # X is a precomputed square kernel matrix if X.shape[0] != X.shape[1]: raise ValueError("X should be a square kernel matrix") if train_indices is None: X_subset = X[np.ix_(indices, indices)] else: X_subset = X[np.ix_(indices, train_indices)] else: X_subset = safe_indexing(X, indices) if y is not None: y_subset = safe_indexing(y, indices) else: y_subset = None return X_subset, y_subset def _score(estimator, X_test, y_test, scorer): """Compute the score of an estimator on a given test set.""" if y_test is None: score = scorer(estimator, X_test) else: score = scorer(estimator, X_test, y_test) if not isinstance(score, numbers.Number): raise ValueError("scoring must return a number, got %s (%s) instead." % (str(score), type(score))) return score def _permutation_test_score(estimator, X, y, cv, scorer): """Auxiliary function for permutation_test_score""" avg_score = [] for train, test in cv: estimator.fit(X[train], y[train]) avg_score.append(scorer(estimator, X[test], y[test])) return np.mean(avg_score) def _shuffle(y, labels, random_state): """Return a shuffled copy of y eventually shuffle among same labels.""" if labels is None: ind = random_state.permutation(len(y)) else: ind = np.arange(len(labels)) for label in np.unique(labels): this_mask = (labels == label) ind[this_mask] = random_state.permutation(ind[this_mask]) return y[ind] def check_cv(cv, X=None, y=None, classifier=False): """Input checker utility for building a CV in a user friendly way. Parameters ---------- cv : int, a cv generator instance, or None The input specifying which cv generator to use. It can be an integer, in which case it is the number of folds in a KFold, None, in which case 3 fold is used, or another object, that will then be used as a cv generator. X : array-like The data the cross-val object will be applied on. y : array-like The target variable for a supervised learning problem. classifier : boolean optional Whether the task is a classification task, in which case stratified KFold will be used. Returns ------- checked_cv: a cross-validation generator instance. The return value is guaranteed to be a cv generator instance, whatever the input type. """ is_sparse = sp.issparse(X) if cv is None: cv = 3 if isinstance(cv, numbers.Integral): if classifier: if type_of_target(y) in ['binary', 'multiclass']: cv = StratifiedKFold(y, cv) else: cv = KFold(_num_samples(y), cv) else: if not is_sparse: n_samples = len(X) else: n_samples = X.shape[0] cv = KFold(n_samples, cv) return cv def permutation_test_score(estimator, X, y, cv=None, n_permutations=100, n_jobs=1, labels=None, random_state=0, verbose=0, scoring=None): """Evaluate the significance of a cross-validated score with permutations Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- estimator : estimator object implementing 'fit' The object to use to fit the data. X : array-like of shape at least 2D The data to fit. y : array-like The target variable to try to predict in the case of supervised learning. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. cv : integer or cross-validation generator, optional, default=3 A cross-validation generator to use. If int, determines the number of folds in StratifiedKFold if estimator is a classifier and the target y is binary or multiclass, or the number of folds in KFold otherwise. Specific cross-validation objects can be passed, see sklearn.cross_validation module for the list of possible objects. n_permutations : integer, optional Number of times to permute ``y``. n_jobs : integer, optional The number of CPUs to use to do the computation. -1 means 'all CPUs'. labels : array-like of shape [n_samples] (optional) Labels constrain the permutation among groups of samples with a same label. random_state : RandomState or an int seed (0 by default) A random number generator instance to define the state of the random permutations generator. verbose : integer, optional The verbosity level. Returns ------- score : float The true score without permuting targets. permutation_scores : array, shape (n_permutations,) The scores obtained for each permutations. pvalue : float The returned value equals p-value if `scoring` returns bigger numbers for better scores (e.g., accuracy_score). If `scoring` is rather a loss function (i.e. when lower is better such as with `mean_squared_error`) then this is actually the complement of the p-value: 1 - p-value. Notes ----- This function implements Test 1 in: Ojala and Garriga. Permutation Tests for Studying Classifier Performance. The Journal of Machine Learning Research (2010) vol. 11 """ X, y = indexable(X, y) cv = check_cv(cv, X, y, classifier=is_classifier(estimator)) scorer = check_scoring(estimator, scoring=scoring) random_state = check_random_state(random_state) # We clone the estimator to make sure that all the folds are # independent, and that it is pickle-able. score = _permutation_test_score(clone(estimator), X, y, cv, scorer) permutation_scores = Parallel(n_jobs=n_jobs, verbose=verbose)( delayed(_permutation_test_score)( clone(estimator), X, _shuffle(y, labels, random_state), cv, scorer) for _ in range(n_permutations)) permutation_scores = np.array(permutation_scores) pvalue = (np.sum(permutation_scores >= score) + 1.0) / (n_permutations + 1) return score, permutation_scores, pvalue permutation_test_score.__test__ = False # to avoid a pb with nosetests def train_test_split(*arrays, **options): """Split arrays or matrices into random train and test subsets Quick utility that wraps input validation and ``next(iter(ShuffleSplit(n_samples)))`` and application to input data into a single call for splitting (and optionally subsampling) data in a oneliner. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- *arrays : sequence of arrays or scipy.sparse matrices with same shape[0] Python lists or tuples occurring in arrays are converted to 1D numpy arrays. test_size : float, int, or None (default is None) If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples. If None, the value is automatically set to the complement of the train size. If train size is also None, test size is set to 0.25. train_size : float, int, or None (default is None) If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. If int, represents the absolute number of train samples. If None, the value is automatically set to the complement of the test size. random_state : int or RandomState Pseudo-random number generator state used for random sampling. stratify : array-like or None (default is None) If not None, data is split in a stratified fashion, using this as the labels array. Returns ------- splitting : list of arrays, length=2 * len(arrays) List containing train-test split of input array. Examples -------- >>> import numpy as np >>> from sklearn.cross_validation import train_test_split >>> X, y = np.arange(10).reshape((5, 2)), range(5) >>> X array([[0, 1], [2, 3], [4, 5], [6, 7], [8, 9]]) >>> list(y) [0, 1, 2, 3, 4] >>> X_train, X_test, y_train, y_test = train_test_split( ... X, y, test_size=0.33, random_state=42) ... >>> X_train array([[4, 5], [0, 1], [6, 7]]) >>> y_train [2, 0, 3] >>> X_test array([[2, 3], [8, 9]]) >>> y_test [1, 4] """ n_arrays = len(arrays) if n_arrays == 0: raise ValueError("At least one array required as input") test_size = options.pop('test_size', None) train_size = options.pop('train_size', None) random_state = options.pop('random_state', None) dtype = options.pop('dtype', None) if dtype is not None: warnings.warn("dtype option is ignored and will be removed in 0.18.", DeprecationWarning) allow_nd = options.pop('allow_nd', None) allow_lists = options.pop('allow_lists', None) stratify = options.pop('stratify', None) if allow_lists is not None: warnings.warn("The allow_lists option is deprecated and will be " "assumed True in 0.18 and removed.", DeprecationWarning) if options: raise TypeError("Invalid parameters passed: %s" % str(options)) if allow_nd is not None: warnings.warn("The allow_nd option is deprecated and will be " "assumed True in 0.18 and removed.", DeprecationWarning) if allow_lists is False or allow_nd is False: arrays = [check_array(x, 'csr', allow_nd=allow_nd, force_all_finite=False, ensure_2d=False) if x is not None else x for x in arrays] if test_size is None and train_size is None: test_size = 0.25 arrays = indexable(*arrays) if stratify is not None: cv = StratifiedShuffleSplit(stratify, test_size=test_size, train_size=train_size, random_state=random_state) else: n_samples = _num_samples(arrays[0]) cv = ShuffleSplit(n_samples, test_size=test_size, train_size=train_size, random_state=random_state) train, test = next(iter(cv)) return list(chain.from_iterable((safe_indexing(a, train), safe_indexing(a, test)) for a in arrays)) train_test_split.__test__ = False # to avoid a pb with nosetests
bsd-3-clause
sinkpoint/dipy
doc/examples/simulate_multi_tensor.py
16
2546
""" ====================== MultiTensor Simulation ====================== In this example we show how someone can simulate the signal and the ODF of a single voxel using a MultiTensor. """ import numpy as np from dipy.sims.voxel import (multi_tensor, multi_tensor_odf, single_tensor_odf, all_tensor_evecs) from dipy.data import get_sphere """ For the simulation we will need a GradientTable with the b-values and b-vectors Here we use the one we created in :ref:`example_gradients_spheres`. """ from gradients_spheres import gtab """ In ``mevals`` we save the eigenvalues of each tensor. """ mevals = np.array([[0.0015, 0.0003, 0.0003], [0.0015, 0.0003, 0.0003]]) """ In ``angles`` we save in polar coordinates (:math:`\theta, \phi`) the principal axis of each tensor. """ angles = [(0, 0), (60, 0)] """ In ``fractions`` we save the percentage of the contribution of each tensor. """ fractions = [50, 50] """ The function ``multi_tensor`` will return the simulated signal and an array with the principal axes of the tensors in cartesian coordinates. """ signal, sticks = multi_tensor(gtab, mevals, S0=100, angles=angles, fractions=fractions, snr=None) """ We can also add rician noise with a specific SNR. """ signal_noisy, sticks = multi_tensor(gtab, mevals, S0=100, angles=angles, fractions=fractions, snr=20) import matplotlib.pyplot as plt plt.plot(signal, label='noiseless') plt.plot(signal_noisy, label='with noise') plt.legend() plt.show() plt.savefig('simulated_signal.png') """ .. figure:: simulated_signal.png :align: center **Simulated MultiTensor signal** """ """ For the ODF simulation we will need a sphere. Because we are interested in a simulation of only a single voxel, we can use a sphere with very high resolution. We generate that by subdividing the triangles of one of Dipy's cached spheres, which we can read in the following way. """ sphere = get_sphere('symmetric724') sphere = sphere.subdivide(2) odf = multi_tensor_odf(sphere.vertices, mevals, angles, fractions) from dipy.viz import fvtk ren = fvtk.ren() odf_actor = fvtk.sphere_funcs(odf, sphere) odf_actor.RotateX(90) fvtk.add(ren, odf_actor) print('Saving illustration as multi_tensor_simulation') fvtk.record(ren, out_path='multi_tensor_simulation.png', size=(300, 300)) """ .. figure:: multi_tensor_simulation.png :align: center **Simulating a MultiTensor ODF** """
bsd-3-clause
pkaspa/trading-with-python
historicDataDownloader/historicDataDownloader.py
77
4526
''' Created on 4 aug. 2012 Copyright: Jev Kuznetsov License: BSD a module for downloading historic data from IB ''' import ib import pandas from ib.ext.Contract import Contract from ib.opt import ibConnection, message from time import sleep import tradingWithPython.lib.logger as logger from pandas import DataFrame, Index import datetime as dt from timeKeeper import TimeKeeper import time timeFormat = "%Y%m%d %H:%M:%S" class DataHandler(object): ''' handles incoming messages ''' def __init__(self,tws): self._log = logger.getLogger('DH') tws.register(self.msgHandler,message.HistoricalData) self.reset() def reset(self): self._log.debug('Resetting data') self.dataReady = False self._timestamp = [] self._data = {'open':[],'high':[],'low':[],'close':[],'volume':[],'count':[],'WAP':[]} def msgHandler(self,msg): #print '[msg]', msg if msg.date[:8] == 'finished': self._log.debug('Data recieved') self.dataReady = True return self._timestamp.append(dt.datetime.strptime(msg.date,timeFormat)) for k in self._data.keys(): self._data[k].append(getattr(msg, k)) @property def data(self): ''' return downloaded data as a DataFrame ''' df = DataFrame(data=self._data,index=Index(self._timestamp)) return df class Downloader(object): def __init__(self,debug=False): self._log = logger.getLogger('DLD') self._log.debug('Initializing data dwonloader. Pandas version={0}, ibpy version:{1}'.format(pandas.__version__,ib.version)) self.tws = ibConnection() self._dataHandler = DataHandler(self.tws) if debug: self.tws.registerAll(self._debugHandler) self.tws.unregister(self._debugHandler,message.HistoricalData) self._log.debug('Connecting to tws') self.tws.connect() self._timeKeeper = TimeKeeper() # keep track of past requests self._reqId = 1 # current request id def _debugHandler(self,msg): print '[debug]', msg def requestData(self,contract,endDateTime,durationStr='1800 S',barSizeSetting='1 secs',whatToShow='TRADES',useRTH=1,formatDate=1): self._log.debug('Requesting data for %s end time %s.' % (contract.m_symbol,endDateTime)) while self._timeKeeper.nrRequests(timeSpan=600) > 59: print 'Too many requests done. Waiting... ' time.sleep(1) self._timeKeeper.addRequest() self._dataHandler.reset() self.tws.reqHistoricalData(self._reqId,contract,endDateTime,durationStr,barSizeSetting,whatToShow,useRTH,formatDate) self._reqId+=1 #wait for data startTime = time.time() timeout = 3 while not self._dataHandler.dataReady and (time.time()-startTime < timeout): sleep(2) if not self._dataHandler.dataReady: self._log.error('Data timeout') print self._dataHandler.data return self._dataHandler.data def getIntradayData(self,contract, dateTuple ): ''' get full day data on 1-s interval date: a tuple of (yyyy,mm,dd) ''' openTime = dt.datetime(*dateTuple)+dt.timedelta(hours=16) closeTime = dt.datetime(*dateTuple)+dt.timedelta(hours=22) timeRange = pandas.date_range(openTime,closeTime,freq='30min') datasets = [] for t in timeRange: datasets.append(self.requestData(contract,t.strftime(timeFormat))) return pandas.concat(datasets) def disconnect(self): self.tws.disconnect() if __name__=='__main__': dl = Downloader(debug=True) c = Contract() c.m_symbol = 'SPY' c.m_secType = 'STK' c.m_exchange = 'SMART' c.m_currency = 'USD' df = dl.getIntradayData(c, (2012,8,6)) df.to_csv('test.csv') # df = dl.requestData(c, '20120803 22:00:00') # df.to_csv('test1.csv') # df = dl.requestData(c, '20120803 21:30:00') # df.to_csv('test2.csv') dl.disconnect() print 'Done.'
bsd-3-clause
rbalda/neural_ocr
env/lib/python2.7/site-packages/scipy/integrate/odepack.py
62
9420
# Author: Travis Oliphant from __future__ import division, print_function, absolute_import __all__ = ['odeint'] from . import _odepack from copy import copy import warnings class ODEintWarning(Warning): pass _msgs = {2: "Integration successful.", 1: "Nothing was done; the integration time was 0.", -1: "Excess work done on this call (perhaps wrong Dfun type).", -2: "Excess accuracy requested (tolerances too small).", -3: "Illegal input detected (internal error).", -4: "Repeated error test failures (internal error).", -5: "Repeated convergence failures (perhaps bad Jacobian or tolerances).", -6: "Error weight became zero during problem.", -7: "Internal workspace insufficient to finish (internal error)." } def odeint(func, y0, t, args=(), Dfun=None, col_deriv=0, full_output=0, ml=None, mu=None, rtol=None, atol=None, tcrit=None, h0=0.0, hmax=0.0, hmin=0.0, ixpr=0, mxstep=0, mxhnil=0, mxordn=12, mxords=5, printmessg=0): """ Integrate a system of ordinary differential equations. Solve a system of ordinary differential equations using lsoda from the FORTRAN library odepack. Solves the initial value problem for stiff or non-stiff systems of first order ode-s:: dy/dt = func(y, t0, ...) where y can be a vector. *Note*: The first two arguments of ``func(y, t0, ...)`` are in the opposite order of the arguments in the system definition function used by the `scipy.integrate.ode` class. Parameters ---------- func : callable(y, t0, ...) Computes the derivative of y at t0. y0 : array Initial condition on y (can be a vector). t : array A sequence of time points for which to solve for y. The initial value point should be the first element of this sequence. args : tuple, optional Extra arguments to pass to function. Dfun : callable(y, t0, ...) Gradient (Jacobian) of `func`. col_deriv : bool, optional True if `Dfun` defines derivatives down columns (faster), otherwise `Dfun` should define derivatives across rows. full_output : bool, optional True if to return a dictionary of optional outputs as the second output printmessg : bool, optional Whether to print the convergence message Returns ------- y : array, shape (len(t), len(y0)) Array containing the value of y for each desired time in t, with the initial value `y0` in the first row. infodict : dict, only returned if full_output == True Dictionary containing additional output information ======= ============================================================ key meaning ======= ============================================================ 'hu' vector of step sizes successfully used for each time step. 'tcur' vector with the value of t reached for each time step. (will always be at least as large as the input times). 'tolsf' vector of tolerance scale factors, greater than 1.0, computed when a request for too much accuracy was detected. 'tsw' value of t at the time of the last method switch (given for each time step) 'nst' cumulative number of time steps 'nfe' cumulative number of function evaluations for each time step 'nje' cumulative number of jacobian evaluations for each time step 'nqu' a vector of method orders for each successful step. 'imxer' index of the component of largest magnitude in the weighted local error vector (e / ewt) on an error return, -1 otherwise. 'lenrw' the length of the double work array required. 'leniw' the length of integer work array required. 'mused' a vector of method indicators for each successful time step: 1: adams (nonstiff), 2: bdf (stiff) ======= ============================================================ Other Parameters ---------------- ml, mu : int, optional If either of these are not None or non-negative, then the Jacobian is assumed to be banded. These give the number of lower and upper non-zero diagonals in this banded matrix. For the banded case, `Dfun` should return a matrix whose rows contain the non-zero bands (starting with the lowest diagonal). Thus, the return matrix `jac` from `Dfun` should have shape ``(ml + mu + 1, len(y0))`` when ``ml >=0`` or ``mu >=0``. The data in `jac` must be stored such that ``jac[i - j + mu, j]`` holds the derivative of the `i`th equation with respect to the `j`th state variable. If `col_deriv` is True, the transpose of this `jac` must be returned. rtol, atol : float, optional The input parameters `rtol` and `atol` determine the error control performed by the solver. The solver will control the vector, e, of estimated local errors in y, according to an inequality of the form ``max-norm of (e / ewt) <= 1``, where ewt is a vector of positive error weights computed as ``ewt = rtol * abs(y) + atol``. rtol and atol can be either vectors the same length as y or scalars. Defaults to 1.49012e-8. tcrit : ndarray, optional Vector of critical points (e.g. singularities) where integration care should be taken. h0 : float, (0: solver-determined), optional The step size to be attempted on the first step. hmax : float, (0: solver-determined), optional The maximum absolute step size allowed. hmin : float, (0: solver-determined), optional The minimum absolute step size allowed. ixpr : bool, optional Whether to generate extra printing at method switches. mxstep : int, (0: solver-determined), optional Maximum number of (internally defined) steps allowed for each integration point in t. mxhnil : int, (0: solver-determined), optional Maximum number of messages printed. mxordn : int, (0: solver-determined), optional Maximum order to be allowed for the non-stiff (Adams) method. mxords : int, (0: solver-determined), optional Maximum order to be allowed for the stiff (BDF) method. See Also -------- ode : a more object-oriented integrator based on VODE. quad : for finding the area under a curve. Examples -------- The second order differential equation for the angle `theta` of a pendulum acted on by gravity with friction can be written:: theta''(t) + b*theta'(t) + c*sin(theta(t)) = 0 where `b` and `c` are positive constants, and a prime (') denotes a derivative. To solve this equation with `odeint`, we must first convert it to a system of first order equations. By defining the angular velocity ``omega(t) = theta'(t)``, we obtain the system:: theta'(t) = omega(t) omega'(t) = -b*omega(t) - c*sin(theta(t)) Let `y` be the vector [`theta`, `omega`]. We implement this system in python as: >>> def pend(y, t, b, c): ... theta, omega = y ... dydt = [omega, -b*omega - c*np.sin(theta)] ... return dydt ... We assume the constants are `b` = 0.25 and `c` = 5.0: >>> b = 0.25 >>> c = 5.0 For initial conditions, we assume the pendulum is nearly vertical with `theta(0)` = `pi` - 0.1, and it initially at rest, so `omega(0)` = 0. Then the vector of initial conditions is >>> y0 = [np.pi - 0.1, 0.0] We generate a solution 101 evenly spaced samples in the interval 0 <= `t` <= 10. So our array of times is: >>> t = np.linspace(0, 10, 101) Call `odeint` to generate the solution. To pass the parameters `b` and `c` to `pend`, we give them to `odeint` using the `args` argument. >>> from scipy.integrate import odeint >>> sol = odeint(pend, y0, t, args=(b, c)) The solution is an array with shape (101, 2). The first column is `theta(t)`, and the second is `omega(t)`. The following code plots both components. >>> import matplotlib.pyplot as plt >>> plt.plot(t, sol[:, 0], 'b', label='theta(t)') >>> plt.plot(t, sol[:, 1], 'g', label='omega(t)') >>> plt.legend(loc='best') >>> plt.xlabel('t') >>> plt.grid() >>> plt.show() """ if ml is None: ml = -1 # changed to zero inside function call if mu is None: mu = -1 # changed to zero inside function call t = copy(t) y0 = copy(y0) output = _odepack.odeint(func, y0, t, args, Dfun, col_deriv, ml, mu, full_output, rtol, atol, tcrit, h0, hmax, hmin, ixpr, mxstep, mxhnil, mxordn, mxords) if output[-1] < 0: warning_msg = _msgs[output[-1]] + " Run with full_output = 1 to get quantitative information." warnings.warn(warning_msg, ODEintWarning) elif printmessg: warning_msg = _msgs[output[-1]] warnings.warn(warning_msg, ODEintWarning) if full_output: output[1]['message'] = _msgs[output[-1]] output = output[:-1] if len(output) == 1: return output[0] else: return output
mit
hetland/xray
xray/core/formatting.py
4
9115
from datetime import datetime, timedelta import functools import numpy as np import pandas as pd from .options import OPTIONS from .pycompat import (OrderedDict, iteritems, itervalues, unicode_type, bytes_type, dask_array_type) def pretty_print(x, numchars): """Given an object `x`, call `str(x)` and format the returned string so that it is numchars long, padding with trailing spaces or truncating with ellipses as necessary """ s = str(x) if len(s) > numchars: return s[:(numchars - 3)] + '...' else: return s + ' ' * (numchars - len(s)) def wrap_indent(text, start='', length=None): if length is None: length = len(start) indent = '\n' + ' ' * length return start + indent.join(x for x in text.splitlines()) def _get_indexer_at_least_n_items(shape, n_desired): assert 0 < n_desired <= np.prod(shape) cum_items = np.cumprod(shape[::-1]) n_steps = np.argmax(cum_items >= n_desired) stop = int(np.ceil(float(n_desired) / np.r_[1, cum_items][n_steps])) indexer = ((0,) * (len(shape) - 1 - n_steps) + (slice(stop),) + (slice(None),) * n_steps) return indexer def first_n_items(x, n_desired): """Returns the first n_desired items of an array""" # Unfortunately, we can't just do x.flat[:n_desired] here because x might # not be a numpy.ndarray. Moreover, access to elements of x could be very # expensive (e.g. if it's only available over DAP), so go out of our way to # get them in a single call to __getitem__ using only slices. if n_desired < 1: raise ValueError('must request at least one item') if x.size == 0: # work around for https://github.com/numpy/numpy/issues/5195 return [] if n_desired < x.size: indexer = _get_indexer_at_least_n_items(x.shape, n_desired) x = x[indexer] return np.asarray(x).flat[:n_desired] def format_timestamp(t): """Cast given object to a Timestamp and return a nicely formatted string""" datetime_str = str(pd.Timestamp(t)) try: date_str, time_str = datetime_str.split() except ValueError: # catch NaT and others that don't split nicely return datetime_str else: if time_str == '00:00:00': return date_str else: return '%sT%s' % (date_str, time_str) def format_timedelta(t, timedelta_format=None): """Cast given object to a Timestamp and return a nicely formatted string""" timedelta_str = str(pd.Timedelta(t)) try: days_str, time_str = timedelta_str.split(' days ') except ValueError: # catch NaT and others that don't split nicely return timedelta_str else: if timedelta_format == 'date': return days_str + ' days' elif timedelta_format == 'time': return time_str else: return timedelta_str def format_item(x, timedelta_format=None): """Returns a succinct summary of an object as a string""" if isinstance(x, (np.datetime64, datetime)): return format_timestamp(x) if isinstance(x, (np.timedelta64, timedelta)): return format_timedelta(x, timedelta_format=timedelta_format) elif isinstance(x, (unicode_type, bytes_type)): return repr(x) elif isinstance(x, (float, np.float)): return '{0:.4}'.format(x) else: return str(x) def format_items(x): """Returns a succinct summaries of all items in a sequence as strings""" x = np.asarray(x) timedelta_format = 'datetime' if np.issubdtype(x.dtype, np.timedelta64): x = np.asarray(x, dtype='timedelta64[ns]') day_part = (x[~pd.isnull(x)] .astype('timedelta64[D]') .astype('timedelta64[ns]')) time_needed = x != day_part day_needed = day_part != np.timedelta64(0, 'ns') if np.logical_not(day_needed).all(): timedelta_format = 'time' elif np.logical_not(time_needed).all(): timedelta_format = 'date' formatted = [format_item(xi, timedelta_format) for xi in x] return formatted def format_array_flat(items_ndarray, max_width): """Return a formatted string for as many items in the flattened version of items_ndarray that will fit within max_width characters """ # every item will take up at least two characters, but we always want to # print at least one item max_possibly_relevant = max(int(np.ceil(max_width / 2.0)), 1) relevant_items = first_n_items(items_ndarray, max_possibly_relevant) pprint_items = format_items(relevant_items) cum_len = np.cumsum([len(s) + 1 for s in pprint_items]) - 1 if (max_possibly_relevant < items_ndarray.size or (cum_len > max_width).any()): end_padding = ' ...' count = max(np.argmax((cum_len + len(end_padding)) > max_width), 1) pprint_items = pprint_items[:count] else: end_padding = '' pprint_str = ' '.join(pprint_items) + end_padding return pprint_str def _summarize_var_or_coord(name, var, col_width, show_values=True, marker=' ', max_width=None): if max_width is None: max_width = OPTIONS['display_width'] first_col = pretty_print(' %s %s ' % (marker, name), col_width) dims_str = '(%s) ' % ', '.join(map(str, var.dims)) if var.dims else '' front_str = first_col + dims_str + ('%s ' % var.dtype) if show_values: values_str = format_array_flat(var, max_width - len(front_str)) else: values_str = '...' return front_str + values_str def _not_remote(var): """Helper function to identify if array is positively identifiable as coming from a remote source. """ source = var.encoding.get('source') if source and source.startswith('http') and not var._in_memory: return False return True def summarize_var(name, var, col_width): show_values = _not_remote(var) return _summarize_var_or_coord(name, var, col_width, show_values) def summarize_coord(name, var, col_width): is_index = name in var.dims show_values = is_index or _not_remote(var) marker = '*' if is_index else ' ' return _summarize_var_or_coord(name, var, col_width, show_values, marker) def _maybe_truncate(obj, maxlen=500): s = str(obj) if len(s) > maxlen: s = s[:(maxlen - 3)] + '...' return s def summarize_attr(key, value, col_width=None): # ignore col_width for now to more clearly distinguish attributes return ' %s: %s' % (key, _maybe_truncate(value)) EMPTY_REPR = ' *empty*' def _calculate_col_width(mapping): max_name_length = max(len(str(k)) for k in mapping) if mapping else 0 col_width = max(max_name_length, 7) + 6 return col_width def _mapping_repr(mapping, title, summarizer, col_width=None): if col_width is None: col_width = _calculate_col_width(mapping) summary = ['%s:' % title] if mapping: summary += [summarizer(k, v, col_width) for k, v in mapping.items()] else: summary += [EMPTY_REPR] return '\n'.join(summary) coords_repr = functools.partial(_mapping_repr, title='Coordinates', summarizer=summarize_coord) vars_repr = functools.partial(_mapping_repr, title='Data variables', summarizer=summarize_var) attrs_repr = functools.partial(_mapping_repr, title='Attributes', summarizer=summarize_attr) def indexes_repr(indexes): summary = [] for k, v in indexes.items(): summary.append(wrap_indent(repr(v), '%s: ' % k)) return '\n'.join(summary) def array_repr(arr): # used for DataArray, Variable and Coordinate if hasattr(arr, 'name') and arr.name is not None: name_str = '%r ' % arr.name else: name_str = '' dim_summary = ', '.join('%s: %s' % (k, v) for k, v in zip(arr.dims, arr.shape)) summary = ['<xray.%s %s(%s)>'% (type(arr).__name__, name_str, dim_summary)] if isinstance(getattr(arr, 'variable', arr)._data, dask_array_type): summary.append(repr(arr.data)) elif arr._in_memory or arr.size < 1e5: summary.append(repr(arr.values)) else: summary.append('[%s values with dtype=%s]' % (arr.size, arr.dtype)) if hasattr(arr, 'coords'): if arr.coords: summary.append(repr(arr.coords)) if arr.attrs: summary.append(attrs_repr(arr.attrs)) return '\n'.join(summary) def dataset_repr(ds): summary = ['<xray.%s>' % type(ds).__name__] col_width = _calculate_col_width(ds) dims_start = pretty_print('Dimensions:', col_width) all_dim_strings = ['%s: %s' % (k, v) for k, v in iteritems(ds.dims)] summary.append('%s(%s)' % (dims_start, ', '.join(all_dim_strings))) summary.append(coords_repr(ds.coords, col_width=col_width)) summary.append(vars_repr(ds.data_vars, col_width=col_width)) if ds.attrs: summary.append(attrs_repr(ds.attrs)) return '\n'.join(summary)
apache-2.0
shnizzedy/SM_openSMILE
openSMILE_analysis/barh.py
1
11126
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ barh.py Script to build horizontal bar charts to explore weighted feature rankings produced by random forests in trees.py Authors: – Jon Clucas, 2017 (jon.clucas@childmind.org) @author: jon.clucas """ import os, sys if os.path.abspath('../../') not in sys.path: if os.path.isdir(os.path.join(os.path.abspath('../..'), 'SM_openSMILE')): sys.path.append(os.path.abspath('../..')) elif os.path.isdir(os.path.join(os.path.abspath('..'), 'SM_openSMILE')): sys.path.append(os.path.abspath('..')) elif os.path.isdir('SM_openSMILE'): sys.path.append(os.path.abspath('.')) from SM_openSMILE.utilities.cmi_color_pallette import cmi_colors import math, pandas as pd, matplotlib.pyplot as plt from SM_openSMILE.cfg import topdir def main(): configs = ['emobase', 'ComParE_2016'] replacements = ['removed', 'replaced_clone', 'replaced_pink', 'timeshifted' ] for i, replacement in enumerate(replacements): replacements[i] = '_'.join(['adults', replacement]) for config in configs: dfs, ltd_dfs, adults_dfs, unmod = collect_dfs(config, replacements) for dlist in [dfs, ltd_dfs, adults_dfs]: dlist.append(unmod) build_barh(get_features(dfs), config, replacements) build_barh(get_features(ltd_dfs), config, replacements, 'ltd') build_barh(get_features(adults_dfs), config, ['adults', 'unmodified'], 'adults') def collect_dfs(config, replacements): """ Function to collect dataframes to build relevant plots. Parameters ---------- config : string openSMILE config file replacements : list of strings list of replacement methods Returns ------- dfs : list of pandas dataframes list of cleaned dataframes ltd_dfs : list of pandas dataframes list of limited dataframes excluding unmodified files adults_dfs : list of pandas dataframes list of dataframes in which only adults speak unmod : pandas dataframe dataframe of unmodified files """ dfs, ltd_dfs, adults_dfs = [], [], [] for replacement in replacements: dfs.append(get_df_from_file(get_filepath(config, replacement), replacement)) for replacement in replacements: ltd_dfs.append(get_df_from_file(get_filepath(config, replacement, 'ltd'), '/'.join(['ltd', replacement]))) unmod = get_df_from_file(get_filepath(config, 'unmodified','unmodified'), 'unmodified') adults_dfs.append(get_df_from_file(get_filepath(config, 'adults','ltd'), '/'.join(['ltd', 'adults']))) return(dfs, ltd_dfs, adults_dfs, unmod) def build_barh(df, config, replacements, special=None): """ Function to prepare a dataframe for plotting and to send that prepared dataframe to the plot funcion (plot_barh) for plotting and saving in as many forms as is appropriate. Parameters ---------- df : pandas dataframe dataframe to prepare for plotting config : string openSMILE config file replacements : list noise replacement methods special : string or None 'ltd' or None Returns ------- None """ conditions = ['button_w', 'button_no', 'vocal_w', 'vocal_no'] # plot each condition with replacements as colors for condition in conditions: sdf = df.xs(condition, axis=1) # get rid of non-predictive features sdf = sdf[sdf > 0].dropna(how='all') if special: out_path = os.path.join(topdir, config, 'feature_summary', special, '_'.join([condition, 'complete.svg'])) else: out_path = os.path.join(topdir, config, 'feature_summary', ''.join( [condition, '.svg'])) if not os.path.exists(os.path.dirname(out_path)): os.makedirs(os.path.dirname(out_path)) title = " :\n".join(["weighted random forest values", config, condition ]) plot_barh(sdf, title, out_path) # plot conditions in which all replacements returned values above the # median top_all = sdf[sdf > sdf.sum(axis=1).median()].dropna(how='any') out_path_all = ''.join([out_path.strip('.svg'), '_top_all.svg']) plot_barh(top_all, title, out_path_all) # plot conditions in which any replacements returned values above the # median top_any = sdf[sdf > sdf.sum(axis=1).median()].dropna(how='all') out_path_any = ''.join([out_path.strip('.svg'), '_top_any.svg']) plot_barh(top_any, title, out_path_any) if special: for i, replacement in enumerate(replacements): if replacement != 'unmodified': replacements[i] = '/'.join(['ltd', replacement]) # plot each replacement with conditions as colors for replacement in replacements: sdf = df.xs(replacement, axis=1, level=1) out_path = os.path.join(topdir, config, 'feature_summary', ''.join( [replacement, '.svg'])) if not os.path.exists(os.path.dirname(out_path)): os.makedirs(os.path.dirname(out_path)) title = " :\n".join(["weighted random forest values", config, replacement]) plot_barh(sdf, title, out_path) # plot conditions in which all conditions returned values above the # median top_all = sdf[sdf > sdf.sum(axis=1).median()].dropna(how='any') out_path_all = ''.join([out_path.strip('.svg'), '_top_all.svg']) plot_barh(top_all, title, out_path_all) # plot conditions in which any conditions returned values above the # median top_any = sdf[sdf > sdf.sum(axis=1).median()].dropna(how='all') out_path_any = ''.join([out_path.strip('.svg'), '_top_any.svg']) plot_barh(top_any, title, out_path_any) # plot each replacement and condition combination individually for condition in conditions: tdf = sdf.xs(condition, axis=1) tdf = tdf[tdf > 0] out_path = os.path.join(topdir, config, 'feature_summary', ''.join([replacement, '_', condition, '.svg'])) if not os.path.exists(os.path.dirname(out_path)): os.makedirs(os.path.dirname(out_path)) title = " :\n".join(["weighted random forest values", config, replacement, condition]) plot_barh(tdf, title, out_path) # plot conditions in which replacement and condition returned # values above the median top_any = tdf[tdf > tdf.median()] out_path_any = ''.join([out_path.strip('.svg'), '_top_any.svg']) plot_barh(top_any, title, out_path_any) def plot_barh(sdf, title, out_path): """ Function to plot a horizontal barplot and save said plot. Parameters ---------- sdf : pandas dataframe dataframe to plot title : string plot title out_path : string path of image file save location Returns ------- None Output ------ out_path : image image file """ print(title.replace("\n"," ")) print(sdf.shape) plt.figure() if sdf.shape[0] > 0: if len(sdf.shape) == 2: # color per condition and/or replacement method color = cmi_colors() # plot dimensions: f(maximum value) × f(# of features) dim = (abs(sdf.sum(axis=0)).max()*25, math.log(sdf.shape[0])**3) else: # all bars one color color = cmi_colors()[0] # plot dimensions: f(maximum value) × f(# of features) dim = (abs(sdf.max())*500, math.log(sdf.shape[0])**3) ax = sdf.plot.barh(figsize=dim, color=color, stacked=True, title=title ) ax.legend(loc=3, fancybox=True, shadow=True, bbox_to_anchor=(-0.01, -0.01)) plt.savefig(out_path, bbox_inches="tight") plt.close() def get_features(dfs): """ Function to cross-tabulate feature dataframes and sum by features. Parameters ---------- dfs : list of pandas dataframes a list of dataframes to compare values : list a list of column headers to cross-tabulate by Returns ------- p_t : pandas dataframe a multi-indexed dataframe of ['base_feature' × 'coefficient' × 'summary_type'] × ['replacement' × 'condition'] predictive counts """ df = pd.concat(dfs) conditions = ['button_w', 'button_no', 'vocal_w', 'vocal_no'] features = ['base_feature', 'coefficient', 'summary_type'] return pd.pivot_table(df, values=conditions, index=features, columns=['replacement'], aggfunc='sum', fill_value=0) def get_df_from_file(filepath, replacement="unmodified"): """ Function to get weighted summary table from filepath. Parameters ---------- filepath : string absolute path to the weighted dataframe csv replacement : string adult replacement method Returns ------- df : pandas dataframe a features × ['base_feature', 'coefficient', 'summary_type', 'button_w', 'button_no', 'vocal_w', 'vocal_no'] pandas dataframe """ df = pd.read_csv(filepath) df['base_feature'] = df['feature'].str.extract('(.*(?=_sma))', expand=True) df['coefficient'] = df['feature'].str.extract('([\d+])', expand=True) df['summary_type'] = df['feature'].str.extract('((?<=_).*?)*(?=\s)', expand=True) df['replacement'] = replacement df = df.ix[:, ['base_feature', 'coefficient', 'summary_type', 'button_w', 'button_no', 'vocal_w', 'vocal_no', 'replacement']] return df def get_filepath(config, replacement, special=None): """ Function to get filepaths for weighted summary tables. Parameters ---------- config : string openSMILE config file basename replacement : string adult replacement method special : string or None ['ltd', 'unmodified', None] if we're looking at something other than the cleaned data with the unmodified data filled in Returns ------- filepath : string absolute path to the weighted dataframe csv """ if special: special_path = os.path.join(topdir, config, 'feature_summary', special, '_'.join([replacement, 'weighted.csv'])) if os.path.exists(special_path): return special_path return os.path.join(topdir, config, 'feature_summary', '_'.join([ replacement, 'weighted.csv'])) # ============================================================================ if __name__ == '__main__': main()
apache-2.0
SujitKRay/Listener_Classification_Public
modeling/model_refinement-extracted_features/code/fit_and_evaluate.py
2
2309
""" Use scikit-learn to fit/ evaluate models. Code originally created by Benjamin Bengfort. modified by Nicole Donnelly 20160513 """ import os import time import pickle import pandas as pd from sklearn import metrics from sklearn import cross_validation from sklearn.cross_validation import KFold from sklearn.naive_bayes import GaussianNB from sklearn.linear_model import LogisticRegression def fit_and_evaluate(root, name, dataset, model, label, **kwargs): """ Because of the Scikit-Learn API, we can create a function to do all of the fit and evaluate work on our behalf! """ start = time.time() #create empty lists for scoring variables scores = {'precision':[], 'recall':[], 'accuracy':[], 'f1':[]} for train, test in KFold(dataset.data.shape[0], n_folds=12, shuffle=True): X_train, X_test = dataset.data[train], dataset.data[test] y_train, y_test = dataset.target[train], dataset.target[test] estimator = model(**kwargs) estimator.fit(X_train, y_train) expected = y_test predicted = estimator.predict(X_test) scores = {'precision':[], 'recall':[], 'accuracy':[], 'f1':[]} scores['precision'].append(metrics.precision_score(expected, predicted, average='binary')) scores['recall'].append(metrics.recall_score(expected, predicted, average='binary')) scores['accuracy'].append(metrics.accuracy_score(expected, predicted)) scores['f1'].append(metrics.f1_score(expected, predicted, average='binary')) # Report print "Build and Validation of {} took {:0.3f} seconds".format(label, time.time()-start) print "Validation scores are as follows:\n" print pd.DataFrame(scores).mean() #print feature weights. these have been computed separately for tree models. if label == "LogisticRegression": print estimator.coef_ if label == "GaussianNB": print estimator.class_prior_ # Write official estimator to disk estimator = model(**kwargs) estimator.fit(dataset.data, dataset.target) outpath = os.path.join(root + "/", name + "_" + label.lower().replace(" ", "-") + ".pickle") with open(outpath, 'w') as f: pickle.dump(estimator, f) print "\nFitted model written to:\n{}".format(os.path.abspath(outpath))
mit
smorton2/think-stats
code/populations.py
68
2609
"""This file contains code used in "Think Stats", by Allen B. Downey, available from greenteapress.com Copyright 2010 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ from __future__ import print_function import csv import logging import sys import numpy as np import pandas import thinkplot import thinkstats2 def ReadData(filename='PEP_2012_PEPANNRES_with_ann.csv'): """Reads filename and returns populations in thousands filename: string returns: pandas Series of populations in thousands """ df = pandas.read_csv(filename, header=None, skiprows=2, encoding='iso-8859-1') populations = df[7] populations.replace(0, np.nan, inplace=True) return populations.dropna() def MakeFigures(): """Plots the CDF of populations in several forms. On a log-log scale the tail of the CCDF looks like a straight line, which suggests a Pareto distribution, but that turns out to be misleading. On a log-x scale the distribution has the characteristic sigmoid of a lognormal distribution. The normal probability plot of log(sizes) confirms that the data fit the lognormal model very well. Many phenomena that have been described with Pareto models can be described as well, or better, with lognormal models. """ pops = ReadData() print('Number of cities/towns', len(pops)) log_pops = np.log10(pops) cdf = thinkstats2.Cdf(pops, label='data') cdf_log = thinkstats2.Cdf(log_pops, label='data') # pareto plot xs, ys = thinkstats2.RenderParetoCdf(xmin=5000, alpha=1.4, low=0, high=1e7) thinkplot.Plot(np.log10(xs), 1-ys, label='model', color='0.8') thinkplot.Cdf(cdf_log, complement=True) thinkplot.Config(xlabel='log10 population', ylabel='CCDF', yscale='log') thinkplot.Save(root='populations_pareto') # lognormal plot thinkplot.PrePlot(cols=2) mu, sigma = log_pops.mean(), log_pops.std() xs, ps = thinkstats2.RenderNormalCdf(mu, sigma, low=0, high=8) thinkplot.Plot(xs, ps, label='model', color='0.8') thinkplot.Cdf(cdf_log) thinkplot.Config(xlabel='log10 population', ylabel='CDF') thinkplot.SubPlot(2) thinkstats2.NormalProbabilityPlot(log_pops, label='data') thinkplot.Config(xlabel='z', ylabel='log10 population', xlim=[-5, 5]) thinkplot.Save(root='populations_normal') def main(): thinkstats2.RandomSeed(17) MakeFigures() if __name__ == "__main__": main()
gpl-3.0
aflaxman/scikit-learn
examples/mixture/plot_gmm_sin.py
103
6101
""" ================================= Gaussian Mixture Model Sine Curve ================================= This example demonstrates the behavior of Gaussian mixture models fit on data that was not sampled from a mixture of Gaussian random variables. The dataset is formed by 100 points loosely spaced following a noisy sine curve. There is therefore no ground truth value for the number of Gaussian components. The first model is a classical Gaussian Mixture Model with 10 components fit with the Expectation-Maximization algorithm. The second model is a Bayesian Gaussian Mixture Model with a Dirichlet process prior fit with variational inference. The low value of the concentration prior makes the model favor a lower number of active components. This models "decides" to focus its modeling power on the big picture of the structure of the dataset: groups of points with alternating directions modeled by non-diagonal covariance matrices. Those alternating directions roughly capture the alternating nature of the original sine signal. The third model is also a Bayesian Gaussian mixture model with a Dirichlet process prior but this time the value of the concentration prior is higher giving the model more liberty to model the fine-grained structure of the data. The result is a mixture with a larger number of active components that is similar to the first model where we arbitrarily decided to fix the number of components to 10. Which model is the best is a matter of subjective judgement: do we want to favor models that only capture the big picture to summarize and explain most of the structure of the data while ignoring the details or do we prefer models that closely follow the high density regions of the signal? The last two panels show how we can sample from the last two models. The resulting samples distributions do not look exactly like the original data distribution. The difference primarily stems from the approximation error we made by using a model that assumes that the data was generated by a finite number of Gaussian components instead of a continuous noisy sine curve. """ import itertools import numpy as np from scipy import linalg import matplotlib.pyplot as plt import matplotlib as mpl from sklearn import mixture print(__doc__) color_iter = itertools.cycle(['navy', 'c', 'cornflowerblue', 'gold', 'darkorange']) def plot_results(X, Y, means, covariances, index, title): splot = plt.subplot(5, 1, 1 + index) for i, (mean, covar, color) in enumerate(zip( means, covariances, color_iter)): v, w = linalg.eigh(covar) v = 2. * np.sqrt(2.) * np.sqrt(v) u = w[0] / linalg.norm(w[0]) # as the DP will not use every component it has access to # unless it needs it, we shouldn't plot the redundant # components. if not np.any(Y == i): continue plt.scatter(X[Y == i, 0], X[Y == i, 1], .8, color=color) # Plot an ellipse to show the Gaussian component angle = np.arctan(u[1] / u[0]) angle = 180. * angle / np.pi # convert to degrees ell = mpl.patches.Ellipse(mean, v[0], v[1], 180. + angle, color=color) ell.set_clip_box(splot.bbox) ell.set_alpha(0.5) splot.add_artist(ell) plt.xlim(-6., 4. * np.pi - 6.) plt.ylim(-5., 5.) plt.title(title) plt.xticks(()) plt.yticks(()) def plot_samples(X, Y, n_components, index, title): plt.subplot(5, 1, 4 + index) for i, color in zip(range(n_components), color_iter): # as the DP will not use every component it has access to # unless it needs it, we shouldn't plot the redundant # components. if not np.any(Y == i): continue plt.scatter(X[Y == i, 0], X[Y == i, 1], .8, color=color) plt.xlim(-6., 4. * np.pi - 6.) plt.ylim(-5., 5.) plt.title(title) plt.xticks(()) plt.yticks(()) # Parameters n_samples = 100 # Generate random sample following a sine curve np.random.seed(0) X = np.zeros((n_samples, 2)) step = 4. * np.pi / n_samples for i in range(X.shape[0]): x = i * step - 6. X[i, 0] = x + np.random.normal(0, 0.1) X[i, 1] = 3. * (np.sin(x) + np.random.normal(0, .2)) plt.figure(figsize=(10, 10)) plt.subplots_adjust(bottom=.04, top=0.95, hspace=.2, wspace=.05, left=.03, right=.97) # Fit a Gaussian mixture with EM using ten components gmm = mixture.GaussianMixture(n_components=10, covariance_type='full', max_iter=100).fit(X) plot_results(X, gmm.predict(X), gmm.means_, gmm.covariances_, 0, 'Expectation-maximization') dpgmm = mixture.BayesianGaussianMixture( n_components=10, covariance_type='full', weight_concentration_prior=1e-2, weight_concentration_prior_type='dirichlet_process', mean_precision_prior=1e-2, covariance_prior=1e0 * np.eye(2), init_params="random", max_iter=100, random_state=2).fit(X) plot_results(X, dpgmm.predict(X), dpgmm.means_, dpgmm.covariances_, 1, "Bayesian Gaussian mixture models with a Dirichlet process prior " r"for $\gamma_0=0.01$.") X_s, y_s = dpgmm.sample(n_samples=2000) plot_samples(X_s, y_s, dpgmm.n_components, 0, "Gaussian mixture with a Dirichlet process prior " r"for $\gamma_0=0.01$ sampled with $2000$ samples.") dpgmm = mixture.BayesianGaussianMixture( n_components=10, covariance_type='full', weight_concentration_prior=1e+2, weight_concentration_prior_type='dirichlet_process', mean_precision_prior=1e-2, covariance_prior=1e0 * np.eye(2), init_params="kmeans", max_iter=100, random_state=2).fit(X) plot_results(X, dpgmm.predict(X), dpgmm.means_, dpgmm.covariances_, 2, "Bayesian Gaussian mixture models with a Dirichlet process prior " r"for $\gamma_0=100$") X_s, y_s = dpgmm.sample(n_samples=2000) plot_samples(X_s, y_s, dpgmm.n_components, 1, "Gaussian mixture with a Dirichlet process prior " r"for $\gamma_0=100$ sampled with $2000$ samples.") plt.show()
bsd-3-clause
genn-team/genn
userproject/PotjansMicrocircuit_project/plot.py
1
2257
import csv import matplotlib.pyplot as plt import numpy as np import re import sys from os import path N_full = { '23': {'E': 20683, 'I': 5834}, '4' : {'E': 21915, 'I': 5479}, '5' : {'E': 4850, 'I': 1065}, '6' : {'E': 14395, 'I': 2948} } assert len(sys.argv) >= 2 data_dir = sys.argv[1] + "_output" N_scaling = float(sys.argv[2]) if len(sys.argv) >= 3 else 0.5 def load_spikes(filename): # Parse filename and use to get population name and size match = re.match(".*\.([0-9]+)([EI])\.st", filename) name = match.group(1) + match.group(2) num = int(N_full[match.group(1)][match.group(2)] * N_scaling) # Read CSV spikes spikes = np.loadtxt(filename, dtype={"names": ("time", "neuron_id"), "formats": (np.float, np.int)}) return spikes["time"], spikes["neuron_id"], name, num pop_spikes = [load_spikes(path.join(data_dir, sys.argv[1] + ".6I.st")), load_spikes(path.join(data_dir, sys.argv[1] + ".6E.st")), load_spikes(path.join(data_dir, sys.argv[1] + ".5I.st")), load_spikes(path.join(data_dir, sys.argv[1] + ".5E.st")), load_spikes(path.join(data_dir, sys.argv[1] + ".4I.st")), load_spikes(path.join(data_dir, sys.argv[1] + ".4E.st")), load_spikes(path.join(data_dir, sys.argv[1] + ".23I.st")), load_spikes(path.join(data_dir, sys.argv[1] + ".23E.st"))] # Find the maximum spike time and convert to seconds duration_s = max(np.amax(t) for t, _, _, _ in pop_spikes) / 1000.0 # Create plot figure, axes = plt.subplots(1, 2) start_id = 0 bar_y = 0.0 for t, i, name, num in pop_spikes: # Plot spikes actor = axes[0].scatter(t, i + start_id, s=2, edgecolors="none") # Plot bar showing rate in matching colour axes[1].barh(bar_y, len(t) / (float(num) * duration_s), align="center", color=actor.get_facecolor(), ecolor="black") # Update offset start_id += num # Update bar pos bar_y += 1.0 axes[0].set_xlabel("Time [ms]") axes[0].set_ylabel("Neuron number") axes[1].set_xlabel("Mean firing rate [Hz]") axes[1].set_yticks(np.arange(0.0, len(pop_spikes) * 1.0, 1.0)) axes[1].set_yticklabels(list(zip(*pop_spikes))[2]) # Show plot plt.show()
gpl-2.0
sgranade/python-image-processing-intro
overview/image_processing_sample_code.py
1
20069
# -*- coding: utf-8 -*- """ Examples from the "Image Processing with Python" presentation. @author Stephen Granade <stephen@granades.com> """ from __future__ import division from __future__ import print_function ##### # IMAGE PROCESSING WITH SCIPY # I'm often going to show images side-by-side, so here's a helper # function to do that def compare_images(imgs, title=None, subtitles=None, cmaps=None): """Plots multiple images side by side for comparison. Args ---- imgs : sequence of ndarrays The images to be plotted. title : string The overall plot's title, if any. subtitles : sequence of strings Titles for the sub-plots, if any. cmaps : sequence of color maps The color maps to use with the sub-plots, if any. If None, then all sub-plots default to grey. """ fig, ax = plt.subplots(1, len(imgs)) if title: plt.suptitle(title) for ix, img in enumerate(imgs): cmapstr = 'gray' titlestr = None try: if cmaps: cmapstr = cmaps[ix] except: pass try: if subtitles: titlestr = subtitles[ix] except: pass ax[ix].imshow(img, cmap=cmapstr) ax[ix].set_axis_off() if titlestr: ax[ix].set_title(titlestr) plt.tight_layout() return fig, ax ##### # SIMPLE IMAGE LOADING AND DISPLAYING import numpy as np from scipy import ndimage from scipy import misc import matplotlib.pyplot as plt img = misc.imread('Schroedinger.jpg') plt.imshow(img) # Why's it all rainbow like that? Because SCIENCE. We can fix that, though plt.close('all') plt.imshow(img, cmap='gray') # You can also specify a color map object to use instead of a string # For matplotlib color maps, see http://matplotlib.org/examples/color/colormaps_reference.html plt.close('all') plt.imshow(img, cmap=plt.cm.gray) # Save with imsave, which lets you auto-specify the file type by extension misc.imsave('Schroedinger-2.png', img) # The PPT has more information about the Python Imaging Libray (PIL) that # scipy uses for image reading and saving. # To set image-type-specific options, convert an ndarray image to a PIL # image object and use its save() function pil_img = misc.toimage(img) # Gets a PIL Image pil_img.save('Schroedinger-3.jpg', quality=30) # You can adjust the image's luminance contrast when you show it plt.close('all') plt.figure() plt.subplot(1,2,1) plt.imshow(img, cmap='gray') plt.subplot(1,2,2) plt.imshow(img, cmap='gray', vmin=30, vmax=150) # What if you wanted to adjust it dynamically? A library called guiqwt can help # See https://code.google.com/p/guiqwt/ import guidata import guiqwt import guiqwt.image import guiqwt.plot _app = guidata.qapplication() # Required to start up guidata imageitem = guiqwt.builder.make.image(img, colormap='gray') win = guiqwt.plot.ImageDialog(edit=False, toolbar=True, wintitle="Contrast", options=dict(show_contrast=True)) plot = win.get_plot() plot.add_item(imageitem) win.show() win.exec_() # Click on the plotted image to use the contrast enhancement panel ##### # CROPPING, SCALING, ROTATING, FLIPPING # Crop using standard array slicing notation imgy, imgx = img.shape cropped_img = img[0:imgy //2, :] plt.close('all') plt.imshow(cropped_img, cmap='gray') # Note that, with Matplotlib's default "jet" rainbow color map, you can see things # like JPEG artifacts more easily plt.close('all') compare_images([cropped_img, cropped_img], title="Check Out Those JPEG Artifacts", cmaps=['gray', 'jet']) # To scale, use the imresize() function from scipy.misc resized_img = misc.imresize(img, 0.30) plt.close('all') compare_images([img, resized_img], title='Float-Resized Image', subtitles=['Original', 'Resized']) # imresize takes the size as a float (fraction), integer (percent), or # tuple (final size)...or so it says. As far as I can tell, integer # scaling is broken resized_img = misc.imresize(img, 10) # Tuples work, though resized_img = misc.imresize(img, (img.shape[0] // 2, img.shape[1])) plt.close('all') compare_images([img, resized_img], title='Tuple-Resized Image') # You can also define the interpolation method: # interp='nearest' (Preserves hard images, so jaggy) # interp='bilinear' # interp='bicubic' (Good for smooth gradients) # interp='cubic' # To rotate, use the rotate() function from scipy.ndimage rotated_img = ndimage.rotate(img, 30) plt.close('all') compare_images([img, rotated_img], title='Rotated Image') # By default rotate will make the array big enough that nothing gets cut # off. You can change that, of course cropped_rotated_img = ndimage.rotate(img, 30, reshape=False) plt.close('all') fig, ax = compare_images([rotated_img, cropped_rotated_img], title='Reshaped & Non-Reshaped Rotation', subtitles=['Rotation w/Reshaping', 'Rotation w/o Reshaping']) # Since the two graphs use different scales, re-scale the second, smaller # plot to match the first ax[1].set_xlim(ax[0].get_xlim()) ax[1].set_ylim(ax[0].get_ylim()) plt.draw() # To flip, use the standard NumPy functions flipud() and fliprl() flipped_img = np.flipud(img) plt.close('all') compare_images([img, flipped_img], title='Flipped Image') ##### # FILTERING # The presentation explains what filtering is, and why you might want to use a filter # scipy.ndimage includes several common filters. For example, Gaussian # filters, which soften and blur images, are in scipy.ndimage blurred_img = ndimage.gaussian_filter(img, sigma=1) plt.close('all') compare_images([img, blurred_img], title='Blurred Image', subtitles=['Original', "Gaussian Blurred $\sigma$=1"]) # The larger the Gaussian's sigma, the more it blurs more_blurred_img = ndimage.gaussian_filter(img, sigma=3) plt.close('all') compare_images([img, blurred_img, more_blurred_img], title='Comparing Blurring', subtitles=['Original', 'Gaussian $\sigma$=1', 'Gaussian $\sigma$=3']) # What if you have a noisy image? cropped_img = img[50:140, 90:180] noisy_img = cropped_img + (cropped_img.std()*np.random.random(cropped_img.shape) - (cropped_img.std()/2)*np.ones(cropped_img.shape)) plt.close('all') compare_images([cropped_img, noisy_img], title="Noisy Image") # You can use a Gaussian filter to de-noise the image denoised_img = ndimage.gaussian_filter(noisy_img, sigma=1) plt.close('all') compare_images([cropped_img, noisy_img, denoised_img], title="Gaussian Denoising", subtitles=['Original', 'Noisy', 'Denoised']) # Or you can use a median filter to better preserve edges median_denoised_img = ndimage.median_filter(noisy_img, 3) plt.close('all') compare_images([noisy_img, denoised_img, median_denoised_img], title="Gaussian vs Median Denoising", subtitles=['Noisy', 'Gaussian', 'Median']) ##### # READING IMAGES INTO DIFFERENT COLOR SPACES # You can read in color images color_img = ndimage.imread('Commodore-Grace-Hopper.jpg') plt.close('all') plt.imshow(color_img) plt.title("Color Image") print("The color image's dimensions are %s" % str(color_img.shape)) # You can read in a color image as greyscale grey_img = ndimage.imread('Commodore-Grace-Hopper.jpg', flatten=True) plt.close('all') plt.imshow(grey_img, cmap='gray') plt.title("Color Image Read In Greyscale") print("The dimensions of the color image read in as greyscale are %s" % str(grey_img.shape)) # By default, color images are read in using the RGB color space # but you can change that ycbcr_img = ndimage.imread('Commodore-Grace-Hopper.jpg', mode='YCbCr') plt.close('all') plt.imshow(ycbcr_img) plt.title("Color Image Read In in YCbCr") print("The YCbCr image's dimensions are %s" % str(ycbcr_img.shape)) # I'm not actually using these color maps, but I'm leaving them in as # an example of how to make a gradient color map import matplotlib.colors cb_cmap = matplotlib.colors.LinearSegmentedColormap.from_list( 'cb_cmap', ['yellow', 'blue']) cr_cmap = matplotlib.colors.LinearSegmentedColormap.from_list( 'cr_cmap', ['yellow', 'red']) # Create RGB representations of each individual channel ychannel = ycbcr_img.copy(); ychannel[:,:,1] = ychannel[:,:,0] ychannel[:,:,2] = ychannel[:,:,0] cbchannel = ycbcr_img.copy(); cbchannel[:,:,0] = 128 cbchannel[:,:,2] = 128 crchannel = ycbcr_img.copy(); crchannel[:,:,0] = 128 crchannel[:,:,1] = 128 plt.close('all') compare_images([color_img, ychannel, cbchannel, crchannel], title="YCbCr channels", subtitles=['Color', 'Luminance (Y)', 'Chroma Blue (Cb)', 'Chroma Red (Cr)']) ##### # IMAGE PROCESSING WITH SCIKIT-IMAGE # The PPT lists a number of SciKits that may be of interest. Here we're going # to work with scikit-image, or skimage. import skimage import skimage.color import skimage.io ##### # LOCAL FILTERING # skimage has a lot of local filters available, like Sobel import skimage.filter img = misc.imread('Schroedinger.jpg') schro_vsobel = skimage.filter.vsobel(img) plt.close('all') compare_images([img, schro_vsobel], title="Vertical Sobel Edge Detection", cmaps=['gray', None]) print(schro_vsobel.dtype) # For some of the processing skimage does, it converts images to floating # point, scaled from [-1, 1]. *NOT* [0, 1] # There are other edge-detecting local transforms as well schro_vprewitt = skimage.filter.vprewitt(img) schro_vscharr = skimage.filter.vscharr(img) plt.close('all') compare_images([schro_vsobel, schro_vprewitt, schro_vscharr], title="Sobel, Prewitt, and Scharr Edge Detection", cmaps=[None, None, None], subtitles=['Sobel', 'Prewitt', 'Scharr']) # Remember my noise reduction example earlier? skimage has better routines cropped_img = img[50:140, 90:180] noisy_img = cropped_img + ( (cropped_img.std()*np.random.random(cropped_img.shape) - (cropped_img.std()/2)*np.ones(cropped_img.shape))) median_denoised_img = ndimage.median_filter(noisy_img, 3) total_var_denoised_img = skimage.filter.denoise_tv_chambolle(noisy_img, weight=30) plt.close('all') compare_images([cropped_img, noisy_img, median_denoised_img, total_var_denoised_img], title="Denoised Image", subtitles=['Original', 'Noisy', 'Median', 'Total Variation']) # What if you want to create a binary image using a threshold? sudoku = ndimage.imread('sudoku.jpg', flatten=True) # We could do a simple global threshold using a blindly-chosen threshold sudoku_global_thresh = sudoku >= 128 # or use a better method to find that threshold otsu_thresh = skimage.filter.threshold_otsu(sudoku) sudoku_otsu_thresh = sudoku >= otsu_thresh # but skimage has an adaptive threshold function sudoku_adaptive_thresh = skimage.filter.threshold_adaptive(sudoku, block_size=91, offset=2) plt.close('all') compare_images([sudoku, sudoku_global_thresh, sudoku_otsu_thresh, sudoku_adaptive_thresh], title="Global, Otsu's Method, and Adaptive Thresholding", subtitles=['Original', 'Global Threshold', "Otsu's Method", 'Adaptive Threshold']) ##### # ADJUSTING EXPOSURE import skimage.exposure # Using skimage, we can perform contrast enhancement automatically by # equalizing the picture's histogram. The presentation has more information # on histogram equalization # Because of the flatten operation, "sudoku" is of type float print("Sudoku is of type %s, with max value %f and min value of %f" % (sudoku.dtype.name, np.max(sudoku), np.min(sudoku))) # but it's not scaled from [-1, 1] like skimage wants. Fix that! sudoku_scaled = (sudoku - 127.5)/256 sudoku_equalized = skimage.exposure.equalize_hist(sudoku_scaled) plt.close('all') compare_images([sudoku_scaled, sudoku_equalized], title="Equalizing Exposure", subtitles=['Original', 'Equalized']) ##### # MORPHOLOGICAL OPERATIONS import skimage.morphology as mo # To learn about morphological image processing like erosion, dilation, # opening and closing, see # https://www.cs.auckland.ac.nz/courses/compsci773s1c/lectures/ImageProcessing-html/topic4.htm # Using mode='L' to read in greyscale prevents us from getting an array # of floats back squares = ndimage.imread('squares.png', mode='L') # Erosion eats away at bright areas squares_eroded = mo.erosion(squares, mo.square(3)) squares_diff = squares - squares_eroded plt.close('all') compare_images([squares, squares_eroded, squares_diff], title="Morphological Erosion", subtitles=['Original', 'Eroded', 'Difference']) # Dilation expands bright areas squares_dilated = mo.dilation(squares, mo.square(3)) squares_diff = squares_dilated - squares plt.close('all') compare_images([squares, squares_dilated, squares_diff], title="Morphological Dilation", subtitles=['Original', 'Dilated', 'Difference']) # Opening erodes and then dilates, opening up dark gaps between features squares_opened = mo.opening(squares, mo.square(3)) squares_diff = squares - squares_opened plt.close('all') compare_images([squares, squares_opened, squares_diff], title="Morphological Opening", subtitles=['Original', 'Opened', 'Difference']) # Closing dilates and then erodes, filling in small dark gaps between features squares_closed = mo.closing(squares, mo.square(3)) squares_diff = squares_closed - squares plt.close('all') compare_images([squares, squares_closed, squares_diff], title="Morphological Closing", subtitles=['Original', 'Closed', 'Difference']) ##### # PARAMETRIC TRANSFORMATIONS # Parametric transformations use matrices to describe translations, # rotations, scaling, skew, and more. For more information, see # http://www.willamette.edu/~gorr/classes/GeneralGraphics/Transforms/transforms2d.htm # Early in the class, we rotated using scipy.ndimage.rotate and scaled # using scipy.misc.imresize (see above) # Alternatively: you can use the skikit-image routines, which have the # advantage of being faster and also accepting transformation matrices import skimage.transform as tf img = misc.imread('Schroedinger.jpg') # skimage.transform includes rotation rotated_img = tf.rotate(img, 30) uncropped_rotated_img = tf.rotate(img, 30, resize=True) plt.close('all') compare_images([img, rotated_img, uncropped_rotated_img], title='Unresized & Resized scikit-image Rotation', subtitles=['Original', 'Rotation w/o Resizing', 'Rotation w/Resizing']) # Note that this is opposite of how scipy.ndimage.rotate() works: by # default, the image isn't resized (or reshaped, to use ndimage.rotate()'s # language # skimage.transform also includes rescale() rescaled_img = tf.rescale(img, scale=.30) plt.close('all') compare_images([img, rescaled_img], title='Float-Rescaled Image', subtitles=['Original', 'Resized']) # skimage.transform.rescale() will let you pass a tuple to scale it # by different percentages in each direction rescaled_img = tf.rescale(img, scale=(.3, .5)) plt.close('all') compare_images([img, rescaled_img], title='Tuple-Rescaled Image') # If you want to specify the final shape of it, use # skimage.transform.resize() resized_img = tf.resize(img, (img.shape[0] // 2, img.shape[1])) plt.close('all') compare_images([img, resized_img], title='Resized Image') # You can define the interpolation method with the "order" parameter: # order = 0 (nearest neighbor; preserves hard images, so jaggy) # order = 1 (bilinear, the default) # order = 2 (biquadratic) # order = 3 (bicubic, good for smooth gradients) # order = 4 (biquartic) # order = 5 (biquintic) # skimage.transform includes several transformations as classes # The SimilarityTransform is for translation, rotation, and scale shiftright = tf.SimilarityTransform(translation=(-20, 0)) plt.close('all') compare_images([img, tf.warp(img, shiftright)], title='Translation with scikit-image', subtitles=['Original', 'Translated']) rotccw = tf.SimilarityTransform(rotation=np.pi / 4) plt.close('all') compare_images([img, tf.warp(img, rotccw)], title='Rotation with scikit-image', subtitles=['Original', 'Rotated']) upsize = tf.SimilarityTransform(scale=0.9) plt.close('all') compare_images([img, tf.warp(img, upsize)], title='Scaling with scikit-image', subtitles=['Original', 'Scaled']) # AffineTransformation adds shearing, along with translation, rotation, # and scale skewhoriz = tf.AffineTransform(shear=np.pi/4) skewvert = tf.AffineTransform(matrix=skewhoriz._matrix.T) plt.close('all') compare_images([img, tf.warp(img, skewhoriz, output_shape=(img.shape[0], img.shape[1] * 2)), tf.warp(img, skewvert, output_shape=(img.shape[0] * 2, img.shape[1]))], title='Affine Skew with scikit-image', subtitles=['Original', 'Skewed Horizontal', 'Skewed Vertical']) ##### # LABELING REGIONS # Let's generate some blobs to work with points = np.zeros((256, 256)) num_pts = 20 point_array = (256*np.random.random((2, num_pts**2))).astype(np.int) points[(point_array[0]), (point_array[1])] = 1 blurred_points = ndimage.gaussian_filter(points, sigma=256/(4.*num_pts)) blobs = blurred_points > np.mean(blurred_points) plt.close('all') compare_images([points, blurred_points, blobs], title='Generating Blobs', subtitles=['Points', 'Blurred Points', 'Thresholded Blobs']) # Label the connected regions labels = skimage.morphology.label(blobs) plt.close('all') compare_images([blobs, labels], title="Blobs and Their Labels", cmaps=['gray', 'jet']) ##### # FEATURE MATCHING import skimage.transform as tf from skimage.feature import (match_descriptors, ORB, plot_matches) schroedinger = misc.imread('Schroedinger.jpg') # Transform the image using the skimage.transform library # "rotate" does what you might expect schroedinger_rotate = tf.rotate(schroedinger, 180) # This sets up a transformation that changes the image's scale, rotates it, # and moves it. "warp" then applies that transformation to the image tform = tf.AffineTransform(scale=(1.3, 1.1), rotation=0.5, translation=(0, -200)) schroedinger_warped = tf.warp(schroedinger, tform) # ORB is an algorithm that detects good features in an image and then # describes them in a compact way. The descriptions can then be matched # across multiple images. descriptor_extractor = ORB(n_keypoints=200) # Apply the ORB algorithm to our images descriptor_extractor.detect_and_extract(schroedinger) keypoints1 = descriptor_extractor.keypoints descriptors1 = descriptor_extractor.descriptors descriptor_extractor.detect_and_extract(schroedinger_rotate) keypoints2 = descriptor_extractor.keypoints descriptors2 = descriptor_extractor.descriptors descriptor_extractor.detect_and_extract(schroedinger_warped) keypoints3 = descriptor_extractor.keypoints descriptors3 = descriptor_extractor.descriptors # See which descriptors match across the images matches12 = match_descriptors(descriptors1, descriptors2, cross_check=True) matches13 = match_descriptors(descriptors1, descriptors3, cross_check=True) fig, ax = plt.subplots(nrows=2, ncols=1) plot_matches(ax[0], schroedinger, schroedinger_warped, keypoints1, keypoints2, matches12) ax[0].axis('off') plot_matches(ax[1], schroedinger, schroedinger_warped, keypoints1, keypoints3, matches13) ax[1].axis('off') plt.show() plt.gray()
unlicense
mne-tools/mne-tools.github.io
stable/_downloads/bbc4594eea14cf3d0473ec5148e21b09/30_mne_dspm_loreta.py
6
5666
""" .. _tut-inverse-methods: Source localization with MNE/dSPM/sLORETA/eLORETA ================================================= The aim of this tutorial is to teach you how to compute and apply a linear minimum-norm inverse method on evoked/raw/epochs data. """ import os.path as op import numpy as np import matplotlib.pyplot as plt import mne from mne.datasets import sample from mne.minimum_norm import make_inverse_operator, apply_inverse ############################################################################### # Process MEG data data_path = sample.data_path() raw_fname = op.join(data_path, 'MEG', 'sample', 'sample_audvis_filt-0-40_raw.fif') raw = mne.io.read_raw_fif(raw_fname) # already has an average reference events = mne.find_events(raw, stim_channel='STI 014') event_id = dict(aud_l=1) # event trigger and conditions tmin = -0.2 # start of each epoch (200ms before the trigger) tmax = 0.5 # end of each epoch (500ms after the trigger) raw.info['bads'] = ['MEG 2443', 'EEG 053'] baseline = (None, 0) # means from the first instant to t = 0 reject = dict(grad=4000e-13, mag=4e-12, eog=150e-6) epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True, picks=('meg', 'eog'), baseline=baseline, reject=reject) ############################################################################### # Compute regularized noise covariance # ------------------------------------ # For more details see :ref:`tut_compute_covariance`. noise_cov = mne.compute_covariance( epochs, tmax=0., method=['shrunk', 'empirical'], rank=None, verbose=True) fig_cov, fig_spectra = mne.viz.plot_cov(noise_cov, raw.info) ############################################################################### # Compute the evoked response # --------------------------- # Let's just use the MEG channels for simplicity. evoked = epochs.average().pick('meg') evoked.plot(time_unit='s') evoked.plot_topomap(times=np.linspace(0.05, 0.15, 5), ch_type='mag', time_unit='s') ############################################################################### # It's also a good idea to look at whitened data: evoked.plot_white(noise_cov, time_unit='s') del epochs, raw # to save memory ############################################################################### # Inverse modeling: MNE/dSPM on evoked and raw data # ------------------------------------------------- # Here we first read the forward solution. You will likely need to compute # one for your own data -- see :ref:`tut-forward` for information on how # to do it. fname_fwd = data_path + '/MEG/sample/sample_audvis-meg-oct-6-fwd.fif' fwd = mne.read_forward_solution(fname_fwd) ############################################################################### # Next, we make an MEG inverse operator. inverse_operator = make_inverse_operator( evoked.info, fwd, noise_cov, loose=0.2, depth=0.8) del fwd # You can write it to disk with:: # # >>> from mne.minimum_norm import write_inverse_operator # >>> write_inverse_operator('sample_audvis-meg-oct-6-inv.fif', # inverse_operator) ############################################################################### # Compute inverse solution # ------------------------ # We can use this to compute the inverse solution and obtain source time # courses: method = "dSPM" snr = 3. lambda2 = 1. / snr ** 2 stc, residual = apply_inverse(evoked, inverse_operator, lambda2, method=method, pick_ori=None, return_residual=True, verbose=True) ############################################################################### # Visualization # ------------- # We can look at different dipole activations: fig, ax = plt.subplots() ax.plot(1e3 * stc.times, stc.data[::100, :].T) ax.set(xlabel='time (ms)', ylabel='%s value' % method) ############################################################################### # Examine the original data and the residual after fitting: fig, axes = plt.subplots(2, 1) evoked.plot(axes=axes) for ax in axes: ax.texts = [] for line in ax.lines: line.set_color('#98df81') residual.plot(axes=axes) ############################################################################### # Here we use peak getter to move visualization to the time point of the peak # and draw a marker at the maximum peak vertex. # sphinx_gallery_thumbnail_number = 9 vertno_max, time_max = stc.get_peak(hemi='rh') subjects_dir = data_path + '/subjects' surfer_kwargs = dict( hemi='rh', subjects_dir=subjects_dir, clim=dict(kind='value', lims=[8, 12, 15]), views='lateral', initial_time=time_max, time_unit='s', size=(800, 800), smoothing_steps=10) brain = stc.plot(**surfer_kwargs) brain.add_foci(vertno_max, coords_as_verts=True, hemi='rh', color='blue', scale_factor=0.6, alpha=0.5) brain.add_text(0.1, 0.9, 'dSPM (plus location of maximal activation)', 'title', font_size=14) # The documentation website's movie is generated with: # brain.save_movie(..., tmin=0.05, tmax=0.15, interpolation='linear', # time_dilation=20, framerate=10, time_viewer=True) ############################################################################### # There are many other ways to visualize and work with source data, see # for example: # # - :ref:`tut-viz-stcs` # - :ref:`ex-morph-surface` # - :ref:`ex-morph-volume` # - :ref:`ex-vector-mne-solution` # - :ref:`tut-dipole-orientations` # - :ref:`tut-mne-fixed-free` # - :ref:`examples using apply_inverse # <sphx_glr_backreferences_mne.minimum_norm.apply_inverse>`.
bsd-3-clause
detrout/debian-statsmodels
statsmodels/sandbox/tsa/diffusion2.py
38
13366
""" Diffusion 2: jump diffusion, stochastic volatility, stochastic time Created on Tue Dec 08 15:03:49 2009 Author: josef-pktd following Meucci License: BSD contains: CIRSubordinatedBrownian Heston IG JumpDiffusionKou JumpDiffusionMerton NIG VG References ---------- Attilio Meucci, Review of Discrete and Continuous Processes in Finance: Theory and Applications Bloomberg Portfolio Research Paper No. 2009-02-CLASSROOM July 1, 2009 http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1373102 this is currently mostly a translation from matlab of http://www.mathworks.com/matlabcentral/fileexchange/23554-review-of-discrete-and-continuous-processes-in-finance license BSD: Copyright (c) 2008, Attilio Meucci All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. TODO: * vectorize where possible * which processes are exactly simulated by finite differences ? * include or exclude (now) the initial observation ? * convert to and merge with diffusion.py (part 1 of diffusions) * which processes can be easily estimated ? loglike or characteristic function ? * tests ? check for possible index errors (random indices), graphs look ok * adjust notation, variable names, more consistent, more pythonic * delete a few unused lines, cleanup * docstrings random bug (showed up only once, need fuzz-testing to replicate) File "...\diffusion2.py", line 375, in <module> x = jd.simulate(mu,sigma,lambd,a,D,ts,nrepl) File "...\diffusion2.py", line 129, in simulate jumps_ts[n] = CumS[Events] IndexError: index out of bounds CumS is empty array, Events == -1 """ import numpy as np #from scipy import stats # currently only uses np.random import matplotlib.pyplot as plt class JumpDiffusionMerton(object): ''' Example ------- mu=.00 # deterministic drift sig=.20 # Gaussian component l=3.45 # Poisson process arrival rate a=0 # drift of log-jump D=.2 # st.dev of log-jump X = JumpDiffusionMerton().simulate(mu,sig,lambd,a,D,ts,nrepl) plt.figure() plt.plot(X.T) plt.title('Merton jump-diffusion') ''' def __init__(self): pass def simulate(self, m,s,lambd,a,D,ts,nrepl): T = ts[-1] # time points # simulate number of jumps n_jumps = np.random.poisson(lambd*T, size=(nrepl, 1)) jumps=[] nobs=len(ts) jumps=np.zeros((nrepl,nobs)) for j in range(nrepl): # simulate jump arrival time t = T*np.random.rand(n_jumps[j])#,1) #uniform t = np.sort(t,0) # simulate jump size S = a + D*np.random.randn(n_jumps[j],1) # put things together CumS = np.cumsum(S) jumps_ts = np.zeros(nobs) for n in range(nobs): Events = np.sum(t<=ts[n])-1 #print n, Events, CumS.shape, jumps_ts.shape jumps_ts[n]=0 if Events > 0: jumps_ts[n] = CumS[Events] #TODO: out of bounds see top #jumps = np.column_stack((jumps, jumps_ts)) #maybe wrong transl jumps[j,:] = jumps_ts D_Diff = np.zeros((nrepl,nobs)) for k in range(nobs): Dt=ts[k] if k>1: Dt=ts[k]-ts[k-1] D_Diff[:,k]=m*Dt + s*np.sqrt(Dt)*np.random.randn(nrepl) x = np.hstack((np.zeros((nrepl,1)),np.cumsum(D_Diff,1)+jumps)) return x class JumpDiffusionKou(object): def __init__(self): pass def simulate(self, m,s,lambd,p,e1,e2,ts,nrepl): T=ts[-1] # simulate number of jumps N = np.random.poisson(lambd*T,size =(nrepl,1)) jumps=[] nobs=len(ts) jumps=np.zeros((nrepl,nobs)) for j in range(nrepl): # simulate jump arrival time t=T*np.random.rand(N[j]) t=np.sort(t) # simulate jump size ww = np.random.binomial(1, p, size=(N[j])) S = ww * np.random.exponential(e1, size=(N[j])) - \ (1-ww) * np.random.exponential(e2, N[j]) # put things together CumS = np.cumsum(S) jumps_ts = np.zeros(nobs) for n in range(nobs): Events = sum(t<=ts[n])-1 jumps_ts[n]=0 if Events: jumps_ts[n]=CumS[Events] jumps[j,:] = jumps_ts D_Diff = np.zeros((nrepl,nobs)) for k in range(nobs): Dt=ts[k] if k>1: Dt=ts[k]-ts[k-1] D_Diff[:,k]=m*Dt + s*np.sqrt(Dt)*np.random.normal(size=nrepl) x = np.hstack((np.zeros((nrepl,1)),np.cumsum(D_Diff,1)+jumps)) return x class VG(object): '''variance gamma process ''' def __init__(self): pass def simulate(self, m,s,kappa,ts,nrepl): T=len(ts) dXs = np.zeros((nrepl,T)) for t in range(T): dt=ts[1]-0 if t>1: dt = ts[t]-ts[t-1] #print dt/kappa #TODO: check parameterization of gamrnd, checked looks same as np d_tau = kappa * np.random.gamma(dt/kappa,1.,size=(nrepl)) #print s*np.sqrt(d_tau) # this raises exception: #dX = stats.norm.rvs(m*d_tau,(s*np.sqrt(d_tau))) # np.random.normal requires scale >0 dX = np.random.normal(loc=m*d_tau, scale=1e-6+s*np.sqrt(d_tau)) dXs[:,t] = dX x = np.cumsum(dXs,1) return x class IG(object): '''inverse-Gaussian ??? used by NIG ''' def __init__(self): pass def simulate(self, l,m,nrepl): N = np.random.randn(nrepl,1) Y = N**2 X = m + (.5*m*m/l)*Y - (.5*m/l)*np.sqrt(4*m*l*Y+m*m*(Y**2)) U = np.random.rand(nrepl,1) ind = U>m/(X+m) X[ind] = m*m/X[ind] return X.ravel() class NIG(object): '''normal-inverse-Gaussian ''' def __init__(self): pass def simulate(self, th,k,s,ts,nrepl): T = len(ts) DXs = np.zeros((nrepl,T)) for t in range(T): Dt=ts[1]-0 if t>1: Dt=ts[t]-ts[t-1] l = 1/k*(Dt**2) m = Dt DS = IG().simulate(l,m,nrepl) N = np.random.randn(nrepl) DX = s*N*np.sqrt(DS) + th*DS #print DS.shape, DX.shape, DXs.shape DXs[:,t] = DX x = np.cumsum(DXs,1) return x class Heston(object): '''Heston Stochastic Volatility ''' def __init__(self): pass def simulate(self, m, kappa, eta,lambd,r, ts, nrepl,tratio=1.): T = ts[-1] nobs = len(ts) dt = np.zeros(nobs) #/tratio dt[0] = ts[0]-0 dt[1:] = np.diff(ts) DXs = np.zeros((nrepl,nobs)) dB_1 = np.sqrt(dt) * np.random.randn(nrepl,nobs) dB_2u = np.sqrt(dt) * np.random.randn(nrepl,nobs) dB_2 = r*dB_1 + np.sqrt(1-r**2)*dB_2u vt = eta*np.ones(nrepl) v=[] dXs = np.zeros((nrepl,nobs)) vts = np.zeros((nrepl,nobs)) for t in range(nobs): dv = kappa*(eta-vt)*dt[t]+ lambd*np.sqrt(vt)*dB_2[:,t] dX = m*dt[t] + np.sqrt(vt*dt[t]) * dB_1[:,t] vt = vt + dv vts[:,t] = vt dXs[:,t] = dX x = np.cumsum(dXs,1) return x, vts class CIRSubordinatedBrownian(object): '''CIR subordinated Brownian Motion ''' def __init__(self): pass def simulate(self, m, kappa, T_dot,lambd,sigma, ts, nrepl): T = ts[-1] nobs = len(ts) dtarr = np.zeros(nobs) #/tratio dtarr[0] = ts[0]-0 dtarr[1:] = np.diff(ts) DXs = np.zeros((nrepl,nobs)) dB = np.sqrt(dtarr) * np.random.randn(nrepl,nobs) yt = 1. dXs = np.zeros((nrepl,nobs)) dtaus = np.zeros((nrepl,nobs)) y = np.zeros((nrepl,nobs)) for t in range(nobs): dt = dtarr[t] dy = kappa*(T_dot-yt)*dt + lambd*np.sqrt(yt)*dB[:,t] yt = np.maximum(yt+dy,1e-10) # keep away from zero ? dtau = np.maximum(yt*dt, 1e-6) dX = np.random.normal(loc=m*dtau, scale=sigma*np.sqrt(dtau)) y[:,t] = yt dtaus[:,t] = dtau dXs[:,t] = dX tau = np.cumsum(dtaus,1) x = np.cumsum(dXs,1) return x, tau, y def schout2contank(a,b,d): th = d*b/np.sqrt(a**2-b**2) k = 1/(d*np.sqrt(a**2-b**2)) s = np.sqrt(d/np.sqrt(a**2-b**2)) return th,k,s if __name__ == '__main__': #Merton Jump Diffusion #^^^^^^^^^^^^^^^^^^^^^ # grid of time values at which the process is evaluated #("0" will be added, too) nobs = 252.#1000 #252. ts = np.linspace(1./nobs, 1., nobs) nrepl=5 # number of simulations mu=.010 # deterministic drift sigma = .020 # Gaussian component lambd = 3.45 *10 # Poisson process arrival rate a=0 # drift of log-jump D=.2 # st.dev of log-jump jd = JumpDiffusionMerton() x = jd.simulate(mu,sigma,lambd,a,D,ts,nrepl) plt.figure() plt.plot(x.T) #Todo plt.title('Merton jump-diffusion') sigma = 0.2 lambd = 3.45 x = jd.simulate(mu,sigma,lambd,a,D,ts,nrepl) plt.figure() plt.plot(x.T) #Todo plt.title('Merton jump-diffusion') #Kou jump diffusion #^^^^^^^^^^^^^^^^^^ mu=.0 # deterministic drift lambd=4.25 # Poisson process arrival rate p=.5 # prob. of up-jump e1=.2 # parameter of up-jump e2=.3 # parameter of down-jump sig=.2 # Gaussian component x = JumpDiffusionKou().simulate(mu,sig,lambd,p,e1,e2,ts,nrepl) plt.figure() plt.plot(x.T) #Todo plt.title('double exponential (Kou jump diffusion)') #variance-gamma #^^^^^^^^^^^^^^ mu = .1 # deterministic drift in subordinated Brownian motion kappa = 1. #10. #1 # inverse for gamma shape parameter sig = 0.5 #.2 # s.dev in subordinated Brownian motion x = VG().simulate(mu,sig,kappa,ts,nrepl) plt.figure() plt.plot(x.T) #Todo plt.title('variance gamma') #normal-inverse-Gaussian #^^^^^^^^^^^^^^^^^^^^^^^ # (Schoutens notation) al = 2.1 be = 0 de = 1 # convert parameters to Cont-Tankov notation th,k,s = schout2contank(al,be,de) x = NIG().simulate(th,k,s,ts,nrepl) plt.figure() plt.plot(x.T) #Todo x-axis plt.title('normal-inverse-Gaussian') #Heston Stochastic Volatility #^^^^^^^^^^^^^^^^^^^^^^^^^^^^ m=.0 kappa = .6 # 2*Kappa*Eta>Lambda^2 eta = .3**2 lambd =.25 r = -.7 T = 20. nobs = 252.*T#1000 #252. tsh = np.linspace(T/nobs, T, nobs) x, vts = Heston().simulate(m,kappa, eta,lambd,r, tsh, nrepl, tratio=20.) plt.figure() plt.plot(x.T) plt.title('Heston Stochastic Volatility') plt.figure() plt.plot(np.sqrt(vts).T) plt.title('Heston Stochastic Volatility - CIR Vol.') plt.figure() plt.subplot(2,1,1) plt.plot(x[0]) plt.title('Heston Stochastic Volatility process') plt.subplot(2,1,2) plt.plot(np.sqrt(vts[0])) plt.title('CIR Volatility') #CIR subordinated Brownian #^^^^^^^^^^^^^^^^^^^^^^^^^ m=.1 sigma=.4 kappa=.6 # 2*Kappa*T_dot>Lambda^2 T_dot=1 lambd=1 #T=252*10 #dt=1/252 #nrepl=2 T = 10. nobs = 252.*T#1000 #252. tsh = np.linspace(T/nobs, T, nobs) x, tau, y = CIRSubordinatedBrownian().simulate(m, kappa, T_dot,lambd,sigma, tsh, nrepl) plt.figure() plt.plot(tsh, x.T) plt.title('CIRSubordinatedBrownian process') plt.figure() plt.plot(tsh, y.T) plt.title('CIRSubordinatedBrownian - CIR') plt.figure() plt.plot(tsh, tau.T) plt.title('CIRSubordinatedBrownian - stochastic time ') plt.figure() plt.subplot(2,1,1) plt.plot(tsh, x[0]) plt.title('CIRSubordinatedBrownian process') plt.subplot(2,1,2) plt.plot(tsh, y[0], label='CIR') plt.plot(tsh, tau[0], label='stoch. time') plt.legend(loc='upper left') plt.title('CIRSubordinatedBrownian') #plt.show()
bsd-3-clause
sheabrown/faraday_complexity
final/plots.py
1
15250
# Use inception class to access these import numpy as np import matplotlib.pyplot as plt import seaborn as sns import pandas as pd from keras.utils import plot_model from sklearn.metrics import confusion_matrix, f1_score, roc_curve from keras.models import load_model class plots: """ Class for making plots for the inception model. Functions _plotCNN _plotF1 _plotParamProb _plotROC """ def _plotCNN(self, to_file='graph.png'): plot_model(self.model_, to_file=to_file) def _plotROC(self, data='test', save=False, to_file='roc.pdf', fontsize=20): """ Function for plotting the ROC curve. To call: """ try: self.fpr_ self.tpr_ except: self._getROC(data) plt.figure(1) plt.rc('text', usetex=True) plt.rc('font', family='serif') plt.plot(self.fpr_, self.tpr_) plt.xlabel(r'$\rm FPR$', fontsize=fontsize) plt.ylabel(r'$\rm TPR$', fontsize=fontsize) plt.tight_layout() if save: plt.savefig(to_file) plt.close('all') else: plt.show() def _plotF1(self, step=0.025, save=False, to_file='f1_score.pdf', fontsize=20): """ Function for plotting the F1 score as a function of the threshold probability. To call: _plotF1(step, save=False, to_file, fontsize=20) Parameters: step stepsize to take (0.5 to 1.0) save (boolean) save image to_file file to save image to fontsize fontsize of axis labels """ try: self.threshold_ self.F1_ except: self._getF1(step) plt.figure(1) plt.rc('text', usetex=True) plt.rc('font', family='serif') plt.plot(self.threshold_, self.F1_) plt.xlabel(r'$p_\mathrm{cutoff}$', fontsize=fontsize) plt.ylabel(r'$F_{1} \, \mathrm{score}$', fontsize=fontsize) plt.tight_layout() if save: plt.savefig(to_file) plt.close('all') else: plt.show() def _plotParamProb(self, param, kind='kde', gridsize=50, save=False, to_file="FluxProb.pdf", fontscale=1.25): """ Function for plotting a parameter of the second component against its probability of being complex, as measured by the model. To call: _plotFluxProb(param, kind, gridsize, save, imfile, fontscale) Parameters: param column name in self.dfComplex_ kind seaborn jointplot params: "kde", "hex", etc. gridsize smoothing parameter save (boolean) save image imfile filepath to save image fontscale axes label scaling """ try: self.dfComplex_ except: self._getComplexParams() # =================================================== # Dictionary for x-axis label # =================================================== label = { "flux": r'$F_{2}$', "depth": r'$\Delta \phi$', "chi": r'$\Delta \chi$', "sig": r'$\sigma_\mathrm{noise}$' } # =================================================== # 1) Retrieve the flux of the second component # 2) Retrieve the model's probability that the # source is complex # =================================================== valu = pd.Series(self.dfComplex_[param], name=label[param]) prob = pd.Series(self.dfComplex_["prob"], name=r'$p_\mathrm{complex}$') # =================================================== # Create the plot # =================================================== sns.set(font_scale=fontscale) sns.jointplot(valu, prob, kind=kind, gridsize=gridsize) # =================================================== # Save or display the image # =================================================== if save: plt.savefig(to_file) plt.close('all') else: plt.show() def _plotBinaryParamProb(self, param, save=False, to_file='param_binary.pdf', fontsize=20, s=10, alpha=0.05, cComplex='darkorange', cSimple='dodgerblue'): plt.figure() plt.scatter(self.dfSimple_[param], self.dfSimple_['prob'], color=cSimple, alpha=alpha, s=s) plt.scatter(self.dfComplex_[param], self.dfComplex_['prob'], color=cComplex, alpha=alpha, s=s) plt.xlabel(r'$\sigma$', fontsize=fontsize) plt.ylabel(r'$p_\mathrm{complex}$', fontsize=fontsize) if save: plt.savefig(to_file) plt.close('all') else: plt.show() def _plotLoss(self, logfile=None, save=False, to_file='loss_vs_epoch.pdf', fontsize=20): # =================================================== # Load in the logfile or test to see if a # logfile has already been loaded # =================================================== if logfile == None: try: self.dfLog_ except: print('Please pass in the name of a logfile') sys.exit(1) else: try: self._loadLog(logfile) except: print('Failed to load logfile') sys.exit(1) # -------------- Initialize the Graph --------- fig = plt.figure() plt.rc('text', usetex=True) plt.rc('font', family='serif') plt.xlabel(r'$\rm Epoch$', fontsize=fontsize) plt.ylabel(r'$\rm Loss$', fontsize=fontsize) plt.plot(self.dfLog_.index, self.dfLog_['loss'], label='Training Loss') plt.plot(self.dfLog_.index, self.dfLog_['val_loss'], label='Validation Loss') plt.legend(loc='best', fontsize=15) if save: plt.savefig(to_file) plt.close() else: plt.show() plt.close() def _plotAcc(self, logfile=None, save=False, to_file='acc_vs_epoch.pdf', fontsize=20): """ Function for plotting the accuracy as a function of epoch. To call: _plotAcc(logfile, save, imfile) Parameters: """ # =================================================== # Load in the logfile or test to see if a # logfile has already been loaded # =================================================== if logfile == None: try: self.dfLog_ except: print('Please pass in the name of a logfile') sys.exit(1) else: try: self._loadLog(logfile) except: print('Failed to load logfile') sys.exit(1) # =================================================== # Plot accuracy vs epoch # =================================================== fig = plt.figure() plt.rc('text', usetex=True) plt.rc('font', family='serif') plt.plot(self.dfLog_.index, self.dfLog_['binary_accuracy'], label='Training Binary Accuracy') plt.plot(self.dfLog_.index, self.dfLog_['val_binary_accuracy'], label='Validation Binary Accuracy') plt.xlabel('Epoch', fontsize=fontsize) plt.ylabel('Binary Accuracy ', fontsize=fontsize) plt.legend(loc='best', fontsize=15) if save: plt.savefig(to_file) plt.close() else: plt.show() plt.close() ''' def _loadData(self, directory): """ Function for loading data arrays from a directory. To call: _loadModel(directory) Parameters: directory """ self.X_data = np.load(directory+'X_data.npy') self.Y_data = np.load(directory+'label.npy') #------ creation params -------- self.chi_data = np.load(directory+'chi.npy') self.depth_data = np.load(directory+'depth.npy') self.flux_data = np.load(directory+'flux.npy') self.q_data = np.load(directory+'Q_data.npy') self.s_data = np.load(directory+'S_data.npy') self.sig_data = np.load(directory+'sig.npy') self.u_data = np.load(directory+'U_data.npy') ''' def _format_param_name(self, param_name): """ Function for formatting a string parameter name (chi, depth, etc....) to LateX form for plot labels. To call: _format_param_name(param_name) Parameters: param_name """ if param_name == 'sigma': return r'$\sigma$' elif param_name == 'chi': return r'$\Delta\chi$' elif param_name == 'flux': return r'$\Delta F$' elif param_name == 'depth': return r'$\Delta \phi$' else: return param_name def _make_cut(self, param_array, param_name,num_cut=10,prob=0.5, save=False): """ Function for cutting along a single parameter value to test the model's performance over a parameter range. For aid in finding parameter space that model works with certainty within. Makes a plot showing the True Positive (TP) and True Negative (TN) rates as a function of the supplied parameter. To call: _make_cut(param_array, param_name,num_cut, prob, save) Parameters: param_array param_name OPTIONAL: num_cut -- number of cuts to make along the parameter prob -- probability cutoff to classify as complex or simple save -- True if want to save a .pdf """ cut_array = param_array # ----------- sigma and other params are formatted differently, this handles either case ------ try: cut_vals = np.linspace(0.,np.max(cut_array)[0]*.9,num_cut) oned =False except: cut_vals = np.linspace(0.,np.max(cut_array)*.9,num_cut) oned = True matrix_vals = [] # --------- make a series of cuts and save results for plotting ---------- for c in cut_vals: print (c) #do the cut float_check = type(0.1); tuple_check = type((0,1)) postcut = [];kept=[] for i in range(len(cut_array)): val = cut_array[i] # ---------- once again handle tuples or floats depending on parameter format ---------- if type(val) == tuple_check: if abs(val[0]-val[1]) >= c: postcut.append(abs(val[0]-val[1])) kept.append(i) else: if val >= c: postcut.append(val) kept.append(i) try: # -------- the subset of data -------------- X_new=np.array([self.X_data[k] for k in kept]) Y_new=np.array([self.Y_data[k] for k in kept]) # ----------- do predictions on the subset ---------- probs = self.model.predict(X_new)[:,1] # --------- probability cutoff for simple vs complex ------------- predictions = np.where(probs > prob, 1, 0) ''' #------------ Confusion Matrix ------------- [simple marked as simple simple marked as complex] [complex marked as simple complex marked as complex] ''' cm = confusion_matrix(Y_new, predictions) print(cm) matrix_vals.append(cm) except: print ('Nothing in that cutoff, continuing...') fstring = self._format_param_name(param_name) fig = plt.figure(1) try: plt.scatter(cut_vals,[float(matrix_vals[i][0,0])/(matrix_vals[i][0,0]+matrix_vals[i][0,1])*100. for i in range(len(matrix_vals))],label='True Simple',c='g') except: print ('No simple sources in subsample...') try: plt.scatter(cut_vals,[float(matrix_vals[i][1,1])/(matrix_vals[i][1,0]+matrix_vals[i][1,1])*100. for i in range(len(matrix_vals))],label='True Complex',c='b') except: print ('No complex sources in subsample...') plt.xlabel(fstring) plt.ylabel('Percent Correct') plt.title(r'Percent Correct over '+fstring) plt.legend(loc=(0.3,0.8),fontsize=5) if save: plt.savefig(param_name+'_plot.png',bbinches='tight') else: plt.show() plt.close() def _make_2d_cut(self, param_arr1, arr_name1, param_arr2, arr_name2,num_cut=10,prob=0.5,save=False): """ Function for cutting along two parameter values to test the model's performance over a parameter space. For aid in finding parameter space that model works with certainty within. Makes a plot showing the True Positive (TP) and True Negative (TN) rates as a function of the supplied parameters. Functions similarly to _make_cut() above. To call: _make_2d_cut(param_arr1, arr_name1, param_arr2, arr_name2, num_cut, prob, save) Parameters: param_arr1 arr_name1 param_arr2 arr_name2 OPTIONAL: num_cut -- number of cuts to make along the parameter prob -- probability cutoff to classify as complex or simple save -- True if want to save a .pdf """ # ----------- sigma and other params are formatted differently, this handles either case ------ try: cut_vals1 = np.linspace(0.,np.max(param_arr1)[0]*.9,num_cut) except: cut_vals1 = np.linspace(0.,np.max(param_arr1)*.9,num_cut) try: cut_vals2 = np.linspace(0.,np.max(param_arr2)[0]*.9,num_cut) except: cut_vals2 = np.linspace(0.,np.max(param_arr2)*.9,num_cut) matrix_vals_c = np.zeros((len(cut_vals1),len(cut_vals2))) matrix_vals_s = np.zeros((len(cut_vals1),len(cut_vals2))) # --------- make a series of cuts and save results for plotting ---------- for i in range(len(cut_vals1)): for j in range(len(cut_vals2)): #do the cut c1 = cut_vals1[i]; c2 = cut_vals2[j] float_check = type(0.1); tuple_check = type((0,1)) postcut = [];kept=[] for k in range(len(param_arr1)): val1 = param_arr1[k] val2 = param_arr2[k] # ---------- once again handle tuples or floats depending on parameter format ---------- if type(val1) == tuple_check: if abs(val1[0]-val1[1]) >= c1 and abs(val2[0]-val2[1]) >= c2: kept.append(k) else: if val1 >= c1 and val2 >= c2: kept.append(k) try: # -------- the subset of data -------------- X_new=np.array([self.X_data[k] for k in kept]) Y_new=np.array([self.Y_data[k] for k in kept]) # ----------- do predictions on the subset ---------- probs = self.model.predict(X_new)[:,1] # --------- probability cutoff for simple vs complex ------------- predictions = np.where(probs > prob, 1, 0) ''' #------------ Confusion Matrix ------------- [simple marked as simple simple marked as complex] [complex marked as simple complex marked as complex] ''' cm = confusion_matrix(Y_new, predictions) print(cm) matrix_vals_c[i,j] = float(cm[1,1])/(cm[1,0] +cm[1,1])*100. matrix_vals_s[i,j] = float(cm[0,0])/(cm[0,0] +cm[0,1])*100 except: print ('Nothing in that cutoff, continuing...') fstring1 = self._format_param_name(arr_name1) fstring2 = self._format_param_name(arr_name2) xv,yv = np.meshgrid(cut_vals1,cut_vals2) zv_complex = matrix_vals_c zv_simple = matrix_vals_s #------- show data as an image with z-axis being the TP/TN rates ---- fig,ax = plt.subplots(1,2,sharey=True,figsize=(12,7)) cax = ax[0].imshow(zv_complex,vmin=50., vmax=100.,cmap='seismic')#,origin='lower') sax = ax[1].imshow(zv_simple,vmin=50., vmax=100.,cmap='seismic')#,origin='lower') # ---- set the axis labels ------ ax[0].set_xlabel(fstring1) ax[0].set_ylabel(fstring2) ax[1].set_xlabel(fstring1) ax[1].set_ylabel(fstring2) # ---------- set the tick labels --------- ax[0].set_xticks([n for n in range(len(cut_vals1))]) ax[0].set_yticks(range(len(cut_vals2))) ax[1].set_xticks([n for n in range(len(cut_vals2))]) xlabels = ['%.2f'%(c) for c in cut_vals1] ylabels = ['%.2f'%(c) for c in cut_vals2] ax[0].set_xticklabels(xlabels) ax[0].set_yticklabels(ylabels) ax[1].set_xticklabels(xlabels) ax[1].set_yticklabels(ylabels) #-------- adjust plot sizing and add colorbar ---------- fig.subplots_adjust(right=0.8) cbar_ax = fig.add_axes([0.85, 0.15, 0.05, 0.7]) fig.colorbar(cax, cax=cbar_ax) ax[0].set_title('Complex Sources') ax[1].set_title('Simple Sources') plt.suptitle(r'Percent Correct over '+fstring1+' and '+fstring2) if save: plt.savefig(arr_name1+'_'+arr_name2+'_plot.png',bbinches='tight') else: plt.show() plt.close() if __name__ == '__main__': testing = plots() #testing._loadLog('train.log') #testing._plotLoss('train.log',save=False) #testing._plotAcc('train.log',save=False) testing._loadModel('../regularized/model_V1.h5') testing._loadData('../data/test/') #testing._make_cut(testing.chi_data, 'chi') testing._make_2d_cut(testing.chi_data[:1000], 'chi',testing.flux_data[:1000], 'flux', num_cut=25)
mit
malayaleecoder/servo
tests/heartbeats/process_logs.py
139
16143
#!/usr/bin/env python # This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. import argparse import matplotlib.pyplot as plt import numpy as np import os from os import path import sys import warnings HB_LOG_IDX_START_TIME = 7 HB_LOG_IDX_END_TIME = HB_LOG_IDX_START_TIME + 1 HB_LOG_IDX_START_ENERGY = 14 HB_LOG_IDX_END_ENERGY = HB_LOG_IDX_START_ENERGY + 1 ENERGY_PROFILER_NAME = 'ApplicationHeartbeat' SUMMARY_OUTPUT = "summary.txt" SUMMARY_TIME_IDX = 8 SUMMARY_ENERGY_IDX = SUMMARY_TIME_IDX + 1 SUMMARY_POWER_IDX = SUMMARY_ENERGY_IDX + 1 def autolabel(rects, ax): """Attach some text labels. """ for rect in rects: ax.text(rect.get_x() + rect.get_width() / 2., 1.05 * rect.get_height(), '', ha='center', va='bottom') def plot_raw_totals(config, plot_data, max_time, max_time_std, max_energy, max_energy_std, output_dir, normalize): """Plot the raw totals for a configuration. Keyword arguments: config -- configuration name plot_data -- (profiler name, total_time, total_time_std, total_energy, total_energy_std) max_time, max_time_std, max_energy, max_energy_std -- single values normalize -- True/False """ plot_data = sorted(plot_data) keys = [p for (p, tt, tts, te, tes) in plot_data] total_times = [tt for (p, tt, tts, te, tes) in plot_data] total_times_std = [tts for (p, tt, tts, te, tes) in plot_data] total_energies = [te for (p, tt, tts, te, tes) in plot_data] total_energies_std = [tes for (p, tt, tts, te, tes) in plot_data] fig, ax1 = plt.subplots() ind = np.arange(len(keys)) # the x locations for the groups width = 0.35 # the width of the bars # add some text for labels, title and axes ticks ax1.set_title('Time/Energy Data for Configuration ' + config) ax1.set_xticks(ind + width) ax1.set_xticklabels(keys, rotation=45) fig.set_tight_layout(True) fig.set_size_inches(len(plot_data) / 1.5, 8) ax2 = ax1.twinx() # Normalize if normalize: total_times_std /= np.sum(total_times) total_times /= np.sum(total_times) total_energies_std /= np.sum(total_energies) total_energies /= np.sum(total_energies) ax1.set_ylabel('Time (Normalized)') ax2.set_ylabel('Energy (Normalized)') else: # set time in us instead of ns total_times_std /= np.array(1000000.0) total_times /= np.array(1000000.0) total_energies_std /= np.array(1000000.0) total_energies /= np.array(1000000.0) ax1.set_ylabel('Time (ms)') ax2.set_ylabel('Energy (Joules)') rects1 = ax1.bar(ind, total_times, width, color='r', yerr=total_times_std) rects2 = ax2.bar(ind + width, total_energies, width, color='y', yerr=total_energies_std) ax1.legend([rects1[0], rects2[0]], ['Time', 'Energy']) # set axis x1, x2, y1, y2 = plt.axis() if normalize: ax1.set_ylim(ymin=0, ymax=1) ax2.set_ylim(ymin=0, ymax=1) else: ax1.set_ylim(ymin=0, ymax=((max_time + max_time_std) * 1.25 / 1000000.0)) ax2.set_ylim(ymin=0, ymax=((max_energy + max_energy_std) * 1.25 / 1000000.0)) autolabel(rects1, ax1) autolabel(rects2, ax2) # plt.show() plt.savefig(path.join(output_dir, config + ".png")) plt.close(fig) def create_raw_total_data(config_data): """Get the raw data to plot for a configuration Return: [(profiler, time_mean, time_stddev, energy_mean, energy_stddev)] Keyword arguments: config_data -- (trial, trial_data) """ # We can't assume that the same number of heartbeats are always issued across trials # key: profiler name; value: list of timing sums for each trial profiler_total_times = {} # key: profiler name; value: list of energy sums for each trial profiler_total_energies = {} for (t, td) in config_data: for (profiler, ts, te, es, ee) in td: # sum the total times and energies for each profiler in this trial total_time = np.sum(te - ts) total_energy = np.sum(ee - es) # add to list to be averaged later time_list = profiler_total_times.get(profiler, []) time_list.append(total_time) profiler_total_times[profiler] = time_list energy_list = profiler_total_energies.get(profiler, []) energy_list.append(total_energy) profiler_total_energies[profiler] = energy_list # Get mean and stddev for time and energy totals return [(profiler, np.mean(profiler_total_times[profiler]), np.std(profiler_total_times[profiler]), np.mean(profiler_total_energies[profiler]), np.std(profiler_total_energies[profiler])) for profiler in profiler_total_times.keys()] def plot_all_raw_totals(config_list, output_dir): """Plot column charts of the raw total time/energy spent in each profiler category. Keyword arguments: config_list -- [(config, result of process_config_dir(...))] output_dir -- where to write plots to """ raw_total_norm_out_dir = path.join(output_dir, 'raw_totals_normalized') os.makedirs(raw_total_norm_out_dir) raw_total_out_dir = path.join(output_dir, 'raw_totals') os.makedirs(raw_total_out_dir) # (name, (profiler, (time_mean, time_stddev, energy_mean, energy_stddev))) raw_totals_data = [(config, create_raw_total_data(config_data)) for (config, config_data) in config_list] mean_times = [] mean_times_std = [] mean_energies = [] mean_energies_std = [] for profiler_tup in [config_tup[1] for config_tup in raw_totals_data]: for (p, tt, tts, te, tes) in profiler_tup: mean_times.append(tt) mean_times_std.append(tts) mean_energies.append(te) mean_energies_std.append(tes) # get consistent max time/energy values across plots max_t = np.max(mean_times) max_t_std = np.max(mean_times_std) max_e = np.max(mean_energies) max_e_std = np.max(mean_energies_std) [plot_raw_totals(data[0], data[1], max_t, max_t_std, max_e, max_e_std, raw_total_norm_out_dir, True) for data in raw_totals_data] [plot_raw_totals(data[0], data[1], max_t, max_t_std, max_e, max_e_std, raw_total_out_dir, False) for data in raw_totals_data] def plot_trial_time_series(config, trial, trial_data, max_end_time, max_power, output_dir): """Plot time series for a single trial. Keyword arguments: config -- the config name trial -- the trial name trial_data -- [(profiler, [start times], [end times], [start energies], [end energies])] max_end_time -- single value to use as max X axis value (for consistency across trials) output_dir -- the output directory """ # TODO: Some profilers may have parallel tasks - need to identify this on plots max_end_time = max_end_time / 1000000.0 trial_data = sorted(trial_data) fig, ax1 = plt.subplots() keys = [p for (p, ts, te, es, ee) in trial_data] # add some text for labels, title and axes ticks ax1.set_title('Profiler Activity for ' + config + ', ' + trial) ax1.set_xlabel('Time (ms)') ax1.grid(True) width = 8 # the width of the bars ax1.set_yticks(10 * np.arange(1, len(keys) + 2)) ax1.set_yticklabels(keys) ax1.set_ylim(ymin=0, ymax=((len(trial_data) + 1) * 10)) ax1.set_xlim(xmin=0, xmax=max_end_time) fig.set_tight_layout(True) fig.set_size_inches(16, len(trial_data) / 3) i = 10 for (p, ts, te, es, ee) in trial_data: xranges = [(ts[j] / 1000000.0, (te[j] - ts[j]) / 1000000.0) for j in xrange(len(ts))] ax1.broken_barh(xranges, (i - 0.5 * width, width)) i += 10 # place a vbar at the final time for this trial last_profiler_times = map(np.nanmax, filter(lambda x: len(x) > 0, [te for (p, ts, te, es, ee) in trial_data])) plt.axvline(np.max(last_profiler_times) / 1000000.0, color='black') power_times = [] power_values = [] for (p, ts, te, es, ee) in trial_data: if p == ENERGY_PROFILER_NAME: power_times = te / 1000000.0 power_values = (ee - es) / ((te - ts) / 1000.0) ax2 = ax1.twinx() ax2.set_xlim(xmin=0, xmax=max_end_time) ax2.set_ylim(ymin=0, ymax=max_power) ax2.set_ylabel('Power (Watts)') ax2.plot(power_times, power_values, color='r') # plt.show() plt.savefig(path.join(output_dir, "ts_" + config + "_" + trial + ".png")) plt.close(fig) def hb_energy_times_to_power(es, ee, ts, te): """Compute power from start and end energy and times. Return: power values """ return (ee - es) / ((te - ts) / 1000.0) def plot_all_time_series(config_list, output_dir): """Plot column charts of the raw total time/energy spent in each profiler category. Keyword arguments: config_list -- [(config, result of process_config_dir(...))] output_dir -- where to write plots to """ time_series_out_dir = path.join(output_dir, 'time_series') os.makedirs(time_series_out_dir) max_end_times = [] max_power_values = [] for (c, cd) in config_list: for (t, td) in cd: trial_max_end_times = map(np.nanmax, filter(lambda x: len(x) > 0, [te for (p, ts, te, es, ee) in td])) max_end_times.append(np.nanmax(trial_max_end_times)) for (p, ts, te, es, ee) in td: # We only care about the energy profiler (others aren't reliable for instant power anyway) if p == ENERGY_PROFILER_NAME and len(te) > 0: max_power_values.append(np.nanmax(hb_energy_times_to_power(es, ee, ts, te))) max_time = np.nanmax(max_end_times) max_power = np.nanmax(np.array(max_power_values)) * 1.2 # leave a little space at the top for (config, config_data) in config_list: [plot_trial_time_series(config, trial, trial_data, max_time, max_power, time_series_out_dir) for (trial, trial_data) in config_data] def read_heartbeat_log(profiler_hb_log): """Read a heartbeat log file. Return: (profiler name, [start times], [end times], [start energies], [end energies], [instant powers]) Keyword arguments: profiler_hb_log -- the file to read """ with warnings.catch_warnings(): try: warnings.simplefilter("ignore") time_start, time_end, energy_start, energy_end = \ np.loadtxt(profiler_hb_log, dtype=np.dtype('uint64'), skiprows=1, usecols=(HB_LOG_IDX_START_TIME, HB_LOG_IDX_END_TIME, HB_LOG_IDX_START_ENERGY, HB_LOG_IDX_END_ENERGY), unpack=True, ndmin=1) except ValueError: time_start, time_end, energy_start, energy_end = [], [], [], [] name = path.split(profiler_hb_log)[1].split('-')[1].split('.')[0] return (name, np.atleast_1d(time_start), np.atleast_1d(time_end), np.atleast_1d(energy_start), np.atleast_1d(energy_end)) def process_trial_dir(trial_dir): """Process trial directory. Return: [(profiler name, [start times], [end times], [start energies], [end energies])] Time and energy are normalized to 0 start values. Keyword arguments: trial_dir -- the directory for this trial """ log_data = map(lambda h: read_heartbeat_log(path.join(trial_dir, h)), filter(lambda f: f.endswith(".log"), os.listdir(trial_dir))) # Find the earliest timestamps and energy readings min_t = np.nanmin(map(np.nanmin, filter(lambda x: len(x) > 0, [ts for (profiler, ts, te, es, ee) in log_data]))) min_e = np.nanmin(map(np.nanmin, filter(lambda x: len(x) > 0, [es for (profiler, ts, te, es, ee) in log_data]))) # Normalize timing/energy data to start values of 0 return [(profiler, ts - min_t, te - min_t, es - min_e, ee - min_e) for (profiler, ts, te, es, ee) in log_data] def process_config_dir(config_dir): """Process a configuration directory. Return: [(trial, [(profiler name, [start times], [end times], [start energies], [end energies])])] Keyword arguments: config_dir -- the directory for this configuration - contains subdirectories for each trial """ return [(trial_dir, process_trial_dir(path.join(config_dir, trial_dir))) for trial_dir in os.listdir(config_dir)] def process_logs(log_dir): """Process log directory. Return: [(config, [(trial, [(profiler name, [start times], [end times], [start energies], [end energies])])])] Keyword arguments: log_dir -- the log directory to process - contains subdirectories for each configuration """ return [((config_dir.split('_')[1], process_config_dir(path.join(log_dir, config_dir)))) for config_dir in os.listdir(log_dir)] def find_best_executions(log_dir): """Get the best time, energy, and power from the characterization summaries. Return: ((config, trial, min_time), (config, trial, min_energy), (config, trial, min_power)) Keyword arguments: results -- the results from process_logs(...). """ DEFAULT = ('', '', 1000000000.0) min_time = DEFAULT min_energy = DEFAULT min_power = DEFAULT for config_dir in os.listdir(log_dir): for trial_dir in os.listdir(path.join(log_dir, config_dir)): with open(path.join(log_dir, config_dir, trial_dir, SUMMARY_OUTPUT), "r") as s: lines = s.readlines() time = float(lines[SUMMARY_TIME_IDX].split(':')[1]) energy = int(lines[SUMMARY_ENERGY_IDX].split(':')[1]) power = float(lines[SUMMARY_POWER_IDX].split(':')[1]) if time < min_time[2]: min_time = (config_dir, trial_dir, time) if energy < min_energy[2]: min_energy = (config_dir, trial_dir, energy) if power < min_power: min_power = (config_dir, trial_dir, power) return (min_time, min_energy, min_power) def main(): """This script processes the log files from the "characterize.py" script and produces visualizations. """ # Default log directory directory = 'heartbeat_logs' # Default output directory output_dir = 'plots' # Default android android = False # Parsing the input of the script parser = argparse.ArgumentParser(description="Process Heartbeat log files from characterization") parser.add_argument("-d", "--directory", default=directory, help="Heartbeat log directory \"-d heartbeat_logs\"") parser.add_argument("-o", "--output", default=output_dir, help="Specify the log output directory, for example \"-o plots\"") parser.add_argument("--android", action="store_true", dest="android", default=False, help="Specify if processing results from Android") args = parser.parse_args() if args.directory: directory = args.directory if args.output: output_dir = args.output if args.android: android = args.android if not os.path.exists(directory): print "Input directory does not exist: " + directory sys.exit(1) if os.path.exists(output_dir): print "Output directory already exists: " + output_dir sys.exit(1) res = process_logs(directory) if not android: best = find_best_executions(directory) print 'Best time:', best[0] print 'Best energy:', best[1] print 'Best power:', best[2] os.makedirs(output_dir) plot_all_raw_totals(res, output_dir) plot_all_time_series(res, output_dir) if __name__ == "__main__": main()
mpl-2.0
dsullivan7/scikit-learn
examples/applications/plot_outlier_detection_housing.py
243
5577
""" ==================================== Outlier detection on a real data set ==================================== This example illustrates the need for robust covariance estimation on a real data set. It is useful both for outlier detection and for a better understanding of the data structure. We selected two sets of two variables from the Boston housing data set as an illustration of what kind of analysis can be done with several outlier detection tools. For the purpose of visualization, we are working with two-dimensional examples, but one should be aware that things are not so trivial in high-dimension, as it will be pointed out. In both examples below, the main result is that the empirical covariance estimate, as a non-robust one, is highly influenced by the heterogeneous structure of the observations. Although the robust covariance estimate is able to focus on the main mode of the data distribution, it sticks to the assumption that the data should be Gaussian distributed, yielding some biased estimation of the data structure, but yet accurate to some extent. The One-Class SVM algorithm First example ------------- The first example illustrates how robust covariance estimation can help concentrating on a relevant cluster when another one exists. Here, many observations are confounded into one and break down the empirical covariance estimation. Of course, some screening tools would have pointed out the presence of two clusters (Support Vector Machines, Gaussian Mixture Models, univariate outlier detection, ...). But had it been a high-dimensional example, none of these could be applied that easily. Second example -------------- The second example shows the ability of the Minimum Covariance Determinant robust estimator of covariance to concentrate on the main mode of the data distribution: the location seems to be well estimated, although the covariance is hard to estimate due to the banana-shaped distribution. Anyway, we can get rid of some outlying observations. The One-Class SVM is able to capture the real data structure, but the difficulty is to adjust its kernel bandwidth parameter so as to obtain a good compromise between the shape of the data scatter matrix and the risk of over-fitting the data. """ print(__doc__) # Author: Virgile Fritsch <virgile.fritsch@inria.fr> # License: BSD 3 clause import numpy as np from sklearn.covariance import EllipticEnvelope from sklearn.svm import OneClassSVM import matplotlib.pyplot as plt import matplotlib.font_manager from sklearn.datasets import load_boston # Get data X1 = load_boston()['data'][:, [8, 10]] # two clusters X2 = load_boston()['data'][:, [5, 12]] # "banana"-shaped # Define "classifiers" to be used classifiers = { "Empirical Covariance": EllipticEnvelope(support_fraction=1., contamination=0.261), "Robust Covariance (Minimum Covariance Determinant)": EllipticEnvelope(contamination=0.261), "OCSVM": OneClassSVM(nu=0.261, gamma=0.05)} colors = ['m', 'g', 'b'] legend1 = {} legend2 = {} # Learn a frontier for outlier detection with several classifiers xx1, yy1 = np.meshgrid(np.linspace(-8, 28, 500), np.linspace(3, 40, 500)) xx2, yy2 = np.meshgrid(np.linspace(3, 10, 500), np.linspace(-5, 45, 500)) for i, (clf_name, clf) in enumerate(classifiers.items()): plt.figure(1) clf.fit(X1) Z1 = clf.decision_function(np.c_[xx1.ravel(), yy1.ravel()]) Z1 = Z1.reshape(xx1.shape) legend1[clf_name] = plt.contour( xx1, yy1, Z1, levels=[0], linewidths=2, colors=colors[i]) plt.figure(2) clf.fit(X2) Z2 = clf.decision_function(np.c_[xx2.ravel(), yy2.ravel()]) Z2 = Z2.reshape(xx2.shape) legend2[clf_name] = plt.contour( xx2, yy2, Z2, levels=[0], linewidths=2, colors=colors[i]) legend1_values_list = list( legend1.values() ) legend1_keys_list = list( legend1.keys() ) # Plot the results (= shape of the data points cloud) plt.figure(1) # two clusters plt.title("Outlier detection on a real data set (boston housing)") plt.scatter(X1[:, 0], X1[:, 1], color='black') bbox_args = dict(boxstyle="round", fc="0.8") arrow_args = dict(arrowstyle="->") plt.annotate("several confounded points", xy=(24, 19), xycoords="data", textcoords="data", xytext=(13, 10), bbox=bbox_args, arrowprops=arrow_args) plt.xlim((xx1.min(), xx1.max())) plt.ylim((yy1.min(), yy1.max())) plt.legend((legend1_values_list[0].collections[0], legend1_values_list[1].collections[0], legend1_values_list[2].collections[0]), (legend1_keys_list[0], legend1_keys_list[1], legend1_keys_list[2]), loc="upper center", prop=matplotlib.font_manager.FontProperties(size=12)) plt.ylabel("accessibility to radial highways") plt.xlabel("pupil-teacher ratio by town") legend2_values_list = list( legend2.values() ) legend2_keys_list = list( legend2.keys() ) plt.figure(2) # "banana" shape plt.title("Outlier detection on a real data set (boston housing)") plt.scatter(X2[:, 0], X2[:, 1], color='black') plt.xlim((xx2.min(), xx2.max())) plt.ylim((yy2.min(), yy2.max())) plt.legend((legend2_values_list[0].collections[0], legend2_values_list[1].collections[0], legend2_values_list[2].collections[0]), (legend2_values_list[0], legend2_values_list[1], legend2_values_list[2]), loc="upper center", prop=matplotlib.font_manager.FontProperties(size=12)) plt.ylabel("% lower status of the population") plt.xlabel("average number of rooms per dwelling") plt.show()
bsd-3-clause
trabucayre/gnuradio
gr-filter/examples/synth_to_chan.py
6
3134
#!/usr/bin/env python # # Copyright 2010,2012,2013 Free Software Foundation, Inc. # # This file is part of GNU Radio # # SPDX-License-Identifier: GPL-3.0-or-later # # from gnuradio import gr from gnuradio import blocks from gnuradio import filter import sys import numpy try: from gnuradio import analog except ImportError: sys.stderr.write("Error: Program requires gr-analog.\n") sys.exit(1) try: from matplotlib import pyplot except ImportError: sys.stderr.write("Error: Program requires matplotlib (see: matplotlib.sourceforge.net).\n") sys.exit(1) def main(): N = 1000000 fs = 8000 freqs = [100, 200, 300, 400, 500] nchans = 7 sigs = list() fmtx = list() for fi in freqs: s = analog.sig_source_f(fs, analog.GR_SIN_WAVE, fi, 1) fm = analog.nbfm_tx(fs, 4*fs, max_dev=10000, tau=75e-6, fh=0.925*(4*fs)/2.0) sigs.append(s) fmtx.append(fm) syntaps = filter.firdes.low_pass_2(len(freqs), fs, fs/float(nchans)/2, 100, 100) print("Synthesis Num. Taps = %d (taps per filter = %d)" % (len(syntaps), len(syntaps) / nchans)) chtaps = filter.firdes.low_pass_2(len(freqs), fs, fs/float(nchans)/2, 100, 100) print("Channelizer Num. Taps = %d (taps per filter = %d)" % (len(chtaps), len(chtaps) / nchans)) filtbank = filter.pfb_synthesizer_ccf(nchans, syntaps) channelizer = filter.pfb.channelizer_ccf(nchans, chtaps) noise_level = 0.01 head = blocks.head(gr.sizeof_gr_complex, N) noise = analog.noise_source_c(analog.GR_GAUSSIAN, noise_level) addnoise = blocks.add_cc() snk_synth = blocks.vector_sink_c() tb = gr.top_block() tb.connect(noise, (addnoise,0)) tb.connect(filtbank, head, (addnoise, 1)) tb.connect(addnoise, channelizer) tb.connect(addnoise, snk_synth) snk = list() for i,si in enumerate(sigs): tb.connect(si, fmtx[i], (filtbank, i)) for i in range(nchans): snk.append(blocks.vector_sink_c()) tb.connect((channelizer, i), snk[i]) tb.run() if 1: channel = 1 data = snk[channel].data()[1000:] f1 = pyplot.figure(1) s1 = f1.add_subplot(1,1,1) s1.plot(data[10000:10200] ) s1.set_title(("Output Signal from Channel %d" % channel)) fftlen = 2048 winfunc = numpy.blackman #winfunc = numpy.hamming f2 = pyplot.figure(2) s2 = f2.add_subplot(1,1,1) s2.psd(data, NFFT=fftlen, Fs = nchans*fs, noverlap=fftlen / 4, window = lambda d: d*winfunc(fftlen)) s2.set_title(("Output PSD from Channel %d" % channel)) f3 = pyplot.figure(3) s3 = f3.add_subplot(1,1,1) s3.psd(snk_synth.data()[1000:], NFFT=fftlen, Fs = nchans*fs, noverlap=fftlen / 4, window = lambda d: d*winfunc(fftlen)) s3.set_title("Output of Synthesis Filter") pyplot.show() if __name__ == "__main__": main()
gpl-3.0
JRosenfeldIntern/data-assistant
UnitTests/test_preview.py
1
34329
import functools import pathlib import sys import traceback import unittest import xml.etree.ElementTree as ET import zipfile from inc_datasources import _XMLMethodNames, _localWorkspace, _outputDirectory, _daGPTools sys.path.insert(0, _daGPTools) import arcpy import pandas as pd import tempfile from scripts import dla from create import * def clear_feature_classes(directory: str): """ the dla.gdb is the test workspace the feature classes are created in. To pull the one we want, we clear the workspace so that the newly created one is the only one that exists. This function clears the workspace. :param directory: :return: """ arcpy.env.workspace = directory featureclasses = arcpy.ListFeatureClasses() if featureclasses is not None: for featureclass in featureclasses: arcpy.Delete_management(os.path.join(directory, featureclass)) def build_correct_fields(xml_location: str, include_globalid: bool = False): """ takes the xml file and creates the fields that should be in the new feature class :param xml_location: str :param include_globalid: bool :return: """ fields = dla.getXmlElements(xml_location, "Field") correct_fields = [] for field in fields: if not include_globalid and str.lower(dla.getNodeValue(field, "TargetName")) != "globalid": correct_fields.append(dla.getNodeValue(field, "TargetName")) return correct_fields def make_copy(directory: str, lw: dict): """ Copies the target feature class into the dla.gdb for comparison in the tests :param directory: str :param lw : dict :return: """ arcpy.env.workspace = lw["Target"] arcpy.CopyFeatures_management(lw["TargetName"], os.path.join(directory, "copy")) def xml_compare(x1: ET, x2: ET, reporter=None): """ taken from: https://bitbucket.org/ianb/formencode/src/tip/formencode/doctest_xml_compare.py?fileviewer=file-view-default#cl-70 :param x1: :param x2: :param reporter: :return: """ if x1.tag in ['Source', 'Target'] or x2.tag in ['Source', 'Target']: # We skip asserting the data path is correct because our xml file data paths may not match return True if x1.tag != x2.tag: if reporter: reporter('Tags do not match: %s and %s' % (x1.tag, x2.tag)) return False for name, value in x1.attrib.items(): if x2.attrib.get(name) != value: if reporter: reporter('Attributes do not match: %s=%r, %s=%r' % (name, value, name, x2.attrib.get(name))) return False for name in x2.attrib.keys(): if name not in x1.attrib: if reporter: reporter('x2 has an attribute x1 is missing: %s' % name) return False if not text_compare(x1.text, x2.text): if reporter: reporter('text: %r != %r' % (x1.text, x2.text)) return False if not text_compare(x1.tail, x2.tail): if reporter: reporter('tail: %r != %r' % (x1.tail, x2.tail)) return False cl1 = x1.getchildren() cl2 = x2.getchildren() if len(cl1) != len(cl2): if reporter: reporter('children length differs, %i != %i' % (len(cl1), len(cl2))) return False i = 0 for c1, c2 in zip(cl1, cl2): i += 1 if not xml_compare(c1, c2, reporter=reporter): if reporter: reporter('children %i do not match: %s' % (i, c1.tag)) return False return True def text_compare(t1: str, t2: str): """ taken from: https://bitbucket.org/ianb/formencode/src/tip/formencode/doctest_xml_compare.py?fileviewer=file-view-default#cl-70 :param t1: :param t2: :return: """ if not t1 and not t2: return True if t1 == '*' or t2 == '*': return True return (t1 or '').strip() == (t2 or '').strip() class UnitTests(unittest.TestCase): """ Runs the unit tests for the various functions for all test cases and data sources """ def __init__(self, test_object, *args, **kwargs): super(UnitTests, self).__init__(*args, **kwargs) self.testObject = test_object self.local_workspace = self.testObject.local_workspace self.localDirectory = _outputDirectory self.sourceWorkspace = self.local_workspace["Source"] self.targetWorkspace = self.local_workspace["Target"] self.sourceFC = self.local_workspace["SourceName"] self.targetFC = self.local_workspace["TargetName"] self.localFC = list() self.localDataPath = "" self.localFields = tuple() self.sourceDataPath = os.path.join(self.local_workspace["Source"], self.local_workspace["SourceName"]) self.targetDataPath = os.path.join(self.local_workspace["Target"], self.local_workspace["TargetName"]) self.sourceFields = tuple(arcpy.ListFields(self.sourceDataPath)) self.targetFields = tuple(arcpy.ListFields(self.targetDataPath)) self.methods = _XMLMethodNames self.xmlLocation = self.local_workspace["xmlLocation"] self.outXML = os.path.join(str(pathlib.Path(self.local_workspace["outXML"]).parent), pathlib.Path(self.local_workspace["outXML"]).stem, os.path.basename(self.local_workspace["outXML"])) self.correctXML = self.local_workspace["correctXML"] def test_create(self): """ Creates the feature class or xml file for testing :return: """ clear_feature_classes(_outputDirectory) self.testObject.main() if self.testObject.title != "CreateConfig": self.set_local_info() def get_default_values(self): """ Returns a dictionary where the key is the field name and the value is that field's default value :return: dict """ out_dict = dict() for field in self.targetFields: out_dict[field.name] = field.defaultValue return out_dict def set_local_info(self): """ Once the feature class being tested is created, sets the datapath and fields of that feature class :return: """ arcpy.env.workspace = self.localDirectory self.localFC = arcpy.ListFeatureClasses()[0] arcpy.env.workspace = "" self.localDataPath = os.path.join(_outputDirectory, self.localFC) self.localFields = tuple(arcpy.ListFields(self.localDataPath)) @staticmethod def build_data_frame(data_path: str, columns: tuple): """ Builds and caches a pandas DataFrame object containing the information from the specified feature class :param data_path: str :param columns: tupe(str) :return: pd.DataFrame object """ # creates a searchCursor for a given feature class and returns an array of that table return pd.DataFrame(list(arcpy.da.SearchCursor(data_path, columns)), columns=columns) @functools.lru_cache() def get_xml_parse(self): """ Returns and caches a SourceTargetParser object containing information in it from the specified SourceTarget.xml file :return: SourceTargetParser object """ return SourceTargetParser(self.xmlLocation) def test_fields(self): """ Compares the xml file with the mutated file to ensure that the fields were correctly transferred over and not tampered with :return: """ if self.testObject.title not in ["Preview", "Stage", "Append", "Replace"]: return correct_fields = build_correct_fields(self.xmlLocation, self.testObject.globalIDCheck) if self.testObject.title in ["Append", "Replace"]: fields = arcpy.ListFields(self.targetDataPath) else: fields = arcpy.ListFields(self.localDataPath) fieldnames = [] for field in fields: if self.testObject.globalIDCheck: if field.name.lower() not in ["", "objectid", "shape"]: fieldnames.append(field.name) else: if field.name.lower() not in ["", "objectid", "shape", "globalid"]: fieldnames.append(field.name) for cfield in correct_fields: self.assertIn(cfield, fieldnames) def test_length(self): """ Ensures that the mutated file, depending on which it is, is the correct needed length :return: """ if self.testObject.title not in ["Preview", "Stage", "Append", "Replace"]: return source_table = self.build_data_frame(self.sourceDataPath, tuple([field.name for field in self.sourceFields])) local_table = self.build_data_frame(self.localDataPath, tuple([field.name for field in self.localFields])) # target_table = (list(arcpy.da.SearchCursor(self.targetDataPath, "*"))) target_table = self.build_data_frame(self.targetDataPath, tuple([field.name for field in self.targetFields])) mode = self.testObject.title # variable assignment to help with readability if mode == "Preview": if len(source_table) < self.testObject.RowLimit: self.assertEqual(len(local_table), len(source_table)) else: self.assertEqual(len(local_table), self.testObject.RowLimit) elif mode == "Stage": self.assertEqual(len(local_table), len(source_table)) elif mode == "Append": self.assertEqual(len(target_table), len(local_table) + len(source_table)) elif mode == "Replace": self.assertEqual(len(target_table), len(local_table)) else: self.assertIn(mode, ["Preview", "Stage", "Append", "Replace"]) def test_replace_data(self): """ Ensures the correct rows were appended and removed and in the correct order :return: """ replaced_rows_list = [] targetfields = list() for field in self.targetFields: if field.name.lower() not in ['globalid', 'objectid']: targetfields.append(field.name) localfields = list() for field in self.localFields: if field.name.lower() not in ['globalid', 'objectid']: localfields.append(field.name) copy = self.build_data_frame(self.localDataPath, tuple(localfields)).iterrows() target = self.build_data_frame(self.targetDataPath, tuple(targetfields)).iterrows() replace_dict = self.get_xml_parse().parse_replace() for copy_row, targetRow in zip(copy, target): # will iterate through until all of the copy cursor is exhausted copy_row = copy_row[1] targetRow = targetRow[1] while not targetRow.equals(copy_row): replaced_rows_list.append(copy_row) copy_row = next(copy) copy_row = copy_row[1] for targetRow, copy_row in zip(target, replaced_rows_list): # now iterates through the rows that should have been targetRow = targetRow[1] # these assertions make sure the targetRow SHOULD have been replaced if replace_dict["Operator"] == "=": self.assertEqual(targetRow[replace_dict["FieldName"]], replace_dict["Value"]) if replace_dict["Operator"] == "!=": self.assertNotEqual(targetRow[replace_dict["FieldName"]], replace_dict["Value"]) if replace_dict["Operator"] == "Like": self.assertIn(replace_dict["Value"], targetRow[replace_dict["FieldName"]]) self.assertTrue(targetRow.equals(copy_row)) # appended to ensure order and accuracy. Here the target cursor starts # at where the beginning of the re-appended rows should be def test_data(self): """ Ensures that the mutated file has the correct data in each row, and that the data asisstant actions were performed correctly :return: """ source_table = self.build_data_frame(self.sourceDataPath, tuple([field.name for field in self.sourceFields])) local_table = self.build_data_frame(self.localDataPath, tuple([field.name for field in self.localFields])) target_table = self.build_data_frame(self.targetDataPath, tuple([field.name for field in self.targetFields])) parse_object = self.get_xml_parse() parse_object.data = parse_object.parse() xml_fields = parse_object.get_pairings() method_dict = parse_object.get_methods() xml_data = parse_object.get_data() default_values = self.get_default_values() if self.testObject.title in ["Preview", "Stage"]: # needed so that we can use the same function to test append target = local_table else: if 'GLOBALID' in target_table.columns: target_table = target_table.drop('GLOBALID', 1) # TODO: Might need to omit other itrations of globalid if 'GLOBALID' in local_table.columns: local_table = local_table.drop('GLOBALID', 1) # TODO: Might need to omit other itrations of globalid # self.assertTrue(local_table.equals(target_table.head(len(local_table)))) self.assertTrue((local_table == target_table.head(len(local_table))).all().all()) target = target_table.drop(range(len(local_table))) # ensures we are only comparing the newly appended data for field in xml_fields.keys(): if method_dict[field] == self.methods["None"]: self.none_test(target[field], default_values[field]) elif method_dict[field] == self.methods["Copy"]: self.copy_test(source_table[xml_fields[field]], target[field]) elif method_dict[field] == self.methods["Set Value"]: self.set_value_test(target[field], xml_data[field][self.methods["Set Value"]]) elif method_dict[field] == self.methods["Value Map"]: self.value_map_test(source_table[xml_fields[field]], target[field], xml_data[field][self.methods["Value Map"]], xml_data[field]["Otherwise"]) elif method_dict[field] == self.methods["Change Case"]: self.change_case_test(source_table[xml_fields[field]], target[field], xml_data[field][self.methods["Change Case"]]) elif method_dict[field] == self.methods["Concatenate"]: self.concatenate_test(target[field], xml_data[field]["Separator"], xml_data[field]["Concatenate"]) elif method_dict[field] == self.methods["Left"]: self.left_test(source_table[xml_fields[field]], target[field], xml_data[field]["Left"]) elif method_dict[field] == self.methods["Right"]: self.right_test(source_table[xml_fields[field]], target[field], xml_data[field]["Right"]) elif method_dict[field] == self.methods["Substring"]: self.substring_test(source_table[xml_fields[field]], target[field], xml_data[field]["Start"], xml_data[field]["Length"]) elif method_dict[field] == self.methods["Split"]: self.split_test(source_table[xml_fields[field]], target[field], xml_data[field]["SplitAt"], xml_data[field]["Part"]) elif method_dict[field] == self.methods["Conditional Value"]: self.conditional_value_test(source_table[xml_fields[field]], target[field], xml_data[field]["Oper"], xml_data[field]["If"], xml_data[field]["Then"], xml_data[field]["Else"]) elif method_dict[field] == self.methods["Domain Map"]: self.domain_map_test(source_table[xml_fields[field]], target[field], xml_data[field][self.methods["Domain Map"]]) else: self.assertIn(method_dict[field], self.methods) def none_test(self, target: pd.Series, defaultValue): """ Ensures that the vector is a vector of none :param target: :param defaultValue: :return: """ self.assertTrue(len(target.unique()) == 1 and ( target.unique()[0] is None or target.unique()[0] == 'None' or target.unique()[0] == defaultValue), target.to_string()) def copy_test(self, source: pd.Series, target: pd.Series): """ Ensures that the copy source got copied to the target. In other words, ensures that the two vectors are equal. """ self.assertTrue((source == target.astype(source.dtype)).all(), "Mis-match bewteen these fields: " + source.name + " " + target.name) def set_value_test(self, target: pd.Series, value: pd.Series): """ Ensures that the target values are all set properly :param target: :param value: :return: """ self.assertTrue(len(target.unique()) == 1 and target.unique() == value) def value_map_test(self, source: pd.Series, target: pd.Series, value_dict: dict, otherwise): """ Ensures the values are set to what they need to be based on the preset configuration in the value map :param source: :param target: :param value_dict :param otherwise :return: """ for s, t in zip(source, target): if s in value_dict: self.assertTrue(str(t) == str(value_dict[s]), str(t) + " != " + str(value_dict[s])) else: self.assertTrue(str(t) == str(otherwise)) def change_case_test(self, source: pd.Series, target: pd.Series, manipulation: str): """ Ensures the row correctly was changed :param source: :param target: :param manipulation: str :return: """ if manipulation == "Uppercase": self.assertTrue((source.str.upper() == target).all()) elif manipulation == "Lowercase": self.assertTrue((source.str.lower() == target).all()) elif manipulation == "Capitalize": self.assertTrue((source.str.capitalize() == target).all()) elif manipulation == "Title": self.assertTrue((source.str.title() == target).all()) else: self.assertIn(manipulation, ["Uppercase", "Lowercase", "Capitalize", "Title"]) def concatenate_test(self, target: pd.Series, seperator: str, cfields: list): """ Ensures the row concatenates the correct field values :param target: :param seperator: :param cfields: :return: """ source_table = self.build_data_frame(self.sourceDataPath, tuple([field.name for field in self.sourceFields])) if seperator == "(space)": seperator = " " compare_column = source_table[cfields.pop(0)] for cfield in cfields: right = source_table[cfield].replace("NaN", "").astype(str) compare_column = compare_column.astype(str).str.cat(right, sep=seperator) self.assertTrue((target == compare_column).all()) def left_test(self, source: pd.Series, target: pd.Series, number: int): """ Ensures the correct number of charcters from the left were mapped :param source: :param target :param number: int :return: """ self.assertTrue((source.astype(str).apply(lambda f: f[:number]) == target.astype(str)).all()) def right_test(self, source: pd.Series, target: pd.Series, number: int): """ Ensures the correct number of characters from the right were mapped :param source: :param target: :param number: :return: """ self.assertTrue((source.astype(str).apply(lambda f: f[:-number]) == target.astype(str)).all()) def substring_test(self, source: pd.Series, target: pd.Series, start: int, length: int): """ Ensures the correct substring was pulled from each row :param source: :param target: :param start: :param length: :return: """ self.assertTrue((source.astype(str).apply(lambda f: f[start:length + start]) == target.astype(str)).all()) def split_test(self, source: pd.Series, target: pd.Series, split_point: str, part: int): """ Ensures the correct split was made and the resulting data is correct :param source: :param target: :param split_point: :param part: :return: """ for sfield, tfield in zip(source, target): self.assertTrue(sfield.split(split_point)[part] == tfield) def conditional_value_test(self, source: pd.Series, target: pd.Series, oper: str, if_value, then_value, else_value): """ Ensures that the conditional value evaluates correctly in each row of the column :param source: :param target: :param oper: :param if_value: :param then_value: :param else_value: :return: """ for sfield, tfield in zip(source, target): if oper == "==": if sfield == if_value: self.assertEqual(then_value, tfield) else: self.assertEqual(else_value, tfield) elif oper == "!'": if sfield != if_value: self.assertEqual(then_value, tfield) else: self.assertEqual(else_value, tfield) elif oper == "<": if sfield < if_value: self.assertEqual(then_value, tfield) else: self.assertEqual(else_value, tfield) elif oper == ">": if sfield > if_value: self.assertEqual(then_value, tfield) else: self.assertEqual(else_value, tfield) else: self.assertIn(oper, ["==", "!=", "<", ">"]) def domain_map_test(self, source: pd.Series, target: pd.Series, mappings: dict): """ Ensures the domain map pairings are correctly mapped in the target column :param self: :param source: :param target: :param mappings: :return: """ for s, t in zip(source, target): if s in mappings: if mappings[s] == "(None)": # In the event that a is loaded in the xml but not mapped to any target domain, we want to # make sure that the source and target values are the same self.assertEqual(s, t) self.assertEqual(mappings[s], t) def test_xml(self): """ Tests to see that the newly created xml file is equal to a pre-determined correct file :return: """ if self.testObject.title != "CreateConfig": return out_xml = ET.parse(self.outXML).getroot() correct_xml = ET.parse(self.correctXML).getroot() self.assertTrue(xml_compare(out_xml, correct_xml)) def destage(self): """ After staging is done, the xml reflects there should be a feature class that append can use to append to source. This function deletes this line in the xml so the xml can be used again or so append can recreate the mapping. :return: """ xml = ET.parse(self.xmlLocation) root = xml.getroot() datasets = root.getchildren()[0] staged = datasets.getchildren()[len(datasets.getchildren()) - 1] if staged.tag == "Staged": datasets.remove(staged) xml.write(self.xmlLocation) def main(self): """ Runs all of the tests :return: """ if self.testObject.title == "CreateConfig": self.test_create() self.test_xml() return else: self.test_create() self.test_length() self.test_fields() if self.testObject.title == 'Replace': self.test_replace_data() else: self.test_data() class SourceTargetParser(object): """ Class designed to store the essential parts of the xml file in readable python data structrues """ def __init__(self, xml_file: str): self.xmlLocation = xml_file self.xml = ET.parse(self.xmlLocation).getroot() self.targetFields = [] self.methods = _XMLMethodNames # not actually the methods in this file, just the naming syntax for the xml self.data = dict() @functools.lru_cache() def get_sourcefields(self): """ Returns and caches the source names as specified in the xml. Some might be None if there is no mapping to the corresponding target field. :return: """ sourcefields = [] fields = self.xml.find('Fields').getchildren() for field in fields: sourceName = field.find('SourceName').text sourcefields.append(sourceName) return sourcefields def get_data(self): """ Returns the xml data :return: dict """ return self.data @functools.lru_cache() def get_targetfields(self): """ Returns and caches the target field names as specified in the xml. :return: """ targetfields = [] fields = self.xml.find('Fields').getchildren() for field in fields: targetName = field.find('TargetName').text targetfields.append(targetName) return targetfields @functools.lru_cache() def get_pairings(self) -> dict: """ Returns a dictionary where key is TargetName and value is SourceName for each field :return: dict """ pairings = dict() fields = self.xml.find('Fields').getchildren() for field in fields: sourcename = field.find('SourceName').text targetname = field.find('TargetName').text pairings[targetname] = sourcename return pairings @functools.lru_cache() def get_methods(self) -> dict: """ Returns and caches the methods in order of appearence in the xml file. :return: """ method_dict = dict() fields = self.xml.find('Fields').getchildren() for field in fields: targetname = field.find('TargetName').text method = field.find('Method').text method_dict[targetname] = method return method_dict @functools.lru_cache() def parse_replace(self) -> dict: """ Returns a dictionary with the information used by Replace By Field Value :return: dict """ datasets = self.xml.find('Datasets') replace_by = datasets.find('ReplaceBy') if len(replace_by.getchildren()) == 0: raise (AssertionError("ReplaceBy is empty in the XML")) outdict = dict() outdict["FieldName"] = replace_by.find('FieldName').text outdict['Operator'] = replace_by.find('Operator').text outdict['Value'] = replace_by.find('Value').text return outdict def parse(self): """ Interprets the xml file and stores the information in appropriate places :return: """ data = dict() fields = self.xml.find('Fields').getchildren() for field in fields: target_name = field.find('TargetName').text method = field.find('Method').text # added for visibility if method == self.methods["Set Value"]: data[target_name] = dict() data[target_name][self.methods["Set Value"]] = field.find(self.methods["Set Value"]).text elif method == self.methods["Domain Map"]: domain_map = field.find(self.methods["Domain Map"]).getchildren() data[target_name] = dict() data[target_name][self.methods["Domain Map"]] = dict() for tag in domain_map: if tag.tag == "sValue": svalue = tag.text if tag.tag == "tValue": data[target_name][self.methods["Domain Map"]][svalue] = tag.text svalue = "" elif method == self.methods["Value Map"]: value_map = field.find(self.methods["Value Map"]).getchildren() data[target_name] = dict() data[target_name][self.methods["Value Map"]] = dict() for tag in value_map: if tag.tag == "sValue": svalue = tag.text elif tag.tag == "tValue": data[target_name][self.methods["Value Map"]][svalue] = tag.text svalue = "" elif tag.tag == "Otherwise": data[target_name]["Otherwise"] = tag.text elif method == self.methods["Change Case"]: data[target_name] = dict() data[target_name][self.methods["Change Case"]] = field.find(self.methods["Change Case"]).text elif method == self.methods["Concatenate"]: data[target_name] = dict() data[target_name][self.methods["Concatenate"]] = list() data[target_name]["Separator"] = field.find("Separator").text cfields = field.find("cFields").getchildren() for cfield in cfields: data[target_name][self.methods["Concatenate"]].append(cfield.find('Name').text) elif method == self.methods["Left"]: data[target_name] = dict() data[target_name][self.methods["Left"]] = int(field.find(self.methods["Left"]).text) elif method == self.methods["Right"]: data[target_name] = dict() data[target_name][self.methods["Right"]] = int(field.find(self.methods["Right"]).text) elif method == self.methods["Substring"]: data[target_name] = dict() data[target_name]["Start"] = int(field.find('Start').text) data[target_name]["Length"] = int(field.find('Length').text) elif method == self.methods["Split"]: data[target_name] = dict() data[target_name]["SplitAt"] = field.find("SplitAt").text data[target_name]["Part"] = int(field.find("Part").text) elif method == self.methods["Conditional Value"]: data[target_name] = dict() data[target_name]["Oper"] = field.find("Oper").text.strip("\'").strip("\"") data[target_name]["If"] = field.find("If").text.strip("\'").strip("\"") data[target_name]["Then"] = field.find("Then").text.strip("\'").strip("\"") data[target_name]["Else"] = field.find("Else").text.strip("\'").strip("\"") else: assert method in self.methods.values() return data def make_temp_file() -> tempfile.TemporaryDirectory: """ Returns a temporary directory that is used to store the local data for the tests :return: """ localfolder = str(pathlib.Path(".\localData").absolute()) return tempfile.TemporaryDirectory(dir=localfolder) def change_workspace(lw: list, tmp_name: str) -> list: """ Changes the data paths to reflect the new temporary file made :param lw: list :param tmp_name: str :return: """ out_workspace = lw.copy() for workspace in out_workspace: the_path = "" for part in pathlib.Path(workspace["Source"]).parts: the_path = os.path.join(the_path, part) if part == 'localData': the_path = os.path.join(the_path, tmp_name) workspace["Source"] = the_path the_path = "" for part in pathlib.Path(workspace["Target"]).parts: the_path = os.path.join(the_path, part) if part == 'localData': the_path = os.path.join(the_path, tmp_name) workspace["Target"] = the_path return out_workspace def set_up_data(tmpdir: str): """ Unzips all data into local directory :param tmpdir: :return: """ workspace = str(pathlib.Path(".\localData").absolute()) for file in os.listdir(workspace): if ".zip" in file: with zipfile.ZipFile(os.path.join(workspace, file)) as unzipper: unzipper.extractall(tmpdir) def change_xml_path(t_workspace: list): """ Changes the source and target path in the xml files for testing :param t_workspace: :return: """ for workspace in t_workspace: xml = ET.parse(workspace["xmlLocation"]) root = xml.getroot() datasets = root.find('Datasets').getchildren() for field in datasets: if field.tag == "Source": field.text = os.path.join(workspace["Source"], workspace["SourceName"]) if field.tag == "Target": field.text = os.path.join(workspace["Target"], workspace["TargetName"]) xml.write(workspace["xmlLocation"]) if __name__ == '__main__': tmp = make_temp_file() temp_workspace = change_workspace(_localWorkspace, pathlib.Path(tmp.name).stem) set_up_data(tmp.name) change_xml_path(temp_workspace) try: for local_workspace in temp_workspace: UnitTests(Preview(local_workspace)).main() except: traceback.print_exc() sys.exit(-1) finally: try: tmp.cleanup() except PermissionError: print("Unable to delete temporary folder: Permission Error") pass
apache-2.0
funbaker/astropy
astropy/visualization/scripts/tests/test_fits2bitmap.py
2
2337
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest import numpy as np from ....io import fits try: import matplotlib # pylint: disable=W0611 import matplotlib.image as mpimg HAS_MATPLOTLIB = True from ..fits2bitmap import fits2bitmap, main except ImportError: HAS_MATPLOTLIB = False @pytest.mark.skipif('not HAS_MATPLOTLIB') class TestFits2Bitmap: def setup_class(self): self.filename = 'test.fits' def test_function(self, tmpdir): filename = tmpdir.join(self.filename).strpath fits.writeto(filename, np.ones((128, 128))) fits2bitmap(filename) def test_script(self, tmpdir): filename = tmpdir.join(self.filename).strpath fits.writeto(filename, np.ones((128, 128))) main([filename, '-e', '0']) def test_exten_num(self, tmpdir): filename = tmpdir.join(self.filename).strpath data = np.ones((100, 100)) hdu1 = fits.PrimaryHDU() hdu2 = fits.ImageHDU(data) hdulist = fits.HDUList([hdu1, hdu2]) hdulist.writeto(filename) main([filename, '-e', '1']) def test_exten_name(self, tmpdir): filename = tmpdir.join(self.filename).strpath data = np.ones((100, 100)) hdu1 = fits.PrimaryHDU() extname = 'SCI' hdu2 = fits.ImageHDU(data) hdu2.header['EXTNAME'] = extname hdulist = fits.HDUList([hdu1, hdu2]) hdulist.writeto(filename) main([filename, '-e', extname]) @pytest.mark.parametrize('file_exten', ['.gz', '.bz2']) def test_compressed_fits(self, tmpdir, file_exten): filename = tmpdir.join('test.fits' + file_exten).strpath fits.writeto(filename, np.ones((128, 128))) main([filename, '-e', '0']) def test_orientation(self, tmpdir): """ Regression test to check the image vertical orientation/origin. """ filename = tmpdir.join(self.filename).strpath out_filename = 'fits2bitmap_test.png' out_filename = tmpdir.join(out_filename).strpath data = np.zeros((32, 32)) data[0:16, :] = 1. fits.writeto(filename, data) main([filename, '-e', '0', '-o', out_filename]) img = mpimg.imread(out_filename) assert img[0, 0, 0] == 0 assert img[31, 31, 0] == 1
bsd-3-clause
deepesch/scikit-learn
benchmarks/bench_plot_neighbors.py
287
6433
""" Plot the scaling of the nearest neighbors algorithms with k, D, and N """ from time import time import numpy as np import pylab as pl from matplotlib import ticker from sklearn import neighbors, datasets def get_data(N, D, dataset='dense'): if dataset == 'dense': np.random.seed(0) return np.random.random((N, D)) elif dataset == 'digits': X = datasets.load_digits().data i = np.argsort(X[0])[::-1] X = X[:, i] return X[:N, :D] else: raise ValueError("invalid dataset: %s" % dataset) def barplot_neighbors(Nrange=2 ** np.arange(1, 11), Drange=2 ** np.arange(7), krange=2 ** np.arange(10), N=1000, D=64, k=5, leaf_size=30, dataset='digits'): algorithms = ('kd_tree', 'brute', 'ball_tree') fiducial_values = {'N': N, 'D': D, 'k': k} #------------------------------------------------------------ # varying N N_results_build = dict([(alg, np.zeros(len(Nrange))) for alg in algorithms]) N_results_query = dict([(alg, np.zeros(len(Nrange))) for alg in algorithms]) for i, NN in enumerate(Nrange): print("N = %i (%i out of %i)" % (NN, i + 1, len(Nrange))) X = get_data(NN, D, dataset) for algorithm in algorithms: nbrs = neighbors.NearestNeighbors(n_neighbors=min(NN, k), algorithm=algorithm, leaf_size=leaf_size) t0 = time() nbrs.fit(X) t1 = time() nbrs.kneighbors(X) t2 = time() N_results_build[algorithm][i] = (t1 - t0) N_results_query[algorithm][i] = (t2 - t1) #------------------------------------------------------------ # varying D D_results_build = dict([(alg, np.zeros(len(Drange))) for alg in algorithms]) D_results_query = dict([(alg, np.zeros(len(Drange))) for alg in algorithms]) for i, DD in enumerate(Drange): print("D = %i (%i out of %i)" % (DD, i + 1, len(Drange))) X = get_data(N, DD, dataset) for algorithm in algorithms: nbrs = neighbors.NearestNeighbors(n_neighbors=k, algorithm=algorithm, leaf_size=leaf_size) t0 = time() nbrs.fit(X) t1 = time() nbrs.kneighbors(X) t2 = time() D_results_build[algorithm][i] = (t1 - t0) D_results_query[algorithm][i] = (t2 - t1) #------------------------------------------------------------ # varying k k_results_build = dict([(alg, np.zeros(len(krange))) for alg in algorithms]) k_results_query = dict([(alg, np.zeros(len(krange))) for alg in algorithms]) X = get_data(N, DD, dataset) for i, kk in enumerate(krange): print("k = %i (%i out of %i)" % (kk, i + 1, len(krange))) for algorithm in algorithms: nbrs = neighbors.NearestNeighbors(n_neighbors=kk, algorithm=algorithm, leaf_size=leaf_size) t0 = time() nbrs.fit(X) t1 = time() nbrs.kneighbors(X) t2 = time() k_results_build[algorithm][i] = (t1 - t0) k_results_query[algorithm][i] = (t2 - t1) pl.figure(figsize=(8, 11)) for (sbplt, vals, quantity, build_time, query_time) in [(311, Nrange, 'N', N_results_build, N_results_query), (312, Drange, 'D', D_results_build, D_results_query), (313, krange, 'k', k_results_build, k_results_query)]: ax = pl.subplot(sbplt, yscale='log') pl.grid(True) tick_vals = [] tick_labels = [] bottom = 10 ** np.min([min(np.floor(np.log10(build_time[alg]))) for alg in algorithms]) for i, alg in enumerate(algorithms): xvals = 0.1 + i * (1 + len(vals)) + np.arange(len(vals)) width = 0.8 c_bar = pl.bar(xvals, build_time[alg] - bottom, width, bottom, color='r') q_bar = pl.bar(xvals, query_time[alg], width, build_time[alg], color='b') tick_vals += list(xvals + 0.5 * width) tick_labels += ['%i' % val for val in vals] pl.text((i + 0.02) / len(algorithms), 0.98, alg, transform=ax.transAxes, ha='left', va='top', bbox=dict(facecolor='w', edgecolor='w', alpha=0.5)) pl.ylabel('Time (s)') ax.xaxis.set_major_locator(ticker.FixedLocator(tick_vals)) ax.xaxis.set_major_formatter(ticker.FixedFormatter(tick_labels)) for label in ax.get_xticklabels(): label.set_rotation(-90) label.set_fontsize(10) title_string = 'Varying %s' % quantity descr_string = '' for s in 'NDk': if s == quantity: pass else: descr_string += '%s = %i, ' % (s, fiducial_values[s]) descr_string = descr_string[:-2] pl.text(1.01, 0.5, title_string, transform=ax.transAxes, rotation=-90, ha='left', va='center', fontsize=20) pl.text(0.99, 0.5, descr_string, transform=ax.transAxes, rotation=-90, ha='right', va='center') pl.gcf().suptitle("%s data set" % dataset.capitalize(), fontsize=16) pl.figlegend((c_bar, q_bar), ('construction', 'N-point query'), 'upper right') if __name__ == '__main__': barplot_neighbors(dataset='digits') barplot_neighbors(dataset='dense') pl.show()
bsd-3-clause
deepgram/kur
examples/language-model/view_logs.py
1
1159
""" Copyright 2016 Deepgram Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from kur.loggers import BinaryLogger import sys log_dir_name = sys.argv[1] training_loss = BinaryLogger.load_column(log_dir_name, 'training_loss_total') validation_loss = BinaryLogger.load_column(log_dir_name, 'validation_loss_total') plt.xlabel('Epoch') plt.ylabel('Loss') epoch = list(range(1, 1+len(training_loss))) t_line, = plt.plot(epoch, training_loss, 'co-', label='Training Loss') v_line, = plt.plot(epoch, validation_loss, 'mo-', label='Validation Loss') plt.legend(handles=[t_line, v_line]) plt.savefig('loss.pdf')
apache-2.0
pnedunuri/scikit-learn
sklearn/cluster/tests/test_affinity_propagation.py
341
2620
""" Testing for Clustering methods """ import numpy as np from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.cluster.affinity_propagation_ import AffinityPropagation from sklearn.cluster.affinity_propagation_ import affinity_propagation from sklearn.datasets.samples_generator import make_blobs from sklearn.metrics import euclidean_distances n_clusters = 3 centers = np.array([[1, 1], [-1, -1], [1, -1]]) + 10 X, _ = make_blobs(n_samples=60, n_features=2, centers=centers, cluster_std=0.4, shuffle=True, random_state=0) def test_affinity_propagation(): # Affinity Propagation algorithm # Compute similarities S = -euclidean_distances(X, squared=True) preference = np.median(S) * 10 # Compute Affinity Propagation cluster_centers_indices, labels = affinity_propagation( S, preference=preference) n_clusters_ = len(cluster_centers_indices) assert_equal(n_clusters, n_clusters_) af = AffinityPropagation(preference=preference, affinity="precomputed") labels_precomputed = af.fit(S).labels_ af = AffinityPropagation(preference=preference, verbose=True) labels = af.fit(X).labels_ assert_array_equal(labels, labels_precomputed) cluster_centers_indices = af.cluster_centers_indices_ n_clusters_ = len(cluster_centers_indices) assert_equal(np.unique(labels).size, n_clusters_) assert_equal(n_clusters, n_clusters_) # Test also with no copy _, labels_no_copy = affinity_propagation(S, preference=preference, copy=False) assert_array_equal(labels, labels_no_copy) # Test input validation assert_raises(ValueError, affinity_propagation, S[:, :-1]) assert_raises(ValueError, affinity_propagation, S, damping=0) af = AffinityPropagation(affinity="unknown") assert_raises(ValueError, af.fit, X) def test_affinity_propagation_predict(): # Test AffinityPropagation.predict af = AffinityPropagation(affinity="euclidean") labels = af.fit_predict(X) labels2 = af.predict(X) assert_array_equal(labels, labels2) def test_affinity_propagation_predict_error(): # Test exception in AffinityPropagation.predict # Not fitted. af = AffinityPropagation(affinity="euclidean") assert_raises(ValueError, af.predict, X) # Predict not supported when affinity="precomputed". S = np.dot(X, X.T) af = AffinityPropagation(affinity="precomputed") af.fit(S) assert_raises(ValueError, af.predict, X)
bsd-3-clause
shahankhatch/scikit-learn
examples/ensemble/plot_adaboost_twoclass.py
347
3268
""" ================== Two-class AdaBoost ================== This example fits an AdaBoosted decision stump on a non-linearly separable classification dataset composed of two "Gaussian quantiles" clusters (see :func:`sklearn.datasets.make_gaussian_quantiles`) and plots the decision boundary and decision scores. The distributions of decision scores are shown separately for samples of class A and B. The predicted class label for each sample is determined by the sign of the decision score. Samples with decision scores greater than zero are classified as B, and are otherwise classified as A. The magnitude of a decision score determines the degree of likeness with the predicted class label. Additionally, a new dataset could be constructed containing a desired purity of class B, for example, by only selecting samples with a decision score above some value. """ print(__doc__) # Author: Noel Dawe <noel.dawe@gmail.com> # # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.ensemble import AdaBoostClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.datasets import make_gaussian_quantiles # Construct dataset X1, y1 = make_gaussian_quantiles(cov=2., n_samples=200, n_features=2, n_classes=2, random_state=1) X2, y2 = make_gaussian_quantiles(mean=(3, 3), cov=1.5, n_samples=300, n_features=2, n_classes=2, random_state=1) X = np.concatenate((X1, X2)) y = np.concatenate((y1, - y2 + 1)) # Create and fit an AdaBoosted decision tree bdt = AdaBoostClassifier(DecisionTreeClassifier(max_depth=1), algorithm="SAMME", n_estimators=200) bdt.fit(X, y) plot_colors = "br" plot_step = 0.02 class_names = "AB" plt.figure(figsize=(10, 5)) # Plot the decision boundaries plt.subplot(121) x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step), np.arange(y_min, y_max, plot_step)) Z = bdt.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, cmap=plt.cm.Paired) plt.axis("tight") # Plot the training points for i, n, c in zip(range(2), class_names, plot_colors): idx = np.where(y == i) plt.scatter(X[idx, 0], X[idx, 1], c=c, cmap=plt.cm.Paired, label="Class %s" % n) plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.legend(loc='upper right') plt.xlabel('x') plt.ylabel('y') plt.title('Decision Boundary') # Plot the two-class decision scores twoclass_output = bdt.decision_function(X) plot_range = (twoclass_output.min(), twoclass_output.max()) plt.subplot(122) for i, n, c in zip(range(2), class_names, plot_colors): plt.hist(twoclass_output[y == i], bins=10, range=plot_range, facecolor=c, label='Class %s' % n, alpha=.5) x1, x2, y1, y2 = plt.axis() plt.axis((x1, x2, y1, y2 * 1.2)) plt.legend(loc='upper right') plt.ylabel('Samples') plt.xlabel('Score') plt.title('Decision Scores') plt.tight_layout() plt.subplots_adjust(wspace=0.35) plt.show()
bsd-3-clause
KimCaleb421/Thermostat
plotting.py
1
2801
# plotting.py # Tim Kerins 21-04-14 # A very simple datalogger script that parses data from the serial port and # saves it as <time_stamp>.csv #! /usr/bin/env python import sys, serial,time, datetime from matplotlib import pyplot as plt # set the serial port the Arduino is connected to serPort = '/dev/ttyACM0' # open the file for writing filename = time.strftime("%m-%d_%H-%M-%S") dataFile = open("./Data/%s.csv" % filename, "w"); print "\n********************************************************" print "\nLog Data" print "\nAttempting to open Serial Port : ",serPort,"for logging\n" # opens usb serial port for loggig ser = serial.Serial(serPort,9600,timeout=1) # checks the port is open if (ser.isOpen() == False): print "ERROR : Unable to open serial port ",serPort,"\n" exit(0); else: print "Port ",serPort," opened\n" # force print to console sys.stdout.flush() # waits for signal from user to start logging print "Hit return to start logging ..." key = sys.stdin.readline() start = time.time() dataFile.write("Time, Temperature, Baby set T, Crit T, Bang-Bang Counter, Heater, Comments\n") # sends signal to start logging ser.write('1'); print "Logging Started. CTRL-C to stop\n\n" print "Time, Temperature, Baby set T, Crit T, Bang-Bang Counter, Heater, Comments\n" #def trunc(f,n): # slen = len('%.*f' % (n,f)) # return str(f)[:slen] while True: try: # read data from serial writes to stdio and dataFile line = ser.readline() #elapsed = time.time() - start #print str("{:.2f}".format(elapsed)) + ',', #print str(','), # print str(datetime.timedelta(seconds=elapsed)), #trunc(elapsed,2))), print line; dataFile.write(line) except KeyboardInterrupt: #CTRL-C triggered here # sends signal to stop logging ser.write('0') print "Logging Stopped\n" break; # close the serial port ser.flush() ser.close() # close the datafile dataFile.close() print "Port ",serPort," closed\n" print "\n********************************************************\n" #print "\nPlot graph (y/n) ?" #key = sys.stdin.read(1) #if key=='y': # print "\nPlotting graph ...\n" # now plot the graph # read all of the data from the textfile # f = open("loggedData.dat",'r') # lines = f.readlines() # f.close() # intialize variables to be lists # x = [] # y = [] # lines and add to lists # for line in lines: # p=line.split(',') # x.append(float(p[0])) # y.append(float(p[1])) # fig=plt.figure() # graph=fig.add_subplot(111) # graph.set_title("Data logged from Arduino UNO") # graph.plot(x,y,'ro') # plt.show() # print "Plot complete\n" #else: # print "Finishing\n" # rest for 3 seconds time.sleep(3)
gpl-2.0
irit-melodi/attelo
attelo/io.py
3
11799
""" Saving and loading data or models """ from __future__ import print_function from itertools import chain import codecs import copy import csv import json import sys import time import traceback from sklearn.datasets import load_svmlight_file import educe # WIP from .edu import (EDU, FAKE_ROOT_ID, FAKE_ROOT) from .table import (DataPack, DataPackException, UNKNOWN, UNRELATED, get_label_string, groupings) from .util import truncate # pylint: disable=too-few-public-methods class IoException(Exception): """ Exceptions related to reading/writing data """ def __init__(self, msg): super(IoException, self).__init__(msg) # --------------------------------------------------------------------- # feedback # --------------------------------------------------------------------- # pylint: disable=redefined-builtin, invalid-name class Torpor(object): """ Announce that we're about to do something, then do it, then say we're done. Usage: :: with Torpor("doing a slow thing"): some_slow_thing Output (1): :: doing a slow thing... Output (2a): :: doing a slow thing... done Output (2b): :: doing a slow thing... ERROR <stack trace> :param quiet: True to skip the message altogether """ def __init__(self, msg, sameline=True, quiet=False, file=sys.stderr): self._msg = msg self._file = file self._sameline = sameline self._quiet = quiet self._start = 0 self._end = 0 def __enter__(self): # we grab the wall time instead of using time.clock() (A) # because we # are not using this for profiling but just to # get a rough idea what's going on, and (B) because we want # to include things like IO into the mix self._start = time.time() if self._quiet: return elif self._sameline: print(self._msg, end="... ", file=self._file) else: print("[start]", self._msg, file=self._file) def __exit__(self, type, value, tb): self._end = time.time() if tb is None: if not self._quiet: done = "done" if self._sameline else "[-end-] " + self._msg ms_elapsed = 1000 * (self._end - self._start) final_msg = u"{} [{:.0f} ms]".format(done, ms_elapsed) print(final_msg, file=self._file) else: if not self._quiet: oops = "ERROR!" if self._sameline else "ERROR! " + self._msg print(oops, file=self._file) traceback.print_exception(type, value, tb) sys.exit(1) # pylint: redefined-builtin, invalid-name # --------------------------------------------------------------------- # tables # --------------------------------------------------------------------- def load_edus(edu_file): """ Read EDUs (see :doc:`../input`) :rtype: [EDU] .. _format: https://github.com/kowey/attelo/doc/inputs.rst """ def read_edu(row): 'interpret a single row' expected_len = 6 if len(row) != expected_len: oops = ('This row in the EDU file {efile} has {num} ' 'elements instead of the expected {expected}: ' '{row}') raise IoException(oops.format(efile=edu_file, num=len(row), expected=expected_len, row=row)) [global_id, txt, grouping, subgrouping, start_str, end_str] = row start = int(start_str) end = int(end_str) return EDU(global_id, txt.decode('utf-8'), start, end, grouping, subgrouping) with open(edu_file, 'rb') as instream: reader = csv.reader(instream, dialect=csv.excel_tab) return [read_edu(r) for r in reader if r] def load_pairings(edu_file): """ Read and return EDU pairings (see :doc:`../input`). We assume the order is parent, child :rtype: [(string, string)] .. _format: https://github.com/kowey/attelo/doc/inputs.rst """ def read_pair(row): 'interpret a single row' if len(row) < 2 or len(row) > 3: oops = ('This row in the pairings file {efile} has ' '{num} elements instead of the expected 2 or 3') raise IoException(oops.format(efile=edu_file, num=len(row), row=row)) return tuple(row[:2]) with open(edu_file, 'rb') as instream: reader = csv.reader(instream, dialect=csv.excel_tab) return [read_pair(r) for r in reader if r] def load_labels(feature_file): """ Read the very top of a feature file and read the labels comment, return the sequence of labels, else return None :rtype: [string] or None """ with codecs.open(feature_file, 'r', 'utf-8') as stream: line = stream.readline() if line.startswith('#'): seq = line[1:].split() if seq[0] == 'labels:': return seq[1:] # fall-through case, no labels found return None def _process_edu_links(edus, pairings): """ Convert from the results of :py:method:load_edus: and :py:method:load_pairings: to a sequence of edus and pairings respectively :rtype: ([EDU], [(EDU,EDU)]) """ edumap = {e.id: e for e in edus} enames = frozenset(chain.from_iterable(pairings)) if FAKE_ROOT_ID in enames: edus2 = [FAKE_ROOT] + edus edumap[FAKE_ROOT_ID] = FAKE_ROOT else: edus2 = copy.copy(edus) naughty = [x for x in enames if x not in edumap] if naughty: oops = ('The pairings file mentions the following EDUs but the EDU ' 'file does not actually include EDUs to go with them: {}') raise DataPackException(oops.format(truncate(', '.join(naughty), 1000))) pairings2 = [(edumap[e1], edumap[e2]) for e1, e2 in pairings] return edus2, pairings2 def load_multipack(edu_file, pairings_file, feature_file, vocab_file, corpus_path=None, # WIP verbose=False): """Read EDUs and features for edu pairs. Perform some basic sanity checks, raising :py:class:`IoException` if they should fail Parameters ---------- ... TODO corpus_path : string Path to the labelled corpus, to retrieve the original gold structures ; at the moment, only works with the RST corpus to access gold RST constituency trees. Returns ------- mpack: Multipack Multipack (= dict) from grouping to DataPack. """ vocab = load_vocab(vocab_file) with Torpor("Reading edus and pairings", quiet=not verbose): edus, pairings = _process_edu_links(load_edus(edu_file), load_pairings(pairings_file)) with Torpor("Reading features", quiet=not verbose): labels = [UNKNOWN] + load_labels(feature_file) # pylint: disable=unbalanced-tuple-unpacking data, targets = load_svmlight_file(feature_file, n_features=len(vocab)) # pylint: enable=unbalanced-tuple-unpacking # WIP augment DataPack with the gold structure for each grouping if corpus_path is None: ctargets = {} else: corpus_reader = educe.rst_dt.corpus.Reader(corpus_path) # FIXME should be [v] so that it is adapted to forests (lists) # of structures, e.g. produced by for_intra() ctargets = {k.doc: v for k, v in corpus_reader.slurp().items()} # TODO modify educe.rst_dt.corpus.Reader.slurp_subcorpus() to # convert fine-grained to coarse-grained relations by default, # e.g. add kwarg coarse_rels=True, then find all current callers # but this one and call slurp* with coarse_rels=False # end WIP with Torpor("Build data packs", quiet=not verbose): dpack = DataPack.load(edus, pairings, data, targets, ctargets, labels, vocab) mpack = {grp_name: dpack.selected(idxs) for grp_name, idxs in groupings(pairings).items()} return mpack def load_vocab(filename): """Read feature vocabulary""" features = [] with codecs.open(filename, 'r', 'utf-8') as stream: for line in stream: features.append(line.split('\t')[0]) return features # --------------------------------------------------------------------- # predictions # --------------------------------------------------------------------- def write_predictions_output(dpack, predicted, filename): """ Write predictions to an output file whose format is documented in :doc:`../output` """ links = {} for edu1, edu2, label in predicted: links[(edu1, edu2)] = label def mk_row(edu1, edu2): 'return a list of columns' edu1_id = edu1.id edu2_id = edu2.id row = [edu1_id, edu2_id, links.get((edu1_id, edu2_id), UNRELATED)] return [x.encode('utf-8') for x in row] with open(filename, 'wb') as fout: writer = csv.writer(fout, dialect=csv.excel_tab) # by convention the zeroth edu is the root node for edu1, edu2 in dpack.pairings: writer.writerow(mk_row(edu1, edu2)) def load_predictions(edu_file): """ Read back predictions (see :doc:`../output`), returning a list of triples: parent id, child id, relation label (or 'UNRELATED') :rtype: [(string, string, string)] """ def mk_pair(row): 'interpret a single row' expected_len = 3 if len(row) < expected_len: oops = ('This row in the predictions file {efile} has {num} ' 'elements instead of the expected {expected}: ' '{row}') raise IoException(oops.format(efile=edu_file, num=len(row), expected=expected_len, row=row)) return tuple(x.decode('utf-8') for x in row) with open(edu_file, 'rb') as instream: reader = csv.reader(instream, dialect=csv.excel_tab) return [mk_pair(r) for r in reader if r] def load_gold_predictions(pairings_file, feature_file, verbose=False): """ Load a pairings and feature file as though it were a set of predictions :rtype: [(string, string, string)] """ pairings = load_pairings(pairings_file) with Torpor("Reading features", quiet=not verbose): labels = load_labels(feature_file) # pylint: disable=unbalanced-tuple-unpacking _, targets = load_svmlight_file(feature_file) # pylint: enable=unbalanced-tuple-unpacking return [(x1, x2, get_label_string(labels, t)) for ((x1, x2), t) in zip(pairings, targets)] # --------------------------------------------------------------------- # folds # --------------------------------------------------------------------- def load_fold_dict(filename): """ Load fold dictionary into memory from file """ with open(filename, 'r') as stream: return json.load(stream) def save_fold_dict(fold_dict, filename): """ Dump fold dictionary to a file """ with open(filename, 'w') as stream: json.dump(fold_dict, stream, indent=2)
gpl-3.0
modsim/CADET
doc/examples/breakthrough.py
1
5437
# Import libraries import numpy as np import matplotlib.pyplot as plt from cadet import Cadet Cadet.cadet_path = '/path/to/cadet-cli' # Create model object model = Cadet() # Number of unit operations model.root.input.model.nunits = 3 # Inlet model.root.input.model.unit_000.unit_type = 'INLET' model.root.input.model.unit_000.ncomp = 1 model.root.input.model.unit_000.inlet_type = 'PIECEWISE_CUBIC_POLY' # General Rate Model model.root.input.model.unit_001.unit_type = 'GENERAL_RATE_MODEL' model.root.input.model.unit_001.ncomp = 1 ## Geometry model.root.input.model.unit_001.col_length = 0.1 # m model.root.input.model.unit_001.cross_section_area = 0.01 # m model.root.input.model.unit_001.col_porosity = 0.37 # - model.root.input.model.unit_001.par_porosity = 0.33 # - model.root.input.model.unit_001.par_radius = 1e-6 # m ## Transport model.root.input.model.unit_001.col_dispersion = 1e-8 # m^2 / s (interstitial volume) model.root.input.model.unit_001.film_diffusion = [1e-5] # m / s model.root.input.model.unit_001.par_diffusion = [1e-10,] # m^2 / s (mobile phase) model.root.input.model.unit_001.par_surfdiffusion = [0.0,] # m^2 / s (solid phase) ## Adsorption model.root.input.model.unit_001.adsorption_model = 'MULTI_COMPONENT_LANGMUIR' model.root.input.model.unit_001.adsorption.is_kinetic = True # Kinetic binding model.root.input.model.unit_001.adsorption.mcl_ka = [1.0,] # m^3 / (mol * s) (mobile phase) model.root.input.model.unit_001.adsorption.mcl_kd = [1.0,] # 1 / s (desorption) model.root.input.model.unit_001.adsorption.mcl_qmax = [100.0,] # mol / m^3 (solid phase) ## Initial conditions model.root.input.model.unit_001.init_c = [0.0,] model.root.input.model.unit_001.init_q = [0.0,] ## Discretization ### Grid cells model.root.input.model.unit_001.discretization.ncol = 20 model.root.input.model.unit_001.discretization.npar = 5 ### Bound states model.root.input.model.unit_001.discretization.nbound = [1] ### Other options model.root.input.model.unit_001.discretization.par_disc_type = 'EQUIDISTANT_PAR' model.root.input.model.unit_001.discretization.use_analytic_jacobian = 1 model.root.input.model.unit_001.discretization.reconstruction = 'WENO' model.root.input.model.unit_001.discretization.gs_type = 1 model.root.input.model.unit_001.discretization.max_krylov = 0 model.root.input.model.unit_001.discretization.max_restarts = 10 model.root.input.model.unit_001.discretization.schur_safety = 1.0e-8 model.root.input.model.unit_001.discretization.weno.boundary_model = 0 model.root.input.model.unit_001.discretization.weno.weno_eps = 1e-10 model.root.input.model.unit_001.discretization.weno.weno_order = 3 ## Outlet model.root.input.model.unit_002.unit_type = 'OUTLET' model.root.input.model.unit_002.ncomp = 1 # Sections model.root.input.solver.sections.nsec = 1 model.root.input.solver.sections.section_times = [0.0, 1200,] # s model.root.input.solver.sections.section_continuity = [] # Inlet sections model.root.input.model.unit_000.sec_000.const_coeff = [1.0e-3,] # mol / m^3 model.root.input.model.unit_000.sec_000.lin_coeff = [0.0,] model.root.input.model.unit_000.sec_000.quad_coeff = [0.0,] model.root.input.model.unit_000.sec_000.cube_coeff = [0.0,] # Switches model.root.input.model.connections.nswitches = 1 model.root.input.model.connections.switch_000.section = 0 model.root.input.model.connections.switch_000.connections = [ 0, 1, -1, -1, 60/1e6, # [unit_000, unit_001, all components, all components, Q/ m^3*s^-1 1, 2, -1, -1, 60/1e6] # [unit_001, unit_002, all components, all components, Q/ m^3*s^-1 # Solver settings model.root.input.model.solver.gs_type = 1 model.root.input.model.solver.max_krylov = 0 model.root.input.model.solver.max_restarts = 10 model.root.input.model.solver.schur_safety = 1e-8 # Number of cores for parallel simulation model.root.input.solver.nthreads = 1 # Tolerances for the time integrator model.root.input.solver.time_integrator.abstol = 1e-6 model.root.input.solver.time_integrator.algtol = 1e-10 model.root.input.solver.time_integrator.reltol = 1e-6 model.root.input.solver.time_integrator.init_step_size = 1e-6 model.root.input.solver.time_integrator.max_steps = 1000000 # Return data model.root.input['return'].split_components_data = 0 model.root.input['return'].split_ports_data = 0 model.root.input['return'].unit_000.write_solution_bulk = 1 model.root.input['return'].unit_000.write_solution_inlet = 1 model.root.input['return'].unit_000.write_solution_outlet = 1 # Copy settings to the other unit operations model.root.input['return'].unit_001 = model.root.input['return'].unit_000 model.root.input['return'].unit_002 = model.root.input['return'].unit_000 # Solution times model.root.input.solver.user_solution_times = np.linspace(0, 1200, 1001) # Save and run simulation model.filename = 'model.h5' model.save() data = model.run() if data.returncode == 0: print("Simulation completed successfully") model.load() else: print(data) raise Exception("Simulation failed") # Plot restuls plt.figure() time = model.root.output.solution.solution_times c = model.root.output.solution.unit_001.solution_outlet plt.plot(time/60, c) plt.xlabel('$time~/~min$') plt.ylabel('$Outlet~concentration~/~mol \cdot m^{-3} $') plt.show()
gpl-3.0
thegooglecodearchive/mpmath
mpmath/visualization.py
6
9486
""" Plotting (requires matplotlib) """ from colorsys import hsv_to_rgb, hls_to_rgb from .libmp import NoConvergence from .libmp.backend import xrange class VisualizationMethods(object): plot_ignore = (ValueError, ArithmeticError, ZeroDivisionError, NoConvergence) def plot(ctx, f, xlim=[-5,5], ylim=None, points=200, file=None, dpi=None, singularities=[], axes=None): r""" Shows a simple 2D plot of a function `f(x)` or list of functions `[f_0(x), f_1(x), \ldots, f_n(x)]` over a given interval specified by *xlim*. Some examples:: plot(lambda x: exp(x)*li(x), [1, 4]) plot([cos, sin], [-4, 4]) plot([fresnels, fresnelc], [-4, 4]) plot([sqrt, cbrt], [-4, 4]) plot(lambda t: zeta(0.5+t*j), [-20, 20]) plot([floor, ceil, abs, sign], [-5, 5]) Points where the function raises a numerical exception or returns an infinite value are removed from the graph. Singularities can also be excluded explicitly as follows (useful for removing erroneous vertical lines):: plot(cot, ylim=[-5, 5]) # bad plot(cot, ylim=[-5, 5], singularities=[-pi, 0, pi]) # good For parts where the function assumes complex values, the real part is plotted with dashes and the imaginary part is plotted with dots. .. note :: This function requires matplotlib (pylab). """ if file: axes = None fig = None if not axes: import pylab fig = pylab.figure() axes = fig.add_subplot(111) if not isinstance(f, (tuple, list)): f = [f] a, b = xlim colors = ['b', 'r', 'g', 'm', 'k'] for n, func in enumerate(f): x = ctx.arange(a, b, (b-a)/float(points)) segments = [] segment = [] in_complex = False for i in xrange(len(x)): try: if i != 0: for sing in singularities: if x[i-1] <= sing and x[i] >= sing: raise ValueError v = func(x[i]) if ctx.isnan(v) or abs(v) > 1e300: raise ValueError if hasattr(v, "imag") and v.imag: re = float(v.real) im = float(v.imag) if not in_complex: in_complex = True segments.append(segment) segment = [] segment.append((float(x[i]), re, im)) else: if in_complex: in_complex = False segments.append(segment) segment = [] if hasattr(v, "real"): v = v.real segment.append((float(x[i]), v)) except ctx.plot_ignore: if segment: segments.append(segment) segment = [] if segment: segments.append(segment) for segment in segments: x = [s[0] for s in segment] y = [s[1] for s in segment] if not x: continue c = colors[n % len(colors)] if len(segment[0]) == 3: z = [s[2] for s in segment] axes.plot(x, y, '--'+c, linewidth=3) axes.plot(x, z, ':'+c, linewidth=3) else: axes.plot(x, y, c, linewidth=3) axes.set_xlim([float(_) for _ in xlim]) if ylim: axes.set_ylim([float(_) for _ in ylim]) axes.set_xlabel('x') axes.set_ylabel('f(x)') axes.grid(True) if fig: if file: pylab.savefig(file, dpi=dpi) else: pylab.show() def default_color_function(ctx, z): if ctx.isinf(z): return (1.0, 1.0, 1.0) if ctx.isnan(z): return (0.5, 0.5, 0.5) pi = 3.1415926535898 a = (float(ctx.arg(z)) + ctx.pi) / (2*ctx.pi) a = (a + 0.5) % 1.0 b = 1.0 - float(1/(1.0+abs(z)**0.3)) return hls_to_rgb(a, b, 0.8) def cplot(ctx, f, re=[-5,5], im=[-5,5], points=2000, color=None, verbose=False, file=None, dpi=None, axes=None): """ Plots the given complex-valued function *f* over a rectangular part of the complex plane specified by the pairs of intervals *re* and *im*. For example:: cplot(lambda z: z, [-2, 2], [-10, 10]) cplot(exp) cplot(zeta, [0, 1], [0, 50]) By default, the complex argument (phase) is shown as color (hue) and the magnitude is show as brightness. You can also supply a custom color function (*color*). This function should take a complex number as input and return an RGB 3-tuple containing floats in the range 0.0-1.0. To obtain a sharp image, the number of points may need to be increased to 100,000 or thereabout. Since evaluating the function that many times is likely to be slow, the 'verbose' option is useful to display progress. .. note :: This function requires matplotlib (pylab). """ if color is None: color = ctx.default_color_function import pylab if file: axes = None fig = None if not axes: fig = pylab.figure() axes = fig.add_subplot(111) rea, reb = re ima, imb = im dre = reb - rea dim = imb - ima M = int(ctx.sqrt(points*dre/dim)+1) N = int(ctx.sqrt(points*dim/dre)+1) x = pylab.linspace(rea, reb, M) y = pylab.linspace(ima, imb, N) # Note: we have to be careful to get the right rotation. # Test with these plots: # cplot(lambda z: z if z.real < 0 else 0) # cplot(lambda z: z if z.imag < 0 else 0) w = pylab.zeros((N, M, 3)) for n in xrange(N): for m in xrange(M): z = ctx.mpc(x[m], y[n]) try: v = color(f(z)) except ctx.plot_ignore: v = (0.5, 0.5, 0.5) w[n,m] = v if verbose: print(n, "of", N) rea, reb, ima, imb = [float(_) for _ in [rea, reb, ima, imb]] axes.imshow(w, extent=(rea, reb, ima, imb), origin='lower') axes.set_xlabel('Re(z)') axes.set_ylabel('Im(z)') if fig: if file: pylab.savefig(file, dpi=dpi) else: pylab.show() def splot(ctx, f, u=[-5,5], v=[-5,5], points=100, keep_aspect=True, \ wireframe=False, file=None, dpi=None, axes=None): """ Plots the surface defined by `f`. If `f` returns a single component, then this plots the surface defined by `z = f(x,y)` over the rectangular domain with `x = u` and `y = v`. If `f` returns three components, then this plots the parametric surface `x, y, z = f(u,v)` over the pairs of intervals `u` and `v`. For example, to plot a simple function:: >>> from mpmath import * >>> f = lambda x, y: sin(x+y)*cos(y) >>> splot(f, [-pi,pi], [-pi,pi]) # doctest: +SKIP Plotting a donut:: >>> r, R = 1, 2.5 >>> f = lambda u, v: [r*cos(u), (R+r*sin(u))*cos(v), (R+r*sin(u))*sin(v)] >>> splot(f, [0, 2*pi], [0, 2*pi]) # doctest: +SKIP .. note :: This function requires matplotlib (pylab) 0.98.5.3 or higher. """ import pylab import mpl_toolkits.mplot3d as mplot3d if file: axes = None fig = None if not axes: fig = pylab.figure() axes = mplot3d.axes3d.Axes3D(fig) ua, ub = u va, vb = v du = ub - ua dv = vb - va if not isinstance(points, (list, tuple)): points = [points, points] M, N = points u = pylab.linspace(ua, ub, M) v = pylab.linspace(va, vb, N) x, y, z = [pylab.zeros((M, N)) for i in xrange(3)] xab, yab, zab = [[0, 0] for i in xrange(3)] for n in xrange(N): for m in xrange(M): fdata = f(ctx.convert(u[m]), ctx.convert(v[n])) try: x[m,n], y[m,n], z[m,n] = fdata except TypeError: x[m,n], y[m,n], z[m,n] = u[m], v[n], fdata for c, cab in [(x[m,n], xab), (y[m,n], yab), (z[m,n], zab)]: if c < cab[0]: cab[0] = c if c > cab[1]: cab[1] = c if wireframe: axes.plot_wireframe(x, y, z, rstride=4, cstride=4) else: axes.plot_surface(x, y, z, rstride=4, cstride=4) axes.set_xlabel('x') axes.set_ylabel('y') axes.set_zlabel('z') if keep_aspect: dx, dy, dz = [cab[1] - cab[0] for cab in [xab, yab, zab]] maxd = max(dx, dy, dz) if dx < maxd: delta = maxd - dx axes.set_xlim3d(xab[0] - delta / 2.0, xab[1] + delta / 2.0) if dy < maxd: delta = maxd - dy axes.set_ylim3d(yab[0] - delta / 2.0, yab[1] + delta / 2.0) if dz < maxd: delta = maxd - dz axes.set_zlim3d(zab[0] - delta / 2.0, zab[1] + delta / 2.0) if fig: if file: pylab.savefig(file, dpi=dpi) else: pylab.show() VisualizationMethods.plot = plot VisualizationMethods.default_color_function = default_color_function VisualizationMethods.cplot = cplot VisualizationMethods.splot = splot
bsd-3-clause
justincassidy/scikit-learn
examples/missing_values.py
233
3056
""" ====================================================== Imputing missing values before building an estimator ====================================================== This example shows that imputing the missing values can give better results than discarding the samples containing any missing value. Imputing does not always improve the predictions, so please check via cross-validation. Sometimes dropping rows or using marker values is more effective. Missing values can be replaced by the mean, the median or the most frequent value using the ``strategy`` hyper-parameter. The median is a more robust estimator for data with high magnitude variables which could dominate results (otherwise known as a 'long tail'). Script output:: Score with the entire dataset = 0.56 Score without the samples containing missing values = 0.48 Score after imputation of the missing values = 0.55 In this case, imputing helps the classifier get close to the original score. """ import numpy as np from sklearn.datasets import load_boston from sklearn.ensemble import RandomForestRegressor from sklearn.pipeline import Pipeline from sklearn.preprocessing import Imputer from sklearn.cross_validation import cross_val_score rng = np.random.RandomState(0) dataset = load_boston() X_full, y_full = dataset.data, dataset.target n_samples = X_full.shape[0] n_features = X_full.shape[1] # Estimate the score on the entire dataset, with no missing values estimator = RandomForestRegressor(random_state=0, n_estimators=100) score = cross_val_score(estimator, X_full, y_full).mean() print("Score with the entire dataset = %.2f" % score) # Add missing values in 75% of the lines missing_rate = 0.75 n_missing_samples = np.floor(n_samples * missing_rate) missing_samples = np.hstack((np.zeros(n_samples - n_missing_samples, dtype=np.bool), np.ones(n_missing_samples, dtype=np.bool))) rng.shuffle(missing_samples) missing_features = rng.randint(0, n_features, n_missing_samples) # Estimate the score without the lines containing missing values X_filtered = X_full[~missing_samples, :] y_filtered = y_full[~missing_samples] estimator = RandomForestRegressor(random_state=0, n_estimators=100) score = cross_val_score(estimator, X_filtered, y_filtered).mean() print("Score without the samples containing missing values = %.2f" % score) # Estimate the score after imputation of the missing values X_missing = X_full.copy() X_missing[np.where(missing_samples)[0], missing_features] = 0 y_missing = y_full.copy() estimator = Pipeline([("imputer", Imputer(missing_values=0, strategy="mean", axis=0)), ("forest", RandomForestRegressor(random_state=0, n_estimators=100))]) score = cross_val_score(estimator, X_missing, y_missing).mean() print("Score after imputation of the missing values = %.2f" % score)
bsd-3-clause
drgulevich/microLLG
anim.py
1
2478
#!/usr/bin/env python ### ### Animation example: http://matplotlib.org/examples/animation/dynamic_image.html ### from pylab import * import matplotlib.animation as animation interpolation='nearest' #interpolation='gaussian' #interpolation=None #cmap=plt.get_cmap('bwr') #cmap=plt.get_cmap('seismic_r') cmap=plt.get_cmap('coolwarm_r') ### --- Parameters --- #fig, ax = subplots(figsize=(6,6)) fig, ax = subplots(figsize=(12,12)) #subplots_adjust(left=0, right=1, bottom=0, top=1) mx=magdata[0,1:Nx+1,1:Ny+1,0] my=magdata[0,1:Nx+1,1:Ny+1,1] mz=magdata[0,1:Nx+1,1:Ny+1,2] im=ax.imshow(mz.T,interpolation=interpolation, cmap = cmap, origin='lower',vmin=-1,vmax=1,zorder=1) #im=ax.imshow(mz.T,interpolation=interpolation, cmap = cmap, origin='lower',extent=[1,Nx,1,Ny],vmin=-1,vmax=1,zorder=1) #im=imshow(magdata[0,:,:,2].T,interpolation=interpolation, cmap = cmap, origin='lower',vmin=-1,vmax=1) #width=0.0016 #scale=1 #width=0.0012 #scale=0.8 width=0.0015 scale=1.1 #X, Y = meshgrid(np.arange(1,Nx+1),np.arange(1,Ny+1)) #Q = ax.quiver(X, Y, mx.T,my.T,pivot='mid',zorder=2,width=width, scale=scale, scale_units='x') Q = ax.quiver(mx.T,my.T,pivot='mid',zorder=2,width=width, scale=scale, scale_units='x') #Q = ax.quiver(X, Y, U, V, pivot='mid', color='r', units='inches') mt = text(.5, .5, 't=%.2f' % 0., fontsize=15) #mt = text(1.5, 1.5, 't=%.2f' % 0., fontsize=15) #time_text = text(.5, .5, '', fontsize=15) def init(): return updatefig(0) def updatefig(frame): data=magdata[frame,1:Nx+1,1:Ny+1,2].T im.set_array(data) Q.set_UVC(magdata[frame,1:Nx+1,1:Ny+1,0].T, magdata[frame,1:Nx+1,1:Ny+1,1].T) mt.set_text('t=%.2f' % (frame*countout*dt)) return im,Q,mt, def animate_as_gif(frame): return updatefig(frame) #export = True export = False if(export==True): anim = animation.FuncAnimation(fig, animate_as_gif, np.arange(0, Nframes), init_func=init, interval=100, blit=True, repeat=False) anim.save('animation.gif', writer='imagemagick') else: #anim = animation.FuncAnimation(fig, updatefig, np.arange(1, Nframes), init_func=init, interval=500, blit=True, repeat=False) anim = animation.FuncAnimation(fig, updatefig, np.arange(0, Nframes), init_func=init, interval=100, blit=True, repeat=False) # anim = animation.FuncAnimation(fig, updatefig, np.arange(0, Nframes,100), init_func=init, interval=100, blit=True, repeat=False) fig.tight_layout() gca().set_aspect('equal', adjustable='box') #axis('off') show()
gpl-3.0
vivekmishra1991/scikit-learn
examples/svm/plot_svm_regression.py
249
1451
""" =================================================================== Support Vector Regression (SVR) using linear and non-linear kernels =================================================================== Toy example of 1D regression using linear, polynomial and RBF kernels. """ print(__doc__) import numpy as np from sklearn.svm import SVR import matplotlib.pyplot as plt ############################################################################### # Generate sample data X = np.sort(5 * np.random.rand(40, 1), axis=0) y = np.sin(X).ravel() ############################################################################### # Add noise to targets y[::5] += 3 * (0.5 - np.random.rand(8)) ############################################################################### # Fit regression model svr_rbf = SVR(kernel='rbf', C=1e3, gamma=0.1) svr_lin = SVR(kernel='linear', C=1e3) svr_poly = SVR(kernel='poly', C=1e3, degree=2) y_rbf = svr_rbf.fit(X, y).predict(X) y_lin = svr_lin.fit(X, y).predict(X) y_poly = svr_poly.fit(X, y).predict(X) ############################################################################### # look at the results plt.scatter(X, y, c='k', label='data') plt.hold('on') plt.plot(X, y_rbf, c='g', label='RBF model') plt.plot(X, y_lin, c='r', label='Linear model') plt.plot(X, y_poly, c='b', label='Polynomial model') plt.xlabel('data') plt.ylabel('target') plt.title('Support Vector Regression') plt.legend() plt.show()
bsd-3-clause
clemkoa/scikit-learn
sklearn/metrics/cluster/supervised.py
13
31406
"""Utilities to evaluate the clustering performance of models. Functions named as *_score return a scalar value to maximize: the higher the better. """ # Authors: Olivier Grisel <olivier.grisel@ensta.org> # Wei LI <kuantkid@gmail.com> # Diego Molla <dmolla-aliod@gmail.com> # Arnaud Fouchet <foucheta@gmail.com> # Thierry Guillemot <thierry.guillemot.work@gmail.com> # Gregory Stupp <stuppie@gmail.com> # Joel Nothman <joel.nothman@gmail.com> # License: BSD 3 clause from __future__ import division from math import log import numpy as np from scipy import sparse as sp from .expected_mutual_info_fast import expected_mutual_information from ...utils.validation import check_array from ...utils.fixes import comb def comb2(n): # the exact version is faster for k == 2: use it by default globally in # this module instead of the float approximate variant return comb(n, 2, exact=1) def check_clusterings(labels_true, labels_pred): """Check that the two clusterings matching 1D integer arrays.""" labels_true = np.asarray(labels_true) labels_pred = np.asarray(labels_pred) # input checks if labels_true.ndim != 1: raise ValueError( "labels_true must be 1D: shape is %r" % (labels_true.shape,)) if labels_pred.ndim != 1: raise ValueError( "labels_pred must be 1D: shape is %r" % (labels_pred.shape,)) if labels_true.shape != labels_pred.shape: raise ValueError( "labels_true and labels_pred must have same size, got %d and %d" % (labels_true.shape[0], labels_pred.shape[0])) return labels_true, labels_pred def contingency_matrix(labels_true, labels_pred, eps=None, sparse=False): """Build a contingency matrix describing the relationship between labels. Parameters ---------- labels_true : int array, shape = [n_samples] Ground truth class labels to be used as a reference labels_pred : array, shape = [n_samples] Cluster labels to evaluate eps : None or float, optional. If a float, that value is added to all values in the contingency matrix. This helps to stop NaN propagation. If ``None``, nothing is adjusted. sparse : boolean, optional. If True, return a sparse CSR continency matrix. If ``eps is not None``, and ``sparse is True``, will throw ValueError. .. versionadded:: 0.18 Returns ------- contingency : {array-like, sparse}, shape=[n_classes_true, n_classes_pred] Matrix :math:`C` such that :math:`C_{i, j}` is the number of samples in true class :math:`i` and in predicted class :math:`j`. If ``eps is None``, the dtype of this array will be integer. If ``eps`` is given, the dtype will be float. Will be a ``scipy.sparse.csr_matrix`` if ``sparse=True``. """ if eps is not None and sparse: raise ValueError("Cannot set 'eps' when sparse=True") classes, class_idx = np.unique(labels_true, return_inverse=True) clusters, cluster_idx = np.unique(labels_pred, return_inverse=True) n_classes = classes.shape[0] n_clusters = clusters.shape[0] # Using coo_matrix to accelerate simple histogram calculation, # i.e. bins are consecutive integers # Currently, coo_matrix is faster than histogram2d for simple cases contingency = sp.coo_matrix((np.ones(class_idx.shape[0]), (class_idx, cluster_idx)), shape=(n_classes, n_clusters), dtype=np.int) if sparse: contingency = contingency.tocsr() contingency.sum_duplicates() else: contingency = contingency.toarray() if eps is not None: # don't use += as contingency is integer contingency = contingency + eps return contingency # clustering measures def adjusted_rand_score(labels_true, labels_pred): """Rand index adjusted for chance. The Rand Index computes a similarity measure between two clusterings by considering all pairs of samples and counting pairs that are assigned in the same or different clusters in the predicted and true clusterings. The raw RI score is then "adjusted for chance" into the ARI score using the following scheme:: ARI = (RI - Expected_RI) / (max(RI) - Expected_RI) The adjusted Rand index is thus ensured to have a value close to 0.0 for random labeling independently of the number of clusters and samples and exactly 1.0 when the clusterings are identical (up to a permutation). ARI is a symmetric measure:: adjusted_rand_score(a, b) == adjusted_rand_score(b, a) Read more in the :ref:`User Guide <adjusted_rand_score>`. Parameters ---------- labels_true : int array, shape = [n_samples] Ground truth class labels to be used as a reference labels_pred : array, shape = [n_samples] Cluster labels to evaluate Returns ------- ari : float Similarity score between -1.0 and 1.0. Random labelings have an ARI close to 0.0. 1.0 stands for perfect match. Examples -------- Perfectly matching labelings have a score of 1 even >>> from sklearn.metrics.cluster import adjusted_rand_score >>> adjusted_rand_score([0, 0, 1, 1], [0, 0, 1, 1]) 1.0 >>> adjusted_rand_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 Labelings that assign all classes members to the same clusters are complete be not always pure, hence penalized:: >>> adjusted_rand_score([0, 0, 1, 2], [0, 0, 1, 1]) # doctest: +ELLIPSIS 0.57... ARI is symmetric, so labelings that have pure clusters with members coming from the same classes but unnecessary splits are penalized:: >>> adjusted_rand_score([0, 0, 1, 1], [0, 0, 1, 2]) # doctest: +ELLIPSIS 0.57... If classes members are completely split across different clusters, the assignment is totally incomplete, hence the ARI is very low:: >>> adjusted_rand_score([0, 0, 0, 0], [0, 1, 2, 3]) 0.0 References ---------- .. [Hubert1985] `L. Hubert and P. Arabie, Comparing Partitions, Journal of Classification 1985` http://link.springer.com/article/10.1007%2FBF01908075 .. [wk] https://en.wikipedia.org/wiki/Rand_index#Adjusted_Rand_index See also -------- adjusted_mutual_info_score: Adjusted Mutual Information """ labels_true, labels_pred = check_clusterings(labels_true, labels_pred) n_samples = labels_true.shape[0] n_classes = np.unique(labels_true).shape[0] n_clusters = np.unique(labels_pred).shape[0] # Special limit cases: no clustering since the data is not split; # or trivial clustering where each document is assigned a unique cluster. # These are perfect matches hence return 1.0. if (n_classes == n_clusters == 1 or n_classes == n_clusters == 0 or n_classes == n_clusters == n_samples): return 1.0 # Compute the ARI using the contingency data contingency = contingency_matrix(labels_true, labels_pred, sparse=True) sum_comb_c = sum(comb2(n_c) for n_c in np.ravel(contingency.sum(axis=1))) sum_comb_k = sum(comb2(n_k) for n_k in np.ravel(contingency.sum(axis=0))) sum_comb = sum(comb2(n_ij) for n_ij in contingency.data) prod_comb = (sum_comb_c * sum_comb_k) / comb(n_samples, 2) mean_comb = (sum_comb_k + sum_comb_c) / 2. return (sum_comb - prod_comb) / (mean_comb - prod_comb) def homogeneity_completeness_v_measure(labels_true, labels_pred): """Compute the homogeneity and completeness and V-Measure scores at once. Those metrics are based on normalized conditional entropy measures of the clustering labeling to evaluate given the knowledge of a Ground Truth class labels of the same samples. A clustering result satisfies homogeneity if all of its clusters contain only data points which are members of a single class. A clustering result satisfies completeness if all the data points that are members of a given class are elements of the same cluster. Both scores have positive values between 0.0 and 1.0, larger values being desirable. Those 3 metrics are independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score values in any way. V-Measure is furthermore symmetric: swapping ``labels_true`` and ``label_pred`` will give the same score. This does not hold for homogeneity and completeness. Read more in the :ref:`User Guide <homogeneity_completeness>`. Parameters ---------- labels_true : int array, shape = [n_samples] ground truth class labels to be used as a reference labels_pred : array, shape = [n_samples] cluster labels to evaluate Returns ------- homogeneity : float score between 0.0 and 1.0. 1.0 stands for perfectly homogeneous labeling completeness : float score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling v_measure : float harmonic mean of the first two See also -------- homogeneity_score completeness_score v_measure_score """ labels_true, labels_pred = check_clusterings(labels_true, labels_pred) if len(labels_true) == 0: return 1.0, 1.0, 1.0 entropy_C = entropy(labels_true) entropy_K = entropy(labels_pred) contingency = contingency_matrix(labels_true, labels_pred, sparse=True) MI = mutual_info_score(None, None, contingency=contingency) homogeneity = MI / (entropy_C) if entropy_C else 1.0 completeness = MI / (entropy_K) if entropy_K else 1.0 if homogeneity + completeness == 0.0: v_measure_score = 0.0 else: v_measure_score = (2.0 * homogeneity * completeness / (homogeneity + completeness)) return homogeneity, completeness, v_measure_score def homogeneity_score(labels_true, labels_pred): """Homogeneity metric of a cluster labeling given a ground truth. A clustering result satisfies homogeneity if all of its clusters contain only data points which are members of a single class. This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is not symmetric: switching ``label_true`` with ``label_pred`` will return the :func:`completeness_score` which will be different in general. Read more in the :ref:`User Guide <homogeneity_completeness>`. Parameters ---------- labels_true : int array, shape = [n_samples] ground truth class labels to be used as a reference labels_pred : array, shape = [n_samples] cluster labels to evaluate Returns ------- homogeneity : float score between 0.0 and 1.0. 1.0 stands for perfectly homogeneous labeling References ---------- .. [1] `Andrew Rosenberg and Julia Hirschberg, 2007. V-Measure: A conditional entropy-based external cluster evaluation measure <http://aclweb.org/anthology/D/D07/D07-1043.pdf>`_ See also -------- completeness_score v_measure_score Examples -------- Perfect labelings are homogeneous:: >>> from sklearn.metrics.cluster import homogeneity_score >>> homogeneity_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 Non-perfect labelings that further split classes into more clusters can be perfectly homogeneous:: >>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 0, 1, 2])) ... # doctest: +ELLIPSIS 1.0... >>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 1, 2, 3])) ... # doctest: +ELLIPSIS 1.0... Clusters that include samples from different classes do not make for an homogeneous labeling:: >>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 1, 0, 1])) ... # doctest: +ELLIPSIS 0.0... >>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 0, 0, 0])) ... # doctest: +ELLIPSIS 0.0... """ return homogeneity_completeness_v_measure(labels_true, labels_pred)[0] def completeness_score(labels_true, labels_pred): """Completeness metric of a cluster labeling given a ground truth. A clustering result satisfies completeness if all the data points that are members of a given class are elements of the same cluster. This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is not symmetric: switching ``label_true`` with ``label_pred`` will return the :func:`homogeneity_score` which will be different in general. Read more in the :ref:`User Guide <homogeneity_completeness>`. Parameters ---------- labels_true : int array, shape = [n_samples] ground truth class labels to be used as a reference labels_pred : array, shape = [n_samples] cluster labels to evaluate Returns ------- completeness : float score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling References ---------- .. [1] `Andrew Rosenberg and Julia Hirschberg, 2007. V-Measure: A conditional entropy-based external cluster evaluation measure <http://aclweb.org/anthology/D/D07/D07-1043.pdf>`_ See also -------- homogeneity_score v_measure_score Examples -------- Perfect labelings are complete:: >>> from sklearn.metrics.cluster import completeness_score >>> completeness_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 Non-perfect labelings that assign all classes members to the same clusters are still complete:: >>> print(completeness_score([0, 0, 1, 1], [0, 0, 0, 0])) 1.0 >>> print(completeness_score([0, 1, 2, 3], [0, 0, 1, 1])) 1.0 If classes members are split across different clusters, the assignment cannot be complete:: >>> print(completeness_score([0, 0, 1, 1], [0, 1, 0, 1])) 0.0 >>> print(completeness_score([0, 0, 0, 0], [0, 1, 2, 3])) 0.0 """ return homogeneity_completeness_v_measure(labels_true, labels_pred)[1] def v_measure_score(labels_true, labels_pred): """V-measure cluster labeling given a ground truth. This score is identical to :func:`normalized_mutual_info_score`. The V-measure is the harmonic mean between homogeneity and completeness:: v = 2 * (homogeneity * completeness) / (homogeneity + completeness) This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is furthermore symmetric: switching ``label_true`` with ``label_pred`` will return the same score value. This can be useful to measure the agreement of two independent label assignments strategies on the same dataset when the real ground truth is not known. Read more in the :ref:`User Guide <homogeneity_completeness>`. Parameters ---------- labels_true : int array, shape = [n_samples] ground truth class labels to be used as a reference labels_pred : array, shape = [n_samples] cluster labels to evaluate Returns ------- v_measure : float score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling References ---------- .. [1] `Andrew Rosenberg and Julia Hirschberg, 2007. V-Measure: A conditional entropy-based external cluster evaluation measure <http://aclweb.org/anthology/D/D07/D07-1043.pdf>`_ See also -------- homogeneity_score completeness_score Examples -------- Perfect labelings are both homogeneous and complete, hence have score 1.0:: >>> from sklearn.metrics.cluster import v_measure_score >>> v_measure_score([0, 0, 1, 1], [0, 0, 1, 1]) 1.0 >>> v_measure_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 Labelings that assign all classes members to the same clusters are complete be not homogeneous, hence penalized:: >>> print("%.6f" % v_measure_score([0, 0, 1, 2], [0, 0, 1, 1])) ... # doctest: +ELLIPSIS 0.8... >>> print("%.6f" % v_measure_score([0, 1, 2, 3], [0, 0, 1, 1])) ... # doctest: +ELLIPSIS 0.66... Labelings that have pure clusters with members coming from the same classes are homogeneous but un-necessary splits harms completeness and thus penalize V-measure as well:: >>> print("%.6f" % v_measure_score([0, 0, 1, 1], [0, 0, 1, 2])) ... # doctest: +ELLIPSIS 0.8... >>> print("%.6f" % v_measure_score([0, 0, 1, 1], [0, 1, 2, 3])) ... # doctest: +ELLIPSIS 0.66... If classes members are completely split across different clusters, the assignment is totally incomplete, hence the V-Measure is null:: >>> print("%.6f" % v_measure_score([0, 0, 0, 0], [0, 1, 2, 3])) ... # doctest: +ELLIPSIS 0.0... Clusters that include samples from totally different classes totally destroy the homogeneity of the labeling, hence:: >>> print("%.6f" % v_measure_score([0, 0, 1, 1], [0, 0, 0, 0])) ... # doctest: +ELLIPSIS 0.0... """ return homogeneity_completeness_v_measure(labels_true, labels_pred)[2] def mutual_info_score(labels_true, labels_pred, contingency=None): """Mutual Information between two clusterings. The Mutual Information is a measure of the similarity between two labels of the same data. Where :math:`|U_i|` is the number of the samples in cluster :math:`U_i` and :math:`|V_j|` is the number of the samples in cluster :math:`V_j`, the Mutual Information between clusterings :math:`U` and :math:`V` is given as: .. math:: MI(U,V)=\sum_{i=1}^|U| \sum_{j=1}^|V| \\frac{|U_i\cap V_j|}{N} \log\\frac{N|U_i \cap V_j|}{|U_i||V_j|} This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is furthermore symmetric: switching ``label_true`` with ``label_pred`` will return the same score value. This can be useful to measure the agreement of two independent label assignments strategies on the same dataset when the real ground truth is not known. Read more in the :ref:`User Guide <mutual_info_score>`. Parameters ---------- labels_true : int array, shape = [n_samples] A clustering of the data into disjoint subsets. labels_pred : array, shape = [n_samples] A clustering of the data into disjoint subsets. contingency : {None, array, sparse matrix}, shape = [n_classes_true, n_classes_pred] A contingency matrix given by the :func:`contingency_matrix` function. If value is ``None``, it will be computed, otherwise the given value is used, with ``labels_true`` and ``labels_pred`` ignored. Returns ------- mi : float Mutual information, a non-negative value See also -------- adjusted_mutual_info_score: Adjusted against chance Mutual Information normalized_mutual_info_score: Normalized Mutual Information """ if contingency is None: labels_true, labels_pred = check_clusterings(labels_true, labels_pred) contingency = contingency_matrix(labels_true, labels_pred, sparse=True) else: contingency = check_array(contingency, accept_sparse=['csr', 'csc', 'coo'], dtype=[int, np.int32, np.int64]) if isinstance(contingency, np.ndarray): # For an array nzx, nzy = np.nonzero(contingency) nz_val = contingency[nzx, nzy] elif sp.issparse(contingency): # For a sparse matrix nzx, nzy, nz_val = sp.find(contingency) else: raise ValueError("Unsupported type for 'contingency': %s" % type(contingency)) contingency_sum = contingency.sum() pi = np.ravel(contingency.sum(axis=1)) pj = np.ravel(contingency.sum(axis=0)) log_contingency_nm = np.log(nz_val) contingency_nm = nz_val / contingency_sum # Don't need to calculate the full outer product, just for non-zeroes outer = pi.take(nzx) * pj.take(nzy) log_outer = -np.log(outer) + log(pi.sum()) + log(pj.sum()) mi = (contingency_nm * (log_contingency_nm - log(contingency_sum)) + contingency_nm * log_outer) return mi.sum() def adjusted_mutual_info_score(labels_true, labels_pred): """Adjusted Mutual Information between two clusterings. Adjusted Mutual Information (AMI) is an adjustment of the Mutual Information (MI) score to account for chance. It accounts for the fact that the MI is generally higher for two clusterings with a larger number of clusters, regardless of whether there is actually more information shared. For two clusterings :math:`U` and :math:`V`, the AMI is given as:: AMI(U, V) = [MI(U, V) - E(MI(U, V))] / [max(H(U), H(V)) - E(MI(U, V))] This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is furthermore symmetric: switching ``label_true`` with ``label_pred`` will return the same score value. This can be useful to measure the agreement of two independent label assignments strategies on the same dataset when the real ground truth is not known. Be mindful that this function is an order of magnitude slower than other metrics, such as the Adjusted Rand Index. Read more in the :ref:`User Guide <mutual_info_score>`. Parameters ---------- labels_true : int array, shape = [n_samples] A clustering of the data into disjoint subsets. labels_pred : array, shape = [n_samples] A clustering of the data into disjoint subsets. Returns ------- ami: float(upperlimited by 1.0) The AMI returns a value of 1 when the two partitions are identical (ie perfectly matched). Random partitions (independent labellings) have an expected AMI around 0 on average hence can be negative. See also -------- adjusted_rand_score: Adjusted Rand Index mutual_information_score: Mutual Information (not adjusted for chance) Examples -------- Perfect labelings are both homogeneous and complete, hence have score 1.0:: >>> from sklearn.metrics.cluster import adjusted_mutual_info_score >>> adjusted_mutual_info_score([0, 0, 1, 1], [0, 0, 1, 1]) 1.0 >>> adjusted_mutual_info_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 If classes members are completely split across different clusters, the assignment is totally in-complete, hence the AMI is null:: >>> adjusted_mutual_info_score([0, 0, 0, 0], [0, 1, 2, 3]) 0.0 References ---------- .. [1] `Vinh, Epps, and Bailey, (2010). Information Theoretic Measures for Clusterings Comparison: Variants, Properties, Normalization and Correction for Chance, JMLR <http://jmlr.csail.mit.edu/papers/volume11/vinh10a/vinh10a.pdf>`_ .. [2] `Wikipedia entry for the Adjusted Mutual Information <https://en.wikipedia.org/wiki/Adjusted_Mutual_Information>`_ """ labels_true, labels_pred = check_clusterings(labels_true, labels_pred) n_samples = labels_true.shape[0] classes = np.unique(labels_true) clusters = np.unique(labels_pred) # Special limit cases: no clustering since the data is not split. # This is a perfect match hence return 1.0. if (classes.shape[0] == clusters.shape[0] == 1 or classes.shape[0] == clusters.shape[0] == 0): return 1.0 contingency = contingency_matrix(labels_true, labels_pred, sparse=True) contingency = contingency.astype(np.float64) # Calculate the MI for the two clusterings mi = mutual_info_score(labels_true, labels_pred, contingency=contingency) # Calculate the expected value for the mutual information emi = expected_mutual_information(contingency, n_samples) # Calculate entropy for each labeling h_true, h_pred = entropy(labels_true), entropy(labels_pred) ami = (mi - emi) / (max(h_true, h_pred) - emi) return ami def normalized_mutual_info_score(labels_true, labels_pred): """Normalized Mutual Information between two clusterings. Normalized Mutual Information (NMI) is an normalization of the Mutual Information (MI) score to scale the results between 0 (no mutual information) and 1 (perfect correlation). In this function, mutual information is normalized by ``sqrt(H(labels_true) * H(labels_pred))`` This measure is not adjusted for chance. Therefore :func:`adjusted_mustual_info_score` might be preferred. This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is furthermore symmetric: switching ``label_true`` with ``label_pred`` will return the same score value. This can be useful to measure the agreement of two independent label assignments strategies on the same dataset when the real ground truth is not known. Read more in the :ref:`User Guide <mutual_info_score>`. Parameters ---------- labels_true : int array, shape = [n_samples] A clustering of the data into disjoint subsets. labels_pred : array, shape = [n_samples] A clustering of the data into disjoint subsets. Returns ------- nmi : float score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling See also -------- adjusted_rand_score: Adjusted Rand Index adjusted_mutual_info_score: Adjusted Mutual Information (adjusted against chance) Examples -------- Perfect labelings are both homogeneous and complete, hence have score 1.0:: >>> from sklearn.metrics.cluster import normalized_mutual_info_score >>> normalized_mutual_info_score([0, 0, 1, 1], [0, 0, 1, 1]) 1.0 >>> normalized_mutual_info_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 If classes members are completely split across different clusters, the assignment is totally in-complete, hence the NMI is null:: >>> normalized_mutual_info_score([0, 0, 0, 0], [0, 1, 2, 3]) 0.0 """ labels_true, labels_pred = check_clusterings(labels_true, labels_pred) classes = np.unique(labels_true) clusters = np.unique(labels_pred) # Special limit cases: no clustering since the data is not split. # This is a perfect match hence return 1.0. if (classes.shape[0] == clusters.shape[0] == 1 or classes.shape[0] == clusters.shape[0] == 0): return 1.0 contingency = contingency_matrix(labels_true, labels_pred, sparse=True) contingency = contingency.astype(np.float64) # Calculate the MI for the two clusterings mi = mutual_info_score(labels_true, labels_pred, contingency=contingency) # Calculate the expected value for the mutual information # Calculate entropy for each labeling h_true, h_pred = entropy(labels_true), entropy(labels_pred) nmi = mi / max(np.sqrt(h_true * h_pred), 1e-10) return nmi def fowlkes_mallows_score(labels_true, labels_pred, sparse=False): """Measure the similarity of two clusterings of a set of points. The Fowlkes-Mallows index (FMI) is defined as the geometric mean between of the precision and recall:: FMI = TP / sqrt((TP + FP) * (TP + FN)) Where ``TP`` is the number of **True Positive** (i.e. the number of pair of points that belongs in the same clusters in both ``labels_true`` and ``labels_pred``), ``FP`` is the number of **False Positive** (i.e. the number of pair of points that belongs in the same clusters in ``labels_true`` and not in ``labels_pred``) and ``FN`` is the number of **False Negative** (i.e the number of pair of points that belongs in the same clusters in ``labels_pred`` and not in ``labels_True``). The score ranges from 0 to 1. A high value indicates a good similarity between two clusters. Read more in the :ref:`User Guide <fowlkes_mallows_scores>`. Parameters ---------- labels_true : int array, shape = (``n_samples``,) A clustering of the data into disjoint subsets. labels_pred : array, shape = (``n_samples``, ) A clustering of the data into disjoint subsets. sparse : bool Compute contingency matrix internally with sparse matrix. Returns ------- score : float The resulting Fowlkes-Mallows score. Examples -------- Perfect labelings are both homogeneous and complete, hence have score 1.0:: >>> from sklearn.metrics.cluster import fowlkes_mallows_score >>> fowlkes_mallows_score([0, 0, 1, 1], [0, 0, 1, 1]) 1.0 >>> fowlkes_mallows_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 If classes members are completely split across different clusters, the assignment is totally random, hence the FMI is null:: >>> fowlkes_mallows_score([0, 0, 0, 0], [0, 1, 2, 3]) 0.0 References ---------- .. [1] `E. B. Fowkles and C. L. Mallows, 1983. "A method for comparing two hierarchical clusterings". Journal of the American Statistical Association <http://wildfire.stat.ucla.edu/pdflibrary/fowlkes.pdf>`_ .. [2] `Wikipedia entry for the Fowlkes-Mallows Index <https://en.wikipedia.org/wiki/Fowlkes-Mallows_index>`_ """ labels_true, labels_pred = check_clusterings(labels_true, labels_pred) n_samples, = labels_true.shape c = contingency_matrix(labels_true, labels_pred, sparse=True) tk = np.dot(c.data, c.data) - n_samples pk = np.sum(np.asarray(c.sum(axis=0)).ravel() ** 2) - n_samples qk = np.sum(np.asarray(c.sum(axis=1)).ravel() ** 2) - n_samples return tk / np.sqrt(pk * qk) if tk != 0. else 0. def entropy(labels): """Calculates the entropy for a labeling.""" if len(labels) == 0: return 1.0 label_idx = np.unique(labels, return_inverse=True)[1] pi = np.bincount(label_idx).astype(np.float64) pi = pi[pi > 0] pi_sum = np.sum(pi) # log(a / b) should be calculated as log(a) - log(b) for # possible loss of precision return -np.sum((pi / pi_sum) * (np.log(pi) - log(pi_sum)))
bsd-3-clause
leewujung/ooi_sonar
during_incubator/test_nmf_options.py
1
5502
#!/usr/local/bin/python ''' Testing NMF initialization and various methods using scikit learn and NIMFA ''' import os, sys, glob, re import datetime from matplotlib.dates import date2num, num2date import numpy as np from calendar import monthrange import h5py from sklearn import decomposition sys.path.insert(0,'/home/wu-jung/code_git/mi-instrument/') from concat_raw import get_num_days_pings, get_data_from_h5 from echogram_decomp import find_nearest_time_idx,reshape_into_3freq,reshape_into_1freq,\ sep_into_freq,plot_decomp_v,plot_decomp_transform import matplotlib.pyplot as plt from modest_image import imshow from mpl_toolkits.axes_grid1 import make_axes_locatable # Set default colormap plt.rcParams['image.cmap'] = 'jet' # Get info of all files and set path data_path = '/home/wu-jung/internal_2tb/ooi_sonar/figs/20170310_monthly_smpl' save_path = '/home/wu-jung/internal_2tb/ooi_sonar/figs/20170310_nmf_options' fname_form = '*.h5' fname_all = glob.glob(os.path.join(data_path,fname_form)) n_comp = 5 # number of components for NMF # Constant params fmt = '%Y%m%d' all_hr = range(24) # list of all hour all_min = range(1,11) # list of all minutes pings_per_day = len(all_hr)*len(all_min) # number of pings per day max_missing_ping = 5 # maximum number of missing pings in a day # Load data fname = 'CE04OSPS_20150901-20150930_smpl.h5' f = h5py.File(os.path.join(data_path,fname),'r') Sv_mtx0 = np.asarray(f['Sv_mtx']) depth_tick = np.asarray(f['depth_tick']) depth_label = np.asarray(f['depth_label']) time_tick = np.asarray(f['time_tick']) time_label = np.asarray(f['time_label']) depth_bin_num = np.asarray(f['depth_bin_num']) pings_per_day = np.asarray(f['pings_per_day']) f.close() fname = 'CE04OSPS_20151001-20151031_smpl.h5' #fname = 'CE04OSPS_20160501-20160601_smpl.h5' f = h5py.File(os.path.join(data_path,fname),'r') Sv_mtx1 = np.asarray(f['Sv_mtx']) f.close() # Set plotting params vec_len_each_day = pings_per_day*depth_bin_num # length of vector for 1 day # Prep data if Sv_mtx0.shape[2]>Sv_mtx1.shape[2]: Sv_mtx0 = np.delete(Sv_mtx0,range(Sv_mtx1.shape[2],Sv_mtx0.shape[2]),axis=2) else: Sv_mtx1 = np.delete(Sv_mtx1,range(Sv_mtx0.shape[2],Sv_mtx1.shape[2]),axis=2) Sv_vec0 = reshape_into_3freq(Sv_mtx0,vec_len_each_day) Sv_vec1 = reshape_into_3freq(Sv_mtx1,vec_len_each_day) # Run NMF on 1st set nmf0 = decomposition.NMF(n_components=n_comp) r_mtx0 = nmf0.fit_transform(Sv_vec0-Sv_vec0.min()) v_comps0 = sep_into_freq(nmf0.components_,pings_per_day,depth_bin_num) # Run NMF on 2nd set WITHOUT initialization nmf1 = decomposition.NMF(n_components=n_comp) r_mtx1 = nmf1.fit_transform(Sv_vec1-Sv_vec1.min()) v_comps1 = sep_into_freq(nmf1.components_,pings_per_day,depth_bin_num) # Run NMF on 2nd set WITH initialization H & W nmf2 = decomposition.NMF(n_components=n_comp,init='custom') r_mtx2 = nmf2.fit_transform(Sv_vec1-Sv_vec1.min(),\ H=np.copy(nmf0.components_),W=np.copy(r_mtx0)) v_comps2 = sep_into_freq(nmf2.components_,pings_per_day,depth_bin_num) # Assemblge plot_param plot_params = dict(zip(['depth_tick','depth_label','time_tick','time_label'],\ [depth_tick,depth_label,time_tick,time_label])) fig_comp = plot_decomp_v(v_comps0,plot_params) fig_comp.set_figheight(3) fig_comp.set_figwidth(8) fig_comp.suptitle('Set 0') fig_comp = plot_decomp_v(v_comps1,plot_params) fig_comp.set_figheight(3) fig_comp.set_figwidth(8) fig_comp.suptitle('Set 1 no init') fig_comp = plot_decomp_v(v_comps2,plot_params) fig_comp.set_figheight(3) fig_comp.set_figwidth(8) fig_comp.suptitle('Set 1 with init') save_fname = '.png' fig,ax=plt.subplots(5,3) for comp_num in range(5): ax[comp_num,0].imshow(v_comps0[comp_num,0,:,:],aspect='auto') ax[comp_num,1].imshow(v_comps1[comp_num,0,:,:],aspect='auto') ax[comp_num,2].imshow(v_comps2[comp_num,0,:,:],aspect='auto') if comp_num==0: ax[comp_num,0].set_title('Set 1') ax[comp_num,1].set_title('Set 2 no init') ax[comp_num,2].set_title('Set 2 with init') fig.set_figwidth(12) fig.set_figheight(10) fig.savefig(os.path.join(save_path,save_fname),dpi=200) save_fname = 'test1_new2.png' comp_num = 1; fig,ax=plt.subplots(1,2) ax[0].imshow(v_comps0[comp_num,0,:,:],aspect='auto') ax[0].set_title('Set 1') ax[1].imshow(v_comps1[comp_num,0,:,:],aspect='auto') ax[1].set_title('Set 2 no init') fig.set_figwidth(8) fig.set_figheight(2) fig.savefig(os.path.join(save_path,save_fname),dpi=200) # Try out NIMFA nmf = nimfa.Nmf(Sv_vec0-Sv_vec0.min(),rank=5) nmf_fit = nmf() W = nmf_fit.basis() H = nmf_fit.coef() V = np.empty((5,1440,1046)) for Hcomp in range(H.shape[0]): V[Hcomp,:,:] = H[Hcomp,:].reshape((1440,1046)) snmf = nimfa.Snmf(Sv_vec0-Sv_vec0.min(),rank=5) snmf_fit = snmf() W_snmf = snmf_fit.basis() H_snmf = snmf_fit.coef() V_snmf = np.empty((5,1440,1046)) for Hcomp in range(H_snmf.shape[0]): V_snmf[Hcomp,:,:] = H_snmf[Hcomp,:].reshape((1440,1046)) snmf.estimate_rank(rank_range=[2,3,4,5,6,7,8], n_run=10, idx=0, what='all') fig,ax=plt.subplots(5) for Hcomp in range(H.shape[0]): ax[Hcomp].imshow(V[Hcomp,0:480,:].T,aspect='auto') fig.set_figwidth(6) fig.set_figheight(6) fig,ax=plt.subplots(5) for Hcomp in range(H.shape[0]): ax[Hcomp].imshow(V_snmf[Hcomp,0:480,:].T,aspect='auto') fig.set_figwidth(6) fig.set_figheight(6)
apache-2.0
hrjn/scikit-learn
examples/cluster/plot_kmeans_stability_low_dim_dense.py
338
4324
""" ============================================================ Empirical evaluation of the impact of k-means initialization ============================================================ Evaluate the ability of k-means initializations strategies to make the algorithm convergence robust as measured by the relative standard deviation of the inertia of the clustering (i.e. the sum of distances to the nearest cluster center). The first plot shows the best inertia reached for each combination of the model (``KMeans`` or ``MiniBatchKMeans``) and the init method (``init="random"`` or ``init="kmeans++"``) for increasing values of the ``n_init`` parameter that controls the number of initializations. The second plot demonstrate one single run of the ``MiniBatchKMeans`` estimator using a ``init="random"`` and ``n_init=1``. This run leads to a bad convergence (local optimum) with estimated centers stuck between ground truth clusters. The dataset used for evaluation is a 2D grid of isotropic Gaussian clusters widely spaced. """ print(__doc__) # Author: Olivier Grisel <olivier.grisel@ensta.org> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt import matplotlib.cm as cm from sklearn.utils import shuffle from sklearn.utils import check_random_state from sklearn.cluster import MiniBatchKMeans from sklearn.cluster import KMeans random_state = np.random.RandomState(0) # Number of run (with randomly generated dataset) for each strategy so as # to be able to compute an estimate of the standard deviation n_runs = 5 # k-means models can do several random inits so as to be able to trade # CPU time for convergence robustness n_init_range = np.array([1, 5, 10, 15, 20]) # Datasets generation parameters n_samples_per_center = 100 grid_size = 3 scale = 0.1 n_clusters = grid_size ** 2 def make_data(random_state, n_samples_per_center, grid_size, scale): random_state = check_random_state(random_state) centers = np.array([[i, j] for i in range(grid_size) for j in range(grid_size)]) n_clusters_true, n_features = centers.shape noise = random_state.normal( scale=scale, size=(n_samples_per_center, centers.shape[1])) X = np.concatenate([c + noise for c in centers]) y = np.concatenate([[i] * n_samples_per_center for i in range(n_clusters_true)]) return shuffle(X, y, random_state=random_state) # Part 1: Quantitative evaluation of various init methods fig = plt.figure() plots = [] legends = [] cases = [ (KMeans, 'k-means++', {}), (KMeans, 'random', {}), (MiniBatchKMeans, 'k-means++', {'max_no_improvement': 3}), (MiniBatchKMeans, 'random', {'max_no_improvement': 3, 'init_size': 500}), ] for factory, init, params in cases: print("Evaluation of %s with %s init" % (factory.__name__, init)) inertia = np.empty((len(n_init_range), n_runs)) for run_id in range(n_runs): X, y = make_data(run_id, n_samples_per_center, grid_size, scale) for i, n_init in enumerate(n_init_range): km = factory(n_clusters=n_clusters, init=init, random_state=run_id, n_init=n_init, **params).fit(X) inertia[i, run_id] = km.inertia_ p = plt.errorbar(n_init_range, inertia.mean(axis=1), inertia.std(axis=1)) plots.append(p[0]) legends.append("%s with %s init" % (factory.__name__, init)) plt.xlabel('n_init') plt.ylabel('inertia') plt.legend(plots, legends) plt.title("Mean inertia for various k-means init across %d runs" % n_runs) # Part 2: Qualitative visual inspection of the convergence X, y = make_data(random_state, n_samples_per_center, grid_size, scale) km = MiniBatchKMeans(n_clusters=n_clusters, init='random', n_init=1, random_state=random_state).fit(X) fig = plt.figure() for k in range(n_clusters): my_members = km.labels_ == k color = cm.spectral(float(k) / n_clusters, 1) plt.plot(X[my_members, 0], X[my_members, 1], 'o', marker='.', c=color) cluster_center = km.cluster_centers_[k] plt.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=color, markeredgecolor='k', markersize=6) plt.title("Example cluster allocation with a single random init\n" "with MiniBatchKMeans") plt.show()
bsd-3-clause
junglehaw/junglehaw.github.io
_includes/nqt_simple.py
1
12071
import tensorflow as tf import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler import matplotlib.pyplot as plt ''' import pandas as pd import datetime def download_price(id): df=get_price(id,start_date='2005-01-04',end_date=datetime.datetime.now()) print(df) pd.DataFrame.to_csv(df, id + '.csv') download_price('000001.XSHG') download_price('399006.XSHE') download_price('000905.XSHG') download_price('000300.XSHG') download_price('600809.XSHG') download_price('600519.XSHG') ''' class seq_batch(object): def __init__(self, data, time_steps, batch_size, target_index, lag, backward=False): self.data = data self.time_steps = time_steps self.batch_size = batch_size if backward: self.batch_start = len(self.data) % self.time_steps else: self.batch_start = 0 self.target_index = target_index self.lag = lag def get_batch(self): # xs shape (50batch, 20steps) xs = np.arange(self.batch_start, self.batch_start + self.time_steps * self.batch_size).reshape((self.batch_size, self.time_steps)) seq = self.data[xs] res = self.data[xs + self.lag][:, :, self.target_index] # the high self.batch_start += self.time_steps # plt.plot(xs[0, :], res[0, :], 'r', xs[0, :], seq[0, :], 'b--') # plt.show() # returned seq, res and xs: shape (batch, step, input) if self.batch_start > len(self.data) - self.batch_size*self.time_steps - self.lag: self.batch_start = np.random.randint(0, self.time_steps, 1) target_ifeats = np.logical_not(np.isin(np.arange(self.data.shape[1]),self.target_index)) return [seq[:, :, target_ifeats], res, xs] def get_inference_batch(self): # xs shape (50batch, 20steps) xs = np.arange(self.batch_start, self.batch_start + self.time_steps * self.batch_size).reshape((self.batch_size, self.time_steps)) seq = self.data[xs] res = self.data[xs + self.lag][:, :, self.target_index] # the high self.batch_start += self.time_steps return [seq[:, :, 1:], res[:, :, np.newaxis], xs] def get_feats_batch(self): xs = np.arange(self.batch_start, self.batch_start + self.time_steps * self.batch_size).reshape((self.batch_size, self.time_steps)) seq = self.data[xs] self.batch_start += self.time_steps return [seq[:, :, 1:], xs] class LSTMRegress(object): def __init__(self, n_steps, input_size, output_size, cell_size, batch_size): self.n_steps = n_steps self.input_size = input_size self.output_size = output_size self.cell_size = cell_size self.batch_size = batch_size with tf.name_scope('inputs'): self.xs = tf.placeholder(tf.float32, [None, n_steps, input_size], name='xs') self.ys = tf.placeholder(tf.float32, [None, n_steps, output_size], name='ys') with tf.variable_scope('in_hidden'): self.add_input_layer() with tf.variable_scope('LSTM_cell'): self.add_cell() with tf.variable_scope('out_hidden'): self.add_output_layer() with tf.name_scope('cost'): self.compute_cost() with tf.name_scope('train'): self.train_op = tf.train.AdamOptimizer(learn_rate).minimize(self.cost) def add_input_layer(self,): l_in_x = tf.reshape(self.xs, [-1, self.input_size], name='2_2D') # (batch*n_step, in_size) # Ws (in_size, cell_size) Ws_in = self._weight_variable([self.input_size, self.cell_size]) # bs (cell_size, ) bs_in = self._bias_variable([self.cell_size,]) # l_in_y = (batch * n_steps, cell_size) with tf.name_scope('Wx_plus_b'): l_in_y = tf.matmul(l_in_x, Ws_in) + bs_in # reshape l_in_y ==> (batch, n_steps, cell_size) self.l_in_y = tf.reshape(l_in_y, [-1, self.n_steps, self.cell_size], name='2_3D') def add_cell(self): lstm_cell = tf.contrib.rnn.BasicLSTMCell(self.cell_size, forget_bias=1.0, state_is_tuple=True) with tf.name_scope('initial_state'): self.cell_init_state = lstm_cell.zero_state(self.batch_size, dtype=tf.float32) self.cell_outputs, self.cell_final_state = tf.nn.dynamic_rnn( lstm_cell, self.l_in_y, initial_state=self.cell_init_state, time_major=False) def add_output_layer(self): # shape = (batch * steps, cell_size) l_out_x = tf.reshape(self.cell_outputs, [-1, self.cell_size], name='2_2D') Ws_out = self._weight_variable([self.cell_size, self.output_size]) bs_out = self._bias_variable([self.output_size, ]) # shape = (batch * steps, output_size) with tf.name_scope('Wx_plus_b'): self.pred = tf.matmul(l_out_x, Ws_out) + bs_out def compute_cost(self): losses = tf.contrib.legacy_seq2seq.sequence_loss_by_example( [tf.reshape(self.pred, [-1], name='reshape_pred')], [tf.reshape(self.ys, [-1], name='reshape_target')], [tf.ones([self.batch_size * self.n_steps * self.output_size], dtype=tf.float32)], average_across_timesteps=True, softmax_loss_function=self.ms_error, name='losses' ) with tf.name_scope('average_cost'): self.cost = tf.div( tf.reduce_sum(losses, name='losses_sum'), self.batch_size, name='average_cost') tf.summary.scalar('cost', self.cost) def ms_error(self, labels, logits): return tf.square(tf.subtract(labels, logits)) def _weight_variable(self, shape, name='weights'): initializer = tf.random_normal_initializer(mean=0., stddev=1.,) return tf.get_variable(shape=shape, initializer=initializer, name=name) def _bias_variable(self, shape, name='biases'): initializer = tf.constant_initializer(0.1) return tf.get_variable(name=name, shape=shape, initializer=initializer) def not_suspended(row): return not (row[0] == row[1] and row[0] == row[2] and row[0] == row[3]) def infer_show(n, save_path, session, saver, model, batcher, n_time_step=1, clf=True): saver.restore(session, save_path) for i in range(n): try: seq, res, xs = batcher.get_inference_batch() except IndexError: plt.pause(30) if i == 0: feed_dict = {model.xs: seq, model.ys: res} else: feed_dict = {model.xs: seq, model.ys: res, model.cell_final_state: state} state, pred = session.run([model.cell_final_state, model.pred], feed_dict=feed_dict) if clf: plt.clf() plt.plot(xs[0, :], res[0].flatten(), 'r', xs[0, :], pred.flatten()[0:time_steps], 'b') plt.draw() plt.pause(2) def predict_show(n, save_path, session, saver, model, batcher, clf=True): saver.restore(session, save_path) for i in range(n): try: seq, xs = batcher.get_feats_batch() except IndexError: plt.pause(30) if i == 0: feed_dict = {model.xs: seq, } else: feed_dict = {model.xs: seq, model.cell_final_state: state} state, pred = session.run([model.cell_final_state, model.pred], feed_dict=feed_dict) if clf: plt.clf() plt.plot(xs[0, :], pred.flatten()[0:time_steps], 'b') plt.draw() plt.pause(200) def train(n, save_path, session, saver, model, batcher, clf=True): merged = tf.summary.merge_all() writer = tf.summary.FileWriter('logs', session.graph) init = tf.global_variables_initializer() session.run(init) for i in range(n): seq, res, xs = batcher.get_batch() if i == 0: feed_dict = {model.xs: seq, model.ys: res} else: feed_dict = {model.xs: seq, model.ys: res, model.cell_final_state: state} _, cost, state, pred = session.run([model.train_op, model.cost, model.cell_final_state, model.pred], feed_dict=feed_dict) if clf: plt.clf() #plt.plot(xs[0, :], res[0].flatten(), 'r', xs[0, :], pred.flatten()[0:time_steps], 'b') for j in range(res[0].shape[1]): a = plt.subplot(2, 2, j+1) a.plot(xs[0, :], res[0, :, j], 'r', xs[0, :], pred[:, j][0:time_steps], 'b') plt.draw() plt.pause(0.2 + i*0.01) if i % 20 == 0: print('cost', round(cost, 4)) result = session.run(merged, feed_dict) writer.add_summary(result, i) saver.save(session, save_path) batch_start = 0 time_steps = 300 batch_size = 1 #input_size = 15 #output_size = 2 cell_size = 32 learn_rate = 0.006 model_path = 'saver/600809' inference = False feats_common = ['open','close','high','low', 'total_turnover', 'volume'] feats_limits = ['limit_up', 'limit_down'] feats_target = ['ts'] + feats_common + feats_limits col_names000 = ['ts'] + feats_common usecols_qt = ['ts', 'open', 'total_turnover', 'volume'] usecols_target = ['ts', 'high', 'low', 'total_turnover', 'volume'] if __name__ == '__main__': ftarget = '600809.XSHG.csv' f600519 = '600519.XSHG.csv' f000001 = '000001.XSHG.csv' f000300 = '000300.XSHG.csv' f000905 = '000905.XSHG.csv' f399006 = '399006.XSHE.csv' # from 2010 f600600 = '600600.XSHG.csv' f600189 = '600189.XSHG.csv' df_target = pd.read_csv(ftarget, names=feats_target, header=0, index_col='ts', usecols=usecols_target) df600519 = pd.read_csv(f600519, names=feats_target, header=0, index_col='ts', usecols=usecols_target) df600600 = pd.read_csv(f600600, names=feats_target, header=0, index_col='ts', usecols=usecols_target) df600189 = pd.read_csv(f600189, names=feats_target, header=0, index_col='ts', usecols=usecols_target) df000001 = pd.read_csv(f000001, names=col_names000, header=0, index_col='ts', usecols=usecols_qt) df000300 = pd.read_csv(f000300, names=col_names000, header=0, index_col='ts', usecols=usecols_qt) df000905 = pd.read_csv(f000905, names=col_names000, header=0, index_col='ts', usecols=usecols_qt) merged = df_target.join(df600519, how='inner', rsuffix='600519')\ .join(df600600, how='inner', rsuffix='600600')\ .join(df600189, how='inner', rsuffix='600189')\ .join(df000001, how='inner', rsuffix='000001')\ .join(df000300, how='inner', rsuffix='000300')\ .join(df000905, how='inner', rsuffix='000905') for i in range(len(merged.columns.values)): print(i, merged.columns.values[i]) #raw = merged.loc[:, feats_target[1]:].values #filtered = raw[np.array([not_suspended(row) for row in raw])][:, [0, 2, 4, 5, 8, 14]] filtered = merged.values scaler = MinMaxScaler(feature_range=(0, 1)) normv = scaler.fit_transform(filtered) plt.plot(normv) plt.show() #print(normv) target_ifeat = [0, 4, 8, 12] if inference: model = LSTMRegress(time_steps, normv.shape[1] - len(target_ifeat), len(target_ifeat), cell_size, 1) session = tf.Session() saver = tf.train.Saver() inference_batcher = seq_batch(normv, time_steps, batch_size, target_ifeat, 10, backward=True) #infer_show(200, model_path, session, saver, model, inference_batcher, clf=False) predict_show(200, model_path, session, saver, model, inference_batcher, clf=False) else: model = LSTMRegress(time_steps, normv.shape[1] - len(target_ifeat), len(target_ifeat), cell_size, batch_size) session = tf.Session() saver = tf.train.Saver() batcher = seq_batch(normv, time_steps, batch_size, target_ifeat, 10) train(400, model_path, session, saver, model, batcher, clf=False)
mit
nikitasingh981/scikit-learn
examples/feature_selection/plot_rfe_with_cross_validation.py
161
1380
""" =================================================== Recursive feature elimination with cross-validation =================================================== A recursive feature elimination example with automatic tuning of the number of features selected with cross-validation. """ print(__doc__) import matplotlib.pyplot as plt from sklearn.svm import SVC from sklearn.model_selection import StratifiedKFold from sklearn.feature_selection import RFECV from sklearn.datasets import make_classification # Build a classification task using 3 informative features X, y = make_classification(n_samples=1000, n_features=25, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, random_state=0) # Create the RFE object and compute a cross-validated score. svc = SVC(kernel="linear") # The "accuracy" scoring is proportional to the number of correct # classifications rfecv = RFECV(estimator=svc, step=1, cv=StratifiedKFold(2), scoring='accuracy') rfecv.fit(X, y) print("Optimal number of features : %d" % rfecv.n_features_) # Plot number of features VS. cross-validation scores plt.figure() plt.xlabel("Number of features selected") plt.ylabel("Cross validation score (nb of correct classifications)") plt.plot(range(1, len(rfecv.grid_scores_) + 1), rfecv.grid_scores_) plt.show()
bsd-3-clause
chenyyx/scikit-learn-doc-zh
examples/en/gaussian_process/plot_gpr_noisy_targets.py
64
3706
""" ========================================================= Gaussian Processes regression: basic introductory example ========================================================= A simple one-dimensional regression example computed in two different ways: 1. A noise-free case 2. A noisy case with known noise-level per datapoint In both cases, the kernel's parameters are estimated using the maximum likelihood principle. The figures illustrate the interpolating property of the Gaussian Process model as well as its probabilistic nature in the form of a pointwise 95% confidence interval. Note that the parameter ``alpha`` is applied as a Tikhonov regularization of the assumed covariance between the training points. """ print(__doc__) # Author: Vincent Dubourg <vincent.dubourg@gmail.com> # Jake Vanderplas <vanderplas@astro.washington.edu> # Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>s # License: BSD 3 clause import numpy as np from matplotlib import pyplot as plt from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import RBF, ConstantKernel as C np.random.seed(1) def f(x): """The function to predict.""" return x * np.sin(x) # ---------------------------------------------------------------------- # First the noiseless case X = np.atleast_2d([1., 3., 5., 6., 7., 8.]).T # Observations y = f(X).ravel() # Mesh the input space for evaluations of the real function, the prediction and # its MSE x = np.atleast_2d(np.linspace(0, 10, 1000)).T # Instanciate a Gaussian Process model kernel = C(1.0, (1e-3, 1e3)) * RBF(10, (1e-2, 1e2)) gp = GaussianProcessRegressor(kernel=kernel, n_restarts_optimizer=9) # Fit to data using Maximum Likelihood Estimation of the parameters gp.fit(X, y) # Make the prediction on the meshed x-axis (ask for MSE as well) y_pred, sigma = gp.predict(x, return_std=True) # Plot the function, the prediction and the 95% confidence interval based on # the MSE fig = plt.figure() plt.plot(x, f(x), 'r:', label=u'$f(x) = x\,\sin(x)$') plt.plot(X, y, 'r.', markersize=10, label=u'Observations') plt.plot(x, y_pred, 'b-', label=u'Prediction') plt.fill(np.concatenate([x, x[::-1]]), np.concatenate([y_pred - 1.9600 * sigma, (y_pred + 1.9600 * sigma)[::-1]]), alpha=.5, fc='b', ec='None', label='95% confidence interval') plt.xlabel('$x$') plt.ylabel('$f(x)$') plt.ylim(-10, 20) plt.legend(loc='upper left') # ---------------------------------------------------------------------- # now the noisy case X = np.linspace(0.1, 9.9, 20) X = np.atleast_2d(X).T # Observations and noise y = f(X).ravel() dy = 0.5 + 1.0 * np.random.random(y.shape) noise = np.random.normal(0, dy) y += noise # Instanciate a Gaussian Process model gp = GaussianProcessRegressor(kernel=kernel, alpha=(dy / y) ** 2, n_restarts_optimizer=10) # Fit to data using Maximum Likelihood Estimation of the parameters gp.fit(X, y) # Make the prediction on the meshed x-axis (ask for MSE as well) y_pred, sigma = gp.predict(x, return_std=True) # Plot the function, the prediction and the 95% confidence interval based on # the MSE fig = plt.figure() plt.plot(x, f(x), 'r:', label=u'$f(x) = x\,\sin(x)$') plt.errorbar(X.ravel(), y, dy, fmt='r.', markersize=10, label=u'Observations') plt.plot(x, y_pred, 'b-', label=u'Prediction') plt.fill(np.concatenate([x, x[::-1]]), np.concatenate([y_pred - 1.9600 * sigma, (y_pred + 1.9600 * sigma)[::-1]]), alpha=.5, fc='b', ec='None', label='95% confidence interval') plt.xlabel('$x$') plt.ylabel('$f(x)$') plt.ylim(-10, 20) plt.legend(loc='upper left') plt.show()
gpl-3.0
Vimos/scikit-learn
sklearn/datasets/twenty_newsgroups.py
18
13730
"""Caching loader for the 20 newsgroups text classification dataset The description of the dataset is available on the official website at: http://people.csail.mit.edu/jrennie/20Newsgroups/ Quoting the introduction: The 20 Newsgroups data set is a collection of approximately 20,000 newsgroup documents, partitioned (nearly) evenly across 20 different newsgroups. To the best of my knowledge, it was originally collected by Ken Lang, probably for his Newsweeder: Learning to filter netnews paper, though he does not explicitly mention this collection. The 20 newsgroups collection has become a popular data set for experiments in text applications of machine learning techniques, such as text classification and text clustering. This dataset loader will download the recommended "by date" variant of the dataset and which features a point in time split between the train and test sets. The compressed dataset size is around 14 Mb compressed. Once uncompressed the train set is 52 MB and the test set is 34 MB. The data is downloaded, extracted and cached in the '~/scikit_learn_data' folder. The `fetch_20newsgroups` function will not vectorize the data into numpy arrays but the dataset lists the filenames of the posts and their categories as target labels. The `fetch_20newsgroups_vectorized` function will in addition do a simple tf-idf vectorization step. """ # Copyright (c) 2011 Olivier Grisel <olivier.grisel@ensta.org> # License: BSD 3 clause import os import logging import tarfile import pickle import shutil import re import codecs import numpy as np import scipy.sparse as sp from .base import get_data_home from .base import load_files from .base import _pkl_filepath from ..utils import check_random_state, Bunch from ..feature_extraction.text import CountVectorizer from ..preprocessing import normalize from ..externals import joblib, six if six.PY3: from urllib.request import urlopen else: from urllib2 import urlopen logger = logging.getLogger(__name__) URL = ("http://people.csail.mit.edu/jrennie/" "20Newsgroups/20news-bydate.tar.gz") ARCHIVE_NAME = "20news-bydate.tar.gz" CACHE_NAME = "20news-bydate.pkz" TRAIN_FOLDER = "20news-bydate-train" TEST_FOLDER = "20news-bydate-test" def download_20newsgroups(target_dir, cache_path): """Download the 20 newsgroups data and stored it as a zipped pickle.""" archive_path = os.path.join(target_dir, ARCHIVE_NAME) train_path = os.path.join(target_dir, TRAIN_FOLDER) test_path = os.path.join(target_dir, TEST_FOLDER) if not os.path.exists(target_dir): os.makedirs(target_dir) if os.path.exists(archive_path): # Download is not complete as the .tar.gz file is removed after # download. logger.warning("Download was incomplete, downloading again.") os.remove(archive_path) logger.warning("Downloading dataset from %s (14 MB)", URL) opener = urlopen(URL) with open(archive_path, 'wb') as f: f.write(opener.read()) logger.info("Decompressing %s", archive_path) tarfile.open(archive_path, "r:gz").extractall(path=target_dir) os.remove(archive_path) # Store a zipped pickle cache = dict(train=load_files(train_path, encoding='latin1'), test=load_files(test_path, encoding='latin1')) compressed_content = codecs.encode(pickle.dumps(cache), 'zlib_codec') with open(cache_path, 'wb') as f: f.write(compressed_content) shutil.rmtree(target_dir) return cache def strip_newsgroup_header(text): """ Given text in "news" format, strip the headers, by removing everything before the first blank line. """ _before, _blankline, after = text.partition('\n\n') return after _QUOTE_RE = re.compile(r'(writes in|writes:|wrote:|says:|said:' r'|^In article|^Quoted from|^\||^>)') def strip_newsgroup_quoting(text): """ Given text in "news" format, strip lines beginning with the quote characters > or |, plus lines that often introduce a quoted section (for example, because they contain the string 'writes:'.) """ good_lines = [line for line in text.split('\n') if not _QUOTE_RE.search(line)] return '\n'.join(good_lines) def strip_newsgroup_footer(text): """ Given text in "news" format, attempt to remove a signature block. As a rough heuristic, we assume that signatures are set apart by either a blank line or a line made of hyphens, and that it is the last such line in the file (disregarding blank lines at the end). """ lines = text.strip().split('\n') for line_num in range(len(lines) - 1, -1, -1): line = lines[line_num] if line.strip().strip('-') == '': break if line_num > 0: return '\n'.join(lines[:line_num]) else: return text def fetch_20newsgroups(data_home=None, subset='train', categories=None, shuffle=True, random_state=42, remove=(), download_if_missing=True): """Load the filenames and data from the 20 newsgroups dataset. Read more in the :ref:`User Guide <20newsgroups>`. Parameters ---------- subset : 'train' or 'test', 'all', optional Select the dataset to load: 'train' for the training set, 'test' for the test set, 'all' for both, with shuffled ordering. data_home : optional, default: None Specify a download and cache folder for the datasets. If None, all scikit-learn data is stored in '~/scikit_learn_data' subfolders. categories : None or collection of string or unicode If None (default), load all the categories. If not None, list of category names to load (other categories ignored). shuffle : bool, optional Whether or not to shuffle the data: might be important for models that make the assumption that the samples are independent and identically distributed (i.i.d.), such as stochastic gradient descent. random_state : numpy random number generator or seed integer Used to shuffle the dataset. download_if_missing : optional, True by default If False, raise an IOError if the data is not locally available instead of trying to download the data from the source site. remove : tuple May contain any subset of ('headers', 'footers', 'quotes'). Each of these are kinds of text that will be detected and removed from the newsgroup posts, preventing classifiers from overfitting on metadata. 'headers' removes newsgroup headers, 'footers' removes blocks at the ends of posts that look like signatures, and 'quotes' removes lines that appear to be quoting another post. 'headers' follows an exact standard; the other filters are not always correct. """ data_home = get_data_home(data_home=data_home) cache_path = _pkl_filepath(data_home, CACHE_NAME) twenty_home = os.path.join(data_home, "20news_home") cache = None if os.path.exists(cache_path): try: with open(cache_path, 'rb') as f: compressed_content = f.read() uncompressed_content = codecs.decode( compressed_content, 'zlib_codec') cache = pickle.loads(uncompressed_content) except Exception as e: print(80 * '_') print('Cache loading failed') print(80 * '_') print(e) if cache is None: if download_if_missing: logger.info("Downloading 20news dataset. " "This may take a few minutes.") cache = download_20newsgroups(target_dir=twenty_home, cache_path=cache_path) else: raise IOError('20Newsgroups dataset not found') if subset in ('train', 'test'): data = cache[subset] elif subset == 'all': data_lst = list() target = list() filenames = list() for subset in ('train', 'test'): data = cache[subset] data_lst.extend(data.data) target.extend(data.target) filenames.extend(data.filenames) data.data = data_lst data.target = np.array(target) data.filenames = np.array(filenames) else: raise ValueError( "subset can only be 'train', 'test' or 'all', got '%s'" % subset) data.description = 'the 20 newsgroups by date dataset' if 'headers' in remove: data.data = [strip_newsgroup_header(text) for text in data.data] if 'footers' in remove: data.data = [strip_newsgroup_footer(text) for text in data.data] if 'quotes' in remove: data.data = [strip_newsgroup_quoting(text) for text in data.data] if categories is not None: labels = [(data.target_names.index(cat), cat) for cat in categories] # Sort the categories to have the ordering of the labels labels.sort() labels, categories = zip(*labels) mask = np.in1d(data.target, labels) data.filenames = data.filenames[mask] data.target = data.target[mask] # searchsorted to have continuous labels data.target = np.searchsorted(labels, data.target) data.target_names = list(categories) # Use an object array to shuffle: avoids memory copy data_lst = np.array(data.data, dtype=object) data_lst = data_lst[mask] data.data = data_lst.tolist() if shuffle: random_state = check_random_state(random_state) indices = np.arange(data.target.shape[0]) random_state.shuffle(indices) data.filenames = data.filenames[indices] data.target = data.target[indices] # Use an object array to shuffle: avoids memory copy data_lst = np.array(data.data, dtype=object) data_lst = data_lst[indices] data.data = data_lst.tolist() return data def fetch_20newsgroups_vectorized(subset="train", remove=(), data_home=None): """Load the 20 newsgroups dataset and transform it into tf-idf vectors. This is a convenience function; the tf-idf transformation is done using the default settings for `sklearn.feature_extraction.text.Vectorizer`. For more advanced usage (stopword filtering, n-gram extraction, etc.), combine fetch_20newsgroups with a custom `Vectorizer` or `CountVectorizer`. Read more in the :ref:`User Guide <20newsgroups>`. Parameters ---------- subset : 'train' or 'test', 'all', optional Select the dataset to load: 'train' for the training set, 'test' for the test set, 'all' for both, with shuffled ordering. data_home : optional, default: None Specify an download and cache folder for the datasets. If None, all scikit-learn data is stored in '~/scikit_learn_data' subfolders. remove : tuple May contain any subset of ('headers', 'footers', 'quotes'). Each of these are kinds of text that will be detected and removed from the newsgroup posts, preventing classifiers from overfitting on metadata. 'headers' removes newsgroup headers, 'footers' removes blocks at the ends of posts that look like signatures, and 'quotes' removes lines that appear to be quoting another post. Returns ------- bunch : Bunch object bunch.data: sparse matrix, shape [n_samples, n_features] bunch.target: array, shape [n_samples] bunch.target_names: list, length [n_classes] """ data_home = get_data_home(data_home=data_home) filebase = '20newsgroup_vectorized' if remove: filebase += 'remove-' + ('-'.join(remove)) target_file = _pkl_filepath(data_home, filebase + ".pkl") # we shuffle but use a fixed seed for the memoization data_train = fetch_20newsgroups(data_home=data_home, subset='train', categories=None, shuffle=True, random_state=12, remove=remove) data_test = fetch_20newsgroups(data_home=data_home, subset='test', categories=None, shuffle=True, random_state=12, remove=remove) if os.path.exists(target_file): X_train, X_test = joblib.load(target_file) else: vectorizer = CountVectorizer(dtype=np.int16) X_train = vectorizer.fit_transform(data_train.data).tocsr() X_test = vectorizer.transform(data_test.data).tocsr() joblib.dump((X_train, X_test), target_file, compress=9) # the data is stored as int16 for compactness # but normalize needs floats X_train = X_train.astype(np.float64) X_test = X_test.astype(np.float64) normalize(X_train, copy=False) normalize(X_test, copy=False) target_names = data_train.target_names if subset == "train": data = X_train target = data_train.target elif subset == "test": data = X_test target = data_test.target elif subset == "all": data = sp.vstack((X_train, X_test)).tocsr() target = np.concatenate((data_train.target, data_test.target)) else: raise ValueError("%r is not a valid subset: should be one of " "['train', 'test', 'all']" % subset) return Bunch(data=data, target=target, target_names=target_names)
bsd-3-clause
abhisg/scikit-learn
examples/hetero_feature_union.py
288
6236
""" ============================================= Feature Union with Heterogeneous Data Sources ============================================= Datasets can often contain components of that require different feature extraction and processing pipelines. This scenario might occur when: 1. Your dataset consists of heterogeneous data types (e.g. raster images and text captions) 2. Your dataset is stored in a Pandas DataFrame and different columns require different processing pipelines. This example demonstrates how to use :class:`sklearn.feature_extraction.FeatureUnion` on a dataset containing different types of features. We use the 20-newsgroups dataset and compute standard bag-of-words features for the subject line and body in separate pipelines as well as ad hoc features on the body. We combine them (with weights) using a FeatureUnion and finally train a classifier on the combined set of features. The choice of features is not particularly helpful, but serves to illustrate the technique. """ # Author: Matt Terry <matt.terry@gmail.com> # # License: BSD 3 clause from __future__ import print_function import numpy as np from sklearn.base import BaseEstimator, TransformerMixin from sklearn.datasets import fetch_20newsgroups from sklearn.datasets.twenty_newsgroups import strip_newsgroup_footer from sklearn.datasets.twenty_newsgroups import strip_newsgroup_quoting from sklearn.decomposition import TruncatedSVD from sklearn.feature_extraction import DictVectorizer from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics import classification_report from sklearn.pipeline import FeatureUnion from sklearn.pipeline import Pipeline from sklearn.svm import SVC class ItemSelector(BaseEstimator, TransformerMixin): """For data grouped by feature, select subset of data at a provided key. The data is expected to be stored in a 2D data structure, where the first index is over features and the second is over samples. i.e. >> len(data[key]) == n_samples Please note that this is the opposite convention to sklearn feature matrixes (where the first index corresponds to sample). ItemSelector only requires that the collection implement getitem (data[key]). Examples include: a dict of lists, 2D numpy array, Pandas DataFrame, numpy record array, etc. >> data = {'a': [1, 5, 2, 5, 2, 8], 'b': [9, 4, 1, 4, 1, 3]} >> ds = ItemSelector(key='a') >> data['a'] == ds.transform(data) ItemSelector is not designed to handle data grouped by sample. (e.g. a list of dicts). If your data is structured this way, consider a transformer along the lines of `sklearn.feature_extraction.DictVectorizer`. Parameters ---------- key : hashable, required The key corresponding to the desired value in a mappable. """ def __init__(self, key): self.key = key def fit(self, x, y=None): return self def transform(self, data_dict): return data_dict[self.key] class TextStats(BaseEstimator, TransformerMixin): """Extract features from each document for DictVectorizer""" def fit(self, x, y=None): return self def transform(self, posts): return [{'length': len(text), 'num_sentences': text.count('.')} for text in posts] class SubjectBodyExtractor(BaseEstimator, TransformerMixin): """Extract the subject & body from a usenet post in a single pass. Takes a sequence of strings and produces a dict of sequences. Keys are `subject` and `body`. """ def fit(self, x, y=None): return self def transform(self, posts): features = np.recarray(shape=(len(posts),), dtype=[('subject', object), ('body', object)]) for i, text in enumerate(posts): headers, _, bod = text.partition('\n\n') bod = strip_newsgroup_footer(bod) bod = strip_newsgroup_quoting(bod) features['body'][i] = bod prefix = 'Subject:' sub = '' for line in headers.split('\n'): if line.startswith(prefix): sub = line[len(prefix):] break features['subject'][i] = sub return features pipeline = Pipeline([ # Extract the subject & body ('subjectbody', SubjectBodyExtractor()), # Use FeatureUnion to combine the features from subject and body ('union', FeatureUnion( transformer_list=[ # Pipeline for pulling features from the post's subject line ('subject', Pipeline([ ('selector', ItemSelector(key='subject')), ('tfidf', TfidfVectorizer(min_df=50)), ])), # Pipeline for standard bag-of-words model for body ('body_bow', Pipeline([ ('selector', ItemSelector(key='body')), ('tfidf', TfidfVectorizer()), ('best', TruncatedSVD(n_components=50)), ])), # Pipeline for pulling ad hoc features from post's body ('body_stats', Pipeline([ ('selector', ItemSelector(key='body')), ('stats', TextStats()), # returns a list of dicts ('vect', DictVectorizer()), # list of dicts -> feature matrix ])), ], # weight components in FeatureUnion transformer_weights={ 'subject': 0.8, 'body_bow': 0.5, 'body_stats': 1.0, }, )), # Use a SVC classifier on the combined features ('svc', SVC(kernel='linear')), ]) # limit the list of categories to make running this exmaple faster. categories = ['alt.atheism', 'talk.religion.misc'] train = fetch_20newsgroups(random_state=1, subset='train', categories=categories, ) test = fetch_20newsgroups(random_state=1, subset='test', categories=categories, ) pipeline.fit(train.data, train.target) y = pipeline.predict(test.data) print(classification_report(y, test.target))
bsd-3-clause
xubenben/scikit-learn
benchmarks/bench_random_projections.py
397
8900
""" =========================== Random projection benchmark =========================== Benchmarks for random projections. """ from __future__ import division from __future__ import print_function import gc import sys import optparse from datetime import datetime import collections import numpy as np import scipy.sparse as sp from sklearn import clone from sklearn.externals.six.moves import xrange from sklearn.random_projection import (SparseRandomProjection, GaussianRandomProjection, johnson_lindenstrauss_min_dim) def type_auto_or_float(val): if val == "auto": return "auto" else: return float(val) def type_auto_or_int(val): if val == "auto": return "auto" else: return int(val) def compute_time(t_start, delta): mu_second = 0.0 + 10 ** 6 # number of microseconds in a second return delta.seconds + delta.microseconds / mu_second def bench_scikit_transformer(X, transfomer): gc.collect() clf = clone(transfomer) # start time t_start = datetime.now() clf.fit(X) delta = (datetime.now() - t_start) # stop time time_to_fit = compute_time(t_start, delta) # start time t_start = datetime.now() clf.transform(X) delta = (datetime.now() - t_start) # stop time time_to_transform = compute_time(t_start, delta) return time_to_fit, time_to_transform # Make some random data with uniformly located non zero entries with # Gaussian distributed values def make_sparse_random_data(n_samples, n_features, n_nonzeros, random_state=None): rng = np.random.RandomState(random_state) data_coo = sp.coo_matrix( (rng.randn(n_nonzeros), (rng.randint(n_samples, size=n_nonzeros), rng.randint(n_features, size=n_nonzeros))), shape=(n_samples, n_features)) return data_coo.toarray(), data_coo.tocsr() def print_row(clf_type, time_fit, time_transform): print("%s | %s | %s" % (clf_type.ljust(30), ("%.4fs" % time_fit).center(12), ("%.4fs" % time_transform).center(12))) if __name__ == "__main__": ########################################################################### # Option parser ########################################################################### op = optparse.OptionParser() op.add_option("--n-times", dest="n_times", default=5, type=int, help="Benchmark results are average over n_times experiments") op.add_option("--n-features", dest="n_features", default=10 ** 4, type=int, help="Number of features in the benchmarks") op.add_option("--n-components", dest="n_components", default="auto", help="Size of the random subspace." " ('auto' or int > 0)") op.add_option("--ratio-nonzeros", dest="ratio_nonzeros", default=10 ** -3, type=float, help="Number of features in the benchmarks") op.add_option("--n-samples", dest="n_samples", default=500, type=int, help="Number of samples in the benchmarks") op.add_option("--random-seed", dest="random_seed", default=13, type=int, help="Seed used by the random number generators.") op.add_option("--density", dest="density", default=1 / 3, help="Density used by the sparse random projection." " ('auto' or float (0.0, 1.0]") op.add_option("--eps", dest="eps", default=0.5, type=float, help="See the documentation of the underlying transformers.") op.add_option("--transformers", dest="selected_transformers", default='GaussianRandomProjection,SparseRandomProjection', type=str, help="Comma-separated list of transformer to benchmark. " "Default: %default. Available: " "GaussianRandomProjection,SparseRandomProjection") op.add_option("--dense", dest="dense", default=False, action="store_true", help="Set input space as a dense matrix.") (opts, args) = op.parse_args() if len(args) > 0: op.error("this script takes no arguments.") sys.exit(1) opts.n_components = type_auto_or_int(opts.n_components) opts.density = type_auto_or_float(opts.density) selected_transformers = opts.selected_transformers.split(',') ########################################################################### # Generate dataset ########################################################################### n_nonzeros = int(opts.ratio_nonzeros * opts.n_features) print('Dataset statics') print("===========================") print('n_samples \t= %s' % opts.n_samples) print('n_features \t= %s' % opts.n_features) if opts.n_components == "auto": print('n_components \t= %s (auto)' % johnson_lindenstrauss_min_dim(n_samples=opts.n_samples, eps=opts.eps)) else: print('n_components \t= %s' % opts.n_components) print('n_elements \t= %s' % (opts.n_features * opts.n_samples)) print('n_nonzeros \t= %s per feature' % n_nonzeros) print('ratio_nonzeros \t= %s' % opts.ratio_nonzeros) print('') ########################################################################### # Set transformer input ########################################################################### transformers = {} ########################################################################### # Set GaussianRandomProjection input gaussian_matrix_params = { "n_components": opts.n_components, "random_state": opts.random_seed } transformers["GaussianRandomProjection"] = \ GaussianRandomProjection(**gaussian_matrix_params) ########################################################################### # Set SparseRandomProjection input sparse_matrix_params = { "n_components": opts.n_components, "random_state": opts.random_seed, "density": opts.density, "eps": opts.eps, } transformers["SparseRandomProjection"] = \ SparseRandomProjection(**sparse_matrix_params) ########################################################################### # Perform benchmark ########################################################################### time_fit = collections.defaultdict(list) time_transform = collections.defaultdict(list) print('Benchmarks') print("===========================") print("Generate dataset benchmarks... ", end="") X_dense, X_sparse = make_sparse_random_data(opts.n_samples, opts.n_features, n_nonzeros, random_state=opts.random_seed) X = X_dense if opts.dense else X_sparse print("done") for name in selected_transformers: print("Perform benchmarks for %s..." % name) for iteration in xrange(opts.n_times): print("\titer %s..." % iteration, end="") time_to_fit, time_to_transform = bench_scikit_transformer(X_dense, transformers[name]) time_fit[name].append(time_to_fit) time_transform[name].append(time_to_transform) print("done") print("") ########################################################################### # Print results ########################################################################### print("Script arguments") print("===========================") arguments = vars(opts) print("%s \t | %s " % ("Arguments".ljust(16), "Value".center(12),)) print(25 * "-" + ("|" + "-" * 14) * 1) for key, value in arguments.items(): print("%s \t | %s " % (str(key).ljust(16), str(value).strip().center(12))) print("") print("Transformer performance:") print("===========================") print("Results are averaged over %s repetition(s)." % opts.n_times) print("") print("%s | %s | %s" % ("Transformer".ljust(30), "fit".center(12), "transform".center(12))) print(31 * "-" + ("|" + "-" * 14) * 2) for name in sorted(selected_transformers): print_row(name, np.mean(time_fit[name]), np.mean(time_transform[name])) print("") print("")
bsd-3-clause
rsignell-usgs/notebook
pyugrid/notebook_examples/pyugrid_water_levels.py
2
1882
# -*- coding: utf-8 -*- # <nbformat>3.0</nbformat> # <markdowncell> # ##Test out UGRID-0.9 compliant unstructured grid model datasets with PYUGRID # <codecell> import matplotlib.tri as tri import datetime as dt import matplotlib.pyplot as plt import numpy as np # <codecell> import cartopy.crs as ccrs %matplotlib inline # <codecell> import iris import pyugrid # <codecell> iris.FUTURE.netcdf_promote = True # <codecell> #ADCIRC #url = 'http://comt.sura.org/thredds/dodsC/data/comt_1_archive/inundation_tropical/UND_ADCIRC/Hurricane_Ike_3D_final_run_with_waves' #FVCOM #url = 'http://www.smast.umassd.edu:8080/thredds/dodsC/FVCOM/NECOFS/Forecasts/NECOFS_GOM3_FORECAST.nc' #SELFE url = 'http://comt.sura.org/thredds/dodsC/data/comt_1_archive/inundation_tropical/VIMS_SELFE/Hurricane_Ike_2D_final_run_with_waves' # <codecell> ug = pyugrid.UGrid.from_ncfile(url) print "There are %i nodes"%ug.nodes.shape[0] print "There are %i faces"%ug.faces.shape[0] # <codecell> cube = iris.load_cube(url,'sea_surface_height_above_geoid') # <codecell> print cube # <codecell> cube.mesh = ug cube.mesh_dimension = 1 # (0:time,1:node) # <codecell> lon = cube.mesh.nodes[:,0] lat = cube.mesh.nodes[:,1] nv = cube.mesh.faces # <codecell> triang = tri.Triangulation(lon,lat,triangles=nv) # <codecell> ind = -1 # last time index zcube = cube[ind] # <codecell> plt.figure(figsize=(12,12)) ax = plt.axes(projection=ccrs.PlateCarree()) ax.set_extent([-90, -60, 5, 50]) ax.coastlines() levs = np.arange(-1,5,.2) plt.tricontourf(triang, zcube.data, levels=levs) plt.colorbar() plt.tricontour(triang, zcube.data, colors='k',levels=levs) tvar = cube.coord('time') tstr = tvar.units.num2date(tvar.points[ind]) gl = ax.gridlines(draw_labels=True) gl.xlabels_top = False gl.ylabels_right = False plt.title('%s: Elevation (m): %s' % (zcube.attributes['title'],tstr)); # <codecell>
mit