repo_name
stringlengths
7
92
path
stringlengths
5
149
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
911
693k
license
stringclasses
15 values
nuclear-wizard/moose
test/tests/time_integrators/scalar/run.py
12
4487
#!/usr/bin/env python3 #* This file is part of the MOOSE framework #* https://www.mooseframework.org #* #* All rights reserved, see COPYRIGHT for full restrictions #* https://github.com/idaholab/moose/blob/master/COPYRIGHT #* #* Licensed under LGPL 2.1, please see LICENSE for details #* https://www.gnu.org/licenses/lgpl-2.1.html import subprocess import sys import csv import matplotlib.pyplot as plt import numpy as np # Use fonts that match LaTeX from matplotlib import rcParams rcParams['font.family'] = 'serif' rcParams['font.size'] = 17 rcParams['font.serif'] = ['Computer Modern Roman'] rcParams['text.usetex'] = True # Small font size for the legend from matplotlib.font_manager import FontProperties fontP = FontProperties() fontP.set_size('x-small') def get_last_row(csv_filename): ''' Function which returns just the last row of a CSV file. We have to read every line of the file, there was no stackoverflow example of reading just the last line. http://stackoverflow.com/questions/20296955/reading-last-row-from-csv-file-python-error ''' with open(csv_filename, 'r') as f: lastrow = None for row in csv.reader(f): if (row != []): # skip blank lines at end of file. lastrow = row return lastrow def run_moose(dt, time_integrator): ''' Function which actually runs MOOSE. ''' implicit_flag = 'true' explicit_methods = ['ExplicitEuler', 'ExplicitMidpoint', 'Heun', 'Ralston'] # Set implicit_flag based on TimeIntegrator name if (time_integrator in explicit_methods): implicit_flag = 'false' command_line_args = ['../../../moose_test-opt', '-i', 'scalar.i', 'Executioner/dt={}'.format(dt), 'Executioner/TimeIntegrator/type={}'.format(time_integrator), 'GlobalParams/implicit={}'.format(implicit_flag)] try: child = subprocess.Popen(command_line_args, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) # communicate() waits for the process to terminate, so there's no # need to wait() for it. It also sets the returncode attribute on # child. (stdoutdata, stderrdata) = child.communicate() if (child.returncode != 0): print('Running MOOSE failed: program output is below:') print(stdoutdata) raise except: print('Error executing moose_test') sys.exit(1) # Parse the last line of the output file to get the error at the final time. last_row = get_last_row('scalar_out.csv') return float(last_row[1]) # # Main program # fig = plt.figure() ax1 = fig.add_subplot(111) # Lists of timesteps and TimeIntegrators to plot. time_integrators = ['ImplicitEuler', 'ImplicitMidpoint', 'LStableDirk2', 'BDF2', 'CrankNicolson', 'LStableDirk3', 'LStableDirk4', 'AStableDirk4', 'ExplicitEuler', 'ExplicitMidpoint', 'Heun', 'Ralston'] dts = [.125, .0625, .03125, .015625] # Plot colors colors = ['maroon', 'blue', 'green', 'black', 'burlywood', 'olivedrab', 'midnightblue', 'tomato', 'darkmagenta', 'chocolate', 'lightslategray', 'skyblue'] # Plot line markers markers = ['v', 'o', 'x', '^', 'H', 'h', '+', 'D', '*', '4', 'd', '8'] # Plot line styles linestyles = [':', '-', '-.', '--', ':', '-.', '--', ':', '--', '-', '-.', '-'] for i in xrange(len(time_integrators)): time_integrator = time_integrators[i] # Place to store the results for this TimeIntegrator results = [] # Call MOOSE to compute the results for dt in dts: results.append(run_moose(dt, time_integrator)) # Make plot xdata = np.log10(np.reciprocal(dts)) ydata = np.log10(results) # Compute linear fit of last three points. start_fit = len(xdata) - 3 end_fit = len(xdata) fit = np.polyfit(xdata[start_fit:end_fit], ydata[start_fit:end_fit], 1) # Make the plot -- unpack the user's additional plotting arguments # from kwargs by prepending with **. ax1.plot(xdata, ydata, label=time_integrator + ", $" + "{:.2f}".format(fit[0]) + "$", color=colors[i], marker=markers[i], linestyle=linestyles[i]) # Set up the axis labels. ax1.set_xlabel('$\log (\Delta t^{-1})$') ax1.set_ylabel('$\log \|e(T)\|_{L^2}$') # Add a legend plt.legend(loc='lower left', prop=fontP) # Save a PDF plt.savefig('plot.pdf', format='pdf') # Local Variables: # python-indent: 2 # End:
lgpl-2.1
OSU-CS-325/Project_Two_Coin_Change
run-files/analysisQ7.py
1
2957
import sys import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import random import datetime # Import the three change making algorithms sys.path.insert(0, "../divide-conquer/") sys.path.insert(0, "../dynamic-programming") sys.path.insert(0, "../greedy") from changeslow import changeslow from changegreedy import changegreedy from changedp import changedp ### QUESTION 7 ### def Q7(slow, minChange, maxChange): lenV = [] runtimeGreedy = [] runtimeDP = [] runtimeSlow = [] numExp = 10 maxRange = 1000 if (slow): maxRange = 10 # some much smaller number for i in range(1, maxRange): # V can be of length 1 to (maxRange - 1) print "\n------ running V length=" + str(i) + "------" lenV.append(i) #print "lenV:", lenV runtimeGreedy.append(0) runtimeDP.append(0) runtimeSlow.append(0) for j in range(numExp): # run numExp experiments for this length of V print "\n ---- running experiment=" + str(j + 1) + " ----" coinArray = [] for k in range(i): # generate V of size i [1, rand, ..., rand, max=1 + 5*(maxRange-2)] if (k == 0): coinArray.append(1) else: randFrom = coinArray[len(coinArray) - 1] + 1 randTo = coinArray[len(coinArray) - 1] + 5 coinArray.append(random.randint(randFrom, randTo)) change = random.randint(minChange, maxChange) #print " coinArray:", coinArray #print " change:", change print " running greedy..." start = datetime.datetime.now() _, _ = changegreedy(coinArray, change) end = datetime.datetime.now() delta = end - start delta = int(delta.total_seconds() * 1000000) print " " + str(delta) runtimeGreedy[i - 1] += delta print " running DP..." start = datetime.datetime.now() _, _ = changedp(coinArray, change) end = datetime.datetime.now() delta = end - start delta = int(delta.total_seconds() * 1000000) print " " + str(delta) runtimeDP[i - 1] += delta if (slow): print " running slow..." start = datetime.datetime.now() _, _ = changeslow(coinArray, change) end = datetime.datetime.now() delta = end - start delta = int(delta.total_seconds() * 1000000) print " " + str(delta) runtimeSlow[i - 1] += delta runtimeGreedy[i - 1] /= numExp runtimeDP[i - 1] /= numExp if (slow): runtimeSlow[i - 1] /= numExp plt.figure(21) plt.plot(lenV, runtimeGreedy, 'b-', linewidth=2.0, label='Greedy') plt.plot(lenV, runtimeDP, 'r--', linewidth=2.0, label='DP') if (slow): plt.plot(lenV, runtimeSlow, 'g-.', linewidth=2.0, label='Slow') plt.legend(loc='upper left') plt.title('Runtime vs len(V[]) for randomized V[] and A') plt.ylabel('Avg. Runtime (10^-6 sec)') plt.xlabel('len(V[])') plt.grid(True) if (slow): plt.savefig('img/Q7slow_runtime.png', bbox_inches='tight') else: plt.savefig('img/Q7_runtime.png', bbox_inches='tight') def main(): Q7(False, 100, 100) #Q7(True) if __name__ == "__main__": main()
mit
stormvirux/vturra-cli
vturra/asys.py
1
1936
#!/usr/bin/env python # -*- coding: utf-8 -*- import pandas as pd import numpy as np import matplotlib.pyplot as plt # from scipy import stats # import statsmodels.api as sm # from numpy.random import randn import matplotlib as mpl # import seaborn as sns # sns.set_color_palette("deep", desat=.6) mpl.rc("figure", figsize=(8, 4)) def Compavg(): data=Total() markMax=[] markAvg=[] N = 5 ind = np.arange(N) width = 0.35 fig = plt.figure() ax = fig.add_subplot(111) markMax.extend((data["Total"].max(),data["Total.1"].max(),data["Total.2"].max(),data["Total.3"].max(),data["Total.4"].max())) markAvg.extend((data["Total"].mean(),data["Total.1"].mean(),data["Total.2"].mean(),data["Total.3"].mean(),data["Total.4"].mean())) rects1 = ax.bar(ind, markMax, width, color='black') rects2 = ax.bar(ind+width, markAvg, width, color='green') ax.set_xlim(-width,len(ind)+width) ax.set_ylim(0,120) ax.set_ylabel('Marks') ax.set_title('Max, Mean and Your Marks') xTickMarks = ['Subject'+str(i) for i in range(1,6)] ax.set_xticks(ind+width) xtickNames = ax.set_xticklabels(xTickMarks) plt.setp(xtickNames, rotation=10, fontsize=10) ax.legend( (rects1[0], rects2[0]), ('Max', 'Mean') ) plt.show() def compSub(): # max_data = np.r_[data["Total"]].max() # bins = np.linspace(0, max_data, max_data + 1) data=Total() plt.hist(data['Total'],linewidth=0, alpha=.7) plt.hist(data['Total.1'],linewidth=0,alpha=.7) plt.hist(data['Total.2'],linewidth=0,alpha=.7) plt.hist(data['Total.3'],linewidth=0,alpha=.7) plt.hist(data['Total.4'],linewidth=0,alpha=.7) plt.title("Total marks Histogram") plt.xlabel("Value") plt.ylabel("Frequency") plt.show() def Total(): data=pd.read_csv("output10cs.csv") df3=data[['Total','Total.1','Total.2','Total.3','Total.4','Total.5','Total.6','Total.7']] data["Main Total"]=df3.sum(axis=1) data = data.dropna() data.reset_index(drop=True) return data #compSub() # Compavg()
mit
abhishekkrthakur/scikit-learn
examples/svm/plot_oneclass.py
249
2302
""" ========================================== One-class SVM with non-linear kernel (RBF) ========================================== An example using a one-class SVM for novelty detection. :ref:`One-class SVM <svm_outlier_detection>` is an unsupervised algorithm that learns a decision function for novelty detection: classifying new data as similar or different to the training set. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt import matplotlib.font_manager from sklearn import svm xx, yy = np.meshgrid(np.linspace(-5, 5, 500), np.linspace(-5, 5, 500)) # Generate train data X = 0.3 * np.random.randn(100, 2) X_train = np.r_[X + 2, X - 2] # Generate some regular novel observations X = 0.3 * np.random.randn(20, 2) X_test = np.r_[X + 2, X - 2] # Generate some abnormal novel observations X_outliers = np.random.uniform(low=-4, high=4, size=(20, 2)) # fit the model clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.1) clf.fit(X_train) y_pred_train = clf.predict(X_train) y_pred_test = clf.predict(X_test) y_pred_outliers = clf.predict(X_outliers) n_error_train = y_pred_train[y_pred_train == -1].size n_error_test = y_pred_test[y_pred_test == -1].size n_error_outliers = y_pred_outliers[y_pred_outliers == 1].size # plot the line, the points, and the nearest vectors to the plane Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.title("Novelty Detection") plt.contourf(xx, yy, Z, levels=np.linspace(Z.min(), 0, 7), cmap=plt.cm.Blues_r) a = plt.contour(xx, yy, Z, levels=[0], linewidths=2, colors='red') plt.contourf(xx, yy, Z, levels=[0, Z.max()], colors='orange') b1 = plt.scatter(X_train[:, 0], X_train[:, 1], c='white') b2 = plt.scatter(X_test[:, 0], X_test[:, 1], c='green') c = plt.scatter(X_outliers[:, 0], X_outliers[:, 1], c='red') plt.axis('tight') plt.xlim((-5, 5)) plt.ylim((-5, 5)) plt.legend([a.collections[0], b1, b2, c], ["learned frontier", "training observations", "new regular observations", "new abnormal observations"], loc="upper left", prop=matplotlib.font_manager.FontProperties(size=11)) plt.xlabel( "error train: %d/200 ; errors novel regular: %d/40 ; " "errors novel abnormal: %d/40" % (n_error_train, n_error_test, n_error_outliers)) plt.show()
bsd-3-clause
sssundar/Drone
rotation/viz.py
1
5332
# Python script to visualize rotation about a non-body axis. # Let the lab frame be the inertial frame S. # Let the origin of the rigid body be O, in the inertial frame S'. # Let r_ss' be the vector from S to S'. # Let the body frame relative to O be S''. # Consider a fixed point on the body, r_s' in S', and r_s'' in S''. # Assume the body is subject to zero external torques. # It must be rotating about a fixed axis, n, by Euler's rotation theorem. # It must have a constant angular velocity about that axis by d/dt L = sum(T_external) = 0 and L = Jw about the rotation axis. # Let R be the rotation matrix mapping a vector in S'' to S', with inverse R^T # We know r_s' = R r_s'' # We know d/dt r_s' = (dR/dt R^T) * (R r_s'') = (dR/dt R^T) r_s' # Therefore we expect (dR/dt R^T) to be the operator (w x) in the S' frame. # The goal of this script is to visualize this. import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import sys import numpy as np from numpy import pi as pi from numpy import cos as c from numpy import sin as s from numpy import dot as dot from numpy import transpose as transpose # The axis phi is a rotation about the z axis in the body frame (yaw) # The axis theta is a rotation about the y axis in the phi-rotated body frame (pitch) # The axis psi is a rotation about the x axis in the phi, theta-rotated body frame (roll) def R(phi, theta, psi): R = np.zeros((3,3)) R[0,0] = c(phi)*c(theta) R[1,0] = s(phi)*c(theta) R[2,0] = -s(theta) R[0,1] = -s(phi)*c(psi) + c(phi)*s(theta)*s(psi) R[1,1] = c(phi)*c(psi) + s(phi)*s(theta)*s(psi) R[2,1] = c(theta)*s(psi) R[0,2] = s(phi)*s(psi) + c(phi)*s(theta)*c(psi) R[1,2] = -c(phi)*s(psi) + s(phi)*s(theta)*c(psi) R[2,2] = c(theta)*c(psi) return R # Rotate z-axis (0,0,1) by pi radians about x-axis. Should end up at (0,0,-1) cutting across y. # Rotate (0,0,-1) by pi radians about y-axis. Should end up at (0,0,1) again, cutting across x. # Try both at the same time. Should still end up at (0,0,1). def test_R(): e3_spp = np.array((0,0,1)) vectors = [] for k in np.linspace(0,pi,100): vectors.append(dot(R(0,0,k), e3_spp)) e3_spp = vectors[-1] for k in np.linspace(0,pi,100): vectors.append(dot(R(0,k,0), e3_spp)) e3_spp = vectors[-1] for k in np.linspace(0,pi,100): vectors.append(dot(R(0,k,k), e3_spp)) xs = [k[0] for k in vectors] ys = [k[1] for k in vectors] zs = [k[2] for k in vectors] fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.plot(xs=xs,ys=ys,zs=zs) ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("z") plt.show() # Sets values lower than epsilon to zero. # Prints the result with precision 0.3f. def sanitize_matrix(A): print "" epsilon = 0.001 for r in xrange(3): text = "" for c in xrange(3): if abs(A[r, c]) < epsilon: A[r,c] = 0 text += "%6.2f,\t" % A[r,c] print text[:-2] print "" def sanitize_vector(a): print "" epsilon = 0.001 text = "" for r in xrange(3): if abs(a[r]) < epsilon: a[r] = 0 text += "%6.2f,\t" % a[r] print text[:-2] print "" def vectorize(W): v = np.zeros(3) v[0] = W[1,0] v[1] = W[0,2] v[2] = W[2,1] return v # This is the (w x) operator, W, with respect to changing body yaw, pitch, and roll. # It is dR/dt R^T. The arguments are the current Euler angles and their time derivatives. def W(phi, theta, psi, dphi, dtheta, dpsi): Rp = np.zeros((3,3)) Rp[0,0] = (-s(phi)*dphi)*c(theta) Rp[0,0] += c(phi)*(-s(theta)*dtheta) Rp[1,0] = (c(phi)*dphi)*c(theta) Rp[1,0] += s(phi)*(-s(theta)*dtheta) Rp[2,0] = -c(theta)*dtheta Rp[0,1] = (-c(phi)*dphi)*c(psi) Rp[0,1] += -s(phi)*(-s(psi)*dpsi) Rp[0,1] += (-s(phi)*dphi)*s(theta)*s(psi) Rp[0,1] += c(phi)*(c(theta)*dtheta)*s(psi) Rp[0,1] += c(phi)*s(theta)*(c(psi)*dpsi) Rp[1,1] = (-s(phi)*dphi)*c(psi) Rp[1,1] += c(phi)*(-s(psi)*dpsi) Rp[1,1] += (c(phi)*dphi)*s(theta)*s(psi) Rp[1,1] += s(phi)*(c(theta)*dtheta)*s(psi) Rp[1,1] += s(phi)*s(theta)*(c(psi)*dpsi) Rp[2,1] = (-s(theta)*dtheta)*s(psi) Rp[2,1] += c(theta)*(c(psi)*dpsi) Rp[0,2] = (c(phi)*dphi)*s(psi) Rp[0,2] += s(phi)*(c(psi)*dpsi) Rp[0,2] += (-s(phi)*dphi)*s(theta)*c(psi) Rp[0,2] += c(phi)*(c(theta)*dtheta)*c(psi) Rp[0,2] += c(phi)*s(theta)*(-s(psi)*dpsi) Rp[1,2] = (s(phi)*dphi)*s(psi) Rp[1,2] += -c(phi)*(c(psi)*dpsi) Rp[1,2] += (c(phi)*dphi)*s(theta)*c(psi) Rp[1,2] += s(phi)*(c(theta)*dtheta)*c(psi) Rp[1,2] += s(phi)*s(theta)*(-s(psi)*dpsi) Rp[2,2] = (-s(theta)*dtheta)*c(psi) Rp[2,2] += c(theta)*(-s(psi)*dpsi) w_i = vectorize(dot(Rp, transpose(R(phi,theta,psi)))) w_b = dot(transpose(R(phi,theta,psi)), w_i) return (w_i, w_b) def test_W(): # Is the effective w for a rotation of x rad/s about ek just.. ek*x, # regardless of the angle about axis ek? We expect W = -W^T as well. # sanitize_matrix(W(3*pi/12,0,0,2*pi,0,0)[0]) # sanitize_matrix(W(0,3*pi/12,0,0,2*pi,0)[0]) # sanitize_matrix(W(0,0,3*pi/12,0,0,2*pi)[0]) # Let's see what it looks like once we've rotated a bit. # It's still skew antisymmetric with zero trace! This looks like the operation (w x)!!!! phi, theta, psi = (pi/4, 3*pi/12, -pi) w_i, w_b = W(phi, theta, psi, pi, 2*pi, 3*pi) def Main(): test_W() if __name__ == "__main__": Main()
gpl-3.0
Dwii/Master-Thesis
implementation/Palabos/cavity_benchmark/plot_benchmark.py
1
1854
# Display a list of *.dat files in a bar chart. # Based on an example from https://chrisalbon.com/python/matplotlib_grouped_bar_plot.html import sys import os import matplotlib.pyplot as plt import numpy as np if len(sys.argv) > 3 and (len(sys.argv)-3) % 2 : print("usage: python3 {0} <benchmark> <image path> (<dat1> <legend1> [<dat2> <legend2>] .. [<datN> <legendN>] ) ".format(os.path.basename(sys.argv[0]))) exit(1) benchmark = sys.argv[1] image_path = sys.argv[2] groups = (len(sys.argv)-3)/2 # Load benchark domains = () nb_setups = 0 for line in open(benchmark,'r'): n, snx, sny, snz = line.split() domains += ( r"{0}$^3$".format(snx), ) #+= ( "{0}x{1}x{2}".format(snx, sny, snz), ) nb_setups += 1 # Setting the positions and width for the bars pos = list(range(nb_setups)) width = 1 / (groups+2) # Plotting the bars fig, ax = plt.subplots(figsize=(10,5)) prop_iter = iter(plt.rcParams['axes.prop_cycle']) legends = () maxLups = 0 for i, argi in enumerate(range(3, len(sys.argv), 2)): mlups = np.array(list(map(float, open(sys.argv[argi])))) / 1E6 legends += ( sys.argv[argi+1], ) maxLups = max(maxLups, max(mlups)) plt.bar([p + width*i for p in pos], mlups, width, alpha=0.5, color=next(prop_iter)['color']) # Set the y axis label ax.set_ylabel('MLUPS') ax.set_xlabel('Taille du sous-domaine') # Set the chart's title #ax.set_title(title) # Set the position of the x ticks ax.set_xticks([p + 1.5 * width for p in pos]) # Set the labels for the x ticks ax.set_xticklabels(domains) # Setting the x-axis and y-axis limits plt.xlim(min(pos)-width, max(pos)+width*4) #plt.ylim([0, maxLups] ) # Adding the legend and showing the plot plt.legend(legends, loc='upper center') ax.yaxis.grid() plt.savefig(image_path) plt.tight_layout() plt.show()
mit
wanggang3333/scikit-learn
sklearn/tests/test_kernel_approximation.py
244
7588
import numpy as np from scipy.sparse import csr_matrix from sklearn.utils.testing import assert_array_equal, assert_equal, assert_true from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_array_almost_equal, assert_raises from sklearn.utils.testing import assert_less_equal from sklearn.metrics.pairwise import kernel_metrics from sklearn.kernel_approximation import RBFSampler from sklearn.kernel_approximation import AdditiveChi2Sampler from sklearn.kernel_approximation import SkewedChi2Sampler from sklearn.kernel_approximation import Nystroem from sklearn.metrics.pairwise import polynomial_kernel, rbf_kernel # generate data rng = np.random.RandomState(0) X = rng.random_sample(size=(300, 50)) Y = rng.random_sample(size=(300, 50)) X /= X.sum(axis=1)[:, np.newaxis] Y /= Y.sum(axis=1)[:, np.newaxis] def test_additive_chi2_sampler(): # test that AdditiveChi2Sampler approximates kernel on random data # compute exact kernel # appreviations for easier formular X_ = X[:, np.newaxis, :] Y_ = Y[np.newaxis, :, :] large_kernel = 2 * X_ * Y_ / (X_ + Y_) # reduce to n_samples_x x n_samples_y by summing over features kernel = (large_kernel.sum(axis=2)) # approximate kernel mapping transform = AdditiveChi2Sampler(sample_steps=3) X_trans = transform.fit_transform(X) Y_trans = transform.transform(Y) kernel_approx = np.dot(X_trans, Y_trans.T) assert_array_almost_equal(kernel, kernel_approx, 1) X_sp_trans = transform.fit_transform(csr_matrix(X)) Y_sp_trans = transform.transform(csr_matrix(Y)) assert_array_equal(X_trans, X_sp_trans.A) assert_array_equal(Y_trans, Y_sp_trans.A) # test error is raised on negative input Y_neg = Y.copy() Y_neg[0, 0] = -1 assert_raises(ValueError, transform.transform, Y_neg) # test error on invalid sample_steps transform = AdditiveChi2Sampler(sample_steps=4) assert_raises(ValueError, transform.fit, X) # test that the sample interval is set correctly sample_steps_available = [1, 2, 3] for sample_steps in sample_steps_available: # test that the sample_interval is initialized correctly transform = AdditiveChi2Sampler(sample_steps=sample_steps) assert_equal(transform.sample_interval, None) # test that the sample_interval is changed in the fit method transform.fit(X) assert_not_equal(transform.sample_interval_, None) # test that the sample_interval is set correctly sample_interval = 0.3 transform = AdditiveChi2Sampler(sample_steps=4, sample_interval=sample_interval) assert_equal(transform.sample_interval, sample_interval) transform.fit(X) assert_equal(transform.sample_interval_, sample_interval) def test_skewed_chi2_sampler(): # test that RBFSampler approximates kernel on random data # compute exact kernel c = 0.03 # appreviations for easier formular X_c = (X + c)[:, np.newaxis, :] Y_c = (Y + c)[np.newaxis, :, :] # we do it in log-space in the hope that it's more stable # this array is n_samples_x x n_samples_y big x n_features log_kernel = ((np.log(X_c) / 2.) + (np.log(Y_c) / 2.) + np.log(2.) - np.log(X_c + Y_c)) # reduce to n_samples_x x n_samples_y by summing over features in log-space kernel = np.exp(log_kernel.sum(axis=2)) # approximate kernel mapping transform = SkewedChi2Sampler(skewedness=c, n_components=1000, random_state=42) X_trans = transform.fit_transform(X) Y_trans = transform.transform(Y) kernel_approx = np.dot(X_trans, Y_trans.T) assert_array_almost_equal(kernel, kernel_approx, 1) # test error is raised on negative input Y_neg = Y.copy() Y_neg[0, 0] = -1 assert_raises(ValueError, transform.transform, Y_neg) def test_rbf_sampler(): # test that RBFSampler approximates kernel on random data # compute exact kernel gamma = 10. kernel = rbf_kernel(X, Y, gamma=gamma) # approximate kernel mapping rbf_transform = RBFSampler(gamma=gamma, n_components=1000, random_state=42) X_trans = rbf_transform.fit_transform(X) Y_trans = rbf_transform.transform(Y) kernel_approx = np.dot(X_trans, Y_trans.T) error = kernel - kernel_approx assert_less_equal(np.abs(np.mean(error)), 0.01) # close to unbiased np.abs(error, out=error) assert_less_equal(np.max(error), 0.1) # nothing too far off assert_less_equal(np.mean(error), 0.05) # mean is fairly close def test_input_validation(): # Regression test: kernel approx. transformers should work on lists # No assertions; the old versions would simply crash X = [[1, 2], [3, 4], [5, 6]] AdditiveChi2Sampler().fit(X).transform(X) SkewedChi2Sampler().fit(X).transform(X) RBFSampler().fit(X).transform(X) X = csr_matrix(X) RBFSampler().fit(X).transform(X) def test_nystroem_approximation(): # some basic tests rnd = np.random.RandomState(0) X = rnd.uniform(size=(10, 4)) # With n_components = n_samples this is exact X_transformed = Nystroem(n_components=X.shape[0]).fit_transform(X) K = rbf_kernel(X) assert_array_almost_equal(np.dot(X_transformed, X_transformed.T), K) trans = Nystroem(n_components=2, random_state=rnd) X_transformed = trans.fit(X).transform(X) assert_equal(X_transformed.shape, (X.shape[0], 2)) # test callable kernel linear_kernel = lambda X, Y: np.dot(X, Y.T) trans = Nystroem(n_components=2, kernel=linear_kernel, random_state=rnd) X_transformed = trans.fit(X).transform(X) assert_equal(X_transformed.shape, (X.shape[0], 2)) # test that available kernels fit and transform kernels_available = kernel_metrics() for kern in kernels_available: trans = Nystroem(n_components=2, kernel=kern, random_state=rnd) X_transformed = trans.fit(X).transform(X) assert_equal(X_transformed.shape, (X.shape[0], 2)) def test_nystroem_singular_kernel(): # test that nystroem works with singular kernel matrix rng = np.random.RandomState(0) X = rng.rand(10, 20) X = np.vstack([X] * 2) # duplicate samples gamma = 100 N = Nystroem(gamma=gamma, n_components=X.shape[0]).fit(X) X_transformed = N.transform(X) K = rbf_kernel(X, gamma=gamma) assert_array_almost_equal(K, np.dot(X_transformed, X_transformed.T)) assert_true(np.all(np.isfinite(Y))) def test_nystroem_poly_kernel_params(): # Non-regression: Nystroem should pass other parameters beside gamma. rnd = np.random.RandomState(37) X = rnd.uniform(size=(10, 4)) K = polynomial_kernel(X, degree=3.1, coef0=.1) nystroem = Nystroem(kernel="polynomial", n_components=X.shape[0], degree=3.1, coef0=.1) X_transformed = nystroem.fit_transform(X) assert_array_almost_equal(np.dot(X_transformed, X_transformed.T), K) def test_nystroem_callable(): # Test Nystroem on a callable. rnd = np.random.RandomState(42) n_samples = 10 X = rnd.uniform(size=(n_samples, 4)) def logging_histogram_kernel(x, y, log): """Histogram kernel that writes to a log.""" log.append(1) return np.minimum(x, y).sum() kernel_log = [] X = list(X) # test input validation Nystroem(kernel=logging_histogram_kernel, n_components=(n_samples - 1), kernel_params={'log': kernel_log}).fit(X) assert_equal(len(kernel_log), n_samples * (n_samples - 1) / 2)
bsd-3-clause
AxelTLarsson/robot-localisation
robot_localisation/main.py
1
6009
""" This module contains the logic to run the simulation. """ import sys import os import argparse import numpy as np sys.path.append(os.path.join(os.path.dirname(__file__), '..')) from robot_localisation.grid import Grid, build_transition_matrix from robot_localisation.robot import Robot, Sensor from robot_localisation.hmm_filter import FilterState def help_text(): """ Return a helpful text explaining usage of the program. """ return """ ------------------------------- HMM Filtering --------------------------------- Type a command to get started. Type 'quit' or 'q' to quit. Valid commands (all commands are case insensitive): ENTER move the robot one step further in the simulation, will also output current pose and estimated position of the robot help show this help text show T show the transition matrix T show f show the filter column vector show O show the observation matrix quit | q quit the program ------------------------------------------------------------------------------- """ def main(): parser = argparse.ArgumentParser(description='Robot localisation with HMM') parser.add_argument( '-r', '--rows', type=int, help='the number of rows on the grid, default is 4', default=4) parser.add_argument( '-c', '--columns', type=int, help='the number of columns on the grid, default is 4', default=4) args = parser.parse_args() # Initialise the program size = (args.rows, args.columns) the_T_matrix = build_transition_matrix(*size) the_filter = FilterState(transition=the_T_matrix) the_sensor = Sensor() the_grid = Grid(*size) the_robot = Robot(the_grid, the_T_matrix) sensor_value = None obs = None print(help_text()) print("Grid size is {} x {}".format(size[0], size[1])) print(the_robot) print("The sensor says: {}".format(sensor_value)) filter_est = the_grid.index_to_pose(the_filter.belief_state) pos_est = (filter_est[0], filter_est[1]) print("The HMM filter thinks the robot is at {}".format(filter_est)) print("The Manhattan distance is: {}".format( manhattan(the_robot.get_position(), pos_est))) np.set_printoptions(linewidth=1000) # Main loop while True: user_command = str(input('> ')) if user_command.upper() == 'QUIT' or user_command.upper() == 'Q': break elif user_command.upper() == 'HELP': print(help_text()) elif user_command.upper() == 'SHOW T': print(the_T_matrix) elif user_command.upper() == 'SHOW F': print(the_filter.belief_matrix) elif user_command.upper() == 'SHOW O': print(obs) elif not user_command: # take a step then approximate etc. the_robot.step() sensor_value = the_sensor.get_position(the_robot) obs = the_sensor.get_obs_matrix(sensor_value, size) the_filter.forward(obs) print(the_robot) print("The sensor says: {}".format(sensor_value)) filter_est = the_grid.index_to_pose(the_filter.belief_state) pos_est = (filter_est[0], filter_est[1]) print("The HMM filter thinks the robot is at {}".format(filter_est)) print("The Manhattan distance is: {}".format( manhattan(the_robot.get_position(), pos_est))) else: print("Unknown command!") def manhattan(pos1, pos2): """ Calculate the Manhattan distance between pos1 and pos2. """ x1, y1 = pos1 x2, y2 = pos2 return abs(x1-x2) + abs(y1-y2) def automated_run(): import matplotlib.pyplot as plt fig = plt.figure(figsize=(10, 7)) navg = 20 nsteps = 10 for size in (2, 2), (3, 3), (4, 4), (5, 5), (10, 10): avg_distances = np.zeros(shape=(nsteps+1,)) for n in range(navg): distances = list() none_values = list() the_T_matrix = build_transition_matrix(*size) the_filter = FilterState(transition=the_T_matrix) the_sensor = Sensor() the_grid = Grid(*size) the_robot = Robot(the_grid, the_T_matrix) # get the manhattan distance at the start filter_est = the_grid.index_to_pose(the_filter.belief_state) pos_est = (filter_est[0], filter_est[1]) distances.append(manhattan(the_robot.get_position(), pos_est)) for i in range(nsteps): # take a step then approximate etc. the_robot.step() sensor_value = the_sensor.get_position(the_robot) if sensor_value is None: none_values.append(i) # keep track of where None was returned obs = the_sensor.get_obs_matrix(sensor_value, size) the_filter.forward(obs) filter_est = the_grid.index_to_pose(the_filter.belief_state) pos_est = (filter_est[0], filter_est[1]) distances.append(manhattan(the_robot.get_position(), pos_est)) avg_distances += np.array(distances) avg_distances /= navg base_line, = plt.plot(avg_distances, label="Grid size {}".format(size)) # for point in none_values: # plt.scatter(point, distances[point], marker='o', # color=base_line.get_color(), s=40) plt.legend() plt.xlim(0, nsteps) plt.ylim(0,) plt.ylabel("Manhattan distance") plt.xlabel("Steps") plt.title("Manhattan distance from true position and inferred position \n" "from the hidden Markov model (average over %s runs)" % navg) fig.savefig("automated_run.png") plt.show() if __name__ == '__main__': main() # automated_run()
mit
mutirri/bokeh
bokeh/cli/core.py
42
16025
from __future__ import absolute_import, print_function import sys, os from six.moves.urllib import request as urllib2 from six.moves import cStringIO as StringIO import pandas as pd try: import click is_click = True except ImportError: is_click = False from . import help_messages as hm from .utils import (get_chart_params, get_charts_mapping, get_data_series, keep_source_input_sync, get_data_from_url) from .. import charts as bc from ..charts import utils as bc_utils from bokeh.models.widgets import Button # Define a mapping to connect chart types supported arguments and chart classes CHARTS_MAP = get_charts_mapping() if is_click: @click.command() @click.option('--input', 'input_source', default=None,help=hm.HELP_INPUT) @click.option('--output', default='file://cli_output.html', help=hm.HELP_OUTPUT) @click.option('--title', default='Bokeh CLI') @click.option('--chart_type', default='Line') @click.option('--index', default='', help=hm.HELP_INDEX) @click.option('--series', default='', help=hm.HELP_SERIES) @click.option('--palette') @click.option('--buffer', default='f', help=hm.HELP_BUFFER) @click.option('--sync_with_source', default=False) @click.option('--update_ranges', 'update_ranges', flag_value=True, default=False) @click.option('--legend', 'show_legend', flag_value=True, default=False) @click.option('--window_size', default='0', help=hm.HELP_WIN_SIZE) @click.option('--map', 'map_', default=None) @click.option('--map_zoom', 'map_zoom', default=12) @click.option('--map_layer', 'map_layer', default="hybrid") @click.option('--smart_filters', 'smart_filters', flag_value=True, default=False) def cli(input_source, output, title, chart_type, series, palette, index, buffer, sync_with_source, update_ranges, show_legend, window_size, map_, smart_filters, map_zoom, map_layer): """Bokeh Command Line Tool is a minimal client to access high level plotting functionality provided by bokeh.charts API. Examples: >> python bokeh-cli.py --title "My Nice Plot" --series "High,Low,Close" --chart_type "Line" --palette Reds --input sample_data/stocks_data.csv >> cat sample_data/stocks_data.csv | python bokeh-cli.py --buffer t >> python bokeh-cli.py --help """ cli = CLI( input_source, output, title, chart_type, series, palette, index, buffer, sync_with_source, update_ranges, show_legend, window_size, map_, smart_filters, map_zoom, map_layer ) cli.run() else: def cli(): print("The CLI tool requires click to be installed") class CLI(object): """This is the Bokeh Command Line Interface class and it is in charge of providing a very high level access to bokeh charts and extends it with functionality. """ def __init__(self, input_source, output, title, chart_type, series, palette, index, buffer, sync_with_source, update_ranges, show_legend, window_size, map_, smart_filters, map_zoom, map_layer): """Args: input_source (str): path to the series data file (i.e.: /source/to/my/data.csv) NOTE: this can be either a path to a local file or an url output (str, optional): Selects the plotting output, which could either be sent to an html file or a bokeh server instance. Syntax convention for this option is as follows: <output_type>://<type_arg> where: - output_type: 'file' or 'server' - 'file' type options: path_to_output_file - 'server' type options syntax: docname[@url][@name] Defaults to: --output file://cli_output.html Examples: --output file://cli_output.html --output file:///home/someuser/bokeh_rocks/cli_output.html --output server://clidemo Default: file://cli_output.html. title (str, optional): the title of your chart. Default: None. chart_type (str, optional): charts classes to use to consume and render the input data. Default: Line. series (str, optional): Name of the series from the input source to include in the plot. If not specified all source series will be included. Defaults to None. palette (str, optional): name of the colors palette to use. Default: None. index (str, optional): Name of the data series to be used as the index when plotting. By default the first series found on the input file is taken Default: None buffer (str, optional): if is `t` reads data source as string from input buffer using StringIO(sys.stdin.read()) instead of reading from a file or an url. Default: "f" sync_with_source (bool, optional): if True keep the charts source created on bokeh-server sync'ed with the source acting like `tail -f`. Default: False window_size (int, optional): show up to N values then start dropping off older ones Default: '0' Attributes: source (obj): datasource object for the created chart. chart (obj): created chart object. """ self.input = input_source self.series = series self.index = index self.last_byte = -1 self.sync_with_source = sync_with_source self.update_ranges = update_ranges self.show_legend = show_legend self.window_size = int(window_size) self.smart_filters = smart_filters self.map_options = {} self.current_selection = [] self.source = self.get_input(input_source, buffer) # get the charts specified by the user self.factories = create_chart_factories(chart_type) if palette: print ("Sorry, custom palettes not supported yet, coming soon!") # define charts init parameters specified from cmd line and create chart self.chart_args = get_chart_params( title, output, show_legend=self.show_legend ) if self.smart_filters: self.chart_args['tools'] = "pan,wheel_zoom,box_zoom,reset,save," \ "box_select,lasso_select" if map_: self.map_options['lat'], self.map_options['lng'] = \ [float(x) for x in map_.strip().split(',')] self.map_options['zoom'] = int(map_zoom) # Yeah, unfortunate namings.. :-) self.map_options['map_type'] = map_layer def on_selection_changed(self, obj, attrname, old, new): self.current_selection = new def limit_source(self, source): """ Limit source to cli.window_size, if set. Args: source (mapping): dict-like object """ if self.window_size: for key in source.keys(): source[key] = source[key][-self.window_size:] def run(self): """ Start the CLI logic creating the input source, data conversions, chart instances to show and all other niceties provided by CLI """ try: self.limit_source(self.source) children = [] if self.smart_filters: copy_selection = Button(label="copy current selection") copy_selection.on_click(self.on_copy) children.append(copy_selection) self.chart = create_chart( self.series, self.source, self.index, self.factories, self.map_options, children=children, **self.chart_args ) self.chart.show() self.has_ranged_x_axis = 'ranged_x_axis' in self.source.columns self.columns = [c for c in self.source.columns if c != 'ranged_x_axis'] if self.smart_filters: for chart in self.chart.charts: chart.source.on_change('selected', self, 'on_selection_changed') self.chart.session.poll_document(self.chart.doc) except TypeError: if not self.series: series_list = ', '.join(self.chart.values.keys()) print(hm.ERR_MSG_TEMPL % series_list) raise if self.sync_with_source: keep_source_input_sync(self.input, self.update_source, self.last_byte) def on_copy(self, *args, **kws): print("COPYING CONTENT!") # TODO: EXPERIMENTAL!!! THIS EXPOSE MANY SECURITY ISSUES AND SHOULD # BE REMOVED ASAP! txt = '' for rowind in self.current_selection: row = self.source.iloc[rowind] txt += u"%s\n" % (u",".join(str(row[c]) for c in self.columns)) os.system("echo '%s' | pbcopy" % txt) def update_source(self, new_source): """ Update self.chart source with the new data retrieved from new_source. It is done by parsing the new source line, trasforming it to data to be appended to self.chart source updating it on chart.session and actually updating chart.session objects. Args: new_source (str): string that contains the new source row to read to the current chart source. """ ns = pd.read_csv(StringIO(new_source), names=self.columns) len_source = len(self.source) if self.has_ranged_x_axis: ns['ranged_x_axis'] = [len_source] self.index = 'ranged_x_axis' ns.index = [len_source] self.source = pd.concat([self.source, ns]) # TODO: This should be replaced with something that just computes # the new data and source fig = create_chart(self.series, ns, self.index, self.factories, self.map_options, **self.chart_args) for i, _c in enumerate(fig.charts): if not isinstance(_c, bc.GMap): # TODO: nested charts are getting ridiculous. Need a better # better interface for charts :-) scc = self.chart.charts[i] for k, v in _c.source.data.items(): scc.source.data[k] = list(scc.source.data[k]) + list(v) self.limit_source(scc.source.data) chart = scc.chart chart.session.store_objects(scc.source) if self.update_ranges: plot = chart.plot plot.y_range.start = min( plot.y_range.start, _c.chart.plot.y_range.start ) plot.y_range.end = max( plot.y_range.end, _c.chart.plot.y_range.end ) plot.x_range.start = min( plot.x_range.start, _c.chart.plot.x_range.start ) plot.x_range.end = max( plot.x_range.end, _c.chart.plot.x_range.end ) chart.session.store_objects(plot) def get_input(self, filepath, buffer): """Parse received input options. If buffer is not false (=='f') if gets input data from input buffer othewise opens file specified in sourcefilename, Args: filepath (str): path to the file to read from to retrieve data buffer (str): if == 't' reads data from input buffer Returns: string read from filepath/buffer """ if buffer != 'f': filepath = StringIO(sys.stdin.read()) elif filepath is None: msg = "No Input! Please specify --source_filename or --buffer t" raise IOError(msg) else: if filepath.lower().startswith('http'): # Create a request for the given URL. request = urllib2.Request(filepath) data = get_data_from_url(request) self.last_byte = len(data) else: filepath = open(filepath, 'r').read() self.last_byte = len(filepath) filepath = StringIO(filepath) source = pd.read_csv(filepath) return source def create_chart(series, source, index, factories, map_options=None, children=None, **args): """Create charts instances from types specified in factories using data series names, source, index and args Args: series (list(str)): list of strings specifying the names of the series to keep from source source (DataFrame): pandas DataFrame with the data series to be plotted index (str): name of the series of source to be used as index. factories (list(ChartObject)): list of chart classes to be used to create the charts to be plotted **args: arguments to pass to the charts when creating them. """ if not index: # if no index was specified as for x axis # we take a default "range" index = 'ranged_x_axis' # add the new x range data to the source dataframe source[index] = range(len(source[source.columns[0]])) indexes = [x for x in index.split(',') if x] data_series = get_data_series(series, source, indexes) # parse queries to create the charts.. charts = [] for chart_type in factories: if chart_type == bc.GMap: if not map_options or \ not all([x in map_options for x in ['lat', 'lng']]): raise ValueError("GMap Charts need lat and lon coordinates!") all_args = dict(map_options) all_args.update(args) chart = chart_type(**all_args) else: if chart_type == bc.TimeSeries: # in case the x axis type is datetime that column must be converted to # datetime data_series[index] = pd.to_datetime(source[index]) elif chart_type == bc.Scatter: if len(indexes) == 1: scatter_ind = [x for x in data_series.pop(indexes[0]).values] scatter_ind = [scatter_ind] * len(data_series) else: scatter_ind = [] for key in indexes: scatter_ind.append([x for x in data_series.pop(key).values]) if len(scatter_ind) != len(data_series): err_msg = "Number of multiple indexes must be equals" \ " to the number of series" raise ValueError(err_msg) for ind, key in enumerate(data_series): values = data_series[key].values data_series[key] = zip(scatter_ind[ind], values) chart = chart_type(data_series, **args) if hasattr(chart, 'index'): chart.index = index charts.append(chart) fig = bc_utils.Figure(*charts, children=children, **args) return fig def create_chart_factories(chart_types): """Receive the chart type(s) specified by the user and build a list of the their related functions. Args: series (str): string that contains the name of the chart classes to use when creating the chart, separated by `,` example: >> create_chart_factories('Line,step') [Line, Step] """ return [get_chart(name) for name in chart_types.split(',') if name] def get_chart(class_name): """Return the bokeh class specified in class_name. Args: class_name (str): name of the chart class to return (i.e.: Line|step) """ return CHARTS_MAP[class_name.strip().lower()] if __name__ == '__main__': cli()
bsd-3-clause
yukisakurai/hhana
mva/plotting/utils.py
1
4190
import ROOT from itertools import izip from matplotlib import cm from rootpy.plotting.style.atlas.labels import ATLAS_label from rootpy.memory.keepalive import keepalive from .. import ATLAS_LABEL def set_colors(hists, colors='jet'): if isinstance(colors, basestring): colors = cm.get_cmap(colors, len(hists)) if hasattr(colors, '__call__'): for i, h in enumerate(hists): color = colors((i + 1) / float(len(hists) + 1)) h.SetColor(color) else: for h, color in izip(hists, colors): h.SetColor(color) def category_lumi_atlas(pad, category_label=None, data_info=None, atlas_label=None, textsize=20): left, right, bottom, top = pad.margin_pixels height = float(pad.height_pixels) # draw the category label if category_label: label = ROOT.TLatex( 1. - pad.GetRightMargin(), 1. - (textsize - 2) / height, category_label) label.SetNDC() label.SetTextFont(43) label.SetTextSize(textsize) label.SetTextAlign(31) with pad: label.Draw() keepalive(pad, label) # draw the luminosity label if data_info is not None: plabel = ROOT.TLatex( 1. - pad.GetLeftMargin() - 0.25, 1. - (top + textsize + 60) / height, str(data_info)) plabel.SetNDC() plabel.SetTextFont(43) plabel.SetTextSize(textsize) plabel.SetTextAlign(31) with pad: plabel.Draw() keepalive(pad, plabel) # draw the ATLAS label if atlas_label is not False: label = atlas_label or ATLAS_LABEL ATLAS_label(pad.GetLeftMargin() + 0.03, 1. - (top + textsize + 15) / height, sep=0.132, pad=pad, sqrts=None, text=label, textsize=textsize) pad.Update() pad.Modified() def label_plot(pad, template, xaxis, yaxis, ylabel='Events', xlabel=None, units=None, data_info=None, category_label=None, atlas_label=None, extra_label=None, extra_label_position='left', textsize=22): # set the axis labels binw = list(template.xwidth()) binwidths = list(set(['%.2g' % w for w in binw])) if units is not None: if xlabel is not None: xlabel = '%s [%s]' % (xlabel, units) if ylabel and len(binwidths) == 1 and binwidths[0] != '1': # constant width bins ylabel = '%s / %s %s' % (ylabel, binwidths[0], units) elif ylabel and len(binwidths) == 1 and binwidths[0] != '1': ylabel = '%s / %s' % (ylabel, binwidths[0]) if ylabel: yaxis.SetTitle(ylabel) if xlabel: xaxis.SetTitle(xlabel) left, right, bottom, top = pad.margin_pixels height = float(pad.height_pixels) category_lumi_atlas(pad, category_label, data_info, atlas_label) # draw the extra label if extra_label is not None: if extra_label_position == 'left': label = ROOT.TLatex(pad.GetLeftMargin() + 0.03, 1. - (top + 2 * (textsize + 40)) / height, extra_label) else: # right label = ROOT.TLatex(1. - pad.GetRightMargin() - 0.03, 1. - (top + 2 * (textsize + 40)) / height, extra_label) label.SetTextAlign(31) label.SetNDC() label.SetTextFont(43) label.SetTextSize(textsize) with pad: label.Draw() keepalive(pad, label) pad.Update() pad.Modified() # class rootpy.plotting.Legend( # entries, pad=None, # leftmargin=0.5, topmargin=0.05, rightmargin=0.05, # entryheight=0.06, entrysep=0.02, margin=0.3, # textfont=None, textsize=None, header=None) def legend_params(position, textsize): return dict( leftmargin=0.48, topmargin=0.03, rightmargin=0.05, entryheight=0.05, entrysep=0.01, margin=0.25, textsize=textsize)
gpl-3.0
Achuth17/scikit-learn
sklearn/neighbors/tests/test_kd_tree.py
129
7848
import numpy as np from numpy.testing import assert_array_almost_equal from sklearn.neighbors.kd_tree import (KDTree, NeighborsHeap, simultaneous_sort, kernel_norm, nodeheap_sort, DTYPE, ITYPE) from sklearn.neighbors.dist_metrics import DistanceMetric from sklearn.utils.testing import SkipTest, assert_allclose V = np.random.random((3, 3)) V = np.dot(V, V.T) DIMENSION = 3 METRICS = {'euclidean': {}, 'manhattan': {}, 'chebyshev': {}, 'minkowski': dict(p=3)} def brute_force_neighbors(X, Y, k, metric, **kwargs): D = DistanceMetric.get_metric(metric, **kwargs).pairwise(Y, X) ind = np.argsort(D, axis=1)[:, :k] dist = D[np.arange(Y.shape[0])[:, None], ind] return dist, ind def test_kd_tree_query(): np.random.seed(0) X = np.random.random((40, DIMENSION)) Y = np.random.random((10, DIMENSION)) def check_neighbors(dualtree, breadth_first, k, metric, kwargs): kdt = KDTree(X, leaf_size=1, metric=metric, **kwargs) dist1, ind1 = kdt.query(Y, k, dualtree=dualtree, breadth_first=breadth_first) dist2, ind2 = brute_force_neighbors(X, Y, k, metric, **kwargs) # don't check indices here: if there are any duplicate distances, # the indices may not match. Distances should not have this problem. assert_array_almost_equal(dist1, dist2) for (metric, kwargs) in METRICS.items(): for k in (1, 3, 5): for dualtree in (True, False): for breadth_first in (True, False): yield (check_neighbors, dualtree, breadth_first, k, metric, kwargs) def test_kd_tree_query_radius(n_samples=100, n_features=10): np.random.seed(0) X = 2 * np.random.random(size=(n_samples, n_features)) - 1 query_pt = np.zeros(n_features, dtype=float) eps = 1E-15 # roundoff error can cause test to fail kdt = KDTree(X, leaf_size=5) rad = np.sqrt(((X - query_pt) ** 2).sum(1)) for r in np.linspace(rad[0], rad[-1], 100): ind = kdt.query_radius(query_pt, r + eps)[0] i = np.where(rad <= r + eps)[0] ind.sort() i.sort() assert_array_almost_equal(i, ind) def test_kd_tree_query_radius_distance(n_samples=100, n_features=10): np.random.seed(0) X = 2 * np.random.random(size=(n_samples, n_features)) - 1 query_pt = np.zeros(n_features, dtype=float) eps = 1E-15 # roundoff error can cause test to fail kdt = KDTree(X, leaf_size=5) rad = np.sqrt(((X - query_pt) ** 2).sum(1)) for r in np.linspace(rad[0], rad[-1], 100): ind, dist = kdt.query_radius(query_pt, r + eps, return_distance=True) ind = ind[0] dist = dist[0] d = np.sqrt(((query_pt - X[ind]) ** 2).sum(1)) assert_array_almost_equal(d, dist) def compute_kernel_slow(Y, X, kernel, h): d = np.sqrt(((Y[:, None, :] - X) ** 2).sum(-1)) norm = kernel_norm(h, X.shape[1], kernel) if kernel == 'gaussian': return norm * np.exp(-0.5 * (d * d) / (h * h)).sum(-1) elif kernel == 'tophat': return norm * (d < h).sum(-1) elif kernel == 'epanechnikov': return norm * ((1.0 - (d * d) / (h * h)) * (d < h)).sum(-1) elif kernel == 'exponential': return norm * (np.exp(-d / h)).sum(-1) elif kernel == 'linear': return norm * ((1 - d / h) * (d < h)).sum(-1) elif kernel == 'cosine': return norm * (np.cos(0.5 * np.pi * d / h) * (d < h)).sum(-1) else: raise ValueError('kernel not recognized') def test_kd_tree_kde(n_samples=100, n_features=3): np.random.seed(0) X = np.random.random((n_samples, n_features)) Y = np.random.random((n_samples, n_features)) kdt = KDTree(X, leaf_size=10) for kernel in ['gaussian', 'tophat', 'epanechnikov', 'exponential', 'linear', 'cosine']: for h in [0.01, 0.1, 1]: dens_true = compute_kernel_slow(Y, X, kernel, h) def check_results(kernel, h, atol, rtol, breadth_first): dens = kdt.kernel_density(Y, h, atol=atol, rtol=rtol, kernel=kernel, breadth_first=breadth_first) assert_allclose(dens, dens_true, atol=atol, rtol=max(rtol, 1e-7)) for rtol in [0, 1E-5]: for atol in [1E-6, 1E-2]: for breadth_first in (True, False): yield (check_results, kernel, h, atol, rtol, breadth_first) def test_gaussian_kde(n_samples=1000): # Compare gaussian KDE results to scipy.stats.gaussian_kde from scipy.stats import gaussian_kde np.random.seed(0) x_in = np.random.normal(0, 1, n_samples) x_out = np.linspace(-5, 5, 30) for h in [0.01, 0.1, 1]: kdt = KDTree(x_in[:, None]) try: gkde = gaussian_kde(x_in, bw_method=h / np.std(x_in)) except TypeError: raise SkipTest("Old scipy, does not accept explicit bandwidth.") dens_kdt = kdt.kernel_density(x_out[:, None], h) / n_samples dens_gkde = gkde.evaluate(x_out) assert_array_almost_equal(dens_kdt, dens_gkde, decimal=3) def test_kd_tree_two_point(n_samples=100, n_features=3): np.random.seed(0) X = np.random.random((n_samples, n_features)) Y = np.random.random((n_samples, n_features)) r = np.linspace(0, 1, 10) kdt = KDTree(X, leaf_size=10) D = DistanceMetric.get_metric("euclidean").pairwise(Y, X) counts_true = [(D <= ri).sum() for ri in r] def check_two_point(r, dualtree): counts = kdt.two_point_correlation(Y, r=r, dualtree=dualtree) assert_array_almost_equal(counts, counts_true) for dualtree in (True, False): yield check_two_point, r, dualtree def test_kd_tree_pickle(): import pickle np.random.seed(0) X = np.random.random((10, 3)) kdt1 = KDTree(X, leaf_size=1) ind1, dist1 = kdt1.query(X) def check_pickle_protocol(protocol): s = pickle.dumps(kdt1, protocol=protocol) kdt2 = pickle.loads(s) ind2, dist2 = kdt2.query(X) assert_array_almost_equal(ind1, ind2) assert_array_almost_equal(dist1, dist2) for protocol in (0, 1, 2): yield check_pickle_protocol, protocol def test_neighbors_heap(n_pts=5, n_nbrs=10): heap = NeighborsHeap(n_pts, n_nbrs) for row in range(n_pts): d_in = np.random.random(2 * n_nbrs).astype(DTYPE) i_in = np.arange(2 * n_nbrs, dtype=ITYPE) for d, i in zip(d_in, i_in): heap.push(row, d, i) ind = np.argsort(d_in) d_in = d_in[ind] i_in = i_in[ind] d_heap, i_heap = heap.get_arrays(sort=True) assert_array_almost_equal(d_in[:n_nbrs], d_heap[row]) assert_array_almost_equal(i_in[:n_nbrs], i_heap[row]) def test_node_heap(n_nodes=50): vals = np.random.random(n_nodes).astype(DTYPE) i1 = np.argsort(vals) vals2, i2 = nodeheap_sort(vals) assert_array_almost_equal(i1, i2) assert_array_almost_equal(vals[i1], vals2) def test_simultaneous_sort(n_rows=10, n_pts=201): dist = np.random.random((n_rows, n_pts)).astype(DTYPE) ind = (np.arange(n_pts) + np.zeros((n_rows, 1))).astype(ITYPE) dist2 = dist.copy() ind2 = ind.copy() # simultaneous sort rows using function simultaneous_sort(dist, ind) # simultaneous sort rows using numpy i = np.argsort(dist2, axis=1) row_ind = np.arange(n_rows)[:, None] dist2 = dist2[row_ind, i] ind2 = ind2[row_ind, i] assert_array_almost_equal(dist, dist2) assert_array_almost_equal(ind, ind2)
bsd-3-clause
taotaocoule/stock
spider/data/bond.py
1
1159
# 国债指数:id=0000121;http://pdfm2.eastmoney.com/EM_UBG_PDTI_Fast/api/js?id=0000121&TYPE=k&js=(x)&rtntype=5&isCR=false&fsData1518154947301=fsData1518154947301 # 沪市企业: id=0000131;http://pdfm2.eastmoney.com/EM_UBG_PDTI_Fast/api/js?id=0000131&TYPE=k&js=(x)&rtntype=5&isCR=false&fsData1518156740923=fsData1518156740923 # 深圳企业:id=3994812;http://pdfm2.eastmoney.com/EM_UBG_PDTI_Fast/api/js?id=3994812&TYPE=k&js=(x)&rtntype=5&isCR=false&fsData1518156947700=fsData1518156947700 import urllib.request import pandas as pd import json class Bond(object): """docstring for Bond""" def __init__(self): self.index = { '国债指数':'0000121', '沪市企业债':'0000131', '深圳企业债':'3994812' } def bond_index(self,id): url = r'http://pdfm2.eastmoney.com/EM_UBG_PDTI_Fast/api/js?id={}&TYPE=k&js=(x)&rtntype=5&isCR=false&fsData1518154947301=fsData1518154947301'.format(id) raw = json.loads(urllib.request.urlopen(url).read()) head = ['日期','开盘','收盘','最高','最低','成交量','成交金额','振幅'] return pd.DataFrame(list(map(lambda x:x.split(','),raw['data'])),columns=head)
mit
shyamalschandra/scikit-learn
sklearn/neighbors/nearest_centroid.py
38
7356
# -*- coding: utf-8 -*- """ Nearest Centroid Classification """ # Author: Robert Layton <robertlayton@gmail.com> # Olivier Grisel <olivier.grisel@ensta.org> # # License: BSD 3 clause import warnings import numpy as np from scipy import sparse as sp from ..base import BaseEstimator, ClassifierMixin from ..metrics.pairwise import pairwise_distances from ..preprocessing import LabelEncoder from ..utils.validation import check_array, check_X_y, check_is_fitted from ..utils.sparsefuncs import csc_median_axis_0 from ..utils.multiclass import check_classification_targets class NearestCentroid(BaseEstimator, ClassifierMixin): """Nearest centroid classifier. Each class is represented by its centroid, with test samples classified to the class with the nearest centroid. Read more in the :ref:`User Guide <nearest_centroid_classifier>`. Parameters ---------- metric: string, or callable The metric to use when calculating distance between instances in a feature array. If metric is a string or callable, it must be one of the options allowed by metrics.pairwise.pairwise_distances for its metric parameter. The centroids for the samples corresponding to each class is the point from which the sum of the distances (according to the metric) of all samples that belong to that particular class are minimized. If the "manhattan" metric is provided, this centroid is the median and for all other metrics, the centroid is now set to be the mean. shrink_threshold : float, optional (default = None) Threshold for shrinking centroids to remove features. Attributes ---------- centroids_ : array-like, shape = [n_classes, n_features] Centroid of each class Examples -------- >>> from sklearn.neighbors.nearest_centroid import NearestCentroid >>> import numpy as np >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> y = np.array([1, 1, 1, 2, 2, 2]) >>> clf = NearestCentroid() >>> clf.fit(X, y) NearestCentroid(metric='euclidean', shrink_threshold=None) >>> print(clf.predict([[-0.8, -1]])) [1] See also -------- sklearn.neighbors.KNeighborsClassifier: nearest neighbors classifier Notes ----- When used for text classification with tf-idf vectors, this classifier is also known as the Rocchio classifier. References ---------- Tibshirani, R., Hastie, T., Narasimhan, B., & Chu, G. (2002). Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proceedings of the National Academy of Sciences of the United States of America, 99(10), 6567-6572. The National Academy of Sciences. """ def __init__(self, metric='euclidean', shrink_threshold=None): self.metric = metric self.shrink_threshold = shrink_threshold def fit(self, X, y): """ Fit the NearestCentroid model according to the given training data. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. Note that centroid shrinking cannot be used with sparse matrices. y : array, shape = [n_samples] Target values (integers) """ # If X is sparse and the metric is "manhattan", store it in a csc # format is easier to calculate the median. if self.metric == 'manhattan': X, y = check_X_y(X, y, ['csc']) else: X, y = check_X_y(X, y, ['csr', 'csc']) is_X_sparse = sp.issparse(X) if is_X_sparse and self.shrink_threshold: raise ValueError("threshold shrinking not supported" " for sparse input") check_classification_targets(y) n_samples, n_features = X.shape le = LabelEncoder() y_ind = le.fit_transform(y) self.classes_ = classes = le.classes_ n_classes = classes.size if n_classes < 2: raise ValueError('y has less than 2 classes') # Mask mapping each class to it's members. self.centroids_ = np.empty((n_classes, n_features), dtype=np.float64) # Number of clusters in each class. nk = np.zeros(n_classes) for cur_class in range(n_classes): center_mask = y_ind == cur_class nk[cur_class] = np.sum(center_mask) if is_X_sparse: center_mask = np.where(center_mask)[0] # XXX: Update other averaging methods according to the metrics. if self.metric == "manhattan": # NumPy does not calculate median of sparse matrices. if not is_X_sparse: self.centroids_[cur_class] = np.median(X[center_mask], axis=0) else: self.centroids_[cur_class] = csc_median_axis_0(X[center_mask]) else: if self.metric != 'euclidean': warnings.warn("Averaging for metrics other than " "euclidean and manhattan not supported. " "The average is set to be the mean." ) self.centroids_[cur_class] = X[center_mask].mean(axis=0) if self.shrink_threshold: dataset_centroid_ = np.mean(X, axis=0) # m parameter for determining deviation m = np.sqrt((1. / nk) + (1. / n_samples)) # Calculate deviation using the standard deviation of centroids. variance = (X - self.centroids_[y_ind]) ** 2 variance = variance.sum(axis=0) s = np.sqrt(variance / (n_samples - n_classes)) s += np.median(s) # To deter outliers from affecting the results. mm = m.reshape(len(m), 1) # Reshape to allow broadcasting. ms = mm * s deviation = ((self.centroids_ - dataset_centroid_) / ms) # Soft thresholding: if the deviation crosses 0 during shrinking, # it becomes zero. signs = np.sign(deviation) deviation = (np.abs(deviation) - self.shrink_threshold) deviation[deviation < 0] = 0 deviation *= signs # Now adjust the centroids using the deviation msd = ms * deviation self.centroids_ = dataset_centroid_[np.newaxis, :] + msd return self def predict(self, X): """Perform classification on an array of test vectors X. The predicted class C for each sample in X is returned. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- C : array, shape = [n_samples] Notes ----- If the metric constructor parameter is "precomputed", X is assumed to be the distance matrix between the data to be predicted and ``self.centroids_``. """ check_is_fitted(self, 'centroids_') X = check_array(X, accept_sparse='csr') return self.classes_[pairwise_distances( X, self.centroids_, metric=self.metric).argmin(axis=1)]
bsd-3-clause
Loisel/tmr3
tmr.py
1
15096
#!/usr/bin/python """ A module to calculate the current, the conductance and the TMR from a set of rate arrays. The rate arrays are supposed to be stored in a h5 file in the job directory. The result is stored in a h5 file. The name of the dataset contains all parameters. They are also stored as attributes in the dataset. The conductance in the two lead configurations (parallel/anti-parallel) are stored in arrays in the dataset. Usage: ./tmr.py <jobname> """ import numpy as np from numpy import linalg import time import sys import getopt import h5py import os # We are picky about possible floating point overflows # to avoid calculating NaNs np.seterr(divide="raise") np.seterr(invalid="raise") # A helper module to calculate the populations. import pop # The configuration module import cfg # path to the dat directory datpath = "dat/" # name of the temporary file where the rates are stored ratefile = "running_calc.h5" # name of the h5 file to store the conductance for the two configuration # and the configuraion parameters. hdffile = "simdata_new.h5" def save_hdf5(fname,G_P,G_AP): """ Store the conductance and the configuration to the h5 file. Args: fname: filename of the h5 file G_P: the conductance for leads with parallel magnetization G_AP: the conductance for leads with anti-parallel magnetization """ print "Shape of GP {}".format(G_P.shape) fileh = h5py.File(fname,"a") # Note that the selection of parameters to construct the name of the # dataset should be chosen such that this string is unique! # That is, it should contain all running parameters. dset_name = "G={}_kbT={}_Ec={}_E0={}_Pol={}_PolOrb={}_SO={}_tau={}_DS={}_B_P={}_B_AP={}_B_ORB_P={}_B_ORB_AP={}_W_e={}_W_0={}".format(cfg.conf['G_scale'],cfg.conf['kBT'],cfg.conf['E_C'],cfg.conf['E_0'],cfg.conf['Pol'],cfg.conf['OrbPol'],cfg.conf['SO'],cfg.conf['tau_r'],cfg.conf['D_S_factor'],cfg.conf['B_P'],cfg.conf['B_AP'],cfg.conf['B_ORB_P'],cfg.conf['B_ORB_AP'],cfg.conf['W_E'],cfg.conf['W_0']) try: # we create the dataset dset = fileh.create_dataset(dset_name,data=np.vstack((G_P,G_AP))) # and store the config attributes dset.attrs['alpha'] = cfg.conf['ALPHA'] dset.attrs['temperature'] = cfg.conf['kBT'] dset.attrs['coupling'] = cfg.conf['G_scale'] dset.attrs['electron_number'] = cfg.conf['N_0'] dset.attrs['charging_energy'] = cfg.conf['E_C'] dset.attrs['level_spacing'] = cfg.conf['E_0'] dset.attrs['polarization_spin'] = cfg.conf['Pol'] dset.attrs['polarization_orbit'] = cfg.conf['OrbPol'] dset.attrs['spinorbit'] = cfg.conf['SO'] dset.attrs['stonershift'] = cfg.conf['D_S_factor'] dset.attrs['tau_r'] = cfg.conf['tau_r'] dset.attrs['vg_min'] = cfg.conf['V_g_min'] dset.attrs['vg_max'] = cfg.conf['V_g_max'] dset.attrs['b_p'] = cfg.conf['B_P'] dset.attrs['b_ap'] = cfg.conf['B_AP'] dset.attrs['b_orb_p'] = cfg.conf['B_ORB_P'] dset.attrs['b_orb_ap'] = cfg.conf['B_ORB_AP'] dset.attrs['w_0'] = cfg.conf['W_0'] dset.attrs['w_e'] = cfg.conf['W_E'] dset.attrs['timestamp'] = time.time() except KeyError: # If the choice was not unique we complain but continue. print "Dataset exists." fileh.close() def eval_DENKER(GM,GP,configuration): """ Evaluate the density matrix kernel using the in- and out-tunneling rates. Args: GM,GP: numpy arrays containing in- and out-tunneling rates in the order of cfg.TLIST. configuration: integer determining parallel (0) or anti-parallel(1) configuration Returns: the density matrix as a square 2-d numpy array that is NP**2 in size, where NP is the number of states in the groundstatespace. """ # we get a view on the transition list and, for simplicity, its transpose TLIST = cfg.TLIST[configuration] TLIST_T = np.transpose(TLIST) # from all transitions we extract all groundstates in the statespace # this is probably a complicated way to do it PLIST = list(set(TLIST_T[0]).union(TLIST_T[1])) # ... and sort it by index PLIST.sort() # the number of groundstates NP = len(PLIST) # let's create an empty density matrix ME = np.zeros((NP,NP)) # we create a version of the transition list that does not contain # the indices in terms of the energy array (see cfg.py), but # in terms of the number in the state list (plist) # (the transition list can then be used to denote non-zero matrix elements) TMP = np.copy(TLIST) for idx,val in enumerate(PLIST): TMP[TLIST == val] = idx # We calculate diagonal elements of the density matrix: # TLIST_T[1] == num selects the correct in-tunneling rates for the # state with label num # have a look at numpy.where to understand this line for idx,num in enumerate(PLIST): ME[idx,idx] = -np.sum(np.where(TLIST_T[1] == num,GP,0.)) - np.sum(np.where(TLIST_T[0] == num,GM,0.)) # for the off diagonal elements we can directly use the generated TMP # transition list for k,tup in enumerate(TMP): ME[tup[0],tup[1]] = GP[k] ME[tup[1],tup[0]] = GM[k] # print "tup: {} and matrix element {}".format(tup,ME[tuple(tup)]) return ME def eval_CURKER(GM,GP,configuration): """ Evaluate the current kernel using the in- and out-tunneling rates. Args: GM,GP: numpy arrays containing in- and out-tunneling rates in the order of cfg.TLIST. configuration: integer determining parallel (0) or anti-parallel(1) configuration Returns: the current kernel as a 1-d numpy array. """ # We get a view on the transition list and its transpose TLIST = cfg.TLIST[configuration] TLIST_T = np.transpose(TLIST) # ... and extract the list of groundstates (see also eval_DENKER) PLIST = list(set(TLIST_T[0]).union(TLIST_T[1])) PLIST.sort() # this determines the size of the statespace NP = len(PLIST) CUR = np.zeros(NP) # Note that the current kernel can be calculated by summing the diagonal elements # of the density matrix with opposite sign # compare eval_DENKER for idx,num in enumerate(PLIST): CUR[idx] = np.sum(np.where(TLIST_T[1] == num,GP,0.)) - np.sum(np.where(TLIST_T[0] == num,GM,0.)) return CUR def current(GP,GM,POP,configuration): """ Calculate the current using the rates and populations. Args: GP, GM: np-arrays containing in- and out-tunneling rates. POP: np-array for the populations configuration: integer determining parallel (0) or anti-parallel(1) configuration Returns: current as a float. """ # We calculate the current kernel CURKER = eval_CURKER(GM,GP,configuration) # and vector-multiply it with the population vector I = -np.sum(cfg.conf["ELE"]*np.dot( CURKER, POP)) return I def eval_tmr(fname,plotname,pop): """ Calculates the TMR by evaluating conductance through parallel and anti-parallel polarized contacts. Args: fname: the h5 file to load the rates from. plotname: A name for the pdf output to produce. pop: If True, we plot the populations, too. """ # We prepare the current and conductance vectors for different # values of gate and bias voltage C_p = np.zeros((cfg.conf['NV'],cfg.conf['NVb'])) C_ap = np.zeros((cfg.conf['NV'],cfg.conf['NVb'])) G_p = np.zeros((cfg.conf['NV'],cfg.conf['NVb']-1)) G_ap = np.zeros((cfg.conf['NV'],cfg.conf['NVb']-1)) dVb = cfg.conf['Vb_range'][1]- cfg.conf['Vb_range'][0] # the population vectors, for all values of gate and bias POP_p = np.zeros((cfg.conf['NVb'],cfg.conf['NV'],cfg.N_GS[0])) POP_ap = np.zeros((cfg.conf['NVb'],cfg.conf['NV'],cfg.N_GS[1])) # We iterate over two bias values first for nV,Vb in enumerate(cfg.conf["Vb_range"]): # now the rates are loaded from the h5 file # note that the label of the specific rate arrays are fixed with h5py.File(fname) as file: GP0_p = np.array(file['par_P0_V{}'.format(Vb)]) GP0_ap = np.array(file['apa_P0_V{}'.format(Vb)]) GP1_p = np.array(file['par_P1_V{}'.format(Vb)]) GP1_ap = np.array(file['apa_P1_V{}'.format(Vb)]) GM0_p = np.array(file['par_M0_V{}'.format(Vb)]) GM0_ap = np.array(file['apa_M0_V{}'.format(Vb)]) GM1_p = np.array(file['par_M1_V{}'.format(Vb)]) GM1_ap = np.array(file['apa_M1_V{}'.format(Vb)]) # for the density kernel, we sum all rates over both leads DENKER_p = np.array([eval_DENKER(GM0_p[n]+GM1_p[n],GP0_p[n]+GP1_p[n],0)for n in range(cfg.conf["NV"])]) DENKER_ap = np.array([eval_DENKER(GM0_ap[n]+GM1_ap[n],GP0_ap[n]+GP1_ap[n],1)for n in range(cfg.conf["NV"])]) # the populations are calculated from the density kernel by an asymptotic # approximation scheme POP_ap[nV] = np.array([pop.asymptotic_ssp(DENKER_ap[n]) for n in range(cfg.conf["NV"])]) POP_p[nV] = np.array([pop.asymptotic_ssp(DENKER_p[n]) for n in range(cfg.conf["NV"])]) # note that the current is calculated from the rates in one of the leads only C_p[:,nV] = np.array([ current(GP0_p[n],GM0_p[n],POP_p[nV,n],0) for n in np.arange(cfg.conf["NV"]) ]) C_ap[:,nV] = np.array([ current(GP0_ap[n],GM0_ap[n],POP_ap[nV,n],1) for n in np.arange(cfg.conf["NV"]) ]) # the numerical derivative gives the conductance G_p = np.diff(C_p).flatten()/dVb G_ap = np.diff(C_ap).flatten()/dVb # we save the conductance traces to a h5 file specified as a global variable # hdffile in the path datpath # It is possible that the dataset already exists. In this case, we issue a warning. try: save_hdf5("{}{}".format(datpath,hdffile),G_p,G_ap) except RuntimeError: print "Unable to save to {}, maybe there is already a dataset with similar parameters...".format(hdffile) # the tmr and conductance graphs are plotted to a pdf file for review. plot_tmr_pdf(G_p,G_ap,plotname) # if the pop flag is set, we also plot the population for one bias value if pop: plot_population([POP_p[0],POP_ap[0]],os.path.splitext(plotname)[0]+"_POP.pdf") def plot_tmr_pdf(C_p,C_ap,fname): """ A helper routine to plot the conductance and TMR to a pdf file in the datpath. Args: C_p, C_ap: the parallel and anti-parallel conductance. fname: the filename to plot to """ import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt # we plot the conductance graph on top, p and ap with different colors Axes1 = plt.subplot(2,1,1) Axes1.set_xticklabels([]) plt.ylabel("Conductance (e^2/h)") plt.title("Conductance at zero bias") # parallel is plotted in red, and anti-parallel as blue dashed line plt.plot( cfg.conf["V_g"],C_p,'r',cfg.conf["V_g"], C_ap, 'b--') # on the second panel, the TMR is plotted Axes2 = plt.subplot(2,1,2) plt.xlabel("gate voltage (V)") plt.ylabel("TMR") plt.title("TMR") plt.ylim((-0.3,1.5)) TMR = np.zeros(cfg.conf["NV"]) for i in range(cfg.conf["NV"]): try: TMR[i] = C_p[i]/C_ap[i]-1. except ZeroDivisionError: print "Zero Division, returning null." TMR[i] = 0. plt.plot( cfg.conf["V_g"], TMR) plt.savefig(fname, bbox_inches='tight') def plot_population(POP, fname): """ Calculates and plots selected populations of the quantum dot with gate voltage. The edge states N=-1 and 5 are neglected. Args: POP: a list with the two population vectors for parallel and anti-parallel configurations fname: the filename to plot to """ import matplotlib.pyplot as plt NV = cfg.conf["NV"] print "Calculating populations..." # We plot the populations for both configurations # the parallel populations on top # the anti-parallel on bottom Ax = [plt.subplot(2,1,1),plt.subplot(2,1,2)] cm = plt.get_cmap('gist_rainbow') PopPlots = [1,4,8,12,17,18] NP = len(PopPlots) for gamidx in range(2): TLIST = cfg.TLIST[gamidx] TLIST_T = np.transpose(TLIST) PLIST = list(set(TLIST_T[0]).union(TLIST_T[1])) PLIST.sort() # we cycle through the linecolors to distinguish the different # groundstates Ax[gamidx].set_color_cycle([cm(1.*k/NP) for k in range(NP)]) for i in PopPlots: color = cm(1.*i/NP) LABEL = "P_{}".format(cfg.int_to_state(PLIST[i])) Ax[gamidx].plot( cfg.conf["V_g"], POP[gamidx][:,i],label=LABEL) lines =Ax[gamidx].get_lines() labels = [l.get_label() for l in lines] leg = plt.figlegend(lines,labels,loc='upper right') plt.savefig(fname) plt.show() class Usage(Exception): def __init__(self, msg): self.msg = msg def main(argv=None): """ Interface routine to call the tmr module. Example: ./tmr.py <jobname> In principle, there were routines to plot rates, populations, conductances etc. but apart from the population plotting, none of the use cases was needed anymore. """ POP = False # The default config file is called cnt.conf cfile = "cnt.conf" rlist = [0.,] if argv is None: argv = sys.argv try: try: opts, args = getopt.getopt(argv[1:], "hc:P", ["help","config=","pop"]) except getopt.error, msg: raise Usage(msg) for o,a in opts: if o in ('-h','--help'): usage() exit() elif o in ('-c','--config'): cfile = a elif o in ('-P','--pop'): POP = True else: raise Usage('Invalid argument.') # we parse the config and initialize it cfg.parse_conf("dat/{0}/{1}".format(args[0],cfile)) cfg.init() h5file = "{}{}/{}".format(datpath,args[0],ratefile) pdffile = "{}{}.pdf".format(datpath,args[0]) print "Try to open {}".format(h5file) eval_tmr(h5file,pdffile,POP) except Usage, err: print >>sys.stderr, err.msg print >>sys.stderr, "for help use --help" return 2 def usage(): print "This is a tool to process rate files.\n\ \n\ usage: tmr.py [-hP] [--pop] jobname\n\ \n\ --pop or -P: Plot the populations.\n\ \n\ jobname: The name of the directory for the rate files.\n\ \n\ The script searches for files dat/jobname/running_calc.h5\n\ and dat/jobname/cnt.conf" if __name__ == "__main__": sys.exit(main())
gpl-3.0
dariox2/CADL
session-5/libs/stylenet.py
4
11350
"""Style Net w/ tests for Video Style Net. Video Style Net requires OpenCV 3.0.0+ w/ Contrib for Python to be installed. Creative Applications of Deep Learning w/ Tensorflow. Kadenze, Inc. Copyright Parag K. Mital, June 2016. """ import tensorflow as tf import numpy as np import matplotlib.pyplot as plt import os from . import vgg16 from . import gif def make_4d(img): """Create a 4-dimensional N x H x W x C image. Parameters ---------- img : np.ndarray Given image as H x W x C or H x W. Returns ------- img : np.ndarray N x H x W x C image. Raises ------ ValueError Unexpected number of dimensions. """ if img.ndim == 2: img = np.expand_dims(img[np.newaxis], 3) elif img.ndim == 3: img = img[np.newaxis] elif img.ndim == 4: return img else: raise ValueError('Incorrect dimensions for image!') return img def stylize(content_img, style_img, base_img=None, saveto=None, gif_step=5, n_iterations=100, style_weight=1.0, content_weight=1.0): """Stylization w/ the given content and style images. Follows the approach in Leon Gatys et al. Parameters ---------- content_img : np.ndarray Image to use for finding the content features. style_img : TYPE Image to use for finding the style features. base_img : None, optional Image to use for the base content. Can be noise or an existing image. If None, the content image will be used. saveto : str, optional Name of GIF image to write to, e.g. "stylization.gif" gif_step : int, optional Modulo of iterations to save the current stylization. n_iterations : int, optional Number of iterations to run for. style_weight : float, optional Weighting on the style features. content_weight : float, optional Weighting on the content features. Returns ------- stylization : np.ndarray Final iteration of the stylization. """ # Preprocess both content and style images content_img = make_4d(content_img) style_img = make_4d(style_img) if base_img is None: base_img = content_img else: base_img = make_4d(base_img) # Get Content and Style features net = vgg16.get_vgg_model() g = tf.Graph() with tf.Session(graph=g) as sess: tf.import_graph_def(net['graph_def'], name='vgg') names = [op.name for op in g.get_operations()] x = g.get_tensor_by_name(names[0] + ':0') content_layer = 'vgg/conv3_2/conv3_2:0' content_features = g.get_tensor_by_name( content_layer).eval(feed_dict={ x: content_img, 'vgg/dropout_1/random_uniform:0': [[1.0]], 'vgg/dropout/random_uniform:0': [[1.0]]}) style_layers = ['vgg/conv1_1/conv1_1:0', 'vgg/conv2_1/conv2_1:0', 'vgg/conv3_1/conv3_1:0', 'vgg/conv4_1/conv4_1:0', 'vgg/conv5_1/conv5_1:0'] style_activations = [] for style_i in style_layers: style_activation_i = g.get_tensor_by_name(style_i).eval( feed_dict={ x: style_img, 'vgg/dropout_1/random_uniform:0': [[1.0]], 'vgg/dropout/random_uniform:0': [[1.0]]}) style_activations.append(style_activation_i) style_features = [] for style_activation_i in style_activations: s_i = np.reshape(style_activation_i, [-1, style_activation_i.shape[-1]]) gram_matrix = np.matmul(s_i.T, s_i) / s_i.size style_features.append(gram_matrix.astype(np.float32)) # Optimize both g = tf.Graph() with tf.Session(graph=g) as sess: net_input = tf.Variable(base_img) tf.import_graph_def( net['graph_def'], name='vgg', input_map={'images:0': net_input}) content_loss = tf.nn.l2_loss((g.get_tensor_by_name(content_layer) - content_features) / content_features.size) style_loss = np.float32(0.0) for style_layer_i, style_gram_i in zip(style_layers, style_features): layer_i = g.get_tensor_by_name(style_layer_i) layer_shape = layer_i.get_shape().as_list() layer_size = layer_shape[1] * layer_shape[2] * layer_shape[3] layer_flat = tf.reshape(layer_i, [-1, layer_shape[3]]) gram_matrix = tf.matmul( tf.transpose(layer_flat), layer_flat) / layer_size style_loss = tf.add( style_loss, tf.nn.l2_loss( (gram_matrix - style_gram_i) / np.float32(style_gram_i.size))) loss = content_weight * content_loss + style_weight * style_loss optimizer = tf.train.AdamOptimizer(0.01).minimize(loss) sess.run(tf.initialize_all_variables()) imgs = [] for it_i in range(n_iterations): _, this_loss, synth = sess.run( [optimizer, loss, net_input], feed_dict={ 'vgg/dropout_1/random_uniform:0': np.ones( g.get_tensor_by_name( 'vgg/dropout_1/random_uniform:0' ).get_shape().as_list()), 'vgg/dropout/random_uniform:0': np.ones( g.get_tensor_by_name( 'vgg/dropout/random_uniform:0' ).get_shape().as_list()) }) print("iteration %d, loss: %f, range: (%f - %f)" % (it_i, this_loss, np.min(synth), np.max(synth)), end='\r') if it_i % gif_step == 0: imgs.append(np.clip(synth[0], 0, 1)) if saveto is not None: gif.build_gif(imgs, saveto=saveto) return np.clip(synth[0], 0, 1) def warp_img(img, dx, dy): """Apply the motion vectors to the given image. Parameters ---------- img : np.ndarray Input image to apply motion to. dx : np.ndarray H x W matrix defining the magnitude of the X vector dy : np.ndarray H x W matrix defining the magnitude of the Y vector Returns ------- img : np.ndarray Image with pixels warped according to dx, dy. """ warped = img.copy() for row_i in range(img.shape[0]): for col_i in range(img.shape[1]): dx_i = int(np.round(dx[row_i, col_i])) dy_i = int(np.round(dy[row_i, col_i])) sample_dx = np.clip(dx_i + col_i, 0, img.shape[0] - 1) sample_dy = np.clip(dy_i + row_i, 0, img.shape[1] - 1) warped[sample_dy, sample_dx, :] = img[row_i, col_i, :] return warped def test_video(style_img='arles.jpg', videodir='kurosawa'): r"""Test for artistic stylization using video. This requires the python installation of OpenCV for the Deep Flow algorithm. If cv2 is not found, then there will be reduced "temporal coherence". Unfortunately, installing opencv for python3 is not the easiest thing to do. OSX users can install this using: $ brew install opencv --with-python3 --with-contrib then will have to symlink the libraries. I think you can do this w/: $ brew link --force opencv3 But the problems start to arise depending on which python you have installed, and it is always a mess w/ homebrew. Sorry! Your best bet is installing from source. Something along these lines should get you there: $ cd ~ $ git clone https://github.com/Itseez/opencv.git $ cd opencv $ git checkout 3.1.0 $ cd ~ $ git clone https://github.com/Itseez/opencv_contrib.git $ cd opencv_contrib $ git checkout 3.1.0 $ cd ~/opencv $ mkdir build $ cd build $ cmake -D CMAKE_BUILD_TYPE=RELEASE \ -D CMAKE_INSTALL_PREFIX=/usr/local \ -D INSTALL_C_EXAMPLES=OFF \ -D INSTALL_PYTHON_EXAMPLES=OFF \ -D OPENCV_EXTRA_MODULES_PATH=~/opencv_contrib/modules \ -D BUILD_EXAMPLES=OFF .. Parameters ---------- style_img : str, optional Location to style image videodir : str, optional Location to directory containing images of each frame to stylize. Returns ------- imgs : list of np.ndarray Stylized images for each frame. """ has_cv2 = True try: import cv2 has_cv2 = True optflow = cv2.optflow.createOptFlow_DeepFlow() except ImportError: has_cv2 = False style_img = plt.imread(style_img) content_files = [os.path.join(videodir, f) for f in os.listdir(videodir) if f.endswith('.png')] content_img = plt.imread(content_files[0]) from scipy.misc import imresize style_img = imresize(style_img, (448, 448)).astype(np.float32) / 255.0 content_img = imresize(content_img, (448, 448)).astype(np.float32) / 255.0 if has_cv2: prev_lum = cv2.cvtColor(content_img, cv2.COLOR_RGB2HSV)[:, :, 2] else: prev_lum = (content_img[..., 0] * 0.3 + content_img[..., 1] * 0.59 + content_img[..., 2] * 0.11) imgs = [] stylized = stylize(content_img, style_img, content_weight=5.0, style_weight=0.5, n_iterations=50) plt.imsave(fname=content_files[0] + 'stylized.png', arr=stylized) imgs.append(stylized) for f in content_files[1:]: content_img = plt.imread(f) content_img = imresize(content_img, (448, 448)).astype(np.float32) / 255.0 if has_cv2: lum = cv2.cvtColor(content_img, cv2.COLOR_RGB2HSV)[:, :, 2] flow = optflow.calc(prev_lum, lum, None) warped = warp_img(stylized, flow[..., 0], flow[..., 1]) stylized = stylize(content_img, style_img, content_weight=5.0, style_weight=0.5, base_img=warped, n_iterations=50) else: lum = (content_img[..., 0] * 0.3 + content_img[..., 1] * 0.59 + content_img[..., 2] * 0.11) stylized = stylize(content_img, style_img, content_weight=5.0, style_weight=0.5, base_img=None, n_iterations=50) imgs.append(stylized) plt.imsave(fname=f + 'stylized.png', arr=stylized) prev_lum = lum return imgs def test(): """Test for artistic stylization.""" from six.moves import urllib f = ('https://upload.wikimedia.org/wikipedia/commons/thumb/5/54/' + 'Claude_Monet%2C_Impression%2C_soleil_levant.jpg/617px-Claude_Monet' + '%2C_Impression%2C_soleil_levant.jpg?download') filepath, _ = urllib.request.urlretrieve(f, f.split('/')[-1], None) style = plt.imread(filepath) f = ('https://upload.wikimedia.org/wikipedia/commons/thumb/a/ae/' + 'El_jard%C3%ADn_de_las_Delicias%2C_de_El_Bosco.jpg/640px-El_jard' + '%C3%ADn_de_las_Delicias%2C_de_El_Bosco.jpg') filepath, _ = urllib.request.urlretrieve(f, f.split('/')[-1], None) content = plt.imread(filepath) stylize(content, style) if __name__ == '__main__': test_video()
apache-2.0
jayhetee/dask
dask/array/numpy_compat.py
9
1606
import numpy as np try: isclose = np.isclose except AttributeError: def isclose(*args, **kwargs): raise RuntimeError("You need numpy version 1.7 or greater to use " "isclose.") try: full = np.full except AttributeError: def full(shape, fill_value, dtype=None, order=None): """Our implementation of numpy.full because your numpy is old.""" if order is not None: raise NotImplementedError("`order` kwarg is not supported upgrade " "to Numpy 1.8 or greater for support.") return np.multiply(fill_value, np.ones(shape, dtype=dtype), dtype=dtype) # Taken from scikit-learn: # https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/fixes.py#L84 try: if (not np.allclose(np.divide(.4, 1, casting="unsafe"), np.divide(.4, 1, casting="unsafe", dtype=np.float)) or not np.allclose(np.divide(.4, 1), .4)): raise TypeError('Divide not working with dtype: ' 'https://github.com/numpy/numpy/issues/3484') divide = np.divide except TypeError: # Divide with dtype doesn't work on Python 3 def divide(x1, x2, out=None, dtype=None): """Implementation of numpy.divide that works with dtype kwarg. Temporary compatibility fix for a bug in numpy's version. See https://github.com/numpy/numpy/issues/3484 for the relevant issue.""" x = np.divide(x1, x2, out) if dtype is not None: x = x.astype(dtype) return x
bsd-3-clause
google/brain-tokyo-workshop
WANNRelease/prettyNEAT/vis/lplot.py
2
2027
""" Laconic plot functions to replace some of the matplotlibs verbosity """ from matplotlib import pyplot as plt import numpy as np import seaborn as sns # -- File I/O ------------------------------------------------------------ -- # def lsave(data,fileName): np.savetxt(fileName, data, delimiter=',',fmt='%1.2e') def lload(fileName): return np.loadtxt(fileName, delimiter=',') # -- Basic Plotting ------------------------------------------------------ -- # def lplot(*args,label=[],axis=False): """Plots an vector, a set of vectors, with or without an x scale """ fig, ax = getAxis(axis) if len(args) == 1: # No xscale x = np.arange(np.shape(args)[1]) y = args[0] if len(args) == 2: # xscale given x = args[0] y = args[1] if np.ndim(y) == 2: for i in range(np.shape(y)[1]): ax.plot(x,y[:,i],'-') if len(label) > 0: ax.legend((label)) else: ax.plot(x,y,'o-') if axis is False: return fig, ax else: return ax def ldist(x, axis=False): """Plots histogram with estimated distribution """ fig, ax = getAxis(axis) if isinstance(x, str): vals = lload(x) else: vals = x sns.distplot(vals.flatten(),ax=ax,bins=10) #sns.distplot(vals.flatten(),ax=ax,hist_kws={"histtype": "step", "linewidth": 3, "alpha": 1, "color": "g"}) return ax def lquart(x,y,label=[],axis=False): """Plots quartiles, x is a vector, y is a matrix with same length as x """ if axis is not False: ax = axis fig = ax.figure.canvas else: fig, ax = plt.subplots() q = np.percentile(y,[25,50,75],axis=1) plt.plot(x,q[1,:],label=label) # median plt.plot(x,q[0,:],'k:',alpha=0.5) plt.plot(x,q[2,:],'k:',alpha=0.5) plt.fill_between(x,q[0,:],q[2,:],alpha=0.25) return ax def getAxis(axis): if axis is not False: ax = axis fig = ax.figure.canvas else: fig, ax = plt.subplots() return fig,ax # -- --------------- -- --------------------------------------------#
apache-2.0
samstern/Greengraph
Greengraph/tests/test_maps.py
1
2937
from ..greengraph import Greengraph from ..map import Map import geopy from nose.tools import assert_equal, assert_almost_equal import numpy.testing as np_test from mock import Mock, patch import requests from matplotlib import image import yaml import os import numpy as np #@patch.object(Greengraph, 'location_sequence') #@patch.object(Map, 'count_green') def test_map_constructor(): mock_image= open(os.path.join(os.path.dirname(__file__),'fixtures','NY_2.png'),'rb') #as mock_imgfile: with patch.object(requests,'get',return_value=Mock(content=mock_image.read())) as mock_get: with patch.object(image,'imread') as mock_img: #default Map(40.7127837, -74.0059413) # New York #Longon Map(51.5073509,-0.1277583) mock_get.assert_called_with( "http://maps.googleapis.com/maps/api/staticmap?", params={ 'sensor':'false', 'zoom':10, 'size':'400x400', 'center':'40.7127837,-74.0059413', 'style':'feature:all|element:labels|visibility:off', 'maptype': 'satellite' } ) #changing parameters Map(41.8781136, -87.6297982,satellite=False,zoom=15,size=(500,350),sensor=True) # New York mock_get.assert_called_with( "http://maps.googleapis.com/maps/api/staticmap?", params={ 'sensor':'true', 'zoom':15, 'size':'500x350', 'center':'41.8781136,-87.6297982', 'style':'feature:all|element:labels|visibility:off', #'maptype': 'satellite' } ) def test_green(): mock_image= open(os.path.join(os.path.dirname(__file__),'fixtures','NY_2.png'),'rb') fixture_green = np.load(os.path.join(os.path.dirname(__file__),'fixtures','ny_green.npy')) threshold = 1.1 with patch('requests.get', return_value=Mock(content=mock_image.read())) as mock_get: testMap = Map(41.8781136, -87.6297982) # New York assert_equal(fixture_green.shape,testMap.green(threshold).shape) assert (testMap.green(threshold) == fixture_green).all() == True assert (testMap.green(1.5) == fixture_green).all() == False def test_count_green(): mock_image= open(os.path.join(os.path.dirname(__file__),'fixtures','NY_2.png'),'rb') fixture_green = np.load(os.path.join(os.path.dirname(__file__),'fixtures','ny_green.npy')) threshold = 1.1 with patch('requests.get', return_value=Mock(content=mock_image.read())) as mock_get: testMap = Map(41.8781136, -87.6297982) # New York count_from_fixture=np.sum(fixture_green) assert (testMap.count_green() == count_from_fixture) assert (testMap.count_green(1.5) != count_from_fixture)
mit
uqyge/combustionML
FPV_ANN_pureResNet/data_reader_2.py
1
5981
import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler, StandardScaler class data_scaler(object): def __init__(self): self.norm = None self.norm_1 = None self.std = None self.case = None self.scale = 1 self.bias = 1e-20 # self.bias = 1 self.switcher = { 'min_std': 'min_std', 'std2': 'std2', 'std_min': 'std_min', 'min': 'min', 'no': 'no', 'log': 'log', 'log_min': 'log_min', 'log2': 'log2', 'tan': 'tan' } def fit_transform(self, input_data, case): self.case = case if self.switcher.get(self.case) == 'min_std': self.norm = MinMaxScaler() self.std = StandardScaler() out = self.norm.fit_transform(input_data) out = self.std.fit_transform(out) if self.switcher.get(self.case) == 'std2': self.std = StandardScaler() out = self.std.fit_transform(input_data) if self.switcher.get(self.case) == 'std_min': self.norm = MinMaxScaler() self.std = StandardScaler() out = self.std.fit_transform(input_data) out = self.norm.fit_transform(out) if self.switcher.get(self.case) == 'min': self.norm = MinMaxScaler() out = self.norm.fit_transform(input_data) if self.switcher.get(self.case) == 'no': self.norm = MinMaxScaler() self.std = StandardScaler() out = input_data if self.switcher.get(self.case) == 'log': out = - np.log(np.asarray(input_data / self.scale) + self.bias) self.std = StandardScaler() out = self.std.fit_transform(out) if self.switcher.get(self.case) == 'log_min': out = - np.log(np.asarray(input_data / self.scale) + self.bias) self.norm = MinMaxScaler() out = self.norm.fit_transform(out) if self.switcher.get(self.case) == 'log2': self.norm = MinMaxScaler() self.norm_1 = MinMaxScaler() out = self.norm.fit_transform(input_data) out = np.log(np.asarray(out) + self.bias) out = self.norm_1.fit_transform(out) if self.switcher.get(self.case) == 'tan': self.norm = MaxAbsScaler() self.std = StandardScaler() out = self.std.fit_transform(input_data) out = self.norm.fit_transform(out) out = np.tan(out / (2 * np.pi + self.bias)) return out def transform(self, input_data): if self.switcher.get(self.case) == 'min_std': out = self.norm.transform(input_data) out = self.std.transform(out) if self.switcher.get(self.case) == 'std2': out = self.std.transform(input_data) if self.switcher.get(self.case) == 'std_min': out = self.std.transform(input_data) out = self.norm.transform(out) if self.switcher.get(self.case) == 'min': out = self.norm.transform(input_data) if self.switcher.get(self.case) == 'no': out = input_data if self.switcher.get(self.case) == 'log': out = - np.log(np.asarray(input_data / self.scale) + self.bias) out = self.std.transform(out) if self.switcher.get(self.case) == 'log_min': out = - np.log(np.asarray(input_data / self.scale) + self.bias) out = self.norm.transform(out) if self.switcher.get(self.case) == 'log2': out = self.norm.transform(input_data) out = np.log(np.asarray(out) + self.bias) out = self.norm_1.transform(out) if self.switcher.get(self.case) == 'tan': out = self.std.transform(input_data) out = self.norm.transform(out) out = np.tan(out / (2 * np.pi + self.bias)) return out def inverse_transform(self, input_data): if self.switcher.get(self.case) == 'min_std': out = self.std.inverse_transform(input_data) out = self.norm.inverse_transform(out) if self.switcher.get(self.case) == 'std2': out = self.std.inverse_transform(input_data) if self.switcher.get(self.case) == 'std_min': out = self.norm.inverse_transform(input_data) out = self.std.inverse_transform(out) if self.switcher.get(self.case) == 'min': out = self.norm.inverse_transform(input_data) if self.switcher.get(self.case) == 'no': out = input_data if self.switcher.get(self.case) == 'log': out = self.std.inverse_transform(input_data) out = (np.exp(-out) - self.bias) * self.scale if self.switcher.get(self.case) == 'log_min': out = self.norm.inverse_transform(input_data) out = (np.exp(-out) - self.bias) * self.scale if self.switcher.get(self.case) == 'log2': out = self.norm_1.inverse_transform(input_data) out = np.exp(out) - self.bias out = self.norm.inverse_transform(out) if self.switcher.get(self.case) == 'tan': out = (2 * np.pi + self.bias) * np.arctan(input_data) out = self.norm.inverse_transform(out) out = self.std.inverse_transform(out) return out def read_h5_data(fileName, input_features, labels): df = pd.read_hdf(fileName) df = df[df['f'] < 0.45] input_df = df[input_features] in_scaler = data_scaler() input_np = in_scaler.fit_transform(input_df.values, 'no') label_df = df[labels].clip(0) # if 'PVs' in labels: # label_df['PVs']=np.log(label_df['PVs']+1) out_scaler = data_scaler() label_np = out_scaler.fit_transform(label_df.values, 'std2') return input_np, label_np, df, in_scaler, out_scaler
mit
andyh616/mne-python
mne/tests/test_epochs.py
1
71695
# Author: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr> # Denis Engemann <denis.engemann@gmail.com> # # License: BSD (3-clause) import os.path as op from copy import deepcopy from nose.tools import (assert_true, assert_equal, assert_raises, assert_not_equal) from numpy.testing import (assert_array_equal, assert_array_almost_equal, assert_allclose) import numpy as np import copy as cp import warnings from scipy import fftpack import matplotlib from mne import (io, Epochs, read_events, pick_events, read_epochs, equalize_channels, pick_types, pick_channels, read_evokeds, write_evokeds) from mne.epochs import ( bootstrap, equalize_epoch_counts, combine_event_ids, add_channels_epochs, EpochsArray, concatenate_epochs, _BaseEpochs) from mne.utils import (_TempDir, requires_pandas, slow_test, clean_warning_registry, run_tests_if_main, requires_scipy_version) from mne.io.meas_info import create_info from mne.io.proj import _has_eeg_average_ref_proj from mne.event import merge_events from mne.io.constants import FIFF from mne.externals.six import text_type from mne.externals.six.moves import zip, cPickle as pickle matplotlib.use('Agg') # for testing don't use X server warnings.simplefilter('always') # enable b/c these tests throw warnings base_dir = op.join(op.dirname(__file__), '..', 'io', 'tests', 'data') raw_fname = op.join(base_dir, 'test_raw.fif') event_name = op.join(base_dir, 'test-eve.fif') evoked_nf_name = op.join(base_dir, 'test-nf-ave.fif') event_id, tmin, tmax = 1, -0.2, 0.5 event_id_2 = 2 def _get_data(): raw = io.Raw(raw_fname, add_eeg_ref=False) events = read_events(event_name) picks = pick_types(raw.info, meg=True, eeg=True, stim=True, ecg=True, eog=True, include=['STI 014'], exclude='bads') return raw, events, picks reject = dict(grad=1000e-12, mag=4e-12, eeg=80e-6, eog=150e-6) flat = dict(grad=1e-15, mag=1e-15) clean_warning_registry() # really clean warning stack def test_reject(): """Test epochs rejection """ raw, events, picks = _get_data() # cull the list just to contain the relevant event events = events[events[:, 2] == event_id, :] selection = np.arange(3) drop_log = [[]] * 3 + [['MEG 2443']] * 4 assert_raises(TypeError, pick_types, raw) picks_meg = pick_types(raw.info, meg=True, eeg=False) assert_raises(TypeError, Epochs, raw, events, event_id, tmin, tmax, picks=picks, preload=False, reject='foo') assert_raises(ValueError, Epochs, raw, events, event_id, tmin, tmax, picks=picks_meg, preload=False, reject=dict(eeg=1.)) assert_raises(KeyError, Epochs, raw, events, event_id, tmin, tmax, picks=picks, preload=False, reject=dict(foo=1.)) data_7 = dict() keep_idx = [0, 1, 2] for preload in (True, False): for proj in (True, False, 'delayed'): # no rejection epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks, preload=preload) assert_raises(ValueError, epochs.drop_bad_epochs, reject='foo') epochs.drop_bad_epochs() assert_equal(len(epochs), len(events)) assert_array_equal(epochs.selection, np.arange(len(events))) assert_array_equal(epochs.drop_log, [[]] * 7) if proj not in data_7: data_7[proj] = epochs.get_data() assert_array_equal(epochs.get_data(), data_7[proj]) # with rejection epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks, reject=reject, preload=preload) epochs.drop_bad_epochs() assert_equal(len(epochs), len(events) - 4) assert_array_equal(epochs.selection, selection) assert_array_equal(epochs.drop_log, drop_log) assert_array_equal(epochs.get_data(), data_7[proj][keep_idx]) # rejection post-hoc epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks, preload=preload) epochs.drop_bad_epochs() assert_equal(len(epochs), len(events)) assert_array_equal(epochs.get_data(), data_7[proj]) epochs.drop_bad_epochs(reject) assert_equal(len(epochs), len(events) - 4) assert_equal(len(epochs), len(epochs.get_data())) assert_array_equal(epochs.selection, selection) assert_array_equal(epochs.drop_log, drop_log) assert_array_equal(epochs.get_data(), data_7[proj][keep_idx]) # rejection twice reject_part = dict(grad=1100e-12, mag=4e-12, eeg=80e-6, eog=150e-6) epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks, reject=reject_part, preload=preload) epochs.drop_bad_epochs() assert_equal(len(epochs), len(events) - 1) epochs.drop_bad_epochs(reject) assert_equal(len(epochs), len(events) - 4) assert_array_equal(epochs.selection, selection) assert_array_equal(epochs.drop_log, drop_log) assert_array_equal(epochs.get_data(), data_7[proj][keep_idx]) # ensure that thresholds must become more stringent, not less assert_raises(ValueError, epochs.drop_bad_epochs, reject_part) assert_equal(len(epochs), len(events) - 4) assert_array_equal(epochs.get_data(), data_7[proj][keep_idx]) epochs.drop_bad_epochs(flat=dict(mag=1.)) assert_equal(len(epochs), 0) assert_raises(ValueError, epochs.drop_bad_epochs, flat=dict(mag=0.)) # rejection of subset of trials (ensure array ownership) reject_part = dict(grad=1100e-12, mag=4e-12, eeg=80e-6, eog=150e-6) epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks, reject=None, preload=preload) epochs = epochs[:-1] epochs.drop_bad_epochs(reject=reject) assert_equal(len(epochs), len(events) - 4) assert_array_equal(epochs.get_data(), data_7[proj][keep_idx]) def test_decim(): """Test epochs decimation """ # First with EpochsArray n_epochs, n_channels, n_times = 5, 10, 20 dec_1, dec_2 = 2, 3 decim = dec_1 * dec_2 sfreq = 1000. sfreq_new = sfreq / decim data = np.random.randn(n_epochs, n_channels, n_times) events = np.array([np.arange(n_epochs), [0] * n_epochs, [1] * n_epochs]).T info = create_info(n_channels, sfreq, 'eeg') info['lowpass'] = sfreq_new / float(decim) epochs = EpochsArray(data, info, events) data_epochs = epochs.decimate(decim, copy=True).get_data() data_epochs_2 = epochs.decimate(dec_1).decimate(dec_2).get_data() assert_array_equal(data_epochs, data[:, :, ::decim]) assert_array_equal(data_epochs, data_epochs_2) # Now let's do it with some real data raw, events, picks = _get_data() sfreq_new = raw.info['sfreq'] / decim raw.info['lowpass'] = sfreq_new / 4. # suppress aliasing warnings epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks, preload=False) assert_raises(ValueError, epochs.decimate, -1) expected_data = epochs.get_data()[:, :, ::decim] expected_times = epochs.times[::decim] for preload in (True, False): # at init epochs = Epochs(raw, events, event_id, tmin, tmax, decim=decim, preload=preload) assert_allclose(epochs.get_data(), expected_data) assert_allclose(epochs.get_data(), expected_data) assert_equal(epochs.info['sfreq'], sfreq_new) assert_array_equal(epochs.times, expected_times) # split between init and afterward epochs = Epochs(raw, events, event_id, tmin, tmax, decim=dec_1, preload=preload).decimate(dec_2) assert_allclose(epochs.get_data(), expected_data) assert_allclose(epochs.get_data(), expected_data) assert_equal(epochs.info['sfreq'], sfreq_new) assert_array_equal(epochs.times, expected_times) epochs = Epochs(raw, events, event_id, tmin, tmax, decim=dec_2, preload=preload).decimate(dec_1) assert_allclose(epochs.get_data(), expected_data) assert_allclose(epochs.get_data(), expected_data) assert_equal(epochs.info['sfreq'], sfreq_new) assert_array_equal(epochs.times, expected_times) # split between init and afterward, with preload in between epochs = Epochs(raw, events, event_id, tmin, tmax, decim=dec_1, preload=preload) epochs.preload_data() epochs = epochs.decimate(dec_2) assert_allclose(epochs.get_data(), expected_data) assert_allclose(epochs.get_data(), expected_data) assert_equal(epochs.info['sfreq'], sfreq_new) assert_array_equal(epochs.times, expected_times) epochs = Epochs(raw, events, event_id, tmin, tmax, decim=dec_2, preload=preload) epochs.preload_data() epochs = epochs.decimate(dec_1) assert_allclose(epochs.get_data(), expected_data) assert_allclose(epochs.get_data(), expected_data) assert_equal(epochs.info['sfreq'], sfreq_new) assert_array_equal(epochs.times, expected_times) # decimate afterward epochs = Epochs(raw, events, event_id, tmin, tmax, preload=preload).decimate(decim) assert_allclose(epochs.get_data(), expected_data) assert_allclose(epochs.get_data(), expected_data) assert_equal(epochs.info['sfreq'], sfreq_new) assert_array_equal(epochs.times, expected_times) # decimate afterward, with preload in between epochs = Epochs(raw, events, event_id, tmin, tmax, preload=preload) epochs.preload_data() epochs.decimate(decim) assert_allclose(epochs.get_data(), expected_data) assert_allclose(epochs.get_data(), expected_data) assert_equal(epochs.info['sfreq'], sfreq_new) assert_array_equal(epochs.times, expected_times) def test_base_epochs(): """Test base epochs class """ raw = _get_data()[0] epochs = _BaseEpochs(raw.info, None, np.ones((1, 3), int), event_id, tmin, tmax) assert_raises(NotImplementedError, epochs.get_data) # events with non integers assert_raises(ValueError, _BaseEpochs, raw.info, None, np.ones((1, 3), float), event_id, tmin, tmax) assert_raises(ValueError, _BaseEpochs, raw.info, None, np.ones((1, 3, 2), int), event_id, tmin, tmax) @requires_scipy_version('0.14') def test_savgol_filter(): """Test savgol filtering """ h_freq = 10. raw, events = _get_data()[:2] epochs = Epochs(raw, events, event_id, tmin, tmax) assert_raises(RuntimeError, epochs.savgol_filter, 10.) epochs = Epochs(raw, events, event_id, tmin, tmax, preload=True) freqs = fftpack.fftfreq(len(epochs.times), 1. / epochs.info['sfreq']) data = np.abs(fftpack.fft(epochs.get_data())) match_mask = np.logical_and(freqs >= 0, freqs <= h_freq / 2.) mismatch_mask = np.logical_and(freqs >= h_freq * 2, freqs < 50.) epochs.savgol_filter(h_freq) data_filt = np.abs(fftpack.fft(epochs.get_data())) # decent in pass-band assert_allclose(np.mean(data[:, :, match_mask], 0), np.mean(data_filt[:, :, match_mask], 0), rtol=1e-4, atol=1e-2) # suppression in stop-band assert_true(np.mean(data[:, :, mismatch_mask]) > np.mean(data_filt[:, :, mismatch_mask]) * 5) def test_epochs_hash(): """Test epoch hashing """ raw, events = _get_data()[:2] epochs = Epochs(raw, events, event_id, tmin, tmax) assert_raises(RuntimeError, epochs.__hash__) epochs = Epochs(raw, events, event_id, tmin, tmax, preload=True) assert_equal(hash(epochs), hash(epochs)) epochs_2 = Epochs(raw, events, event_id, tmin, tmax, preload=True) assert_equal(hash(epochs), hash(epochs_2)) # do NOT use assert_equal here, failing output is terrible assert_true(pickle.dumps(epochs) == pickle.dumps(epochs_2)) epochs_2._data[0, 0, 0] -= 1 assert_not_equal(hash(epochs), hash(epochs_2)) def test_event_ordering(): """Test event order""" raw, events = _get_data()[:2] events2 = events.copy() np.random.shuffle(events2) for ii, eve in enumerate([events, events2]): with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') Epochs(raw, eve, event_id, tmin, tmax, baseline=(None, 0), reject=reject, flat=flat) assert_equal(len(w), ii) if ii > 0: assert_true('chronologically' in '%s' % w[-1].message) def test_epochs_bad_baseline(): """Test Epochs initialization with bad baseline parameters """ raw, events = _get_data()[:2] assert_raises(ValueError, Epochs, raw, events, None, -0.1, 0.3, (-0.2, 0)) assert_raises(ValueError, Epochs, raw, events, None, -0.1, 0.3, (0, 0.4)) def test_epoch_combine_ids(): """Test combining event ids in epochs compared to events """ raw, events, picks = _get_data() epochs = Epochs(raw, events, {'a': 1, 'b': 2, 'c': 3, 'd': 4, 'e': 5, 'f': 32}, tmin, tmax, picks=picks, preload=False) events_new = merge_events(events, [1, 2], 12) epochs_new = combine_event_ids(epochs, ['a', 'b'], {'ab': 12}) assert_equal(epochs_new['ab'].name, 'ab') assert_array_equal(events_new, epochs_new.events) # should probably add test + functionality for non-replacement XXX def test_epoch_multi_ids(): """Test epoch selection via multiple/partial keys """ raw, events, picks = _get_data() epochs = Epochs(raw, events, {'a/b/a': 1, 'a/b/b': 2, 'a/c': 3, 'b/d': 4, 'a_b': 5}, tmin, tmax, picks=picks, preload=False) epochs_regular = epochs[['a', 'b']] epochs_multi = epochs[['a/b/a', 'a/b/b']] assert_array_equal(epochs_regular.events, epochs_multi.events) def test_read_epochs_bad_events(): """Test epochs when events are at the beginning or the end of the file """ raw, events, picks = _get_data() # Event at the beginning epochs = Epochs(raw, np.array([[raw.first_samp, 0, event_id]]), event_id, tmin, tmax, picks=picks, baseline=(None, 0)) with warnings.catch_warnings(record=True): evoked = epochs.average() epochs = Epochs(raw, np.array([[raw.first_samp, 0, event_id]]), event_id, tmin, tmax, picks=picks, baseline=(None, 0)) assert_true(repr(epochs)) # test repr epochs.drop_bad_epochs() assert_true(repr(epochs)) with warnings.catch_warnings(record=True): evoked = epochs.average() # Event at the end epochs = Epochs(raw, np.array([[raw.last_samp, 0, event_id]]), event_id, tmin, tmax, picks=picks, baseline=(None, 0)) with warnings.catch_warnings(record=True): evoked = epochs.average() assert evoked warnings.resetwarnings() @slow_test def test_read_write_epochs(): """Test epochs from raw files with IO as fif file """ raw, events, picks = _get_data() tempdir = _TempDir() temp_fname = op.join(tempdir, 'test-epo.fif') temp_fname_no_bl = op.join(tempdir, 'test_no_bl-epo.fif') baseline = (None, 0) epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=baseline, preload=True) epochs_no_bl = Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=None, preload=True) assert_true(epochs_no_bl.baseline is None) evoked = epochs.average() data = epochs.get_data() # Bad tmin/tmax parameters assert_raises(ValueError, Epochs, raw, events, event_id, tmax, tmin, baseline=None) epochs_no_id = Epochs(raw, pick_events(events, include=event_id), None, tmin, tmax, picks=picks, baseline=(None, 0)) assert_array_equal(data, epochs_no_id.get_data()) eog_picks = pick_types(raw.info, meg=False, eeg=False, stim=False, eog=True, exclude='bads') eog_ch_names = [raw.ch_names[k] for k in eog_picks] epochs.drop_channels(eog_ch_names) epochs_no_bl.drop_channels(eog_ch_names) assert_true(len(epochs.info['chs']) == len(epochs.ch_names) == epochs.get_data().shape[1]) data_no_eog = epochs.get_data() assert_true(data.shape[1] == (data_no_eog.shape[1] + len(eog_picks))) # test decim kwarg with warnings.catch_warnings(record=True) as w: # decim with lowpass warnings.simplefilter('always') epochs_dec = Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), decim=4) assert_equal(len(w), 1) # decim without lowpass lowpass = raw.info['lowpass'] raw.info['lowpass'] = None epochs_dec = Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), decim=4) assert_equal(len(w), 2) raw.info['lowpass'] = lowpass data_dec = epochs_dec.get_data() assert_allclose(data[:, :, epochs_dec._decim_slice], data_dec, rtol=1e-7, atol=1e-12) evoked_dec = epochs_dec.average() assert_allclose(evoked.data[:, epochs_dec._decim_slice], evoked_dec.data, rtol=1e-12) n = evoked.data.shape[1] n_dec = evoked_dec.data.shape[1] n_dec_min = n // 4 assert_true(n_dec_min <= n_dec <= n_dec_min + 1) assert_true(evoked_dec.info['sfreq'] == evoked.info['sfreq'] / 4) # test IO epochs.save(temp_fname) epochs_no_bl.save(temp_fname_no_bl) epochs_read = read_epochs(temp_fname) epochs_no_bl_read = read_epochs(temp_fname_no_bl) assert_raises(ValueError, epochs.apply_baseline, baseline=[1, 2, 3]) epochs_no_bl_read.apply_baseline(baseline) assert_true(epochs_no_bl_read.baseline == baseline) assert_true(str(epochs_read).startswith('<Epochs')) assert_array_equal(epochs_no_bl_read.times, epochs.times) assert_array_almost_equal(epochs_read.get_data(), epochs.get_data()) assert_array_almost_equal(epochs.get_data(), epochs_no_bl_read.get_data()) assert_array_equal(epochs_read.times, epochs.times) assert_array_almost_equal(epochs_read.average().data, evoked.data) assert_equal(epochs_read.proj, epochs.proj) bmin, bmax = epochs.baseline if bmin is None: bmin = epochs.times[0] if bmax is None: bmax = epochs.times[-1] baseline = (bmin, bmax) assert_array_almost_equal(epochs_read.baseline, baseline) assert_array_almost_equal(epochs_read.tmin, epochs.tmin, 2) assert_array_almost_equal(epochs_read.tmax, epochs.tmax, 2) assert_equal(epochs_read.event_id, epochs.event_id) epochs.event_id.pop('1') epochs.event_id.update({'a:a': 1}) # test allow for ':' in key epochs.save(op.join(tempdir, 'foo-epo.fif')) epochs_read2 = read_epochs(op.join(tempdir, 'foo-epo.fif')) assert_equal(epochs_read2.event_id, epochs.event_id) # add reject here so some of the epochs get dropped epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), reject=reject) epochs.save(temp_fname) # ensure bad events are not saved epochs_read3 = read_epochs(temp_fname) assert_array_equal(epochs_read3.events, epochs.events) data = epochs.get_data() assert_true(epochs_read3.events.shape[0] == data.shape[0]) # test copying loaded one (raw property) epochs_read4 = epochs_read3.copy() assert_array_almost_equal(epochs_read4.get_data(), data) # test equalizing loaded one (drop_log property) epochs_read4.equalize_event_counts(epochs.event_id) epochs.drop_epochs([1, 2], reason='can we recover orig ID?') epochs.save(temp_fname) epochs_read5 = read_epochs(temp_fname) assert_array_equal(epochs_read5.selection, epochs.selection) assert_equal(len(epochs_read5.selection), len(epochs_read5.events)) assert_array_equal(epochs_read5.drop_log, epochs.drop_log) # Test that one can drop channels on read file epochs_read5.drop_channels(epochs_read5.ch_names[:1]) # test warnings on bad filenames with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') epochs_badname = op.join(tempdir, 'test-bad-name.fif.gz') epochs.save(epochs_badname) read_epochs(epochs_badname) assert_true(len(w) == 2) # test loading epochs with missing events epochs = Epochs(raw, events, dict(foo=1, bar=999), tmin, tmax, picks=picks, on_missing='ignore') epochs.save(temp_fname) epochs_read = read_epochs(temp_fname) assert_allclose(epochs.get_data(), epochs_read.get_data()) assert_array_equal(epochs.events, epochs_read.events) assert_equal(set(epochs.event_id.keys()), set(text_type(x) for x in epochs_read.event_id.keys())) # test saving split epoch files epochs.save(temp_fname, split_size='7MB') epochs_read = read_epochs(temp_fname) assert_allclose(epochs.get_data(), epochs_read.get_data()) assert_array_equal(epochs.events, epochs_read.events) assert_array_equal(epochs.selection, epochs_read.selection) assert_equal(epochs.drop_log, epochs_read.drop_log) # Test that having a single time point works epochs.preload_data() epochs.crop(0, 0, copy=False) assert_equal(len(epochs.times), 1) assert_equal(epochs.get_data().shape[-1], 1) epochs.save(temp_fname) epochs_read = read_epochs(temp_fname) assert_equal(len(epochs_read.times), 1) assert_equal(epochs.get_data().shape[-1], 1) def test_epochs_proj(): """Test handling projection (apply proj in Raw or in Epochs) """ tempdir = _TempDir() raw, events, picks = _get_data() exclude = raw.info['bads'] + ['MEG 2443', 'EEG 053'] # bads + 2 more this_picks = pick_types(raw.info, meg=True, eeg=False, stim=True, eog=True, exclude=exclude) epochs = Epochs(raw, events[:4], event_id, tmin, tmax, picks=this_picks, baseline=(None, 0), proj=True) assert_true(all(p['active'] is True for p in epochs.info['projs'])) evoked = epochs.average() assert_true(all(p['active'] is True for p in evoked.info['projs'])) data = epochs.get_data() raw_proj = io.Raw(raw_fname, proj=True) epochs_no_proj = Epochs(raw_proj, events[:4], event_id, tmin, tmax, picks=this_picks, baseline=(None, 0), proj=False) data_no_proj = epochs_no_proj.get_data() assert_true(all(p['active'] is True for p in epochs_no_proj.info['projs'])) evoked_no_proj = epochs_no_proj.average() assert_true(all(p['active'] is True for p in evoked_no_proj.info['projs'])) assert_true(epochs_no_proj.proj is True) # as projs are active from Raw assert_array_almost_equal(data, data_no_proj, decimal=8) # make sure we can exclude avg ref this_picks = pick_types(raw.info, meg=True, eeg=True, stim=True, eog=True, exclude=exclude) epochs = Epochs(raw, events[:4], event_id, tmin, tmax, picks=this_picks, baseline=(None, 0), proj=True, add_eeg_ref=True) assert_true(_has_eeg_average_ref_proj(epochs.info['projs'])) epochs = Epochs(raw, events[:4], event_id, tmin, tmax, picks=this_picks, baseline=(None, 0), proj=True, add_eeg_ref=False) assert_true(not _has_eeg_average_ref_proj(epochs.info['projs'])) # make sure we don't add avg ref when a custom ref has been applied raw.info['custom_ref_applied'] = True epochs = Epochs(raw, events[:4], event_id, tmin, tmax, picks=this_picks, baseline=(None, 0), proj=True) assert_true(not _has_eeg_average_ref_proj(epochs.info['projs'])) # From GH#2200: # This has no problem proj = raw.info['projs'] epochs = Epochs(raw, events[:4], event_id, tmin, tmax, picks=this_picks, baseline=(None, 0), proj=False) epochs.info['projs'] = [] data = epochs.copy().add_proj(proj).apply_proj().get_data() # save and reload data fname_epo = op.join(tempdir, 'temp-epo.fif') epochs.save(fname_epo) # Save without proj added epochs_read = read_epochs(fname_epo) epochs_read.add_proj(proj) epochs_read.apply_proj() # This used to bomb data_2 = epochs_read.get_data() # Let's check the result assert_allclose(data, data_2, atol=1e-15, rtol=1e-3) def test_evoked_arithmetic(): """Test arithmetic of evoked data """ raw, events, picks = _get_data() epochs1 = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks, baseline=(None, 0)) evoked1 = epochs1.average() epochs2 = Epochs(raw, events[4:8], event_id, tmin, tmax, picks=picks, baseline=(None, 0)) evoked2 = epochs2.average() epochs = Epochs(raw, events[:8], event_id, tmin, tmax, picks=picks, baseline=(None, 0)) evoked = epochs.average() evoked_sum = evoked1 + evoked2 assert_array_equal(evoked.data, evoked_sum.data) assert_array_equal(evoked.times, evoked_sum.times) assert_true(evoked_sum.nave == (evoked1.nave + evoked2.nave)) evoked_diff = evoked1 - evoked1 assert_array_equal(np.zeros_like(evoked.data), evoked_diff.data) def test_evoked_io_from_epochs(): """Test IO of evoked data made from epochs """ tempdir = _TempDir() raw, events, picks = _get_data() # offset our tmin so we don't get exactly a zero value when decimating with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') epochs = Epochs(raw, events[:4], event_id, tmin + 0.011, tmax, picks=picks, baseline=(None, 0), decim=5) assert_true(len(w) == 1) evoked = epochs.average() evoked.save(op.join(tempdir, 'evoked-ave.fif')) evoked2 = read_evokeds(op.join(tempdir, 'evoked-ave.fif'))[0] assert_allclose(evoked.data, evoked2.data, rtol=1e-4, atol=1e-20) assert_allclose(evoked.times, evoked2.times, rtol=1e-4, atol=1 / evoked.info['sfreq']) # now let's do one with negative time with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') epochs = Epochs(raw, events[:4], event_id, 0.1, tmax, picks=picks, baseline=(0.1, 0.2), decim=5) evoked = epochs.average() evoked.save(op.join(tempdir, 'evoked-ave.fif')) evoked2 = read_evokeds(op.join(tempdir, 'evoked-ave.fif'))[0] assert_allclose(evoked.data, evoked2.data, rtol=1e-4, atol=1e-20) assert_allclose(evoked.times, evoked2.times, rtol=1e-4, atol=1e-20) # should be equivalent to a cropped original with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') epochs = Epochs(raw, events[:4], event_id, -0.2, tmax, picks=picks, baseline=(0.1, 0.2), decim=5) evoked = epochs.average() evoked.crop(0.099, None) assert_allclose(evoked.data, evoked2.data, rtol=1e-4, atol=1e-20) assert_allclose(evoked.times, evoked2.times, rtol=1e-4, atol=1e-20) def test_evoked_standard_error(): """Test calculation and read/write of standard error """ raw, events, picks = _get_data() tempdir = _TempDir() epochs = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks, baseline=(None, 0)) evoked = [epochs.average(), epochs.standard_error()] write_evokeds(op.join(tempdir, 'evoked-ave.fif'), evoked) evoked2 = read_evokeds(op.join(tempdir, 'evoked-ave.fif'), [0, 1]) evoked3 = [read_evokeds(op.join(tempdir, 'evoked-ave.fif'), 'Unknown'), read_evokeds(op.join(tempdir, 'evoked-ave.fif'), 'Unknown', kind='standard_error')] for evoked_new in [evoked2, evoked3]: assert_true(evoked_new[0]._aspect_kind == FIFF.FIFFV_ASPECT_AVERAGE) assert_true(evoked_new[0].kind == 'average') assert_true(evoked_new[1]._aspect_kind == FIFF.FIFFV_ASPECT_STD_ERR) assert_true(evoked_new[1].kind == 'standard_error') for ave, ave2 in zip(evoked, evoked_new): assert_array_almost_equal(ave.data, ave2.data) assert_array_almost_equal(ave.times, ave2.times) assert_equal(ave.nave, ave2.nave) assert_equal(ave._aspect_kind, ave2._aspect_kind) assert_equal(ave.kind, ave2.kind) assert_equal(ave.last, ave2.last) assert_equal(ave.first, ave2.first) def test_reject_epochs(): """Test of epochs rejection """ raw, events, picks = _get_data() events1 = events[events[:, 2] == event_id] epochs = Epochs(raw, events1, event_id, tmin, tmax, baseline=(None, 0), reject=reject, flat=flat) assert_raises(RuntimeError, len, epochs) n_events = len(epochs.events) data = epochs.get_data() n_clean_epochs = len(data) # Should match # mne_process_raw --raw test_raw.fif --projoff \ # --saveavetag -ave --ave test.ave --filteroff assert_true(n_events > n_clean_epochs) assert_true(n_clean_epochs == 3) assert_true(epochs.drop_log == [[], [], [], ['MEG 2443'], ['MEG 2443'], ['MEG 2443'], ['MEG 2443']]) # Ensure epochs are not dropped based on a bad channel raw_2 = raw.copy() raw_2.info['bads'] = ['MEG 2443'] reject_crazy = dict(grad=1000e-15, mag=4e-15, eeg=80e-9, eog=150e-9) epochs = Epochs(raw_2, events1, event_id, tmin, tmax, baseline=(None, 0), reject=reject_crazy, flat=flat) epochs.drop_bad_epochs() assert_true(all('MEG 2442' in e for e in epochs.drop_log)) assert_true(all('MEG 2443' not in e for e in epochs.drop_log)) # Invalid reject_tmin/reject_tmax/detrend assert_raises(ValueError, Epochs, raw, events1, event_id, tmin, tmax, reject_tmin=1., reject_tmax=0) assert_raises(ValueError, Epochs, raw, events1, event_id, tmin, tmax, reject_tmin=tmin - 1, reject_tmax=1.) assert_raises(ValueError, Epochs, raw, events1, event_id, tmin, tmax, reject_tmin=0., reject_tmax=tmax + 1) epochs = Epochs(raw, events1, event_id, tmin, tmax, picks=picks, baseline=(None, 0), reject=reject, flat=flat, reject_tmin=0., reject_tmax=.1) data = epochs.get_data() n_clean_epochs = len(data) assert_true(n_clean_epochs == 7) assert_true(len(epochs) == 7) assert_true(epochs.times[epochs._reject_time][0] >= 0.) assert_true(epochs.times[epochs._reject_time][-1] <= 0.1) # Invalid data for _is_good_epoch function epochs = Epochs(raw, events1, event_id, tmin, tmax, reject=None, flat=None) assert_equal(epochs._is_good_epoch(None), (False, ['NO_DATA'])) assert_equal(epochs._is_good_epoch(np.zeros((1, 1))), (False, ['TOO_SHORT'])) data = epochs[0].get_data()[0] assert_equal(epochs._is_good_epoch(data), (True, None)) def test_preload_epochs(): """Test preload of epochs """ raw, events, picks = _get_data() epochs_preload = Epochs(raw, events[:16], event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True, reject=reject, flat=flat) data_preload = epochs_preload.get_data() epochs = Epochs(raw, events[:16], event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=False, reject=reject, flat=flat) data = epochs.get_data() assert_array_equal(data_preload, data) assert_array_almost_equal(epochs_preload.average().data, epochs.average().data, 18) def test_indexing_slicing(): """Test of indexing and slicing operations """ raw, events, picks = _get_data() epochs = Epochs(raw, events[:20], event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=False, reject=reject, flat=flat) data_normal = epochs.get_data() n_good_events = data_normal.shape[0] # indices for slicing start_index = 1 end_index = n_good_events - 1 assert((end_index - start_index) > 0) for preload in [True, False]: epochs2 = Epochs(raw, events[:20], event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=preload, reject=reject, flat=flat) if not preload: epochs2.drop_bad_epochs() # using slicing epochs2_sliced = epochs2[start_index:end_index] data_epochs2_sliced = epochs2_sliced.get_data() assert_array_equal(data_epochs2_sliced, data_normal[start_index:end_index]) # using indexing pos = 0 for idx in range(start_index, end_index): data = epochs2_sliced[pos].get_data() assert_array_equal(data[0], data_normal[idx]) pos += 1 # using indexing with an int data = epochs2[data_epochs2_sliced.shape[0]].get_data() assert_array_equal(data, data_normal[[idx]]) # using indexing with an array idx = np.random.randint(0, data_epochs2_sliced.shape[0], 10) data = epochs2[idx].get_data() assert_array_equal(data, data_normal[idx]) # using indexing with a list of indices idx = [0] data = epochs2[idx].get_data() assert_array_equal(data, data_normal[idx]) idx = [0, 1] data = epochs2[idx].get_data() assert_array_equal(data, data_normal[idx]) def test_comparision_with_c(): """Test of average obtained vs C code """ raw, events = _get_data()[:2] c_evoked = read_evokeds(evoked_nf_name, condition=0) epochs = Epochs(raw, events, event_id, tmin, tmax, baseline=None, preload=True, reject=None, flat=None) evoked = epochs.average() sel = pick_channels(c_evoked.ch_names, evoked.ch_names) evoked_data = evoked.data c_evoked_data = c_evoked.data[sel] assert_true(evoked.nave == c_evoked.nave) assert_array_almost_equal(evoked_data, c_evoked_data, 10) assert_array_almost_equal(evoked.times, c_evoked.times, 12) def test_crop(): """Test of crop of epochs """ raw, events, picks = _get_data() epochs = Epochs(raw, events[:5], event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=False, reject=reject, flat=flat) assert_raises(RuntimeError, epochs.crop, None, 0.2) # not preloaded data_normal = epochs.get_data() epochs2 = Epochs(raw, events[:5], event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True, reject=reject, flat=flat) with warnings.catch_warnings(record=True) as w: epochs2.crop(-20, 200) assert_true(len(w) == 2) # indices for slicing tmin_window = tmin + 0.1 tmax_window = tmax - 0.1 tmask = (epochs.times >= tmin_window) & (epochs.times <= tmax_window) assert_true(tmin_window > tmin) assert_true(tmax_window < tmax) epochs3 = epochs2.crop(tmin_window, tmax_window, copy=True) data3 = epochs3.get_data() epochs2.crop(tmin_window, tmax_window) data2 = epochs2.get_data() assert_array_equal(data2, data_normal[:, :, tmask]) assert_array_equal(data3, data_normal[:, :, tmask]) # test time info is correct epochs = EpochsArray(np.zeros((1, 1, 1000)), create_info(1, 1000., 'eeg'), np.ones((1, 3), int), tmin=-0.2) epochs.crop(-.200, .700) last_time = epochs.times[-1] with warnings.catch_warnings(record=True): # not LP filtered epochs.decimate(10) assert_allclose(last_time, epochs.times[-1]) def test_resample(): """Test of resample of epochs """ raw, events, picks = _get_data() epochs = Epochs(raw, events[:10], event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=False, reject=reject, flat=flat) assert_raises(RuntimeError, epochs.resample, 100) epochs_o = Epochs(raw, events[:10], event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True, reject=reject, flat=flat) epochs = epochs_o.copy() data_normal = cp.deepcopy(epochs.get_data()) times_normal = cp.deepcopy(epochs.times) sfreq_normal = epochs.info['sfreq'] # upsample by 2 epochs = epochs_o.copy() epochs.resample(sfreq_normal * 2, npad=0) data_up = cp.deepcopy(epochs.get_data()) times_up = cp.deepcopy(epochs.times) sfreq_up = epochs.info['sfreq'] # downsamply by 2, which should match epochs.resample(sfreq_normal, npad=0) data_new = cp.deepcopy(epochs.get_data()) times_new = cp.deepcopy(epochs.times) sfreq_new = epochs.info['sfreq'] assert_true(data_up.shape[2] == 2 * data_normal.shape[2]) assert_true(sfreq_up == 2 * sfreq_normal) assert_true(sfreq_new == sfreq_normal) assert_true(len(times_up) == 2 * len(times_normal)) assert_array_almost_equal(times_new, times_normal, 10) assert_true(data_up.shape[2] == 2 * data_normal.shape[2]) assert_array_almost_equal(data_new, data_normal, 5) # use parallel epochs = epochs_o.copy() epochs.resample(sfreq_normal * 2, n_jobs=2, npad=0) assert_true(np.allclose(data_up, epochs._data, rtol=1e-8, atol=1e-16)) # test copy flag epochs = epochs_o.copy() epochs_resampled = epochs.resample(sfreq_normal * 2, npad=0, copy=True) assert_true(epochs_resampled is not epochs) epochs_resampled = epochs.resample(sfreq_normal * 2, npad=0, copy=False) assert_true(epochs_resampled is epochs) def test_detrend(): """Test detrending of epochs """ raw, events, picks = _get_data() # test first-order epochs_1 = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks, baseline=None, detrend=1) epochs_2 = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks, baseline=None, detrend=None) data_picks = pick_types(epochs_1.info, meg=True, eeg=True, exclude='bads') evoked_1 = epochs_1.average() evoked_2 = epochs_2.average() evoked_2.detrend(1) # Due to roundoff these won't be exactly equal, but they should be close assert_true(np.allclose(evoked_1.data, evoked_2.data, rtol=1e-8, atol=1e-20)) # test zeroth-order case for preload in [True, False]: epochs_1 = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks, baseline=(None, None), preload=preload) epochs_2 = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks, baseline=None, preload=preload, detrend=0) a = epochs_1.get_data() b = epochs_2.get_data() # All data channels should be almost equal assert_true(np.allclose(a[:, data_picks, :], b[:, data_picks, :], rtol=1e-16, atol=1e-20)) # There are non-M/EEG channels that should not be equal: assert_true(not np.allclose(a, b)) assert_raises(ValueError, Epochs, raw, events[:4], event_id, tmin, tmax, detrend=2) def test_bootstrap(): """Test of bootstrapping of epochs """ raw, events, picks = _get_data() epochs = Epochs(raw, events[:5], event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True, reject=reject, flat=flat) epochs2 = bootstrap(epochs, random_state=0) assert_true(len(epochs2.events) == len(epochs.events)) assert_true(epochs._data.shape == epochs2._data.shape) def test_epochs_copy(): """Test copy epochs """ raw, events, picks = _get_data() epochs = Epochs(raw, events[:5], event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True, reject=reject, flat=flat) copied = epochs.copy() assert_array_equal(epochs._data, copied._data) epochs = Epochs(raw, events[:5], event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=False, reject=reject, flat=flat) copied = epochs.copy() data = epochs.get_data() copied_data = copied.get_data() assert_array_equal(data, copied_data) def test_iter_evoked(): """Test the iterator for epochs -> evoked """ raw, events, picks = _get_data() epochs = Epochs(raw, events[:5], event_id, tmin, tmax, picks=picks, baseline=(None, 0)) for ii, ev in enumerate(epochs.iter_evoked()): x = ev.data y = epochs.get_data()[ii, :, :] assert_array_equal(x, y) def test_subtract_evoked(): """Test subtraction of Evoked from Epochs """ raw, events, picks = _get_data() epochs = Epochs(raw, events[:10], event_id, tmin, tmax, picks=picks, baseline=(None, 0)) # make sure subraction fails if data channels are missing assert_raises(ValueError, epochs.subtract_evoked, epochs.average(picks[:5])) # do the subraction using the default argument epochs.subtract_evoked() # apply SSP now epochs.apply_proj() # use preloading and SSP from the start epochs2 = Epochs(raw, events[:10], event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True, proj=True) evoked = epochs2.average() epochs2.subtract_evoked(evoked) # this gives the same result assert_allclose(epochs.get_data(), epochs2.get_data()) # if we compute the evoked response after subtracting it we get zero zero_evoked = epochs.average() data = zero_evoked.data assert_allclose(data, np.zeros_like(data), atol=1e-15) def test_epoch_eq(): """Test epoch count equalization and condition combining """ raw, events, picks = _get_data() # equalizing epochs objects epochs_1 = Epochs(raw, events, event_id, tmin, tmax, picks=picks) epochs_2 = Epochs(raw, events, event_id_2, tmin, tmax, picks=picks) epochs_1.drop_bad_epochs() # make sure drops are logged assert_true(len([l for l in epochs_1.drop_log if not l]) == len(epochs_1.events)) drop_log1 = epochs_1.drop_log = [[] for _ in range(len(epochs_1.events))] drop_log2 = [[] if l == ['EQUALIZED_COUNT'] else l for l in epochs_1.drop_log] assert_true(drop_log1 == drop_log2) assert_true(len([l for l in epochs_1.drop_log if not l]) == len(epochs_1.events)) assert_true(epochs_1.events.shape[0] != epochs_2.events.shape[0]) equalize_epoch_counts([epochs_1, epochs_2], method='mintime') assert_true(epochs_1.events.shape[0] == epochs_2.events.shape[0]) epochs_3 = Epochs(raw, events, event_id, tmin, tmax, picks=picks) epochs_4 = Epochs(raw, events, event_id_2, tmin, tmax, picks=picks) equalize_epoch_counts([epochs_3, epochs_4], method='truncate') assert_true(epochs_1.events.shape[0] == epochs_3.events.shape[0]) assert_true(epochs_3.events.shape[0] == epochs_4.events.shape[0]) # equalizing conditions epochs = Epochs(raw, events, {'a': 1, 'b': 2, 'c': 3, 'd': 4}, tmin, tmax, picks=picks, reject=reject) epochs.drop_bad_epochs() # make sure drops are logged assert_true(len([l for l in epochs.drop_log if not l]) == len(epochs.events)) drop_log1 = deepcopy(epochs.drop_log) old_shapes = [epochs[key].events.shape[0] for key in ['a', 'b', 'c', 'd']] epochs.equalize_event_counts(['a', 'b'], copy=False) # undo the eq logging drop_log2 = [[] if l == ['EQUALIZED_COUNT'] else l for l in epochs.drop_log] assert_true(drop_log1 == drop_log2) assert_true(len([l for l in epochs.drop_log if not l]) == len(epochs.events)) new_shapes = [epochs[key].events.shape[0] for key in ['a', 'b', 'c', 'd']] assert_true(new_shapes[0] == new_shapes[1]) assert_true(new_shapes[2] == new_shapes[2]) assert_true(new_shapes[3] == new_shapes[3]) # now with two conditions collapsed old_shapes = new_shapes epochs.equalize_event_counts([['a', 'b'], 'c'], copy=False) new_shapes = [epochs[key].events.shape[0] for key in ['a', 'b', 'c', 'd']] assert_true(new_shapes[0] + new_shapes[1] == new_shapes[2]) assert_true(new_shapes[3] == old_shapes[3]) assert_raises(KeyError, epochs.equalize_event_counts, [1, 'a']) # now let's combine conditions old_shapes = new_shapes epochs = epochs.equalize_event_counts([['a', 'b'], ['c', 'd']])[0] new_shapes = [epochs[key].events.shape[0] for key in ['a', 'b', 'c', 'd']] assert_true(old_shapes[0] + old_shapes[1] == new_shapes[0] + new_shapes[1]) assert_true(new_shapes[0] + new_shapes[1] == new_shapes[2] + new_shapes[3]) assert_raises(ValueError, combine_event_ids, epochs, ['a', 'b'], {'ab': 1}) combine_event_ids(epochs, ['a', 'b'], {'ab': 12}, copy=False) caught = 0 for key in ['a', 'b']: try: epochs[key] except KeyError: caught += 1 assert_raises(Exception, caught == 2) assert_true(not np.any(epochs.events[:, 2] == 1)) assert_true(not np.any(epochs.events[:, 2] == 2)) epochs = combine_event_ids(epochs, ['c', 'd'], {'cd': 34}) assert_true(np.all(np.logical_or(epochs.events[:, 2] == 12, epochs.events[:, 2] == 34))) assert_true(epochs['ab'].events.shape[0] == old_shapes[0] + old_shapes[1]) assert_true(epochs['ab'].events.shape[0] == epochs['cd'].events.shape[0]) def test_access_by_name(): """Test accessing epochs by event name and on_missing for rare events """ tempdir = _TempDir() raw, events, picks = _get_data() # Test various invalid inputs assert_raises(ValueError, Epochs, raw, events, {1: 42, 2: 42}, tmin, tmax, picks=picks) assert_raises(ValueError, Epochs, raw, events, {'a': 'spam', 2: 'eggs'}, tmin, tmax, picks=picks) assert_raises(ValueError, Epochs, raw, events, {'a': 'spam', 2: 'eggs'}, tmin, tmax, picks=picks) assert_raises(ValueError, Epochs, raw, events, 'foo', tmin, tmax, picks=picks) assert_raises(ValueError, Epochs, raw, events, ['foo'], tmin, tmax, picks=picks) # Test accessing non-existent events (assumes 12345678 does not exist) event_id_illegal = dict(aud_l=1, does_not_exist=12345678) assert_raises(ValueError, Epochs, raw, events, event_id_illegal, tmin, tmax) # Test on_missing assert_raises(ValueError, Epochs, raw, events, 1, tmin, tmax, on_missing='foo') with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') Epochs(raw, events, event_id_illegal, tmin, tmax, on_missing='warning') nw = len(w) assert_true(1 <= nw <= 2) Epochs(raw, events, event_id_illegal, tmin, tmax, on_missing='ignore') assert_equal(len(w), nw) # Test constructing epochs with a list of ints as events epochs = Epochs(raw, events, [1, 2], tmin, tmax, picks=picks) for k, v in epochs.event_id.items(): assert_equal(int(k), v) epochs = Epochs(raw, events, {'a': 1, 'b': 2}, tmin, tmax, picks=picks) assert_raises(KeyError, epochs.__getitem__, 'bar') data = epochs['a'].get_data() event_a = events[events[:, 2] == 1] assert_true(len(data) == len(event_a)) epochs = Epochs(raw, events, {'a': 1, 'b': 2}, tmin, tmax, picks=picks, preload=True) assert_raises(KeyError, epochs.__getitem__, 'bar') temp_fname = op.join(tempdir, 'test-epo.fif') epochs.save(temp_fname) epochs2 = read_epochs(temp_fname) for ep in [epochs, epochs2]: data = ep['a'].get_data() event_a = events[events[:, 2] == 1] assert_true(len(data) == len(event_a)) assert_array_equal(epochs2['a'].events, epochs['a'].events) epochs3 = Epochs(raw, events, {'a': 1, 'b': 2, 'c': 3, 'd': 4}, tmin, tmax, picks=picks, preload=True) assert_equal(list(sorted(epochs3[('a', 'b')].event_id.values())), [1, 2]) epochs4 = epochs['a'] epochs5 = epochs3['a'] assert_array_equal(epochs4.events, epochs5.events) # 20 is our tolerance because epochs are written out as floats assert_array_almost_equal(epochs4.get_data(), epochs5.get_data(), 20) epochs6 = epochs3[['a', 'b']] assert_true(all(np.logical_or(epochs6.events[:, 2] == 1, epochs6.events[:, 2] == 2))) assert_array_equal(epochs.events, epochs6.events) assert_array_almost_equal(epochs.get_data(), epochs6.get_data(), 20) # Make sure we preserve names assert_equal(epochs['a'].name, 'a') assert_equal(epochs[['a', 'b']]['a'].name, 'a') @requires_pandas def test_to_data_frame(): """Test epochs Pandas exporter""" raw, events, picks = _get_data() epochs = Epochs(raw, events, {'a': 1, 'b': 2}, tmin, tmax, picks=picks) assert_raises(ValueError, epochs.to_data_frame, index=['foo', 'bar']) assert_raises(ValueError, epochs.to_data_frame, index='qux') assert_raises(ValueError, epochs.to_data_frame, np.arange(400)) df = epochs.to_data_frame(index=['condition', 'epoch', 'time'], picks=list(range(epochs.info['nchan']))) # Default index and picks df2 = epochs.to_data_frame() assert_equal(df.index.names, df2.index.names) assert_array_equal(df.columns.values, epochs.ch_names) data = np.hstack(epochs.get_data()) assert_true((df.columns == epochs.ch_names).all()) assert_array_equal(df.values[:, 0], data[0] * 1e13) assert_array_equal(df.values[:, 2], data[2] * 1e15) for ind in ['time', ['condition', 'time'], ['condition', 'time', 'epoch']]: df = epochs.to_data_frame(index=ind) assert_true(df.index.names == ind if isinstance(ind, list) else [ind]) # test that non-indexed data were present as categorial variables assert_array_equal(sorted(df.reset_index().columns[:3]), sorted(['time', 'condition', 'epoch'])) def test_epochs_proj_mixin(): """Test SSP proj methods from ProjMixin class """ raw, events, picks = _get_data() for proj in [True, False]: epochs = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks, baseline=(None, 0), proj=proj) assert_true(all(p['active'] == proj for p in epochs.info['projs'])) # test adding / deleting proj if proj: epochs.get_data() assert_true(all(p['active'] == proj for p in epochs.info['projs'])) assert_raises(ValueError, epochs.add_proj, epochs.info['projs'][0], {'remove_existing': True}) assert_raises(ValueError, epochs.add_proj, 'spam') assert_raises(ValueError, epochs.del_proj, 0) else: projs = deepcopy(epochs.info['projs']) n_proj = len(epochs.info['projs']) epochs.del_proj(0) assert_true(len(epochs.info['projs']) == n_proj - 1) epochs.add_proj(projs, remove_existing=False) assert_true(len(epochs.info['projs']) == 2 * n_proj - 1) epochs.add_proj(projs, remove_existing=True) assert_true(len(epochs.info['projs']) == n_proj) # catch no-gos. # wrong proj argument assert_raises(ValueError, Epochs, raw, events[:4], event_id, tmin, tmax, picks=picks, baseline=(None, 0), proj='crazy') # delayed without reject params assert_raises(RuntimeError, Epochs, raw, events[:4], event_id, tmin, tmax, picks=picks, baseline=(None, 0), proj='delayed', reject=None) for preload in [True, False]: epochs = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks, baseline=(None, 0), proj='delayed', preload=preload, add_eeg_ref=True, reject=reject) epochs2 = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks, baseline=(None, 0), proj=True, preload=preload, add_eeg_ref=True, reject=reject) assert_allclose(epochs.copy().apply_proj().get_data()[0], epochs2.get_data()[0], rtol=1e-10, atol=1e-25) # make sure data output is constant across repeated calls # e.g. drop bads assert_array_equal(epochs.get_data(), epochs.get_data()) assert_array_equal(epochs2.get_data(), epochs2.get_data()) # test epochs.next calls data = epochs.get_data().copy() data2 = np.array([e for e in epochs]) assert_array_equal(data, data2) # cross application from processing stream 1 to 2 epochs.apply_proj() assert_array_equal(epochs._projector, epochs2._projector) assert_allclose(epochs._data, epochs2.get_data()) # test mixin against manual application epochs = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks, baseline=None, proj=False, add_eeg_ref=True) data = epochs.get_data().copy() epochs.apply_proj() assert_allclose(np.dot(epochs._projector, data[0]), epochs._data[0]) def test_delayed_epochs(): """Test delayed projection """ raw, events, picks = _get_data() events = events[:10] picks = np.concatenate([pick_types(raw.info, meg=True, eeg=True)[::22], pick_types(raw.info, meg=False, eeg=False, ecg=True, eog=True)]) picks = np.sort(picks) raw.info['lowpass'] = 40. # fake the LP info so no warnings for preload in (True, False): for proj in (True, False, 'delayed'): for decim in (1, 3): for ii in range(2): epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks, proj=proj, reject=reject, preload=preload, decim=decim) if ii == 1: epochs.preload_data() picks_data = pick_types(epochs.info, meg=True, eeg=True) evoked = epochs.average(picks=picks_data) if proj is True: evoked.apply_proj() epochs_data = epochs.get_data().mean(axis=0)[picks_data] assert_array_equal(evoked.ch_names, np.array(epochs.ch_names)[picks_data]) assert_allclose(evoked.times, epochs.times) assert_allclose(evoked.data, epochs_data, rtol=1e-5, atol=1e-15) def test_drop_epochs(): """Test dropping of epochs. """ raw, events, picks = _get_data() epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0)) events1 = events[events[:, 2] == event_id] # Bound checks assert_raises(IndexError, epochs.drop_epochs, [len(epochs.events)]) assert_raises(IndexError, epochs.drop_epochs, [-1]) assert_raises(ValueError, epochs.drop_epochs, [[1, 2], [3, 4]]) # Test selection attribute assert_array_equal(epochs.selection, np.where(events[:, 2] == event_id)[0]) assert_equal(len(epochs.drop_log), len(events)) assert_true(all(epochs.drop_log[k] == ['IGNORED'] for k in set(range(len(events))) - set(epochs.selection))) selection = epochs.selection.copy() n_events = len(epochs.events) epochs.drop_epochs([2, 4], reason='d') assert_equal(epochs.drop_log_stats(), 2. / n_events * 100) assert_equal(len(epochs.drop_log), len(events)) assert_equal([epochs.drop_log[k] for k in selection[[2, 4]]], [['d'], ['d']]) assert_array_equal(events[epochs.selection], events1[[0, 1, 3, 5, 6]]) assert_array_equal(events[epochs[3:].selection], events1[[5, 6]]) assert_array_equal(events[epochs['1'].selection], events1[[0, 1, 3, 5, 6]]) def test_drop_epochs_mult(): """Test that subselecting epochs or making less epochs is equivalent""" raw, events, picks = _get_data() for preload in [True, False]: epochs1 = Epochs(raw, events, {'a': 1, 'b': 2}, tmin, tmax, picks=picks, reject=reject, preload=preload)['a'] epochs2 = Epochs(raw, events, {'a': 1}, tmin, tmax, picks=picks, reject=reject, preload=preload) if preload: # In the preload case you cannot know the bads if already ignored assert_equal(len(epochs1.drop_log), len(epochs2.drop_log)) for d1, d2 in zip(epochs1.drop_log, epochs2.drop_log): if d1 == ['IGNORED']: assert_true(d2 == ['IGNORED']) if d1 != ['IGNORED'] and d1 != []: assert_true((d2 == d1) or (d2 == ['IGNORED'])) if d1 == []: assert_true(d2 == []) assert_array_equal(epochs1.events, epochs2.events) assert_array_equal(epochs1.selection, epochs2.selection) else: # In the non preload is should be exactly the same assert_equal(epochs1.drop_log, epochs2.drop_log) assert_array_equal(epochs1.events, epochs2.events) assert_array_equal(epochs1.selection, epochs2.selection) def test_contains(): """Test membership API""" raw, events = _get_data()[:2] tests = [(('mag', False), ('grad', 'eeg')), (('grad', False), ('mag', 'eeg')), ((False, True), ('grad', 'mag'))] for (meg, eeg), others in tests: picks_contains = pick_types(raw.info, meg=meg, eeg=eeg) epochs = Epochs(raw, events, {'a': 1, 'b': 2}, tmin, tmax, picks=picks_contains, reject=None, preload=False) test = 'eeg' if eeg is True else meg assert_true(test in epochs) assert_true(not any(o in epochs for o in others)) assert_raises(ValueError, epochs.__contains__, 'foo') assert_raises(ValueError, epochs.__contains__, 1) def test_drop_channels_mixin(): """Test channels-dropping functionality """ raw, events = _get_data()[:2] # here without picks to get additional coverage epochs = Epochs(raw, events, event_id, tmin, tmax, picks=None, baseline=(None, 0), preload=True) drop_ch = epochs.ch_names[:3] ch_names = epochs.ch_names[3:] ch_names_orig = epochs.ch_names dummy = epochs.drop_channels(drop_ch, copy=True) assert_equal(ch_names, dummy.ch_names) assert_equal(ch_names_orig, epochs.ch_names) assert_equal(len(ch_names_orig), epochs.get_data().shape[1]) epochs.drop_channels(drop_ch) assert_equal(ch_names, epochs.ch_names) assert_equal(len(ch_names), epochs.get_data().shape[1]) def test_pick_channels_mixin(): """Test channel-picking functionality """ raw, events, picks = _get_data() epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True) ch_names = epochs.ch_names[:3] epochs.preload = False assert_raises(RuntimeError, epochs.drop_channels, ['foo']) epochs.preload = True ch_names_orig = epochs.ch_names dummy = epochs.pick_channels(ch_names, copy=True) assert_equal(ch_names, dummy.ch_names) assert_equal(ch_names_orig, epochs.ch_names) assert_equal(len(ch_names_orig), epochs.get_data().shape[1]) epochs.pick_channels(ch_names) assert_equal(ch_names, epochs.ch_names) assert_equal(len(ch_names), epochs.get_data().shape[1]) # Invalid picks assert_raises(ValueError, Epochs, raw, events, event_id, tmin, tmax, picks=[]) def test_equalize_channels(): """Test equalization of channels """ raw, events, picks = _get_data() epochs1 = Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), proj=False, preload=True) epochs2 = epochs1.copy() ch_names = epochs1.ch_names[2:] epochs1.drop_channels(epochs1.ch_names[:1]) epochs2.drop_channels(epochs2.ch_names[1:2]) my_comparison = [epochs1, epochs2] equalize_channels(my_comparison) for e in my_comparison: assert_equal(ch_names, e.ch_names) def test_illegal_event_id(): """Test handling of invalid events ids""" raw, events, picks = _get_data() event_id_illegal = dict(aud_l=1, does_not_exist=12345678) assert_raises(ValueError, Epochs, raw, events, event_id_illegal, tmin, tmax, picks=picks, baseline=(None, 0), proj=False) def test_add_channels_epochs(): """Test adding channels""" raw, events, picks = _get_data() def make_epochs(picks, proj): return Epochs(raw, events, event_id, tmin, tmax, baseline=(None, 0), reject=None, preload=True, proj=proj, picks=picks) picks = pick_types(raw.info, meg=True, eeg=True, exclude='bads') picks_meg = pick_types(raw.info, meg=True, eeg=False, exclude='bads') picks_eeg = pick_types(raw.info, meg=False, eeg=True, exclude='bads') for proj in (False, True): epochs = make_epochs(picks=picks, proj=proj) epochs_meg = make_epochs(picks=picks_meg, proj=proj) epochs_eeg = make_epochs(picks=picks_eeg, proj=proj) epochs.info._check_consistency() epochs_meg.info._check_consistency() epochs_eeg.info._check_consistency() epochs2 = add_channels_epochs([epochs_meg, epochs_eeg]) assert_equal(len(epochs.info['projs']), len(epochs2.info['projs'])) assert_equal(len(epochs.info.keys()), len(epochs2.info.keys())) data1 = epochs.get_data() data2 = epochs2.get_data() data3 = np.concatenate([e.get_data() for e in [epochs_meg, epochs_eeg]], axis=1) assert_array_equal(data1.shape, data2.shape) assert_allclose(data1, data3, atol=1e-25) assert_allclose(data1, data2, atol=1e-25) epochs_meg2 = epochs_meg.copy() epochs_meg2.info['meas_date'] += 10 add_channels_epochs([epochs_meg2, epochs_eeg]) epochs_meg2 = epochs_meg.copy() epochs2.info['filename'] = epochs2.info['filename'].upper() epochs2 = add_channels_epochs([epochs_meg, epochs_eeg]) epochs_meg2 = epochs_meg.copy() epochs_meg2.events[3, 2] -= 1 assert_raises(ValueError, add_channels_epochs, [epochs_meg2, epochs_eeg]) assert_raises(ValueError, add_channels_epochs, [epochs_meg, epochs_eeg[:2]]) epochs_meg.info['chs'].pop(0) epochs_meg.info['ch_names'].pop(0) epochs_meg.info['nchan'] -= 1 assert_raises(RuntimeError, add_channels_epochs, [epochs_meg, epochs_eeg]) epochs_meg2 = epochs_meg.copy() epochs_meg2.info['sfreq'] = None assert_raises(RuntimeError, add_channels_epochs, [epochs_meg2, epochs_eeg]) epochs_meg2 = epochs_meg.copy() epochs_meg2.info['sfreq'] += 10 assert_raises(RuntimeError, add_channels_epochs, [epochs_meg2, epochs_eeg]) epochs_meg2 = epochs_meg.copy() epochs_meg2.info['ch_names'][1] = epochs_meg2.info['ch_names'][0] epochs_meg2.info['chs'][1]['ch_name'] = epochs_meg2.info['ch_names'][1] assert_raises(ValueError, add_channels_epochs, [epochs_meg2, epochs_eeg]) epochs_meg2 = epochs_meg.copy() epochs_meg2.info['dev_head_t']['to'] += 1 assert_raises(ValueError, add_channels_epochs, [epochs_meg2, epochs_eeg]) epochs_meg2 = epochs_meg.copy() epochs_meg2.info['dev_head_t']['to'] += 1 assert_raises(ValueError, add_channels_epochs, [epochs_meg2, epochs_eeg]) epochs_meg2 = epochs_meg.copy() epochs_meg2.info['expimenter'] = 'foo' assert_raises(RuntimeError, add_channels_epochs, [epochs_meg2, epochs_eeg]) epochs_meg2 = epochs_meg.copy() epochs_meg2.preload = False assert_raises(ValueError, add_channels_epochs, [epochs_meg2, epochs_eeg]) epochs_meg2 = epochs_meg.copy() epochs_meg2.tmin += 0.4 assert_raises(NotImplementedError, add_channels_epochs, [epochs_meg2, epochs_eeg]) epochs_meg2 = epochs_meg.copy() epochs_meg2.tmin += 0.5 assert_raises(NotImplementedError, add_channels_epochs, [epochs_meg2, epochs_eeg]) epochs_meg2 = epochs_meg.copy() epochs_meg2.baseline = None assert_raises(NotImplementedError, add_channels_epochs, [epochs_meg2, epochs_eeg]) epochs_meg2 = epochs_meg.copy() epochs_meg2.event_id['b'] = 2 assert_raises(NotImplementedError, add_channels_epochs, [epochs_meg2, epochs_eeg]) def test_array_epochs(): """Test creating epochs from array """ import matplotlib.pyplot as plt tempdir = _TempDir() # creating rng = np.random.RandomState(42) data = rng.random_sample((10, 20, 300)) sfreq = 1e3 ch_names = ['EEG %03d' % (i + 1) for i in range(20)] types = ['eeg'] * 20 info = create_info(ch_names, sfreq, types) events = np.c_[np.arange(1, 600, 60), np.zeros(10, int), [1, 2] * 5] event_id = {'a': 1, 'b': 2} epochs = EpochsArray(data, info, events, tmin, event_id) assert_true(str(epochs).startswith('<EpochsArray')) # From GH#1963 assert_raises(ValueError, EpochsArray, data[:-1], info, events, tmin, event_id) assert_raises(ValueError, EpochsArray, data, info, events, tmin, dict(a=1)) # saving temp_fname = op.join(tempdir, 'test-epo.fif') epochs.save(temp_fname) epochs2 = read_epochs(temp_fname) data2 = epochs2.get_data() assert_allclose(data, data2) assert_allclose(epochs.times, epochs2.times) assert_equal(epochs.event_id, epochs2.event_id) assert_array_equal(epochs.events, epochs2.events) # plotting epochs[0].plot() plt.close('all') # indexing assert_array_equal(np.unique(epochs['a'].events[:, 2]), np.array([1])) assert_equal(len(epochs[:2]), 2) data[0, 5, 150] = 3000 data[1, :, :] = 0 data[2, 5, 210] = 3000 data[3, 5, 260] = 0 epochs = EpochsArray(data, info, events=events, event_id=event_id, tmin=0, reject=dict(eeg=1000), flat=dict(eeg=1e-1), reject_tmin=0.1, reject_tmax=0.2) assert_equal(len(epochs), len(events) - 2) assert_equal(epochs.drop_log[0], ['EEG 006']) assert_equal(len(epochs.drop_log), 10) assert_equal(len(epochs.events), len(epochs.selection)) # baseline data = np.ones((10, 20, 300)) epochs = EpochsArray(data, info, events=events, event_id=event_id, tmin=-.2, baseline=(None, 0)) ep_data = epochs.get_data() assert_array_equal(np.zeros_like(ep_data), ep_data) # one time point epochs = EpochsArray(data[:, :, :1], info, events=events, event_id=event_id, tmin=0., baseline=None) assert_allclose(epochs.times, [0.]) assert_allclose(epochs.get_data(), data[:, :, :1]) epochs.save(temp_fname) epochs_read = read_epochs(temp_fname) assert_allclose(epochs_read.times, [0.]) assert_allclose(epochs_read.get_data(), data[:, :, :1]) # event as integer (#2435) mask = (events[:, 2] == 1) data_1 = data[mask] events_1 = events[mask] epochs = EpochsArray(data_1, info, events=events_1, event_id=1, tmin=-0.2, baseline=(None, 0)) def test_concatenate_epochs(): """Test concatenate epochs""" raw, events, picks = _get_data() epochs = Epochs( raw=raw, events=events, event_id=event_id, tmin=tmin, tmax=tmax, picks=picks) epochs2 = epochs.copy() epochs_list = [epochs, epochs2] epochs_conc = concatenate_epochs(epochs_list) assert_array_equal( epochs_conc.events[:, 0], np.unique(epochs_conc.events[:, 0])) expected_shape = list(epochs.get_data().shape) expected_shape[0] *= 2 expected_shape = tuple(expected_shape) assert_equal(epochs_conc.get_data().shape, expected_shape) assert_equal(epochs_conc.drop_log, epochs.drop_log * 2) epochs2 = epochs.copy() epochs2._data = epochs2.get_data() epochs2.preload = True assert_raises( ValueError, concatenate_epochs, [epochs, epochs2.drop_channels(epochs2.ch_names[:1], copy=True)]) epochs2.times = np.delete(epochs2.times, 1) assert_raises( ValueError, concatenate_epochs, [epochs, epochs2]) assert_equal(epochs_conc._raw, None) # check if baseline is same for all epochs epochs2.baseline = (-0.1, None) assert_raises(ValueError, concatenate_epochs, [epochs, epochs2]) def test_add_channels(): """Test epoch splitting / re-appending channel types """ raw, events, picks = _get_data() epoch_nopre = Epochs( raw=raw, events=events, event_id=event_id, tmin=tmin, tmax=tmax, picks=picks) epoch = Epochs( raw=raw, events=events, event_id=event_id, tmin=tmin, tmax=tmax, picks=picks, preload=True) epoch_eeg = epoch.pick_types(meg=False, eeg=True, copy=True) epoch_meg = epoch.pick_types(meg=True, copy=True) epoch_stim = epoch.pick_types(meg=False, stim=True, copy=True) epoch_eeg_meg = epoch.pick_types(meg=True, eeg=True, copy=True) epoch_new = epoch_meg.add_channels([epoch_eeg, epoch_stim], copy=True) assert_true(all(ch in epoch_new.ch_names for ch in epoch_stim.ch_names + epoch_meg.ch_names)) epoch_new = epoch_meg.add_channels([epoch_eeg], copy=True) assert_true(ch in epoch_new.ch_names for ch in epoch.ch_names) assert_array_equal(epoch_new._data, epoch_eeg_meg._data) assert_true(all(ch not in epoch_new.ch_names for ch in epoch_stim.ch_names)) # Now test errors epoch_badsf = epoch_eeg.copy() epoch_badsf.info['sfreq'] = 3.1415927 epoch_eeg = epoch_eeg.crop(-.1, .1) assert_raises(AssertionError, epoch_meg.add_channels, [epoch_nopre]) assert_raises(RuntimeError, epoch_meg.add_channels, [epoch_badsf]) assert_raises(AssertionError, epoch_meg.add_channels, [epoch_eeg]) assert_raises(ValueError, epoch_meg.add_channels, [epoch_meg]) assert_raises(AssertionError, epoch_meg.add_channels, epoch_badsf) run_tests_if_main()
bsd-3-clause
yl565/statsmodels
statsmodels/examples/ex_scatter_ellipse.py
39
1367
'''example for grid of scatter plots with probability ellipses Author: Josef Perktold License: BSD-3 ''' from statsmodels.compat.python import lrange import numpy as np import matplotlib.pyplot as plt from statsmodels.graphics.plot_grids import scatter_ellipse nvars = 6 mmean = np.arange(1.,nvars+1)/nvars * 1.5 rho = 0.5 #dcorr = rho*np.ones((nvars, nvars)) + (1-rho)*np.eye(nvars) r = np.random.uniform(-0.99, 0.99, size=(nvars, nvars)) ##from scipy import stats ##r = stats.rdist.rvs(1, size=(nvars, nvars)) r = (r + r.T) / 2. assert np.allclose(r, r.T) mcorr = r mcorr[lrange(nvars), lrange(nvars)] = 1 #dcorr = np.array([[1, 0.5, 0.1],[0.5, 1, -0.2], [0.1, -0.2, 1]]) mstd = np.arange(1.,nvars+1)/nvars mcov = mcorr * np.outer(mstd, mstd) evals = np.linalg.eigvalsh(mcov) assert evals.min > 0 #assert positive definite nobs = 100 data = np.random.multivariate_normal(mmean, mcov, size=nobs) dmean = data.mean(0) dcov = np.cov(data, rowvar=0) print(dmean) print(dcov) dcorr = np.corrcoef(data, rowvar=0) dcorr[np.triu_indices(nvars)] = 0 print(dcorr) #default #fig = scatter_ellipse(data, level=[0.5, 0.75, 0.95]) #used for checking #fig = scatter_ellipse(data, level=[0.5, 0.75, 0.95], add_titles=True, keep_ticks=True) #check varnames varnames = ['var%d' % i for i in range(nvars)] fig = scatter_ellipse(data, level=0.9, varnames=varnames) plt.show()
bsd-3-clause
ijmarshall/cochrane-nlp
quality4.py
1
73371
from tokenizer import sent_tokenizer, word_tokenizer import biviewer import pdb import re import progressbar import collections import string from unidecode import unidecode import codecs import yaml from pprint import pprint import numpy as np import math import difflib import sklearn from sklearn.feature_extraction.text import CountVectorizer from sklearn.grid_search import GridSearchCV from sklearn.feature_extraction import DictVectorizer from sklearn import cross_validation from sklearn import metrics from sklearn import svm from sklearn.linear_model import SGDClassifier from sklearn.externals import six from collections import defaultdict from sklearn.metrics import precision_recall_fscore_support import random import operator from sklearn.cross_validation import KFold from journalreaders import PdfReader import cPickle as pickle from sklearn.metrics import f1_score, make_scorer, fbeta_score, accuracy_score import nltk from nltk.corpus import stopwords REGEX_QUOTE_PRESENT = re.compile("Quote\:") REGEX_QUOTE = re.compile("\"(.*?)\"") # retrive blocks of text in quotes REGEX_ELLIPSIS = re.compile("\s*[\[\(]?\s?\.\.+\s?[\]\)]?\s*") # to catch various permetations of "..." and "[...]" SIMPLE_WORD_TOKENIZER = re.compile("[a-zA-Z]{2,}") # regex of the rule used by sklearn CountVectorizer CORE_DOMAINS = ["Random sequence generation", "Allocation concealment", "Blinding of participants and personnel", "Blinding of outcome assessment", "Incomplete outcome data", "Selective reporting"] # "OTHER" is generated in code, not in the mapping file # see data/domain_names.txt for various other criteria # all of these are available via QualityQuoteReader ALL_DOMAINS = CORE_DOMAINS[:] # will be added to later RoB_CLASSES = ["YES", "NO", "UNKNOWN"] STOP_WORDS = set(stopwords.words('english')) # @TODO move me domain_str = lambda d: d.lower().replace(" ", "_") def show_most_informative_features(vectorizer, clf, n=1000): ### # note that in the multi-class case, clf.coef_ will # have k weight vectors, which I believe are one per # each class (i.e., each is a classifier discriminating # one class versus the rest). c_f = sorted(zip(clf.coef_[0], vectorizer.get_feature_names())) if n == 0: n = len(c_f)/2 top = zip(c_f[:n], c_f[:-(n+1):-1]) print print "%d most informative features:" % (n, ) out_str = [] for (c1, f1), (c2, f2) in top: out_str.append("\t%.4f\t%-15s\t\t%.4f\t%-15s" % (c1, f1, c2, f2)) feature_str = "\n".join(out_str) return feature_str def show_most_informative_features_ynu(vectorizer, clf, n=10): ### # note that in the multi-class case, clf.coef_ will # have k weight vectors, which I believe are one per # each class (i.e., each is a classifier discriminating # one class versus the rest). combinations = ["NO vs (YES + UNKNOWN)", "UNKNOWN vs (YES + NO)", "YES vs (NO + UNKNOWN)"] out_str = [] for i, combination in enumerate(combinations): out_str.append(combination) out_str.append("*" * 20) c_f = sorted(zip(clf.coef_[i], vectorizer.get_feature_names())) if n == 0: n = len(c_f)/2 top = zip(c_f[:n], c_f[:-(n+1):-1]) for (c1, f1), (c2, f2) in top: out_str.append("\t%.4f\t%-15s\t\t%.4f\t%-15s" % (c1, f1, c2, f2)) feature_str = "\n".join(out_str) return feature_str def load_domain_map(filename="data/domain_names.txt"): with codecs.open(filename, 'rb', 'utf-8') as f: raw_data = yaml.load(f) mapping = {} for key, value in raw_data.iteritems(): for synonym in value: mapping[synonym] = key return mapping class QualityQuoteReader2(): """ iterates through Cochrane Risk of Bias information v2 maintains unique ids for all source studies + does not filter by whether a quote is present returns list of quotes where they are available, else none """ def __init__(self, sent=False, test_mode=False): self.BiviewerView = collections.namedtuple('BiViewer_View', ['uid', 'cochrane', 'studypdf']) self.pdfviewer = biviewer.PDFBiViewer() self.domain_map = load_domain_map() if test_mode: self.test_mode_break_point = 500 else: self.test_mode_break_point = None def __iter__(self): """ run through PDF/Cochrane data preprocesses PDF text and maps domain title to one of the core Risk of Bias domains if possible """ progress_bar_limit = len(self.pdfviewer) if self.test_mode_break_point is None else self.test_mode_break_point p = progressbar.ProgressBar(progress_bar_limit, timer=True) for uid, study in enumerate(self.pdfviewer): if self.test_mode_break_point and (uid >= self.test_mode_break_point): break p.tap() quality_data = study.cochrane["QUALITY"] for domain in quality_data: domain["QUOTES"] = self.preprocess_cochrane(domain["DESCRIPTION"]) try: domain["DOMAIN"] = self.domain_map[domain["DOMAIN"]] # map domain titles to our core categories except: domain["DOMAIN"] = "OTHER" yield self.BiviewerView(uid=uid, cochrane={"QUALITY": quality_data}, studypdf=self.preprocess_pdf(study.studypdf)) def __len__(self): return len(self.pdfviewer) if self.test_mode_break_point is None else self.test_mode_break_point def preprocess_pdf(self, pdftext): pdftext = unidecode(pdftext) pdftext = re.sub("\n", " ", pdftext) # preprocessing rule 1 return pdftext def preprocess_cochrane(self, rawtext): # regex clean up of cochrane strings processedtext = unidecode(rawtext) processedtext = re.sub(" +", " ", processedtext) # extract all parts in quotes quotes = REGEX_QUOTE.findall(processedtext) # then split at any ellipses quote_parts = [] for quote in quotes: quote_parts.extend(REGEX_ELLIPSIS.split(quote)) return quote_parts class PDFMatcher(): """ matches and generates sent tokens from pdf text """ def __init__(self, quotes=None, pdftext=None): # load a sequence matcher; turn autojunk off (since buggy for long strings) self.sequencematcher = difflib.SequenceMatcher(None, autojunk=False) if quotes: self.quotes = self.load_quotes(quotes) if pdftext: self.pdftext = self.load_pdftext(pdftext) def load_quotes(self, quotes): self.quotes = quotes def load_pdftext(self, pdftext): self.pdftext = pdftext self.lenpdf = len(pdftext) self.sequencematcher.set_seq2(self.pdftext) self.sent_indices = sent_tokenizer.span_tokenize(self.pdftext) def _overlap(self, t1, t2): """ finds out whether two tuples overlap """ t1s, t1e = t1 t2s, t2e = t2 # true if either start of t1 is inside t2, or start of t2 is inside t1 return (t2s <= t1s <= t2e) or (t1s <= t2s <= t1e) def generate_X(self): X = [] # go through sentence indices # make X (list of sentences) for (start_i, end_i) in self.sent_indices: X.append(self.pdftext[start_i: end_i]) return X def generate_y(self, min_char_match=20): """ returns X: list of sentence strings y: numpy vector of 1, -1 (for positive/negative examples) """ good_match = False # this will be set to True if sufficent matching characters in # at least one of the parts of the quotes match_indices = [] # go through quotes, match using difflib # and keep any matches which are long enough so likely true matches for quote in self.quotes: self.sequencematcher.set_seq1(quote) best_match = self.sequencematcher.find_longest_match(0, len(quote), 0, self.lenpdf) # only interested in good quality matches if best_match.size > min_char_match: good_match = True match_indices.append((best_match.b, best_match.b + best_match.size)) # add (start_i, end_i) tuples (of PDF indices) y = [] if not good_match: # if quality criteria not met, leave here # (i.e. return empty lists [], []) return y # otherwise continue and generate feature and answer vectors # get indices of sentences (rather than split) sent_indices = sent_tokenizer.span_tokenize(self.pdftext) # go through sentence indices # make X (list of sentences) # and calculate y, if there is *any* overlap with matched quoted text then # y = True for (start_i, end_i) in sent_indices: # if any overlaps with quotes, then y = True, else False if any((self._overlap((start_i, end_i), match_tuple) for match_tuple in match_indices)): y.append(1) else: y.append(-1) return y class SentenceModel(): """ predicts whether sentences contain risk of bias information - uses data from Cochrane quotes only """ def __init__(self, test_mode=False): self.quotereader = QualityQuoteReader2(test_mode=test_mode) # this now runs through all studies def generate_data(self, uid_filter=None): """ tokenizes and processes the raw text from pdfs and cochrane saves in self.X_list and self.y_list (both dicts) """ test_domains = CORE_DOMAINS # may change later to access various "other" domains # one feature matrix X across all domains self.X_list = [] # key will be unique id, value will be text # but multiple y vectors; one for each test domain self.y_list = {domain: [] for domain in test_domains} self.y_judgements = {domain: [] for domain in test_domains} # used in subclasses to make hybrid models self.X_uids = [] self.y_uids = {domain: [] for domain in test_domains} for uid, cochrane_data, pdf_data in self.quotereader: if uid_filter is not None and uid not in uid_filter: continue matcher = PDFMatcher() matcher.load_pdftext(pdf_data) X_study = matcher.generate_X() self.X_list.extend(X_study) self.X_uids.extend([uid] * len(X_study)) domains_done_already = [] # for this particular study # (we're ignoring multiple quotes per domain at the moment and getting the first...) for domain in cochrane_data["QUALITY"]: if domain["DOMAIN"] not in test_domains or domain["DOMAIN"] in domains_done_already: continue # skip if a domain is repeated in a study (though note that this is likely due to different RoB per *outcome* which is ignored here) if domain["QUOTES"]: matcher.load_quotes(domain["QUOTES"]) y_study = matcher.generate_y() self.y_list[domain["DOMAIN"]].extend(y_study) self.y_uids[domain["DOMAIN"]].extend([uid] * len(y_study)) self.y_judgements[domain["DOMAIN"]].extend([domain["RATING"]] * len(y_study)) domains_done_already.append(domain["DOMAIN"]) self.y = {domain: np.array(self.y_list[domain]) for domain in test_domains} self.X_uids = np.array(self.X_uids) self.y_uids = {domain: np.array(self.y_uids[domain]) for domain in test_domains} self.y_judgements = {domain: np.array(self.y_judgements[domain]) for domain in test_domains} # self.vectorize() def vectorize(self): self.vectorizer = ModularCountVectorizer() # self.X = self.vectorizer.fit_transform(self.X_list, max_features=50000) self.X = self.vectorizer.fit_transform(self.X_list) def load_text(self, filename): """ loads the original text of all PDFs, to debugging and looking at predicted text from corpus NB this is a large file """ with open(filename, 'rb') as f: self.X_list = pickle.load(f) def __len__(self): """ returns the total number of studies (not features) """ return len(self.quotereader) def len_domain(self, domain): return len(np.unique(self.y_uids[domain])) def domain_X_filter(self, domain): """ returns X_filter for a domain """ y_study_uids = np.unique(self.y_uids[domain]) X_filter = np.nonzero([(X_uid in y_study_uids) for X_uid in self.X_uids])[0] return X_filter def domain_uids(self, domain): unique_study_ids = np.unique(self.y_uids[domain]) return unique_study_ids def X_y_uid_filtered(self, uids, domain): X_all = self.X_domain_all(domain=domain) y_all = self.y_domain_all(domain=domain) filter_ids = np.nonzero([(y_study_id in uids) for y_study_id in self.y_uids[domain]])[0] X_filtered = X_all[filter_ids] y_filtered = y_all[filter_ids] return X_filtered, y_filtered def get_all_domains(self): return self.y.keys() def X_get_sentence(self, select_sent_id, domain): y_study_ids = np.unique(self.y[domain].study_ids) X_filter = np.nonzero([X_study_id in y_study_ids for X_study_id in self.X.study_ids])[0] return self.X_list.data[X_filter[select_sent_id]] def X_domain_all(self, domain): """ retrieve X data for a domain """ X_filter = self.domain_X_filter(domain) return self.X[X_filter] def y_domain_all(self, domain): return self.y[domain] # def X_y_filtered(self, filter_ids, domain): # X_all = self.X_domain_all(domain=domain) # y_all = self.y_domain_all(domain=domain) # # np.unique always returns ordered ids # unique_study_ids = np.unique(self.y_uids[domain]) # mapped_ids = [unique_study_ids[filter_id] for filter_id in filter_ids] # filter_ids = np.nonzero([(y_study_id in mapped_ids) for y_study_id in self.y_uids[domain]])[0] # X_filtered = X_all[filter_ids] # y_filtered = y_all[filter_ids] # return X_filtered, y_filtered class DocumentLevelModel(SentenceModel): """ for predicting the risk of bias as "HIGH", "LOW", or "UNKNOWN" for a document using a binary bag-of-words as features for each document """ def generate_data(self, uid_filter=None, binarize=False): """ tokenizes and processes the raw text from pdfs and cochrane saves in self.X_list and self.y_list (both dicts) """ test_domains = CORE_DOMAINS # may change later to access various "other" domains # one feature matrix X across all domains self.X_list = [] # key will be unique id, value will be text # but multiple y vectors; one for each test domain self.y_list = {domain: [] for domain in test_domains} self.X_uids = [] self.y_uids = {domain: [] for domain in test_domains} for uid, cochrane_data, pdf_data in self.quotereader: if uid_filter is not None and uid not in uid_filter: continue X_study = [pdf_data] # this time the X is the whole pdf data self.X_list.extend(X_study) self.X_uids.extend([uid] * len(X_study)) domains_done_already = [] # for this particular study # (we're ignoring multiple quotes per domain at the moment and getting the first...) for domain in cochrane_data["QUALITY"]: if domain["DOMAIN"] not in test_domains or domain["DOMAIN"] in domains_done_already: continue # skip if a domain is repeated in a study (though note that this is likely due to different RoB per *outcome* which is ignored here) if binarize: y_study = 1 if domain["RATING"]=="YES" else -1 # binarize else: y_study = domain["RATING"] self.y_list[domain["DOMAIN"]].append(y_study) self.y_uids[domain["DOMAIN"]].append(uid) domains_done_already.append(domain["DOMAIN"]) self.y = {domain: np.array(self.y_list[domain]) for domain in test_domains} self.X_uids = np.array(self.X_uids) self.y_uids = {domain: np.array(self.y_uids[domain]) for domain in test_domains} class MultiTaskDocumentModel(DocumentLevelModel): ''' The idea here is to train a single model across all domains. Basically: y_ij = sign{(w0 + w_j) * x_i} for document x_i, where a w_j is learned for each domain and w0 is a shared weight vector (across domains). ''' def vectorize(self): self.vectorizer = ModularCountVectorizer() self.vectorizer.builder_clear() self.X_mt_labels = [] # which rows correspond to which doc/interactions? self.y_mt = [] self.uids_to_row_indices = {} self.row_indices_to_uids, self.row_indices_to_domains = [], [] # number of rows in the 'multi-task' matrix, which # will vary depending on how many docs have labels # for how many domains n_rows = 0 # (equal to len(self.X_mt_labels) ''' the vectorizer wants all the documents at once, so here we are going to build them up. we're only going to add interaction copies for a given document for those domains that we have an associated label. ''' docs = [] # which indices in docs correspond to copies for # which domains? domains_to_interaction_doc_indices = defaultdict(list) for i, doc in enumerate(self.X_list): # `intercept' document uid = self.X_uids[i] # add |CORE_DOMAINS| copies for each instance. for domain in CORE_DOMAINS: d_str = domain_str(domain) if uid in self.domain_uids(domain): # get the label (note that we match up the # uid to do this) uids_to_lbls = dict(zip(self.y_uids[domain], self.y_domain_all(domain=domain))) #y_index = self.y_uids(domain).index(uid) #domain_ys = self.y_domain_all(domain=domain) #self.y_mt.append(domain_ys[y_index]) self.y_mt.append(uids_to_lbls[uid]) # append interaction copy of doc docs.append(doc) self.row_indices_to_uids.append(uid) self.row_indices_to_domains.append(domain) self.X_mt_labels.append("%s-%s" % (i, d_str)) domains_to_interaction_doc_indices[d_str].append(n_rows) n_rows += 1 ''' now actually ad documents and interaction copies to the vectorizer. ''' #for i, doc in enumerate(self.X_list): # `intercept' document self.vectorizer.builder_add_docs(docs) for domain in CORE_DOMAINS: d_str = domain_str(domain) interaction_list = [] for i in xrange(len(docs)): if i in domains_to_interaction_doc_indices[d_str]: interaction_list.append(docs[i]) else: interaction_list.append("") self.vectorizer.builder_add_docs(interaction_list, prefix=d_str+"-") # BCW -- attempting to upper bound features! # note that this will keep the <max_features> most common # features, regardless of whether or not they are 'interaction' # features # self.X = self.vectorizer.builder_fit_transform(max_features=50000) self.X = self.vectorizer.builder_fit_transform(low=2) def X_y_uid_filtered(self, uids, domain=None): X_indices, y = [], [] for i in xrange(self.X.shape[0]): if domain is None and self.row_indices_to_uids[i] in uids: # if domain is None, return big multi-task design matrix # -- you'll want to do this, e.g., for training X_indices.append(i) y.append(self.y_mt[i]) elif domain == self.row_indices_to_domains[i] and self.row_indices_to_uids[i] in uids: # otherwise (when domain is not None), return # instances for only the target domain # (e.g., for testing) X_indices.append(i) y.append(self.y_mt[i]) return self.X[X_indices], y class MultiTaskHybridDocumentModel(MultiTaskDocumentModel): ''' same as the MultiTaskDocumentModel, except takes in sentence level modelling too into the mix ''' def vectorize(self): self.vectorizer = ModularCountVectorizer() self.vectorizer.builder_clear() self.X_mt_labels = [] # which rows correspond to which doc/interactions? self.y_mt = [] self.uids_to_row_indices = {} self.row_indices_to_uids, self.row_indices_to_domains = [], [] # number of rows in the 'multi-task' matrix, which # will vary depending on how many docs have labels # for how many domains n_rows = 0 # (equal to len(self.X_mt_labels) ''' the vectorizer wants all the documents at once, so here we are going to build them up. we're only going to add interaction copies for a given document for those domains that we have an associated label. ''' docs = [] high_prob_sents = defaultdict(list) # which indices in docs correspond to copies for # which domains? domains_to_interaction_doc_indices = defaultdict(list) for i, doc in enumerate(self.X_list): # `intercept' document uid = self.X_uids[i] # add |CORE_DOMAINS| copies for each instance. for domain in CORE_DOMAINS: d_str = domain_str(domain) if uid in self.domain_uids(domain): # get the label (note that we match up the # uid to do this) uids_to_lbls = dict(zip(self.y_uids[domain], self.y_domain_all(domain=domain))) #y_index = self.y_uids(domain).index(uid) #domain_ys = self.y_domain_all(domain=domain) #self.y_mt.append(domain_ys[y_index]) self.y_mt.append(uids_to_lbls[uid]) # append interaction copy of doc docs.append(doc) high_prob_sents[domain].append(self.get_sent_predictions_for_doc(doc, domain)) for high_prob_domain in CORE_DOMAINS: if high_prob_domain != domain: high_prob_sents[high_prob_domain].append("") self.row_indices_to_uids.append(uid) self.row_indices_to_domains.append(domain) self.X_mt_labels.append("%s-%s" % (i, d_str)) domains_to_interaction_doc_indices[d_str].append(n_rows) n_rows += 1 ''' now actually add documents and interaction copies to the vectorizer. ''' #for i, doc in enumerate(self.X_list): # `intercept' document self.vectorizer.builder_add_docs(docs) for domain in CORE_DOMAINS: d_str = domain_str(domain) interaction_list, sent_interaction_list = [], [] for i in xrange(len(docs)): if i in domains_to_interaction_doc_indices[d_str]: interaction_list.append(docs[i]) sent_interaction_list.append(high_prob_sents[domain][i]) else: interaction_list.append("") sent_interaction_list.append("") self.vectorizer.builder_add_docs(interaction_list, prefix=d_str+"-doc-") self.vectorizer.builder_add_docs(sent_interaction_list, prefix=d_str+"-sent-") self.X = self.vectorizer.builder_fit_transform(max_features=200000, low=3) # self.X = self.vectorizer.builder_fit_transform(max_features=50000) #### # maybe record the feature indices here that are to receive # different 'amounts' of regularization #### def get_sent_predictions_for_doc(self, doc, domain): # tokenize into sentences sents = sent_tokenizer.tokenize(doc) # vectorize the sentences X_sents = self.sent_vectorizer.transform(sents) # get predicted 1 / -1 for the sentences pred_class = self.sent_clfs[domain].predict(X_sents) # get the sentences which are predicted 1 positive_sents = [sent for sent, pred in zip(sents, pred_class) if pred==1] # make a single string per doc rob_sents = " ".join(positive_sents) return rob_sents def set_sent_model(self, sent_clfs, sent_vectorizer): """ set a model which takes in a list of sentences; and returns -1 or 1 """ self.sent_clfs = sent_clfs self.sent_vectorizer = sent_vectorizer class HybridDocModel(DocumentLevelModel): """ for predicting the risk of bias as "HIGH", "LOW", or "UNKNOWN" for a document using a binary bag-of-words as features for each document """ def vectorize(self, domain=None): if domain is None: raise TypeError("this class requires domain specific vectorization") self.vectorizer = ModularCountVectorizer() self.vectorizer.builder_clear() X_filter = self.domain_X_filter(domain) predictions = self.get_sent_predictions_for_domain(domain) self.vectorizer.builder_add_docs([self.X_list[i] for i in X_filter]) self.vectorizer.builder_add_docs(predictions, prefix="high-prob-sent-", weighting=10) self.X = self.vectorizer.builder_fit_transform() def get_sent_predictions_for_domain(self, domain): uids = self.domain_uids(domain) predictions = [] for uid in uids: # get the index of the study with specified uid study_index = np.nonzero(self.X_uids==uid)[0][0] # tokenize into sentences sents = sent_tokenizer.tokenize(self.X_list[study_index]) # vectorize the sentences X_sents = self.sent_vectorizer.transform(sents) # get predicted 1 / -1 for the sentences pred_class = self.sent_clf.predict(X_sents) # get the sentences which are predicted 1 positive_sents = [sent for sent, pred in zip(sents, pred_class) if pred==1] # make a single string per doc doc = " ".join(positive_sents) predictions.append(doc) return predictions def set_sent_model(self, doc_clf, doc_vectorizer): """ set a model which takes in a list of sentences; and returns -1 or 1 """ self.sent_clf = doc_clf self.sent_vectorizer = doc_vectorizer def X_y_uid_filtered(self, uids, domain): X_all = self.X y_all = self.y_domain_all(domain=domain) filter_ids = np.nonzero([(y_study_id in uids) for y_study_id in self.y_uids[domain]])[0] X_filtered = X_all[filter_ids] y_filtered = y_all[filter_ids] return X_filtered, y_filtered # class HybridDocModel2(HybridDocModel): # """ # for predicting the risk of bias # as "HIGH", "LOW", or "UNKNOWN" for a document # using a binary bag-of-words as features for each document # """ # def vectorize(self, domain=None): # if domain is None: # raise TypeError("this class requires domain specific vectorization") # self.vectorizer = ModularCountVectorizer() # self.vectorizer.builder_clear() # X_filter = self.domain_X_filter(domain) # predictions = self.get_sent_predictions_for_domain(domain) # # self.vectorizer.builder_add_docs([self.X_list[i] for i in X_filter]) # self.vectorizer.builder_add_docs(predictions, prefix="high-prob-sent-") # self.X = self.vectorizer.builder_fit_transform() class HybridModel(SentenceModel): """ predicts whether sentences contain risk of bias information - uses real RoB judgements """ def vectorize(self, domain=None, interaction_classes=["YES", "NO"]): if domain is None: raise TypeError("this class requires domain specific vectorization") self.vectorizer = ModularCountVectorizer() self.vectorizer.builder_clear() X_filter = self.domain_X_filter(domain) sents = [self.X_list[i] for i in X_filter] self.vectorizer.builder_add_docs(sents) for interaction_class in interaction_classes: self.vectorizer.builder_add_interaction_features( sents, self.y_judgements[domain]==interaction_class, prefix="rob-" + interaction_class + "-") self.X = self.vectorizer.builder_fit_transform() def X_y_uid_filtered(self, uids, domain): X_all = self.X y_all = self.y_domain_all(domain=domain) filter_ids = np.nonzero([(y_study_id in uids) for y_study_id in self.y_uids[domain]])[0] X_filtered = X_all[filter_ids] y_filtered = y_all[filter_ids] return X_filtered, y_filtered class HybridModelProbablistic(HybridModel): """ predicts whether sentences contain risk of bias information - requires a model to be passed in which can predice RoB judgements from full text document """ def vectorize(self, domain=None, interaction_classes=["YES", "NO"], use_vectorizer=None): if domain is None: raise TypeError("this class requires domain specific vectorization") if use_vectorizer is None: self.vectorizer = ModularCountVectorizer() else: self.vectorizer = use_vectorizer self.vectorizer.builder_clear() X_filter = self.domain_X_filter(domain) predictions = self.get_doc_predictions_for_domain(domain) sents = [self.X_list[i] for i in X_filter] self.vectorizer.builder_add_docs(sents) for interaction_class in interaction_classes: self.vectorizer.builder_add_interaction_features(sents, predictions==interaction_class, prefix="rob-" + interaction_class + "-") if use_vectorizer is None: self.X = self.vectorizer.builder_fit_transform() else: self.X = self.vectorizer.builder_transform() def get_doc_predictions_for_domain(self, domain): uids = self.domain_uids(domain) predictions = [] for uid in uids: # get the indices of all sentences in the study with specified uid X_filter = np.nonzero(self.X_uids==uid)[0] # make a single string per doc doc = " ".join([self.X_list[i] for i in X_filter]) # vectorize the docs, then predict using the model X_doc = self.doc_vectorizer.transform(doc) prediction = self.doc_clf.predict(X_doc) # add the same prediction for each sentence predictions.extend([prediction[0]] * len(X_filter)) return np.array(predictions) def set_doc_model(self, doc_clf, doc_vectorizer): """ set a model which takes in a full text doc; outputs a doc class "YES", "NO", or "UNKNOWN" """ self.doc_clf = doc_clf self.doc_vectorizer = doc_vectorizer def _document_frequency(X): """Count the number of non-zero values for each feature in csc_matrix X.""" return np.diff(X.indptr) class ModularCountVectorizer(): """ Similar to CountVectorizer from sklearn, but allows building up of feature matrix gradually, and adding prefixes to feature names (to identify interaction terms) """ def __init__(self, *args, **kwargs): self.data = [] self.vectorizer = DictVectorizer(*args, **kwargs) def _transform_X_to_dict(self, X, prefix=None, weighting=1): """ makes a list of dicts from a document 1. word tokenizes 2. creates {word1:1, word2:1...} dicts (note all set to '1' since the DictVectorizer we use assumes all missing are 0) """ return [self._dict_from_word_list( self._word_tokenize(document, prefix=prefix), weighting=1) for document in X] def _word_tokenize(self, text, prefix=None, stopword=True): """ simple word tokenizer using the same rule as sklearn punctuation is ignored, all 2 or more letter characters are a word """ stop_word_list = STOP_WORDS if stopword else set() if prefix: return [prefix + word.lower() for word in SIMPLE_WORD_TOKENIZER.findall(text) if not word.lower() in stop_word_list] else: return [word.lower() for word in SIMPLE_WORD_TOKENIZER.findall(text) if not word.lower() in stop_word_list] def _dict_from_word_list(self, word_list, weighting=1): return {word: weighting for word in word_list} def _dictzip(self, dictlist1, dictlist2): """ zips together two lists of dicts of the same length """ # checks lists must be the same length if len(dictlist1) != len(dictlist2): raise IndexError("Unable to combine featuresets with different number of examples") output = [] for dict1, dict2 in zip(dictlist1, dictlist2): output.append(dict(dict1.items() + dict2.items())) # note that this *overwrites* any duplicate keys with the key/value from dictlist2!! return output def transform(self, X, prefix=None): # X is a list of document strings # word tokenizes each one, then passes to a dict vectorizer dict_list = self._transform_X_to_dict(X, prefix=prefix) return self.vectorizer.transform(dict_list) def fit_transform(self, X, prefix=None, max_features=None, low=None): # X is a list of document strings # word tokenizes each one, then passes to a dict vectorizer dict_list = self._transform_X_to_dict(X, prefix=prefix) X = self.vectorizer.fit_transform(dict_list) if max_features is not None or low is not None: X, removed = self._limit_features(X.tocsc(), self.vectorizer.vocabulary_, low=low, limit=max_features) print "pruned %s features!" % len(removed) X = X.tocsc() return self.vectorizer.fit_transform(dict_list) def get_feature_names(self): return self.vectorizer.get_feature_names() def builder_clear(self): self.builder = [] self.builder_len = 0 def builder_add_docs(self, X, prefix = None, weighting=1): #pdb.set_trace() if not self.builder: self.builder_len = len(X) self.builder = self._transform_X_to_dict(X, prefix=prefix, weighting=weighting) else: X_dicts = self._transform_X_to_dict(X, prefix=prefix, weighting=weighting) self.builder = self._dictzip(self.builder, X_dicts) def builder_add_interaction_features(self, X, interactions, prefix=None): if prefix is None: raise TypeError('Prefix is required when adding interaction features') doc_list = [(sent if interacting else "") for sent, interacting in zip(X, interactions)] self.builder_add_docs(doc_list, prefix) def builder_fit_transform(self, max_features=None, low=2): X = self.vectorizer.fit_transform(self.builder) if max_features is not None or low is not None: X, removed = self._limit_features(X.tocsc(), self.vectorizer.vocabulary_, low=low, limit=max_features) print "pruned %s features!" % len(removed) X = X.tocsc() return X #self.vectorizer.fit_transform(self.builder) def builder_transform(self): return self.vectorizer.transform(self.builder) def _limit_features(self, cscmatrix, vocabulary, high=None, low=None, limit=None): """Remove too rare or too common features. Prune features that are non zero in more samples than high or less documents than low, modifying the vocabulary, and restricting it to at most the limit most frequent. This does not prune samples with zero features. """ if high is None and low is None and limit is None: return cscmatrix, set() # Calculate a mask based on document frequencies dfs = _document_frequency(cscmatrix) mask = np.ones(len(dfs), dtype=bool) if high is not None: mask &= dfs <= high if low is not None: mask &= dfs >= low if limit is not None and mask.sum() > limit: # backward compatibility requires us to keep lower indices in ties! # (and hence to reverse the sort by negating dfs) mask_inds = (-dfs[mask]).argsort()[:limit] new_mask = np.zeros(len(dfs), dtype=bool) new_mask[np.where(mask)[0][mask_inds]] = True mask = new_mask new_indices = np.cumsum(mask) - 1 # maps old indices to new removed_terms = set() for term, old_index in list(six.iteritems(vocabulary)): if mask[old_index]: vocabulary[term] = new_indices[old_index] else: del vocabulary[term] removed_terms.add(term) kept_indices = np.where(mask)[0] return cscmatrix[:, kept_indices], removed_terms def sentence_prediction_test(class_weight={1: 5, -1:1}, model=SentenceModel(test_mode=True)): print print print print "Sentence level prediction" print "=" * 40 print s = model print "Model name:\t" + s.__class__.__name__ print s.__doc__ print "class_weight=%s" % (str(class_weight),) s.generate_data() s.vectorize() for test_domain in CORE_DOMAINS: print ("*"*40) + "\n\n" + test_domain + "\n\n" + ("*" * 40) domain_uids = s.domain_uids(test_domain) no_studies = len(domain_uids) kf = KFold(no_studies, n_folds=5, shuffle=False, indices=True) # # tuned_parameters = {"alpha": np.logspace(-4, -1, 10)} # tuned_parameters = [{"alpha": np.logspace(-4, -1, 5)}, {"class_weight": [{1: i, -1: 1} for i in np.logspace(0, 1, 5)]}] # clf = GridSearchCV(SGDClassifier(loss="hinge", penalty="L2"), tuned_parameters, scoring='recall') print "making scorer" ftwo_scorer = make_scorer(fbeta_score, beta=2) tuned_parameters = [{"alpha": np.logspace(-4, -1, 10)}, {"class_weight": [{1: i, -1: 1} for i in np.logspace(0, 1, 10)]}] clf = GridSearchCV(SGDClassifier(loss="hinge", penalty="L2"), tuned_parameters, scoring=ftwo_scorer) metrics = [] for fold_i, (train, test) in enumerate(kf): X_train, y_train = s.X_y_uid_filtered(domain_uids[train], test_domain) X_test, y_test = s.X_y_uid_filtered(domain_uids[test], test_domain) clf.fit(X_train, y_train) y_preds = clf.predict(X_test) fold_metric = np.array(sklearn.metrics.precision_recall_fscore_support(y_test, y_preds))[:,1] metrics.append(fold_metric) # get the scores for positive instances print "fold %d:\tprecision %.2f, recall %.2f, f-score %.2f" % (fold_i, fold_metric[0], fold_metric[1], fold_metric[2]) # if not sample and list_features: # # not an obvious way to get best features for ensemble # print show_most_informative_features(s.vectorizer, clf) # summary score summary_metrics = np.mean(metrics, axis=0) print "=" * 40 print "mean score:\tprecision %.2f, recall %.2f, f-score %.2f" % (summary_metrics[0], summary_metrics[1], summary_metrics[2]) # then train all for most informative features clf = SGDClassifier(loss="hinge", penalty="L2", alpha=0.01, class_weight={1: 5, -1: 1}) X_all = s.X_domain_all(test_domain) y_all = s.y_domain_all(test_domain) clf.fit(X_all, y_all) print show_most_informative_features(s.vectorizer, clf) def stupid_sentence_prediction_test(model=SentenceModel(test_mode=False)): print print print print "Sentence level prediction" print "=" * 40 print s = model print "Model name:\t" + s.__class__.__name__ print s.__doc__ # print "class_weight=%s" % (str(class_weight),) s.generate_data() s.vectorize() for test_domain in CORE_DOMAINS: print ("*"*40) + "\n\n" + test_domain + "\n\n" + ("*" * 40) domain_uids = s.domain_uids(test_domain) no_studies = len(domain_uids) kf = KFold(no_studies, n_folds=5, shuffle=False, indices=True) print "making scorer" metrics = [] for fold_i, (train, test) in enumerate(kf): X_test, y_test = s.X_y_uid_filtered(domain_uids[test], test_domain) y_preds = np.array([1] * len(y_test)) fold_metric = np.array(sklearn.metrics.precision_recall_fscore_support(y_test, y_preds))[:,1] fold_metric = np.append(fold_metric, accuracy_score(y_test, y_preds)) metrics.append(fold_metric) # get the scores for positive instances print "fold %d:\tprecision %.2f, recall %.2f, f-score %.2f, precision %.2f" % (fold_i, fold_metric[0], fold_metric[1], fold_metric[2], fold_metric[3]) # if not sample and list_features: # # not an obvious way to get best features for ensemble # print show_most_informative_features(s.vectorizer, clf) # summary score summary_metrics = np.mean(metrics, axis=0) print "=" * 40 print "mean score:\tprecision %.2f, recall %.2f, f-score %.2f, precision %.2f" % (summary_metrics[0], summary_metrics[1], summary_metrics[2], summary_metrics[3]) def binary_doc_prediction_test(model=DocumentLevelModel(test_mode=False)): print print print print "Binary doc prediction" print "=" * 40 print s = model s.generate_data(binarize=True) s.vectorize() for test_domain in CORE_DOMAINS: print ("*"*40) + "\n\n" + test_domain + "\n\n" + ("*" * 40) domain_uids = s.domain_uids(test_domain) no_studies = len(domain_uids) kf = KFold(no_studies, n_folds=5, shuffle=False, indices=True) # # tuned_parameters = {"alpha": np.logspace(-4, -1, 10)} # tuned_parameters = [{"alpha": np.logspace(-4, -1, 5)}, {"class_weight": [{1: i, -1: 1} for i in np.logspace(0, 1, 5)]}] # clf = GridSearchCV(SGDClassifier(loss="hinge", penalty="L2"), tuned_parameters, scoring='recall') # print "making scorer" # ftwo_scorer = make_scorer(fbeta_score, beta=2) tuned_parameters = {"alpha": np.logspace(-4, -1, 10), "class_weight": [{1: i, -1: 1} for i in np.logspace(-1, 1, 10)]} clf = GridSearchCV(SGDClassifier(loss="hinge", penalty="L2"), tuned_parameters, scoring="f1") metrics = [] for fold_i, (train, test) in enumerate(kf): X_train, y_train = s.X_y_uid_filtered(domain_uids[train], test_domain) X_test, y_test = s.X_y_uid_filtered(domain_uids[test], test_domain) clf.fit(X_train, y_train) y_preds = clf.predict(X_test) fold_metric = np.array(sklearn.metrics.precision_recall_fscore_support(y_test, y_preds))[:,1] metrics.append(fold_metric) # get the scores for positive instances print "fold %d:\tprecision %.2f, recall %.2f, f-score %.2f" % (fold_i, fold_metric[0], fold_metric[1], fold_metric[2]) # if not sample and list_features: # # not an obvious way to get best features for ensemble # print show_most_informative_features(s.vectorizer, clf) # summary score summary_metrics = np.mean(metrics, axis=0) print "=" * 40 print "mean score:\tprecision %.2f, recall %.2f, f-score %.2f" % (summary_metrics[0], summary_metrics[1], summary_metrics[2]) # then train all for most informative features clf = SGDClassifier(loss="hinge", penalty="L2", alpha=0.01, class_weight={1: 5, -1: 1}) X_all = s.X_domain_all(test_domain) y_all = s.y_domain_all(test_domain) clf.fit(X_all, y_all) print show_most_informative_features(s.vectorizer, clf) def multitask_document_prediction_test(model=MultiTaskDocumentModel(test_mode=False), test_domain=CORE_DOMAINS[0]): print "multitask!" d = model d.generate_data(binarize=True) # some variations use the quote data internally # for sentence prediction (for additional features) # d.X_uids contains all the UIds. # d.y_uids contains a dictionary mapping domains to the UIds for # which we have labels (in said domain) #pdb.set_trace() all_uids = d.X_uids d.vectorize() #### # the major change here is we don't loop through the domains! tuned_parameters = {"alpha": np.logspace(-4, -1, 10)} clf = GridSearchCV(SGDClassifier(loss="log", penalty="L2"), tuned_parameters, scoring='f1') kf = KFold(len(all_uids), n_folds=5, shuffle=False) ### TODO 250 is totally random metrics = defaultdict(list) for fold_i, (train, test) in enumerate(kf): print "Training on fold", fold_i, # note that we do *not* pass in a domain here, because # we use *all* domain training data X_train, y_train = d.X_y_uid_filtered(all_uids[train]) print "done!" clf.fit(X_train, y_train) print "Testing on fold", fold_i, for domain in CORE_DOMAINS: # multitask uses same trained model for all domains, but test on separate test data X_test, y_test = d.X_y_uid_filtered(all_uids[test], domain) y_preds = clf.predict(X_test) fold_metric = np.array(sklearn.metrics.precision_recall_fscore_support(y_test, y_preds))[:,1] metrics[domain].append(fold_metric) # get the scores for positive instances (save them up since all in the wrong order here!) print "done!" # then recreate in the right order for printout for domain in CORE_DOMAINS: print print domain print "*" * 60 print for fold_i, fold_metric in enumerate(metrics[domain]): print "fold %d:\tprecision %.2f, recall %.2f, f-score %.2f" % (fold_i, fold_metric[0], fold_metric[1], fold_metric[2]) # summary score summary_metrics = np.mean(metrics[domain], axis=0) print "=" * 40 print "mean score:\tprecision %.2f, recall %.2f, f-score %.2f" % (summary_metrics[0], summary_metrics[1], summary_metrics[2]) def dummy_document_prediction(): print "dummy!" d = DocumentLevelModel(test_mode=False) d.generate_data(binarize=True) # some variations use the quote data internally # for sentence prediction (for additional features) d.vectorize() all_uids = d.X_uids kf = KFold(len(all_uids), n_folds=5, shuffle=False) ### TODO 250 is totally random metrics = defaultdict(list) for fold_i, (train, test) in enumerate(kf): print "Testing on fold", fold_i, for domain in CORE_DOMAINS: # multitask uses same trained model for all domains, but test on separate test data X_test, y_test = d.X_y_uid_filtered(all_uids[test], domain) y_preds = np.array(([1] * len(y_test))) # everything gets marked low risk of bias fold_metric = np.array(sklearn.metrics.precision_recall_fscore_support(y_test, y_preds))[:,1] metrics[domain].append(fold_metric) # get the scores for positive instances (save them up since all in the wrong order here!) print "done!" # then recreate in the right order for printout for domain in CORE_DOMAINS: print print domain print "*" * 60 print for fold_i, fold_metric in enumerate(metrics[domain]): print "fold %d:\tprecision %.2f, recall %.2f, f-score %.2f" % (fold_i, fold_metric[0], fold_metric[1], fold_metric[2]) # summary score summary_metrics = np.mean(metrics[domain], axis=0) print "=" * 40 print "mean score:\tprecision %.2f, recall %.2f, f-score %.2f" % (summary_metrics[0], summary_metrics[1], summary_metrics[2]) def multitask_hybrid_document_prediction_test(model=MultiTaskHybridDocumentModel(test_mode=True)): print "multitask! and hybrid! :)" d = model d.generate_data(binarize=True) # some variations use the quote data internally # for sentence prediction (for additional features) # d.X_uids contains all the UIds. # d.y_uids contains a dictionary mapping domains to the UIds for # which we have labels (in said domain) #pdb.set_trace() all_uids = d.X_uids # d.vectorize() #### # the major change here is we don't loop through the domains! tuned_parameters = {"alpha": np.logspace(-4, -1, 10)} clf = GridSearchCV(SGDClassifier(loss="log", penalty="L2"), tuned_parameters, scoring='f1') kf = KFold(len(all_uids), n_folds=5, shuffle=False) metrics = defaultdict(list) print "...generating sentence data...", s = SentenceModel(test_mode=False) s.generate_data() s.vectorize() print "done!" sent_tuned_parameters = [{"alpha": np.logspace(-4, -1, 5)}, {"class_weight": [{1: i, -1: 1} for i in np.logspace(0, 2, 10)]}] for fold_i, (train, test) in enumerate(kf): sent_clfs = defaultdict(list) for domain in CORE_DOMAINS: sents_X, sents_y = s.X_domain_all(domain=domain), s.y_domain_all(domain=domain) sent_clfs[domain] = GridSearchCV(SGDClassifier(loss="hinge", penalty="L2"), tuned_parameters, scoring='recall') print "Training on fold", fold_i, d.set_sent_model(sent_clfs, s.vectorizer) d.vectorize() # note that we do *not* pass in a domain here, because # we use *all* domain training data X_train, y_train = d.X_y_uid_filtered(all_uids[train]) sent_clfs[domain].fit(sents_X, sents_y) clf.fit(X_train, y_train) print "done!" print "Testing on fold", fold_i, for domain in CORE_DOMAINS: # multitask uses same trained model for all domains, but test on separate test data X_test, y_test = d.X_y_uid_filtered(all_uids[test], domain) y_preds = clf.predict(X_test) fold_metric = np.array(sklearn.metrics.precision_recall_fscore_support(y_test, y_preds))[:,1] metrics[domain].append(fold_metric) # get the scores for positive instances (save them up since all in the wrong order here!) print "done!" # then recreate in the right order for printout for domain in CORE_DOMAINS: print print domain print "*" * 60 print for fold_i, fold_metric in enumerate(metrics[domain]): print "fold %d:\tprecision %.2f, recall %.2f, f-score %.2f" % (fold_i, fold_metric[0], fold_metric[1], fold_metric[2]) # summary score summary_metrics = np.mean(metrics[domain], axis=0) print "=" * 40 print "mean score:\tprecision %.2f, recall %.2f, f-score %.2f" % (summary_metrics[0], summary_metrics[1], summary_metrics[2]) def document_prediction_test(model=DocumentLevelModel(test_mode=False)): print "Document level prediction" print "=" * 40 print d = model d.generate_data() # some variations use the quote data internally # for sentence prediction (for additional features) d.vectorize() for test_domain in CORE_DOMAINS: print ("*"*40) + "\n\n" + test_domain + "\n\n" + ("*" * 40) # f1_prefer_nos = make_scorer(f1_score, pos_label="NO") tuned_parameters = {"alpha": np.logspace(-4, -1, 10)} clf = GridSearchCV(SGDClassifier(loss="log", penalty="L2"), tuned_parameters, scoring='f1') # clf = SGDClassifier(loss="hinge", penalty="L2") domain_uids = d.domain_uids(test_domain) no_studies = len(domain_uids) kf = KFold(no_studies, n_folds=5, shuffle=False) metrics = [] for fold_i, (train, test) in enumerate(kf): X_train, y_train = d.X_y_uid_filtered(domain_uids[train], test_domain) X_test, y_test = d.X_y_uid_filtered(domain_uids[test], test_domain) clf.fit(X_train, y_train) y_preds = clf.predict(X_test) fold_metric = np.array(sklearn.metrics.precision_recall_fscore_support(y_test, y_preds, labels=RoB_CLASSES))[:3] print ('fold %d\t' % (fold_i)) + '\t'.join(RoB_CLASSES) # for metric_type, scores in zip(["prec.", "recall", "f1"], fold_metric): # print "%s\t%.2f\t%.2f\t%.2f" % (metric_type, scores[0], scores[1], scores[2]) # print # print clf.best_params_ #### START CONFUSION real_no_indices = (y_test=="NO") print "The actual NOs were predicted as..." print collections.Counter(y_preds[real_no_indices]) #### END CONFUSION metrics.append(fold_metric) # get the scores for positive instances # print "fold %d:\tprecision %.2f, recall %.2f, f-score %.2f" % (fold_i, fold_metric[0], fold_metric[1], fold_metric[2]) mean_scores = np.mean(metrics, axis=0) print "=" * 40 print 'means \t' + '\t'.join(RoB_CLASSES) for metric_type, scores in zip(["prec.", "recall", "f1"], mean_scores): print "%s\t%.2f\t%.2f\t%.2f" % (metric_type, scores[0], scores[1], scores[2]) print # then train all for most informative features clf = SGDClassifier(loss="hinge", penalty="L2", alpha=0.01) X_all = d.X_domain_all(test_domain) y_all = d.y_domain_all(test_domain) clf.fit(X_all, y_all) print show_most_informative_features_ynu(d.vectorizer, clf) def simple_hybrid_prediction_test(model=HybridModel(test_mode=True)): print "Hybrid prediction" print "=" * 40 print s = model s.generate_data() # some variations use the quote data internally # for sentence prediction (for additional features) for test_domain in CORE_DOMAINS: s.vectorize(test_domain) print ("*"*40) + "\n\n" + test_domain + "\n\n" + ("*" * 40) domain_uids = s.domain_uids(test_domain) no_studies = len(domain_uids) kf = KFold(no_studies, n_folds=5, shuffle=False) # tuned_parameters = [{"alpha": np.logspace(-4, -1, 5)}, {"class_weight": [{1: i, -1: 1} for i in np.logspace(0, 1, 5)]}] # clf = GridSearchCV(SGDClassifier(loss="hinge", penalty="L2"), tuned_parameters, scoring='f1') print "making scorer" ftwo_scorer = make_scorer(fbeta_score, beta=2) tuned_parameters = [{"alpha": np.logspace(-4, -1, 10)}, {"class_weight": [{1: i, -1: 1} for i in np.logspace(0, 1, 10)]}] clf = GridSearchCV(SGDClassifier(loss="hinge", penalty="L2"), tuned_parameters, scoring=ftwo_scorer) metrics = [] for fold_i, (train, test) in enumerate(kf): X_train, y_train = s.X_y_uid_filtered(domain_uids[train], test_domain) X_test, y_test = s.X_y_uid_filtered(domain_uids[test], test_domain) clf.fit(X_train, y_train) y_preds = clf.predict(X_test) fold_metric = np.array(sklearn.metrics.precision_recall_fscore_support(y_test, y_preds))[:,1] metrics.append(fold_metric) # get the scores for positive instances print "fold %d:\tprecision %.2f, recall %.2f, f-score %.2f" % (fold_i, fold_metric[0], fold_metric[1], fold_metric[2]) metrics.append(fold_metric) # get the scores for positive instances # summary score summary_metrics = np.mean(metrics, axis=0) print "=" * 40 print "mean score:\tprecision %.2f, recall %.2f, f-score %.2f" % (summary_metrics[0], summary_metrics[1], summary_metrics[2]) # def simple_hybrid_prediction_test(model=HybridModel(test_mode=True)): # print "Hybrid prediction" # print "=" * 40 # print # s = model # s.generate_data() # some variations use the quote data internally # # for sentence prediction (for additional features) # for test_domain in CORE_DOMAINS: # s.vectorize(test_domain) # print ("*"*40) + "\n\n" + test_domain + "\n\n" + ("*" * 40) # domain_uids = s.domain_uids(test_domain) # no_studies = len(domain_uids) # kf = KFold(no_studies, n_folds=5, shuffle=False) # tuned_parameters = [{"alpha": np.logspace(-4, -1, 5)}, {"class_weight": [{1: i, -1: 1} for i in np.logspace(0, 1, 5)]}] # clf = GridSearchCV(SGDClassifier(loss="hinge", penalty="L2"), tuned_parameters, scoring='f1') # metrics = [] # for fold_i, (train, test) in enumerate(kf): # X_train, y_train = s.X_y_uid_filtered(domain_uids[train], test_domain) # X_test, y_test = s.X_y_uid_filtered(domain_uids[test], test_domain) # clf.fit(X_train, y_train) # y_preds = clf.predict(X_test) # fold_metric = np.array(sklearn.metrics.precision_recall_fscore_support(y_test, y_preds))[:,1] # metrics.append(fold_metric) # get the scores for positive instances # print "fold %d:\tprecision %.2f, recall %.2f, f-score %.2f" % (fold_i, fold_metric[0], fold_metric[1], fold_metric[2]) # metrics.append(fold_metric) # get the scores for positive instances # # summary score # summary_metrics = np.mean(metrics, axis=0) # print "=" * 40 # print "mean score:\tprecision %.2f, recall %.2f, f-score %.2f" % (summary_metrics[0], summary_metrics[1], summary_metrics[2]) def true_hybrid_prediction_test(model, test_mode=False): print "True Hybrid prediction" print "=" * 40 print s = model s.generate_data() # some variations use the quote data internally # for sentence prediction (for additional features) s_cheat = HybridModel(test_mode=False) s_cheat.generate_data() for test_domain in CORE_DOMAINS: print ("*"*40) + "\n\n" + test_domain + "\n\n" + ("*" * 40) domain_uids = s.domain_uids(test_domain) no_studies = len(domain_uids) kf = KFold(no_studies, n_folds=5, shuffle=False) print "making scorer" ftwo_scorer = make_scorer(fbeta_score, beta=2) tuned_parameters = [{"alpha": np.logspace(-4, -1, 10)}, {"class_weight": [{1: i, -1: 1} for i in np.logspace(0, 1, 10)]}] clf = GridSearchCV(SGDClassifier(loss="hinge", penalty="L2"), tuned_parameters, scoring=ftwo_scorer) metrics = [] for fold_i, (train, test) in enumerate(kf): print "training doc level model with test data, please wait..." d = DocumentLevelModel(test_mode=False) d.generate_data(uid_filter=domain_uids[train]) d.vectorize() doc_X, doc_y = d.X_domain_all(domain=test_domain), d.y_domain_all(domain=test_domain) doc_tuned_parameters = {"alpha": np.logspace(-4, -1, 10)} doc_clf = GridSearchCV(SGDClassifier(loss="hinge", penalty="L2"), doc_tuned_parameters, scoring='f1') doc_clf.fit(doc_X, doc_y) s.set_doc_model(doc_clf, d.vectorizer) s_cheat.vectorize(test_domain) s.vectorize(test_domain, use_vectorizer=s_cheat.vectorizer) X_train, y_train = s_cheat.X_y_uid_filtered(domain_uids[train], test_domain) # train on the *true* labels X_test, y_test = s.X_y_uid_filtered(domain_uids[test], test_domain) clf.fit(X_train, y_train) y_preds = clf.predict(X_test) fold_metric = np.array(sklearn.metrics.precision_recall_fscore_support(y_test, y_preds))[:,1] metrics.append(fold_metric) # get the scores for positive instances print "fold %d:\tprecision %.2f, recall %.2f, f-score %.2f" % (fold_i, fold_metric[0], fold_metric[1], fold_metric[2]) metrics.append(fold_metric) # get the scores for positive instances # summary score summary_metrics = np.mean(metrics, axis=0) print "=" * 40 print "mean score:\tprecision %.2f, recall %.2f, f-score %.2f" % (summary_metrics[0], summary_metrics[1], summary_metrics[2]) def hybrid_doc_prediction_test(model=HybridDocModel(test_mode=True)): print "Hybrid doc level prediction" print "=" * 40 print d = model d.generate_data() # some variations use the quote data internally # for sentence prediction (for additional features) for test_domain in CORE_DOMAINS: print ("*"*40) + "\n\n" + test_domain + "\n\n" + ("*" * 40) domain_uids = d.domain_uids(test_domain) no_studies = len(domain_uids) kf = KFold(no_studies, n_folds=5, shuffle=False) tuned_parameters = {"alpha": np.logspace(-4, -1, 5)} clf = GridSearchCV(SGDClassifier(loss="hinge", penalty="L2"), tuned_parameters, scoring='f1') metrics = [] for fold_i, (train, test) in enumerate(kf): s = SentenceModel(test_mode=False) s.generate_data(uid_filter=domain_uids[train]) s.vectorize() sents_X, sents_y = s.X_domain_all(domain=test_domain), s.y_domain_all(domain=test_domain) sent_tuned_parameters = [{"alpha": np.logspace(-4, -1, 5)}, {"class_weight": [{1: i, -1: 1} for i in np.logspace(0, 2, 10)]}] sent_clf = GridSearchCV(SGDClassifier(loss="hinge", penalty="L2"), tuned_parameters, scoring='recall') sent_clf.fit(sents_X, sents_y) d.set_sent_model(sent_clf, s.vectorizer) d.vectorize(test_domain) X_train, y_train = d.X_y_uid_filtered(domain_uids[train], test_domain) X_test, y_test = d.X_y_uid_filtered(domain_uids[test], test_domain) clf.fit(X_train, y_train) y_preds = clf.predict(X_test) fold_metric = np.array(sklearn.metrics.precision_recall_fscore_support(y_test, y_preds, labels=RoB_CLASSES))[:3] print ('fold %d\t' % (fold_i)) + '\t'.join(RoB_CLASSES) for metric_type, scores in zip(["prec.", "recall", "f1"], fold_metric): print "%s\t%.2f\t%.2f\t%.2f" % (metric_type, scores[0], scores[1], scores[2]) print metrics.append(fold_metric) # get the scores for positive instances # print "fold %d:\tprecision %.2f, recall %.2f, f-score %.2f" % (fold_i, fold_metric[0], fold_metric[1], fold_metric[2]) mean_scores = np.mean(metrics, axis=0) print "=" * 40 print 'means \t' + '\t'.join(RoB_CLASSES) for metric_type, scores in zip(["prec.", "recall", "f1"], mean_scores): print "%s\t%.2f\t%.2f\t%.2f" % (metric_type, scores[0], scores[1], scores[2]) print def binary_hybrid_doc_prediction_test(model=HybridDocModel(test_mode=True)): print "Binary hybrid doc level prediction" print "=" * 40 print d = model d.generate_data(binarize=True) # some variations use the quote data internally # for sentence prediction (for additional features) for test_domain in CORE_DOMAINS: print ("*"*40) + "\n\n" + test_domain + "\n\n" + ("*" * 40) domain_uids = d.domain_uids(test_domain) no_studies = len(domain_uids) kf = KFold(no_studies, n_folds=5, shuffle=False) tuned_parameters = {"alpha": np.logspace(-4, -1, 10), "class_weight": [{1: i, -1: 1} for i in np.logspace(-1, 1, 10)]} clf = GridSearchCV(SGDClassifier(loss="hinge", penalty="L2"), tuned_parameters, scoring='f1') metrics = [] for fold_i, (train, test) in enumerate(kf): s = SentenceModel(test_mode=True) s.generate_data(uid_filter=domain_uids[train]) s.vectorize() sents_X, sents_y = s.X_domain_all(domain=test_domain), s.y_domain_all(domain=test_domain) sent_tuned_parameters = [{"alpha": np.logspace(-4, -1, 5)}, {"class_weight": [{1: i, -1: 1} for i in np.logspace(0, 2, 10)]}] sent_clf = GridSearchCV(SGDClassifier(loss="hinge", penalty="L2"), tuned_parameters, scoring='recall') sent_clf.fit(sents_X, sents_y) d.set_sent_model(sent_clf, s.vectorizer) d.vectorize(test_domain) X_train, y_train = d.X_y_uid_filtered(domain_uids[train], test_domain) X_test, y_test = d.X_y_uid_filtered(domain_uids[test], test_domain) clf.fit(X_train, y_train) y_preds = clf.predict(X_test) fold_metric = np.array(sklearn.metrics.precision_recall_fscore_support(y_test, y_preds))[:,1] metrics.append(fold_metric) # get the scores for positive instances print "fold %d:\tprecision %.2f, recall %.2f, f-score %.2f" % (fold_i, fold_metric[0], fold_metric[1], fold_metric[2]) metrics.append(fold_metric) # get the scores for positive instances # print "fold %d:\tprecision %.2f, recall %.2f, f-score %.2f" % (fold_i, fold_metric[0], fold_metric[1], fold_metric[2]) summary_metrics = np.mean(metrics, axis=0) print "=" * 40 print "mean score:\tprecision %.2f, recall %.2f, f-score %.2f" % (summary_metrics[0], summary_metrics[1], summary_metrics[2]) # then train all for most informative features s = SentenceModel(test_mode=True) s.generate_data(uid_filter=domain_uids) s.vectorize() sents_X, sents_y = s.X_domain_all(domain=test_domain), s.y_domain_all(domain=test_domain) sent_tuned_parameters = [{"alpha": np.logspace(-4, -1, 5)}, {"class_weight": [{1: i, -1: 1} for i in np.logspace(0, 2, 10)]}] sent_clf = GridSearchCV(SGDClassifier(loss="hinge", penalty="L2"), tuned_parameters, scoring='recall') sent_clf.fit(sents_X, sents_y) d.set_sent_model(sent_clf, s.vectorizer) d.vectorize(test_domain) clf = SGDClassifier(loss="hinge", penalty="L2", alpha=0.1, class_weight={1: 1, -1: 1}) X_all, y_all = d.X_y_uid_filtered(domain_uids, test_domain) clf.fit(X_all, y_all) print show_most_informative_features(s.vectorizer, clf) def binary_hybrid_doc_prediction_test2(model=HybridDocModel(test_mode=True)): print "Binary hybrid doc level prediction version 2 (maybe quicker!!)" print "=" * 40 print d = model d.generate_data(binarize=True) # some variations use the quote data internally # for sentence prediction (for additional features) for test_domain in CORE_DOMAINS: print ("*"*40) + "\n\n" + test_domain + "\n\n" + ("*" * 40) domain_uids = d.domain_uids(test_domain) no_studies = len(domain_uids) kf = KFold(no_studies, n_folds=5, shuffle=False) tuned_parameters = {"alpha": np.logspace(-4, -1, 10), "class_weight": [{1: i, -1: 1} for i in np.logspace(-1, 1, 10)]} clf = GridSearchCV(SGDClassifier(loss="hinge", penalty="L2"), tuned_parameters, scoring='f1') metrics = [] s = SentenceModel(test_mode=True) s.generate_data(uid_filter=domain_uids) s.vectorize() for fold_i, (train, test) in enumerate(kf): sents_X, sents_y = s.X_y_uid_filtered(domain_uids[test], test_domain) # sent_tuned_parameters = [{"alpha": np.logspace(-4, -1, 5)}, {"class_weight": [{1: i, -1: 1} for i in np.logspace(0, 2, 10)]}] # sent_clf = GridSearchCV(SGDClassifier(loss="hinge", penalty="L2"), tuned_parameters, scoring='recall') sent_tuned_parameters = [{"alpha": np.logspace(-4, -1, 5)}] sent_clf = GridSearchCV(SGDClassifier(loss="hinge", penalty="L2", class_weight={1:5, -1:1}), sent_tuned_parameters, scoring='recall') sent_clf.fit(sents_X, sents_y) d.set_sent_model(sent_clf, s.vectorizer) d.vectorize(test_domain) X_train, y_train = d.X_y_uid_filtered(domain_uids[train], test_domain) X_test, y_test = d.X_y_uid_filtered(domain_uids[test], test_domain) clf.fit(X_train, y_train) # print show_most_informative_features(s.vectorizer, clf.best_estimator_) print show_most_informative_features(s.vectorizer, clf) # y_preds = clf.predict(X_test) # fold_metric = np.array(sklearn.metrics.precision_recall_fscore_support(y_test, y_preds))[:,1] # metrics.append(fold_metric) # get the scores for positive instances # print "fold %d:\tprecision %.2f, recall %.2f, f-score %.2f" % (fold_i, fold_metric[0], fold_metric[1], fold_metric[2]) # metrics.append(fold_metric) # get the scores for positive instances # summary_metrics = np.mean(metrics, axis=0) # print "=" * 40 # print "mean score:\tprecision %.2f, recall %.2f, f-score %.2f" % (summary_metrics[0], summary_metrics[1], summary_metrics[2]) # # then train all for most informative features # sents_X, sents_y = s.X_domain_all(domain=test_domain), s.y_domain_all(domain=test_domain) # sent_tuned_parameters = [{"alpha": np.logspace(-4, -1, 5)}, {"class_weight": [{1: i, -1: 1} for i in np.logspace(0, 2, 10)]}] # sent_clf = GridSearchCV(SGDClassifier(loss="hinge", penalty="L2"), tuned_parameters, scoring='recall') # sent_clf.fit(sents_X, sents_y) # d.set_sent_model(sent_clf, s.vectorizer) # d.vectorize(test_domain) # clf = SGDClassifier(loss="hinge", penalty="L2", alpha=0.5, class_weight={1: 1, -1: 1}) # X_all, y_all = d.X_y_uid_filtered(domain_uids, test_domain) # clf.fit(X_all, y_all) def main(): # dummy_document_prediction() stupid_sentence_prediction_test() # true_hybrid_prediction_test(model=HybridModelProbablistic(test_mode=False)) # sentence_prediction_test(model=SentenceModel(test_mode=False)) # simple_hybrid_prediction_test(model=HybridModel(test_mode=False)) # binary_doc_prediction_test() #print "Try weighting sentences better" #binary_hybrid_doc_prediction_test2() # binary_hybrid_doc_prediction_test() # hybrid_doc_prediction_test(model=HybridDocModel2(test_mode=False)) # document_prediction_test(model=DocumentLevelModel(test_mode=False)) # multitask_document_prediction_test(model=MultiTaskDocumentModel(test_mode=False)) # multitask_hybrid_document_prediction_test(model=MultiTaskHybridDocumentModel(test_mode=False)) if __name__ == '__main__': main()
gpl-3.0
harshaneelhg/scikit-learn
examples/linear_model/plot_lasso_lars.py
363
1080
#!/usr/bin/env python """ ===================== Lasso path using LARS ===================== Computes Lasso Path along the regularization parameter using the LARS algorithm on the diabetes dataset. Each color represents a different feature of the coefficient vector, and this is displayed as a function of the regularization parameter. """ print(__doc__) # Author: Fabian Pedregosa <fabian.pedregosa@inria.fr> # Alexandre Gramfort <alexandre.gramfort@inria.fr> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model from sklearn import datasets diabetes = datasets.load_diabetes() X = diabetes.data y = diabetes.target print("Computing regularization path using the LARS ...") alphas, _, coefs = linear_model.lars_path(X, y, method='lasso', verbose=True) xx = np.sum(np.abs(coefs.T), axis=1) xx /= xx[-1] plt.plot(xx, coefs.T) ymin, ymax = plt.ylim() plt.vlines(xx, ymin, ymax, linestyle='dashed') plt.xlabel('|coef| / max|coef|') plt.ylabel('Coefficients') plt.title('LASSO Path') plt.axis('tight') plt.show()
bsd-3-clause
bestwpw/BDA_py_demos
demos_ch5/demo5_2.py
19
3326
"""Bayesian Data Analysis, 3rd ed Chapter 5, demo 2 Hierarchical model for SAT-example data (BDA3, p. 102) """ from __future__ import division import numpy as np from scipy.stats import norm import scipy.io # For importing a matlab file import matplotlib.pyplot as plt # Edit default plot settings (colours from colorbrewer2.org) plt.rc('font', size=14) plt.rc('lines', color='#377eb8', linewidth=2) plt.rc('axes', color_cycle=(plt.rcParams['lines.color'],)) # Disable color cycle # SAT-example data (BDA3 p. 120) # y is the estimated treatment effect # s is the standard error of effect estimate y = np.array([28, 8, -3, 7, -1, 1, 18, 12]) s = np.array([15, 10, 16, 11, 9, 11, 10, 18]) M = len(y) # load the pre-computed results for the hierarchical model # replace this with your own code in Ex 5.1* hres_path = '../utilities_and_data/demo5_2.mat' hres = scipy.io.loadmat(hres_path) ''' Content information of the precalculated results: >>> scipy.io.whosmat('demo5_2.mat') [('pxm', (8, 500), 'double'), ('t', (1, 1000), 'double'), ('tp', (1, 1000), 'double'), ('tsd', (8, 1000), 'double'), ('tm', (8, 1000), 'double')] ''' pxm = hres['pxm'] t = hres['t'][0] tp = hres['tp'][0] tsd = hres['tsd'] tm = hres['tm'] # plot the separate, pooled and hierarchical models fig, axes = plt.subplots(3, 1, sharex=True, figsize=(8,10)) x = np.linspace(-40, 60, 500) # separate lines = axes[0].plot(x, norm.pdf(x[:,None], y[1:], s[1:]), linewidth=1) line, = axes[0].plot(x, norm.pdf(x, y[0], s[0]), 'r') axes[0].legend((line, lines[1]), ('school A', 'other schools'), loc='upper left') axes[0].set_yticks(()) axes[0].set_title('separate model') # pooled axes[1].plot( x, norm.pdf( x, np.sum(y/s**2)/np.sum(1/s**2), np.sqrt(1/np.sum(1/s**2)) ), label='All schools' ) axes[1].legend(loc='upper left') axes[1].set_yticks(()) axes[1].set_title('pooled model') # hierarchical lines = axes[2].plot(x, pxm[1:].T, linewidth=1) line, = axes[2].plot(x, pxm[0], 'r') axes[2].legend((line, lines[1]), ('school A', 'other schools'), loc='upper left') axes[2].set_yticks(()) axes[2].set_title('hierarchical model') axes[2].set_xlabel('Treatment effect') # plot various marginal and conditional posterior summaries fig, axes = plt.subplots(3, 1, sharex=True, figsize=(8,10)) axes[0].plot(t, tp) axes[0].set_yticks(()) axes[0].set_title(r'marginal posterior density $p(\tau|y)$') axes[0].set_ylabel(r'$p(\tau|y)$', fontsize=20) axes[0].set_xlim([0,35]) lines = axes[1].plot(t, tm[1:].T, linewidth=1) line, = axes[1].plot(t, tm[0].T, 'r') axes[1].legend((line, lines[1]), ('school A', 'other schools'), loc='upper left') axes[1].set_title(r'conditional posterior means of effects ' r'$\operatorname{E}(\theta_j|\tau,y)$') axes[1].set_ylabel(r'$\operatorname{E}(\theta_j|\tau,y)$', fontsize=20) lines = axes[2].plot(t, tsd[1:].T, linewidth=1) line, = axes[2].plot(t, tsd[0].T, 'r') axes[2].legend((line, lines[1]), ('school A', 'other schools'), loc='upper left') axes[2].set_title(r'standard deviations of effects ' r'$\operatorname{sd}(\theta_j|\tau,y)$') axes[2].set_ylabel(r'$\operatorname{sd}(\theta_j|\tau,y)$', fontsize=20) axes[2].set_xlabel(r'$\tau$', fontsize=20) plt.show()
gpl-3.0
otmaneJai/Zipline
zipline/sources/data_frame_source.py
26
5253
# # Copyright 2015 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tools to generate data sources. """ import numpy as np import pandas as pd from zipline.gens.utils import hash_args from zipline.sources.data_source import DataSource class DataFrameSource(DataSource): """ Data source that yields from a pandas DataFrame. :Axis layout: * columns : sids * index : datetime :Note: Bars where the price is nan are filtered out. """ def __init__(self, data, **kwargs): assert isinstance(data.index, pd.tseries.index.DatetimeIndex) # Only accept integer SIDs as the items of the DataFrame assert isinstance(data.columns, pd.Int64Index) # TODO is ffilling correct/necessary? # Forward fill prices self.data = data.fillna(method='ffill') # Unpack config dictionary with default values. self.start = kwargs.get('start', self.data.index[0]) self.end = kwargs.get('end', self.data.index[-1]) self.sids = self.data.columns # Hash_value for downstream sorting. self.arg_string = hash_args(data, **kwargs) self._raw_data = None self.started_sids = set() @property def mapping(self): return { 'dt': (lambda x: x, 'dt'), 'sid': (lambda x: x, 'sid'), 'price': (float, 'price'), 'volume': (int, 'volume'), } @property def instance_hash(self): return self.arg_string def raw_data_gen(self): for dt, series in self.data.iterrows(): for sid, price in series.iteritems(): # Skip SIDs that can not be forward filled if np.isnan(price) and \ sid not in self.started_sids: continue self.started_sids.add(sid) event = { 'dt': dt, 'sid': sid, 'price': price, # Just chose something large # if no volume available. 'volume': 1e9, } yield event @property def raw_data(self): if not self._raw_data: self._raw_data = self.raw_data_gen() return self._raw_data class DataPanelSource(DataSource): """ Data source that yields from a pandas Panel. :Axis layout: * items : sids * major_axis : datetime * minor_axis : price, volume, ... :Note: Bars where the price is nan are filtered out. """ def __init__(self, data, **kwargs): assert isinstance(data.major_axis, pd.tseries.index.DatetimeIndex) # Only accept integer SIDs as the items of the Panel assert isinstance(data.items, pd.Int64Index) # TODO is ffilling correct/necessary? # forward fill with volumes of 0 self.data = data.fillna(value={'volume': 0}) self.data = self.data.fillna(method='ffill') # Unpack config dictionary with default values. self.start = kwargs.get('start', self.data.major_axis[0]) self.end = kwargs.get('end', self.data.major_axis[-1]) self.sids = self.data.items # Hash_value for downstream sorting. self.arg_string = hash_args(data, **kwargs) self._raw_data = None self.started_sids = set() @property def mapping(self): mapping = { 'dt': (lambda x: x, 'dt'), 'sid': (lambda x: x, 'sid'), 'price': (float, 'price'), 'volume': (int, 'volume'), } # Add additional fields. for field_name in self.data.minor_axis: if field_name in ['price', 'volume', 'dt', 'sid']: continue mapping[field_name] = (lambda x: x, field_name) return mapping @property def instance_hash(self): return self.arg_string def raw_data_gen(self): for dt in self.data.major_axis: df = self.data.major_xs(dt) for sid, series in df.iteritems(): # Skip SIDs that can not be forward filled if np.isnan(series['price']) and \ sid not in self.started_sids: continue self.started_sids.add(sid) event = { 'dt': dt, 'sid': sid, } for field_name, value in series.iteritems(): event[field_name] = value yield event @property def raw_data(self): if not self._raw_data: self._raw_data = self.raw_data_gen() return self._raw_data
apache-2.0
i19870503/i19870503
Python/eggnog2go_anno.py
1
2591
import os import re import pandas as pd import string import itertools import numpy as np import sys import argparse from collections import OrderedDict if __name__ == '__main__': parser = argparse.ArgumentParser(description='Create GO annotation and enrichment file') parser.add_argument('-i',type=str,dest='infile',required=True,help="Input file") parser.add_argument('-o',type=str,dest='out',required=True,help="Ouput file") parser.add_argument('-db',type=str,dest='db',required=True,help="GO Database file") args = parser.parse_args() print (args) def sort_uniq(sequence): return (x[0] for x in itertools.groupby(sorted(sequence))) path = "/home/zluna/Work/GO" fout = open(args.out+"_anno.xls", 'w') print("Gene_id", "GO_annotation", sep = '\t', file = fout) go_db = pd.read_table(os.path.join(path, args.db), header = None) eggout = pd.read_table(os.path.join(path, args.infile), header = None) #pd.DataFrame.head(eggout) #eggout.head(100) dict = OrderedDict() first_flag = 1 a = list(go_db[0]) for i in range(len(eggout)): gene_id = eggout[0][i] go_id = eggout[5][i] if pd.isnull(eggout[5][i]): go_id = '' #print(gene_id, kegg_id, type(kegg_id), sep ='\t') go_id = go_id.split(',') if len(go_id) == 0: continue go_term = '; '.join(list(go_db[go_db[2].isin(go_id)][0])) #print(gene_id, go_id, go_term, sep ='\t') go_sum = [] sel_go_table = go_db[go_db[2].isin(go_id)] for j in range(len(sel_go_table)): go_sum.append(''.join(( list(sel_go_table[2])[j], "~", list(sel_go_table[0])[j]))) print(gene_id, str(go_sum).strip('[]').replace(']','').replace("'","").replace(", ","; "), sep = '\t', file = fout) a = list(go_db[2]) ### Use dictionary for k in range(len(a)): if str(go_sum).find(a[k]) != -1 : if a[k] not in dict.keys(): ### The value must be list type, if just give the 'gene_id' as the value of key, it can not use 'append' method to add the new 'gene_id' to the existing key. dict[a[k]] = [] dict[a[k]].append(gene_id) else: dict[a[k]].append(gene_id) #dict[a[j]] = [dict[a[j]], gene_id] fout.close() fout2 = open(args.out+"_enrich.xls", 'w') print('GOID', 'Term', 'Genes', 'Gene_count', sep = '\t', file = fout2) for key,values in dict.items(): print(key, list(go_db[go_db[2] == key][0]), str(values).strip('[]').replace(']','').replace("'",""), len(values), sep ='\t', file = fout2) fout2.cloes()
gpl-2.0
CCI-Tools/cate-core
cate/ops/index.py
1
8641
# The MIT License (MIT) # Copyright (c) 2016, 2017 by the ESA CCI Toolbox development team and contributors # # Permission is hereby granted, free of charge, to any person obtaining a copy of # this software and associated documentation files (the "Software"), to deal in # the Software without restriction, including without limitation the rights to # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies # of the Software, and to permit persons to whom the Software is furnished to do # so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """ Description =========== Index calculation operations Functions ========= """ import xarray as xr import pandas as pd from cate.core.op import op, op_input from cate.ops.select import select_var from cate.ops.subset import subset_spatial from cate.ops.anomaly import anomaly_external from cate.core.types import PolygonLike, VarName, ValidationError from cate.util.monitor import Monitor _ALL_FILE_FILTER = dict(name='All Files', extensions=['*']) @op(tags=['index']) @op_input('file', file_open_mode='r', file_filters=[dict(name='NetCDF', extensions=['nc']), _ALL_FILE_FILTER]) @op_input('var', value_set_source='ds', data_type=VarName) def enso_nino34(ds: xr.Dataset, var: VarName.TYPE, file: str, threshold: float = None, monitor: Monitor = Monitor.NONE) -> pd.DataFrame: """ Calculate nino34 index, which is defined as a five month running mean of anomalies of monthly means of SST data in Nino3.4 region:: lon_min=-170 lat_min=-5 lon_max=-120 lat_max=5. :param ds: A monthly SST dataset :param file: Path to the reference data file e.g. a climatology. A suitable reference dataset can be generated using the long_term_average operation :param var: Dataset variable (geophysial quantity) to use for index calculation. :param threshold: If given, boolean El Nino/La Nina timeseries will be calculated and added to the output dataset according to the given threshold. Where anomaly larger than the positive value of the threshold indicates El Nino and anomaly smaller than the negative of the given threshold indicates La Nina. :param monitor: a progress monitor. :return: A dataset that contains the index timeseries. """ n34 = '-170, -5, -120, 5' name = 'ENSO N3.4 Index' return _generic_index_calculation(ds, var, n34, 5, file, name, threshold, monitor) @op(tags=['index']) @op_input('var', value_set_source='ds', data_type=VarName) @op_input('file', file_open_mode='r', file_filters=[dict(name='NetCDF', extensions=['nc']), _ALL_FILE_FILTER]) @op_input('region', value_set=['N1+2', 'N3', 'N34', 'N4', 'custom']) @op_input('custom_region', data_type=PolygonLike) def enso(ds: xr.Dataset, var: VarName.TYPE, file: str, region: str = 'n34', custom_region: PolygonLike.TYPE = None, threshold: float = None, monitor: Monitor = Monitor.NONE) -> pd.DataFrame: """ Calculate ENSO index, which is defined as a five month running mean of anomalies of monthly means of SST data in the given region. :param ds: A monthly SST dataset :param file: Path to the reference data file e.g. a climatology. A suitable reference dataset can be generated using the long_term_average operation :param var: Dataset variable to use for index calculation :param region: Region for index calculation, the default is Nino3.4 :param custom_region: If 'custom' is chosen as the 'region', this parameter has to be provided to set the desired region. :param threshold: If given, boolean El Nino/La Nina timeseries will be calculated and added to the output dataset, according to the given threshold. Where anomaly larger than then positive value of the threshold indicates El Nino and anomaly smaller than the negative of the given threshold indicates La Nina. :param monitor: a progress monitor. :return: A dataset that contains the index timeseries. """ regions = {'N1+2': '-90, -10, -80, 0', 'N3': '-150, -5, -90, 5', 'N3.4': '-170, -5, -120, 5', 'N4': '160, -5, -150, 5', 'custom': custom_region} converted_region = PolygonLike.convert(regions[region]) if not converted_region: raise ValidationError('No region has been provided to ENSO index calculation') name = 'ENSO ' + region + ' Index' if 'custom' == region: name = 'ENSO Index over ' + PolygonLike.format(converted_region) return _generic_index_calculation(ds, var, converted_region, 5, file, name, threshold, monitor) @op(tags=['index']) @op_input('var', value_set_source='ds', data_type=VarName) @op_input('file', file_open_mode='r', file_filters=[dict(name='NetCDF', extensions=['nc']), _ALL_FILE_FILTER]) def oni(ds: xr.Dataset, var: VarName.TYPE, file: str, threshold: float = None, monitor: Monitor = Monitor.NONE) -> pd.DataFrame: """ Calculate ONI index, which is defined as a three month running mean of anomalies of monthly means of SST data in the Nino3.4 region. :param ds: A monthly SST dataset :param file: Path to the reference data file e.g. a climatology. A suitable reference dataset can be generated using the long_term_average operation :param var: Dataset variable to use for index calculation :param threshold: If given, boolean El Nino/La Nina timeseries will be calculated and added to the output dataset, according to the given threshold. Where anomaly larger than then positive value of the threshold indicates El Nino and anomaly smaller than the negative of the given threshold indicates La Nina. :param monitor: a progress monitor. :return: A dataset that containts the index timeseries """ n34 = '-170, -5, -120, 5' name = 'ONI Index' return _generic_index_calculation(ds, var, n34, 3, file, name, threshold, monitor) def _generic_index_calculation(ds: xr.Dataset, var: VarName.TYPE, region: PolygonLike.TYPE, window: int, file: str, name: str, threshold: float = None, monitor: Monitor = Monitor.NONE) -> pd.DataFrame: """ A generic index calculation. Where an index is defined as an anomaly against the given reference of a moving average of the given window size of the given given region of the given variable of the given dataset. :param ds: Dataset from which to calculate the index :param var: Variable from which to calculate index :param region: Spatial subset from which to calculate the index :param window: Window size for the moving average :param file: Path to the reference file :param threshold: Absolute threshold that indicates an ENSO event :param name: Name of the index :param monitor: a progress monitor. :return: A dataset that contains the index timeseries """ var = VarName.convert(var) region = PolygonLike.convert(region) with monitor.starting("Calculate the index", total_work=2): ds = select_var(ds, var) ds_subset = subset_spatial(ds, region) anom = anomaly_external(ds_subset, file, monitor=monitor.child(1)) with monitor.child(1).observing("Calculate mean"): ts = anom.mean(dim=['lat', 'lon']) df = pd.DataFrame(data=ts[var].values, columns=[name], index=ts.time.values) retval = df.rolling(window=window, center=True).mean().dropna() if threshold is None: return retval retval['El Nino'] = pd.Series((retval[name] > threshold), index=retval.index) retval['La Nina'] = pd.Series((retval[name] < -threshold), index=retval.index) return retval
mit
huobaowangxi/scikit-learn
sklearn/mixture/tests/test_dpgmm.py
261
4490
import unittest import sys import numpy as np from sklearn.mixture import DPGMM, VBGMM from sklearn.mixture.dpgmm import log_normalize from sklearn.datasets import make_blobs from sklearn.utils.testing import assert_array_less, assert_equal from sklearn.mixture.tests.test_gmm import GMMTester from sklearn.externals.six.moves import cStringIO as StringIO np.seterr(all='warn') def test_class_weights(): # check that the class weights are updated # simple 3 cluster dataset X, y = make_blobs(random_state=1) for Model in [DPGMM, VBGMM]: dpgmm = Model(n_components=10, random_state=1, alpha=20, n_iter=50) dpgmm.fit(X) # get indices of components that are used: indices = np.unique(dpgmm.predict(X)) active = np.zeros(10, dtype=np.bool) active[indices] = True # used components are important assert_array_less(.1, dpgmm.weights_[active]) # others are not assert_array_less(dpgmm.weights_[~active], .05) def test_verbose_boolean(): # checks that the output for the verbose output is the same # for the flag values '1' and 'True' # simple 3 cluster dataset X, y = make_blobs(random_state=1) for Model in [DPGMM, VBGMM]: dpgmm_bool = Model(n_components=10, random_state=1, alpha=20, n_iter=50, verbose=True) dpgmm_int = Model(n_components=10, random_state=1, alpha=20, n_iter=50, verbose=1) old_stdout = sys.stdout sys.stdout = StringIO() try: # generate output with the boolean flag dpgmm_bool.fit(X) verbose_output = sys.stdout verbose_output.seek(0) bool_output = verbose_output.readline() # generate output with the int flag dpgmm_int.fit(X) verbose_output = sys.stdout verbose_output.seek(0) int_output = verbose_output.readline() assert_equal(bool_output, int_output) finally: sys.stdout = old_stdout def test_verbose_first_level(): # simple 3 cluster dataset X, y = make_blobs(random_state=1) for Model in [DPGMM, VBGMM]: dpgmm = Model(n_components=10, random_state=1, alpha=20, n_iter=50, verbose=1) old_stdout = sys.stdout sys.stdout = StringIO() try: dpgmm.fit(X) finally: sys.stdout = old_stdout def test_verbose_second_level(): # simple 3 cluster dataset X, y = make_blobs(random_state=1) for Model in [DPGMM, VBGMM]: dpgmm = Model(n_components=10, random_state=1, alpha=20, n_iter=50, verbose=2) old_stdout = sys.stdout sys.stdout = StringIO() try: dpgmm.fit(X) finally: sys.stdout = old_stdout def test_log_normalize(): v = np.array([0.1, 0.8, 0.01, 0.09]) a = np.log(2 * v) assert np.allclose(v, log_normalize(a), rtol=0.01) def do_model(self, **kwds): return VBGMM(verbose=False, **kwds) class DPGMMTester(GMMTester): model = DPGMM do_test_eval = False def score(self, g, train_obs): _, z = g.score_samples(train_obs) return g.lower_bound(train_obs, z) class TestDPGMMWithSphericalCovars(unittest.TestCase, DPGMMTester): covariance_type = 'spherical' setUp = GMMTester._setUp class TestDPGMMWithDiagCovars(unittest.TestCase, DPGMMTester): covariance_type = 'diag' setUp = GMMTester._setUp class TestDPGMMWithTiedCovars(unittest.TestCase, DPGMMTester): covariance_type = 'tied' setUp = GMMTester._setUp class TestDPGMMWithFullCovars(unittest.TestCase, DPGMMTester): covariance_type = 'full' setUp = GMMTester._setUp class VBGMMTester(GMMTester): model = do_model do_test_eval = False def score(self, g, train_obs): _, z = g.score_samples(train_obs) return g.lower_bound(train_obs, z) class TestVBGMMWithSphericalCovars(unittest.TestCase, VBGMMTester): covariance_type = 'spherical' setUp = GMMTester._setUp class TestVBGMMWithDiagCovars(unittest.TestCase, VBGMMTester): covariance_type = 'diag' setUp = GMMTester._setUp class TestVBGMMWithTiedCovars(unittest.TestCase, VBGMMTester): covariance_type = 'tied' setUp = GMMTester._setUp class TestVBGMMWithFullCovars(unittest.TestCase, VBGMMTester): covariance_type = 'full' setUp = GMMTester._setUp
bsd-3-clause
chungjjang80/FRETBursts
fretbursts/burstlib.py
1
133746
# # FRETBursts - A single-molecule FRET burst analysis toolkit. # # Copyright (C) 2013-2016 The Regents of the University of California, # Antonino Ingargiola <tritemio@gmail.com> # """ This module contains all the main FRETBursts analysis functions. `burstslib.py` defines the fundamental object `Data()` that contains both the experimental data (attributes) and the high-level analysis routines (methods). Furthermore it loads all the remaining **FRETBursts** modules (except for `loaders.py`). For usage example see the IPython Notebooks in sub-folder "notebooks". """ from __future__ import print_function, absolute_import, division from future.utils import raise_from from builtins import range, zip import os import hashlib import numpy as np import copy from numpy import zeros, size, r_ import scipy.stats as SS from .utils.misc import pprint, clk_to_s, deprecate from .poisson_threshold import find_optimal_T_bga from . import fret_fit from . import bg_cache from .ph_sel import Ph_sel from .fretmath import gamma_correct_E, gamma_uncorrect_E from .phtools import burstsearch as bslib from .phtools.burstsearch import ( # Burst search function bsearch, # Photon counting function, mch_count_ph_in_bursts ) from .phtools import phrates from . import background as bg from . import select_bursts from . import fit from .fit.gaussian_fitting import (gaussian_fit_hist, gaussian_fit_cdf, two_gaussian_fit_hist, two_gaussian_fit_hist_min, two_gaussian_fit_hist_min_ab, two_gaussian_fit_EM, two_gauss_mix_pdf, two_gauss_mix_ab,) # Redefine some old functions that have been renamed so old scripts will not # break but will print a warning bg_calc_exp = deprecate(bg.exp_fit, 'bg_calc_exp', 'bg.exp_fit') bg_calc_exp_cdf = deprecate(bg.exp_cdf_fit, 'bg_calc_exp_cdf', 'bg.exp_cdf_fit') def _get_bsearch_func(pure_python=False): if pure_python: # return the python version return bslib.bsearch_py else: # or what is available return bsearch def _get_mch_count_ph_in_bursts_func(pure_python=False): if pure_python: # return the python version return bslib.mch_count_ph_in_bursts_py else: # or what is available return mch_count_ph_in_bursts def isarray(obj): """Test if the object support the array interface. Returns True for numpy arrays and pandas sequences. """ return hasattr(obj, '__array__') # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # BURST SELECTION FUNCTIONS # def Sel(d_orig, filter_fun, negate=False, nofret=False, **kwargs): """Uses `filter_fun` to select a sub-set of bursts from `d_orig`. This function is deprecated. Use :meth:`Data.select_bursts` instead. """ d_sel = d_orig.select_bursts(filter_fun, negate=negate, computefret=not nofret, **kwargs) return d_sel # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Bursts and Timestamps utilities # def get_alex_fraction(on_range, alex_period): """Get the fraction of period beween two numbers indicating a range. """ assert len(on_range) == 2 if on_range[0] < on_range[1]: fraction = (on_range[1] - on_range[0]) / alex_period else: fraction = (alex_period + on_range[1] - on_range[0]) / alex_period return fraction def top_tail(nx, a=0.1): """Return for each ch the mean size of the top `a` fraction. nx is one of nd, na, nt from Data() (list of burst size in each ch). """ assert a > 0 and a < 1 return np.r_[[n[n > n.max() * (1 - a)].mean() for n in nx]] ## # Per-burst quatitites from ph-data arrays (timestamps, lifetime, etc..) # def _excitation_width(excitation_range, alex_period): """Returns duration of alternation period outside selected excitation. """ if excitation_range[1] > excitation_range[0]: return alex_period - excitation_range[1] + excitation_range[0] elif excitation_range[1] < excitation_range[0]: return excitation_range[0] - excitation_range[1] def _ph_times_compact(ph_times_sel, alex_period, excitation_width): """Compact ph_times inplace by removing gaps between alternation periods. Arguments: ph_times_sel (array): array of timestamps from one alternation period. alex_period (scalar): period of alternation in timestamp units. excitation_width (float): fraction of `alex_period` covered by current photon selection. Returns nothing, ph_times is modified in-place. """ # The formula is # # gaps = (ph_times_sel // alex_period)*excitation_width # ph_times_sel = ph_times_sel - gaps # # As a memory optimization the `-gaps` array is reused inplace times_minusgaps = (ph_times_sel // alex_period) * (-1 * excitation_width) # The formula is ph_times_sel = ph_times_sel - "gaps" times_minusgaps += ph_times_sel return times_minusgaps def iter_bursts_start_stop(bursts): """Iterate over (start, stop) indexes to slice photons for each burst. """ arr_istart = bursts.istart arr_istop = bursts.istop + 1 for istart, istop in zip(arr_istart, arr_istop): yield istart, istop def iter_bursts_ph(ph_data, bursts, mask=None, compact=False, alex_period=None, excitation_width=None): """Iterator over arrays of photon-data for each burst. Arguments: ph_data (1D array): array of photon-data (timestamps, nanotimes). bursts (Bursts object): bursts computed from `ph`. mask (boolean mask or None): if not None, is a boolean mask to select photons in `ph_data` (for example Donor-ch photons). compact (bool): if True, a photon selection of only one excitation period is required and the timestamps are "compacted" by removing the "gaps" between each excitation period. alex_period (scalar): period of alternation in timestamp units. excitation_width (float): fraction of `alex_period` covered by current photon selection. Yields an array with a selection of "photons" for each burst. """ if isinstance(mask, slice) and mask == slice(None): mask = None if compact: assert alex_period is not None assert excitation_width is not None assert mask is not None for start, stop in iter_bursts_start_stop(bursts): ph = ph_data[start:stop] if mask is not None: ph = ph[mask[start:stop]] if compact: ph = _ph_times_compact(ph, alex_period, excitation_width) yield ph def bursts_ph_list(ph_data, bursts, mask=None): """Returna list of ph-data for each burst. ph_data can be either the timestamp array on which the burst search has been performed or any other array with same size (boolean array, nanotimes, etc...) """ return [ph for ph in iter_bursts_ph(ph_data, bursts, mask=mask)] def burst_ph_stats(ph_data, bursts, func=np.mean, func_kw=None, **kwargs): """Reduce burst photons (timestamps, nanotimes) to a scalar using `func`. Arguments ph_data (1D array): array of photon-data (timestamps, nanotimes). bursts (Bursts object): bursts computed from `ph`. func (callable): function that takes the burst photon timestamps as first argument and returns a scalar. func_kw (callable): additional arguments in `func` beyond photon-data. **kwargs: additional arguments passed to :func:`iter_bursts_ph`. Return Array one element per burst. """ if func_kw is None: func_kw = {} burst_stats = [] for burst_ph in iter_bursts_ph(ph_data, bursts, **kwargs): burst_stats.append(func(burst_ph, **func_kw)) return np.asfarray(burst_stats) # NOTE: asfarray converts None to nan def ph_in_bursts_mask(ph_data_size, bursts): """Return bool mask to select all "ph-data" inside any burst.""" mask = zeros(ph_data_size, dtype=bool) for start, stop in iter_bursts_start_stop(bursts): mask[start:stop] = True return mask def fuse_bursts_direct(bursts, ms=0, clk_p=12.5e-9, verbose=True): """Fuse bursts separated by less than `ms` (milli-seconds). This function is a direct implementation using a single loop. For a faster implementation see :func:`fuse_bursts_iter`. Parameters: bursts (BurstsGap object): bursts to be fused. See `phtools.burstsearch` for details. ms (float): minimum waiting time between bursts (in millisec). Bursts closer than that will be fused in a single burst. clk_p (float): clock period or timestamp units in seconds. verbose (bool): if True print a summary of fused bursts. Returns: A BurstsGap object containing the new fused bursts. """ max_delay_clk = (ms * 1e-3) / clk_p fused_bursts_list = [] fused_burst = None for burst1, burst2 in zip(bursts[:-1], bursts[1:]): if fused_burst is not None: burst1c = fused_burst else: burst1c = bslib.BurstGap.from_burst(burst1) separation = burst2.start - burst1c.stop if separation <= max_delay_clk: gap = burst2.start - burst1c.stop gap_counts = burst2.istart - burst1c.istop - 1 if burst1c.istop >= burst2.istart: gap = 0 gap_counts = 0 fused_burst = bslib.BurstGap( start = burst1c.start, istart = burst1c.istart, stop = burst2.stop, istop = burst2.istop, gap = burst1c.gap + gap, gap_counts = burst1c.gap_counts + gap_counts) else: if fused_burst is not None: fused_bursts_list.append(fused_burst) fused_burst = None else: fused_bursts_list.append(bslib.BurstGap.from_burst(burst1c)) # Append the last bursts (either a fused or an isolated one) if fused_burst is not None: fused_bursts_list.append(fused_burst) else: fused_bursts_list.append(bslib.BurstGap.from_burst(burst2)) fused_bursts = bslib.BurstsGap.from_list(fused_bursts_list) init_num_bursts = bursts.num_bursts delta_b = init_num_bursts - fused_bursts.num_bursts pprint(" --> END Fused %d bursts (%.1f%%)\n\n" % (delta_b, 100 * delta_b / init_num_bursts), mute=not verbose) return fused_bursts def fuse_bursts_iter(bursts, ms=0, clk_p=12.5e-9, verbose=True): """Fuse bursts separated by less than `ms` (milli-secs). This function calls iteratively :func:`b_fuse` until there are no more bursts to fuse. For a slower but more readable version see :func:`fuse_bursts_direct`. Parameters: bursts (BurstsGap object): bursts to be fused. See `phtools.burstsearch` for details. ms (float): minimum waiting time between bursts (in millisec). Bursts closer than that will be fused in a single burst. clk_p (float): clock period or timestamp units in seconds. verbose (bool): if True print a summary of fused bursts. Returns: A BurstsGap object containing the new fused bursts. """ init_nburst = bursts.num_bursts bursts = bslib.BurstsGap(bursts.data) z = 0 new_nburst, nburst = 0, 1 # starting condition while new_nburst < nburst: z += 1 nburst = bursts.num_bursts bursts = b_fuse(bursts, ms=ms, clk_p=clk_p) new_nburst = bursts.num_bursts delta_b = init_nburst - nburst pprint(" --> END Fused %d bursts (%.1f%%, %d iter)\n\n" % (delta_b, 100 * delta_b / init_nburst, z), mute=not verbose) return bursts def b_fuse(bursts, ms=0, clk_p=12.5e-9): """Fuse bursts separated by less than `ms` (milli-secs). This is a low-level function which fuses pairs of consecutive bursts separated by less than `ms` millisec. If there are 3 or more consecutive bursts separated by less than `ms` only the first 2 are fused. See :func:`fuse_bursts_iter` or :func:`fuse_bursts_direct` for higher level functions. Parameters: bursts (BurstsGap object): bursts to be fused. See `phtools.burstsearch` for details. ms (float): minimum waiting time between bursts (in millisec). Bursts closer than that will be fused in a single burst. clk_p (float): clock period or timestamp units in seconds. Returns: A BurstsGap object containing the new fused bursts. """ max_delay_clk = (ms * 1e-3) / clk_p # Nearby bursts masks delays_below_th = (bursts.separation <= max_delay_clk) if not np.any(delays_below_th): return bursts buffer_mask = np.hstack([(False,), delays_below_th, (False,)]) first_bursts = buffer_mask[1:] second_bursts = buffer_mask[:-1] # Keep only the first pair in case of more than 2 consecutive bursts first_bursts ^= (second_bursts * first_bursts) # note that previous in-place operation also modifies `second_bursts` both_bursts = first_bursts + second_bursts # istart is from the first burst, istop is from the second burst fused_bursts1 = bursts[first_bursts] fused_bursts2 = bursts[second_bursts] # Compute gap and gap_counts gap = fused_bursts2.start - fused_bursts1.stop gap_counts = fused_bursts2.istart - fused_bursts1.istop - 1 # yes it's -1 overlaping = fused_bursts1.istop >= fused_bursts2.istart gap[overlaping] = 0 gap_counts[overlaping] = 0 # Assign the new burst data # fused_bursts1 has alredy the right start and istart fused_bursts1.istop = fused_bursts2.istop fused_bursts1.stop = fused_bursts2.stop fused_bursts1.gap += gap fused_bursts1.gap_counts += gap_counts # Join fused bursts with the remaining bursts new_burst = fused_bursts1.join(bursts[~both_bursts], sort=True) return new_burst def mch_fuse_bursts(MBurst, ms=0, clk_p=12.5e-9, verbose=True): """Multi-ch version of `fuse_bursts`. `MBurst` is a list of Bursts objects. """ mburst = [b.copy() for b in MBurst] # safety copy new_mburst = [] ch = 0 for mb in mburst: ch += 1 pprint(" - - - - - CHANNEL %2d - - - - \n" % ch, not verbose) if mb.num_bursts == 0: new_bursts = bslib.Bursts.empty() else: new_bursts = fuse_bursts_iter(mb, ms=ms, clk_p=clk_p, verbose=verbose) new_mburst.append(new_bursts) return new_mburst def burst_stats(mburst, clk_p): """Compute average duration, size and burst-delay for bursts in mburst. """ nans = [np.nan, np.nan] width_stats = np.array([[b.width.mean(), b.width.std()] if b.num_bursts > 0 else nans for b in mburst]).T height_stats = np.array([[b.counts.mean(), b.counts.std()] if b.num_bursts > 0 else nans for b in mburst]).T mean_burst_delay = np.array([b.separation.mean() if b.num_bursts > 0 else np.nan for b in mburst]) return (clk_to_s(width_stats, clk_p) * 1e3, height_stats, clk_to_s(mean_burst_delay, clk_p)) def print_burst_stats(d): """Print some bursts statistics.""" nch = len(d.mburst) width_ms, height, delays = burst_stats(d.mburst, d.clk_p) s = "\nNUMBER OF BURSTS: m = %d, L = %d" % (d.m, d.L) s += "\nPixel: "+"%7d "*nch % tuple(range(1, nch+1)) s += "\n#: "+"%7d "*nch % tuple([b.num_bursts for b in d.mburst]) s += "\nT (us) [BS par] "+"%7d "*nch % tuple(np.array(d.T)*1e6) s += "\nBG Rat T (cps): "+"%7d "*nch % tuple(d.bg_mean[Ph_sel('all')]) s += "\nBG Rat D (cps): "+"%7d "*nch % tuple(d.bg_mean[Ph_sel(Dex='Dem')]) s += "\nBG Rat A (cps): "+"%7d "*nch % tuple(d.bg_mean[Ph_sel(Dex='Aem')]) s += "\n\nBURST WIDTH STATS" s += "\nPixel: "+"%7d "*nch % tuple(range(1, nch+1)) s += "\nMean (ms): "+"%7.3f "*nch % tuple(width_ms[0, :]) s += "\nStd.dev (ms): "+"%7.3f "*nch % tuple(width_ms[1, :]) s += "\n\nBURST SIZE STATS" s += "\nPixel: "+"%7d "*nch % tuple(range(1, nch+1)) s += "\nMean (# ph): "+"%7.2f "*nch % tuple(height[0, :]) s += "\nStd.dev (# ph): "+"%7.2f "*nch % tuple(height[1, :]) s += "\n\nBURST MEAN DELAY" s += "\nPixel: "+"%7d "*nch % tuple(range(1, nch+1)) s += "\nDelay (s): "+"%7.3f "*nch % tuple(delays) return s def ES_histog(E, S, bin_step=0.05, E_bins=None, S_bins=None): """Returns 2D (ALEX) histogram and bins of bursts (E,S). """ if E_bins is None: E_bins = np.arange(-0.6, 1.6+1e-4, bin_step) if S_bins is None: S_bins = np.arange(-0.6, 1.6+1e-4, bin_step) H, E_bins, S_bins = np.histogram2d(E, S, bins=[E_bins, S_bins]) return H, E_bins, S_bins def delta(x): """Return x.max() - x.min()""" return x.max() - x.min() def mask_empty(mask): """Returns True if `mask` is empty, otherwise False. `mask` can be a boolean array or a slice object. """ if isinstance(mask, slice): is_slice_empty = (mask.stop == 0) return is_slice_empty else: # Bolean array return not mask.any() class DataContainer(dict): """ Generic class for storing data. It's a dictionary in which each key is also an attribute d['nt'] or d.nt. """ def __init__(self, **kwargs): dict.__init__(self, **kwargs) for k in self: dict.__setattr__(self, k, self[k]) def add(self, **kwargs): """Adds or updates elements (attributes and/or dict entries). """ self.update(**kwargs) for k, v in kwargs.items(): setattr(self, k, v) def delete(self, *args, **kwargs): """Delete an element (attribute and/or dict entry). """ warning = kwargs.get('warning', True) for name in args: try: self.pop(name) except KeyError: if warning: print(' WARNING: Name %s not found (dict).' % name) try: delattr(self, name) except AttributeError: if warning: print(' WARNING: Name %s not found (attr).' % name) class Data(DataContainer): """ Container for all the information (timestamps, bursts) of a dataset. Data() contains all the information of a dataset (name, timestamps, bursts, correction factors) and provides several methods to perform analysis (background estimation, burst search, FRET fitting, etc...). When loading a measurement file a Data() object is created by one of the loader functions in `loaders.py`. Data() objects can be also created with :meth:`Data.copy`, :meth:`Data.fuse_bursts()` or :meth:`Data.select_bursts`. To add or delete data-attributes use `.add()` or `.delete()` methods. All the standard data-attributes are listed below. Note: Attributes of type "*list*" contain one element per channel. Each element, in turn, can be an array. For example `.ph_times_m[i]` is the array of timestamps for channel `i`; or `.nd[i]` is the array of donor counts in each burst for channel `i`. **Measurement attributes** Attributes: fname (string): measurements file name nch (int): number of channels clk_p (float): clock period in seconds for timestamps in `ph_times_m` ph_times_m (list): list of timestamp arrays (int64). Each array contains all the timestamps (donor+acceptor) in one channel. A_em (list): list of boolean arrays marking acceptor timestamps. Each array is a boolean mask for the corresponding ph_times_m array. leakage (float or array of floats): leakage (or bleed-through) fraction. May be scalar or same size as nch. gamma (float or array of floats): gamma factor. May be scalar or same size as nch. D_em (list of boolean arrays): **[ALEX-only]** boolean mask for `.ph_times_m[i]` for donor emission D_ex, A_ex (list of boolean arrays): **[ALEX-only]** boolean mask for `.ph_times_m[i]` during donor or acceptor excitation D_ON, A_ON (2-element tuples of int ): **[ALEX-only]** start-end values for donor and acceptor excitation selection. alex_period (int): **[ALEX-only]** duration of the alternation period in clock cycles. **Background Attributes** The background is computed with :meth:`Data.calc_bg` and is estimated in chunks of equal duration called *background periods*. Estimations are performed in each spot and photon stream. The following attributes contain the estimated background rate. Attributes: bg (dict): background rates for the different photon streams, channels and background periods. Keys are `Ph_sel` objects and values are lists (one element per channel) of arrays (one element per background period) of background rates. bg_mean (dict): mean background rates across the entire measurement for the different photon streams and channels. Keys are `Ph_sel` objects and values are lists (one element per channel) of background rates. nperiods (int): number of periods in which timestamps are split for background calculation bg_fun (function): function used to compute the background rates Lim (list): each element of this list is a list of index pairs for `.ph_times_m[i]` for **first** and **last** photon in each period. Ph_p (list): each element in this list is a list of timestamps pairs for **first** and **last** photon of each period. bg_ph_sel (Ph_sel object): photon selection used by Lim and Ph_p. See :mod:`fretbursts.ph_sel` for details. Th_us (dict): thresholds in us used to select the tail of the interphoton delay distribution. Keys are `Ph_sel` objects and values are lists (one element per channel) of arrays (one element per background period). Additionlly, there are a few deprecated attributes (`bg_dd`, `bg_ad`, `bg_da`, `bg_aa`, `rate_dd`, `rate_ad`, `rate_da`, `rate_aa` and `rate_m`) which will be removed in a future version. Please use :attr:`Data.bg` and :attr:`Data.bg_mean` instead. **Burst search parameters (user input)** These are the parameters used to perform the burst search (see :meth:`burst_search`). Attributes: ph_sel (Ph_sel object): photon selection used for burst search. See :mod:`fretbursts.ph_sel` for details. m (int): number of consecutive timestamps used to compute the local rate during burst search L (int): min. number of photons for a burst to be identified and saved P (float, probability): valid values [0..1]. Probability that a burst-start is due to a Poisson background. The employed Poisson rate is the one computed by `.calc_bg()`. F (float): `(F * background_rate)` is the minimum rate for burst-start **Burst search data (available after burst search)** When not specified, parameters marked as (list of arrays) contains arrays with one element per bursts. `mburst` arrays contain one "row" per burst. `TT` arrays contain one element per `period` (see above: background attributes). Attributes: mburst (list of Bursts objects): list Bursts() one element per channel. See :class:`fretbursts.phtools.burstsearch.Bursts`. TT (list of arrays): list of arrays of *T* values (in sec.). A *T* value is the maximum delay between `m` photons to have a burst-start. Each channels has an array of *T* values, one for each background "period" (see above). T (array): per-channel mean of `TT` nd, na (list of arrays): number of donor or acceptor photons during donor excitation in each burst nt (list of arrays): total number photons (nd+na+naa) naa (list of arrays): number of acceptor photons in each burst during acceptor excitation **[ALEX only]** nar (list of arrays): number of acceptor photons in each burst during donor excitation, not corrected for D-leakage and A-direct-excitation. **[PAX only]** bp (list of arrays): time period for each burst. Same shape as `nd`. This is needed to identify the background rate for each burst. bg_bs (list): background rates used for threshold computation in burst search (is a reference to `bg`, `bg_dd` or `bg_ad`). fuse (None or float): if not None, the burst separation in ms below which bursts have been fused (see `.fuse_bursts()`). E (list): FRET efficiency value for each burst: E = na/(na + gamma*nd). S (list): stoichiometry value for each burst: S = (gamma*nd + na) /(gamma*nd + na + naa) """ # Attribute names containing per-photon data. # Each attribute is a list (1 element per ch) of arrays (1 element # per photon). ph_fields = ['ph_times_m', 'nanotimes', 'particles', 'A_em', 'D_em', 'A_ex', 'D_ex'] # Attribute names containing background data. # The attribute `bg` is a dict with photon-selections as keys and # list of arrays as values. Each list contains one element per channel and # each array one element per background period. # The attributes `.Lim` and `.Ph_p` are lists with one element per channel. # Each element is a lists-of-tuples (one tuple per background period). # These attributes do not exist before computing the background. bg_fields = ['bg', 'Lim', 'Ph_p'] # Attribute names containing per-burst data. # Each attribute is a list (1 element per ch) of arrays (1 element # per burst). # They do not necessarly exist. For example 'naa' exists only for ALEX # data. Also none of them exist before performing a burst search. burst_fields = ['E', 'S', 'mburst', 'nd', 'na', 'nt', 'bp', 'nda', 'naa', 'max_rate', 'sbr', 'nar'] # Quantities (scalars or arrays) defining the current set of bursts burst_metadata = ['m', 'L', 'T', 'TT', 'F', 'FF', 'P', 'PP', 'rate_th', 'bg_bs', 'ph_sel', 'bg_corrected', 'leakage_corrected', 'dir_ex_corrected', 'dithering', 'fuse', 'lsb'] # List of photon selections on which the background is computed _ph_streams = [Ph_sel('all'), Ph_sel(Dex='Dem'), Ph_sel(Dex='Aem'), Ph_sel(Aex='Dem'), Ph_sel(Aex='Aem')] @property def ph_streams(self): if self.alternated: return self._ph_streams else: return [Ph_sel('all'), Ph_sel(Dex='Dem'), Ph_sel(Dex='Aem')] def __init__(self, leakage=0., gamma=1., dir_ex=0., **kwargs): # Default values init_kw = dict(ALEX=False, _leakage=float(leakage), _gamma=float(gamma), _dir_ex=float(dir_ex), _beta=1., _chi_ch=1., s=[]) # Override with user data init_kw.update(**kwargs) DataContainer.__init__(self, **init_kw) # def __getattr__(self, name): # """Single-channel shortcuts for per-channel fields. # # Appending a '_' to a per-channel field avoids specifying the channel. # For example use d.nd_ instead if d.nd[0]. # """ # msg_missing_attr = "'%s' object has no attribute '%s'" %\ # (self.__class__.__name__, name) # if name.startswith('_') or not name.endswith('_'): # raise AttributeError(msg_missing_attr) # # field = name[:-1] # try: # value = self.__getitem__(field) # except KeyError: # raise AttributeError(msg_missing_attr) # else: # # Support lists, tuples and object with array interface # if isinstance(value, (list, tuple)) or isarray(value): # if len(value) == self.nch: # return value[0] # raise ValueError('Name "%s" is not a per-channel field.' % field) def copy(self, mute=False): """Copy data in a new object. All arrays copied except for ph_times_m """ pprint('Deep copy executed.\n', mute) new_d = Data(**self) # this make a shallow copy (like a pointer) # Deep copy (not just reference) or array data for field in self.burst_fields + self.bg_fields: # Making sure k is defined if field in self: # Make a deepcopy of the per-channel lists new_d[field] = copy.deepcopy(self[field]) # Set the attribute: new_d.k = new_d[k] setattr(new_d, field, new_d[field]) return new_d ## # Methods for photon timestamps (ph_times_m) access # def ph_times_hash(self, hash_name='md5', hexdigest=True): """Return an hash for the timestamps arrays. """ m = hashlib.new(hash_name) for ph in self.iter_ph_times(): if isinstance(ph, np.ndarray): m.update(ph.data) else: # TODO Handle ph_times in PyTables files raise NotImplementedError if hexdigest: return m.hexdigest() else: return m @property def ph_data_sizes(self): """Array of total number of photons (ph-data) for each channel. """ if not hasattr(self, '_ph_data_sizes'): # This works both for numpy arrays and pytables arrays self._ph_data_sizes = np.array([ph.shape[0] for ph in self.ph_times_m]) return self._ph_data_sizes def _fix_ph_sel(self, ph_sel): """For non-ALEX data fix Aex to allow stable comparison.""" msg = 'Photon selection must be of type `Ph_sel` (it was `%s` instead).' assert isinstance(ph_sel, Ph_sel), (msg % type(ph_sel)) if self.alternated or ph_sel.Dex != 'DAem': return ph_sel else: return Ph_sel(Dex=ph_sel.Dex, Aex='DAem') def _is_allph(self, ph_sel): """Return whether a photon selection `ph_sel` covers all photon.""" if self.alternated: return ph_sel == Ph_sel(Dex='DAem', Aex='DAem') else: return ph_sel.Dex == 'DAem' def get_ph_mask(self, ich=0, ph_sel=Ph_sel('all')): """Returns a mask for `ph_sel` photons in channel `ich`. The masks are either boolean arrays or slices (full or empty). In both cases they can be used to index the timestamps of the corresponding channel. Arguments: ph_sel (Ph_sel object): object defining the photon selection. See :mod:`fretbursts.ph_sel` for details. """ assert isinstance(ich, int) if self._is_allph(ph_sel): # Note that slice(None) is equivalent to [:]. # Also, numpy arrays are not copied when sliced. # So getting all photons with this mask is efficient # Note: the drawback is that the slice cannot be indexed # (where a normal boolean array would) return slice(None) # Handle the case when A_em contains slice objects if isinstance(self.A_em[ich], slice): if self.A_em[ich] == slice(None): if ph_sel.Dex == 'Dem': return slice(0) if ph_sel.Dex == 'Aem': return slice(None) elif self.A_em[ich] == slice(0): if ph_sel.Dex == 'Dem': return slice(None) if ph_sel.Dex == 'Aem': return slice(0) else: msg = 'When a slice, A_em can only be slice(None) or slice(0).' raise NotImplementedError(msg) # Base selections elif ph_sel == Ph_sel(Dex='Dem'): return self.get_D_em_D_ex(ich) elif ph_sel == Ph_sel(Dex='Aem'): return self.get_A_em_D_ex(ich) elif ph_sel == Ph_sel(Aex='Dem'): return self.get_D_em(ich) * self.get_A_ex(ich) elif ph_sel == Ph_sel(Aex='Aem'): return self.get_A_em(ich) * self.get_A_ex(ich) # Selection of all photon in one emission ch elif ph_sel == Ph_sel(Dex='Dem', Aex='Dem'): return self.get_D_em(ich) elif ph_sel == Ph_sel(Dex='Aem', Aex='Aem'): return self.get_A_em(ich) # Selection of all photon in one excitation period elif ph_sel == Ph_sel(Dex='DAem'): return self.get_D_ex(ich) elif ph_sel == Ph_sel(Aex='DAem'): return self.get_A_ex(ich) # Selection of all photons except for Dem during Aex elif ph_sel == Ph_sel(Dex='DAem', Aex='Aem'): return self.get_D_ex(ich) + self.get_A_em(ich) * self.get_A_ex(ich) else: raise ValueError('Photon selection not implemented.') def iter_ph_masks(self, ph_sel=Ph_sel('all')): """Iterator returning masks for `ph_sel` photons. Arguments: ph_sel (Ph_sel object): object defining the photon selection. See :mod:`fretbursts.ph_sel` for details. """ for ich in range(self.nch): yield self.get_ph_mask(ich, ph_sel=ph_sel) def get_ph_times(self, ich=0, ph_sel=Ph_sel('all'), compact=False): """Returns the timestamps array for channel `ich`. This method always returns in-memory arrays, even when ph_times_m is a disk-backed list of arrays. Arguments: ph_sel (Ph_sel object): object defining the photon selection. See :mod:`fretbursts.ph_sel` for details. compact (bool): if True, a photon selection of only one excitation period is required and the timestamps are "compacted" by removing the "gaps" between each excitation period. """ ph = self.ph_times_m[ich] # If not a list is an on-disk array, we need to load it if not isinstance(ph, np.ndarray): if hasattr(self, '_ph_cache') and self._ph_cache_ich == ich: ph = self._ph_cache else: ph = ph.read() self._ph_cache = ph self._ph_cache_ich = ich ph = ph[self.get_ph_mask(ich, ph_sel=ph_sel)] if compact: ph = self._ph_times_compact(ph, ph_sel) return ph def iter_ph_times(self, ph_sel=Ph_sel('all'), compact=False): """Iterator that returns the arrays of timestamps in `.ph_times_m`. Arguments: Same arguments as :meth:`get_ph_mask` except for `ich`. """ for ich in range(self.nch): yield self.get_ph_times(ich, ph_sel=ph_sel, compact=compact) def _get_ph_mask_single(self, ich, mask_name, negate=False): """Get the bool array `mask_name` for channel `ich`. If the internal "bool array" is a scalar return a slice (full or empty) """ mask = np.asarray(getattr(self, mask_name)[ich]) if negate: mask = np.logical_not(mask) if len(mask.shape) == 0: # If mask is a boolean scalar, select all or nothing mask = slice(None) if mask else slice(0) return mask def get_A_em(self, ich=0): """Returns a mask to select photons detected in the acceptor ch.""" return self._get_ph_mask_single(ich, 'A_em') def get_D_em(self, ich=0): """Returns a mask to select photons detected in the donor ch.""" return self._get_ph_mask_single(ich, 'A_em', negate=True) def get_A_ex(self, ich=0): """Returns a mask to select photons in acceptor-excitation periods.""" return self._get_ph_mask_single(ich, 'A_ex') def get_D_ex(self, ich=0): """Returns a mask to select photons in donor-excitation periods.""" if self.alternated: return self._get_ph_mask_single(ich, 'D_ex') else: return slice(None) def get_D_em_D_ex(self, ich=0): """Returns a mask of donor photons during donor-excitation.""" if self.alternated: return self.get_D_em(ich) * self.get_D_ex(ich) else: return self.get_D_em(ich) def get_A_em_D_ex(self, ich=0): """Returns a mask of acceptor photons during donor-excitation.""" if self.alternated: return self.get_A_em(ich) * self.get_D_ex(ich) else: return self.get_A_em(ich) def iter_ph_times_period(self, ich=0, ph_sel=Ph_sel('all')): """Iterate through arrays of ph timestamps in each background period. """ mask = self.get_ph_mask(ich=ich, ph_sel=ph_sel) for period in range(self.nperiods): yield self.get_ph_times_period(period, ich=ich, mask=mask) def get_ph_times_period(self, period, ich=0, ph_sel=Ph_sel('all'), mask=None): """Return the array of ph_times in `period`, `ich` and `ph_sel`. """ istart, iend = self.Lim[ich][period] period_slice = slice(istart, iend + 1) ph_times = self.get_ph_times(ich=ich) if mask is None: mask = self.get_ph_mask(ich=ich, ph_sel=ph_sel) if isinstance(mask, slice) and mask == slice(None): ph_times_period = ph_times[period_slice] else: ph_times_period = ph_times[period_slice][mask[period_slice]] return ph_times_period def _assert_compact(self, ph_sel): msg = ('Option compact=True requires a photon selection \n' 'from a single excitation period (either Dex or Aex).') if not self.alternated: raise ValueError('Option compact=True requires ALEX data.') if ph_sel.Dex is not None and ph_sel.Aex is not None: raise ValueError(msg) def _excitation_width(self, ph_sel, ich=0): """Returns duration of alternation period outside selected excitation. """ self._assert_compact(ph_sel) if ph_sel.Aex is None: excitation_range = self._D_ON_multich[ich] elif ph_sel.Dex is None: excitation_range = self._A_ON_multich[ich] return _excitation_width(excitation_range, self.alex_period) def _ph_times_compact(self, ph, ph_sel): """Return timestamps in one excitation period with "gaps" removed. It takes timestamps in the specified alternation period and removes gaps due to time intervals outside the alternation period selection. This allows to correct the photon rates distorsion due to alternation. Arguments: ph (array): timestamps array from which gaps have to be removed. This array **is modified in-place**. ph_sel (Ph_sel object): photon selection to be compacted. Note that only one excitation must be specified, but the emission can be 'Dem', 'Aem' or 'DAem'. See :mod:`fretbursts.ph_sel` for details. Returns: Array of timestamps in one excitation periods with "gaps" removed. """ excitation_width = self._excitation_width(ph_sel) return _ph_times_compact(ph, self.alex_period, excitation_width) def _get_tuple_multich(self, name): """Get a n-element tuple field in multi-ch format (1 row per ch).""" field = np.array(self[name]) if field.ndim == 1: field = np.repeat([field], self.nch, axis=0) return field @property def _D_ON_multich(self): return self._get_tuple_multich('D_ON') @property def _A_ON_multich(self): return self._get_tuple_multich('A_ON') @property def _det_donor_accept_multich(self): return self._get_tuple_multich('det_donor_accept') ## # Methods and properties for burst-data access # @property def num_bursts(self): """Array of number of bursts in each channel.""" return np.array([bursts.num_bursts for bursts in self.mburst]) @property def burst_widths(self): """List of arrays of burst duration in seconds. One array per channel. """ return [bursts.width * self.clk_p for bursts in self.mburst] def burst_sizes_pax_ich(self, ich=0, gamma=1., add_aex=True, beta=1., donor_ref=True, aex_corr=True): r"""Return corrected burst sizes for channel `ich`. PAX-only. When `donor_ref = False`, the formula for PAX-enhanced burst size is: .. math:: \gamma(F_{D_{ex}D_{em}} + F_{DA_{ex}D_{em}}) + \frac{1}{\alpha} F_{FRET} where :math:`\alpha` is the Dex duty-cycle (0.5 if alternation periods are equal) and :math:`F_{FRET}` is `na`, the AemAex signal after leakage and direct-excitation corrections. If `add_ex = True`, we add the term: .. math:: \tilde{F}_{A_{ex}A_{em}} / (\alpha\beta) where :math:`\tilde{F}_{A_{ex}A_{em}}` in A emission due to A excitation (and not due to FRET). If `aex_corr = False`, then :math:`\alpha` is fixed to 1. If `donor_ref = True`, the above burst size expression is divided by :math:`\gamma`. Arguments: ich (int): the spot number, only relevant for multi-spot. In single-spot data there is only one channel (`ich=0`) so this argument may be omitted. Default 0. gamma (float): coefficient for gamma correction of burst sizes. Default: 1. For more info see explanation above. donor_ref (bool): True or False select different conventions for burst size correction. For details see :meth:`fretbursts.burstlib.Data.burst_sizes_ich`. add_aex (boolean): when True, the returned burst size also includes photons detected during the DAex. Default is True. aex_corr (bool): If True, and `add_aex == True`, then divide the DAexAem term (naa) by the Dex duty cycle. For example, if Dex and DAex alternation periods are equal, naa is multiplied by 2. This correction makes the returned value equal to the denominator of the stoichiometry ratio S_pax (PAX-enhanced formula). If False, naa is not divided by the Dex duty-cycle (gamma and beta corrections may still be applied). If `add_aex == False`, `aex_corr` is ignored. beta (float): beta correction factor used for the DAexAem term (naa) of the burst size. If `add_aex == False` this argument is ignored. Default 1. Returns Array of burst sizes for channel `ich`. See also: :meth:`Data.burst_sizes_ich` """ assert 'PAX' in self.meas_type naa = self._get_naa_ich(ich) # nar-subtracted aex_dex_ratio = self._aex_dex_ratio() alpha = 1 if aex_corr: alpha = 1 - self._aex_fraction() # Dex duty-cycle burst_size_dex = self.nd[ich] * gamma + self.na[ich] burst_size_aex = (self.nda[ich] * gamma + self.na[ich] * aex_dex_ratio + naa / (alpha * beta)) burst_size = burst_size_dex if add_aex: burst_size += burst_size_aex if donor_ref: burst_size /= gamma return burst_size def burst_sizes_ich(self, ich=0, gamma=1., add_naa=False, beta=1., donor_ref=True): """Return gamma corrected burst sizes for channel `ich`. If `donor_ref == True` (default) the gamma corrected burst size is computed according to:: 1) nd + na / gamma Otherwise, if `donor_ref == False`, the gamma corrected burst size is:: 2) nd * gamma + na With the definition (1) the corrected burst size is equal to the raw burst size for zero-FRET or D-only bursts (that's why is `donor_ref`). With the definition (2) the corrected burst size is equal to the raw burst size for 100%-FRET bursts. In an ALEX measurement, use `add_naa = True` to add counts from AexAem stream to the returned burst size. The argument `gamma` and `beta` are used to correctly scale `naa` so that it become commensurate with the Dex corrected burst size. In particular, when using definition (1) (i.e. `donor_ref = True`), the total burst size is:: (nd + na/gamma) + naa / (beta * gamma) Conversely, when using definition (2) (`donor_ref = False`), the total burst size is:: (nd * gamma + na) + naa / beta Arguments: ich (int): the spot number, only relevant for multi-spot. In single-spot data there is only one channel (`ich=0`) so this argument may be omitted. Default 0. add_naa (boolean): when True, add a term for AexAem photons when computing burst size. Default False. gamma (float): coefficient for gamma correction of burst sizes. Default: 1. For more info see explanation above. beta (float): beta correction factor used for the AexAem term of the burst size. Default 1. If `add_naa = False` or measurement is not ALEX this argument is ignored. For more info see explanation above. donor_ref (bool): select the convention for burst size correction. See details above in the function description. Returns Array of burst sizes for channel `ich`. See also :meth:`fretbursts.burstlib.Data.get_naa_corrected`. """ if donor_ref: burst_size = self.nd[ich] + self.na[ich] / gamma else: burst_size = self.nd[ich] * gamma + self.na[ich] if add_naa and self.alternated: kws = dict(ich=ich, gamma=gamma, beta=beta, donor_ref=donor_ref) burst_size += self.get_naa_corrected(**kws) return burst_size def get_naa_corrected(self, ich=0, gamma=1., beta=1., donor_ref=True): """Return corrected naa array for channel `ich`. Arguments: ich (int): the spot number, only relevant for multi-spot. gamma (floats): gamma-factor to use in computing the corrected naa. beta (float): beta-factor to use in computing the corrected naa. donor_ref (bool): Select the convention for `naa` correction. If True (default), uses `naa / (beta * gamma)`. Otherwise, uses `naa / beta`. A consistent convention should be used for the corrected Dex burst size in order to make it commensurable with naa. See also :meth:`fretbursts.burstlib.Data.burst_sizes_ich`. """ naa = self._get_naa_ich(ich) # with eventual duty-cycle correction if donor_ref: correction = (gamma * beta) else: correction = beta return naa / correction def _get_naa_ich(self, ich=0): """Return naa for `ich` both in ALEX and PAX measurements. In case of PAX, returns naa using the duty-cycle correction:: naa = self.naa - aex_dex_ratio * self.nar where `self.nar` is equal to `self.na` before leakage and direct excitation correction, and `aex_dex_ratio` is the Aex duty-cycle. """ naa = self.naa[ich] if 'PAX' in self.meas_type: # ATTENTION: do not modify naa inplace naa = naa - self._aex_dex_ratio() * self.nar[ich] return naa def burst_sizes(self, gamma=1., add_naa=False, beta=1., donor_ref=True): """Return gamma corrected burst sizes for all the channel. Compute burst sizes by calling, for each channel, :meth:`burst_sizes_ich`. See :meth:`burst_sizes_ich` for description of the arguments. Returns List of arrays of burst sizes, one array per channel. """ kwargs = dict(gamma=gamma, add_naa=add_naa, beta=beta, donor_ref=donor_ref) bsize_list = [self.burst_sizes_ich(ich, **kwargs) for ich in range(self.nch)] return np.array(bsize_list) def iter_bursts_ph(self, ich=0): """Iterate over (start, stop) indexes to slice photons for each burst. """ for istart, istop in iter_bursts_start_stop(self.mburst[ich]): yield istart, istop def bursts_slice(self, N1=0, N2=-1): """Return new Data object with bursts between `N1` and `N2` `N1` and `N2` can be scalars or lists (one per ch). """ if np.isscalar(N1): N1 = [N1] * self.nch if np.isscalar(N2): N2 = [N2] * self.nch assert len(N1) == len(N2) == self.nch d = Data(**self) d.add(mburst=[b[n1:n2].copy() for b, n1, n2 in zip(d.mburst, N1, N2)]) d.add(nt=[nt[n1:n2] for nt, n1, n2 in zip(d.nt, N1, N2)]) d.add(nd=[nd[n1:n2] for nd, n1, n2 in zip(d.nd, N1, N2)]) d.add(na=[na[n1:n2] for na, n1, n2 in zip(d.na, N1, N2)]) for name in ('naa', 'nda', 'nar'): if name in d: d.add(**{name: [x[n1:n2] for x, n1, n2 in zip(d[name], N1, N2)]}) if 'nda' in self: d.add(nda=[da[n1:n2] for da, n1, n2 in zip(d.nda, N1, N2)]) d.calc_fret(pax=self.pax) # recalculate fret efficiency return d def delete_burst_data(self): """Erase all the burst data""" for name in self.burst_fields + self.burst_metadata: if name in self: self.delete(name) for name in ('E_fitter', 'S_fitter'): if hasattr(self, name): delattr(self, name) ## # Methods for high-level data transformation # def slice_ph(self, time_s1=0, time_s2=None, s='slice'): """Return a new Data object with ph in [`time_s1`,`time_s2`] (seconds) If ALEX, this method must be called right after :func:`fretbursts.loader.alex_apply_periods` (with `delete_ph_t=True`) and before any background estimation or burst search. """ if time_s2 is None: time_s2 = self.time_max if time_s2 >= self.time_max and time_s1 <= 0: return self.copy() assert time_s1 < self.time_max t1_clk, t2_clk = int(time_s1 / self.clk_p), int(time_s2 / self.clk_p) masks = [(ph >= t1_clk) * (ph < t2_clk) for ph in self.iter_ph_times()] new_d = Data(**self) for name in self.ph_fields: if name in self: new_d[name] = [a[mask] for a, mask in zip(self[name], masks)] setattr(new_d, name, new_d[name]) new_d.delete_burst_data() # Shift timestamps to start from 0 to avoid problems with BG calc for ich in range(self.nch): ph_i = new_d.get_ph_times(ich) ph_i -= t1_clk new_d.s.append(s) # Delete eventual cached properties for attr in ['_time_min', '_time_max']: if hasattr(new_d, attr): delattr(new_d, attr) return new_d def collapse(self, update_gamma=True, skip_ch=None): """Returns an object with 1-spot data joining the multi-spot data. Arguments: skip_ch (tuple of ints): list of channels to skip. If None, keep all channels. update_gamma (bool): if True, recompute gamma as mean of the per-channel gamma. If False, do not update gamma. If True, gamma becomes a single value and the update has the side effect of recomputing E and S values, discarding previous per-channel corrections. If False, gamma is not updated (it stays with multi-spot values) and E and S are not recomputed. Note: When using `update_gamma=False`, burst selections on the collapsed `Data` object should be done with `computefret=False`, otherwise any attempt to use multi-spot gamma for single-spot data will raise an error. """ dc = Data(**self) mch_bursts = self.mburst if skip_ch is not None: mch_bursts = [bursts for i, bursts in enumerate(mch_bursts) if i not in skip_ch] bursts = bslib.Bursts.merge(mch_bursts, sort=False) # Sort by start times, and when equal by stop times indexsort = np.lexsort((bursts.stop, bursts.start)) dc.add(mburst=[bursts[indexsort]]) ich_burst = [i * np.ones(nb) for i, nb in enumerate(self.num_bursts)] dc.add(ich_burst=np.hstack(ich_burst)[indexsort]) for name in self.burst_fields: if name in self and name is not 'mburst': # Concatenate arrays along axis = 0 value = [np.concatenate(self[name])[indexsort]] dc.add(**{name: value}) dc.add(nch=1) dc.add(_chi_ch=1.) # NOTE: Updating gamma has the side effect of recomputing E # (and S if ALEX). We need to update gamma because, in general, # gamma can be an array with a value for each ch. # However, the per-channel gamma correction is lost once both # gamma and chi_ch are made scalar. if update_gamma: dc._update_gamma(np.mean(self.get_gamma_array())) return dc ## # Utility methods # def get_params(self): """Returns a plain dict containing only parameters and no arrays. This can be used as a summary of data analysis parameters. Additional keys `name' and `Names` are added with values from `.name` and `.Name()`. """ p_names = ['fname', 'clk_p', 'nch', 'ph_sel', 'L', 'm', 'F', 'P', '_leakage', '_dir_ex', '_gamma', 'bg_time_s', 'T', 'rate_th', 'bg_corrected', 'leakage_corrected', 'dir_ex_corrected', 'dithering', '_chi_ch', 's', 'ALEX'] p_dict = dict(self) for name in p_dict.keys(): if name not in p_names: p_dict.pop(name) p_dict.update(name=self.name, Name=self.Name(), bg_mean=self.bg_mean, nperiods=self.nperiods) return p_dict def expand(self, ich=0, alex_naa=False, width=False): """Return per-burst D and A sizes (nd, na) and their background counts. This method returns for each bursts the corrected signal counts and background counts in donor and acceptor channels. Optionally, the burst width is also returned. Arguments: ich (int): channel for the bursts (can be not 0 only in multi-spot) alex_naa (bool): if True and self.ALEX, returns burst sizes and background also for acceptor photons during accept. excitation width (bool): whether return the burst duration (in seconds). Returns: List of arrays: nd, na, donor bg, acceptor bg. If `alex_naa` is True returns: nd, na, naa, bg_d, bg_a, bg_aa. If `width` is True returns the bursts duration (in sec.) as last element. """ period = self.bp[ich] w = self.mburst[ich].width * self.clk_p bg_a = self.bg[Ph_sel(Dex='Aem')][ich][period] * w bg_d = self.bg[Ph_sel(Dex='Dem')][ich][period] * w res = [self.nd[ich], self.na[ich]] if self.alternated and alex_naa: bg_aa = self.bg[Ph_sel(Aex='Aem')][ich][period] * w res.extend([self.naa[ich], bg_d, bg_a, bg_aa]) else: res.extend([bg_d, bg_a]) if width: res.append(w) return res def burst_data_ich(self, ich): """Return a dict of burst data for channel `ich`.""" bursts = {} bursts['size_raw'] = self.mburst[ich].counts bursts['t_start'] = self.mburst[ich].start * self.clk_p bursts['t_stop'] = self.mburst[ich].stop * self.clk_p bursts['i_start'] = self.mburst[ich].istart bursts['i_stop'] = self.mburst[ich].istop period = bursts['bg_period'] = self.bp[ich] width = self.mburst[ich].width * self.clk_p bursts['width_ms'] = width * 1e3 bursts['bg_ad'] = self.bg[Ph_sel(Dex='Aem')][ich][period] * width bursts['bg_dd'] = self.bg[Ph_sel(Dex='Dem')][ich][period] * width if self.alternated: bursts['bg_aa'] = self.bg[Ph_sel(Aex='Aem')][ich][period] * width bursts['bg_da'] = self.bg[Ph_sel(Aex='Dem')][ich][period] * width burst_fields = self.burst_fields[:] burst_fields.remove('mburst') burst_fields.remove('bp') for field in burst_fields: if field in self: bursts[field] = self[field][ich] return bursts @property def time_max(self): """The last recorded time in seconds.""" if not hasattr(self, '_time_max'): self._time_max = self._time_reduce(last=True, func=max) return self._time_max @property def time_min(self): """The first recorded time in seconds.""" if not hasattr(self, '_time_min'): self._time_min = self._time_reduce(last=False, func=min) return self._time_min def _time_reduce(self, last=True, func=max): """Return first or last timestamp per-ch, reduced with `func`. """ idx = -1 if last else 0 # Get either ph_times_m or ph_times_t ph_times = None for ph_times_name in ['ph_times_m', 'ph_times_t']: try: ph_times = self[ph_times_name] except KeyError: pass else: break if ph_times is not None: # This works with both numpy arrays and pytables arrays time = func(t[idx] for t in ph_times if t.shape[0] > 0) elif 'mburst' in self: if last: time = func(bursts[idx].stop for bursts in self.mburst) else: time = func(bursts[idx].start for bursts in self.mburst) else: raise ValueError("No timestamps or bursts found.") return time * self.clk_p def ph_in_bursts_mask_ich(self, ich=0, ph_sel=Ph_sel('all')): """Return mask of all photons inside bursts for channel `ich`. Returns Boolean array for photons in channel `ich` and photon selection `ph_sel` that are inside any burst. """ bursts_mask = ph_in_bursts_mask(self.ph_data_sizes[ich], self.mburst[ich]) if self._is_allph(ph_sel): return bursts_mask else: ph_sel_mask = self.get_ph_mask(ich=ich, ph_sel=ph_sel) return ph_sel_mask * bursts_mask def ph_in_bursts_ich(self, ich=0, ph_sel=Ph_sel('all')): """Return timestamps of photons inside bursts for channel `ich`. Returns Array of photon timestamps in channel `ich` and photon selection `ph_sel` that are inside any burst. """ ph_all = self.get_ph_times(ich=ich) bursts_mask = self.ph_in_bursts_mask_ich(ich, ph_sel) return ph_all[bursts_mask] ## # Background analysis methods # def _obsolete_bg_attr(self, attrname, ph_sel): print('The Data.%s attribute is deprecated. Please use ' 'Data.bg(%s) instead.' % (attrname, repr(ph_sel))) bg_attrs = ('bg_dd', 'bg_ad', 'bg_da', 'bg_aa') bg_mean_attrs = ('rate_m', 'rate_dd', 'rate_ad', 'rate_da', 'rate_aa') assert attrname in bg_attrs or attrname in bg_mean_attrs if attrname in bg_attrs: bg_field = 'bg' elif attrname in bg_mean_attrs: bg_field = 'bg_mean' try: value = getattr(self, bg_field)[ph_sel] except AttributeError as e: # This only happens when trying to access 'bg' because # 'bg_mean' raises RuntimeError when missing. msg = 'No attribute `%s` found. Please compute background first.' raise_from(RuntimeError(msg % bg_field), e) return value @property def rate_m(self): return self._obsolete_bg_attr('rate_m', Ph_sel('all')) @property def rate_dd(self): return self._obsolete_bg_attr('rate_dd', Ph_sel(Dex='Dem')) @property def rate_ad(self): return self._obsolete_bg_attr('rate_ad', Ph_sel(Dex='Aem')) @property def rate_da(self): return self._obsolete_bg_attr('rate_da', Ph_sel(Aex='Dem')) @property def rate_aa(self): return self._obsolete_bg_attr('rate_aa', Ph_sel(Aex='Aem')) @property def bg_dd(self): return self._obsolete_bg_attr('bg_dd', Ph_sel(Dex='Dem')) @property def bg_ad(self): return self._obsolete_bg_attr('bg_ad', Ph_sel(Dex='Aem')) @property def bg_da(self): return self._obsolete_bg_attr('bg_da', Ph_sel(Aex='Dem')) @property def bg_aa(self): return self._obsolete_bg_attr('bg_aa', Ph_sel(Aex='Aem')) def calc_bg_cache(self, fun, time_s=60, tail_min_us=500, F_bg=2, error_metrics=None, fit_allph=True, recompute=False): """Compute time-dependent background rates for all the channels. This version is the cached version of :meth:`calc_bg`. This method tries to load the background data from a cache file. If a saved background data is not found, it computes the background and stores it to disk. The arguments are the same as :meth:`calc_bg` with the only addition of `recompute` (bool) to force a background recomputation even if a cached version is found. Form more details on the other arguments see :meth:`calc_bg`. """ bg_cache.calc_bg_cache(self, fun, time_s=time_s, tail_min_us=tail_min_us, F_bg=F_bg, error_metrics=error_metrics, fit_allph=fit_allph, recompute=recompute) def _get_auto_bg_th_arrays(self, F_bg=2, tail_min_us0=250): """Return a dict of threshold values for background estimation. The keys are the ph selections in self.ph_streams and the values are 1-D arrays of size nch. """ Th_us = {} for ph_sel in self.ph_streams: th_us = np.zeros(self.nch) for ich, ph in enumerate(self.iter_ph_times(ph_sel=ph_sel)): if ph.size > 0: bg_rate, _ = bg.exp_fit(ph, tail_min_us=tail_min_us0) th_us[ich] = 1e6 * F_bg / bg_rate Th_us[ph_sel] = th_us # Save the input used to generate Th_us self.add(bg_auto_th_us0=tail_min_us0, bg_auto_F_bg=F_bg) return Th_us def _get_bg_th_arrays(self, tail_min_us, nperiods): """Return a dict of threshold values for background estimation. The keys are the ph selections in self.ph_streams and the values are 1-D arrays of size nch. """ n_streams = len(self.ph_streams) if np.size(tail_min_us) == 1: tail_min_us = np.repeat(tail_min_us, n_streams) elif np.size(tail_min_us) == n_streams: tail_min_us = np.asarray(tail_min_us) elif np.size(tail_min_us) != n_streams: raise ValueError('Wrong tail_min_us length (%d).' % len(tail_min_us)) th_us = {} for i, key in enumerate(self.ph_streams): th_us[key] = np.ones(nperiods) * tail_min_us[i] # Save the input used to generate Th_us self.add(bg_th_us_user=tail_min_us) return th_us def _clean_bg_data(self): """Remove background fields specific of only one fit type. Computing background with manual or 'auto' threshold results in different sets of attributes being saved. This method removes these attributes and should be called before recomputing the background to avoid having old stale attributes of a previous background fit. """ # Attributes specific of manual or 'auto' bg fit field_list = ['bg_auto_th_us0', 'bg_auto_F_bg', 'bg_th_us_user'] for field in field_list: if field in self: self.delete(field) if hasattr(self, '_bg_mean'): delattr(self, '_bg_mean') def _get_num_periods(self, time_s): """Return the number of periods using `time_s` as period duration. """ duration = self.time_max - self.time_min # Take the ceil to have at least 1 periods nperiods = np.ceil(duration / time_s) # Discard last period if negligibly small to avoid problems with # background fit with very few photons. if nperiods > 1: last_period = self.time_max - time_s * (nperiods - 1) # Discard last period if smaller than 3% of the bg period if last_period < time_s * 0.03: nperiods -= 1 return int(nperiods) def calc_bg(self, fun, time_s=60, tail_min_us=500, F_bg=2, error_metrics=None, fit_allph=True): """Compute time-dependent background rates for all the channels. Compute background rates for donor, acceptor and both detectors. The rates are computed every `time_s` seconds, allowing to track possible variations during the measurement. Arguments: fun (function): function for background estimation (example `bg.exp_fit`) time_s (float, seconds): compute background each time_s seconds tail_min_us (float, tuple or string): min threshold in us for photon waiting times to use in background estimation. If float is the same threshold for 'all', DD, AD and AA photons and for all the channels. If a 3 or 4 element tuple, each value is used for 'all', DD, AD or AA photons, same value for all the channels. If 'auto', the threshold is computed for each stream ('all', DD, DA, AA) and for each channel as `bg_F * rate_ml0`. `rate_ml0` is an initial estimation of the rate performed using :func:`bg.exp_fit` and a fixed threshold (default 250us). F_bg (float): when `tail_min_us` is 'auto', is the factor by which the initial background estimation if multiplied to compute the threshold. error_metrics (string): Specifies the error metric to use. See :func:`fretbursts.background.exp_fit` for more details. fit_allph (bool): if True (default) the background for the all-photon is fitted. If False it is computed as the sum of backgrounds in all the other streams. The background estimation functions are defined in the module `background` (conventionally imported as `bg`). Example: Compute background with `bg.exp_fit` (inter-photon delays MLE tail fitting), every 30s, with automatic tail-threshold:: d.calc_bg(bg.exp_fit, time_s=20, tail_min_us='auto') Returns: None, all the results are saved in the object itself. """ pprint(" - Calculating BG rates ... ") self._clean_bg_data() kwargs = dict(clk_p=self.clk_p, error_metrics=error_metrics) nperiods = self._get_num_periods(time_s) streams_noall = [s for s in self.ph_streams if s != Ph_sel('all')] bg_auto_th = tail_min_us == 'auto' if bg_auto_th: tail_min_us0 = 250 self.add(bg_auto_th_us0=tail_min_us0, bg_auto_F_bg=F_bg) auto_th_kwargs = dict(clk_p=self.clk_p, tail_min_us=tail_min_us0) th_us = {} for key in self.ph_streams: th_us[key] = np.zeros(nperiods) else: th_us = self._get_bg_th_arrays(tail_min_us, nperiods) Lim, Ph_p = [], [] BG, BG_err = [], [] Th_us = [] for ich, ph_ch in enumerate(self.iter_ph_times()): masks = {sel: self.get_ph_mask(ich, ph_sel=sel) for sel in self.ph_streams} bins = ((np.arange(nperiods + 1) * time_s + self.time_min) / self.clk_p) # Note: histogram bins are half-open, e.g. [a, b) counts, _ = np.histogram(ph_ch, bins=bins) lim, ph_p = [], [] bg = {sel: np.zeros(nperiods) for sel in self.ph_streams} bg_err = {sel: np.zeros(nperiods) for sel in self.ph_streams} i1 = 0 for ip in range(nperiods): i0 = i1 i1 += counts[ip] lim.append((i0, i1 - 1)) ph_p.append((ph_ch[i0], ph_ch[i1 - 1])) ph_i = ph_ch[i0:i1] if fit_allph: sel = Ph_sel('all') if bg_auto_th: _bg, _ = fun(ph_i, **auto_th_kwargs) th_us[sel][ip] = 1e6 * F_bg / _bg bg[sel][ip], bg_err[sel][ip] = \ fun(ph_i, tail_min_us=th_us[sel][ip], **kwargs) for sel in streams_noall: # This supports cases of D-only or A-only timestamps # where self.A_em[ich] is a bool and not a bool-array # In this case, the mask of either DexDem or DexAem is # slice(None) (all-elements selection). if isinstance(masks[sel], slice): if masks[sel] == slice(None): bg[sel][ip] = bg[Ph_sel('all')][ip] bg_err[sel][ip] = bg_err[Ph_sel('all')][ip] continue else: ph_i_sel = ph_i[masks[sel][i0:i1]] if ph_i_sel.size > 0: if bg_auto_th: _bg, _ = fun(ph_i_sel, **auto_th_kwargs) th_us[sel][ip] = 1e6 * F_bg / _bg bg[sel][ip], bg_err[sel][ip] = \ fun(ph_i_sel, tail_min_us=th_us[sel][ip], **kwargs) if not fit_allph: bg[Ph_sel('all')] += sum(bg[s] for s in streams_noall) bg_err[Ph_sel('all')] += sum(bg_err[s] for s in streams_noall) Lim.append(lim) Ph_p.append(ph_p) BG.append(bg) BG_err.append(bg_err) Th_us.append(th_us) # Make Dict Of Lists (DOL) from Lists of Dicts BG_dol, BG_err_dol, Th_us_dol = {}, {}, {} for sel in self.ph_streams: BG_dol[sel] = [bg_ch[sel] for bg_ch in BG] BG_err_dol[sel] = [err_ch[sel] for err_ch in BG_err] Th_us_dol[sel] = [th_ch[sel] for th_ch in Th_us] self.add(bg=BG_dol, bg_err=BG_err_dol, bg_th_us=Th_us_dol, Lim=Lim, Ph_p=Ph_p, bg_fun=fun, bg_fun_name=fun.__name__, bg_time_s=time_s, bg_ph_sel=Ph_sel('all'), bg_auto_th=bg_auto_th, # bool, True if the using auto-threshold ) pprint("[DONE]\n") @property def nperiods(self): return len(self.bg[Ph_sel('all')][0]) @property def bg_mean(self): if 'bg' not in self: raise RuntimeError('No background found, compute it first.') if not hasattr(self, '_bg_mean'): self._bg_mean = {k: [bg_ch.mean() for bg_ch in bg_ph_sel] for k, bg_ph_sel in self.bg.items()} return self._bg_mean def recompute_bg_lim_ph_p(self, ph_sel, mute=False): """Recompute self.Lim and selp.Ph_p relative to ph selection `ph_sel` `ph_sel` is a Ph_sel object selecting the timestamps in which self.Lim and self.Ph_p are being computed. """ ph_sel = self._fix_ph_sel(ph_sel) if self.bg_ph_sel == ph_sel: return pprint(" - Recomputing background limits for %s ... " % str(ph_sel), mute) bg_time_clk = self.bg_time_s / self.clk_p Lim, Ph_p = [], [] for ph_ch, lim in zip(self.iter_ph_times(ph_sel), self.Lim): bins = np.arange(self.nperiods + 1) * bg_time_clk # Note: histogram bins are half-open, e.g. [a, b) counts, _ = np.histogram(ph_ch, bins=bins) lim, ph_p = [], [] i1 = 0 for ip in range(self.nperiods): i0 = i1 i1 += counts[ip] lim.append((i0, i1 - 1)) ph_p.append((ph_ch[i0], ph_ch[i1-1])) Lim.append(lim) Ph_p.append(ph_p) self.add(Lim=Lim, Ph_p=Ph_p, bg_ph_sel=ph_sel) pprint("[DONE]\n", mute) ## # Burst analysis methods # def _calc_burst_period(self): """Compute for each burst the "background period" `bp`. Background periods are the time intervals on which the BG is computed. """ P = [] for b, lim in zip(self.mburst, self.Lim): p = zeros(b.num_bursts, dtype=np.int16) if b.num_bursts > 0: istart = b.istart for i, (l0, l1) in enumerate(lim): p[(istart >= l0) * (istart <= l1)] = i P.append(p) self.add(bp=P) def _param_as_mch_array(self, par): """Regardless of `par` size, return an arrays with size == nch. if `par` is scalar the arrays repeats the calar multiple times if `par is a list/array must be of length `nch`. """ assert size(par) == 1 or size(par) == self.nch return np.repeat(par, self.nch) if size(par) == 1 else np.asarray(par) def bg_from(self, ph_sel): """Return the background rates for the specified photon selection. """ ph_sel = self._fix_ph_sel(ph_sel) if ph_sel in self.ph_streams: return self.bg[ph_sel] elif ph_sel == Ph_sel(Dex='DAem'): sel = Ph_sel(Dex='Dem'), Ph_sel(Dex='Aem') bg = [b1 + b2 for b1, b2 in zip(self.bg[sel[0]], self.bg[sel[1]])] elif ph_sel == Ph_sel(Aex='DAem'): sel = Ph_sel(Aex='Dem'), Ph_sel(Aex='Aem') bg = [b1 + b2 for b1, b2 in zip(self.bg[sel[0]], self.bg[sel[1]])] elif ph_sel == Ph_sel(Dex='Dem', Aex='Dem'): sel = Ph_sel(Dex='Dem'), Ph_sel(Aex='Dem') bg = [b1 + b2 for b1, b2 in zip(self.bg[sel[0]], self.bg[sel[1]])] elif ph_sel == Ph_sel(Dex='Aem', Aex='Aem'): sel = Ph_sel(Dex='Aem'), Ph_sel(Aex='Aem') bg = [b1 + b2 for b1, b2 in zip(self.bg[sel[0]], self.bg[sel[1]])] elif ph_sel == Ph_sel(Dex='DAem', Aex='Aem'): sel = (Ph_sel(Dex='Dem'), Ph_sel(Dex='Aem'), Ph_sel(Aex='Aem')) bg = [b1 + b2 + b3 for b1, b2, b3 in zip(self.bg[sel[0]], self.bg[sel[1]], self.bg[sel[2]])] else: raise NotImplementedError('Photon selection %s not implemented.' % str(ph_sel)) return bg def _calc_T(self, m, P, F=1., ph_sel=Ph_sel('all'), c=-1): """If P is None use F, otherwise uses both P *and* F (F defaults to 1). When P is None, compute the time lag T for burst search according to:: T = (m - 1 - c) / (F * bg_rate) """ # Regardless of F and P sizes, FF and PP are arrays with size == nch FF = self._param_as_mch_array(F) PP = self._param_as_mch_array(P) if P is None: # NOTE: the following lambda ignores Pi find_T = lambda m, Fi, Pi, bg: (m - 1 - c) / (bg * Fi) else: if F != 1: print("WARNING: BS prob. th. with modified BG rate (F=%.1f)" % F) find_T = lambda m, Fi, Pi, bg: find_optimal_T_bga(bg*Fi, m, 1-Pi) TT, T, rate_th = [], [], [] bg_bs = self.bg_from(ph_sel) for bg_ch, F_ch, P_ch in zip(bg_bs, FF, PP): # All "T" are in seconds Tch = find_T(m, F_ch, P_ch, bg_ch) TT.append(Tch) T.append(Tch.mean()) rate_th.append(np.mean(m / Tch)) self.add(TT=TT, T=T, bg_bs=bg_bs, FF=FF, PP=PP, F=F, P=P, rate_th=rate_th) def _burst_search_rate(self, m, L, min_rate_cps, c=-1, ph_sel=Ph_sel('all'), compact=False, index_allph=True, verbose=True, pure_python=False): """Compute burst search using a fixed minimum photon rate. The burst starts when, for `m` consecutive photons:: (m - 1 - c) / (t[last] - t[first]) >= min_rate_cps Arguments: min_rate_cps (float or array): minimum photon rate for burst start. If array is one value per channel. """ bsearch = _get_bsearch_func(pure_python=pure_python) Min_rate_cps = self._param_as_mch_array(min_rate_cps) mburst = [] T_clk = (m - 1 - c) / Min_rate_cps / self.clk_p for ich, t_clk in enumerate(T_clk): ph_bs = ph = self.get_ph_times(ich=ich, ph_sel=ph_sel) if compact: ph_bs = self._ph_times_compact(ph, ph_sel) label = '%s CH%d' % (ph_sel, ich + 1) if verbose else None burstarray = bsearch(ph_bs, L, m, t_clk, label=label, verbose=verbose) if burstarray.size > 1: bursts = bslib.Bursts(burstarray) if compact: bursts.recompute_times(ph, out=bursts) else: bursts = bslib.Bursts.empty() mburst.append(bursts) self.add(mburst=mburst, rate_th=Min_rate_cps, T=T_clk * self.clk_p) if ph_sel != Ph_sel('all') and index_allph: self._fix_mburst_from(ph_sel=ph_sel) def _burst_search_TT(self, m, L, ph_sel=Ph_sel('all'), verbose=True, compact=False, index_allph=True, pure_python=False, mute=False): """Compute burst search with params `m`, `L` on ph selection `ph_sel` Requires the list of arrays `self.TT` with the max time-thresholds in the different burst periods for each channel (use `._calc_T()`). """ bsearch = _get_bsearch_func(pure_python=pure_python) self.recompute_bg_lim_ph_p(ph_sel=ph_sel, mute=mute) MBurst = [] label = '' for ich, T in enumerate(self.TT): ph_bs = ph = self.get_ph_times(ich=ich, ph_sel=ph_sel) if compact: ph_bs = self._ph_times_compact(ph, ph_sel) burstarray_ch_list = [] Tck = T / self.clk_p for ip, (l0, l1) in enumerate(self.Lim[ich]): if verbose: label = '%s CH%d-%d' % (ph_sel, ich + 1, ip) burstarray = bsearch(ph_bs, L, m, Tck[ip], slice_=(l0, l1 + 1), label=label, verbose=verbose) if burstarray.size > 1: burstarray_ch_list.append(burstarray) if len(burstarray_ch_list) > 0: data = np.vstack(burstarray_ch_list) bursts = bslib.Bursts(data) if compact: bursts.recompute_times(ph, out=bursts) else: bursts = bslib.Bursts.empty() MBurst.append(bursts) self.add(mburst=MBurst) if ph_sel != Ph_sel('all') and index_allph: # Convert the burst data to be relative to ph_times_m. # Convert both Lim/Ph_p and mburst, as they are both needed # to compute `.bp`. self.recompute_bg_lim_ph_p(ph_sel=Ph_sel('all'), mute=mute) self._fix_mburst_from(ph_sel=ph_sel, mute=mute) def _fix_mburst_from(self, ph_sel, mute=False): """Convert burst data from any ph_sel to 'all' timestamps selection. """ assert isinstance(ph_sel, Ph_sel) and not self._is_allph(ph_sel) pprint(' - Fixing burst data to refer to ph_times_m ... ', mute) for bursts, mask in zip(self.mburst, self.iter_ph_masks(ph_sel=ph_sel)): bursts.recompute_index_expand(mask, out=bursts) pprint('[DONE]\n', mute) def burst_search(self, L=None, m=10, F=6., P=None, min_rate_cps=None, ph_sel=Ph_sel('all'), compact=False, index_allph=True, c=-1, computefret=True, max_rate=False, dither=False, pure_python=False, verbose=False, mute=False, pax=False): """Performs a burst search with specified parameters. This method performs a sliding-window burst search without binning the timestamps. The burst starts when the rate of `m` photons is above a minimum rate, and stops when the rate falls below the threshold. The result of the burst search is stored in the `mburst` attribute (a list of Bursts objects, one per channel) containing start/stop times and indexes. By default, after burst search, this method computes donor and acceptor counts, it applies burst corrections (background, leakage, etc...) and computes E (and S in case of ALEX). You can skip these steps by passing `computefret=False`. The minimum rate can be explicitly specified with the `min_rate_cps` argument, or computed as a function of the background rate with the `F` argument. Parameters: m (int): number of consecutive photons used to compute the photon rate. Typical values 5-20. Default 10. L (int or None): minimum number of photons in burst. If None (default) L = m is used. F (float): defines how many times higher than the background rate is the minimum rate used for burst search (`min rate = F * bg. rate`), assuming that `P = None` (default). Typical values are 3-9. Default 6. P (float): threshold for burst detection expressed as a probability that a detected bursts is not due to a Poisson background. If not None, `P` overrides `F`. Note that the background process is experimentally super-Poisson so this probability is not physically very meaningful. Using this argument is discouraged. min_rate_cps (float or list/array): minimum rate in cps for burst start. If not None, it has the precedence over `P` and `F`. If non-scalar, contains one rate per each multispot channel. Typical values range from 20e3 to 100e3. ph_sel (Ph_sel object): defines the "photon selection" (or stream) to be used for burst search. Default: all photons. See :mod:`fretbursts.ph_sel` for details. compact (bool): if True, a photon selection of only one excitation period is required and the timestamps are "compacted" by removing the "gaps" between each excitation period. index_allph (bool): if True (default), the indexes of burst start and stop (`istart`, `istop`) are relative to the full timestamp array. If False, the indexes are relative to timestamps selected by the `ph_sel` argument. c (float): correction factor used in the rate vs time-lags relation. `c` affects the computation of the burst-search parameter `T`. When `F` is not None, `T = (m - 1 - c) / (F * bg_rate)`. When using `min_rate_cps`, `T = (m - 1 - c) / min_rate_cps`. computefret (bool): if True (default) compute donor and acceptor counts, apply corrections (background, leakage, direct excitation) and compute E (and S). If False, skip all these steps and stop just after the initial burst search. max_rate (bool): if True compute the max photon rate inside each burst using the same `m` used for burst search. If False (default) skip this step. dither (bool): if True applies dithering corrections to burst counts. Default False. See :meth:`Data.dither`. pure_python (bool): if True, uses the pure python functions even when optimized Cython functions are available. pax (bool): this has effect only if measurement is PAX. In this case, when True computes E using a PAX-enhanced formula: ``(2 na) / (2 na + nd + nda)``. Otherwise use the usual usALEX formula: ``na / na + nd``. Quantities `nd`/`na` are D/A burst counts during D excitation period, while `nda` is D emission during A excitation period. Note: when using `P` or `F` the background rates are needed, so `.calc_bg()` must be called before the burst search. Example: d.burst_search(m=10, F=6) Returns: None, all the results are saved in the `Data` object. """ ph_sel = self._fix_ph_sel(ph_sel) if compact: self._assert_compact(ph_sel) pprint(" - Performing burst search (verbose=%s) ..." % verbose, mute) # Erase any previous burst data self.delete_burst_data() if L is None: L = m if min_rate_cps is not None: # Saves rate_th in self self._burst_search_rate(m=m, L=L, min_rate_cps=min_rate_cps, c=c, ph_sel=ph_sel, compact=compact, index_allph=index_allph, verbose=verbose, pure_python=pure_python) else: # Compute TT, saves P and F in self self._calc_T(m=m, P=P, F=F, ph_sel=ph_sel, c=c) # Use TT and compute mburst self._burst_search_TT(L=L, m=m, ph_sel=ph_sel, compact=compact, index_allph=index_allph, verbose=verbose, pure_python=pure_python, mute=mute) pprint("[DONE]\n", mute) pprint(" - Calculating burst periods ...", mute) self._calc_burst_period() # writes bp pprint("[DONE]\n", mute) # (P, F) or rate_th are saved in _calc_T() or _burst_search_rate() self.add(m=m, L=L, ph_sel=ph_sel) # The correction flags are both set here and in calc_ph_num() so that # they are always consistent. Case 1: we perform only burst search # (with no call to calc_ph_num). Case 2: we re-call calc_ph_num() # without doing a new burst search self.add(bg_corrected=False, leakage_corrected=False, dir_ex_corrected=False, dithering=False) self._burst_search_postprocess( computefret=computefret, max_rate=max_rate, dither=dither, pure_python=pure_python, mute=mute, pax=pax) def _burst_search_postprocess(self, computefret, max_rate, dither, pure_python, mute, pax): if computefret: pprint(" - Counting D and A ph and calculating FRET ... \n", mute) self.calc_fret(count_ph=True, corrections=True, dither=dither, mute=mute, pure_python=pure_python, pax=pax) pprint(" [DONE Counting D/A]\n", mute) if max_rate: pprint(" - Computing max rates in burst ...", mute) self.calc_max_rate(m=self.m) pprint("[DONE]\n", mute) def calc_ph_num(self, alex_all=False, pure_python=False): """Computes number of D, A (and AA) photons in each burst. Arguments: alex_all (bool): if True and self.ALEX is True, computes also the donor channel photons during acceptor excitation (`nda`) pure_python (bool): if True, uses the pure python functions even when the optimized Cython functions are available. Returns: Saves `nd`, `na`, `nt` (and eventually `naa`, `nda`) in self. Returns None. """ mch_count_ph_in_bursts = _get_mch_count_ph_in_bursts_func(pure_python) if not self.alternated: nt = [b.counts.astype(float) if b.num_bursts > 0 else np.array([]) for b in self.mburst] A_em = [self.get_A_em(ich) for ich in range(self.nch)] if isinstance(A_em[0], slice): # This is to support the case of A-only or D-only data n0 = [np.zeros(mb.num_bursts) for mb in self.mburst] if A_em[0] == slice(None): nd, na = n0, nt # A-only case elif A_em[0] == slice(0): nd, na = nt, n0 # D-only case else: # This is the usual case with photons in both D and A channels na = mch_count_ph_in_bursts(self.mburst, A_em) nd = [t - a for t, a in zip(nt, na)] assert (nt[0] == na[0] + nd[0]).all() else: # The "new style" would be: #Mask = [m for m in self.iter_ph_masks(Ph_sel(Dex='Dem'))] Mask = [d_em * d_ex for d_em, d_ex in zip(self.D_em, self.D_ex)] nd = mch_count_ph_in_bursts(self.mburst, Mask) Mask = [a_em * d_ex for a_em, d_ex in zip(self.A_em, self.D_ex)] na = mch_count_ph_in_bursts(self.mburst, Mask) Mask = [a_em * a_ex for a_em, a_ex in zip(self.A_em, self.A_ex)] naa = mch_count_ph_in_bursts(self.mburst, Mask) self.add(naa=naa) if alex_all or 'PAX' in self.meas_type: Mask = [d_em * a_ex for d_em, a_ex in zip(self.D_em, self.A_ex)] nda = mch_count_ph_in_bursts(self.mburst, Mask) self.add(nda=nda) if self.ALEX: nt = [d + a + aa for d, a, aa in zip(nd, na, naa)] assert (nt[0] == na[0] + nd[0] + naa[0]).all() elif 'PAX' in self.meas_type: nt = [d + a + da + aa for d, a, da, aa in zip(nd, na, nda, naa)] assert (nt[0] == na[0] + nd[0] + nda[0] + naa[0]).all() # This is a copy of na which will never be corrected # (except for background). It is used to compute the # equivalent of naa for PAX: # naa~ = naa - nar # where naa~ is the A emission due to direct excitation # by A laser during D+A-excitation, # nar is the uncorrected A-channel signal during D-excitation, # and naa is the A-channel signal during D+A excitation. nar = [a.copy() for a in na] self.add(nar=nar) self.add(nd=nd, na=na, nt=nt, bg_corrected=False, leakage_corrected=False, dir_ex_corrected=False, dithering=False) def fuse_bursts(self, ms=0, process=True, mute=False): """Return a new :class:`Data` object with nearby bursts fused together. Arguments: ms (float): fuse all burst separated by less than `ms` millisecs. If < 0 no burst is fused. Note that with ms = 0, overlapping bursts are fused. process (bool): if True (default), reprocess the burst data in the new object applying corrections and computing FRET. mute (bool): if True suppress any printed output. """ if ms < 0: return self mburst = mch_fuse_bursts(self.mburst, ms=ms, clk_p=self.clk_p) new_d = Data(**self) for k in ['E', 'S', 'nd', 'na', 'naa', 'nda', 'nar', 'nt', 'lsb', 'bp']: if k in new_d: new_d.delete(k) new_d.add(bg_corrected=False, leakage_corrected=False, dir_ex_corrected=False, dithering=False) new_d.add(mburst=mburst, fuse=ms) if 'bg' in new_d: new_d._calc_burst_period() if process: pprint(" - Counting D and A ph and calculating FRET ... \n", mute) new_d.calc_fret(count_ph=True, corrections=True, dither=self.dithering, mute=mute, pax=self.pax) pprint(" [DONE Counting D/A and FRET]\n", mute) return new_d ## # Burst selection and filtering # def select_bursts(self, filter_fun, negate=False, computefret=True, args=None, **kwargs): """Return an object with bursts filtered according to `filter_fun`. This is the main method to select bursts according to different criteria. The selection rule is defined by the selection function `filter_fun`. FRETBursts provides a several predefined selection functions see :ref:`burst_selection`. New selection functions can be defined and passed to this method to implement arbitrary selection rules. Arguments: filter_fun (fuction): function used for burst selection negate (boolean): If True, negates (i.e. take the complementary) of the selection returned by `filter_fun`. Default `False`. computefret (boolean): If True (default) recompute donor and acceptor counts, corrections and FRET quantities (i.e. E, S) in the new returned object. args (tuple or None): positional arguments for `filter_fun()` kwargs: Additional keyword arguments passed to `filter_fun()`. Returns: A new :class:`Data` object containing only the selected bursts. Note: In order to save RAM, the timestamp arrays (`ph_times_m`) of the new Data() points to the same arrays of the original Data(). Conversely, all the bursts data (`mburst`, `nd`, `na`, etc...) are new distinct objects. """ Masks, str_sel = self.select_bursts_mask(filter_fun, negate=negate, return_str=True, args=args, **kwargs) d_sel = self.select_bursts_mask_apply(Masks, computefret=computefret, str_sel=str_sel) return d_sel def select_bursts_mask(self, filter_fun, negate=False, return_str=False, args=None, **kwargs): """Returns mask arrays to select bursts according to `filter_fun`. The function `filter_fun` is called to compute the mask arrays for each channel. This method is useful when you want to apply a selection from one object to a second object. Otherwise use :meth:`Data.select_bursts`. Arguments: filter_fun (fuction): function used for burst selection negate (boolean): If True, negates (i.e. take the complementary) of the selection returned by `filter_fun`. Default `False`. return_str: if True return, for each channel, a tuple with a bool array and a string that can be added to the measurement name to indicate the selection. If False returns only the bool array. Default False. args (tuple or None): positional arguments for `filter_fun()` kwargs: Additional keyword arguments passed to `filter_fun()`. Returns: A list of boolean arrays (one per channel) that define the burst selection. If `return_str` is True returns a list of tuples, where each tuple is a bool array and a string. See also: :meth:`Data.select_bursts`, :meth:`Data.select_bursts_mask_apply` """ # Create the list of bool masks for the bursts selection if args is None: args = tuple() M = [filter_fun(self, i, *args, **kwargs) for i in range(self.nch)] # Make sure the selection function has the right return signature msg = 'The second argument returned by `%s` must be a string.' assert np.all([isinstance(m[1], str) for m in M]), msg % filter_fun # Make sure all boolean masks have the right size msg = ("The size of boolean masks returned by `%s` needs to match " "the number of bursts.") assert np.all([m[0].size == n for m, n in zip(M, self.num_bursts)]), ( msg % filter_fun) Masks = [-m[0] if negate else m[0] for m in M] str_sel = M[0][1] if return_str: return Masks, str_sel else: return Masks def select_bursts_mask_apply(self, masks, computefret=True, str_sel=''): """Returns a new Data object with bursts selected according to `masks`. This method select bursts using a list of boolean arrays as input. Since the user needs to create the boolean arrays first, this method is useful when experimenting with new selection criteria that don't have a dedicated selection function. Usually, however, it is easier to select bursts through :meth:`Data.select_bursts` (using a selection function). Arguments: masks (list of arrays): each element in this list is a boolean array that selects bursts in a channel. computefret (boolean): If True (default) recompute donor and acceptor counts, corrections and FRET quantities (i.e. E, S) in the new returned object. Returns: A new :class:`Data` object containing only the selected bursts. Note: In order to save RAM, the timestamp arrays (`ph_times_m`) of the new Data() points to the same arrays of the original Data(). Conversely, all the bursts data (`mburst`, `nd`, `na`, etc...) are new distinct objects. See also: :meth:`Data.select_bursts`, :meth:`Data.select_mask` """ # Attributes of ds point to the same objects of self ds = Data(**self) ##Copy the per-burst fields that must be filtered used_fields = [field for field in Data.burst_fields if field in self] for name in used_fields: # Recreate the current attribute as a new list to avoid modifying # the old list that is also in the original object. # The list is initialized with empty arrays because this is the # valid value when a ch has no bursts. empty = bslib.Bursts.empty() if name == 'mburst' else np.array([]) ds.add(**{name: [empty] * self.nch}) # Assign the new data for ich, mask in enumerate(masks): if self[name][ich].size == 0: continue # -> no bursts in ch # Note that boolean masking implies numpy array copy # On the contrary slicing only makes a new view of the array ds[name][ich] = self[name][ich][mask] # Recompute E and S if computefret: ds.calc_fret(count_ph=False, pax=self.pax) # Add the annotation about the filter function ds.s = list(self.s + [str_sel]) # using append would modify also self return ds ## # Burst corrections # def background_correction(self, relax_nt=False, mute=False): """Apply background correction to burst sizes (nd, na,...) """ if self.bg_corrected: return -1 pprint(" - Applying background correction.\n", mute) self.add(bg_corrected=True) for ich, bursts in enumerate(self.mburst): if bursts.num_bursts == 0: continue # if no bursts skip this ch period = self.bp[ich] nd, na, bg_d, bg_a, width = self.expand(ich, width=True) nd -= bg_d na -= bg_a if 'nar' in self: # Apply background correction to PAX field nar self.nar[ich][:] = na if relax_nt: # This does not guarantee that nt = nd + na self.nt[ich] -= self.bg_from(Ph_sel('all'))[ich][period] * width else: self.nt[ich] = nd + na if self.alternated: bg_aa = self.bg_from(Ph_sel(Aex='Aem')) self.naa[ich] -= bg_aa[ich][period] * width if 'nda' in self: bg_da = self.bg_from(Ph_sel(Aex='Dem')) self.nda[ich] -= bg_da[ich][period] * width self.nt[ich] += self.naa[ich] if 'PAX' in self.meas_type: self.nt[ich] += self.nda[ich] def leakage_correction(self, mute=False): """Apply leakage correction to burst sizes (nd, na,...) """ if self.leakage_corrected: return -1 elif self.leakage != 0: pprint(" - Applying leakage correction.\n", mute) Lk = self.get_leakage_array() for i, num_bursts in enumerate(self.num_bursts): if num_bursts == 0: continue # if no bursts skip this ch self.na[i] -= self.nd[i] * Lk[i] self.nt[i] = self.nd[i] + self.na[i] if self.ALEX: self.nt[i] += self.naa[i] elif 'PAX' in self.meas_type: self.nt[i] += (self.nda[i] + self.naa[i]) self.add(leakage_corrected=True) def direct_excitation_correction(self, mute=False): """Apply direct excitation correction to bursts (ALEX-only). The applied correction is: na -= naa*dir_ex """ if self.dir_ex_corrected: return -1 elif self.dir_ex != 0: pprint(" - Applying direct excitation correction.\n", mute) for i, num_bursts in enumerate(self.num_bursts): if num_bursts == 0: continue # if no bursts skip this ch naa = self.naa[i] if 'PAX' in self.meas_type: naa = naa - self.nar[i] # do not modify inplace self.na[i] -= naa * self.dir_ex self.nt[i] = self.nd[i] + self.na[i] if self.ALEX: self.nt[i] += self.naa[i] elif 'PAX' in self.meas_type: self.nt[i] += (self.nda[i] + self.naa[i]) self.add(dir_ex_corrected=True) def dither(self, lsb=2, mute=False): """Add dithering (uniform random noise) to burst counts (nd, na,...). The dithering amplitude is the range -0.5*lsb .. 0.5*lsb. """ if self.dithering: return -1 pprint(" - Applying burst-size dithering.\n", mute) self.add(dithering=True) for nd, na in zip(self.nd, self.na): nd += lsb * (np.random.rand(nd.size) - 0.5) na += lsb * (np.random.rand(na.size) - 0.5) if self.alternated: for naa in self.naa: naa += lsb * (np.random.rand(naa.size) - 0.5) if 'nda' in self: for nda in self.nda: nda += lsb * (np.random.rand(nda.size) - 0.5) self.add(lsb=lsb) def calc_chi_ch(self, E): """Calculate the gamma correction prefactor factor `chi_ch` (array). Computes `chi_ch`, a channel-dependent prefactor for gamma used to correct dispersion of E across channels. Returns: array of `chi_ch` correction factors (one per spot). To apply the correction assign the returned array to `Data.chi_ch`. Upon assignment E values for all bursts will be corrected. """ chi_ch = (1 / E.mean() - 1) / (1 / E - 1) return chi_ch def corrections(self, mute=False): """Apply corrections on burst-counts: nd, na, nda, naa. The corrections are: background, leakage (or bleed-through) and direct excitation (dir_ex). """ self.background_correction(mute=mute) self.leakage_correction(mute=mute) if self.alternated: self.direct_excitation_correction(mute=mute) def _update_corrections(self): """Recompute corrections whose flag is True. Checks the flags .bg_corrected, .leakage_corrected, .dir_ex_corrected, .dithering and recomputes the correction if the corresponding flag is True (i.e. if the correction was already applied). Note that this method is not used for gamma and beta corrections because these do not affect the `nd`, `na` and `naa` quantities but are only applied when computing E, S and corrected size. Differently from :meth:`corrections`, this allows to recompute corrections that have already been applied. """ if 'mburst' not in self: return # no burst search performed yet old_bg_corrected = self.bg_corrected old_leakage_corrected = self.leakage_corrected old_dir_ex_corrected = self.dir_ex_corrected old_dithering = self.dithering self.calc_ph_num() # recompute uncorrected na, nd, nda, naa if old_bg_corrected: self.background_correction() if old_leakage_corrected: self.leakage_correction() if old_dir_ex_corrected: self.direct_excitation_correction() if old_dithering: self.dither(self.lsb) # Recompute E and S with no corrections (because already applied) self.calc_fret(count_ph=False, corrections=False, pax=self.pax) @property def leakage(self): """Spectral leakage (bleed-through) of D emission in the A channel. """ return self._leakage @leakage.setter def leakage(self, leakage): self._update_leakage(leakage) def _update_leakage(self, leakage): """Apply/update leakage (or bleed-through) correction. """ assert (np.size(leakage) == 1) or (np.size(leakage) == self.nch) self.add(_leakage=np.asfarray(leakage), leakage_corrected=True) self._update_corrections() @property def dir_ex(self): """Direct excitation correction factor.""" return self._dir_ex @dir_ex.setter def dir_ex(self, value): self._update_dir_ex(value) def _update_dir_ex(self, dir_ex): """Apply/update direct excitation correction with value `dir_ex`. """ assert np.size(dir_ex) == 1 self.add(_dir_ex=float(dir_ex), dir_ex_corrected=True) self._update_corrections() @property def beta(self): """Beta factor used to correct S (compensates Dex and Aex unbalance). """ return self._beta @beta.setter def beta(self, value): self._update_beta(value) def _update_beta(self, beta): """Change the `beta` value and recompute E and S.""" assert np.size(beta) == 1 self.add(_beta=float(beta)) if 'mburst' in self: # Recompute E and S and delete fitter objects self.calc_fret(corrections=False, pax=self.pax) @property def chi_ch(self): """Per-channel relative gamma factor.""" return self._chi_ch @chi_ch.setter def chi_ch(self, value): self._update_chi_ch(value) def _update_chi_ch(self, chi_ch): """Change the `chi_ch` value and recompute E and S.""" msg = 'chi_ch is a per-channel correction and must have size == nch.' assert np.size(chi_ch) == self.nch, ValueError(msg) self.add(_chi_ch=np.asfarray(chi_ch)) if 'mburst' in self: # Recompute E and S and delete fitter objects self.calc_fret(corrections=False, pax=self.pax) @property def gamma(self): """Gamma correction factor (compensates DexDem and DexAem unbalance). """ return self._gamma @gamma.setter def gamma(self, value): self._update_gamma(value) def _update_gamma(self, gamma): """Change the `gamma` value and recompute E and S.""" assert (np.size(gamma) == 1) or (np.size(gamma) == self.nch) self.add(_gamma=np.asfarray(gamma)) if 'mburst' in self: # Recompute E and S and delete fitter objects self.calc_fret(corrections=False, pax=self.pax) def get_gamma_array(self): """Get the array of gamma factors, one per ch. It always returns an array of gamma factors regardless of whether `self.gamma` is scalar or array. Each element of the returned array is multiplied by `chi_ch`. """ gamma = self.gamma G = np.repeat(gamma, self.nch) if np.size(gamma) == 1 else gamma G *= self.chi_ch return G def get_leakage_array(self): """Get the array of leakage coefficients, one per ch. It always returns an array of leakage coefficients regardless of whether `self.leakage` is scalar or array. Each element of the returned array is multiplied by `chi_ch`. """ leakage = self.leakage Lk = np.r_[[leakage] * self.nch] if np.size(leakage) == 1 else leakage Lk *= self.chi_ch return Lk ## # Methods to compute burst quantities: FRET, S, SBR, max_rate, etc ... # def calc_sbr(self, ph_sel=Ph_sel('all'), gamma=1.): """Return Signal-to-Background Ratio (SBR) for each burst. Arguments: ph_sel (Ph_sel object): object defining the photon selection for which to compute the sbr. Changes the photons used for burst size and the corresponding background rate. Valid values here are Ph_sel('all'), Ph_sel(Dex='Dem'), Ph_sel(Dex='Aem'). See :mod:`fretbursts.ph_sel` for details. gamma (float): gamma value used to compute corrected burst size in the case `ph_sel` is Ph_sel('all'). Ignored otherwise. Returns: A list of arrays (one per channel) with one value per burst. The list is also saved in `sbr` attribute. """ ph_sel = self._fix_ph_sel(ph_sel) sbr = [] for ich, mb in enumerate(self.mburst): if mb.num_bursts == 0: sbr.append(np.array([])) continue # if no bursts skip this ch nd, na, bg_d, bg_a = self.expand(ich) nt = self.burst_sizes_ich(ich=ich, gamma=gamma) signal = {Ph_sel('all'): nt, Ph_sel(Dex='Dem'): nd, Ph_sel(Dex='Aem'): na} background = {Ph_sel('all'): bg_d + bg_a, Ph_sel(Dex='Dem'): bg_d, Ph_sel(Dex='Aem'): bg_a} sbr.append(signal[ph_sel] / background[ph_sel]) self.add(sbr=sbr) return sbr def calc_burst_ph_func(self, func, func_kw, ph_sel=Ph_sel('all'), compact=False, ich=0): """Evaluate a scalar function from photons in each burst. This method allow calling an arbitrary function on the photon timestamps of each burst. For example if `func` is `np.mean` it computes the mean time in each bursts. Arguments: func (callable): function that takes as first argument an array of timestamps for one burst. func_kw (callable): additional arguments to be passed `func`. ph_sel (Ph_sel object): object defining the photon selection. See :mod:`fretbursts.ph_sel` for details. compact (bool): if True, a photon selection of only one excitation period is required and the timestamps are "compacted" by removing the "gaps" between each excitation period. Returns: A list (on element per channel) array. The array size is equal to the number of bursts in the corresponding channel. """ if compact: self._assert_compact(ph_sel) kwargs = dict(func=func, func_kw=func_kw, compact=compact) if self.alternated: kwargs.update(alex_period=self.alex_period) if compact: kwargs.update(excitation_width=self._excitation_width(ph_sel)) results_mch = [burst_ph_stats(ph, bursts, mask=mask, **kwargs) for ph, mask, bursts in zip(self.iter_ph_times(), self.iter_ph_masks(ph_sel=ph_sel), self.mburst)] return results_mch def calc_max_rate(self, m, ph_sel=Ph_sel('all'), compact=False, c=phrates.default_c): """Compute the max m-photon rate reached in each burst. Arguments: m (int): number of timestamps to use to compute the rate. As for burst search, typical values are 5-20. ph_sel (Ph_sel object): object defining the photon selection. See :mod:`fretbursts.ph_sel` for details. c (float): this parameter is used in the definition of the rate estimator which is `(m - 1 - c) / t[last] - t[first]`. For more details see :func:`.phtools.phrates.mtuple_rates`. """ ph_sel = self._fix_ph_sel(ph_sel) Max_Rate = self.calc_burst_ph_func(func=phrates.mtuple_rates_max, func_kw=dict(m=m, c=c), ph_sel=ph_sel, compact=compact) Max_Rate = [mr / self.clk_p - bg[bp] for bp, bg, mr in zip(self.bp, self.bg_from(ph_sel), Max_Rate)] params = dict(m=m, ph_sel=ph_sel, compact=compact) self.add(max_rate=Max_Rate, max_rate_params=params) def calc_fret(self, count_ph=False, corrections=True, dither=False, mute=False, pure_python=False, pax=False): """Compute FRET (and stoichiometry if ALEX) for each burst. This is an high-level functions that can be run after burst search. By default, it will count Donor and Acceptor photons, perform corrections (background, leakage), and compute gamma-corrected FRET efficiencies (and stoichiometry if ALEX). Arguments: count_ph (bool): if True (default), calls :meth:`calc_ph_num` to counts Donor and Acceptor photons in each bursts corrections (bool): if True (default), applies background and bleed-through correction to burst data dither (bool): whether to apply dithering to burst size. Default False. mute (bool): whether to mute all the printed output. Default False. pure_python (bool): if True, uses the pure python functions even when the optimized Cython functions are available. pax (bool): this has effect only if measurement is PAX. In this case, when True computes E using a PAX-enhanced formula: ``(2 na) / (2 na + nd + nda)``. Otherwise use the usual usALEX formula: ``na / na + nd``. Quantities `nd`/`na` are D/A burst counts during D excitation period, while `nda` is D emission during A excitation period. Returns: None, all the results are saved in the object. """ if count_ph: self.calc_ph_num(pure_python=pure_python, alex_all=True) if dither: self.dither(mute=mute) if corrections: self.corrections(mute=mute) self._calculate_fret_eff(pax=pax) if self.alternated: self._calculate_stoich(pax=pax) #self._calc_alex_hist() for attr in ('ES_binwidth', 'ES_hist', 'E_fitter', 'S_fitter'): # E_fitter and S_fitter are only attributes # so we cannot use the membership syntax (attr in self) if hasattr(self, attr): self.delete(attr, warning=False) def _aex_fraction(self): """Proportion of Aex period versus Dex + Aex.""" assert self.alternated D_ON, A_ON = self.D_ON, self.A_ON return ((A_ON[1] - A_ON[0]) / (A_ON[1] - A_ON[0] + D_ON[1] - D_ON[0])) def _aex_dex_ratio(self): """Ratio of Aex and Dex period durations.""" assert self.alternated D_ON, A_ON = self.D_ON, self.A_ON return (A_ON[1] - A_ON[0]) / (D_ON[1] - D_ON[0]) def _calculate_fret_eff(self, pax=False): """Compute FRET efficiency (`E`) for each burst.""" G = self.get_gamma_array() if not pax: E = [na / (g * nd + na) for nd, na, g in zip(self.nd, self.na, G)] else: alpha = 1 - self._aex_fraction() E = [(na / alpha) / (g * (nd + nda) + (na / alpha)) for nd, na, nda, g in zip(self.nd, self.na, self.nda, G)] self.add(E=E, pax=pax) def _calculate_stoich(self, pax=False): """Compute "stoichiometry" (the `S` parameter) for each burst.""" G = self.get_gamma_array() naa = self.naa if 'PAX' in self.meas_type: naa = [self._get_naa_ich(i) for i in range(self.nch)] if not pax: S = [(g * d + a) / (g * d + a + aa / self.beta) for d, a, aa, g in zip(self.nd, self.na, naa, G)] else: # This is a PAX-enhanced formula which uses information # from both alternation periods in order to compute S alpha = 1 - self._aex_fraction() S = [(g * (d + da) + a / alpha) / (g * (d + da) + a / alpha + aa / (alpha * self.beta)) for d, a, da, aa, g in zip(self.nd, self.na, self.nda, naa, G)] self.add(S=S) def _calc_alex_hist(self, binwidth=0.05): """Compute the ALEX histogram with given bin width `bin_step`""" if 'ES_binwidth' in self and self.ES_binwidth == binwidth: return ES_hist_tot = [ES_histog(E, S, binwidth) for E, S in zip(self.E, self.S)] E_bins, S_bins = ES_hist_tot[0][1], ES_hist_tot[0][2] ES_hist = [h[0] for h in ES_hist_tot] E_ax = E_bins[:-1] + 0.5 * binwidth S_ax = S_bins[:-1] + 0.5 * binwidth self.add(ES_hist=ES_hist, E_bins=E_bins, S_bins=S_bins, E_ax=E_ax, S_ax=S_ax, ES_binwidth=binwidth) ## # Methods for measurement info # def status(self, add="", noname=False): """Return a string with burst search, corrections and selection info. """ name = "" if noname else self.name s = name if 'L' in self: # burst search has been done if 'rate_th' in self: s += " BS_%s L%d m%d MR%d" % (self.ph_sel, self.L, self.m, np.mean(self.rate_th) * 1e-3) else: P_str = '' if self.P is None else ' P%s' % self.P s += " BS_%s L%d m%d F%.1f%s" % \ (self.ph_sel, self.L, self.m, np.mean(self.F), P_str) s += " G%.3f" % np.mean(self.gamma) if 'bg_fun' in self: s += " BG%s" % self.bg_fun.__name__[:-4] if 'bg_time_s' in self: s += "-%ds" % self.bg_time_s if 'fuse' in self: s += " Fuse%.1fms" % self.fuse if 'bg_corrected' in self and self.bg_corrected: s += " bg" if 'leakage_corrected' in self and self.leakage_corrected: s += " Lk%.3f" % np.mean(self.leakage*100) if 'dir_ex_corrected' in self and self.dir_ex_corrected: s += " dir%.1f" % (self.dir_ex*100) if 'dithering' in self and self.dithering: s += " Dith%d" % self.lsb if 's' in self: s += ' '.join(self.s) return s + add @property def name(self): """Measurement name: last subfolder + file name with no extension.""" if not hasattr(self, '_name'): basename = str(os.path.splitext(os.path.basename(self.fname))[0]) name = basename last_dir = str(os.path.basename(os.path.dirname(self.fname))) if len(last_dir) > 0: name = '_'.join([last_dir, basename]) self.add(_name=name) return self._name @name.setter def name(self, value): self.add(_name=value) def Name(self, add=""): """Return short filename + status information.""" n = self.status(add=add) return n def __repr__(self): return self.status() def stats(self, string=False): """Print common statistics (BG rates, #bursts, mean size, ...)""" s = print_burst_stats(self) if string: return s else: print(s) ## # FRET fitting methods # def fit_E_m(self, E1=-1, E2=2, weights='size', gamma=1.): """Fit E in each channel with the mean using bursts in [E1,E2] range. Note: This two fitting are equivalent (but the first is much faster):: fit_E_m(weights='size') fit_E_minimize(kind='E_size', weights='sqrt') However `fit_E_minimize()` does not provide a model curve. """ Mask = self.select_bursts_mask(select_bursts.E, E1=E1, E2=E2) fit_res, fit_model_F = zeros((self.nch, 2)), zeros(self.nch) for ich, (nd, na, E, mask) in enumerate(zip( self.nd, self.na, self.E, Mask)): w = fret_fit.get_weights(nd[mask], na[mask], weights=weights, gamma=gamma) # Compute weighted mean fit_res[ich, 0] = np.dot(w, E[mask])/w.sum() # Compute weighted variance fit_res[ich, 1] = np.sqrt( np.dot(w, (E[mask] - fit_res[ich, 0])**2)/w.sum()) fit_model_F[ich] = mask.sum()/mask.size fit_model = lambda x, p: SS.norm.pdf(x, p[0], p[1]) self.add(fit_E_res=fit_res, fit_E_name='Moments', E_fit=fit_res[:, 0], fit_E_curve=True, fit_E_E1=E1, fit_E_E2=E2, fit_E_model=fit_model, fit_E_model_F=fit_model_F) self.fit_E_calc_variance() return self.E_fit def fit_E_ML_poiss(self, E1=-1, E2=2, method=1, **kwargs): """ML fit for E modeling size ~ Poisson, using bursts in [E1,E2] range. """ assert method in [1, 2, 3] fit_fun = {1: fret_fit.fit_E_poisson_na, 2: fret_fit.fit_E_poisson_nt, 3: fret_fit.fit_E_poisson_nd} Mask = self.select_bursts_mask(select_bursts.E, E1=E1, E2=E2) fit_res = zeros(self.nch) for ich, mask in zip(range(self.nch), Mask): nd, na, bg_d, bg_a = self.expand(ich) bg_x = bg_d if method == 3 else bg_a fit_res[ich] = fit_fun[method](nd[mask], na[mask], bg_x[mask], **kwargs) self.add(fit_E_res=fit_res, fit_E_name='MLE: na ~ Poisson', E_fit=fit_res, fit_E_curve=False, fit_E_E1=E1, fit_E_E2=E2) self.fit_E_calc_variance() return self.E_fit def fit_E_ML_binom(self, E1=-1, E2=2, **kwargs): """ML fit for E modeling na ~ Binomial, using bursts in [E1,E2] range. """ Mask = self.select_bursts_mask(select_bursts.E, E1=E1, E2=E2) fit_res = np.array([fret_fit.fit_E_binom(_d[mask], _a[mask], **kwargs) for _d, _a, mask in zip(self.nd, self.na, Mask)]) self.add(fit_E_res=fit_res, fit_E_name='MLE: na ~ Binomial', E_fit=fit_res, fit_E_curve=False, fit_E_E1=E1, fit_E_E2=E2) self.fit_E_calc_variance() return self.E_fit def fit_E_minimize(self, kind='slope', E1=-1, E2=2, **kwargs): """Fit E using method `kind` ('slope' or 'E_size') and bursts in [E1,E2] If `kind` is 'slope' the fit function is fret_fit.fit_E_slope() If `kind` is 'E_size' the fit function is fret_fit.fit_E_E_size() Additional arguments in `kwargs` are passed to the fit function. """ assert kind in ['slope', 'E_size'] # Build a dictionary fun_d so we'll call the function fun_d[kind] fun_d = dict(slope=fret_fit.fit_E_slope, E_size=fret_fit.fit_E_E_size) Mask = self.select_bursts_mask(select_bursts.E, E1=E1, E2=E2) fit_res = np.array([fun_d[kind](nd[mask], na[mask], **kwargs) for nd, na, mask in zip(self.nd, self.na, Mask)]) fit_name = dict(slope='Linear slope fit', E_size='E_size fit') self.add(fit_E_res=fit_res, fit_E_name=fit_name[kind], E_fit=fit_res, fit_E_curve=False, fit_E_E1=E1, fit_E_E2=E2) self.fit_E_calc_variance() return self.E_fit def fit_E_two_gauss_EM(self, fit_func=two_gaussian_fit_EM, weights='size', gamma=1., **kwargs): """Fit the E population to a Gaussian mixture model using EM method. Additional arguments in `kwargs` are passed to the fit_func(). """ fit_res = zeros((self.nch, 5)) for ich, (nd, na, E) in enumerate(zip(self.nd, self.na, self.E)): w = fret_fit.get_weights(nd, na, weights=weights, gamma=gamma) fit_res[ich, :] = fit_func(E, weights=w, **kwargs) self.add(fit_E_res=fit_res, fit_E_name=fit_func.__name__, E_fit=fit_res[:, 2], fit_E_curve=True, fit_E_model=two_gauss_mix_pdf, fit_E_model_F=np.repeat(1, self.nch)) return self.E_fit def fit_E_generic(self, E1=-1, E2=2, fit_fun=two_gaussian_fit_hist, weights=None, gamma=1., **fit_kwargs): """Fit E in each channel with `fit_fun` using burst in [E1,E2] range. All the fitting functions are defined in :mod:`fretbursts.fit.gaussian_fitting`. Parameters: weights (string or None): specifies the type of weights If not None `weights` will be passed to `fret_fit.get_weights()`. `weights` can be not-None only when using fit functions that accept weights (the ones ending in `_hist` or `_EM`) gamma (float): passed to `fret_fit.get_weights()` to compute weights All the additional arguments are passed to `fit_fun`. For example `p0` or `mu_fix` can be passed (see `fit.gaussian_fitting` for details). Note: Use this method for CDF/PDF or hist fitting. For EM fitting use :meth:`fit_E_two_gauss_EM()`. """ if fit_fun.__name__.startswith("gaussian_fit"): fit_model = lambda x, p: SS.norm.pdf(x, p[0], p[1]) if 'mu0' not in fit_kwargs: fit_kwargs.update(mu0=0.5) if 'sigma0' not in fit_kwargs: fit_kwargs.update(sigma0=0.3) iE, nparam = 0, 2 elif fit_fun.__name__ == "two_gaussian_fit_hist_min_ab": fit_model = two_gauss_mix_ab if 'p0' not in fit_kwargs: fit_kwargs.update(p0=[0, .05, 0.5, 0.6, 0.1, 0.5]) iE, nparam = 3, 6 elif fit_fun.__name__.startswith("two_gaussian_fit"): fit_model = two_gauss_mix_pdf if 'p0' not in fit_kwargs: fit_kwargs.update(p0=[0, .05, 0.6, 0.1, 0.5]) iE, nparam = 2, 5 else: raise ValueError("Fitting function not recognized.") Mask = self.select_bursts_mask(select_bursts.E, E1=E1, E2=E2) fit_res, fit_model_F = zeros((self.nch, nparam)), zeros(self.nch) for ich, (nd, na, E, mask) in enumerate(zip( self.nd, self.na, self.E, Mask)): if '_hist' in fit_fun.__name__ or '_EM' in fit_fun.__name__: if weights is None: w = None else: w = fret_fit.get_weights(nd[mask], na[mask], weights=weights, gamma=gamma) fit_res[ich, :] = fit_fun(E[mask], weights=w, **fit_kwargs) else: # Non-histogram fits (PDF/CDF) do not support weights fit_res[ich, :] = fit_fun(E[mask], **fit_kwargs) fit_model_F[ich] = mask.sum()/mask.size # Save enough info to generate a fit plot (see hist_fret in burst_plot) self.add(fit_E_res=fit_res, fit_E_name=fit_fun.__name__, E_fit=fit_res[:, iE], fit_E_curve=True, fit_E_E1=E1, fit_E_E2=E2, fit_E_model=fit_model, fit_E_model_F=fit_model_F, fit_E_weights=weights, fit_E_gamma=gamma, fit_E_kwargs=fit_kwargs) return self.E_fit def fit_from(self, D): """Copy fit results from another Data() variable. Now that the fit methods accept E1,E1 parameter this probabily useless. """ # NOTE Are 'fit_guess' and 'fit_fix' still used ? fit_data = ['fit_E_res', 'fit_E_name', 'E_fit', 'fit_E_curve', 'fit_E_E1', 'fit_E_E2=E2', 'fit_E_model', 'fit_E_model_F', 'fit_guess', 'fit_fix'] for name in fit_data: if name in D: self[name] = D[name] setattr(self, name, self[name]) # Deal with the normalization to the number of bursts self.add(fit_model_F=r_[[old_E.size/new_E.size \ for old_E, new_E in zip(D.E, self.E)]]) def fit_E_calc_variance(self, weights='sqrt', dist='DeltaE', E_fit=None, E1=-1, E2=2): """Compute several versions of WEIGHTED std.dev. of the E estimator. `weights` are multiplied *BEFORE* squaring the distance/error `dist` can be 'DeltaE' or 'SlopeEuclid' Note: This method is still experimental """ assert dist in ['DeltaE', 'SlopeEuclid'] if E_fit is None: E_fit = self.E_fit E1 = self.fit_E_E1 if 'fit_E_E1' in self else -1 E2 = self.fit_E_E2 if 'fit_E_E2' in self else 2 else: # If E_fit is not None the specified E1,E2 range is used if E1 < 0 and E2 > 1: pprint('WARN: E1 < 0 and E2 > 1 (wide range of E eff.)\n') if size(E_fit) == 1 and self.nch > 0: E_fit = np.repeat(E_fit, self.nch) assert size(E_fit) == self.nch E_sel = [Ei[(Ei > E1)*(Ei < E2)] for Ei in self.E] Mask = self.select_bursts_mask(select_bursts.E, E1=E1, E2=E2) E_var, E_var_bu, E_var_ph = \ zeros(self.nch), zeros(self.nch), zeros(self.nch) for i, (Ech, nt, mask) in enumerate(zip(E_sel, self.nt, Mask)): nt_s = nt[mask] nd_s, na_s = self.nd[i][mask], self.na[i][mask] w = fret_fit.get_weights(nd_s, na_s, weights=weights) info_ph = nt_s.sum() info_bu = nt_s.size if dist == 'DeltaE': distances = (Ech - E_fit[i]) elif dist == 'SlopeEuclid': distances = fret_fit.get_dist_euclid(nd_s, na_s, E_fit[i]) residuals = distances * w var = np.mean(residuals**2) var_bu = np.mean(residuals**2)/info_bu var_ph = np.mean(residuals**2)/info_ph #lvar = np.mean(log(residuals**2)) #lvar_bu = np.mean(log(residuals**2)) - log(info_bu) #lvar_ph = np.mean(log(residuals**2)) - log(info_ph) E_var[i], E_var_bu[i], E_var_ph[i] = var, var_bu, var_ph assert (-np.isnan(E_var[i])).all() # check there is NO NaN self.add(E_var=E_var, E_var_bu=E_var_bu, E_var_ph=E_var_ph) return E_var
gpl-2.0
CoolProp/CoolProp
dev/scripts/viscosity_builder.py
2
3895
from math import sqrt, exp from CoolProp.CoolProp import Props import numpy as np import matplotlib.pyplot as plt from scipy.odr import * from math import log E_K = {'REFPROP-Ammonia': 386, 'REFPROP-Argon': 143.2 } SIGMA = {'REFPROP-Ammonia': 0.2957, 'REFPROP-Argon': 0.335 } E_K['REFPROP-Propane'] = 263.88 SIGMA['REFPROP-Propane'] = 0.49748 E_K['REFPROP-R32'] = 289.65 SIGMA['REFPROP-R32'] = 0.4098 E_K['REFPROP-R245fa'] = 329.72 SIGMA['REFPROP-R245fa'] = 0.5529 def viscosity_dilute(fluid, T, e_k, sigma): """ T in [K], e_k in [K], sigma in [nm] viscosity returned is in [Pa-s] """ Tstar = T / e_k molemass = Props(fluid, 'molemass') if fluid == 'Propane' or fluid == 'REFPROP-Propane': a = [0.25104574, -0.47271238, 0, 0.060836515, 0] theta_star = exp(a[0] * pow(log(Tstar), 0) + a[1] * pow(log(Tstar), 1) + a[3] * pow(log(Tstar), 3)); eta_star = 0.021357 * sqrt(molemass * T) / (pow(sigma, 2) * theta_star) / 1e6; return eta_star # From Neufeld, 1972, Journal of Chemical Physics - checked coefficients OMEGA_2_2 = 1.16145 * pow(Tstar, -0.14874) + 0.52487 * exp(-0.77320 * Tstar) + 2.16178 * exp(-2.43787 * Tstar) # Using the leading constant from McLinden, 2000 since the leading term from Huber 2003 gives crazy values eta_star = 26.692e-3 * sqrt(molemass * T) / (pow(sigma, 2) * OMEGA_2_2) / 1e6 return eta_star def viscosity_linear(fluid, T, rho, e_k, sigma): """ Implements the method of Vogel 1998 (Propane) for the linear part """ N_A = 6.02214129e23 molemass = Props(fluid, 'molemass') Tstar = T / e_k b = [-19.572881, 219.73999, -1015.3226, 2471.01251, -3375.1717, 2491.6597, -787.26086, 14.085455, -0.34664158] s = sum([b[i] * pow(Tstar, -0.25 * i) for i in range(7)]) B_eta_star = s + b[7] * pow(Tstar, -2.5) + b[8] * pow(Tstar, -5.5) # //[no units] B_eta = N_A * pow(sigma / 1e9, 3) * B_eta_star # [m3/mol] return viscosity_dilute(fluid, T, e_k, sigma) * B_eta * rho / molemass * 1000 from PDSim.misc.datatypes import Collector RHO = Collector() TT = Collector() DELTA = Collector() TAU = Collector() VV = Collector() VV0 = Collector() VV1 = Collector() VVH = Collector() fluid = 'REFPROP-R32' Tc = Props(fluid, 'Tcrit') rhoc = Props(fluid, 'rhocrit') for T in np.linspace(290, Props(fluid, 'Tcrit') - 0.1, 100): rhoV = Props('D', 'T', T, 'Q', 1, fluid) rhoL = Props('D', 'T', T, 'Q', 0, fluid) rhomax = Props('D', 'T', Props(fluid, 'Tmin'), 'Q', 0, fluid) for rho in list(np.linspace(rhoL, rhomax, 100)): # +list(np.linspace(rhoV,0.0001,100)): # for rho in list(np.linspace(rhoV,0.0001,100)): mu_0 = viscosity_dilute(fluid, T, E_K[fluid], SIGMA[fluid]) mu_1 = viscosity_linear(fluid, T, rho, E_K[fluid], SIGMA[fluid]) mu = Props('V', 'T', T, 'D', rho, fluid) VV << mu VV0 << mu_0 VV1 << mu_1 VVH << mu - mu_0 - mu_1 TT << T RHO << rho DELTA << rho / rhoc TAU << Tc / T def f_RHS(E, DELTA_TAU, VV): k = 0 sum = 0 DELTA = DELTA_TAU[0, :] TAU = DELTA_TAU[1, :] for i in range(2, 5): for j in range(3): sum += E[k] * DELTA**i / TAU**j k += 1 # f1,f2,f3,g1,g2 = E[k],E[k+1],E[k+2],E[k+3],E[k+4] # DELTA0 = g1*(1+g2*np.sqrt(TAU)) # sum += (f1+f2/TAU+f3/TAU/TAU)*(DELTA/(DELTA0-DELTA)-DELTA/DELTA0) print('%s %%' % np.mean(np.abs(((sum / VV - 1) * 100)))) return sum log_muH = np.log(VVH.v().T) x = np.c_[DELTA.v().T, TAU.v().T].T y = VVH.v() linear = Model(f_RHS, extra_args=(y,)) mydata = Data(x, y) myodr = ODR(mydata, linear, beta0=np.array([0.1] * 17),) myoutput = myodr.run() E = myoutput.beta print(E) #plt.plot(TT.vec, y,'b.',TT.vec, f_RHS(E, x, y),'r.') # plt.show() # plt.plot() plt.plot(y.T, f_RHS(E, x, y)) plt.show()
mit
sniemi/SamPy
sandbox/src1/examples/font_indexing.py
4
1299
""" A little example that shows how the various indexing into the font tables relate to one another. Mainly for mpl developers.... """ import matplotlib from matplotlib.ft2font import FT2Font, KERNING_DEFAULT, KERNING_UNFITTED, KERNING_UNSCALED #fname = '/usr/share/fonts/sfd/FreeSans.ttf' fname = matplotlib.get_data_path() + '/fonts/ttf/Vera.ttf' font = FT2Font(fname) font.set_charmap(0) codes = font.get_charmap().items() #dsu = [(ccode, glyphind) for ccode, glyphind in codes] #dsu.sort() #for ccode, glyphind in dsu: # try: name = font.get_glyph_name(glyphind) # except RuntimeError: pass # else: print '% 4d % 4d %s %s'%(glyphind, ccode, hex(int(ccode)), name) # make a charname to charcode and glyphind dictionary coded = {} glyphd = {} for ccode, glyphind in codes: name = font.get_glyph_name(glyphind) coded[name] = ccode glyphd[name] = glyphind code = coded['A'] glyph = font.load_char(code) #print glyph.bbox print glyphd['A'], glyphd['V'], coded['A'], coded['V'] print 'AV', font.get_kerning(glyphd['A'], glyphd['V'], KERNING_DEFAULT) print 'AV', font.get_kerning(glyphd['A'], glyphd['V'], KERNING_UNFITTED) print 'AV', font.get_kerning(glyphd['A'], glyphd['V'], KERNING_UNSCALED) print 'AV', font.get_kerning(glyphd['A'], glyphd['T'], KERNING_UNSCALED)
bsd-2-clause
edhuckle/statsmodels
statsmodels/examples/example_enhanced_boxplots.py
33
3179
from __future__ import print_function import numpy as np import matplotlib.pyplot as plt import statsmodels.api as sm # Necessary to make horizontal axis labels fit plt.rcParams['figure.subplot.bottom'] = 0.23 data = sm.datasets.anes96.load_pandas() party_ID = np.arange(7) labels = ["Strong Democrat", "Weak Democrat", "Independent-Democrat", "Independent-Independent", "Independent-Republican", "Weak Republican", "Strong Republican"] # Group age by party ID. age = [data.exog['age'][data.endog == id] for id in party_ID] # Create a violin plot. fig = plt.figure() ax = fig.add_subplot(111) sm.graphics.violinplot(age, ax=ax, labels=labels, plot_opts={'cutoff_val':5, 'cutoff_type':'abs', 'label_fontsize':'small', 'label_rotation':30}) ax.set_xlabel("Party identification of respondent.") ax.set_ylabel("Age") ax.set_title("US national election '96 - Age & Party Identification") # Create a bean plot. fig2 = plt.figure() ax = fig2.add_subplot(111) sm.graphics.beanplot(age, ax=ax, labels=labels, plot_opts={'cutoff_val':5, 'cutoff_type':'abs', 'label_fontsize':'small', 'label_rotation':30}) ax.set_xlabel("Party identification of respondent.") ax.set_ylabel("Age") ax.set_title("US national election '96 - Age & Party Identification") # Create a jitter plot. fig3 = plt.figure() ax = fig3.add_subplot(111) plot_opts={'cutoff_val':5, 'cutoff_type':'abs', 'label_fontsize':'small', 'label_rotation':30, 'violin_fc':(0.8, 0.8, 0.8), 'jitter_marker':'.', 'jitter_marker_size':3, 'bean_color':'#FF6F00', 'bean_mean_color':'#009D91'} sm.graphics.beanplot(age, ax=ax, labels=labels, jitter=True, plot_opts=plot_opts) ax.set_xlabel("Party identification of respondent.") ax.set_ylabel("Age") ax.set_title("US national election '96 - Age & Party Identification") # Create an asymmetrical jitter plot. ix = data.exog['income'] < 16 # incomes < $30k age = data.exog['age'][ix] endog = data.endog[ix] age_lower_income = [age[endog == id] for id in party_ID] ix = data.exog['income'] >= 20 # incomes > $50k age = data.exog['age'][ix] endog = data.endog[ix] age_higher_income = [age[endog == id] for id in party_ID] fig = plt.figure() ax = fig.add_subplot(111) plot_opts['violin_fc'] = (0.5, 0.5, 0.5) plot_opts['bean_show_mean'] = False plot_opts['bean_show_median'] = False plot_opts['bean_legend_text'] = 'Income < \$30k' plot_opts['cutoff_val'] = 10 sm.graphics.beanplot(age_lower_income, ax=ax, labels=labels, side='left', jitter=True, plot_opts=plot_opts) plot_opts['violin_fc'] = (0.7, 0.7, 0.7) plot_opts['bean_color'] = '#009D91' plot_opts['bean_legend_text'] = 'Income > \$50k' sm.graphics.beanplot(age_higher_income, ax=ax, labels=labels, side='right', jitter=True, plot_opts=plot_opts) ax.set_xlabel("Party identification of respondent.") ax.set_ylabel("Age") ax.set_title("US national election '96 - Age & Party Identification") # Show all plots. plt.show()
bsd-3-clause
Tahsin-Mayeesha/Udacity-Machine-Learning-Nanodegree
projects/titanic_survival_exploration/titanic_visualizations.py
24
5425
import numpy as np import pandas as pd import matplotlib.pyplot as plt def filter_data(data, condition): """ Remove elements that do not match the condition provided. Takes a data list as input and returns a filtered list. Conditions should be a list of strings of the following format: '<field> <op> <value>' where the following operations are valid: >, <, >=, <=, ==, != Example: ["Sex == 'male'", 'Age < 18'] """ field, op, value = condition.split(" ") # convert value into number or strip excess quotes if string try: value = float(value) except: value = value.strip("\'\"") # get booleans for filtering if op == ">": matches = data[field] > value elif op == "<": matches = data[field] < value elif op == ">=": matches = data[field] >= value elif op == "<=": matches = data[field] <= value elif op == "==": matches = data[field] == value elif op == "!=": matches = data[field] != value else: # catch invalid operation codes raise Exception("Invalid comparison operator. Only >, <, >=, <=, ==, != allowed.") # filter data and outcomes data = data[matches].reset_index(drop = True) return data def survival_stats(data, outcomes, key, filters = []): """ Print out selected statistics regarding survival, given a feature of interest and any number of filters (including no filters) """ # Check that the key exists if key not in data.columns.values : print "'{}' is not a feature of the Titanic data. Did you spell something wrong?".format(key) return False # Return the function before visualizing if 'Cabin' or 'Ticket' # is selected: too many unique categories to display if(key == 'Cabin' or key == 'PassengerId' or key == 'Ticket'): print "'{}' has too many unique categories to display! Try a different feature.".format(key) return False # Merge data and outcomes into single dataframe all_data = pd.concat([data, outcomes], axis = 1) # Apply filters to data for condition in filters: all_data = filter_data(all_data, condition) # Create outcomes DataFrame all_data = all_data[[key, 'Survived']] # Create plotting figure plt.figure(figsize=(8,6)) # 'Numerical' features if(key == 'Age' or key == 'Fare'): # Remove NaN values from Age data all_data = all_data[~np.isnan(all_data[key])] # Divide the range of data into bins and count survival rates min_value = all_data[key].min() max_value = all_data[key].max() value_range = max_value - min_value # 'Fares' has larger range of values than 'Age' so create more bins if(key == 'Fare'): bins = np.arange(0, all_data['Fare'].max() + 20, 20) if(key == 'Age'): bins = np.arange(0, all_data['Age'].max() + 10, 10) # Overlay each bin's survival rates nonsurv_vals = all_data[all_data['Survived'] == 0][key].reset_index(drop = True) surv_vals = all_data[all_data['Survived'] == 1][key].reset_index(drop = True) plt.hist(nonsurv_vals, bins = bins, alpha = 0.6, color = 'red', label = 'Did not survive') plt.hist(surv_vals, bins = bins, alpha = 0.6, color = 'green', label = 'Survived') # Add legend to plot plt.xlim(0, bins.max()) plt.legend(framealpha = 0.8) # 'Categorical' features else: # Set the various categories if(key == 'Pclass'): values = np.arange(1,4) if(key == 'Parch' or key == 'SibSp'): values = np.arange(0,np.max(data[key]) + 1) if(key == 'Embarked'): values = ['C', 'Q', 'S'] if(key == 'Sex'): values = ['male', 'female'] # Create DataFrame containing categories and count of each frame = pd.DataFrame(index = np.arange(len(values)), columns=(key,'Survived','NSurvived')) for i, value in enumerate(values): frame.loc[i] = [value, \ len(all_data[(all_data['Survived'] == 1) & (all_data[key] == value)]), \ len(all_data[(all_data['Survived'] == 0) & (all_data[key] == value)])] # Set the width of each bar bar_width = 0.4 # Display each category's survival rates for i in np.arange(len(frame)): nonsurv_bar = plt.bar(i-bar_width, frame.loc[i]['NSurvived'], width = bar_width, color = 'r') surv_bar = plt.bar(i, frame.loc[i]['Survived'], width = bar_width, color = 'g') plt.xticks(np.arange(len(frame)), values) plt.legend((nonsurv_bar[0], surv_bar[0]),('Did not survive', 'Survived'), framealpha = 0.8) # Common attributes for plot formatting plt.xlabel(key) plt.ylabel('Number of Passengers') plt.title('Passenger Survival Statistics With \'%s\' Feature'%(key)) plt.show() # Report number of passengers with missing values if sum(pd.isnull(all_data[key])): nan_outcomes = all_data[pd.isnull(all_data[key])]['Survived'] print "Passengers with missing '{}' values: {} ({} survived, {} did not survive)".format( \ key, len(nan_outcomes), sum(nan_outcomes == 1), sum(nan_outcomes == 0))
mit
google/material-design-icons
update/venv/lib/python3.9/site-packages/fontTools/varLib/plot.py
5
4153
"""Visualize DesignSpaceDocument and resulting VariationModel.""" from fontTools.varLib.models import VariationModel, supportScalar from fontTools.designspaceLib import DesignSpaceDocument from matplotlib import pyplot from mpl_toolkits.mplot3d import axes3d from itertools import cycle import math import logging import sys log = logging.getLogger(__name__) def stops(support, count=10): a,b,c = support return [a + (b - a) * i / count for i in range(count)] + \ [b + (c - b) * i / count for i in range(count)] + \ [c] def _plotLocationsDots(locations, axes, subplot, **kwargs): for loc, color in zip(locations, cycle(pyplot.cm.Set1.colors)): if len(axes) == 1: subplot.plot( [loc.get(axes[0], 0)], [1.], 'o', color=color, **kwargs ) elif len(axes) == 2: subplot.plot( [loc.get(axes[0], 0)], [loc.get(axes[1], 0)], [1.], 'o', color=color, **kwargs ) else: raise AssertionError(len(axes)) def plotLocations(locations, fig, names=None, **kwargs): n = len(locations) cols = math.ceil(n**.5) rows = math.ceil(n / cols) if names is None: names = [None] * len(locations) model = VariationModel(locations) names = [names[model.reverseMapping[i]] for i in range(len(names))] axes = sorted(locations[0].keys()) if len(axes) == 1: _plotLocations2D( model, axes[0], fig, cols, rows, names=names, **kwargs ) elif len(axes) == 2: _plotLocations3D( model, axes, fig, cols, rows, names=names, **kwargs ) else: raise ValueError("Only 1 or 2 axes are supported") def _plotLocations2D(model, axis, fig, cols, rows, names, **kwargs): subplot = fig.add_subplot(111) for i, (support, color, name) in enumerate( zip(model.supports, cycle(pyplot.cm.Set1.colors), cycle(names)) ): if name is not None: subplot.set_title(name) subplot.set_xlabel(axis) pyplot.xlim(-1.,+1.) Xs = support.get(axis, (-1.,0.,+1.)) X, Y = [], [] for x in stops(Xs): y = supportScalar({axis:x}, support) X.append(x) Y.append(y) subplot.plot(X, Y, color=color, **kwargs) _plotLocationsDots(model.locations, [axis], subplot) def _plotLocations3D(model, axes, fig, rows, cols, names, **kwargs): ax1, ax2 = axes axis3D = fig.add_subplot(111, projection='3d') for i, (support, color, name) in enumerate( zip(model.supports, cycle(pyplot.cm.Set1.colors), cycle(names)) ): if name is not None: axis3D.set_title(name) axis3D.set_xlabel(ax1) axis3D.set_ylabel(ax2) pyplot.xlim(-1.,+1.) pyplot.ylim(-1.,+1.) Xs = support.get(ax1, (-1.,0.,+1.)) Ys = support.get(ax2, (-1.,0.,+1.)) for x in stops(Xs): X, Y, Z = [], [], [] for y in Ys: z = supportScalar({ax1:x, ax2:y}, support) X.append(x) Y.append(y) Z.append(z) axis3D.plot(X, Y, Z, color=color, **kwargs) for y in stops(Ys): X, Y, Z = [], [], [] for x in Xs: z = supportScalar({ax1:x, ax2:y}, support) X.append(x) Y.append(y) Z.append(z) axis3D.plot(X, Y, Z, color=color, **kwargs) _plotLocationsDots(model.locations, [ax1, ax2], axis3D) def plotDocument(doc, fig, **kwargs): doc.normalize() locations = [s.location for s in doc.sources] names = [s.name for s in doc.sources] plotLocations(locations, fig, names, **kwargs) def main(args=None): from fontTools import configLogger if args is None: args = sys.argv[1:] # configure the library logger (for >= WARNING) configLogger() # comment this out to enable debug messages from logger # log.setLevel(logging.DEBUG) if len(args) < 1: print("usage: fonttools varLib.plot source.designspace", file=sys.stderr) print(" or") print("usage: fonttools varLib.plot location1 location2 ...", file=sys.stderr) sys.exit(1) fig = pyplot.figure() fig.set_tight_layout(True) if len(args) == 1 and args[0].endswith('.designspace'): doc = DesignSpaceDocument() doc.read(args[0]) plotDocument(doc, fig) else: axes = [chr(c) for c in range(ord('A'), ord('Z')+1)] locs = [dict(zip(axes, (float(v) for v in s.split(',')))) for s in args] plotLocations(locs, fig) pyplot.show() if __name__ == '__main__': import sys sys.exit(main())
apache-2.0
cauchycui/scikit-learn
examples/mixture/plot_gmm_pdf.py
284
1528
""" ============================================= Density Estimation for a mixture of Gaussians ============================================= Plot the density estimation of a mixture of two Gaussians. Data is generated from two Gaussians with different centers and covariance matrices. """ import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import LogNorm from sklearn import mixture n_samples = 300 # generate random sample, two components np.random.seed(0) # generate spherical data centered on (20, 20) shifted_gaussian = np.random.randn(n_samples, 2) + np.array([20, 20]) # generate zero centered stretched Gaussian data C = np.array([[0., -0.7], [3.5, .7]]) stretched_gaussian = np.dot(np.random.randn(n_samples, 2), C) # concatenate the two datasets into the final training set X_train = np.vstack([shifted_gaussian, stretched_gaussian]) # fit a Gaussian Mixture Model with two components clf = mixture.GMM(n_components=2, covariance_type='full') clf.fit(X_train) # display predicted scores by the model as a contour plot x = np.linspace(-20.0, 30.0) y = np.linspace(-20.0, 40.0) X, Y = np.meshgrid(x, y) XX = np.array([X.ravel(), Y.ravel()]).T Z = -clf.score_samples(XX)[0] Z = Z.reshape(X.shape) CS = plt.contour(X, Y, Z, norm=LogNorm(vmin=1.0, vmax=1000.0), levels=np.logspace(0, 3, 10)) CB = plt.colorbar(CS, shrink=0.8, extend='both') plt.scatter(X_train[:, 0], X_train[:, 1], .8) plt.title('Negative log-likelihood predicted by a GMM') plt.axis('tight') plt.show()
bsd-3-clause
xubenben/scikit-learn
examples/manifold/plot_lle_digits.py
181
8510
""" ============================================================================= Manifold learning on handwritten digits: Locally Linear Embedding, Isomap... ============================================================================= An illustration of various embeddings on the digits dataset. The RandomTreesEmbedding, from the :mod:`sklearn.ensemble` module, is not technically a manifold embedding method, as it learn a high-dimensional representation on which we apply a dimensionality reduction method. However, it is often useful to cast a dataset into a representation in which the classes are linearly-separable. t-SNE will be initialized with the embedding that is generated by PCA in this example, which is not the default setting. It ensures global stability of the embedding, i.e., the embedding does not depend on random initialization. """ # Authors: Fabian Pedregosa <fabian.pedregosa@inria.fr> # Olivier Grisel <olivier.grisel@ensta.org> # Mathieu Blondel <mathieu@mblondel.org> # Gael Varoquaux # License: BSD 3 clause (C) INRIA 2011 print(__doc__) from time import time import numpy as np import matplotlib.pyplot as plt from matplotlib import offsetbox from sklearn import (manifold, datasets, decomposition, ensemble, lda, random_projection) digits = datasets.load_digits(n_class=6) X = digits.data y = digits.target n_samples, n_features = X.shape n_neighbors = 30 #---------------------------------------------------------------------- # Scale and visualize the embedding vectors def plot_embedding(X, title=None): x_min, x_max = np.min(X, 0), np.max(X, 0) X = (X - x_min) / (x_max - x_min) plt.figure() ax = plt.subplot(111) for i in range(X.shape[0]): plt.text(X[i, 0], X[i, 1], str(digits.target[i]), color=plt.cm.Set1(y[i] / 10.), fontdict={'weight': 'bold', 'size': 9}) if hasattr(offsetbox, 'AnnotationBbox'): # only print thumbnails with matplotlib > 1.0 shown_images = np.array([[1., 1.]]) # just something big for i in range(digits.data.shape[0]): dist = np.sum((X[i] - shown_images) ** 2, 1) if np.min(dist) < 4e-3: # don't show points that are too close continue shown_images = np.r_[shown_images, [X[i]]] imagebox = offsetbox.AnnotationBbox( offsetbox.OffsetImage(digits.images[i], cmap=plt.cm.gray_r), X[i]) ax.add_artist(imagebox) plt.xticks([]), plt.yticks([]) if title is not None: plt.title(title) #---------------------------------------------------------------------- # Plot images of the digits n_img_per_row = 20 img = np.zeros((10 * n_img_per_row, 10 * n_img_per_row)) for i in range(n_img_per_row): ix = 10 * i + 1 for j in range(n_img_per_row): iy = 10 * j + 1 img[ix:ix + 8, iy:iy + 8] = X[i * n_img_per_row + j].reshape((8, 8)) plt.imshow(img, cmap=plt.cm.binary) plt.xticks([]) plt.yticks([]) plt.title('A selection from the 64-dimensional digits dataset') #---------------------------------------------------------------------- # Random 2D projection using a random unitary matrix print("Computing random projection") rp = random_projection.SparseRandomProjection(n_components=2, random_state=42) X_projected = rp.fit_transform(X) plot_embedding(X_projected, "Random Projection of the digits") #---------------------------------------------------------------------- # Projection on to the first 2 principal components print("Computing PCA projection") t0 = time() X_pca = decomposition.TruncatedSVD(n_components=2).fit_transform(X) plot_embedding(X_pca, "Principal Components projection of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Projection on to the first 2 linear discriminant components print("Computing LDA projection") X2 = X.copy() X2.flat[::X.shape[1] + 1] += 0.01 # Make X invertible t0 = time() X_lda = lda.LDA(n_components=2).fit_transform(X2, y) plot_embedding(X_lda, "Linear Discriminant projection of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Isomap projection of the digits dataset print("Computing Isomap embedding") t0 = time() X_iso = manifold.Isomap(n_neighbors, n_components=2).fit_transform(X) print("Done.") plot_embedding(X_iso, "Isomap projection of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Locally linear embedding of the digits dataset print("Computing LLE embedding") clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2, method='standard') t0 = time() X_lle = clf.fit_transform(X) print("Done. Reconstruction error: %g" % clf.reconstruction_error_) plot_embedding(X_lle, "Locally Linear Embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Modified Locally linear embedding of the digits dataset print("Computing modified LLE embedding") clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2, method='modified') t0 = time() X_mlle = clf.fit_transform(X) print("Done. Reconstruction error: %g" % clf.reconstruction_error_) plot_embedding(X_mlle, "Modified Locally Linear Embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # HLLE embedding of the digits dataset print("Computing Hessian LLE embedding") clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2, method='hessian') t0 = time() X_hlle = clf.fit_transform(X) print("Done. Reconstruction error: %g" % clf.reconstruction_error_) plot_embedding(X_hlle, "Hessian Locally Linear Embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # LTSA embedding of the digits dataset print("Computing LTSA embedding") clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2, method='ltsa') t0 = time() X_ltsa = clf.fit_transform(X) print("Done. Reconstruction error: %g" % clf.reconstruction_error_) plot_embedding(X_ltsa, "Local Tangent Space Alignment of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # MDS embedding of the digits dataset print("Computing MDS embedding") clf = manifold.MDS(n_components=2, n_init=1, max_iter=100) t0 = time() X_mds = clf.fit_transform(X) print("Done. Stress: %f" % clf.stress_) plot_embedding(X_mds, "MDS embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Random Trees embedding of the digits dataset print("Computing Totally Random Trees embedding") hasher = ensemble.RandomTreesEmbedding(n_estimators=200, random_state=0, max_depth=5) t0 = time() X_transformed = hasher.fit_transform(X) pca = decomposition.TruncatedSVD(n_components=2) X_reduced = pca.fit_transform(X_transformed) plot_embedding(X_reduced, "Random forest embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Spectral embedding of the digits dataset print("Computing Spectral embedding") embedder = manifold.SpectralEmbedding(n_components=2, random_state=0, eigen_solver="arpack") t0 = time() X_se = embedder.fit_transform(X) plot_embedding(X_se, "Spectral embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # t-SNE embedding of the digits dataset print("Computing t-SNE embedding") tsne = manifold.TSNE(n_components=2, init='pca', random_state=0) t0 = time() X_tsne = tsne.fit_transform(X) plot_embedding(X_tsne, "t-SNE embedding of the digits (time %.2fs)" % (time() - t0)) plt.show()
bsd-3-clause
tequa/ammisoft
ammimain/WinPython-64bit-2.7.13.1Zero/python-2.7.13.amd64/Lib/site-packages/mpl_toolkits/axes_grid1/anchored_artists.py
10
12803
from __future__ import (absolute_import, division, print_function, unicode_literals) import six from matplotlib import docstring from matplotlib.offsetbox import (AnchoredOffsetbox, AnchoredText, AnnotationBbox, AuxTransformBox, DrawingArea, TextArea, VPacker) from matplotlib.patches import Rectangle, Ellipse class AnchoredDrawingArea(AnchoredOffsetbox): @docstring.dedent def __init__(self, width, height, xdescent, ydescent, loc, pad=0.4, borderpad=0.5, prop=None, frameon=True, **kwargs): """ An anchored container with a fixed size and fillable DrawingArea. Artists added to the *drawing_area* will have their coordinates interpreted as pixels. Any transformations set on the artists will be overridden. Parameters ---------- width, height : int or float width and height of the container, in pixels. xdescent, ydescent : int or float descent of the container in the x- and y- direction, in pixels. loc : int Location of this artist. Valid location codes are:: 'upper right' : 1, 'upper left' : 2, 'lower left' : 3, 'lower right' : 4, 'right' : 5, 'center left' : 6, 'center right' : 7, 'lower center' : 8, 'upper center' : 9, 'center' : 10 pad : int or float, optional Padding around the child objects, in fraction of the font size. Defaults to 0.4. borderpad : int or float, optional Border padding, in fraction of the font size. Defaults to 0.5. prop : `matplotlib.font_manager.FontProperties`, optional Font property used as a reference for paddings. frameon : bool, optional If True, draw a box around this artists. Defaults to True. **kwargs : Keyworded arguments to pass to :class:`matplotlib.offsetbox.AnchoredOffsetbox`. Attributes ---------- drawing_area : `matplotlib.offsetbox.DrawingArea` A container for artists to display. Examples -------- To display blue and red circles of different sizes in the upper right of an axes *ax*: >>> ada = AnchoredDrawingArea(20, 20, 0, 0, loc=1, frameon=False) >>> ada.drawing_area.add_artist(Circle((10, 10), 10, fc="b")) >>> ada.drawing_area.add_artist(Circle((30, 10), 5, fc="r")) >>> ax.add_artist(ada) """ self.da = DrawingArea(width, height, xdescent, ydescent) self.drawing_area = self.da super(AnchoredDrawingArea, self).__init__( loc, pad=pad, borderpad=borderpad, child=self.da, prop=None, frameon=frameon, **kwargs ) class AnchoredAuxTransformBox(AnchoredOffsetbox): @docstring.dedent def __init__(self, transform, loc, pad=0.4, borderpad=0.5, prop=None, frameon=True, **kwargs): """ An anchored container with transformed coordinates. Artists added to the *drawing_area* are scaled according to the coordinates of the transformation used. The dimensions of this artist will scale to contain the artists added. Parameters ---------- transform : `matplotlib.transforms.Transform` The transformation object for the coordinate system in use, i.e., :attr:`matplotlib.axes.Axes.transData`. loc : int Location of this artist. Valid location codes are:: 'upper right' : 1, 'upper left' : 2, 'lower left' : 3, 'lower right' : 4, 'right' : 5, 'center left' : 6, 'center right' : 7, 'lower center' : 8, 'upper center' : 9, 'center' : 10 pad : int or float, optional Padding around the child objects, in fraction of the font size. Defaults to 0.4. borderpad : int or float, optional Border padding, in fraction of the font size. Defaults to 0.5. prop : `matplotlib.font_manager.FontProperties`, optional Font property used as a reference for paddings. frameon : bool, optional If True, draw a box around this artists. Defaults to True. **kwargs : Keyworded arguments to pass to :class:`matplotlib.offsetbox.AnchoredOffsetbox`. Attributes ---------- drawing_area : `matplotlib.offsetbox.AuxTransformBox` A container for artists to display. Examples -------- To display an ellipse in the upper left, with a width of 0.1 and height of 0.4 in data coordinates: >>> box = AnchoredAuxTransformBox(ax.transData, loc=2) >>> el = Ellipse((0,0), width=0.1, height=0.4, angle=30) >>> box.drawing_area.add_artist(el) >>> ax.add_artist(box) """ self.drawing_area = AuxTransformBox(transform) AnchoredOffsetbox.__init__(self, loc, pad=pad, borderpad=borderpad, child=self.drawing_area, prop=prop, frameon=frameon, **kwargs) class AnchoredEllipse(AnchoredOffsetbox): @docstring.dedent def __init__(self, transform, width, height, angle, loc, pad=0.1, borderpad=0.1, prop=None, frameon=True, **kwargs): """ Draw an anchored ellipse of a given size. Parameters ---------- transform : `matplotlib.transforms.Transform` The transformation object for the coordinate system in use, i.e., :attr:`matplotlib.axes.Axes.transData`. width, height : int or float Width and height of the ellipse, given in coordinates of *transform*. angle : int or float Rotation of the ellipse, in degrees, anti-clockwise. loc : int Location of this size bar. Valid location codes are:: 'upper right' : 1, 'upper left' : 2, 'lower left' : 3, 'lower right' : 4, 'right' : 5, 'center left' : 6, 'center right' : 7, 'lower center' : 8, 'upper center' : 9, 'center' : 10 pad : int or float, optional Padding around the ellipse, in fraction of the font size. Defaults to 0.1. borderpad : int or float, optional Border padding, in fraction of the font size. Defaults to 0.1. frameon : bool, optional If True, draw a box around the ellipse. Defaults to True. prop : `matplotlib.font_manager.FontProperties`, optional Font property used as a reference for paddings. **kwargs : Keyworded arguments to pass to :class:`matplotlib.offsetbox.AnchoredOffsetbox`. Attributes ---------- ellipse : `matplotlib.patches.Ellipse` Ellipse patch drawn. """ self._box = AuxTransformBox(transform) self.ellipse = Ellipse((0, 0), width, height, angle) self._box.add_artist(self.ellipse) AnchoredOffsetbox.__init__(self, loc, pad=pad, borderpad=borderpad, child=self._box, prop=prop, frameon=frameon, **kwargs) class AnchoredSizeBar(AnchoredOffsetbox): @docstring.dedent def __init__(self, transform, size, label, loc, pad=0.1, borderpad=0.1, sep=2, frameon=True, size_vertical=0, color='black', label_top=False, fontproperties=None, **kwargs): """ Draw a horizontal scale bar with a center-aligned label underneath. Parameters ---------- transform : `matplotlib.transforms.Transform` The transformation object for the coordinate system in use, i.e., :attr:`matplotlib.axes.Axes.transData`. size : int or float Horizontal length of the size bar, given in coordinates of *transform*. label : str Label to display. loc : int Location of this size bar. Valid location codes are:: 'upper right' : 1, 'upper left' : 2, 'lower left' : 3, 'lower right' : 4, 'right' : 5, 'center left' : 6, 'center right' : 7, 'lower center' : 8, 'upper center' : 9, 'center' : 10 pad : int or float, optional Padding around the label and size bar, in fraction of the font size. Defaults to 0.1. borderpad : int or float, optional Border padding, in fraction of the font size. Defaults to 0.1. sep : int or float, optional Seperation between the label and the size bar, in points. Defaults to 2. frameon : bool, optional If True, draw a box around the horizontal bar and label. Defaults to True. size_vertical : int or float, optional Vertical length of the size bar, given in coordinates of *transform*. Defaults to 0. color : str, optional Color for the size bar and label. Defaults to black. label_top : bool, optional If True, the label will be over the size bar. Defaults to False. fontproperties : `matplotlib.font_manager.FontProperties`, optional Font properties for the label text. **kwargs : Keyworded arguments to pass to :class:`matplotlib.offsetbox.AnchoredOffsetbox`. Attributes ---------- size_bar : `matplotlib.offsetbox.AuxTransformBox` Container for the size bar. txt_label : `matplotlib.offsetbox.TextArea` Container for the label of the size bar. Notes ----- If *prop* is passed as a keyworded argument, but *fontproperties* is not, then *prop* is be assumed to be the intended *fontproperties*. Using both *prop* and *fontproperties* is not supported. Examples -------- >>> import matplotlib.pyplot as plt >>> import numpy as np >>> from mpl_toolkits.axes_grid1.anchored_artists import \ AnchoredSizeBar >>> fig, ax = plt.subplots() >>> ax.imshow(np.random.random((10,10))) >>> bar = AnchoredSizeBar(ax.transData, 3, '3 data units', 4) >>> ax.add_artist(bar) >>> fig.show() Using all the optional parameters >>> import matplotlib.font_manager as fm >>> fontprops = fm.FontProperties(size=14, family='monospace') >>> bar = AnchoredSizeBar(ax.transData, 3, '3 units', 4, pad=0.5, \ sep=5, borderpad=0.5, frameon=False, \ size_vertical=0.5, color='white', \ fontproperties=fontprops) """ self.size_bar = AuxTransformBox(transform) self.size_bar.add_artist(Rectangle((0, 0), size, size_vertical, fill=False, facecolor=color, edgecolor=color)) if fontproperties is None and 'prop' in kwargs: fontproperties = kwargs.pop('prop') if fontproperties is None: textprops = {'color': color} else: textprops = {'color': color, 'fontproperties': fontproperties} self.txt_label = TextArea( label, minimumdescent=False, textprops=textprops) if label_top: _box_children = [self.txt_label, self.size_bar] else: _box_children = [self.size_bar, self.txt_label] self._box = VPacker(children=_box_children, align="center", pad=0, sep=sep) AnchoredOffsetbox.__init__(self, loc, pad=pad, borderpad=borderpad, child=self._box, prop=fontproperties, frameon=frameon, **kwargs)
bsd-3-clause
mganeva/mantid
qt/applications/workbench/workbench/widgets/plotselector/presenter.py
1
15293
# Mantid Repository : https://github.com/mantidproject/mantid # # Copyright &copy; 2018 ISIS Rutherford Appleton Laboratory UKRI, # NScD Oak Ridge National Laboratory, European Spallation Source # & Institut Laue - Langevin # SPDX - License - Identifier: GPL - 3.0 + # This file is part of the mantid workbench. # # from __future__ import absolute_import, print_function import os import re from .model import PlotSelectorModel from .view import PlotSelectorView, Column class PlotSelectorPresenter(object): """ Presenter for the plot selector widget. This class can be responsible for the creation of the model and view, passing in the GlobalFigureManager as an argument, or the presenter and view can be passed as arguments (only intended for testing). """ def __init__(self, global_figure_manager, view=None, model=None): """ Initialise the presenter, creating the view and model, and setting the initial plot list :param global_figure_manager: The GlobalFigureManager class :param view: Optional - a view to use instead of letting the class create one (intended for testing) :param model: Optional - a model to use instead of letting the class create one (intended for testing) """ # Create model and view, or accept mocked versions if view is None: self.view = PlotSelectorView(self) else: self.view = view if model is None: self.model = PlotSelectorModel(self, global_figure_manager) else: self.model = model # Make sure the plot list is up to date self.update_plot_list() def get_plot_name_from_number(self, plot_number): return self.model.get_plot_name_from_number(plot_number) # ------------------------ Plot Updates ------------------------ def update_plot_list(self): """ Updates the plot list in the model and the view. Filter text is applied to the updated selection if required. """ plot_list = self.model.get_plot_list() self.view.set_plot_list(plot_list) def append_to_plot_list(self, plot_number): """ Appends the plot name to the end of the plot list :param plot_number: The unique number in GlobalFigureManager """ self.view.append_to_plot_list(plot_number) self.view.set_visibility_icon(plot_number, self.model.is_visible(plot_number)) def remove_from_plot_list(self, plot_number): """ Removes the plot name from the plot list :param plot_number: The unique number in GlobalFigureManager """ self.view.remove_from_plot_list(plot_number) def rename_in_plot_list(self, plot_number, new_name): """ Replaces a name in the plot list :param plot_number: The unique number in GlobalFigureManager :param new_name: The new name for the plot """ self.view.rename_in_plot_list(plot_number, new_name) # ----------------------- Plot Filtering ------------------------ def filter_text_changed(self): """ Called by the view when the filter text is changed (e.g. by typing or clearing the text) """ if self.view.get_filter_text(): self.view.filter_plot_list() else: self.view.unhide_all_plots() def is_shown_by_filter(self, plot_number): """ :param plot_number: The unique number in GlobalFigureManager :return: True if shown, or False if filtered out """ filter_text = self.view.get_filter_text() plot_name = self.get_plot_name_from_number(plot_number) return filter_text.lower() in plot_name.lower() # ------------------------ Plot Showing ------------------------ def show_single_selected(self): """ When a list item is double clicked the view calls this method to bring the selected plot to the front """ plot_number = self.view.get_currently_selected_plot_number() self._make_plot_active(plot_number) def show_multiple_selected(self): """ Shows multiple selected plots, e.g. from pressing the 'Show' button with multiple selected plots """ selected_plots = self.view.get_all_selected_plot_numbers() for plot_number in selected_plots: self._make_plot_active(plot_number) def _make_plot_active(self, plot_number): """ Make the plot with the given name active - bring it to the front and make it the choice for overplotting :param plot_number: The unique number in GlobalFigureManager """ try: self.model.show_plot(plot_number) except ValueError as e: print(e) def set_active_font(self, plot_number): """ Set the icon for the active plot to be colored :param plot_number: The unique number in GlobalFigureManager """ active_plot_number = self.view.active_plot_number if active_plot_number > 0: try: self.view.set_active_font(active_plot_number, False) except TypeError: pass # The last active plot could have been closed # already, so there is nothing to do self.view.set_active_font(plot_number, True) self.view.active_plot_number = plot_number # ------------------------ Plot Hiding ------------------------- def hide_selected_plots(self): """ Hide all plots that are selected in the view """ selected_plots = self.view.get_all_selected_plot_numbers() for plot_number in selected_plots: self._hide_plot(plot_number) def _hide_plot(self, plot_number): """ Hides a single plot """ try: self.model.hide_plot(plot_number) except ValueError as e: print(e) def toggle_plot_visibility(self, plot_number): """ Toggles a plot between hidden and shown :param plot_number: The unique number in GlobalFigureManager """ if self.model.is_visible(plot_number): self._hide_plot(plot_number) else: self._make_plot_active(plot_number) self.update_visibility_icon(plot_number) def update_visibility_icon(self, plot_number): """ Updates the icon to indicate a plot as hidden or visible :param plot_number: The unique number in GlobalFigureManager """ try: is_visible = self.model.is_visible(plot_number) self.view.set_visibility_icon(plot_number, is_visible) except ValueError: # There is a chance the plot was closed, which calls an # update to this method. If we can not get the visibility # status it is safe to assume the plot has been closed. pass # ------------------------ Plot Renaming ------------------------ def rename_figure(self, plot_number, new_name): """ Replaces a name in the plot list :param plot_number: The unique number in GlobalFigureManager :param new_name: The new plot name """ try: self.model.rename_figure(plot_number, new_name) except ValueError as e: # We need to undo the rename in the view self.view.rename_in_plot_list(plot_number, new_name) print(e) # ------------------------ Plot Closing ------------------------- def close_action_called(self): """ This is called by the view when closing plots is requested (e.g. pressing close or delete). """ selected_plots = self.view.get_all_selected_plot_numbers() self._close_plots(selected_plots) def close_single_plot(self, plot_number): """ This is used to close plots when a close action is called that does not refer to the selected plot(s) :param plot_number: The unique number in GlobalFigureManager """ self._close_plots([plot_number]) def _close_plots(self, list_of_plot_numbers): """ Accepts a list of plot names to close :param list_of_plots: A list of strings containing plot names """ for plot_number in list_of_plot_numbers: try: self.model.close_plot(plot_number) except ValueError as e: print(e) # ----------------------- Plot Sorting -------------------------- def set_sort_order(self, is_ascending): """ Sets the sort order in the view :param is_ascending: If true ascending order, else descending """ self.view.set_sort_order(is_ascending) def set_sort_type(self, sort_type): """ Sets the sort order in the view :param sort_type: A Column enum with the column to sort on """ self.view.set_sort_type(sort_type) self.update_last_active_order() def update_last_active_order(self): """ Update the sort keys in the view. This is only required when changes to the last shown order occur in the model, when renaming the key is set already """ if self.view.sort_type() == Column.LastActive: self._set_last_active_order() def _set_last_active_order(self): """ Set the last shown order in the view. This checks the sorting currently set and then sets the sort keys to the appropriate values """ last_active_values = self.model.last_active_values() self.view.set_last_active_values(last_active_values) def get_initial_last_active_value(self, plot_number): """ Gets the initial last active value for a plot just added, in this case it is assumed to not have been shown :param plot_number: The unique number in GlobalFigureManager :return: A string with the last active value """ return '_' + self.model.get_plot_name_from_number(plot_number) def get_renamed_last_active_value(self, plot_number, old_last_active_value): """ Gets the initial last active value for a plot that was renamed. If the plot had a numeric value, i.e. has been shown this is retained, else it is set :param plot_number: The unique number in GlobalFigureManager :param old_last_active_value: The previous last active value """ if old_last_active_value.isdigit(): return old_last_active_value else: return self.get_initial_last_active_value(plot_number) # ---------------------- Plot Exporting ------------------------- def export_plots_called(self, extension): """ Export plots called from the view, then a single or multiple plots exported depending on the number currently selected :param extension: The file extension as a string including a '.', for example '.png' (must be a type supported by matplotlib) """ plot_numbers = self.view.get_all_selected_plot_numbers() if len(plot_numbers) == 1: self._export_single_plot(plot_numbers[0], extension) elif len(plot_numbers) > 1: self._export_multiple_plots(plot_numbers, extension) def _export_single_plot(self, plot_number, extension): """ Called when a single plot is selected to export - prompts for a filename then tries to save the plot :param plot_number: The unique number in GlobalFigureManager :param extension: The file extension as a string including a '.', for example '.png' (must be a type supported by matplotlib) """ absolute_path = self.view.get_file_name_for_saving(extension) if not absolute_path[-4:] == extension: absolute_path += extension try: self.model.export_plot(plot_number, absolute_path) except ValueError as e: print(e) def _export_multiple_plots(self, plot_numbers, extension): """ Export all selected plots in the plot_numbers list, first prompting for a save directory then sanitising plot names to unique, usable file names :param plot_numbers: A list of plot numbers to export :param extension: The file extension as a string including a '.', for example '.png' (must be a type supported by matplotlib) """ dir_name = self.view.get_directory_name_for_saving() # A temporary dictionary holding plot numbers as keys, plot # names as values plots = {} for plot_number in plot_numbers: plot_name = self.model.get_plot_name_from_number(plot_number) plot_name = self._replace_special_characters(plot_name) if plot_name in plots.values(): plot_name = self._make_unique_name(plot_name, plots) plots[plot_number] = plot_name self._export_plot(plot_number, plot_name, dir_name, extension) def _replace_special_characters(self, string): """ Removes any characters that are not valid in file names across all operating systems ('/' for Linux/Mac), more for Windows :param string: The string to replace characters in :return: The string with special characters replace by '-' """ return re.sub(r'[<>:"/|\\?*]', r'-', string) def _make_unique_name(self, name, dictionary): """ Given a name and a dictionary, make a unique name that does not already exist in the dictionary values by appending ' (1)', ' (2)', ' (3)' etc. to the end of the name :param name: A string with the non-unique name :param dictionary: A dictionary with string values :return : The unique plot name """ i = 1 while True: plot_name_attempt = name + ' ({})'.format(str(i)) if plot_name_attempt not in dictionary.values(): break i += 1 return plot_name_attempt def _export_plot(self, plot_number, plot_name, dir_name, extension): """ Given a plot number, plot name, directory and extension construct the absolute path name and call the model to save the figure :param plot_number: The unique number in GlobalFigureManager :param plot_name: The name to use for saving :param dir_name: The directory to save to :param extension: The file extension as a string including a '.', for example '.png' (must be a type supported by matplotlib) """ if dir_name: filename = os.path.join(dir_name, plot_name + extension) try: self.model.export_plot(plot_number, filename) except ValueError as e: print(e)
gpl-3.0
wangkua1/sportvu
sportvu/detection_from_raw_pred.py
1
3391
"""detection_from_raw_pred.py * not super useful, a simple script that plots a) raw pred, b) gt pnr, c) detector output at 1 single setting Usage: detection_from_raw_pred.py <fold_index> <f_data_config> <f_model_config> <f_detect_config> --train Arguments: Example: """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import sys import os from tqdm import tqdm from docopt import docopt import yaml import gc import matplotlib.pylab as plt import cPickle as pkl ## from sportvu.data.dataset import BaseDataset from sportvu.detect.running_window_p import RunWindowP from sportvu.detect.nms import NMS from sportvu.detect.utils import smooth_1D_array arguments = docopt(__doc__) print ("...Docopt... ") print(arguments) print ("............\n") f_data_config = arguments['<f_data_config>'] f_model_config = arguments['<f_model_config>'] f_detect_config = arguments['<f_detect_config>'] if arguments['--train']: dataset = BaseDataset(f_data_config, fold_index=int(arguments['<fold_index>']), load_raw=True) # pre_trained = arguments['<pre_trained>'] data_config = yaml.load(open(f_data_config, 'rb')) model_config = yaml.load(open(f_model_config, 'rb')) model_name = os.path.basename(f_model_config).split('.')[0] data_name = os.path.basename(f_data_config).split('.')[0] exp_name = '%s-X-%s' % (model_name, data_name) detect_config = yaml.load(open(f_detect_config, 'rb')) detector = eval(detect_config['class'])(detect_config) plot_folder = os.path.join('./plots', exp_name) if not os.path.exists(plot_folder): raise Exception('Run test.py first to get raw predictions') def label_in_cand(cand, labels): for l in labels: if l > cand[1] and l < cand[0]: return True return False plt.figure() if arguments['--train']: split = 'train' else: split = 'val' all_pred_f = filter(lambda s:'.pkl' in s and split in s and 'meta' not in s,os.listdir(os.path.join(plot_folder,'pkl'))) if arguments['--train']: annotations = [] for _, f in tqdm(enumerate(all_pred_f)): ind = int(f.split('.')[0].split('-')[1]) gameclocks, pnr_probs, labels = pkl.load(open(os.path.join(plot_folder,'pkl/%s-%i.pkl'%(split,ind)), 'rb')) meta = pkl.load( open( os.path.join(plot_folder, 'pkl/%s-meta-%i.pkl' %(split, ind)), 'rb')) cands, mp, frame_indices = detector.detect(pnr_probs, gameclocks, True) print (cands) plt.plot(gameclocks, pnr_probs, '-') if mp is not None: plt.plot(gameclocks, mp, '-') plt.plot(np.array(labels), np.ones((len(labels))), '.') for ind, cand in enumerate(cands): cand_x = np.arange(cand[1], cand[0], .1) plt.plot(cand_x, np.ones((len(cand_x))) * .95, '-' ) ## if FP, record annotations if arguments['--train'] and not label_in_cand(cand, labels): anno = {'gameid':meta[1], 'gameclock':gameclocks[frame_indices[ind]], 'eid':meta[0], 'quarter':dataset.games[meta[1]]['events'][meta[0]]['quarter']} annotations.append(anno) plt.ylim([0,1]) plt.title('Game: %s, Event: %i'%(meta[1], meta[0])) plt.savefig(os.path.join(plot_folder, '%s-%s-%i.png' %(detect_config['class'], split, ind))) plt.clf() pkl.dump(annotations, open(os.path.join(plot_folder,'pkl/hard-negative-examples.pkl'), 'wb'))
mit
nolanliou/tensorflow
tensorflow/contrib/losses/python/metric_learning/metric_loss_ops_test.py
41
20535
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for triplet_semihard_loss.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.losses.python import metric_learning as metric_loss_ops from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn from tensorflow.python.platform import test try: # pylint: disable=g-import-not-at-top from sklearn import datasets from sklearn import metrics HAS_SKLEARN = True except ImportError: HAS_SKLEARN = False def pairwise_distance_np(feature, squared=False): """Computes the pairwise distance matrix in numpy. Args: feature: 2-D numpy array of size [number of data, feature dimension] squared: Boolean. If true, output is the pairwise squared euclidean distance matrix; else, output is the pairwise euclidean distance matrix. Returns: pairwise_distances: 2-D numpy array of size [number of data, number of data]. """ triu = np.triu_indices(feature.shape[0], 1) upper_tri_pdists = np.linalg.norm(feature[triu[1]] - feature[triu[0]], axis=1) if squared: upper_tri_pdists **= 2. num_data = feature.shape[0] pairwise_distances = np.zeros((num_data, num_data)) pairwise_distances[np.triu_indices(num_data, 1)] = upper_tri_pdists # Make symmetrical. pairwise_distances = pairwise_distances + pairwise_distances.T - np.diag( pairwise_distances.diagonal()) return pairwise_distances class ContrastiveLossTest(test.TestCase): def testContrastive(self): with self.test_session(): num_data = 10 feat_dim = 6 margin = 1.0 embeddings_anchor = np.random.rand(num_data, feat_dim).astype(np.float32) embeddings_positive = np.random.rand(num_data, feat_dim).astype( np.float32) labels = np.random.randint(0, 2, size=(num_data,)).astype(np.float32) # Compute the loss in NP dist = np.sqrt( np.sum(np.square(embeddings_anchor - embeddings_positive), axis=1)) loss_np = np.mean( labels * np.square(dist) + (1.0 - labels) * np.square(np.maximum(margin - dist, 0.0))) # Compute the loss with TF loss_tf = metric_loss_ops.contrastive_loss( labels=ops.convert_to_tensor(labels), embeddings_anchor=ops.convert_to_tensor(embeddings_anchor), embeddings_positive=ops.convert_to_tensor(embeddings_positive), margin=margin) loss_tf = loss_tf.eval() self.assertAllClose(loss_np, loss_tf) class TripletSemiHardLossTest(test.TestCase): def testTripletSemiHard(self): with self.test_session(): num_data = 10 feat_dim = 6 margin = 1.0 num_classes = 4 embedding = np.random.rand(num_data, feat_dim).astype(np.float32) labels = np.random.randint( 0, num_classes, size=(num_data)).astype(np.float32) # Reshape labels to compute adjacency matrix. labels_reshaped = np.reshape(labels, (labels.shape[0], 1)) # Compute the loss in NP. adjacency = np.equal(labels_reshaped, labels_reshaped.T) pdist_matrix = pairwise_distance_np(embedding, squared=True) loss_np = 0.0 num_positives = 0.0 for i in range(num_data): for j in range(num_data): if adjacency[i][j] > 0.0 and i != j: num_positives += 1.0 pos_distance = pdist_matrix[i][j] neg_distances = [] for k in range(num_data): if adjacency[i][k] == 0: neg_distances.append(pdist_matrix[i][k]) # Sort by distance. neg_distances.sort() chosen_neg_distance = neg_distances[0] for l in range(len(neg_distances)): chosen_neg_distance = neg_distances[l] if chosen_neg_distance > pos_distance: break loss_np += np.maximum( 0.0, margin - chosen_neg_distance + pos_distance) loss_np /= num_positives # Compute the loss in TF. loss_tf = metric_loss_ops.triplet_semihard_loss( labels=ops.convert_to_tensor(labels), embeddings=ops.convert_to_tensor(embedding), margin=margin) loss_tf = loss_tf.eval() self.assertAllClose(loss_np, loss_tf) class LiftedStructLossTest(test.TestCase): def testLiftedStruct(self): with self.test_session(): num_data = 10 feat_dim = 6 margin = 1.0 num_classes = 4 embedding = np.random.rand(num_data, feat_dim).astype(np.float32) labels = np.random.randint( 0, num_classes, size=(num_data)).astype(np.float32) # Reshape labels to compute adjacency matrix. labels_reshaped = np.reshape(labels, (labels.shape[0], 1)) # Compute the loss in NP adjacency = np.equal(labels_reshaped, labels_reshaped.T) pdist_matrix = pairwise_distance_np(embedding) loss_np = 0.0 num_constraints = 0.0 for i in range(num_data): for j in range(num_data): if adjacency[i][j] > 0.0 and i != j: d_pos = pdist_matrix[i][j] negs = [] for k in range(num_data): if not adjacency[i][k]: negs.append(margin - pdist_matrix[i][k]) for l in range(num_data): if not adjacency[j][l]: negs.append(margin - pdist_matrix[j][l]) negs = np.array(negs) max_elem = np.max(negs) negs -= max_elem negs = np.exp(negs) soft_maximum = np.log(np.sum(negs)) + max_elem num_constraints += 1.0 this_loss = max(soft_maximum + d_pos, 0) loss_np += this_loss * this_loss loss_np = loss_np / num_constraints / 2.0 # Compute the loss in TF loss_tf = metric_loss_ops.lifted_struct_loss( labels=ops.convert_to_tensor(labels), embeddings=ops.convert_to_tensor(embedding), margin=margin) loss_tf = loss_tf.eval() self.assertAllClose(loss_np, loss_tf) def convert_to_list_of_sparse_tensor(np_matrix): list_of_sparse_tensors = [] nrows, ncols = np_matrix.shape for i in range(nrows): sp_indices = [] for j in range(ncols): if np_matrix[i][j] == 1: sp_indices.append([j]) num_non_zeros = len(sp_indices) list_of_sparse_tensors.append(sparse_tensor.SparseTensor( indices=np.array(sp_indices), values=np.ones((num_non_zeros,)), dense_shape=np.array([ncols,]))) return list_of_sparse_tensors class NpairsLossTest(test.TestCase): def testNpairs(self): with self.test_session(): num_data = 15 feat_dim = 6 num_classes = 5 reg_lambda = 0.02 embeddings_anchor = np.random.rand(num_data, feat_dim).astype(np.float32) embeddings_positive = np.random.rand(num_data, feat_dim).astype( np.float32) labels = np.random.randint( 0, num_classes, size=(num_data)).astype(np.float32) # Reshape labels to compute adjacency matrix. labels_reshaped = np.reshape(labels, (labels.shape[0], 1)) # Compute the loss in NP reg_term = np.mean(np.sum(np.square(embeddings_anchor), 1)) reg_term += np.mean(np.sum(np.square(embeddings_positive), 1)) reg_term *= 0.25 * reg_lambda similarity_matrix = np.matmul(embeddings_anchor, embeddings_positive.T) labels_remapped = np.equal( labels_reshaped, labels_reshaped.T).astype(np.float32) labels_remapped /= np.sum(labels_remapped, axis=1, keepdims=True) xent_loss = math_ops.reduce_mean(nn.softmax_cross_entropy_with_logits( logits=ops.convert_to_tensor(similarity_matrix), labels=ops.convert_to_tensor(labels_remapped))).eval() loss_np = xent_loss + reg_term # Compute the loss in TF loss_tf = metric_loss_ops.npairs_loss( labels=ops.convert_to_tensor(labels), embeddings_anchor=ops.convert_to_tensor(embeddings_anchor), embeddings_positive=ops.convert_to_tensor(embeddings_positive), reg_lambda=reg_lambda) loss_tf = loss_tf.eval() self.assertAllClose(loss_np, loss_tf) class NpairsLossMultiLabelTest(test.TestCase): def testNpairsMultiLabelLossWithSingleLabelEqualsNpairsLoss(self): with self.test_session(): num_data = 15 feat_dim = 6 reg_lambda = 0.02 embeddings_anchor = np.random.rand(num_data, feat_dim).astype(np.float32) embeddings_positive = np.random.rand(num_data, feat_dim).astype( np.float32) labels = np.arange(num_data) labels = np.reshape(labels, -1) # Compute vanila npairs loss. loss_npairs = metric_loss_ops.npairs_loss( labels=ops.convert_to_tensor(labels), embeddings_anchor=ops.convert_to_tensor(embeddings_anchor), embeddings_positive=ops.convert_to_tensor(embeddings_positive), reg_lambda=reg_lambda).eval() # Compute npairs multilabel loss. labels_one_hot = np.identity(num_data) loss_npairs_multilabel = metric_loss_ops.npairs_loss_multilabel( sparse_labels=convert_to_list_of_sparse_tensor(labels_one_hot), embeddings_anchor=ops.convert_to_tensor(embeddings_anchor), embeddings_positive=ops.convert_to_tensor(embeddings_positive), reg_lambda=reg_lambda).eval() self.assertAllClose(loss_npairs, loss_npairs_multilabel) def testNpairsMultiLabel(self): with self.test_session(): num_data = 15 feat_dim = 6 num_classes = 10 reg_lambda = 0.02 embeddings_anchor = np.random.rand(num_data, feat_dim).astype(np.float32) embeddings_positive = np.random.rand(num_data, feat_dim).astype( np.float32) labels = np.random.randint(0, 2, (num_data, num_classes)) # set entire column to one so that each row has at least one bit set. labels[:, -1] = 1 # Compute the loss in NP reg_term = np.mean(np.sum(np.square(embeddings_anchor), 1)) reg_term += np.mean(np.sum(np.square(embeddings_positive), 1)) reg_term *= 0.25 * reg_lambda similarity_matrix = np.matmul(embeddings_anchor, embeddings_positive.T) labels_remapped = np.dot(labels, labels.T).astype(np.float) labels_remapped /= np.sum(labels_remapped, 1, keepdims=True) xent_loss = math_ops.reduce_mean(nn.softmax_cross_entropy_with_logits( logits=ops.convert_to_tensor(similarity_matrix), labels=ops.convert_to_tensor(labels_remapped))).eval() loss_np = xent_loss + reg_term # Compute the loss in TF loss_tf = metric_loss_ops.npairs_loss_multilabel( sparse_labels=convert_to_list_of_sparse_tensor(labels), embeddings_anchor=ops.convert_to_tensor(embeddings_anchor), embeddings_positive=ops.convert_to_tensor(embeddings_positive), reg_lambda=reg_lambda) loss_tf = loss_tf.eval() self.assertAllClose(loss_np, loss_tf) def compute_ground_truth_cluster_score(feat, y): y_unique = np.unique(y) score_gt_np = 0.0 for c in y_unique: feat_subset = feat[y == c, :] pdist_subset = pairwise_distance_np(feat_subset) score_gt_np += -1.0 * np.min(np.sum(pdist_subset, axis=0)) score_gt_np = score_gt_np.astype(np.float32) return score_gt_np def compute_cluster_loss_numpy(feat, y, margin_multiplier=1.0, enable_pam_finetuning=True): if enable_pam_finetuning: facility = ForwardGreedyFacility( n_clusters=np.unique(y).size).pam_augmented_fit(feat, y, margin_multiplier) else: facility = ForwardGreedyFacility( n_clusters=np.unique(y).size).loss_augmented_fit(feat, y, margin_multiplier) score_augmented = facility.score_aug_ score_gt = compute_ground_truth_cluster_score(feat, y) return np.maximum(np.float32(0.0), score_augmented - score_gt) class ForwardGreedyFacility(object): def __init__(self, n_clusters=8): self.n_clusters = n_clusters self.center_ics_ = None def _check_init_args(self): # Check n_clusters. if (self.n_clusters is None or self.n_clusters <= 0 or not isinstance(self.n_clusters, int)): raise ValueError('n_clusters has to be nonnegative integer.') def loss_augmented_fit(self, feat, y, loss_mult): """Fit K-Medoids to the provided data.""" self._check_init_args() # Check that the array is good and attempt to convert it to # Numpy array if possible. feat = self._check_array(feat) # Apply distance metric to get the distance matrix. pdists = pairwise_distance_np(feat) num_data = feat.shape[0] candidate_ids = list(range(num_data)) candidate_scores = np.zeros(num_data,) subset = [] k = 0 while k < self.n_clusters: candidate_scores = [] for i in candidate_ids: # push i to subset. subset.append(i) marginal_cost = -1.0 * np.sum(np.min(pdists[:, subset], axis=1)) loss = 1.0 - metrics.normalized_mutual_info_score( y, self._get_cluster_ics(pdists, subset)) candidate_scores.append(marginal_cost + loss_mult * loss) # remove i from subset. subset.pop() # push i_star to subset. i_star = candidate_ids[np.argmax(candidate_scores)] subset.append(i_star) # remove i_star from candidate indices. candidate_ids.remove(i_star) k += 1 # Expose labels_ which are the assignments of # the training data to clusters. self.labels_ = self._get_cluster_ics(pdists, subset) # Expose cluster centers, i.e. medoids. self.cluster_centers_ = feat.take(subset, axis=0) # Expose indices of chosen cluster centers. self.center_ics_ = subset # Expose the score = -\sum_{i \in V} min_{j \in S} || x_i - x_j || self.score_ = np.float32(-1.0) * self._get_facility_distance(pdists, subset) self.score_aug_ = self.score_ + loss_mult * ( 1.0 - metrics.normalized_mutual_info_score( y, self._get_cluster_ics(pdists, subset))) self.score_aug_ = self.score_aug_.astype(np.float32) # Expose the chosen cluster indices. self.subset_ = subset return self def _augmented_update_medoid_ics_in_place(self, pdists, y_gt, cluster_ics, medoid_ics, loss_mult): for cluster_idx in range(self.n_clusters): # y_pred = self._get_cluster_ics(D, medoid_ics) # Don't prematurely do the assignment step. # Do this after we've updated all cluster medoids. y_pred = cluster_ics if sum(y_pred == cluster_idx) == 0: # Cluster is empty. continue curr_score = ( -1.0 * np.sum( pdists[medoid_ics[cluster_idx], y_pred == cluster_idx]) + loss_mult * (1.0 - metrics.normalized_mutual_info_score( y_gt, y_pred))) pdist_in = pdists[y_pred == cluster_idx, :] pdist_in = pdist_in[:, y_pred == cluster_idx] all_scores_fac = np.sum(-1.0 * pdist_in, axis=1) all_scores_loss = [] for i in range(y_pred.size): if y_pred[i] != cluster_idx: continue # remove this cluster's current centroid medoid_ics_i = medoid_ics[:cluster_idx] + medoid_ics[cluster_idx + 1:] # add this new candidate to the centroid list medoid_ics_i += [i] y_pred_i = self._get_cluster_ics(pdists, medoid_ics_i) all_scores_loss.append(loss_mult * ( 1.0 - metrics.normalized_mutual_info_score(y_gt, y_pred_i))) all_scores = all_scores_fac + all_scores_loss max_score_idx = np.argmax(all_scores) max_score = all_scores[max_score_idx] if max_score > curr_score: medoid_ics[cluster_idx] = np.where( y_pred == cluster_idx)[0][max_score_idx] def pam_augmented_fit(self, feat, y, loss_mult): pam_max_iter = 5 self._check_init_args() feat = self._check_array(feat) pdists = pairwise_distance_np(feat) self.loss_augmented_fit(feat, y, loss_mult) print('PAM -1 (before PAM): score: %f, score_aug: %f' % ( self.score_, self.score_aug_)) # Initialize from loss augmented facility location subset = self.center_ics_ for iter_ in range(pam_max_iter): # update the cluster assignment cluster_ics = self._get_cluster_ics(pdists, subset) # update the medoid for each clusters self._augmented_update_medoid_ics_in_place(pdists, y, cluster_ics, subset, loss_mult) self.score_ = np.float32(-1.0) * self._get_facility_distance( pdists, subset) self.score_aug_ = self.score_ + loss_mult * ( 1.0 - metrics.normalized_mutual_info_score( y, self._get_cluster_ics(pdists, subset))) self.score_aug_ = self.score_aug_.astype(np.float32) print('PAM iter: %d, score: %f, score_aug: %f' % (iter_, self.score_, self.score_aug_)) self.center_ics_ = subset self.labels_ = cluster_ics return self def _check_array(self, feat): # Check that the number of clusters is less than or equal to # the number of samples if self.n_clusters > feat.shape[0]: raise ValueError('The number of medoids ' + '({}) '.format( self.n_clusters) + 'must be larger than the number ' + 'of samples ({})'.format(feat.shape[0])) return feat def _get_cluster_ics(self, pdists, subset): """Returns cluster indices for pdist and current medoid indices.""" # Assign data points to clusters based on # which cluster assignment yields # the smallest distance` cluster_ics = np.argmin(pdists[subset, :], axis=0) return cluster_ics def _get_facility_distance(self, pdists, subset): return np.sum(np.min(pdists[subset, :], axis=0)) class ClusterLossTest(test.TestCase): def _genClusters(self, n_samples, n_clusters): blobs = datasets.make_blobs( n_samples=n_samples, centers=n_clusters) embedding, labels = blobs embedding = (embedding - embedding.mean(axis=0)) / embedding.std(axis=0) embedding = embedding.astype(np.float32) return embedding, labels def testClusteringLossPAMOff(self): if not HAS_SKLEARN: return with self.test_session(): margin_multiplier = 10.0 embeddings, labels = self._genClusters(n_samples=128, n_clusters=64) loss_np = compute_cluster_loss_numpy( embeddings, labels, margin_multiplier, enable_pam_finetuning=False) loss_tf = metric_loss_ops.cluster_loss( labels=ops.convert_to_tensor(labels), embeddings=ops.convert_to_tensor(embeddings), margin_multiplier=margin_multiplier, enable_pam_finetuning=False) loss_tf = loss_tf.eval() self.assertAllClose(loss_np, loss_tf) def testClusteringLossPAMOn(self): if not HAS_SKLEARN: return with self.test_session(): margin_multiplier = 10.0 embeddings, labels = self._genClusters(n_samples=128, n_clusters=64) loss_np = compute_cluster_loss_numpy( embeddings, labels, margin_multiplier, enable_pam_finetuning=True) loss_tf = metric_loss_ops.cluster_loss( labels=ops.convert_to_tensor(labels), embeddings=ops.convert_to_tensor(embeddings), margin_multiplier=margin_multiplier, enable_pam_finetuning=True) loss_tf = loss_tf.eval() self.assertAllClose(loss_np, loss_tf) if __name__ == '__main__': test.main()
apache-2.0
Edu-Glez/Bank_sentiment_analysis
env/lib/python3.6/site-packages/ipykernel/kernelapp.py
5
19344
"""An Application for launching a kernel""" # Copyright (c) IPython Development Team. # Distributed under the terms of the Modified BSD License. from __future__ import print_function import atexit import os import sys import signal import traceback import logging from tornado import ioloop import zmq from zmq.eventloop import ioloop as zmq_ioloop from zmq.eventloop.zmqstream import ZMQStream from IPython.core.application import ( BaseIPythonApplication, base_flags, base_aliases, catch_config_error ) from IPython.core.profiledir import ProfileDir from IPython.core.shellapp import ( InteractiveShellApp, shell_flags, shell_aliases ) from IPython.utils import io from ipython_genutils.path import filefind, ensure_dir_exists from traitlets import ( Any, Instance, Dict, Unicode, Integer, Bool, DottedObjectName, Type, default ) from ipython_genutils.importstring import import_item from jupyter_core.paths import jupyter_runtime_dir from jupyter_client import write_connection_file from jupyter_client.connect import ConnectionFileMixin # local imports from .iostream import IOPubThread from .heartbeat import Heartbeat from .ipkernel import IPythonKernel from .parentpoller import ParentPollerUnix, ParentPollerWindows from jupyter_client.session import ( Session, session_flags, session_aliases, ) from .zmqshell import ZMQInteractiveShell #----------------------------------------------------------------------------- # Flags and Aliases #----------------------------------------------------------------------------- kernel_aliases = dict(base_aliases) kernel_aliases.update({ 'ip' : 'IPKernelApp.ip', 'hb' : 'IPKernelApp.hb_port', 'shell' : 'IPKernelApp.shell_port', 'iopub' : 'IPKernelApp.iopub_port', 'stdin' : 'IPKernelApp.stdin_port', 'control' : 'IPKernelApp.control_port', 'f' : 'IPKernelApp.connection_file', 'transport': 'IPKernelApp.transport', }) kernel_flags = dict(base_flags) kernel_flags.update({ 'no-stdout' : ( {'IPKernelApp' : {'no_stdout' : True}}, "redirect stdout to the null device"), 'no-stderr' : ( {'IPKernelApp' : {'no_stderr' : True}}, "redirect stderr to the null device"), 'pylab' : ( {'IPKernelApp' : {'pylab' : 'auto'}}, """Pre-load matplotlib and numpy for interactive use with the default matplotlib backend."""), }) # inherit flags&aliases for any IPython shell apps kernel_aliases.update(shell_aliases) kernel_flags.update(shell_flags) # inherit flags&aliases for Sessions kernel_aliases.update(session_aliases) kernel_flags.update(session_flags) _ctrl_c_message = """\ NOTE: When using the `ipython kernel` entry point, Ctrl-C will not work. To exit, you will have to explicitly quit this process, by either sending "quit" from a client, or using Ctrl-\\ in UNIX-like environments. To read more about this, see https://github.com/ipython/ipython/issues/2049 """ #----------------------------------------------------------------------------- # Application class for starting an IPython Kernel #----------------------------------------------------------------------------- class IPKernelApp(BaseIPythonApplication, InteractiveShellApp, ConnectionFileMixin): name='ipython-kernel' aliases = Dict(kernel_aliases) flags = Dict(kernel_flags) classes = [IPythonKernel, ZMQInteractiveShell, ProfileDir, Session] # the kernel class, as an importstring kernel_class = Type('ipykernel.ipkernel.IPythonKernel', klass='ipykernel.kernelbase.Kernel', help="""The Kernel subclass to be used. This should allow easy re-use of the IPKernelApp entry point to configure and launch kernels other than IPython's own. """).tag(config=True) kernel = Any() poller = Any() # don't restrict this even though current pollers are all Threads heartbeat = Instance(Heartbeat, allow_none=True) ports = Dict() subcommands = { 'install': ( 'ipykernel.kernelspec.InstallIPythonKernelSpecApp', 'Install the IPython kernel' ), } # connection info: connection_dir = Unicode() @default('connection_dir') def _default_connection_dir(self): return jupyter_runtime_dir() @property def abs_connection_file(self): if os.path.basename(self.connection_file) == self.connection_file: return os.path.join(self.connection_dir, self.connection_file) else: return self.connection_file # streams, etc. no_stdout = Bool(False, help="redirect stdout to the null device").tag(config=True) no_stderr = Bool(False, help="redirect stderr to the null device").tag(config=True) outstream_class = DottedObjectName('ipykernel.iostream.OutStream', help="The importstring for the OutStream factory").tag(config=True) displayhook_class = DottedObjectName('ipykernel.displayhook.ZMQDisplayHook', help="The importstring for the DisplayHook factory").tag(config=True) # polling parent_handle = Integer(int(os.environ.get('JPY_PARENT_PID') or 0), help="""kill this process if its parent dies. On Windows, the argument specifies the HANDLE of the parent process, otherwise it is simply boolean. """).tag(config=True) interrupt = Integer(int(os.environ.get('JPY_INTERRUPT_EVENT') or 0), help="""ONLY USED ON WINDOWS Interrupt this process when the parent is signaled. """).tag(config=True) def init_crash_handler(self): sys.excepthook = self.excepthook def excepthook(self, etype, evalue, tb): # write uncaught traceback to 'real' stderr, not zmq-forwarder traceback.print_exception(etype, evalue, tb, file=sys.__stderr__) def init_poller(self): if sys.platform == 'win32': if self.interrupt or self.parent_handle: self.poller = ParentPollerWindows(self.interrupt, self.parent_handle) elif self.parent_handle: self.poller = ParentPollerUnix() def _bind_socket(self, s, port): iface = '%s://%s' % (self.transport, self.ip) if self.transport == 'tcp': if port <= 0: port = s.bind_to_random_port(iface) else: s.bind("tcp://%s:%i" % (self.ip, port)) elif self.transport == 'ipc': if port <= 0: port = 1 path = "%s-%i" % (self.ip, port) while os.path.exists(path): port = port + 1 path = "%s-%i" % (self.ip, port) else: path = "%s-%i" % (self.ip, port) s.bind("ipc://%s" % path) return port def write_connection_file(self): """write connection info to JSON file""" cf = self.abs_connection_file self.log.debug("Writing connection file: %s", cf) write_connection_file(cf, ip=self.ip, key=self.session.key, transport=self.transport, shell_port=self.shell_port, stdin_port=self.stdin_port, hb_port=self.hb_port, iopub_port=self.iopub_port, control_port=self.control_port) def cleanup_connection_file(self): cf = self.abs_connection_file self.log.debug("Cleaning up connection file: %s", cf) try: os.remove(cf) except (IOError, OSError): pass self.cleanup_ipc_files() def init_connection_file(self): if not self.connection_file: self.connection_file = "kernel-%s.json"%os.getpid() try: self.connection_file = filefind(self.connection_file, ['.', self.connection_dir]) except IOError: self.log.debug("Connection file not found: %s", self.connection_file) # This means I own it, and I'll create it in this directory: ensure_dir_exists(os.path.dirname(self.abs_connection_file), 0o700) # Also, I will clean it up: atexit.register(self.cleanup_connection_file) return try: self.load_connection_file() except Exception: self.log.error("Failed to load connection file: %r", self.connection_file, exc_info=True) self.exit(1) def init_sockets(self): # Create a context, a session, and the kernel sockets. self.log.info("Starting the kernel at pid: %i", os.getpid()) context = zmq.Context.instance() # Uncomment this to try closing the context. # atexit.register(context.term) self.shell_socket = context.socket(zmq.ROUTER) self.shell_socket.linger = 1000 self.shell_port = self._bind_socket(self.shell_socket, self.shell_port) self.log.debug("shell ROUTER Channel on port: %i" % self.shell_port) self.stdin_socket = context.socket(zmq.ROUTER) self.stdin_socket.linger = 1000 self.stdin_port = self._bind_socket(self.stdin_socket, self.stdin_port) self.log.debug("stdin ROUTER Channel on port: %i" % self.stdin_port) self.control_socket = context.socket(zmq.ROUTER) self.control_socket.linger = 1000 self.control_port = self._bind_socket(self.control_socket, self.control_port) self.log.debug("control ROUTER Channel on port: %i" % self.control_port) self.init_iopub(context) def init_iopub(self, context): self.iopub_socket = context.socket(zmq.PUB) self.iopub_socket.linger = 1000 self.iopub_port = self._bind_socket(self.iopub_socket, self.iopub_port) self.log.debug("iopub PUB Channel on port: %i" % self.iopub_port) self.configure_tornado_logger() self.iopub_thread = IOPubThread(self.iopub_socket, pipe=True) self.iopub_thread.start() # backward-compat: wrap iopub socket API in background thread self.iopub_socket = self.iopub_thread.background_socket def init_heartbeat(self): """start the heart beating""" # heartbeat doesn't share context, because it mustn't be blocked # by the GIL, which is accessed by libzmq when freeing zero-copy messages hb_ctx = zmq.Context() self.heartbeat = Heartbeat(hb_ctx, (self.transport, self.ip, self.hb_port)) self.hb_port = self.heartbeat.port self.log.debug("Heartbeat REP Channel on port: %i" % self.hb_port) self.heartbeat.start() def log_connection_info(self): """display connection info, and store ports""" basename = os.path.basename(self.connection_file) if basename == self.connection_file or \ os.path.dirname(self.connection_file) == self.connection_dir: # use shortname tail = basename else: tail = self.connection_file lines = [ "To connect another client to this kernel, use:", " --existing %s" % tail, ] # log connection info # info-level, so often not shown. # frontends should use the %connect_info magic # to see the connection info for line in lines: self.log.info(line) # also raw print to the terminal if no parent_handle (`ipython kernel`) # unless log-level is CRITICAL (--quiet) if not self.parent_handle and self.log_level < logging.CRITICAL: io.rprint(_ctrl_c_message) for line in lines: io.rprint(line) self.ports = dict(shell=self.shell_port, iopub=self.iopub_port, stdin=self.stdin_port, hb=self.hb_port, control=self.control_port) def init_blackhole(self): """redirects stdout/stderr to devnull if necessary""" if self.no_stdout or self.no_stderr: blackhole = open(os.devnull, 'w') if self.no_stdout: sys.stdout = sys.__stdout__ = blackhole if self.no_stderr: sys.stderr = sys.__stderr__ = blackhole def init_io(self): """Redirect input streams and set a display hook.""" if self.outstream_class: outstream_factory = import_item(str(self.outstream_class)) sys.stdout = outstream_factory(self.session, self.iopub_thread, u'stdout') sys.stderr = outstream_factory(self.session, self.iopub_thread, u'stderr') if self.displayhook_class: displayhook_factory = import_item(str(self.displayhook_class)) self.displayhook = displayhook_factory(self.session, self.iopub_socket) sys.displayhook = self.displayhook self.patch_io() def patch_io(self): """Patch important libraries that can't handle sys.stdout forwarding""" try: import faulthandler except ImportError: pass else: # Warning: this is a monkeypatch of `faulthandler.enable`, watch for possible # updates to the upstream API and update accordingly (up-to-date as of Python 3.5): # https://docs.python.org/3/library/faulthandler.html#faulthandler.enable # change default file to __stderr__ from forwarded stderr faulthandler_enable = faulthandler.enable def enable(file=sys.__stderr__, all_threads=True, **kwargs): return faulthandler_enable(file=file, all_threads=all_threads, **kwargs) faulthandler.enable = enable if hasattr(faulthandler, 'register'): faulthandler_register = faulthandler.register def register(signum, file=sys.__stderr__, all_threads=True, chain=False, **kwargs): return faulthandler_register(signum, file=file, all_threads=all_threads, chain=chain, **kwargs) faulthandler.register = register def init_signal(self): signal.signal(signal.SIGINT, signal.SIG_IGN) def init_kernel(self): """Create the Kernel object itself""" shell_stream = ZMQStream(self.shell_socket) control_stream = ZMQStream(self.control_socket) kernel_factory = self.kernel_class.instance kernel = kernel_factory(parent=self, session=self.session, shell_streams=[shell_stream, control_stream], iopub_thread=self.iopub_thread, iopub_socket=self.iopub_socket, stdin_socket=self.stdin_socket, log=self.log, profile_dir=self.profile_dir, user_ns=self.user_ns, ) kernel.record_ports({ name + '_port': port for name, port in self.ports.items() }) self.kernel = kernel # Allow the displayhook to get the execution count self.displayhook.get_execution_count = lambda: kernel.execution_count def init_gui_pylab(self): """Enable GUI event loop integration, taking pylab into account.""" # Register inline backend as default # this is higher priority than matplotlibrc, # but lower priority than anything else (mpl.use() for instance). # This only affects matplotlib >= 1.5 if not os.environ.get('MPLBACKEND'): os.environ['MPLBACKEND'] = 'module://ipykernel.pylab.backend_inline' # Provide a wrapper for :meth:`InteractiveShellApp.init_gui_pylab` # to ensure that any exception is printed straight to stderr. # Normally _showtraceback associates the reply with an execution, # which means frontends will never draw it, as this exception # is not associated with any execute request. shell = self.shell _showtraceback = shell._showtraceback try: # replace error-sending traceback with stderr def print_tb(etype, evalue, stb): print ("GUI event loop or pylab initialization failed", file=sys.stderr) print (shell.InteractiveTB.stb2text(stb), file=sys.stderr) shell._showtraceback = print_tb InteractiveShellApp.init_gui_pylab(self) finally: shell._showtraceback = _showtraceback def init_shell(self): self.shell = getattr(self.kernel, 'shell', None) if self.shell: self.shell.configurables.append(self) def init_extensions(self): super(IPKernelApp, self).init_extensions() # BEGIN HARDCODED WIDGETS HACK # Ensure ipywidgets extension is loaded if available extension_man = self.shell.extension_manager if 'ipywidgets' not in extension_man.loaded: try: extension_man.load_extension('ipywidgets') except ImportError as e: self.log.debug('ipywidgets package not installed. Widgets will not be available.') # END HARDCODED WIDGETS HACK def configure_tornado_logger(self): """ Configure the tornado logging.Logger. Must set up the tornado logger or else tornado will call basicConfig for the root logger which makes the root logger go to the real sys.stderr instead of the capture streams. This function mimics the setup of logging.basicConfig. """ logger = logging.getLogger('tornado') handler = logging.StreamHandler() formatter = logging.Formatter(logging.BASIC_FORMAT) handler.setFormatter(formatter) logger.addHandler(handler) @catch_config_error def initialize(self, argv=None): super(IPKernelApp, self).initialize(argv) if self.subapp is not None: return # register zmq IOLoop with tornado zmq_ioloop.install() self.init_blackhole() self.init_connection_file() self.init_poller() self.init_sockets() self.init_heartbeat() # writing/displaying connection info must be *after* init_sockets/heartbeat self.write_connection_file() # Log connection info after writing connection file, so that the connection # file is definitely available at the time someone reads the log. self.log_connection_info() self.init_io() self.init_signal() self.init_kernel() # shell init steps self.init_path() self.init_shell() if self.shell: self.init_gui_pylab() self.init_extensions() self.init_code() # flush stdout/stderr, so that anything written to these streams during # initialization do not get associated with the first execution request sys.stdout.flush() sys.stderr.flush() def start(self): if self.subapp is not None: return self.subapp.start() if self.poller is not None: self.poller.start() self.kernel.start() try: ioloop.IOLoop.instance().start() except KeyboardInterrupt: pass launch_new_instance = IPKernelApp.launch_instance def main(): """Run an IPKernel as an application""" app = IPKernelApp.instance() app.initialize() app.start() if __name__ == '__main__': main()
apache-2.0
jorik041/scikit-learn
sklearn/tests/test_common.py
127
7665
""" General tests for all estimators in sklearn. """ # Authors: Andreas Mueller <amueller@ais.uni-bonn.de> # Gael Varoquaux gael.varoquaux@normalesup.org # License: BSD 3 clause from __future__ import print_function import os import warnings import sys import pkgutil from sklearn.externals.six import PY3 from sklearn.utils.testing import assert_false, clean_warning_registry from sklearn.utils.testing import all_estimators from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_in from sklearn.utils.testing import ignore_warnings import sklearn from sklearn.cluster.bicluster import BiclusterMixin from sklearn.linear_model.base import LinearClassifierMixin from sklearn.utils.estimator_checks import ( _yield_all_checks, CROSS_DECOMPOSITION, check_parameters_default_constructible, check_class_weight_balanced_linear_classifier, check_transformer_n_iter, check_non_transformer_estimators_n_iter, check_get_params_invariance) def test_all_estimator_no_base_class(): # test that all_estimators doesn't find abstract classes. for name, Estimator in all_estimators(): msg = ("Base estimators such as {0} should not be included" " in all_estimators").format(name) assert_false(name.lower().startswith('base'), msg=msg) def test_all_estimators(): # Test that estimators are default-constructible, clonable # and have working repr. estimators = all_estimators(include_meta_estimators=True) # Meta sanity-check to make sure that the estimator introspection runs # properly assert_greater(len(estimators), 0) for name, Estimator in estimators: # some can just not be sensibly default constructed yield check_parameters_default_constructible, name, Estimator def test_non_meta_estimators(): # input validation etc for non-meta estimators estimators = all_estimators() for name, Estimator in estimators: if issubclass(Estimator, BiclusterMixin): continue if name.startswith("_"): continue for check in _yield_all_checks(name, Estimator): yield check, name, Estimator def test_configure(): # Smoke test the 'configure' step of setup, this tests all the # 'configure' functions in the setup.pys in the scikit cwd = os.getcwd() setup_path = os.path.abspath(os.path.join(sklearn.__path__[0], '..')) setup_filename = os.path.join(setup_path, 'setup.py') if not os.path.exists(setup_filename): return try: os.chdir(setup_path) old_argv = sys.argv sys.argv = ['setup.py', 'config'] clean_warning_registry() with warnings.catch_warnings(): # The configuration spits out warnings when not finding # Blas/Atlas development headers warnings.simplefilter('ignore', UserWarning) if PY3: with open('setup.py') as f: exec(f.read(), dict(__name__='__main__')) else: execfile('setup.py', dict(__name__='__main__')) finally: sys.argv = old_argv os.chdir(cwd) def test_class_weight_balanced_linear_classifiers(): classifiers = all_estimators(type_filter='classifier') clean_warning_registry() with warnings.catch_warnings(record=True): linear_classifiers = [ (name, clazz) for name, clazz in classifiers if 'class_weight' in clazz().get_params().keys() and issubclass(clazz, LinearClassifierMixin)] for name, Classifier in linear_classifiers: if name == "LogisticRegressionCV": # Contrary to RidgeClassifierCV, LogisticRegressionCV use actual # CV folds and fit a model for each CV iteration before averaging # the coef. Therefore it is expected to not behave exactly as the # other linear model. continue yield check_class_weight_balanced_linear_classifier, name, Classifier @ignore_warnings def test_import_all_consistency(): # Smoke test to check that any name in a __all__ list is actually defined # in the namespace of the module or package. pkgs = pkgutil.walk_packages(path=sklearn.__path__, prefix='sklearn.', onerror=lambda _: None) submods = [modname for _, modname, _ in pkgs] for modname in submods + ['sklearn']: if ".tests." in modname: continue package = __import__(modname, fromlist="dummy") for name in getattr(package, '__all__', ()): if getattr(package, name, None) is None: raise AttributeError( "Module '{0}' has no attribute '{1}'".format( modname, name)) def test_root_import_all_completeness(): EXCEPTIONS = ('utils', 'tests', 'base', 'setup') for _, modname, _ in pkgutil.walk_packages(path=sklearn.__path__, onerror=lambda _: None): if '.' in modname or modname.startswith('_') or modname in EXCEPTIONS: continue assert_in(modname, sklearn.__all__) def test_non_transformer_estimators_n_iter(): # Test that all estimators of type which are non-transformer # and which have an attribute of max_iter, return the attribute # of n_iter atleast 1. for est_type in ['regressor', 'classifier', 'cluster']: regressors = all_estimators(type_filter=est_type) for name, Estimator in regressors: # LassoLars stops early for the default alpha=1.0 for # the iris dataset. if name == 'LassoLars': estimator = Estimator(alpha=0.) else: estimator = Estimator() if hasattr(estimator, "max_iter"): # These models are dependent on external solvers like # libsvm and accessing the iter parameter is non-trivial. if name in (['Ridge', 'SVR', 'NuSVR', 'NuSVC', 'RidgeClassifier', 'SVC', 'RandomizedLasso', 'LogisticRegressionCV']): continue # Tested in test_transformer_n_iter below elif (name in CROSS_DECOMPOSITION or name in ['LinearSVC', 'LogisticRegression']): continue else: # Multitask models related to ENet cannot handle # if y is mono-output. yield (check_non_transformer_estimators_n_iter, name, estimator, 'Multi' in name) def test_transformer_n_iter(): transformers = all_estimators(type_filter='transformer') for name, Estimator in transformers: estimator = Estimator() # Dependent on external solvers and hence accessing the iter # param is non-trivial. external_solver = ['Isomap', 'KernelPCA', 'LocallyLinearEmbedding', 'RandomizedLasso', 'LogisticRegressionCV'] if hasattr(estimator, "max_iter") and name not in external_solver: yield check_transformer_n_iter, name, estimator def test_get_params_invariance(): # Test for estimators that support get_params, that # get_params(deep=False) is a subset of get_params(deep=True) # Related to issue #4465 estimators = all_estimators(include_meta_estimators=False, include_other=True) for name, Estimator in estimators: if hasattr(Estimator, 'get_params'): yield check_get_params_invariance, name, Estimator
bsd-3-clause
tortugueta/multilayers
examples/radcenter_distribution.py
1
8087
# -*- coding: utf-8 -*- """ Name : radcenter_distribution Author : Joan Juvert <trust.no.one.51@gmail.com> Version : 1.0 Description : This script calculates the influence of the distribution of : radiative centers in the active layer on the observed : spectrum. Copyright 2012 Joan Juvert This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. """ import multilayers as ml import numpy as np import bphysics as bp import scipy.integrate as integ import argparse as ap import sys import pdb # Argument parsing parser = ap.ArgumentParser( description = "This script calculates the effect of the " + \ "distribution of radiative centers in the active layer on " + \ "the modificator to the spectrum. The observation angle is " + \ "a fixed parameter. Optionally, the output can be plotted " + \ "and output to the standard output or to a file. The matrix " + \ "containing the values of F(z, lambda) can be saved to a file " + \ "and recovered in a following run of the program to avoid " + \ "recalculating it in case we want to calculate the effect of " + \ "different distributions on the same system.") parser.add_argument( "--graph", help = "Plot the results", action = "store_true") parser.add_argument( "-o", "--output", help = "Dump the results to a file") parser.add_argument( "-s", "--savematrix", help = "Save the matrix with the F(z, lambda) values to a file") parser.add_argument( "-l", "--loadmatrix", help = "Load the matrix with the F(z, lambda) values from a file") args = parser.parse_args() # Load the depth distribution of radiative centers. Note that the origin # and units of z must be the same as in the multilayer.The distribution # should be normalized to 1. print("Loading the distribution...") path = "/home/joan/Dropbox/CNM/projectes/simulations_report/figures/" + \ "rcdistributions/" distribution = bp.rdfile(path + "gaussian_m25_s07.dat", usecols = [0, 1])[1] print("Done") print("Checking the distribution...") integral = integ.simps(distribution[:, 1], distribution[:, 0], 0) np.testing.assert_almost_equal(integral, 1, 2) print("Done") # If we load the values of F(z, lambda) calculated in a previous # execution we do not need to build the multilayer and repeat the # calculation of the F function. Notice that the values of z at which # the new distribution is sampled should be the same as the previous # one. if args.loadmatrix: print("Loading matrix...") fmatrix = np.load(args.loadmatrix) zlist = fmatrix['zlist'] np.testing.assert_array_equal(zlist, distribution[:, 0]) wlist = fmatrix['wlist'] angle = fmatrix['angle'] fte = fmatrix['fte'] ftm = fmatrix['ftm'] print("Done") else: # Create the materials print("Loading materials... ") silicon = ml.Medium("silicon.dat") air = ml.Medium("air.dat") sio2 = ml.Medium("sio2.dat") poly = ml.Medium("polysilicon.dat") print("Done") # Set the fixed parameters. angle = np.deg2rad(0) # Create the multilayer print("Building multilayer and allocating memory... ") thicknesses = [300, 50] multilayer = ml.Multilayer([ air, [poly, thicknesses[0]], [sio2, thicknesses[1]], silicon]) # Define the wavelengths and z coordinates at which F will be calculated # and allocate memory for the results. We will use a structured array to # store the values of F(z, lambda). wstep = 1 wmin = multilayer.getMinMaxWlength()[0] wmax = multilayer.getMinMaxWlength()[1] wlist = np.arange(wmin, wmax, wstep) zlist = distribution[:, 0] ftype = np.dtype([ ('fx', np.complex128), ('fy', np.complex128), ('fz', np.complex128)]) resmatrix = np.empty((zlist.size, wlist.size), dtype = ftype) print("Done") # I(wavelength, theta) = s(wavelength) * F'(wavelength, theta), where # F'(wav, theta) = integral[z](|F|^2 * rcdist(z). Therefore, we # calculate the new spectrum as a modification to the original spectrum. # The modification factor F'(wav, theta) is an integral over z. # First calculate |Fy|^2 for te and |Fx*cos^2 + Fz*sin^2|^2 for tm. We # do fx and fz in one loop and fy in another independent loop to avoid # recalculating the characteristic matrix at every iteration due to the # change of polarization. print("Calculating F...") for (widx, wlength) in enumerate(wlist): percent = (float(widx) / wlist.size) * 100 print("%.2f%%" % percent) for (zidx, z) in enumerate(zlist): resmatrix[zidx][widx]['fx'] = multilayer.calculateFx(z, wlength, angle) resmatrix[zidx][widx]['fz'] = multilayer.calculateFz(z, wlength, angle) for (zidx, z) in enumerate(zlist): resmatrix[zidx][widx]['fy'] = multilayer.calculateFy(z, wlength, angle) # We are probably more interesed on the effect of the multilayer on the # energy rather than the electric field. What we want is |Fy(z)|^2 for # TE waves and |Fx(z) cosA^2 + Fz(z) sinA^2|^2 for TM waves. ftm = np.absolute( resmatrix['fx'] * np.cos(angle) ** 2 + \ resmatrix['fz'] * np.sin(angle) ** 2) ** 2 fte = np.absolute(resmatrix['fy']) ** 2 print("Done") # Notice that until now we have not used the distribution of the # radiative ceneters, but the calculation of ftm and fte is costly. # If requested, we can save fte and ftm to a file. In a following # execution of the script, the matrix can be loaded from the file # instead of recalculated. if args.savematrix: print("Saving matrix...") np.savez(args.savematrix, fte = fte, ftm = ftm, zlist = zlist, wlist = wlist, angle = angle) print("Done") # Build or load the original spectrum. It should be sampled at the same # wavelengths defined in wlist. If we are interested only in the # modificator to the spectrum, not in the modified spectrum, we can # leave it at 1. original_spec = 1 # Multiply each F(z, lambda) by the distribution. print("Integrating...") distval = distribution[:, 1].reshape(distribution[:, 1].size, 1) fte_mplied = fte * distval ftm_mplied = ftm * distval fte_int = integ.simps(fte_mplied, zlist, axis = 0) ftm_int = integ.simps(ftm_mplied, zlist, axis = 0) spectrum_modte = original_spec * fte_int spectrum_modtm = original_spec * ftm_int print("Done") # Dump data to file or stdout comments = "# F_TE = |Fy^2|^2\n" + \ "# F_TM = |Fx * cosA^2 + Fz * sinA^2|^2\n" + \ "# Modified spectrum for TE and TM waves for a\n" + \ "# distributions of the radiative centers.\n" + \ "# wlength\tF_TE\tF_TM" if args.output: bp.wdfile(args.output, comments, np.array([wlist, spectrum_modte, spectrum_modtm]).T, '%.6e') else: print(comments) for i in xrange(wlist.size): print("%.6e\t%.6e\t%.6e" % (wlist[i], spectrum_modte[i], spectrum_modtm[i])) # Plot data if requested if args.graph: import matplotlib.pyplot as plt plt.plot(wlist, spectrum_modte, label='TE', color = 'r') plt.plot(wlist, spectrum_modtm, label='TM', color = 'b') plt.xlabel('Wavelength (nm)') plt.ylabel('Energy ratio') plt.grid() plt.legend(loc=2) plt.title('%.1f rad' % angle) plt.show() plt.close()
gpl-3.0
dpshelio/sunpy
examples/units_and_coordinates/planet_locations.py
1
1252
""" =================================== Getting the location of the planets =================================== How to get the position of planetary bodies im the solar system using `astropy's solar system ephemeris <http://docs.astropy.org/en/stable/coordinates/solarsystem.html#solar-system-ephemerides>`__ information and SunPy. """ import matplotlib.pyplot as plt from astropy.time import Time from sunpy.coordinates import get_body_heliographic_stonyhurst ############################################################################## # Lets grab the positions of each of the planets in Heliographic Stonyhurst # coordinates. obstime = Time('2014-05-15T07:54:00.005') planet_list = ['earth', 'venus', 'mars', 'mercury', 'jupiter', 'neptune', 'uranus', 'sun'] planet_coord = [get_body_heliographic_stonyhurst(this_planet, time=obstime) for this_planet in planet_list] ############################################################################## # Let's plot the results. Remember the Sun is at the center of this coordinate # system. ax = plt.subplot(projection='polar') for this_planet, this_coord in zip(planet_list, planet_coord): plt.polar(this_coord.lon.to('rad'), this_coord.radius, 'o', label=this_planet) plt.legend() plt.show()
bsd-2-clause
armgilles/open-moulinette
caf/scripts/PajeCom.py
2
2407
# -*- coding: utf-8 -*- """ Created on Fri Oct 2 13:47:48 2015 @author: GILLES Armand """ import pandas as pd import glob df = pd.read_csv('source/PajeCom2009.csv', sep=";") df.columns = ['Communes', 'Codes_Insee', 'NB_Allocataires_2009', 'ALL_PAJE_2009', 'ALL_PRIM_2009', 'ALL_BASEP_2009', 'ALL_ASMA_2009','ALL_Clca_Colca_2009'] files = glob.glob('source/PajeCom*') for path_file in files: year = str(path_file[-8:-4]) if (year != '2009'): df_temp = pd.read_csv(path_file, sep=';') # Rename Col with year year_col = ['Communes', 'Codes_Insee'] features_col = [] for col in df_temp.columns[2:]: year_col.append(col +"_"+ year) features_col.append(col +"_"+ year) # Adding key for mergeing features_col.append('Codes_Insee') df_temp.columns = year_col df = pd.merge(df, df_temp[features_col], how='inner', on='Codes_Insee') # Rename col to have unique name in futur merge list_col = [] for col in df.columns: if "nb_allocataires" in col.lower(): # NB_Allocataires (2009) != NB_allocataires (2010) list_col.append(col+"_PC") # PC = PageCom else: list_col.append(col) df.columns = list_col df.to_csv('data/full_PageCom.csv', encoding='utf-8', index=False) ## Features #u'NB_Allocataires_2009_PC', # u'ALL_PAJE_2009', u'ALL_PRIM_2009', u'ALL_BASEP_2009', u'ALL_ASMA_2009', # u'ALL_Clca_Colca_2009', u'NB_Allocataires_2010_PC', u'ALL_PAJE_2010', # u'ALL_PRIM_2010', u'ALL_BASEP_2010', u'ALL_ASMA_2010', # u'ALL_Clca_Colca_2010', u'NB_Allocataires_2011_PC', u'ALL_PAJE_2011', # u'ALL_PRIM_2011', u'ALL_BASEP_2011', u'ALL_ASMA_2011', # u'ALL_Clca_Colca_2011', u'NB_Allocataires_2012_PC', u'ALL_PAJE_2012', # u'ALL_PRIM_2012', u'ALL_BASEP_2012', u'ALL_ASMA_2012', # u'ALL_Clca_Colca_2012', u'NB_Allocataires_2013_PC', u'ALL_PAJE_2013', # u'ALL_PRIM_2013', u'ALL_BASEP_2013', u'ALL_ASMA_2013', # u'ALL_Clca_Colca_2013', u'NB_Allocataires_2014_PC', u'ALL_PAJE_2014', # u'ALL_PRIM_2014', u'ALL_BASEP_2014', u'ALL_CMG_2014', # u'ALL_CMG_ASMA_2014', u'ALL_CMG_DOM_2014', u'ALL_CMG_A_2014', # u'ALL_Clca_Colca_2014', u'NB_Allocataires_2015_PC', u'ALL_PAJE_2015', # u'ALL_PRIM_2015', u'ALL_BASEP_2015', u'ALL_ASMA_2015', # u'ALL_Clca_Colca_2015'
mit
mxjl620/scikit-learn
sklearn/decomposition/tests/test_sparse_pca.py
160
6028
# Author: Vlad Niculae # License: BSD 3 clause import sys import numpy as np from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import SkipTest from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import if_safe_multiprocessing_with_blas from sklearn.decomposition import SparsePCA, MiniBatchSparsePCA from sklearn.utils import check_random_state def generate_toy_data(n_components, n_samples, image_size, random_state=None): n_features = image_size[0] * image_size[1] rng = check_random_state(random_state) U = rng.randn(n_samples, n_components) V = rng.randn(n_components, n_features) centers = [(3, 3), (6, 7), (8, 1)] sz = [1, 2, 1] for k in range(n_components): img = np.zeros(image_size) xmin, xmax = centers[k][0] - sz[k], centers[k][0] + sz[k] ymin, ymax = centers[k][1] - sz[k], centers[k][1] + sz[k] img[xmin:xmax][:, ymin:ymax] = 1.0 V[k, :] = img.ravel() # Y is defined by : Y = UV + noise Y = np.dot(U, V) Y += 0.1 * rng.randn(Y.shape[0], Y.shape[1]) # Add noise return Y, U, V # SparsePCA can be a bit slow. To avoid having test times go up, we # test different aspects of the code in the same test def test_correct_shapes(): rng = np.random.RandomState(0) X = rng.randn(12, 10) spca = SparsePCA(n_components=8, random_state=rng) U = spca.fit_transform(X) assert_equal(spca.components_.shape, (8, 10)) assert_equal(U.shape, (12, 8)) # test overcomplete decomposition spca = SparsePCA(n_components=13, random_state=rng) U = spca.fit_transform(X) assert_equal(spca.components_.shape, (13, 10)) assert_equal(U.shape, (12, 13)) def test_fit_transform(): alpha = 1 rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array spca_lars = SparsePCA(n_components=3, method='lars', alpha=alpha, random_state=0) spca_lars.fit(Y) # Test that CD gives similar results spca_lasso = SparsePCA(n_components=3, method='cd', random_state=0, alpha=alpha) spca_lasso.fit(Y) assert_array_almost_equal(spca_lasso.components_, spca_lars.components_) @if_safe_multiprocessing_with_blas def test_fit_transform_parallel(): alpha = 1 rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array spca_lars = SparsePCA(n_components=3, method='lars', alpha=alpha, random_state=0) spca_lars.fit(Y) U1 = spca_lars.transform(Y) # Test multiple CPUs spca = SparsePCA(n_components=3, n_jobs=2, method='lars', alpha=alpha, random_state=0).fit(Y) U2 = spca.transform(Y) assert_true(not np.all(spca_lars.components_ == 0)) assert_array_almost_equal(U1, U2) def test_transform_nan(): # Test that SparsePCA won't return NaN when there is 0 feature in all # samples. rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array Y[:, 0] = 0 estimator = SparsePCA(n_components=8) assert_false(np.any(np.isnan(estimator.fit_transform(Y)))) def test_fit_transform_tall(): rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 65, (8, 8), random_state=rng) # tall array spca_lars = SparsePCA(n_components=3, method='lars', random_state=rng) U1 = spca_lars.fit_transform(Y) spca_lasso = SparsePCA(n_components=3, method='cd', random_state=rng) U2 = spca_lasso.fit(Y).transform(Y) assert_array_almost_equal(U1, U2) def test_initialization(): rng = np.random.RandomState(0) U_init = rng.randn(5, 3) V_init = rng.randn(3, 4) model = SparsePCA(n_components=3, U_init=U_init, V_init=V_init, max_iter=0, random_state=rng) model.fit(rng.randn(5, 4)) assert_array_equal(model.components_, V_init) def test_mini_batch_correct_shapes(): rng = np.random.RandomState(0) X = rng.randn(12, 10) pca = MiniBatchSparsePCA(n_components=8, random_state=rng) U = pca.fit_transform(X) assert_equal(pca.components_.shape, (8, 10)) assert_equal(U.shape, (12, 8)) # test overcomplete decomposition pca = MiniBatchSparsePCA(n_components=13, random_state=rng) U = pca.fit_transform(X) assert_equal(pca.components_.shape, (13, 10)) assert_equal(U.shape, (12, 13)) def test_mini_batch_fit_transform(): raise SkipTest("skipping mini_batch_fit_transform.") alpha = 1 rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array spca_lars = MiniBatchSparsePCA(n_components=3, random_state=0, alpha=alpha).fit(Y) U1 = spca_lars.transform(Y) # Test multiple CPUs if sys.platform == 'win32': # fake parallelism for win32 import sklearn.externals.joblib.parallel as joblib_par _mp = joblib_par.multiprocessing joblib_par.multiprocessing = None try: U2 = MiniBatchSparsePCA(n_components=3, n_jobs=2, alpha=alpha, random_state=0).fit(Y).transform(Y) finally: joblib_par.multiprocessing = _mp else: # we can efficiently use parallelism U2 = MiniBatchSparsePCA(n_components=3, n_jobs=2, alpha=alpha, random_state=0).fit(Y).transform(Y) assert_true(not np.all(spca_lars.components_ == 0)) assert_array_almost_equal(U1, U2) # Test that CD gives similar results spca_lasso = MiniBatchSparsePCA(n_components=3, method='cd', alpha=alpha, random_state=0).fit(Y) assert_array_almost_equal(spca_lasso.components_, spca_lars.components_)
bsd-3-clause
google-research/google-research
smu/parser/smu_utils_lib_test.py
1
35529
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for smu_utils_lib.""" import copy import os import tempfile from absl.testing import absltest from absl.testing import parameterized import numpy as np import pandas as pd from rdkit import Chem from google.protobuf import text_format from smu import dataset_pb2 from smu.parser import smu_parser_lib from smu.parser import smu_utils_lib MAIN_DAT_FILE = 'x07_sample.dat' STAGE1_DAT_FILE = 'x07_stage1.dat' TESTDATA_PATH = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'testdata') def str_to_bond_topology(s): bt = dataset_pb2.BondTopology() text_format.Parse(s, bt) return bt def get_stage1_conformer(): parser = smu_parser_lib.SmuParser( os.path.join(TESTDATA_PATH, STAGE1_DAT_FILE)) conformer, _ = next(parser.process_stage1()) return conformer def get_stage2_conformer(): parser = smu_parser_lib.SmuParser(os.path.join(TESTDATA_PATH, MAIN_DAT_FILE)) conformer, _ = next(parser.process_stage2()) return conformer class SpecialIDTest(absltest.TestCase): def test_from_dat_id(self): self.assertIsNone( smu_utils_lib.special_case_bt_id_from_dat_id(123456, 'CC')) self.assertEqual(smu_utils_lib.special_case_bt_id_from_dat_id(999998, 'O'), 899650) self.assertEqual(smu_utils_lib.special_case_bt_id_from_dat_id(0, 'O'), 899650) with self.assertRaises(ValueError): smu_utils_lib.special_case_bt_id_from_dat_id(0, 'NotASpecialCaseSmiles') def test_from_bt_id(self): self.assertIsNone(smu_utils_lib.special_case_dat_id_from_bt_id(123456)) self.assertEqual( smu_utils_lib.special_case_dat_id_from_bt_id(899651), 999997) class GetCompositionTest(absltest.TestCase): def test_simple(self): bt = dataset_pb2.BondTopology() bt.atoms.extend([dataset_pb2.BondTopology.ATOM_C, dataset_pb2.BondTopology.ATOM_C, dataset_pb2.BondTopology.ATOM_N, dataset_pb2.BondTopology.ATOM_H, dataset_pb2.BondTopology.ATOM_H, dataset_pb2.BondTopology.ATOM_H]) self.assertEqual('x03_c2nh3', smu_utils_lib.get_composition(bt)) class GetCanonicalStoichiometryWithHydrogensTest(absltest.TestCase): def test_cyclobutane(self): bt = smu_utils_lib.create_bond_topology('CCCC', '110011', '2222') self.assertEqual( smu_utils_lib.get_canonical_stoichiometry_with_hydrogens(bt), '(ch2)4') def test_ethylene(self): bt = smu_utils_lib.create_bond_topology('CC', '2', '22') self.assertEqual( smu_utils_lib.get_canonical_stoichiometry_with_hydrogens(bt), '(ch2)2') def test_acrylic_acid(self): bt = smu_utils_lib.create_bond_topology('CCCOO', '2000100210', '21001') self.assertEqual( smu_utils_lib.get_canonical_stoichiometry_with_hydrogens(bt), '(c)(ch)(ch2)(o)(oh)') def test_fluorine(self): bt = smu_utils_lib.create_bond_topology('OFF', '110', '000') self.assertEqual( smu_utils_lib.get_canonical_stoichiometry_with_hydrogens(bt), '(o)(f)2') def test_fully_saturated(self): self.assertEqual( smu_utils_lib.get_canonical_stoichiometry_with_hydrogens( smu_utils_lib.create_bond_topology('C', '', '4')), '(ch4)') self.assertEqual( smu_utils_lib.get_canonical_stoichiometry_with_hydrogens( smu_utils_lib.create_bond_topology('N', '', '3')), '(nh3)') self.assertEqual( smu_utils_lib.get_canonical_stoichiometry_with_hydrogens( smu_utils_lib.create_bond_topology('O', '', '2')), '(oh2)') self.assertEqual( smu_utils_lib.get_canonical_stoichiometry_with_hydrogens( smu_utils_lib.create_bond_topology('F', '', '1')), '(fh)') def test_nplus_oneg(self): bt = smu_utils_lib.create_bond_topology('NO', '1', '30') self.assertEqual( smu_utils_lib.get_canonical_stoichiometry_with_hydrogens(bt), '(nh3)(o)') class ParseBondTopologyTest(absltest.TestCase): def test_4_heavy(self): num_atoms, atoms_str, matrix, hydrogens = smu_utils_lib.parse_bond_topology_line( ' 4 N+O O O- 010110 3000') self.assertEqual(num_atoms, 4) self.assertEqual(atoms_str, 'N+O O O-') self.assertEqual(matrix, '010110') self.assertEqual(hydrogens, '3000') def test_7_heavy(self): num_atoms, atoms_str, matrix, hydrogens = smu_utils_lib.parse_bond_topology_line( ' 7 N+O O O O-F F 001011101001000000000 1000000') self.assertEqual(num_atoms, 7) self.assertEqual(atoms_str, 'N+O O O O-F F ') # Note the trailing space self.assertEqual(matrix, '001011101001000000000') self.assertEqual(hydrogens, '1000000') class CreateBondTopologyTest(absltest.TestCase): def test_no_charged(self): got = smu_utils_lib.create_bond_topology('CNFF', '111000', '1200') expected_str = ''' atoms: ATOM_C atoms: ATOM_N atoms: ATOM_F atoms: ATOM_F atoms: ATOM_H atoms: ATOM_H atoms: ATOM_H bonds { atom_b: 1 bond_type: BOND_SINGLE } bonds { atom_b: 2 bond_type: BOND_SINGLE } bonds { atom_b: 3 bond_type: BOND_SINGLE } bonds { atom_b: 4 bond_type: BOND_SINGLE } bonds { atom_a: 1 atom_b: 5 bond_type: BOND_SINGLE } bonds { atom_a: 1 atom_b: 6 bond_type: BOND_SINGLE } ''' expected = str_to_bond_topology(expected_str) self.assertEqual(str(expected), str(got)) def test_charged(self): # This is actually C N N+O- got = smu_utils_lib.create_bond_topology('CNNO', '200101', '2020') expected_str = ''' atoms: ATOM_C atoms: ATOM_N atoms: ATOM_NPOS atoms: ATOM_ONEG atoms: ATOM_H atoms: ATOM_H atoms: ATOM_H atoms: ATOM_H bonds { atom_b: 1 bond_type: BOND_DOUBLE } bonds { atom_a: 1 atom_b: 2 bond_type: BOND_SINGLE } bonds { atom_a: 2 atom_b: 3 bond_type: BOND_SINGLE } bonds { atom_b: 4 bond_type: BOND_SINGLE } bonds { atom_b: 5 bond_type: BOND_SINGLE } bonds { atom_a: 2 atom_b: 6 bond_type: BOND_SINGLE } bonds { atom_a: 2 atom_b: 7 bond_type: BOND_SINGLE } ''' expected = str_to_bond_topology(expected_str) self.assertEqual(str(expected), str(got)) def test_one_heavy(self): got = smu_utils_lib.create_bond_topology('C', '', '4') expected_str = ''' atoms: ATOM_C atoms: ATOM_H atoms: ATOM_H atoms: ATOM_H atoms: ATOM_H bonds { atom_b: 1 bond_type: BOND_SINGLE } bonds { atom_b: 2 bond_type: BOND_SINGLE } bonds { atom_b: 3 bond_type: BOND_SINGLE } bonds { atom_b: 4 bond_type: BOND_SINGLE } ''' expected = str_to_bond_topology(expected_str) self.assertEqual(str(expected), str(got)) class FromCSVTest(absltest.TestCase): def test_basic(self): infile = tempfile.NamedTemporaryFile(mode='w', delete=False) infile.write( 'id,num_atoms,atoms_str,connectivity_matrix,hydrogens,smiles\n') infile.write('68,3,C N+O-,310,010,[NH+]#C[O-]\n') infile.write('134,4,N+O-F F ,111000,1000,[O-][NH+](F)F\n') infile.close() out = smu_utils_lib.generate_bond_topologies_from_csv(infile.name) bt = next(out) self.assertEqual(68, bt.bond_topology_id) self.assertLen(bt.atoms, 4) self.assertEqual(bt.smiles, '[NH+]#C[O-]') bt = next(out) self.assertEqual(134, bt.bond_topology_id) self.assertLen(bt.atoms, 5) self.assertEqual(bt.smiles, '[O-][NH+](F)F') class ParseDuplicatesFileTest(absltest.TestCase): def test_basic(self): df = smu_utils_lib.parse_duplicates_file( os.path.join(TESTDATA_PATH, 'small.equivalent_isomers.dat')) pd.testing.assert_frame_equal( pd.DataFrame( columns=['name1', 'stoich1', 'btid1', 'shortconfid1', 'confid1', 'name2', 'stoich2', 'btid2', 'shortconfid2', 'confid2'], data=[ ['x07_c2n2o2fh3.224227.004', 'c2n2o2fh3', 224227, 4, 224227004, 'x07_c2n2o2fh3.224176.005', 'c2n2o2fh3', 224176, 5, 224176005], ['x07_c2n2o2fh3.260543.005', 'c2n2o2fh3', 260543, 5, 260543005, 'x07_c2n2o2fh3.224050.001', 'c2n2o2fh3', 224050, 1, 224050001], ]), df, check_like=True) class BondTopologyToMoleculeTest(absltest.TestCase): def test_o2(self): bond_topology = str_to_bond_topology(''' atoms: ATOM_O atoms: ATOM_O bonds { atom_b: 1 bond_type: BOND_DOUBLE } ''') got = smu_utils_lib.bond_topology_to_molecule(bond_topology) self.assertEqual('O=O', Chem.MolToSmiles(got)) def test_methane(self): bond_topology = str_to_bond_topology(''' atoms: ATOM_C atoms: ATOM_H atoms: ATOM_H atoms: ATOM_H atoms: ATOM_H bonds { atom_b: 1 bond_type: BOND_SINGLE } bonds { atom_b: 2 bond_type: BOND_SINGLE } bonds { atom_b: 3 bond_type: BOND_SINGLE } bonds { atom_b: 4 bond_type: BOND_SINGLE } ''') got = smu_utils_lib.bond_topology_to_molecule(bond_topology) self.assertEqual('[H]C([H])([H])[H]', Chem.MolToSmiles(got)) # This molecule is an N+ central atom, bonded to C (triply), O-, and F def test_charged_molecule(self): bond_topology = str_to_bond_topology(''' atoms: ATOM_C atoms: ATOM_NPOS atoms: ATOM_ONEG atoms: ATOM_F bonds { atom_b: 1 bond_type: BOND_TRIPLE } bonds { atom_a: 1 atom_b: 2 bond_type: BOND_SINGLE } bonds { atom_a: 1 atom_b: 3 bond_type: BOND_SINGLE } ''') got = smu_utils_lib.bond_topology_to_molecule(bond_topology) self.assertEqual('C#[N+]([O-])F', Chem.MolToSmiles(got)) class ConformerToMoleculeTest(absltest.TestCase): def setUp(self): super().setUp() self.conformer = get_stage2_conformer() # We'll make a new initial_geometry which is just the current one with all # coordinates multiplied by 1000 self.conformer.initial_geometries.append( self.conformer.initial_geometries[0]) new_geom = self.conformer.initial_geometries[1] for atom_pos in new_geom.atom_positions: atom_pos.x = atom_pos.x * 1000 atom_pos.y = atom_pos.y * 1000 atom_pos.z = atom_pos.z * 1000 # For the extra bond_topology, we'll just copy the existing one and change # the id. Through the dumb luck of the molecule we picked there's not a # simple way to make this a new bond topology and still have it look valid # to RDKit self.conformer.bond_topologies.append(self.conformer.bond_topologies[0]) self.conformer.bond_topologies[1].bond_topology_id = 99999 def test_all_outputs(self): mols = list(smu_utils_lib.conformer_to_molecules(self.conformer)) self.assertLen(mols, 6) # 2 bond topologies * (1 opt geom + 2 init_geom) self.assertEqual([m.GetProp('_Name') for m in mols], [ 'SMU 618451001 bt=618451(0/2) geom=init(0/2)', 'SMU 618451001 bt=618451(0/2) geom=init(1/2)', 'SMU 618451001 bt=618451(0/2) geom=opt', 'SMU 618451001 bt=99999(1/2) geom=init(0/2)', 'SMU 618451001 bt=99999(1/2) geom=init(1/2)', 'SMU 618451001 bt=99999(1/2) geom=opt' ]) self.assertEqual( '[H]C(F)=C(OC([H])([H])[H])OC([H])([H])[H]', Chem.MolToSmiles(mols[0], kekuleSmiles=True, isomericSmiles=False)) self.assertEqual( '[H]C(F)=C(OC([H])([H])[H])OC([H])([H])[H]', Chem.MolToSmiles(mols[4], kekuleSmiles=True, isomericSmiles=False)) def test_initial_only(self): mols = list( smu_utils_lib.conformer_to_molecules( self.conformer, include_initial_geometries=True, include_optimized_geometry=False, include_all_bond_topologies=False)) self.assertLen(mols, 2) self.assertEqual([m.GetProp('_Name') for m in mols], [ 'SMU 618451001 bt=618451(0/2) geom=init(0/2)', 'SMU 618451001 bt=618451(0/2) geom=init(1/2)', ]) # This is just one random atom I picked from the .dat file and converted to # angstroms instead of bohr. self.assertEqual('C', mols[0].GetAtomWithIdx(1).GetSymbol()) np.testing.assert_allclose([0.6643, -3.470301, 3.4766], list(mols[0].GetConformer().GetAtomPosition(1)), atol=1e-6) self.assertEqual('C', mols[1].GetAtomWithIdx(1).GetSymbol()) np.testing.assert_allclose([664.299998, -3470.300473, 3476.600215], list(mols[1].GetConformer().GetAtomPosition(1)), atol=1e-6) def test_optimized_only(self): mols = list( smu_utils_lib.conformer_to_molecules( self.conformer, include_initial_geometries=False, include_optimized_geometry=True, include_all_bond_topologies=False)) self.assertLen(mols, 1) self.assertEqual( mols[0].GetProp('_Name'), 'SMU 618451001 bt=618451(0/2) geom=opt', ) self.assertEqual( '[H]C(F)=C(OC([H])([H])[H])OC([H])([H])[H]', Chem.MolToSmiles(mols[0], kekuleSmiles=True, isomericSmiles=False)) # This is just two random atoms I picked from the .dat file and converted to # angstroms instead of bohr. self.assertEqual('C', mols[0].GetAtomWithIdx(1).GetSymbol()) np.testing.assert_allclose([0.540254, -3.465543, 3.456982], list(mols[0].GetConformer().GetAtomPosition(1)), atol=1e-6) self.assertEqual('H', mols[0].GetAtomWithIdx(13).GetSymbol()) np.testing.assert_allclose([2.135153, -1.817366, 0.226376], list(mols[0].GetConformer().GetAtomPosition(13)), atol=1e-6) class SmilesCompareTest(absltest.TestCase): def test_string_format(self): # for some simplicity later on, we use shorter names self.assertEqual('MISSING', str(smu_utils_lib.SmilesCompareResult.MISSING)) self.assertEqual('MISMATCH', str(smu_utils_lib.SmilesCompareResult.MISMATCH)) self.assertEqual('MATCH', str(smu_utils_lib.SmilesCompareResult.MATCH)) def test_missing(self): bond_topology = str_to_bond_topology(''' atoms: ATOM_O atoms: ATOM_O bonds { atom_b: 1 bond_type: BOND_DOUBLE } ''') result, with_h, without_h = smu_utils_lib.bond_topology_smiles_comparison( bond_topology) self.assertEqual(smu_utils_lib.SmilesCompareResult.MISSING, result) self.assertEqual('O=O', with_h) self.assertEqual('O=O', without_h) # Also directly test compute_smiles_for_bond_topology self.assertEqual( 'O=O', smu_utils_lib.compute_smiles_for_bond_topology( bond_topology, include_hs=True)) def test_mismatch(self): bond_topology = str_to_bond_topology(''' atoms: ATOM_O atoms: ATOM_O bonds { atom_b: 1 bond_type: BOND_DOUBLE } smiles: "BlahBlahBlah" ''') result, with_h, without_h = smu_utils_lib.bond_topology_smiles_comparison( bond_topology) self.assertEqual(smu_utils_lib.SmilesCompareResult.MISMATCH, result) self.assertEqual('O=O', with_h) self.assertEqual('O=O', without_h) def test_matched_and_h_stripping(self): bond_topology = str_to_bond_topology(''' atoms: ATOM_O atoms: ATOM_H atoms: ATOM_H bonds { atom_b: 1 bond_type: BOND_SINGLE } bonds { atom_b: 2 bond_type: BOND_SINGLE } smiles: "O" ''') result, with_h, without_h = smu_utils_lib.bond_topology_smiles_comparison( bond_topology) self.assertEqual(smu_utils_lib.SmilesCompareResult.MATCH, result) self.assertEqual('[H]O[H]', with_h) self.assertEqual('O', without_h) # Also directly test compute_smiles_for_bond_topology self.assertEqual( '[H]O[H]', smu_utils_lib.compute_smiles_for_bond_topology( bond_topology, include_hs=True)) self.assertEqual( 'O', smu_utils_lib.compute_smiles_for_bond_topology( bond_topology, include_hs=False)) def test_compute_smiles_from_molecule_no_hs(self): mol = Chem.MolFromSmiles('FOC', sanitize=False) self.assertEqual( smu_utils_lib.compute_smiles_for_molecule(mol, include_hs=False), 'COF') # This is expected. Even with include_hs=True, if there were no Hs in the # molecule, they will not be in the smiles. self.assertEqual( smu_utils_lib.compute_smiles_for_molecule(mol, include_hs=True), 'COF') def test_compute_smiles_from_molecule_with_hs(self): mol = Chem.MolFromSmiles('FOC', sanitize=False) Chem.SanitizeMol(mol, Chem.rdmolops.SanitizeFlags.SANITIZE_ADJUSTHS) mol = Chem.AddHs(mol) self.assertEqual( smu_utils_lib.compute_smiles_for_molecule(mol, include_hs=False), 'COF') self.assertEqual( smu_utils_lib.compute_smiles_for_molecule(mol, include_hs=True), '[H]C([H])([H])OF') def test_compute_smiles_from_molecule_special_case(self): mol = Chem.MolFromSmiles('C12=C3C4=C1C4=C23', sanitize=False) # Double check that this really is the special case -- we get back the # SMILES we put in even though it's not the one we want. self.assertEqual('C12=C3C4=C1C4=C23', Chem.MolToSmiles(mol, kekuleSmiles=True)) self.assertEqual( smu_utils_lib.compute_smiles_for_molecule(mol, include_hs=False), 'C12=C3C1=C1C2=C31') def test_compute_smiles_from_molecule_labeled_with_h(self): mol = Chem.MolFromSmiles( '[O-][N+]([H])([H])N([H])OC([H])([H])F', sanitize=False) self.assertIsNotNone(mol) self.assertEqual( '[O-][N+:1]([H:2])([H:3])[N:4]([H:5])[O:6][C:7]([H:8])([H:9])[F:10]', smu_utils_lib.compute_smiles_for_molecule( mol, include_hs=True, labeled_atoms=True)) def test_compute_smiles_from_molecule_labeled_no_h(self): mol = Chem.MolFromSmiles( '[O-][N+]([H])([H])N([H])OC([H])([H])F', sanitize=False) self.assertIsNotNone(mol) self.assertEqual( '[O-][NH2+:1][NH:2][O:3][CH2:4][F:5]', smu_utils_lib.compute_smiles_for_molecule( mol, include_hs=False, labeled_atoms=True)) class MergeConformersTest(absltest.TestCase): def setUp(self): super().setUp() # We are relying on the fact that the first conformer in both x07_sample.dat # and x07_stage1.dat are the same. self.stage1_conformer = get_stage1_conformer() self.stage2_conformer = get_stage2_conformer() self.duplicate_conformer = dataset_pb2.Conformer() self.duplicate_conformer.conformer_id = self.stage1_conformer.conformer_id # A real duplicate conformer wouldn't have both of these fields filled in, # but it's fine for the test to make sure everything is copied. self.duplicate_conformer.duplicated_by = 123 self.duplicate_conformer.duplicate_of.extend([111, 222]) def test_two_stage2(self): with self.assertRaises(ValueError): smu_utils_lib.merge_conformer(self.stage2_conformer, self.stage2_conformer) def test_two_stage1(self): with self.assertRaises(ValueError): smu_utils_lib.merge_conformer(self.stage1_conformer, self.stage1_conformer) def test_two_duplicates(self): duplicate_conformer2 = copy.deepcopy(self.duplicate_conformer) duplicate_conformer2.duplicate_of[:] = [333, 444] got_conf, got_conflict = smu_utils_lib.merge_conformer( self.duplicate_conformer, duplicate_conformer2) self.assertIsNone(got_conflict) self.assertEqual(123, got_conf.duplicated_by) self.assertCountEqual([111, 222, 333, 444], got_conf.duplicate_of) def test_stage2_stage1(self): # Add a duplicate to stage1 to make sure it is copied self.stage1_conformer.duplicate_of.append(999) got_conf, got_conflict = smu_utils_lib.merge_conformer( self.stage2_conformer, self.stage1_conformer) self.assertIsNone(got_conflict) self.assertEqual(got_conf.duplicate_of, [999]) # Just check a random field that is in stage2 but not stage1 self.assertNotEmpty(got_conf.properties.normal_modes) def test_stage2_stage1_conflict_energy(self): self.stage2_conformer.properties.initial_geometry_energy.value = -1.23 got_conf, got_conflict = smu_utils_lib.merge_conformer( self.stage2_conformer, self.stage1_conformer) self.assertEqual(got_conflict, [ 618451001, 1, 1, 1, 1, -406.51179, 0.052254, -406.522079, 2.5e-05, True, True, 1, 1, 1, 1, -1.23, 0.052254, -406.522079, 2.5e-05, True, True ]) # Just check a random field that is in stage2 but not stage1 self.assertNotEmpty(got_conf.properties.normal_modes) # This stage2 values should be returned self.assertEqual(got_conf.properties.initial_geometry_energy.value, -1.23) def test_stage2_stage1_conflict_error_codes(self): self.stage2_conformer.properties.errors.error_nstat1 = 999 got_conf, got_conflict = smu_utils_lib.merge_conformer( self.stage2_conformer, self.stage1_conformer) self.assertEqual(got_conflict, [ 618451001, 1, 1, 1, 1, -406.51179, 0.052254, -406.522079, 2.5e-05, True, True, 999, 1, 1, 1, -406.51179, 0.052254, -406.522079, 2.5e-05, True, True ]) # Just check a random field that is in stage2 but not stage1 self.assertNotEmpty(got_conf.properties.normal_modes) def test_stage2_stage1_conflict_missing_geometry(self): self.stage2_conformer.ClearField('optimized_geometry') got_conf, got_conflict = smu_utils_lib.merge_conformer( self.stage2_conformer, self.stage1_conformer) self.assertEqual(got_conflict, [ 618451001, 1, 1, 1, 1, -406.51179, 0.052254, -406.522079, 2.5e-05, True, True, 1, 1, 1, 1, -406.51179, 0.052254, -406.522079, 2.5e-05, True, False ]) # Just check a random field that is in stage2 but not stage1 self.assertNotEmpty(got_conf.properties.normal_modes) def test_stage2_stage1_no_conflict_minus1(self): # If stage2 contains a -1, we keep that (stricter error checking later on) self.stage2_conformer.properties.initial_geometry_energy.value = -1.0 got_conf, got_conflict = smu_utils_lib.merge_conformer( self.stage2_conformer, self.stage1_conformer) self.assertIsNone(got_conflict) self.assertEqual(got_conf.properties.initial_geometry_energy.value, -1.0) def test_stage2_stage1_no_conflict_approx_equal(self): self.stage2_conformer.properties.initial_geometry_energy.value += 1e-7 got_conf, got_conflict = smu_utils_lib.merge_conformer( self.stage2_conformer, self.stage1_conformer) self.assertIsNone(got_conflict) # Just check a random field from stage2 self.assertNotEmpty(got_conf.properties.normal_modes) def test_stage2_duplicate(self): got_conf, got_conflict = smu_utils_lib.merge_conformer( self.stage2_conformer, self.duplicate_conformer) self.assertIsNone(got_conflict) self.assertEqual(got_conf.duplicate_of, [111, 222]) self.assertEqual(got_conf.duplicated_by, 123) # Just check a random field from stage2 self.assertNotEmpty(got_conf.properties.normal_modes) def test_stage1_duplicate(self): got_conf, got_conflict = smu_utils_lib.merge_conformer( self.stage1_conformer, self.duplicate_conformer) self.assertIsNone(got_conflict) self.assertEqual(got_conf.duplicate_of, [111, 222]) self.assertEqual(got_conf.duplicated_by, 123) # Just check a random field from stage1 self.assertTrue(got_conf.properties.HasField('initial_geometry_energy')) def test_multiple_initial_geometries(self): bad_conformer = copy.deepcopy(self.stage1_conformer) bad_conformer.initial_geometries.append(bad_conformer.initial_geometries[0]) with self.assertRaises(ValueError): smu_utils_lib.merge_conformer(bad_conformer, self.stage2_conformer) with self.assertRaises(ValueError): smu_utils_lib.merge_conformer(self.stage2_conformer, bad_conformer) def test_multiple_bond_topologies(self): bad_conformer = copy.deepcopy(self.stage1_conformer) bad_conformer.bond_topologies.append(bad_conformer.bond_topologies[0]) with self.assertRaises(ValueError): smu_utils_lib.merge_conformer(bad_conformer, self.stage2_conformer) with self.assertRaises(ValueError): smu_utils_lib.merge_conformer(self.stage2_conformer, bad_conformer) def test_different_bond_topologies(self): self.stage1_conformer.bond_topologies[0].atoms[0] = ( dataset_pb2.BondTopology.ATOM_H) with self.assertRaises(ValueError): smu_utils_lib.merge_conformer(self.stage1_conformer, self.stage2_conformer) with self.assertRaises(ValueError): smu_utils_lib.merge_conformer(self.stage2_conformer, self.stage1_conformer) class ConformerErrorTest(absltest.TestCase): def test_stage1_no_error(self): conformer = get_stage1_conformer() self.assertFalse(smu_utils_lib.conformer_has_calculation_errors(conformer)) def test_stage1_error(self): conformer = get_stage2_conformer() conformer.properties.errors.error_frequencies = 123 self.assertTrue(smu_utils_lib.conformer_has_calculation_errors(conformer)) def test_stage2_no_error(self): conformer = get_stage2_conformer() self.assertFalse(smu_utils_lib.conformer_has_calculation_errors(conformer)) def test_stage2_error_in_1_expected_field(self): conformer = get_stage2_conformer() conformer.properties.errors.error_rotational_modes = 123 self.assertTrue(smu_utils_lib.conformer_has_calculation_errors(conformer)) def test_stage2_error_in_0_expected_field(self): conformer = get_stage2_conformer() # This field is 0 to indicate no error. Why the discrepancy? Who knows! conformer.properties.errors.error_nsvg09 = 1 self.assertTrue(smu_utils_lib.conformer_has_calculation_errors(conformer)) def test_stage2_nstat1_is_3(self): # This is the other bizaare case. nstat1 of 3 is still considered success. conformer = get_stage2_conformer() conformer.properties.errors.error_nstat1 = 3 self.assertFalse(smu_utils_lib.conformer_has_calculation_errors(conformer)) class FilterConformerByAvailabilityTest(absltest.TestCase): def setUp(self): super().setUp() self.conformer = dataset_pb2.Conformer() properties = self.conformer.properties # A STANDARD field properties.single_point_energy_pbe0d3_6_311gd.value = 1.23 # A COMPLETE field properties.homo_pbe0_aug_pc_1.value = 1.23 # An INTERNAL_ONLY field properties.nuclear_repulsion_energy.value = 1.23 def test_standard(self): smu_utils_lib.filter_conformer_by_availability(self.conformer, [dataset_pb2.STANDARD]) self.assertTrue( self.conformer.properties.HasField( 'single_point_energy_pbe0d3_6_311gd')) self.assertFalse(self.conformer.properties.HasField('homo_pbe0_aug_pc_1')) self.assertFalse( self.conformer.properties.HasField('nuclear_repulsion_energy')) def test_complete_and_internal_only(self): smu_utils_lib.filter_conformer_by_availability( self.conformer, [dataset_pb2.COMPLETE, dataset_pb2.INTERNAL_ONLY]) self.assertFalse( self.conformer.properties.HasField( 'single_point_energy_pbe0d3_6_311gd')) self.assertTrue(self.conformer.properties.HasField('homo_pbe0_aug_pc_1')) self.assertTrue( self.conformer.properties.HasField('nuclear_repulsion_energy')) class ConformerToStandardTest(absltest.TestCase): def setUp(self): super().setUp() self.conformer = get_stage2_conformer() def test_field_filtering(self): # Check that the field which should be filtered starts out set self.assertTrue(self.conformer.properties.HasField( 'single_point_energy_hf_6_31gd')) got = smu_utils_lib.conformer_to_standard(self.conformer) # Check for a field that was originally in self.conformer and should be # filtered and a field which should still be present. self.assertTrue(got.properties.HasField( 'single_point_energy_pbe0d3_6_311gd')) self.assertFalse( got.properties.HasField('single_point_energy_hf_6_31gd')) def test_remove_error_conformer(self): self.conformer.properties.errors.error_frequencies = 123 self.assertIsNone(smu_utils_lib.conformer_to_standard(self.conformer)) def test_remove_duplicate(self): self.conformer.duplicated_by = 123 self.assertIsNone(smu_utils_lib.conformer_to_standard(self.conformer)) class DetermineFateTest(parameterized.TestCase): def test_duplicate_same_topology(self): conformer = get_stage1_conformer() # bond topology is conformer_id // 1000 conformer.duplicated_by = conformer.conformer_id + 1 self.assertEqual(dataset_pb2.Conformer.FATE_DUPLICATE_SAME_TOPOLOGY, smu_utils_lib.determine_fate(conformer)) def test_duplicate_different_topology(self): conformer = get_stage1_conformer() # bond topology is conformer_id // 1000 conformer.duplicated_by = conformer.conformer_id + 1000 self.assertEqual(dataset_pb2.Conformer.FATE_DUPLICATE_DIFFERENT_TOPOLOGY, smu_utils_lib.determine_fate(conformer)) @parameterized.parameters( (2, dataset_pb2.Conformer.FATE_GEOMETRY_OPTIMIZATION_PROBLEM), (5, dataset_pb2.Conformer.FATE_DISASSOCIATED), (4, dataset_pb2.Conformer.FATE_FORCE_CONSTANT_FAILURE), (6, dataset_pb2.Conformer.FATE_DISCARDED_OTHER)) def test_geometry_failures(self, nstat1, expected_fate): conformer = get_stage1_conformer() conformer.properties.errors.error_nstat1 = nstat1 self.assertEqual(expected_fate, smu_utils_lib.determine_fate(conformer)) def test_no_result(self): conformer = get_stage1_conformer() self.assertEqual(dataset_pb2.Conformer.FATE_NO_CALCULATION_RESULTS, smu_utils_lib.determine_fate(conformer)) def test_calculation_errors(self): conformer = get_stage2_conformer() # This is a random choice of an error to set. I just need some error. conformer.properties.errors.error_atomic_analysis = 999 self.assertEqual(dataset_pb2.Conformer.FATE_CALCULATION_WITH_ERROR, smu_utils_lib.determine_fate(conformer)) def test_success(self): conformer = get_stage2_conformer() self.assertEqual(dataset_pb2.Conformer.FATE_SUCCESS, smu_utils_lib.determine_fate(conformer)) class ToBondTopologySummaryTest(absltest.TestCase): def setUp(self): super().setUp() self.conformer = get_stage2_conformer() def test_dup_same(self): self.conformer.fate = dataset_pb2.Conformer.FATE_DUPLICATE_SAME_TOPOLOGY got = list( smu_utils_lib.conformer_to_bond_topology_summaries(self.conformer)) self.assertLen(got, 1) self.assertEqual(got[0].bond_topology.bond_topology_id, self.conformer.bond_topologies[0].bond_topology_id) self.assertEqual(got[0].count_attempted_conformers, 1) self.assertEqual(got[0].count_duplicates_same_topology, 1) def test_dup_diff(self): self.conformer.fate = ( dataset_pb2.Conformer.FATE_DUPLICATE_DIFFERENT_TOPOLOGY) got = list( smu_utils_lib.conformer_to_bond_topology_summaries(self.conformer)) self.assertLen(got, 1) self.assertEqual(got[0].count_attempted_conformers, 1) self.assertEqual(got[0].count_duplicates_different_topology, 1) def test_geometry_failed(self): self.conformer.fate = (dataset_pb2.Conformer.FATE_DISCARDED_OTHER) got = list( smu_utils_lib.conformer_to_bond_topology_summaries(self.conformer)) self.assertLen(got, 1) self.assertEqual(got[0].count_attempted_conformers, 1) self.assertEqual(got[0].count_failed_geometry_optimization, 1) def test_missing_calculation(self): self.conformer.fate = dataset_pb2.Conformer.FATE_NO_CALCULATION_RESULTS got = list( smu_utils_lib.conformer_to_bond_topology_summaries(self.conformer)) self.assertLen(got, 1) self.assertEqual(got[0].count_attempted_conformers, 1) self.assertEqual(got[0].count_kept_geometry, 1) self.assertEqual(got[0].count_missing_calculation, 1) def test_calculation_with_error(self): self.conformer.fate = dataset_pb2.Conformer.FATE_CALCULATION_WITH_ERROR self.conformer.bond_topologies.append(self.conformer.bond_topologies[0]) self.conformer.bond_topologies[-1].bond_topology_id = 123 got = list( smu_utils_lib.conformer_to_bond_topology_summaries(self.conformer)) self.assertLen(got, 2) # We don't actually care about the order, but this is what comes out right # now. self.assertEqual(got[0].bond_topology.bond_topology_id, 123) self.assertEqual(got[0].count_attempted_conformers, 0) self.assertEqual(got[0].count_kept_geometry, 0) self.assertEqual(got[0].count_calculation_with_error, 0) self.assertEqual(got[0].count_detected_match_with_error, 1) self.assertEqual(got[1].bond_topology.bond_topology_id, self.conformer.bond_topologies[0].bond_topology_id) self.assertEqual(got[1].count_attempted_conformers, 1) self.assertEqual(got[1].count_kept_geometry, 1) self.assertEqual(got[1].count_calculation_with_error, 1) self.assertEqual(got[1].count_detected_match_with_error, 0) def test_calculation_success(self): self.conformer.fate = dataset_pb2.Conformer.FATE_SUCCESS self.conformer.bond_topologies.append(self.conformer.bond_topologies[0]) self.conformer.bond_topologies[-1].bond_topology_id = 123 got = list( smu_utils_lib.conformer_to_bond_topology_summaries(self.conformer)) self.assertLen(got, 2) # We don't actually care about the order, but this is what comes out right # now. self.assertEqual(got[0].bond_topology.bond_topology_id, 123) self.assertEqual(got[0].count_attempted_conformers, 0) self.assertEqual(got[0].count_kept_geometry, 0) self.assertEqual(got[0].count_calculation_success, 0) self.assertEqual(got[0].count_detected_match_success, 1) self.assertEqual(got[1].bond_topology.bond_topology_id, self.conformer.bond_topologies[0].bond_topology_id) self.assertEqual(got[1].count_attempted_conformers, 1) self.assertEqual(got[1].count_kept_geometry, 1) self.assertEqual(got[1].count_calculation_success, 1) self.assertEqual(got[1].count_detected_match_success, 0) class LabeledSmilesTester(absltest.TestCase): def test_atom_labels(self): mol = Chem.MolFromSmiles('FCON[NH2+][O-]', sanitize=False) self.assertIsNotNone(mol) smiles_before = Chem.MolToSmiles(mol) self.assertEqual( smu_utils_lib.labeled_smiles(mol), 'F[CH2:1][O:2][NH:3][NH2+:4][O-:5]') # Testing both the atom numbers and the smiles is redundant, # but guards against possible future changes. for atom in mol.GetAtoms(): self.assertEqual(atom.GetAtomMapNum(), 0) self.assertEqual(Chem.MolToSmiles(mol), smiles_before) if __name__ == '__main__': absltest.main()
apache-2.0
kgullikson88/TS23-Scripts
CheckSyntheticTemperature.py
1
14868
import os import re from collections import defaultdict from operator import itemgetter import logging import pandas from scipy.interpolate import InterpolatedUnivariateSpline as spline from george import kernels import matplotlib.pyplot as plt import numpy as np import george import emcee import StarData import SpectralTypeRelations def classify_filename(fname, type='bright'): """ Given a CCF filename, it classifies the star combination, temperature, metallicity, and vsini :param fname: :return: """ # First, remove any leading directories fname = fname.split('/')[-1] # Star combination m1 = re.search('\.[0-9]+kps', fname) stars = fname[:m1.start()] star1 = stars.split('+')[0].replace('_', ' ') star2 = stars.split('+')[1].split('_{}'.format(type))[0].replace('_', ' ') # secondary star vsini vsini = float(fname[m1.start() + 1:].split('kps')[0]) # Temperature m2 = re.search('[0-9]+\.0K', fname) temp = float(m2.group()[:-1]) # logg m3 = re.search('K\+[0-9]\.[0-9]', fname) logg = float(m3.group()[1:]) # metallicity metal = float(fname.split(str(logg))[-1]) return star1, star2, vsini, temp, logg, metal def get_ccf_data(basedir, primary_name=None, secondary_name=None, vel_arr=np.arange(-900.0, 900.0, 0.1), type='bright'): """ Searches the given directory for CCF files, and classifies by star, temperature, metallicity, and vsini :param basedir: The directory to search for CCF files :keyword primary_name: Optional keyword. If given, it will only get the requested primary star data :keyword secondary_name: Same as primary_name, but only reads ccfs for the given secondary :keyword vel_arr: The velocities to interpolate each ccf at :return: pandas DataFrame """ if not basedir.endswith('/'): basedir += '/' all_files = ['{}{}'.format(basedir, f) for f in os.listdir(basedir) if type in f.lower()] primary = [] secondary = [] vsini_values = [] temperature = [] gravity = [] metallicity = [] ccf = [] for fname in all_files: star1, star2, vsini, temp, logg, metal = classify_filename(fname, type=type) if primary_name is not None and star1.lower() != primary_name.lower(): continue if secondary_name is not None and star2.lower() != secondary_name.lower(): continue vel, corr = np.loadtxt(fname, unpack=True) fcn = spline(vel, corr) ccf.append(fcn(vel_arr)) primary.append(star1) secondary.append(star2) vsini_values.append(vsini) temperature.append(temp) gravity.append(logg) metallicity.append(metal) # Make a pandas dataframe with all this data df = pandas.DataFrame(data={'Primary': primary, 'Secondary': secondary, 'Temperature': temperature, 'vsini': vsini_values, 'logg': gravity, '[Fe/H]': metallicity, 'CCF': ccf}) return df def get_ccf_summary(basedir, vel_arr=np.arange(-900.0, 900.0, 0.1), velocity='highest', type='bright'): """ Very similar to get_ccf_data, but does it in a way that is more memory efficient :param basedir: The directory to search for CCF files :keyword velocity: The velocity to measure the CCF at. The default is 'highest', and uses the maximum of the ccf :keyword vel_arr: The velocities to interpolate each ccf at :return: pandas DataFrame """ if not basedir.endswith('/'): basedir += '/' all_files = ['{}{}'.format(basedir, f) for f in os.listdir(basedir) if type in f.lower()] file_dict = defaultdict(lambda: defaultdict(list)) for fname in all_files: star1, star2, vsini, temp, logg, metal = classify_filename(fname, type=type) file_dict[star1][star2].append(fname) # Now, read the ccfs for each primary/secondary combo, and find the best combination summary_dfs = [] for primary in file_dict.keys(): for secondary in file_dict[primary].keys(): data = get_ccf_data(basedir, primary_name=primary, secondary_name=secondary, vel_arr=vel_arr, type=type) summary_dfs.append(find_best_pars(data, velocity=velocity, vel_arr=vel_arr)) return pandas.concat(summary_dfs, ignore_index=True) def find_best_pars(df, velocity='highest', vel_arr=np.arange(-900.0, 900.0, 0.1)): """ Find the 'best-fit' parameters for each combination of primary and secondary star :param df: the dataframe to search in :keyword velocity: The velocity to measure the CCF at. The default is 'highest', and uses the maximum of the ccf :keyword vel_arr: The velocities to interpolate each ccf at :return: a dataframe with keys of primary, secondary, and the parameters """ # Get the names of the primary and secondary stars primary_names = pandas.unique(df.Primary) secondary_names = pandas.unique(df.Secondary) # Find the ccf value at the given velocity if velocity == 'highest': fcn = lambda row: (np.max(row), vel_arr[np.argmax(row)]) vals = df['CCF'].map(fcn) df['ccf_max'] = vals.map(lambda l: l[0]) df['rv'] = vals.map(lambda l: l[1]) # df['ccf_max'] = df['CCF'].map(np.max) else: df['ccf_max'] = df['CCF'].map(lambda arr: arr[np.argmin(np.abs(vel_arr - velocity))]) # Find the best parameter for each combination d = defaultdict(list) for primary in primary_names: for secondary in secondary_names: good = df.loc[(df.Primary == primary) & (df.Secondary == secondary)] best = good.loc[good.ccf_max == good.ccf_max.max()] d['Primary'].append(primary) d['Secondary'].append(secondary) d['Temperature'].append(best['Temperature'].item()) d['vsini'].append(best['vsini'].item()) d['logg'].append(best['logg'].item()) d['[Fe/H]'].append(best['[Fe/H]'].item()) d['rv'].append(best['rv'].item()) return pandas.DataFrame(data=d) def get_detected_objects(df, tol=1.0): """ Takes a summary dataframe with RV information. Finds the median rv for each star, and removes objects that are 'tol' km/s from the median value :param df: A summary dataframe, such as created by find_best_pars :param tol: The tolerance, in km/s, to accept an observation as detected :return: a dataframe containing only detected companions """ secondary_names = pandas.unique(df.Secondary) secondary_to_rv = defaultdict(float) for secondary in secondary_names: rv = df.loc[df.Secondary == secondary]['rv'].median() secondary_to_rv[secondary] = rv print secondary, rv keys = df.Secondary.values good = df.loc[abs(df.rv.values - np.array(itemgetter(*keys)(secondary_to_rv))) < tol] return good def add_actual_temperature(df, method='spt'): """ Add the actual temperature to a given summary dataframe :param df: The dataframe to which we will add the actual secondary star temperature :param method: How to get the actual temperature. Options are: - 'spt': Use main-sequence relationships to go from spectral type --> temperature - 'excel': Use tabulated data, available in the file 'SecondaryStar_Temperatures.xls' :return: copy of the original dataframe, with an extra column for the secondary star temperature """ # First, get a list of the secondary stars in the data secondary_names = pandas.unique(df.Secondary) secondary_to_temperature = defaultdict(float) secondary_to_error = defaultdict(float) if method.lower() == 'spt': MS = SpectralTypeRelations.MainSequence() for secondary in secondary_names: star_data = StarData.GetData(secondary) spt = star_data.spectype[0] + re.search('[0-9]\.*[0-9]*', star_data.spectype).group() T_sec = MS.Interpolate(MS.Temperature, spt) secondary_to_temperature[secondary] = T_sec elif method.lower() == 'excel': table = pandas.read_excel('SecondaryStar_Temperatures.xls', 0) for secondary in secondary_names: T_sec = table.loc[table.Star.str.lower().str.contains(secondary.strip().lower())]['Literature_Temp'].item() T_error = table.loc[table.Star.str.lower().str.contains(secondary.strip().lower())][ 'Literature_error'].item() secondary_to_temperature[secondary] = T_sec secondary_to_error[secondary] = T_error df['Tactual'] = df['Secondary'].map(lambda s: secondary_to_temperature[s]) df['Tact_err'] = df['Secondary'].map(lambda s: secondary_to_error[s]) return def make_gaussian_process_samples(df): """ Make a gaussian process fitting the Tactual-Tmeasured relationship :param df: pandas DataFrame with columns 'Temperature' (with the measured temperature) and 'Tactual' (for the actual temperature) :return: emcee sampler instance """ # First, find the uncertainties at each actual temperature # Tactual = df['Tactual'].values #Tmeasured = df['Temperature'].values #error = df['Tact_err'].values temp = df.groupby('Temperature').mean()['Tactual'] Tmeasured = temp.keys().values Tactual = temp.values error = np.nan_to_num(df.groupby('Temperature').std(ddof=1)['Tactual'].values) default = np.median(error[error > 1]) error = np.maximum(error, np.ones(error.size) * default) for Tm, Ta, e in zip(Tmeasured, Tactual, error): print Tm, Ta, e plt.figure(1) plt.errorbar(Tmeasured, Tactual, yerr=error, fmt='.k', capsize=0) plt.plot(Tmeasured, Tmeasured, 'r--') plt.xlim((min(Tmeasured) - 100, max(Tmeasured) + 100)) plt.xlabel('Measured Temperature') plt.ylabel('Actual Temperature') plt.show(block=False) # Define some functions to use in the GP fit def model(pars, T): #polypars = pars[2:] #return np.poly1d(polypars)(T) return T def lnlike(pars, Tact, Tmeas, Terr): a, tau = np.exp(pars[:2]) gp = george.GP(a * kernels.ExpSquaredKernel(tau)) gp.compute(Tmeas, Terr) return gp.lnlikelihood(Tact - model(pars, Tmeas)) def lnprior(pars): lna, lntau = pars[:2] polypars = pars[2:] if -20 < lna < 20 and 4 < lntau < 20: return 0.0 return -np.inf def lnprob(pars, x, y, yerr): lp = lnprior(pars) return lp + lnlike(pars, x, y, yerr) if np.isfinite(lp) else -np.inf # Set up the emcee fitter initial = np.array([0, 6])#, 1.0, 0.0]) ndim = len(initial) nwalkers = 100 p0 = [np.array(initial) + 1e-8 * np.random.randn(ndim) for i in xrange(nwalkers)] sampler = emcee.EnsembleSampler(nwalkers, ndim, lnprob, args=(Tactual, Tmeasured, error)) print 'Running first burn-in' p1, lnp, _ = sampler.run_mcmc(p0, 500) sampler.reset() print "Running second burn-in..." p_best = p1[np.argmax(lnp)] p2 = [p_best + 1e-8 * np.random.randn(ndim) for i in xrange(nwalkers)] p3, _, _ = sampler.run_mcmc(p2, 250) sampler.reset() print "Running production..." sampler.run_mcmc(p3, 1000) # Plot a bunch of the fits print "Plotting..." N = 100 Tvalues = np.arange(3300, 7000, 20) idx = np.argsort(-sampler.lnprobability.flatten())[:N] # Get N 'best' curves par_vals = sampler.flatchain[idx] for i, pars in enumerate(par_vals): a, tau = np.exp(pars[:2]) gp = george.GP(a * kernels.ExpSquaredKernel(tau)) gp.compute(Tmeasured, error) s = gp.sample_conditional(Tactual - model(pars, Tmeasured), Tvalues) + model(pars, Tvalues) plt.plot(Tvalues, s, 'b-', alpha=0.1) plt.draw() # Finally, get posterior samples at all the possibly measured temperatures print 'Generating posterior samples at all temperatures...' N = 10000 # This is 1/10th of the total number of samples! idx = np.argsort(-sampler.lnprobability.flatten())[:N] # Get N 'best' curves par_vals = sampler.flatchain[idx] Tvalues = np.arange(3000, 6900, 100) gp_posterior = [] for pars in par_vals: a, tau = np.exp(pars[:2]) gp = george.GP(a * kernels.ExpSquaredKernel(tau)) gp.compute(Tmeasured, error) s = gp.sample_conditional(Tactual - model(pars, Tmeasured), Tvalues) + model(pars, Tvalues) gp_posterior.append(s) # Finally, make confidence intervals for the actual temperatures gp_posterior = np.array(gp_posterior) l, m, h = np.percentile(gp_posterior, [16.0, 50.0, 84.0], axis=0) conf = pandas.DataFrame(data={'Measured Temperature': Tvalues, 'Actual Temperature': m, 'Lower Bound': l, 'Upper bound': h}) conf.to_csv('Confidence_Intervals.csv', index=False) return sampler, np.array(gp_posterior) def check_posterior(df, posterior, Tvalues): """ Checks the posterior samples: Are 95% of the measurements within 2-sigma of the prediction? :param df: The summary dataframe :param posterior: The MCMC predicted values :param Tvalues: The measured temperatures the posterior was made with :return: boolean, as well as some warning messages if applicable """ # First, make 2-sigma confidence intervals l, m, h = np.percentile(posterior, [5.0, 50.0, 95.0], axis=0) # Save the confidence intervals # conf = pandas.DataFrame(data={'Measured Temperature': Tvalues, 'Actual Temperature': m, # 'Lower Bound': l, 'Upper bound': h}) #conf.to_csv('Confidence_Intervals.csv', index=False) Ntot = [] # The total number of observations with the given measured temperature Nacc = [] # The number that have actual temperatures within the confidence interval g = df.groupby('Temperature') for i, T in enumerate(Tvalues): if T in g.groups.keys(): Ta = g.get_group(T)['Tactual'] low, high = l[i], h[i] Ntot.append(len(Ta)) Nacc.append(len(Ta.loc[(Ta >= low) & (Ta <= high)])) p = float(Nacc[-1]) / float(Ntot[-1]) if p < 0.95: logging.warn( 'Only {}/{} of the samples ({:.2f}%) were accepted for T = {} K'.format(Nacc[-1], Ntot[-1], p * 100, T)) print low, high print sorted(Ta) else: Ntot.append(0) Nacc.append(0) p = float(sum(Nacc)) / float(sum(Ntot)) if p < 0.95: logging.warn('Only {:.2f}% of the total samples were accepted!'.format(p * 100)) return False return True if __name__ == '__main__': pass
gpl-3.0
codester2/devide.johannes
install_packages/ip_matplotlib.py
5
5932
# Copyright (c) Charl P. Botha, TU Delft. # All rights reserved. # See COPYRIGHT for details. import config from install_package import InstallPackage import os import shutil import sys import utils from distutils import sysconfig MPL_VER = "1.1.0" if os.name == 'posix': MPL_ARCHIVE = "matplotlib-%s.tar.gz" % (MPL_VER,) MPL_URL = "http://surfnet.dl.sourceforge.net/sourceforge/matplotlib/%s" % \ (MPL_ARCHIVE,) elif os.name == 'nt': if config.WINARCH_STR == 'x64': WINTHINGY = 'win-amd64' else: WINTHINGY = 'win32' MPL_ARCHIVE = "matplotlib-%s.%s-py2.7.exe" % (MPL_VER, WINTHINGY) MPL_URL = "http://graphics.tudelft.nl/~cpbotha/files/devide/johannes_support/gohlke/%s" % (MPL_ARCHIVE,) MPL_DIRBASE = "matplotlib-%s" % (MPL_VER,) # I prefer that this be built with numpy, but it is not a dependency # per se dependencies = [] class matplotlib(InstallPackage): def __init__(self): self.tbfilename = os.path.join(config.archive_dir, MPL_ARCHIVE) self.build_dir = os.path.join(config.build_dir, MPL_DIRBASE) self.inst_dir = os.path.join(config.inst_dir, 'matplotlib') def get(self): if os.path.exists(self.tbfilename): utils.output("%s already present, not downloading." % (MPL_ARCHIVE,)) else: utils.goto_archive() utils.urlget(MPL_URL) def unpack(self): if os.path.isdir(self.build_dir): utils.output("MATPLOTLIB source already unpacked, not redoing.") else: if os.name == 'posix': utils.output("Unpacking MATPLOTLIB source.") utils.unpack_build(self.tbfilename) else: utils.output("Unpacking MATPLOTLIB binaries.") os.mkdir(self.build_dir) os.chdir(self.build_dir) utils.unpack(self.tbfilename) def configure(self): if os.name == 'nt': utils.output("Skipping configure (WINDOWS).") return # pre-configure setup.py and setupext.py so that everything is # found and configured as we want it. os.chdir(self.build_dir) if os.path.exists('setup.py.new'): utils.output('matplotlib already configured. Skipping step.') else: # pre-filter setup.py repls = [("(BUILD_GTKAGG\s*=\s*).*", "\\1 0"), ("(BUILD_GTK\s*=\s*).*", "\\1 0"), ("(BUILD_TKAGG\s*=\s*).*", "\\1 0"), ("(BUILD_WXAGG\s*=\s*).*", "\\1 1"), ("(rc\s*=\s*dict\().*", "\\1 {'backend':'PS', 'numerix':'numpy'} )")] utils.re_sub_filter_file(repls, 'setup.py') def build(self): if os.name == 'nt': utils.output("Skipping build (WINDOWS).") return os.chdir(self.build_dir) # weak test... there are .so files deeper, but they're in platform # specific directories if os.path.exists('build'): utils.output('matplotlib already built. Skipping step.') else: # add wx bin to path so that wx-config can be found os.environ['PATH'] = "%s%s%s" % (config.WX_BIN_PATH, os.pathsep, os.environ['PATH']) ret = os.system('%s setup.py build' % (sys.executable,)) if ret != 0: utils.error('matplotlib build failed. Please fix and try again.') def install(self): # to test for install, just do python -c "import matplotlib" # and test the result (we could just import directly, but that would # only work once our invoking python has been stopped and started # again) os.chdir(config.archive_dir) # we need to be elsewhere! ret = os.system('%s -c "import matplotlib"' % (sys.executable,)) if ret == 0: utils.output('matplotlib already installed. Skipping step.') else: utils.output('ImportError test shows that matplotlib is not ' 'installed. Installing...') if os.name == 'nt': self.install_nt() else: self.install_posix() # make sure the backend is set to WXAgg # and that interactive is set to True rcfn = os.path.join( config.PYTHON_SITE_PACKAGES, 'matplotlib', 'mpl-data', 'matplotlibrc') utils.re_sub_filter_file( [("(\s*backend\s*\:).*", "\\1 WXAgg"), ("#*(\s*interactive\s:).*","\\1 True")], rcfn) def install_nt(self): sp_dir = sysconfig.get_python_lib() utils.copy_glob(os.path.join(self.build_dir, 'PLATLIB', '*'), sp_dir) def install_posix(self): os.chdir(self.build_dir) # add wx bin to path so that wx-config can be found os.environ['PATH'] = "%s%s%s" % (config.WX_BIN_PATH, os.pathsep, os.environ['PATH']) ret = os.system('%s setup.py install' % (sys.executable,)) if ret != 0: utils.error( 'matplotlib install failed. Please fix and try again.') def clean_build(self): utils.output("Removing build and install directories.") if os.path.exists(self.build_dir): shutil.rmtree(self.build_dir) from distutils import sysconfig matplotlib_instdir = os.path.join(sysconfig.get_python_lib(), 'matplotlib') if os.path.exists(matplotlib_instdir): shutil.rmtree(matplotlib_instdir) def get_installed_version(self): import matplotlib return matplotlib.__version__
bsd-3-clause
vshtanko/scikit-learn
examples/neural_networks/plot_rbm_logistic_classification.py
258
4609
""" ============================================================== Restricted Boltzmann Machine features for digit classification ============================================================== For greyscale image data where pixel values can be interpreted as degrees of blackness on a white background, like handwritten digit recognition, the Bernoulli Restricted Boltzmann machine model (:class:`BernoulliRBM <sklearn.neural_network.BernoulliRBM>`) can perform effective non-linear feature extraction. In order to learn good latent representations from a small dataset, we artificially generate more labeled data by perturbing the training data with linear shifts of 1 pixel in each direction. This example shows how to build a classification pipeline with a BernoulliRBM feature extractor and a :class:`LogisticRegression <sklearn.linear_model.LogisticRegression>` classifier. The hyperparameters of the entire model (learning rate, hidden layer size, regularization) were optimized by grid search, but the search is not reproduced here because of runtime constraints. Logistic regression on raw pixel values is presented for comparison. The example shows that the features extracted by the BernoulliRBM help improve the classification accuracy. """ from __future__ import print_function print(__doc__) # Authors: Yann N. Dauphin, Vlad Niculae, Gabriel Synnaeve # License: BSD import numpy as np import matplotlib.pyplot as plt from scipy.ndimage import convolve from sklearn import linear_model, datasets, metrics from sklearn.cross_validation import train_test_split from sklearn.neural_network import BernoulliRBM from sklearn.pipeline import Pipeline ############################################################################### # Setting up def nudge_dataset(X, Y): """ This produces a dataset 5 times bigger than the original one, by moving the 8x8 images in X around by 1px to left, right, down, up """ direction_vectors = [ [[0, 1, 0], [0, 0, 0], [0, 0, 0]], [[0, 0, 0], [1, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 1], [0, 0, 0]], [[0, 0, 0], [0, 0, 0], [0, 1, 0]]] shift = lambda x, w: convolve(x.reshape((8, 8)), mode='constant', weights=w).ravel() X = np.concatenate([X] + [np.apply_along_axis(shift, 1, X, vector) for vector in direction_vectors]) Y = np.concatenate([Y for _ in range(5)], axis=0) return X, Y # Load Data digits = datasets.load_digits() X = np.asarray(digits.data, 'float32') X, Y = nudge_dataset(X, digits.target) X = (X - np.min(X, 0)) / (np.max(X, 0) + 0.0001) # 0-1 scaling X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=0) # Models we will use logistic = linear_model.LogisticRegression() rbm = BernoulliRBM(random_state=0, verbose=True) classifier = Pipeline(steps=[('rbm', rbm), ('logistic', logistic)]) ############################################################################### # Training # Hyper-parameters. These were set by cross-validation, # using a GridSearchCV. Here we are not performing cross-validation to # save time. rbm.learning_rate = 0.06 rbm.n_iter = 20 # More components tend to give better prediction performance, but larger # fitting time rbm.n_components = 100 logistic.C = 6000.0 # Training RBM-Logistic Pipeline classifier.fit(X_train, Y_train) # Training Logistic regression logistic_classifier = linear_model.LogisticRegression(C=100.0) logistic_classifier.fit(X_train, Y_train) ############################################################################### # Evaluation print() print("Logistic regression using RBM features:\n%s\n" % ( metrics.classification_report( Y_test, classifier.predict(X_test)))) print("Logistic regression using raw pixel features:\n%s\n" % ( metrics.classification_report( Y_test, logistic_classifier.predict(X_test)))) ############################################################################### # Plotting plt.figure(figsize=(4.2, 4)) for i, comp in enumerate(rbm.components_): plt.subplot(10, 10, i + 1) plt.imshow(comp.reshape((8, 8)), cmap=plt.cm.gray_r, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.suptitle('100 components extracted by RBM', fontsize=16) plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23) plt.show()
bsd-3-clause
nixingyang/Kaggle-Competitions
TalkingData AdTracking Fraud Detection/perform_ensembling.py
1
2489
import os import glob import shutil import datetime import numpy as np import pandas as pd # Dataset PROJECT_NAME = "TalkingData AdTracking Fraud Detection" PROJECT_FOLDER_PATH = os.path.join(os.path.expanduser("~"), "Documents/Dataset", PROJECT_NAME) # Submission TEAM_NAME = "Aurora" SUBMISSION_FOLDER_PATH = os.path.join(PROJECT_FOLDER_PATH, "submission") os.makedirs(SUBMISSION_FOLDER_PATH, exist_ok=True) # Ensembling WORKSPACE_FOLDER_PATH = os.path.join(PROJECT_FOLDER_PATH, "script/Mar_25_3") KEYWORD = "DL" # Generate a zip archive for a file create_zip_archive = lambda file_path: shutil.make_archive( file_path[:file_path.rindex(".")], "zip", os.path.abspath(os.path.join(file_path, "..")), os.path.basename(file_path)) def run(): print("Searching for submissions with keyword {} at {} ...".format( KEYWORD, WORKSPACE_FOLDER_PATH)) submission_file_path_list = sorted( glob.glob(os.path.join(WORKSPACE_FOLDER_PATH, "*{}*".format(KEYWORD)))) assert len(submission_file_path_list) != 0 ranking_array_list = [] for submission_file_path in submission_file_path_list: print("Loading {} ...".format(submission_file_path)) submission_df = pd.read_csv(submission_file_path) print("Ranking the entries ...") index_series = submission_df["is_attributed"].argsort() ranking_array = np.zeros(index_series.shape, dtype=np.uint32) ranking_array[index_series] = np.arange(len(index_series)) ranking_array_list.append(ranking_array) ensemble_df = submission_df.copy() ensemble_prediction_array = np.mean(ranking_array_list, axis=0) apply_normalization = lambda data_array: 1.0 * (data_array - np.min( data_array)) / (np.max(data_array) - np.min(data_array)) ensemble_df["is_attributed"] = apply_normalization( ensemble_prediction_array) ensemble_file_path = os.path.join( SUBMISSION_FOLDER_PATH, "{} {} {}.csv".format( TEAM_NAME, KEYWORD, str(datetime.datetime.now()).split(".")[0]).replace(" ", "_")) print("Saving submission to {} ...".format(ensemble_file_path)) ensemble_df.to_csv(ensemble_file_path, float_format="%.6f", index=False) compressed_ensemble_file_path = create_zip_archive(ensemble_file_path) print("Saving compressed submission to {} ...".format( compressed_ensemble_file_path)) print("All done!") if __name__ == "__main__": run()
mit
flennerhag/mlens
mlens/externals/sklearn/validation.py
1
27114
""" Scikit-learn utilities for input validation. """ # Authors: Olivier Grisel # Gael Varoquaux # Andreas Mueller # Lars Buitinck # Alexandre Gramfort # Nicolas Tresegnie # License: BSD 3 clause import warnings import numbers import numpy as np import scipy.sparse as sp from .. import six from ...utils.exceptions import NotFittedError, NonBLASDotWarning, \ DataConversionWarning try: from inspect import signature except ImportError: from mlens.externals.funcsigs import signature FLOAT_DTYPES = (np.float64, np.float32, np.float16) # Silenced by default to reduce verbosity. Turn on at runtime for # performance profiling. warnings.simplefilter('ignore', NonBLASDotWarning) def _assert_all_finite(X): """Like assert_all_finite, but only for ndarray.""" X = np.asanyarray(X) # First try an O(n) time, O(1) space solution for the common case that # everything is finite; fall back to O(n) space np.isfinite to prevent # false positives from overflow in sum method. if (X.dtype.char in np.typecodes['AllFloat'] and not np.isfinite(X.sum()) and not np.isfinite(X).all()): raise ValueError("Input contains NaN, infinity" " or a value too large for %r." % X.dtype) def assert_all_finite(X): """Throw a ValueError if X contains NaN or infinity. Parameters ---------- X : array or sparse matrix """ _assert_all_finite(X.data if sp.issparse(X) else X) def as_float_array(X, copy=True, force_all_finite=True): """Converts an array-like to an array of floats. The new dtype will be np.float32 or np.float64, depending on the original type. The function can create a copy or modify the argument depending on the argument copy. Parameters ---------- X : {array-like, sparse matrix} copy : bool, optional If True, a copy of X will be created. If False, a copy may still be returned if X's dtype is not a floating point type. force_all_finite : boolean (default=True) Whether to raise an error on np.inf and np.nan in X. Returns ------- XT : {array, sparse matrix} An array of type np.float """ if isinstance(X, np.matrix) or (not isinstance(X, np.ndarray) and not sp.issparse(X)): return check_array(X, ['csr', 'csc', 'coo'], dtype=np.float64, copy=copy, force_all_finite=force_all_finite, ensure_2d=False) elif sp.issparse(X) and X.dtype in [np.float32, np.float64]: return X.copy() if copy else X elif X.dtype in [np.float32, np.float64]: # is numpy array return X.copy('F' if X.flags['F_CONTIGUOUS'] else 'C') if copy else X else: if X.dtype.kind in 'uib' and X.dtype.itemsize <= 4: return_dtype = np.float32 else: return_dtype = np.float64 return X.astype(return_dtype) def _is_arraylike(x): """Returns whether the input is array-like""" return (hasattr(x, '__len__') or hasattr(x, 'shape') or hasattr(x, '__array__')) def _num_samples(x): """Return number of samples in array-like x.""" if hasattr(x, 'fit') and callable(x.fit): # Don't get num_samples from an ensembles length! raise TypeError('Expected sequence or array-like, got ' 'estimator %s' % x) if not hasattr(x, '__len__') and not hasattr(x, 'shape'): if hasattr(x, '__array__'): x = np.asarray(x) else: raise TypeError("Expected sequence or array-like, got %s" % type(x)) if hasattr(x, 'shape'): if len(x.shape) == 0: raise TypeError("Singleton array %r cannot be considered" " a valid collection." % x) return x.shape[0] else: return len(x) def _shape_repr(shape): """Return a platform independent representation of an array shape Under Python 2, the `long` type introduces an 'L' suffix when using the default %r format for tuples of integers (typically used to store the shape of an array). Under Windows 64 bit (and Python 2), the `long` type is used by default in numpy shapes even when the integer dimensions are well below 32 bit. The platform specific type causes string messages or doctests to change from one platform to another which is not desirable. Under Python 3, there is no more `long` type so the `L` suffix is never introduced in string representation. >>> _shape_repr((1, 2)) '(1, 2)' >>> one = 2 ** 64 / 2 ** 64 # force an upcast to `long` under Python 2 >>> _shape_repr((one, 2 * one)) '(1, 2)' >>> _shape_repr((1,)) '(1,)' >>> _shape_repr(()) '()' """ if len(shape) == 0: return "()" joined = ", ".join("%d" % e for e in shape) if len(shape) == 1: # special notation for singleton tuples joined += ',' return "(%s)" % joined def check_consistent_length(*arrays): """Check that all arrays have consistent first dimensions. Checks whether all objects in arrays have the same shape or length. Parameters ---------- *arrays : list or tuple of input objects. Objects that will be checked for consistent length. """ lengths = [_num_samples(X) for X in arrays if X is not None] uniques = np.unique(lengths) if len(uniques) > 1: raise ValueError("Found input variables with inconsistent numbers of" " samples: %r" % [int(l) for l in lengths]) def indexable(*iterables): """Make arrays indexable for cross-validation. Checks consistent length, passes through None, and ensures that everything can be indexed by converting sparse matrices to csr and converting non-interable objects to arrays. Parameters ---------- *iterables : lists, dataframes, arrays, sparse matrices List of objects to ensure sliceability. """ result = [] for X in iterables: if sp.issparse(X): result.append(X.tocsr()) elif hasattr(X, "__getitem__") or hasattr(X, "iloc"): result.append(X) elif X is None: result.append(X) else: result.append(np.array(X)) check_consistent_length(*result) return result def _ensure_sparse_format(spmatrix, accept_sparse, dtype, copy, force_all_finite): """Convert a sparse matrix to a given format. Checks the sparse format of spmatrix and converts if necessary. Parameters ---------- spmatrix : scipy sparse matrix Input to validate and convert. accept_sparse : string, boolean or list/tuple of strings String[s] representing allowed sparse matrix formats ('csc', 'csr', 'coo', 'dok', 'bsr', 'lil', 'dia'). If the input is sparse but not in the allowed format, it will be converted to the first listed format. True allows the input to be any format. False means that a sparse matrix input will raise an error. dtype : string, type or None Data type of result. If None, the dtype of the input is preserved. copy : boolean Whether a forced copy will be triggered. If copy=False, a copy might be triggered by a conversion. force_all_finite : boolean Whether to raise an error on np.inf and np.nan in X. Returns ------- spmatrix_converted : scipy sparse matrix. Matrix that is ensured to have an allowed type. """ if dtype is None: dtype = spmatrix.dtype changed_format = False if isinstance(accept_sparse, six.string_types): accept_sparse = [accept_sparse] if accept_sparse is False: raise TypeError('A sparse matrix was passed, but dense ' 'data is required. Use X.toarray() to ' 'convert to a dense numpy array.') elif isinstance(accept_sparse, (list, tuple)): if len(accept_sparse) == 0: raise ValueError("When providing 'accept_sparse' " "as a tuple or list, it must contain at " "least one string value.") # ensure correct sparse format if spmatrix.format not in accept_sparse: # create new with correct sparse spmatrix = spmatrix.asformat(accept_sparse[0]) changed_format = True elif accept_sparse is not True: # any other type raise ValueError("Parameter 'accept_sparse' should be a string, " "boolean or list of strings. You provided " "'accept_sparse={}'.".format(accept_sparse)) if dtype != spmatrix.dtype: # convert dtype spmatrix = spmatrix.astype(dtype) elif copy and not changed_format: # force copy spmatrix = spmatrix.copy() if force_all_finite: if not hasattr(spmatrix, "data"): warnings.warn("Can't check %s sparse matrix for nan or inf." % spmatrix.format) else: _assert_all_finite(spmatrix.data) return spmatrix def check_array(array, accept_sparse=False, dtype="numeric", order=None, copy=False, force_all_finite=True, ensure_2d=True, allow_nd=False, ensure_min_samples=1, ensure_min_features=1, warn_on_dtype=False, estimator=None): """Input validation on an array, list, sparse matrix or similar. By default, the input is converted to an at least 2D numpy array. If the dtype of the array is object, attempt converting to float, raising on failure. Parameters ---------- array : object Input object to check / convert. accept_sparse : string, boolean or list/tuple of strings (default=False) String[s] representing allowed sparse matrix formats, such as 'csc', 'csr', etc. If the input is sparse but not in the allowed format, it will be converted to the first listed format. True allows the input to be any format. False means that a sparse matrix input will raise an error. .. deprecated:: 0.19 Passing 'None' to parameter ``accept_sparse`` in methods is deprecated in version 0.19 "and will be removed in 0.21. Use ``accept_sparse=False`` instead. dtype : string, type, list of types or None (default="numeric") Data type of result. If None, the dtype of the input is preserved. If "numeric", dtype is preserved unless array.dtype is object. If dtype is a list of types, conversion on the first type is only performed if the dtype of the input is not in the list. order : 'F', 'C' or None (default=None) Whether an array will be forced to be fortran or c-style. When order is None (default), then if copy=False, nothing is ensured about the memory layout of the output array; otherwise (copy=True) the memory layout of the returned array is kept as close as possible to the original array. copy : boolean (default=False) Whether a forced copy will be triggered. If copy=False, a copy might be triggered by a conversion. force_all_finite : boolean (default=True) Whether to raise an error on np.inf and np.nan in X. ensure_2d : boolean (default=True) Whether to raise a value error if X is not 2d. allow_nd : boolean (default=False) Whether to allow X.ndim > 2. ensure_min_samples : int (default=1) Make sure that the array has a minimum number of samples in its first axis (rows for a 2D array). Setting to 0 disables this check. ensure_min_features : int (default=1) Make sure that the 2D array has some minimum number of features (columns). The default value of 1 rejects empty datasets. This check is only enforced when the input data has effectively 2 dimensions or is originally 1D and ``ensure_2d`` is True. Setting to 0 disables this check. warn_on_dtype : boolean (default=False) Raise DataConversionWarning if the dtype of the input data structure does not match the requested dtype, causing a memory copy. estimator : str or estimator instance (default=None) If passed, include the name of the estimator in warning messages. Returns ------- X_converted : object The converted and validated X. """ # accept_sparse 'None' deprecation check if accept_sparse is None: warnings.warn( "Passing 'None' to parameter 'accept_sparse' in methods " "check_array and check_X_y is deprecated in version 0.19 " "and will be removed in 0.21. Use 'accept_sparse=False' " " instead.", DeprecationWarning) accept_sparse = False # store whether originally we wanted numeric dtype dtype_numeric = isinstance(dtype, six.string_types) and dtype == "numeric" dtype_orig = getattr(array, "dtype", None) if not hasattr(dtype_orig, 'kind'): # not a data type (e.g. a column named dtype in a pandas DataFrame) dtype_orig = None if dtype_numeric: if dtype_orig is not None and dtype_orig.kind == "O": # if input is object, convert to float. dtype = np.float64 else: dtype = None if isinstance(dtype, (list, tuple)): if dtype_orig is not None and dtype_orig in dtype: # no dtype conversion required dtype = None else: # dtype conversion required. Let's select the first element of the # list of accepted types. dtype = dtype[0] if estimator is not None: if isinstance(estimator, six.string_types): estimator_name = estimator else: estimator_name = estimator.__class__.__name__ else: estimator_name = "Estimator" context = " by %s" % estimator_name if estimator is not None else "" if sp.issparse(array): array = _ensure_sparse_format(array, accept_sparse, dtype, copy, force_all_finite) else: array = np.array(array, dtype=dtype, order=order, copy=copy) if ensure_2d: if array.ndim == 1: raise ValueError( "Expected 2D array, got 1D array instead:\narray={}.\n" "Reshape your data either using array.reshape(-1, 1) if " "your data has a single feature or array.reshape(1, -1) " "if it contains a single sample.".format(array)) array = np.atleast_2d(array) # To ensure that array flags are maintained array = np.array(array, dtype=dtype, order=order, copy=copy) # make sure we actually converted to numeric: if dtype_numeric and array.dtype.kind == "O": array = array.astype(np.float64) if not allow_nd and array.ndim >= 3: raise ValueError("Found array with dim %d. %s expected <= 2." % (array.ndim, estimator_name)) if force_all_finite: _assert_all_finite(array) shape_repr = _shape_repr(array.shape) if ensure_min_samples > 0: n_samples = _num_samples(array) if n_samples < ensure_min_samples: raise ValueError("Found array with %d sample(s) (shape=%s) while a" " minimum of %d is required%s." % (n_samples, shape_repr, ensure_min_samples, context)) if ensure_min_features > 0 and array.ndim == 2: n_features = array.shape[1] if n_features < ensure_min_features: raise ValueError("Found array with %d feature(s) (shape=%s) while" " a minimum of %d is required%s." % (n_features, shape_repr, ensure_min_features, context)) if warn_on_dtype and dtype_orig is not None and array.dtype != dtype_orig: msg = ("Data with input dtype %s was converted to %s%s." % (dtype_orig, array.dtype, context)) warnings.warn(msg, DataConversionWarning) return array def check_X_y(X, y, accept_sparse=False, dtype="numeric", order=None, copy=False, force_all_finite=True, ensure_2d=True, allow_nd=False, multi_output=False, ensure_min_samples=1, ensure_min_features=1, y_numeric=False, warn_on_dtype=False, estimator=None): """Input validation for standard estimators. Checks X and y for consistent length, enforces X 2d and y 1d. Standard input checks are only applied to y, such as checking that y does not have np.nan or np.inf targets. For multi-label y, set multi_output=True to allow 2d and sparse y. If the dtype of X is object, attempt converting to float, raising on failure. Parameters ---------- X : nd-array, list or sparse matrix Input data. y : nd-array, list or sparse matrix Labels. accept_sparse : string, boolean or list of string (default=False) String[s] representing allowed sparse matrix formats, such as 'csc', 'csr', etc. If the input is sparse but not in the allowed format, it will be converted to the first listed format. True allows the input to be any format. False means that a sparse matrix input will raise an error. .. deprecated:: 0.19 Passing 'None' to parameter ``accept_sparse`` in methods is deprecated in version 0.19 "and will be removed in 0.21. Use ``accept_sparse=False`` instead. dtype : string, type, list of types or None (default="numeric") Data type of result. If None, the dtype of the input is preserved. If "numeric", dtype is preserved unless array.dtype is object. If dtype is a list of types, conversion on the first type is only performed if the dtype of the input is not in the list. order : 'F', 'C' or None (default=None) Whether an array will be forced to be fortran or c-style. copy : boolean (default=False) Whether a forced copy will be triggered. If copy=False, a copy might be triggered by a conversion. force_all_finite : boolean (default=True) Whether to raise an error on np.inf and np.nan in X. This parameter does not influence whether y can have np.inf or np.nan values. ensure_2d : boolean (default=True) Whether to make X at least 2d. allow_nd : boolean (default=False) Whether to allow X.ndim > 2. multi_output : boolean (default=False) Whether to allow 2-d y (array or sparse matrix). If false, y will be validated as a vector. y cannot have np.nan or np.inf values if multi_output=True. ensure_min_samples : int (default=1) Make sure that X has a minimum number of samples in its first axis (rows for a 2D array). ensure_min_features : int (default=1) Make sure that the 2D array has some minimum number of features (columns). The default value of 1 rejects empty datasets. This check is only enforced when X has effectively 2 dimensions or is originally 1D and ``ensure_2d`` is True. Setting to 0 disables this check. y_numeric : boolean (default=False) Whether to ensure that y has a numeric type. If dtype of y is object, it is converted to float64. Should only be used for regression algorithms. warn_on_dtype : boolean (default=False) Raise DataConversionWarning if the dtype of the input data structure does not match the requested dtype, causing a memory copy. estimator : str or estimator instance (default=None) If passed, include the name of the estimator in warning messages. Returns ------- X_converted : object The converted and validated X. y_converted : object The converted and validated y. """ X = check_array(X, accept_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, warn_on_dtype, estimator) if multi_output: y = check_array(y, 'csr', force_all_finite=True, ensure_2d=False, dtype=None) else: y = column_or_1d(y, warn=True) _assert_all_finite(y) if y_numeric and y.dtype.kind == 'O': y = y.astype(np.float64) check_consistent_length(X, y) return X, y def column_or_1d(y, warn=False): """ Ravel column or 1d numpy array, else raises an error Parameters ---------- y : array-like warn : boolean, default False To control display of warnings. Returns ------- y : array """ shape = np.shape(y) if len(shape) == 1: return np.ravel(y) if len(shape) == 2 and shape[1] == 1: if warn: warnings.warn("A column-vector y was passed when a 1d array was" " expected. Please change the shape of y to " "(n_samples, ), for example using ravel().", DataConversionWarning, stacklevel=2) return np.ravel(y) raise ValueError("bad input shape {0}".format(shape)) def check_random_state(seed): """Turn seed into a np.random.RandomState instance Parameters ---------- seed : None | int | instance of RandomState If seed is None, return the RandomState singleton used by np.random. If seed is an int, return a new RandomState instance seeded with seed. If seed is already a RandomState instance, return it. Otherwise raise ValueError. """ if seed is None or seed is np.random: return np.random.mtrand._rand if isinstance(seed, (numbers.Integral, np.integer)): return np.random.RandomState(seed) if isinstance(seed, np.random.RandomState): return seed raise ValueError('%r cannot be used to seed a numpy.random.RandomState' ' instance' % seed) def has_fit_parameter(estimator, parameter): """Checks whether the estimator's fit method supports the given parameter. Parameters ---------- estimator : object An estimator to inspect. parameter: str The searched parameter. Returns ------- is_parameter: bool Whether the parameter was found to be a named parameter of the estimator's fit method. Examples -------- >>> from sklearn.svm import SVC >>> has_fit_parameter(SVC(), "sample_weight") True """ return parameter in signature(estimator.fit).parameters def check_symmetric(array, tol=1E-10, raise_warning=True, raise_exception=False): """Make sure that array is 2D, square and symmetric. If the array is not symmetric, then a symmetrized version is returned. Optionally, a warning or exception is raised if the matrix is not symmetric. Parameters ---------- array : nd-array or sparse matrix Input object to check / convert. Must be two-dimensional and square, otherwise a ValueError will be raised. tol : float Absolute tolerance for equivalence of arrays. Default = 1E-10. raise_warning : boolean (default=True) If True then raise a warning if conversion is required. raise_exception : boolean (default=False) If True then raise an exception if array is not symmetric. Returns ------- array_sym : ndarray or sparse matrix Symmetrized version of the input array, i.e. the average of array and array.transpose(). If sparse, then duplicate entries are first summed and zeros are eliminated. """ if (array.ndim != 2) or (array.shape[0] != array.shape[1]): raise ValueError("array must be 2-dimensional and square. " "shape = {0}".format(array.shape)) if sp.issparse(array): diff = array - array.T # only csr, csc, and coo have `data` attribute if diff.format not in ['csr', 'csc', 'coo']: diff = diff.tocsr() symmetric = np.all(abs(diff.data) < tol) else: symmetric = np.allclose(array, array.T, atol=tol) if not symmetric: if raise_exception: raise ValueError("Array must be symmetric") if raise_warning: warnings.warn("Array is not symmetric, and will be converted " "to symmetric by average with its transpose.") if sp.issparse(array): conversion = 'to' + array.format array = getattr(0.5 * (array + array.T), conversion)() else: array = 0.5 * (array + array.T) return array def check_is_fitted(estimator, attributes, msg=None, all_or_any=all): """Perform is_fitted validation for estimator. Checks if the estimator is fitted by verifying the presence of "all_or_any" of the passed attributes and raises a NotFittedError with the given message. Parameters ---------- estimator : estimator instance. estimator instance for which the check is performed. attributes : attribute name(s) given as string or a list/tuple of strings Eg.: ``["coef_", "estimator_", ...], "coef_"`` msg : string The default error message is, "This %(name)s instance is not fitted yet. Call 'fit' with appropriate arguments before using this method." For custom messages if "%(name)s" is present in the message string, it is substituted for the estimator name. Eg. : "Estimator, %(name)s, must be fitted before sparsifying". all_or_any : callable, {all, any}, default all Specify whether all or any of the given attributes must exist. Returns ------- None Raises ------ NotFittedError If the attributes are not found. """ if msg is None: msg = ("This %(name)s instance is not fitted yet. Call 'fit' with " "appropriate arguments before using this method.") if not hasattr(estimator, 'fit'): raise TypeError("%s is not an estimator instance." % (estimator)) if not isinstance(attributes, (list, tuple)): attributes = [attributes] if not all_or_any([hasattr(estimator, attr) for attr in attributes]): raise NotFittedError(msg % {'name': type(estimator).__name__}) def check_non_negative(X, whom): """ Check if there is any negative value in an array. Parameters ---------- X : array-like or sparse matrix Input data. whom : string Who passed X to this function. """ X = X.data if sp.issparse(X) else X if (X < 0).any(): raise ValueError("Negative values in data passed to %s" % whom)
mit
matousc89/padasip
padasip/filters/nlmf.py
1
5444
""" .. versionadded:: 1.1.0 The least-mean-fourth (LMF) adaptive filter implemented according to the paper :cite:`zerguine2000convergence`. The NLMF is an extension of the LMF adaptive filter (:ref:`filter-lmf`). The NLMF filter can be created as follows >>> import padasip as pa >>> pa.filters.FilterNLMF(n) where `n` is the size (number of taps) of the filter. Content of this page: .. contents:: :local: :depth: 1 .. seealso:: :ref:`filters` Algorithm Explanation ====================================== The NLMF is extension of LMF filter. See :ref:`filter-lmf` for explanation of the algorithm behind. The extension is based on normalization of learning rate. The learning rage :math:`\mu` is replaced by learning rate :math:`\eta(k)` normalized with every new sample according to input power as follows :math:`\eta (k) = \\frac{\mu}{\epsilon + || \\textbf{x}(k) ||^2}`, where :math:`|| \\textbf{x}(k) ||^2` is norm of input vector and :math:`\epsilon` is a small positive constant (regularization term). This constant is introduced to preserve the stability in cases where the input is close to zero. Minimal Working Examples ====================================== If you have measured data you may filter it as follows .. code-block:: python import numpy as np import matplotlib.pylab as plt import padasip as pa # creation of data N = 500 x = np.random.normal(0, 1, (N, 4)) # input matrix v = np.random.normal(0, 0.1, N) # noise d = 2*x[:,0] + 0.1*x[:,1] - 0.3*x[:,2] + 0.5*x[:,3] + v # target # identification f = pa.filters.FilterNLMF(n=4, mu=0.005, w="random") y, e, w = f.run(d, x) # show results plt.figure(figsize=(15,9)) plt.subplot(211);plt.title("Adaptation");plt.xlabel("samples - k") plt.plot(d,"b", label="d - target") plt.plot(y,"g", label="y - output");plt.legend() plt.subplot(212);plt.title("Filter error");plt.xlabel("samples - k") plt.plot(10*np.log10(e**2),"r", label="e - error [dB]");plt.legend() plt.tight_layout() plt.show() References ====================================== .. bibliography:: lmf.bib :style: plain Code Explanation ====================================== """ import numpy as np from padasip.filters.base_filter import AdaptiveFilter class FilterNLMF(AdaptiveFilter): """ Adaptive NLMF filter. **Args:** * `n` : length of filter (integer) - how many input is input array (row of input matrix) **Kwargs:** * `mu` : learning rate (float). Also known as step size. If it is too slow, the filter may have bad performance. If it is too high, the filter will be unstable. The default value can be unstable for ill-conditioned input data. * `eps` : regularization term (float). It is introduced to preserve stability for close-to-zero input vectors * `w` : initial weights of filter. Possible values are: * array with initial weights (1 dimensional array) of filter size * "random" : create random weights * "zeros" : create zero value weights """ def __init__(self, n, mu=0.1, eps=1., w="random"): self.kind = "NLMF filter" if type(n) == int: self.n = n else: raise ValueError('The size of filter must be an integer') self.mu = self.check_float_param(mu, 0, 1000, "mu") self.eps = self.check_float_param(eps, 0, 1000, "eps") self.init_weights(w, self.n) self.w_history = False def adapt(self, d, x): """ Adapt weights according one desired value and its input. **Args:** * `d` : desired value (float) * `x` : input array (1-dimensional array) """ y = np.dot(self.w, x) e = d - y nu = self.mu / (self.eps + np.dot(x, x)) self.w += nu * x * e**3 def run(self, d, x): """ This function filters multiple samples in a row. **Args:** * `d` : desired value (1 dimensional array) * `x` : input matrix (2-dimensional array). Rows are samples, columns are input arrays. **Returns:** * `y` : output value (1 dimensional array). The size corresponds with the desired value. * `e` : filter error for every sample (1 dimensional array). The size corresponds with the desired value. * `w` : history of all weights (2 dimensional array). Every row is set of the weights for given sample. """ # measure the data and check if the dimmension agree N = len(x) if not len(d) == N: raise ValueError('The length of vector d and matrix x must agree.') self.n = len(x[0]) # prepare data try: x = np.array(x) d = np.array(d) except: raise ValueError('Impossible to convert x or d to a numpy array') # create empty arrays y = np.zeros(N) e = np.zeros(N) self.w_history = np.zeros((N,self.n)) # adaptation loop for k in range(N): self.w_history[k,:] = self.w y[k] = np.dot(self.w, x[k]) e[k] = d[k] - y[k] nu = self.mu / (self.eps + np.dot(x[k], x[k])) dw = nu * x[k] * e[k]**3 self.w += dw return y, e, self.w_history
mit
LevinJ/Supply-demand-forecasting
implement/xgboostmodel.py
1
4070
import sys import os sys.path.insert(0, os.path.abspath('..')) from preprocess.preparedata import PrepareData import numpy as np from utility.runtype import RunType from utility.datafilepath import g_singletonDataFilePath from preprocess.splittrainvalidation import HoldoutSplitMethod import xgboost as xgb from evaluation.sklearnmape import mean_absolute_percentage_error_xgboost from evaluation.sklearnmape import mean_absolute_percentage_error from utility.modelframework import ModelFramework from utility.xgbbasemodel import XGBoostGridSearch from evaluation.sklearnmape import mean_absolute_percentage_error_xgboost_cv from utility.xgbbasemodel import XGBoostBase import logging import sys class DidiXGBoostModel(XGBoostBase, PrepareData, XGBoostGridSearch): def __init__(self): PrepareData.__init__(self) XGBoostGridSearch.__init__(self) XGBoostBase.__init__(self) self.best_score_colname_in_cv = 'test-mape-mean' self.do_cross_val = False self.train_validation_foldid = -2 if self.do_cross_val is None: root = logging.getLogger() root.setLevel(logging.DEBUG) root.addHandler(logging.StreamHandler(sys.stdout)) root.addHandler(logging.FileHandler('logs/finetune_parameters.log', mode='w')) return def set_xgb_parameters(self): early_stopping_rounds = 3 self.xgb_params = {'silent':1, 'colsample_bytree': 0.8, 'silent': 1, 'lambda ': 1, 'min_child_weight': 1, 'subsample': 0.8, 'eta': 0.01, 'objective': 'reg:linear', 'max_depth': 7} # self.xgb_params = {'silent':1 } self.xgb_learning_params = { 'num_boost_round': 200, 'callbacks':[xgb.callback.print_evaluation(show_stdv=True),xgb.callback.early_stop(early_stopping_rounds)], 'feval':mean_absolute_percentage_error_xgboost_cv} if self.do_cross_val == False: self.xgb_learning_params['feval'] = mean_absolute_percentage_error_xgboost return def get_paramgrid_1(self): """ This method must be overriden by derived class when its objective is not reg:linear """ param_grid = {'max_depth':[6], 'eta':[0.1], 'min_child_weight':[1],'silent':[1], 'objective':['reg:linear'],'colsample_bytree':[0.8],'subsample':[0.8], 'lambda ':[1]} return param_grid def get_paramgrid_2(self, param_grid): """ This method must be overriden by derived class if it intends to fine tune parameters """ self.ramdonized_search_enable = False self.randomized_search_n_iter = 150 self.grid_search_display_result = True param_grid['eta'] = [0.01] #train-mape:-0.448062+0.00334926 test-mape:-0.448402+0.00601761 # param_grid['max_depth'] = [7] #train-mape:-0.363007+0.00454276 test-mape:-0.452832+0.00321641 # param_grid['colsample_bytree'] = [0.8] param_grid['max_depth'] = range(5,8) #train-mape:-0.363007+0.00454276 test-mape:-0.452832+0.00321641 param_grid['colsample_bytree'] = [0.6,0.8,1.0] # param_grid['lambda'] = range(1,15) # param_grid['max_depth'] = [3,4] # param_grid['eta'] = [0.01,0.1] # 0.459426+0.00518875 # param_grid['subsample'] = [0.5] #0.458935+0.00522205 # param_grid['eta'] = [0.005] #0.457677+0.00526401 return param_grid def get_learning_params(self): """e This method must be overriden by derived class if it intends to fine tune parameters """ num_boost_round = 100 early_stopping_rounds = 5 kwargs = {'num_boost_round':num_boost_round, 'feval':mean_absolute_percentage_error_xgboost_cv, 'callbacks':[xgb.callback.print_evaluation(show_stdv=True),xgb.callback.early_stop(early_stopping_rounds)]} return kwargs if __name__ == "__main__": obj= DidiXGBoostModel() obj.run()
mit
anntzer/scikit-learn
sklearn/linear_model/_passive_aggressive.py
2
17363
# Authors: Rob Zinkov, Mathieu Blondel # License: BSD 3 clause from ..utils.validation import _deprecate_positional_args from ._stochastic_gradient import BaseSGDClassifier from ._stochastic_gradient import BaseSGDRegressor from ._stochastic_gradient import DEFAULT_EPSILON class PassiveAggressiveClassifier(BaseSGDClassifier): """Passive Aggressive Classifier Read more in the :ref:`User Guide <passive_aggressive>`. Parameters ---------- C : float, default=1.0 Maximum step size (regularization). Defaults to 1.0. fit_intercept : bool, default=True Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. max_iter : int, default=1000 The maximum number of passes over the training data (aka epochs). It only impacts the behavior in the ``fit`` method, and not the :meth:`partial_fit` method. .. versionadded:: 0.19 tol : float or None, default=1e-3 The stopping criterion. If it is not None, the iterations will stop when (loss > previous_loss - tol). .. versionadded:: 0.19 early_stopping : bool, default=False Whether to use early stopping to terminate training when validation. score is not improving. If set to True, it will automatically set aside a stratified fraction of training data as validation and terminate training when validation score is not improving by at least tol for n_iter_no_change consecutive epochs. .. versionadded:: 0.20 validation_fraction : float, default=0.1 The proportion of training data to set aside as validation set for early stopping. Must be between 0 and 1. Only used if early_stopping is True. .. versionadded:: 0.20 n_iter_no_change : int, default=5 Number of iterations with no improvement to wait before early stopping. .. versionadded:: 0.20 shuffle : bool, default=True Whether or not the training data should be shuffled after each epoch. verbose : integer, default=0 The verbosity level loss : string, default="hinge" The loss function to be used: hinge: equivalent to PA-I in the reference paper. squared_hinge: equivalent to PA-II in the reference paper. n_jobs : int or None, default=None The number of CPUs to use to do the OVA (One Versus All, for multi-class problems) computation. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. random_state : int, RandomState instance, default=None Used to shuffle the training data, when ``shuffle`` is set to ``True``. Pass an int for reproducible output across multiple function calls. See :term:`Glossary <random_state>`. warm_start : bool, default=False When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. See :term:`the Glossary <warm_start>`. Repeatedly calling fit or partial_fit when warm_start is True can result in a different solution than when calling fit a single time because of the way the data is shuffled. class_weight : dict, {class_label: weight} or "balanced" or None, \ default=None Preset for the class_weight fit parameter. Weights associated with classes. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` .. versionadded:: 0.17 parameter *class_weight* to automatically weight samples. average : bool or int, default=False When set to True, computes the averaged SGD weights and stores the result in the ``coef_`` attribute. If set to an int greater than 1, averaging will begin once the total number of samples seen reaches average. So average=10 will begin averaging after seeing 10 samples. .. versionadded:: 0.19 parameter *average* to use weights averaging in SGD Attributes ---------- coef_ : array, shape = [1, n_features] if n_classes == 2 else [n_classes,\ n_features] Weights assigned to the features. intercept_ : array, shape = [1] if n_classes == 2 else [n_classes] Constants in decision function. n_iter_ : int The actual number of iterations to reach the stopping criterion. For multiclass fits, it is the maximum over every binary fit. classes_ : array of shape (n_classes,) The unique classes labels. t_ : int Number of weight updates performed during training. Same as ``(n_iter_ * n_samples)``. loss_function_ : callable Loss function used by the algorithm. Examples -------- >>> from sklearn.linear_model import PassiveAggressiveClassifier >>> from sklearn.datasets import make_classification >>> X, y = make_classification(n_features=4, random_state=0) >>> clf = PassiveAggressiveClassifier(max_iter=1000, random_state=0, ... tol=1e-3) >>> clf.fit(X, y) PassiveAggressiveClassifier(random_state=0) >>> print(clf.coef_) [[0.26642044 0.45070924 0.67251877 0.64185414]] >>> print(clf.intercept_) [1.84127814] >>> print(clf.predict([[0, 0, 0, 0]])) [1] See Also -------- SGDClassifier Perceptron References ---------- Online Passive-Aggressive Algorithms <http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf> K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, Y. Singer - JMLR (2006) """ @_deprecate_positional_args def __init__(self, *, C=1.0, fit_intercept=True, max_iter=1000, tol=1e-3, early_stopping=False, validation_fraction=0.1, n_iter_no_change=5, shuffle=True, verbose=0, loss="hinge", n_jobs=None, random_state=None, warm_start=False, class_weight=None, average=False): super().__init__( penalty=None, fit_intercept=fit_intercept, max_iter=max_iter, tol=tol, early_stopping=early_stopping, validation_fraction=validation_fraction, n_iter_no_change=n_iter_no_change, shuffle=shuffle, verbose=verbose, random_state=random_state, eta0=1.0, warm_start=warm_start, class_weight=class_weight, average=average, n_jobs=n_jobs) self.C = C self.loss = loss def partial_fit(self, X, y, classes=None): """Fit linear model with Passive Aggressive algorithm. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Subset of the training data y : numpy array of shape [n_samples] Subset of the target values classes : array, shape = [n_classes] Classes across all calls to partial_fit. Can be obtained by via `np.unique(y_all)`, where y_all is the target vector of the entire dataset. This argument is required for the first call to partial_fit and can be omitted in the subsequent calls. Note that y doesn't need to contain all labels in `classes`. Returns ------- self : returns an instance of self. """ self._validate_params(for_partial_fit=True) if self.class_weight == 'balanced': raise ValueError("class_weight 'balanced' is not supported for " "partial_fit. For 'balanced' weights, use " "`sklearn.utils.compute_class_weight` with " "`class_weight='balanced'`. In place of y you " "can use a large enough subset of the full " "training set target to properly estimate the " "class frequency distributions. Pass the " "resulting weights as the class_weight " "parameter.") lr = "pa1" if self.loss == "hinge" else "pa2" return self._partial_fit(X, y, alpha=1.0, C=self.C, loss="hinge", learning_rate=lr, max_iter=1, classes=classes, sample_weight=None, coef_init=None, intercept_init=None) def fit(self, X, y, coef_init=None, intercept_init=None): """Fit linear model with Passive Aggressive algorithm. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training data y : numpy array of shape [n_samples] Target values coef_init : array, shape = [n_classes,n_features] The initial coefficients to warm-start the optimization. intercept_init : array, shape = [n_classes] The initial intercept to warm-start the optimization. Returns ------- self : returns an instance of self. """ self._validate_params() lr = "pa1" if self.loss == "hinge" else "pa2" return self._fit(X, y, alpha=1.0, C=self.C, loss="hinge", learning_rate=lr, coef_init=coef_init, intercept_init=intercept_init) class PassiveAggressiveRegressor(BaseSGDRegressor): """Passive Aggressive Regressor Read more in the :ref:`User Guide <passive_aggressive>`. Parameters ---------- C : float, default=1.0 Maximum step size (regularization). Defaults to 1.0. fit_intercept : bool, default=True Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. Defaults to True. max_iter : int, default=1000 The maximum number of passes over the training data (aka epochs). It only impacts the behavior in the ``fit`` method, and not the :meth:`partial_fit` method. .. versionadded:: 0.19 tol : float or None, default=1e-3 The stopping criterion. If it is not None, the iterations will stop when (loss > previous_loss - tol). .. versionadded:: 0.19 early_stopping : bool, default=False Whether to use early stopping to terminate training when validation. score is not improving. If set to True, it will automatically set aside a fraction of training data as validation and terminate training when validation score is not improving by at least tol for n_iter_no_change consecutive epochs. .. versionadded:: 0.20 validation_fraction : float, default=0.1 The proportion of training data to set aside as validation set for early stopping. Must be between 0 and 1. Only used if early_stopping is True. .. versionadded:: 0.20 n_iter_no_change : int, default=5 Number of iterations with no improvement to wait before early stopping. .. versionadded:: 0.20 shuffle : bool, default=True Whether or not the training data should be shuffled after each epoch. verbose : integer, default=0 The verbosity level loss : string, default="epsilon_insensitive" The loss function to be used: epsilon_insensitive: equivalent to PA-I in the reference paper. squared_epsilon_insensitive: equivalent to PA-II in the reference paper. epsilon : float, default=0.1 If the difference between the current prediction and the correct label is below this threshold, the model is not updated. random_state : int, RandomState instance, default=None Used to shuffle the training data, when ``shuffle`` is set to ``True``. Pass an int for reproducible output across multiple function calls. See :term:`Glossary <random_state>`. warm_start : bool, default=False When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. See :term:`the Glossary <warm_start>`. Repeatedly calling fit or partial_fit when warm_start is True can result in a different solution than when calling fit a single time because of the way the data is shuffled. average : bool or int, default=False When set to True, computes the averaged SGD weights and stores the result in the ``coef_`` attribute. If set to an int greater than 1, averaging will begin once the total number of samples seen reaches average. So average=10 will begin averaging after seeing 10 samples. .. versionadded:: 0.19 parameter *average* to use weights averaging in SGD Attributes ---------- coef_ : array, shape = [1, n_features] if n_classes == 2 else [n_classes,\ n_features] Weights assigned to the features. intercept_ : array, shape = [1] if n_classes == 2 else [n_classes] Constants in decision function. n_iter_ : int The actual number of iterations to reach the stopping criterion. t_ : int Number of weight updates performed during training. Same as ``(n_iter_ * n_samples)``. Examples -------- >>> from sklearn.linear_model import PassiveAggressiveRegressor >>> from sklearn.datasets import make_regression >>> X, y = make_regression(n_features=4, random_state=0) >>> regr = PassiveAggressiveRegressor(max_iter=100, random_state=0, ... tol=1e-3) >>> regr.fit(X, y) PassiveAggressiveRegressor(max_iter=100, random_state=0) >>> print(regr.coef_) [20.48736655 34.18818427 67.59122734 87.94731329] >>> print(regr.intercept_) [-0.02306214] >>> print(regr.predict([[0, 0, 0, 0]])) [-0.02306214] See Also -------- SGDRegressor References ---------- Online Passive-Aggressive Algorithms <http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf> K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, Y. Singer - JMLR (2006) """ @_deprecate_positional_args def __init__(self, *, C=1.0, fit_intercept=True, max_iter=1000, tol=1e-3, early_stopping=False, validation_fraction=0.1, n_iter_no_change=5, shuffle=True, verbose=0, loss="epsilon_insensitive", epsilon=DEFAULT_EPSILON, random_state=None, warm_start=False, average=False): super().__init__( penalty=None, l1_ratio=0, epsilon=epsilon, eta0=1.0, fit_intercept=fit_intercept, max_iter=max_iter, tol=tol, early_stopping=early_stopping, validation_fraction=validation_fraction, n_iter_no_change=n_iter_no_change, shuffle=shuffle, verbose=verbose, random_state=random_state, warm_start=warm_start, average=average) self.C = C self.loss = loss def partial_fit(self, X, y): """Fit linear model with Passive Aggressive algorithm. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Subset of training data y : numpy array of shape [n_samples] Subset of target values Returns ------- self : returns an instance of self. """ self._validate_params(for_partial_fit=True) lr = "pa1" if self.loss == "epsilon_insensitive" else "pa2" return self._partial_fit(X, y, alpha=1.0, C=self.C, loss="epsilon_insensitive", learning_rate=lr, max_iter=1, sample_weight=None, coef_init=None, intercept_init=None) def fit(self, X, y, coef_init=None, intercept_init=None): """Fit linear model with Passive Aggressive algorithm. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training data y : numpy array of shape [n_samples] Target values coef_init : array, shape = [n_features] The initial coefficients to warm-start the optimization. intercept_init : array, shape = [1] The initial intercept to warm-start the optimization. Returns ------- self : returns an instance of self. """ self._validate_params() lr = "pa1" if self.loss == "epsilon_insensitive" else "pa2" return self._fit(X, y, alpha=1.0, C=self.C, loss="epsilon_insensitive", learning_rate=lr, coef_init=coef_init, intercept_init=intercept_init)
bsd-3-clause
cloud-fan/spark
python/pyspark/pandas/data_type_ops/base.py
1
12265
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numbers from abc import ABCMeta from itertools import chain from typing import Any, Optional, TYPE_CHECKING, Union import numpy as np import pandas as pd from pandas.api.types import CategoricalDtype from pyspark.sql import functions as F from pyspark.sql.types import ( ArrayType, BinaryType, BooleanType, DataType, DateType, FractionalType, IntegralType, MapType, NullType, NumericType, StringType, StructType, TimestampType, UserDefinedType, ) from pyspark.pandas.typedef import Dtype, extension_dtypes from pyspark.pandas.typedef.typehints import extension_object_dtypes_available if extension_object_dtypes_available: from pandas import BooleanDtype if TYPE_CHECKING: from pyspark.pandas.indexes import Index # noqa: F401 (SPARK-34943) from pyspark.pandas.series import Series # noqa: F401 (SPARK-34943) def is_valid_operand_for_numeric_arithmetic(operand: Any, *, allow_bool: bool = True) -> bool: """Check whether the `operand` is valid for arithmetic operations against numerics.""" from pyspark.pandas.base import IndexOpsMixin if isinstance(operand, numbers.Number): return not isinstance(operand, bool) or allow_bool elif isinstance(operand, IndexOpsMixin): if isinstance(operand.dtype, CategoricalDtype): return False else: return isinstance(operand.spark.data_type, NumericType) or ( allow_bool and isinstance(operand.spark.data_type, BooleanType) ) else: return False def transform_boolean_operand_to_numeric( operand: Any, spark_type: Optional[DataType] = None ) -> Any: """Transform boolean operand to numeric. If the `operand` is: - a boolean IndexOpsMixin, transform the `operand` to the `spark_type`. - a boolean literal, transform to the int value. Otherwise, return the operand as it is. """ from pyspark.pandas.base import IndexOpsMixin if isinstance(operand, IndexOpsMixin) and isinstance(operand.spark.data_type, BooleanType): assert spark_type, "spark_type must be provided if the operand is a boolean IndexOpsMixin" return operand.spark.transform(lambda scol: scol.cast(spark_type)) elif isinstance(operand, bool): return int(operand) else: return operand def _as_categorical_type( index_ops: Union["Series", "Index"], dtype: CategoricalDtype, spark_type: DataType ) -> Union["Index", "Series"]: """Cast `index_ops` to categorical dtype, given `dtype` and `spark_type`.""" assert isinstance(dtype, CategoricalDtype) if dtype.categories is None: codes, uniques = index_ops.factorize() return codes._with_new_scol( codes.spark.column, field=codes._internal.data_fields[0].copy(dtype=CategoricalDtype(categories=uniques)), ) else: categories = dtype.categories if len(categories) == 0: scol = F.lit(-1) else: kvs = chain( *[(F.lit(category), F.lit(code)) for code, category in enumerate(categories)] ) map_scol = F.create_map(*kvs) scol = F.coalesce(map_scol.getItem(index_ops.spark.column), F.lit(-1)) return index_ops._with_new_scol( scol.cast(spark_type).alias(index_ops._internal.data_fields[0].name), field=index_ops._internal.data_fields[0].copy( dtype=dtype, spark_type=spark_type, nullable=False ), ) def _as_bool_type( index_ops: Union["Series", "Index"], dtype: Union[str, type, Dtype] ) -> Union["Index", "Series"]: """Cast `index_ops` to BooleanType Spark type, given `dtype`.""" from pyspark.pandas.internal import InternalField if isinstance(dtype, extension_dtypes): scol = index_ops.spark.column.cast(BooleanType()) else: scol = F.when(index_ops.spark.column.isNull(), F.lit(False)).otherwise( index_ops.spark.column.cast(BooleanType()) ) return index_ops._with_new_scol( scol.alias(index_ops._internal.data_spark_column_names[0]), field=InternalField(dtype=dtype), ) def _as_string_type( index_ops: Union["Series", "Index"], dtype: Union[str, type, Dtype], *, null_str: str = str(None) ) -> Union["Index", "Series"]: """Cast `index_ops` to StringType Spark type, given `dtype` and `null_str`, representing null Spark column. """ from pyspark.pandas.internal import InternalField if isinstance(dtype, extension_dtypes): scol = index_ops.spark.column.cast(StringType()) else: casted = index_ops.spark.column.cast(StringType()) scol = F.when(index_ops.spark.column.isNull(), null_str).otherwise(casted) return index_ops._with_new_scol( scol.alias(index_ops._internal.data_spark_column_names[0]), field=InternalField(dtype=dtype), ) def _as_other_type( index_ops: Union["Series", "Index"], dtype: Union[str, type, Dtype], spark_type: DataType ) -> Union["Index", "Series"]: """Cast `index_ops` to a `dtype` (`spark_type`) that needs no pre-processing. Destination types that need pre-processing: CategoricalDtype, BooleanType, and StringType. """ from pyspark.pandas.internal import InternalField need_pre_process = ( isinstance(dtype, CategoricalDtype) or isinstance(spark_type, BooleanType) or isinstance(spark_type, StringType) ) assert not need_pre_process, "Pre-processing is needed before the type casting." scol = index_ops.spark.column.cast(spark_type) return index_ops._with_new_scol( scol.alias(index_ops._internal.data_spark_column_names[0]), field=InternalField(dtype=dtype), ) class DataTypeOps(object, metaclass=ABCMeta): """The base class for binary operations of pandas-on-Spark objects (of different data types).""" def __new__(cls, dtype: Dtype, spark_type: DataType): from pyspark.pandas.data_type_ops.binary_ops import BinaryOps from pyspark.pandas.data_type_ops.boolean_ops import BooleanOps, BooleanExtensionOps from pyspark.pandas.data_type_ops.categorical_ops import CategoricalOps from pyspark.pandas.data_type_ops.complex_ops import ArrayOps, MapOps, StructOps from pyspark.pandas.data_type_ops.date_ops import DateOps from pyspark.pandas.data_type_ops.datetime_ops import DatetimeOps from pyspark.pandas.data_type_ops.null_ops import NullOps from pyspark.pandas.data_type_ops.num_ops import IntegralOps, FractionalOps from pyspark.pandas.data_type_ops.string_ops import StringOps from pyspark.pandas.data_type_ops.udt_ops import UDTOps if isinstance(dtype, CategoricalDtype): return object.__new__(CategoricalOps) elif isinstance(spark_type, FractionalType): return object.__new__(FractionalOps) elif isinstance(spark_type, IntegralType): return object.__new__(IntegralOps) elif isinstance(spark_type, StringType): return object.__new__(StringOps) elif isinstance(spark_type, BooleanType): if extension_object_dtypes_available and isinstance(dtype, BooleanDtype): return object.__new__(BooleanExtensionOps) else: return object.__new__(BooleanOps) elif isinstance(spark_type, TimestampType): return object.__new__(DatetimeOps) elif isinstance(spark_type, DateType): return object.__new__(DateOps) elif isinstance(spark_type, BinaryType): return object.__new__(BinaryOps) elif isinstance(spark_type, ArrayType): return object.__new__(ArrayOps) elif isinstance(spark_type, MapType): return object.__new__(MapOps) elif isinstance(spark_type, StructType): return object.__new__(StructOps) elif isinstance(spark_type, NullType): return object.__new__(NullOps) elif isinstance(spark_type, UserDefinedType): return object.__new__(UDTOps) else: raise TypeError("Type %s was not understood." % dtype) def __init__(self, dtype: Dtype, spark_type: DataType): self.dtype = dtype self.spark_type = spark_type @property def pretty_name(self) -> str: raise NotImplementedError() def add(self, left, right) -> Union["Series", "Index"]: raise TypeError("Addition can not be applied to %s." % self.pretty_name) def sub(self, left, right) -> Union["Series", "Index"]: raise TypeError("Subtraction can not be applied to %s." % self.pretty_name) def mul(self, left, right) -> Union["Series", "Index"]: raise TypeError("Multiplication can not be applied to %s." % self.pretty_name) def truediv(self, left, right) -> Union["Series", "Index"]: raise TypeError("True division can not be applied to %s." % self.pretty_name) def floordiv(self, left, right) -> Union["Series", "Index"]: raise TypeError("Floor division can not be applied to %s." % self.pretty_name) def mod(self, left, right) -> Union["Series", "Index"]: raise TypeError("Modulo can not be applied to %s." % self.pretty_name) def pow(self, left, right) -> Union["Series", "Index"]: raise TypeError("Exponentiation can not be applied to %s." % self.pretty_name) def radd(self, left, right) -> Union["Series", "Index"]: raise TypeError("Addition can not be applied to %s." % self.pretty_name) def rsub(self, left, right) -> Union["Series", "Index"]: raise TypeError("Subtraction can not be applied to %s." % self.pretty_name) def rmul(self, left, right) -> Union["Series", "Index"]: raise TypeError("Multiplication can not be applied to %s." % self.pretty_name) def rtruediv(self, left, right) -> Union["Series", "Index"]: raise TypeError("True division can not be applied to %s." % self.pretty_name) def rfloordiv(self, left, right) -> Union["Series", "Index"]: raise TypeError("Floor division can not be applied to %s." % self.pretty_name) def rmod(self, left, right) -> Union["Series", "Index"]: raise TypeError("Modulo can not be applied to %s." % self.pretty_name) def rpow(self, left, right) -> Union["Series", "Index"]: raise TypeError("Exponentiation can not be applied to %s." % self.pretty_name) def __and__(self, left, right) -> Union["Series", "Index"]: raise TypeError("Bitwise and can not be applied to %s." % self.pretty_name) def __or__(self, left, right) -> Union["Series", "Index"]: raise TypeError("Bitwise or can not be applied to %s." % self.pretty_name) def rand(self, left, right) -> Union["Series", "Index"]: return left.__and__(right) def ror(self, left, right) -> Union["Series", "Index"]: return left.__or__(right) def restore(self, col: pd.Series) -> pd.Series: """Restore column when to_pandas.""" return col def prepare(self, col: pd.Series) -> pd.Series: """Prepare column when from_pandas.""" return col.replace({np.nan: None}) def astype( self, index_ops: Union["Index", "Series"], dtype: Union[str, type, Dtype] ) -> Union["Index", "Series"]: raise TypeError("astype can not be applied to %s." % self.pretty_name)
apache-2.0
Vimos/scikit-learn
benchmarks/bench_random_projections.py
397
8900
""" =========================== Random projection benchmark =========================== Benchmarks for random projections. """ from __future__ import division from __future__ import print_function import gc import sys import optparse from datetime import datetime import collections import numpy as np import scipy.sparse as sp from sklearn import clone from sklearn.externals.six.moves import xrange from sklearn.random_projection import (SparseRandomProjection, GaussianRandomProjection, johnson_lindenstrauss_min_dim) def type_auto_or_float(val): if val == "auto": return "auto" else: return float(val) def type_auto_or_int(val): if val == "auto": return "auto" else: return int(val) def compute_time(t_start, delta): mu_second = 0.0 + 10 ** 6 # number of microseconds in a second return delta.seconds + delta.microseconds / mu_second def bench_scikit_transformer(X, transfomer): gc.collect() clf = clone(transfomer) # start time t_start = datetime.now() clf.fit(X) delta = (datetime.now() - t_start) # stop time time_to_fit = compute_time(t_start, delta) # start time t_start = datetime.now() clf.transform(X) delta = (datetime.now() - t_start) # stop time time_to_transform = compute_time(t_start, delta) return time_to_fit, time_to_transform # Make some random data with uniformly located non zero entries with # Gaussian distributed values def make_sparse_random_data(n_samples, n_features, n_nonzeros, random_state=None): rng = np.random.RandomState(random_state) data_coo = sp.coo_matrix( (rng.randn(n_nonzeros), (rng.randint(n_samples, size=n_nonzeros), rng.randint(n_features, size=n_nonzeros))), shape=(n_samples, n_features)) return data_coo.toarray(), data_coo.tocsr() def print_row(clf_type, time_fit, time_transform): print("%s | %s | %s" % (clf_type.ljust(30), ("%.4fs" % time_fit).center(12), ("%.4fs" % time_transform).center(12))) if __name__ == "__main__": ########################################################################### # Option parser ########################################################################### op = optparse.OptionParser() op.add_option("--n-times", dest="n_times", default=5, type=int, help="Benchmark results are average over n_times experiments") op.add_option("--n-features", dest="n_features", default=10 ** 4, type=int, help="Number of features in the benchmarks") op.add_option("--n-components", dest="n_components", default="auto", help="Size of the random subspace." " ('auto' or int > 0)") op.add_option("--ratio-nonzeros", dest="ratio_nonzeros", default=10 ** -3, type=float, help="Number of features in the benchmarks") op.add_option("--n-samples", dest="n_samples", default=500, type=int, help="Number of samples in the benchmarks") op.add_option("--random-seed", dest="random_seed", default=13, type=int, help="Seed used by the random number generators.") op.add_option("--density", dest="density", default=1 / 3, help="Density used by the sparse random projection." " ('auto' or float (0.0, 1.0]") op.add_option("--eps", dest="eps", default=0.5, type=float, help="See the documentation of the underlying transformers.") op.add_option("--transformers", dest="selected_transformers", default='GaussianRandomProjection,SparseRandomProjection', type=str, help="Comma-separated list of transformer to benchmark. " "Default: %default. Available: " "GaussianRandomProjection,SparseRandomProjection") op.add_option("--dense", dest="dense", default=False, action="store_true", help="Set input space as a dense matrix.") (opts, args) = op.parse_args() if len(args) > 0: op.error("this script takes no arguments.") sys.exit(1) opts.n_components = type_auto_or_int(opts.n_components) opts.density = type_auto_or_float(opts.density) selected_transformers = opts.selected_transformers.split(',') ########################################################################### # Generate dataset ########################################################################### n_nonzeros = int(opts.ratio_nonzeros * opts.n_features) print('Dataset statics') print("===========================") print('n_samples \t= %s' % opts.n_samples) print('n_features \t= %s' % opts.n_features) if opts.n_components == "auto": print('n_components \t= %s (auto)' % johnson_lindenstrauss_min_dim(n_samples=opts.n_samples, eps=opts.eps)) else: print('n_components \t= %s' % opts.n_components) print('n_elements \t= %s' % (opts.n_features * opts.n_samples)) print('n_nonzeros \t= %s per feature' % n_nonzeros) print('ratio_nonzeros \t= %s' % opts.ratio_nonzeros) print('') ########################################################################### # Set transformer input ########################################################################### transformers = {} ########################################################################### # Set GaussianRandomProjection input gaussian_matrix_params = { "n_components": opts.n_components, "random_state": opts.random_seed } transformers["GaussianRandomProjection"] = \ GaussianRandomProjection(**gaussian_matrix_params) ########################################################################### # Set SparseRandomProjection input sparse_matrix_params = { "n_components": opts.n_components, "random_state": opts.random_seed, "density": opts.density, "eps": opts.eps, } transformers["SparseRandomProjection"] = \ SparseRandomProjection(**sparse_matrix_params) ########################################################################### # Perform benchmark ########################################################################### time_fit = collections.defaultdict(list) time_transform = collections.defaultdict(list) print('Benchmarks') print("===========================") print("Generate dataset benchmarks... ", end="") X_dense, X_sparse = make_sparse_random_data(opts.n_samples, opts.n_features, n_nonzeros, random_state=opts.random_seed) X = X_dense if opts.dense else X_sparse print("done") for name in selected_transformers: print("Perform benchmarks for %s..." % name) for iteration in xrange(opts.n_times): print("\titer %s..." % iteration, end="") time_to_fit, time_to_transform = bench_scikit_transformer(X_dense, transformers[name]) time_fit[name].append(time_to_fit) time_transform[name].append(time_to_transform) print("done") print("") ########################################################################### # Print results ########################################################################### print("Script arguments") print("===========================") arguments = vars(opts) print("%s \t | %s " % ("Arguments".ljust(16), "Value".center(12),)) print(25 * "-" + ("|" + "-" * 14) * 1) for key, value in arguments.items(): print("%s \t | %s " % (str(key).ljust(16), str(value).strip().center(12))) print("") print("Transformer performance:") print("===========================") print("Results are averaged over %s repetition(s)." % opts.n_times) print("") print("%s | %s | %s" % ("Transformer".ljust(30), "fit".center(12), "transform".center(12))) print(31 * "-" + ("|" + "-" * 14) * 2) for name in sorted(selected_transformers): print_row(name, np.mean(time_fit[name]), np.mean(time_transform[name])) print("") print("")
bsd-3-clause
jcchin/MagnePlane
src/hyperloop/Python/ticket_cost.py
4
8796
from __future__ import print_function import numpy as np from openmdao.api import IndepVarComp, Component, Group, Problem, ExecComp import matplotlib.pylab as plt class TicketCost(Component): ''' Notes ------- This Component takes into account various cost figures from the system model and combines them to estimate tickt cost per passenger. Params ------- length_cost : float Cost of materials per unit length. Default value is 2.437e6 USD/km pod_cost : float Cost per individual pod. Default value is 1.0e6 USD. capital_cost : float Estimate of overhead capital cost. Default value is 1.0e10 USD. energy_cost : float Cost of electricity. Default value is .13 USD/kWh ib : float Bond interest rate. Default value is .04 bm : float Bond maturity. Default value is 20.0 years. operating_time : float operating time per day. Default value is 16.0*3600 s JtokWh : float Convert J to kWh. Default value is J/kWh m_pod : float Pod mass. Default value is 3100 kg n_passengers : float Number of passengers. Default value is 28.0 pod_period : float Time in between pod departures. Default value is 120.0 s avg_speed : float average pod speed. Default value is 286.86 m/s track_length : float length of the track. Default value is 600e3 m pod_power : float Power consumption of the pod. Default value is 1.5e6 W prop_power : float power of an individual propulsion section. Default value is 350e3 W vac_power : float Power of the vacuum pumps. Default value is 71.049e6 W alpha : float percent of vacuum power used in steady state. Default value is .0001 vf : float Pod top speed. Default value is 286.86 m/s g : float Gravity. Default value is 9.81 m/s/s Cd : float Pod drag coefficient. Default value is .2 S : float Pod planform area. Default value is 40.42 m**2 p_tunnel : float Tunnel pressure. Default value is 850.0 Pa T_tunnel : float Tunnel temperature. Default value is 320 K R : float Ideal gas constant. Default value is 287 J/kg/K eta : float Efficiency of propulsion system D_mag : float Magnetic drag. Default value is (9.81*3100.0)/200.0 N thrust_time : float Time spent during a propulsive section. Default value is 1.5 s prop_period : float distance between pripulsion sections. Defualt value is 25.0e3 km Returns ------- ticket_cost : float cost of individual ticket. Default value is 0.0 USD prop_energy_cost : float cost of energy used by propulsion section per year. Default value is 0.0 USD ''' def __init__(self): super(TicketCost, self).__init__() self.add_param('land_cost', val = 2.437e6, desc = 'Cost of materials over land per unit length', units = 'USD/km') self.add_param('water_cost', val = 389.346941e3, desc = 'Cost of materials underwater per unit length', units = 'USD/km') self.add_param('pod_cost', val = 1.0e6, desc = 'Cost of individual pod', units = 'USD') self.add_param('capital_cost', val = 1.0e10, desc = 'Estimate of overhead capital cost', units = 'USD') self.add_param('energy_cost', val = .13, desc = 'Cost of electricity', units = 'USD/kW/h') self.add_param('ib', val = .04, desc = 'Bond interest rate', units = 'unitless') self.add_param('bm', val = 20.0, desc = 'Bond maturity', units = 'yr') self.add_param('operating_time', val = 16.0*3600, desc = 'Operating time per day', units = 's') self.add_param('JtokWh', val = 2.7778e-7, desc = 'Convert Joules to kWh', units = '(kw*h)/J') self.add_param('m_pod', val = 3100.0, desc = 'Pod Mass', units = 'kg') self.add_param('n_passengers', val = 28.0, desc = 'number of passengers', units = 'unitless') self.add_param('pod_period', val = 120.0, desc = 'Time in between departures', units = 's') self.add_param('avg_speed', val = 286.86, desc = 'Average Pod Speed', units = 'm/s') self.add_param('track_length', val = 600.0e3, desc = 'Track Length', units = 'm') self.add_param('land_length', val = 600e3, desc = 'Length traveled over land', units = 'm') self.add_param('water_length', val = 0.0e3, desc = 'Length traveled underwater', units = 'm') self.add_param('pod_power', val = 1.5e6, desc = 'Power required by pod motor', units = 'W') self.add_param('prop_power', val = 350.0e3, desc = 'Power of single propulsive section', units = 'W') self.add_param('vac_power', val = 71.049e6, desc = 'Power of vacuums', units = 'W') self.add_param('steady_vac_power', val = 950.0e3, desc = 'Steady State run power of vacuum pumps', units = 'W') self.add_param('vf', val = 286.86, desc = 'Pod top speed', units = 'm/s') self.add_param('g', val = 9.81, desc = 'Gravity', units = 'm/s/s') self.add_param('Cd', val = .2, desc = 'Pod drag coefficient', units = 'unitless') self.add_param('S', val = 40.42, desc = 'Pod planform area', units = 'm**2') self.add_param('p_tunnel', val = 850.0, desc = 'Tunnel Pressure', units = 'Pa') self.add_param('T_tunnel', val = 320.0, desc = 'Tunnel Temperature', units = 'K') self.add_param('R', val = 287.0, desc = 'Ideal gas constant', units = 'J/kg/K') self.add_param('eta', val = .8, desc = 'Propulsive efficiency', units = 'unitless') self.add_param('D_mag', val = (9.81*3100.0)/200.0, desc = 'Magnetic Drag', units = 'N') self.add_param('thrust_time', val = 1.5, desc = 'Time that pod is over propulsive section', units = 's') self.add_param('prop_period', val = 25.0e3, desc = 'distance between propulsive sections', units = 'm') self.add_param('num_thrust', val = 10.0, desc = 'Number of booster sections along track', units = 'unitless') self.add_output('num_pods', val = 0.0, desc = 'Number of Pods', units = 'unitless') self.add_output('ticket_cost', val = 0.0, desc = 'Ticket cost', units = 'USD') self.add_output('prop_energy_cost', val = 0.0, desc = 'Cost of propulsion energy', units = 'USD') self.add_output('tube_energy_cost', val = 0.0, desc = 'Cost of tube energy', units = 'USD') self.add_output('total_energy_cost', val = 0.0, desc = 'Cost of energy consumpition per year', units = 'USD') def solve_nonlinear(self, p, u,r): land_cost = p['land_cost'] water_cost = p['water_cost'] pod_cost= p['pod_cost'] capital_cost = p['capital_cost'] energy_cost = p['energy_cost'] ib = p['ib'] bm = p['bm'] operating_time = p['operating_time'] JtokWh = p['JtokWh'] m_pod = p['m_pod'] n_passengers = p['n_passengers'] pod_period = p['pod_period'] avg_speed = p['avg_speed'] track_length = p['track_length'] land_length = p['land_length'] water_length = p['water_length'] pod_power = -1.0*p['pod_power'] prop_power = p['prop_power'] vac_power = p['vac_power'] steady_vac_power = -1.0*p['steady_vac_power'] vf = p['vf'] g = p['g'] Cd = p['Cd'] S = p['S'] p_tunnel = p['p_tunnel'] T_tunnel = p['T_tunnel'] R = p['R'] eta = p['eta'] D_mag = p['D_mag'] thrust_time = p['thrust_time'] prop_period = p['prop_period'] num_thrust = p['num_thrust'] length_cost = ((water_length/track_length)*water_cost) + ((land_length/track_length)*land_cost) pod_frequency = 1.0/pod_period num_pods = np.ceil((track_length/avg_speed)*pod_frequency) flights_per_pod = (operating_time*pod_frequency)/num_pods energy_per_flight = pod_power*(track_length/avg_speed)*.9 pod_energy = energy_per_flight*flights_per_pod*num_pods*JtokWh vac_energy = steady_vac_power*operating_time*JtokWh rho = p_tunnel/(R*T_tunnel) start_distance = (vf**2)/(2*g) start_energy = ((m_pod*g+D_mag)*start_distance + (.5*Cd*rho*g*S*(start_distance**2)))/eta prop_energy = (num_thrust*thrust_time*prop_power + start_energy)*flights_per_pod*num_pods*JtokWh tube_energy = prop_energy + vac_energy u['num_pods'] = num_pods u['prop_energy_cost'] = prop_energy*energy_cost*365 u['tube_energy_cost'] = tube_energy*energy_cost*365 u['total_energy_cost'] = (pod_energy+tube_energy)*energy_cost*365 u['ticket_cost'] = cost_ticket = (length_cost*(track_length/1000.0) + pod_cost*num_pods + capital_cost*(1.0+ib) + \ energy_cost*(tube_energy + pod_energy)*365.0)/(n_passengers*pod_frequency*bm*365.0*24.0*3600.0) if __name__ == '__main__': top = Problem() root = top.root = Group() params = (('n_passengers', 28.0), ('track_length', 600.0e3, {'units' : 'm'})) root.add('p', TicketCost()) root.add('des_vars', IndepVarComp(params), promotes = ['n_passengers']) root.connect('n_passengers', 'p.n_passengers') root.connect('des_vars.track_length', 'p.track_length') top.setup() top.run() print(top['p.ticket_cost']) # n_passengers = np.linspace(10,100,num = 90) # ticket_cost = np.zeros((1, len(n_passengers))) # for i in range(len(n_passengers)): # top['n_passengers'] = n_passengers[i] # top.run() # ticket_cost[0, i] = top['p.ticket_cost'] # plt.plot(n_passengers*(175200.0/(1.0e6)), ticket_cost[0,:]) # plt.show()
apache-2.0
jdmcbr/geopandas
benchmarks/sindex.py
2
3488
from shapely.geometry import Point from geopandas import read_file, datasets, GeoSeries # Derive list of valid query predicates based on underlying index backend; # we have to create a non-empty instance of the index to get these index = GeoSeries([Point(0, 0)]).sindex predicates = sorted(p for p in index.valid_query_predicates if p is not None) geom_types = ("mixed", "points", "polygons") def generate_test_df(): world = read_file(datasets.get_path("naturalearth_lowres")) capitals = read_file(datasets.get_path("naturalearth_cities")) countries = world.to_crs("epsg:3395")[["geometry"]] capitals = capitals.to_crs("epsg:3395")[["geometry"]] mixed = capitals.append(countries) # get a mix of geometries points = capitals polygons = countries # filter out invalid geometries data = { "mixed": mixed[mixed.is_valid], "points": points[points.is_valid], "polygons": polygons[polygons.is_valid], } # ensure index is pre-generated for data_type in data.keys(): data[data_type].sindex.query(data[data_type].geometry.values.data[0]) return data class BenchIntersection: param_names = ["input_geom_type", "tree_geom_type"] params = [ geom_types, geom_types, ] def setup(self, *args): self.data = generate_test_df() # cache bounds so that bound creation is not counted in benchmarks self.bounds = { data_type: [g.bounds for g in self.data[data_type].geometry] for data_type in self.data.keys() } def time_intersects(self, input_geom_type, tree_geom_type): tree = self.data[tree_geom_type].sindex for bounds in self.bounds[input_geom_type]: tree.intersection(bounds) class BenchIndexCreation: param_names = ["tree_geom_type"] params = [ geom_types, ] def setup(self, *args): self.data = generate_test_df() def time_index_creation(self, tree_geom_type): """Time creation of spatial index. Note: requires running a single query to ensure that lazy-building indexes are actually built. """ # Note: the GeoDataFram._sindex_generated attribute will # be removed by GH#1444 but is kept here (in the benchmarks # so that we can compare pre GH#1444 to post GH#1444 if needed self.data[tree_geom_type]._sindex_generated = None self.data[tree_geom_type].geometry.values._sindex = None tree = self.data[tree_geom_type].sindex # also do a single query to ensure the index is actually # generated and used tree.query( self.data[tree_geom_type].geometry.values.data[0] ) class BenchQuery: param_names = ["predicate", "input_geom_type", "tree_geom_type"] params = [ predicates, geom_types, geom_types, ] def setup(self, *args): self.data = generate_test_df() def time_query_bulk(self, predicate, input_geom_type, tree_geom_type): self.data[tree_geom_type].sindex.query_bulk( self.data[input_geom_type].geometry.values.data, predicate=predicate, ) def time_query(self, predicate, input_geom_type, tree_geom_type): tree = self.data[tree_geom_type].sindex for geom in self.data[input_geom_type].geometry.values.data: tree.query( geom, predicate=predicate )
bsd-3-clause
abhisg/scikit-learn
sklearn/linear_model/bayes.py
220
15248
""" Various bayesian regression """ from __future__ import print_function # Authors: V. Michel, F. Pedregosa, A. Gramfort # License: BSD 3 clause from math import log import numpy as np from scipy import linalg from .base import LinearModel from ..base import RegressorMixin from ..utils.extmath import fast_logdet, pinvh from ..utils import check_X_y ############################################################################### # BayesianRidge regression class BayesianRidge(LinearModel, RegressorMixin): """Bayesian ridge regression Fit a Bayesian ridge model and optimize the regularization parameters lambda (precision of the weights) and alpha (precision of the noise). Read more in the :ref:`User Guide <bayesian_regression>`. Parameters ---------- n_iter : int, optional Maximum number of iterations. Default is 300. tol : float, optional Stop the algorithm if w has converged. Default is 1.e-3. alpha_1 : float, optional Hyper-parameter : shape parameter for the Gamma distribution prior over the alpha parameter. Default is 1.e-6 alpha_2 : float, optional Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution prior over the alpha parameter. Default is 1.e-6. lambda_1 : float, optional Hyper-parameter : shape parameter for the Gamma distribution prior over the lambda parameter. Default is 1.e-6. lambda_2 : float, optional Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution prior over the lambda parameter. Default is 1.e-6 compute_score : boolean, optional If True, compute the objective function at each step of the model. Default is False fit_intercept : boolean, optional whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). Default is True. normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. verbose : boolean, optional, default False Verbose mode when fitting the model. Attributes ---------- coef_ : array, shape = (n_features) Coefficients of the regression model (mean of distribution) alpha_ : float estimated precision of the noise. lambda_ : array, shape = (n_features) estimated precisions of the weights. scores_ : float if computed, value of the objective function (to be maximized) Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.BayesianRidge() >>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2]) ... # doctest: +NORMALIZE_WHITESPACE BayesianRidge(alpha_1=1e-06, alpha_2=1e-06, compute_score=False, copy_X=True, fit_intercept=True, lambda_1=1e-06, lambda_2=1e-06, n_iter=300, normalize=False, tol=0.001, verbose=False) >>> clf.predict([[1, 1]]) array([ 1.]) Notes ----- See examples/linear_model/plot_bayesian_ridge.py for an example. """ def __init__(self, n_iter=300, tol=1.e-3, alpha_1=1.e-6, alpha_2=1.e-6, lambda_1=1.e-6, lambda_2=1.e-6, compute_score=False, fit_intercept=True, normalize=False, copy_X=True, verbose=False): self.n_iter = n_iter self.tol = tol self.alpha_1 = alpha_1 self.alpha_2 = alpha_2 self.lambda_1 = lambda_1 self.lambda_2 = lambda_2 self.compute_score = compute_score self.fit_intercept = fit_intercept self.normalize = normalize self.copy_X = copy_X self.verbose = verbose def fit(self, X, y): """Fit the model Parameters ---------- X : numpy array of shape [n_samples,n_features] Training data y : numpy array of shape [n_samples] Target values Returns ------- self : returns an instance of self. """ X, y = check_X_y(X, y, dtype=np.float64, y_numeric=True) X, y, X_mean, y_mean, X_std = self._center_data( X, y, self.fit_intercept, self.normalize, self.copy_X) n_samples, n_features = X.shape ### Initialization of the values of the parameters alpha_ = 1. / np.var(y) lambda_ = 1. verbose = self.verbose lambda_1 = self.lambda_1 lambda_2 = self.lambda_2 alpha_1 = self.alpha_1 alpha_2 = self.alpha_2 self.scores_ = list() coef_old_ = None XT_y = np.dot(X.T, y) U, S, Vh = linalg.svd(X, full_matrices=False) eigen_vals_ = S ** 2 ### Convergence loop of the bayesian ridge regression for iter_ in range(self.n_iter): ### Compute mu and sigma # sigma_ = lambda_ / alpha_ * np.eye(n_features) + np.dot(X.T, X) # coef_ = sigma_^-1 * XT * y if n_samples > n_features: coef_ = np.dot(Vh.T, Vh / (eigen_vals_ + lambda_ / alpha_)[:, None]) coef_ = np.dot(coef_, XT_y) if self.compute_score: logdet_sigma_ = - np.sum( np.log(lambda_ + alpha_ * eigen_vals_)) else: coef_ = np.dot(X.T, np.dot( U / (eigen_vals_ + lambda_ / alpha_)[None, :], U.T)) coef_ = np.dot(coef_, y) if self.compute_score: logdet_sigma_ = lambda_ * np.ones(n_features) logdet_sigma_[:n_samples] += alpha_ * eigen_vals_ logdet_sigma_ = - np.sum(np.log(logdet_sigma_)) ### Update alpha and lambda rmse_ = np.sum((y - np.dot(X, coef_)) ** 2) gamma_ = (np.sum((alpha_ * eigen_vals_) / (lambda_ + alpha_ * eigen_vals_))) lambda_ = ((gamma_ + 2 * lambda_1) / (np.sum(coef_ ** 2) + 2 * lambda_2)) alpha_ = ((n_samples - gamma_ + 2 * alpha_1) / (rmse_ + 2 * alpha_2)) ### Compute the objective function if self.compute_score: s = lambda_1 * log(lambda_) - lambda_2 * lambda_ s += alpha_1 * log(alpha_) - alpha_2 * alpha_ s += 0.5 * (n_features * log(lambda_) + n_samples * log(alpha_) - alpha_ * rmse_ - (lambda_ * np.sum(coef_ ** 2)) - logdet_sigma_ - n_samples * log(2 * np.pi)) self.scores_.append(s) ### Check for convergence if iter_ != 0 and np.sum(np.abs(coef_old_ - coef_)) < self.tol: if verbose: print("Convergence after ", str(iter_), " iterations") break coef_old_ = np.copy(coef_) self.alpha_ = alpha_ self.lambda_ = lambda_ self.coef_ = coef_ self._set_intercept(X_mean, y_mean, X_std) return self ############################################################################### # ARD (Automatic Relevance Determination) regression class ARDRegression(LinearModel, RegressorMixin): """Bayesian ARD regression. Fit the weights of a regression model, using an ARD prior. The weights of the regression model are assumed to be in Gaussian distributions. Also estimate the parameters lambda (precisions of the distributions of the weights) and alpha (precision of the distribution of the noise). The estimation is done by an iterative procedures (Evidence Maximization) Read more in the :ref:`User Guide <bayesian_regression>`. Parameters ---------- n_iter : int, optional Maximum number of iterations. Default is 300 tol : float, optional Stop the algorithm if w has converged. Default is 1.e-3. alpha_1 : float, optional Hyper-parameter : shape parameter for the Gamma distribution prior over the alpha parameter. Default is 1.e-6. alpha_2 : float, optional Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution prior over the alpha parameter. Default is 1.e-6. lambda_1 : float, optional Hyper-parameter : shape parameter for the Gamma distribution prior over the lambda parameter. Default is 1.e-6. lambda_2 : float, optional Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution prior over the lambda parameter. Default is 1.e-6. compute_score : boolean, optional If True, compute the objective function at each step of the model. Default is False. threshold_lambda : float, optional threshold for removing (pruning) weights with high precision from the computation. Default is 1.e+4. fit_intercept : boolean, optional whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). Default is True. normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. copy_X : boolean, optional, default True. If True, X will be copied; else, it may be overwritten. verbose : boolean, optional, default False Verbose mode when fitting the model. Attributes ---------- coef_ : array, shape = (n_features) Coefficients of the regression model (mean of distribution) alpha_ : float estimated precision of the noise. lambda_ : array, shape = (n_features) estimated precisions of the weights. sigma_ : array, shape = (n_features, n_features) estimated variance-covariance matrix of the weights scores_ : float if computed, value of the objective function (to be maximized) Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.ARDRegression() >>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2]) ... # doctest: +NORMALIZE_WHITESPACE ARDRegression(alpha_1=1e-06, alpha_2=1e-06, compute_score=False, copy_X=True, fit_intercept=True, lambda_1=1e-06, lambda_2=1e-06, n_iter=300, normalize=False, threshold_lambda=10000.0, tol=0.001, verbose=False) >>> clf.predict([[1, 1]]) array([ 1.]) Notes -------- See examples/linear_model/plot_ard.py for an example. """ def __init__(self, n_iter=300, tol=1.e-3, alpha_1=1.e-6, alpha_2=1.e-6, lambda_1=1.e-6, lambda_2=1.e-6, compute_score=False, threshold_lambda=1.e+4, fit_intercept=True, normalize=False, copy_X=True, verbose=False): self.n_iter = n_iter self.tol = tol self.fit_intercept = fit_intercept self.normalize = normalize self.alpha_1 = alpha_1 self.alpha_2 = alpha_2 self.lambda_1 = lambda_1 self.lambda_2 = lambda_2 self.compute_score = compute_score self.threshold_lambda = threshold_lambda self.copy_X = copy_X self.verbose = verbose def fit(self, X, y): """Fit the ARDRegression model according to the given training data and parameters. Iterative procedure to maximize the evidence Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. y : array, shape = [n_samples] Target values (integers) Returns ------- self : returns an instance of self. """ X, y = check_X_y(X, y, dtype=np.float64, y_numeric=True) n_samples, n_features = X.shape coef_ = np.zeros(n_features) X, y, X_mean, y_mean, X_std = self._center_data( X, y, self.fit_intercept, self.normalize, self.copy_X) ### Launch the convergence loop keep_lambda = np.ones(n_features, dtype=bool) lambda_1 = self.lambda_1 lambda_2 = self.lambda_2 alpha_1 = self.alpha_1 alpha_2 = self.alpha_2 verbose = self.verbose ### Initialization of the values of the parameters alpha_ = 1. / np.var(y) lambda_ = np.ones(n_features) self.scores_ = list() coef_old_ = None ### Iterative procedure of ARDRegression for iter_ in range(self.n_iter): ### Compute mu and sigma (using Woodbury matrix identity) sigma_ = pinvh(np.eye(n_samples) / alpha_ + np.dot(X[:, keep_lambda] * np.reshape(1. / lambda_[keep_lambda], [1, -1]), X[:, keep_lambda].T)) sigma_ = np.dot(sigma_, X[:, keep_lambda] * np.reshape(1. / lambda_[keep_lambda], [1, -1])) sigma_ = - np.dot(np.reshape(1. / lambda_[keep_lambda], [-1, 1]) * X[:, keep_lambda].T, sigma_) sigma_.flat[::(sigma_.shape[1] + 1)] += 1. / lambda_[keep_lambda] coef_[keep_lambda] = alpha_ * np.dot( sigma_, np.dot(X[:, keep_lambda].T, y)) ### Update alpha and lambda rmse_ = np.sum((y - np.dot(X, coef_)) ** 2) gamma_ = 1. - lambda_[keep_lambda] * np.diag(sigma_) lambda_[keep_lambda] = ((gamma_ + 2. * lambda_1) / ((coef_[keep_lambda]) ** 2 + 2. * lambda_2)) alpha_ = ((n_samples - gamma_.sum() + 2. * alpha_1) / (rmse_ + 2. * alpha_2)) ### Prune the weights with a precision over a threshold keep_lambda = lambda_ < self.threshold_lambda coef_[~keep_lambda] = 0 ### Compute the objective function if self.compute_score: s = (lambda_1 * np.log(lambda_) - lambda_2 * lambda_).sum() s += alpha_1 * log(alpha_) - alpha_2 * alpha_ s += 0.5 * (fast_logdet(sigma_) + n_samples * log(alpha_) + np.sum(np.log(lambda_))) s -= 0.5 * (alpha_ * rmse_ + (lambda_ * coef_ ** 2).sum()) self.scores_.append(s) ### Check for convergence if iter_ > 0 and np.sum(np.abs(coef_old_ - coef_)) < self.tol: if verbose: print("Converged after %s iterations" % iter_) break coef_old_ = np.copy(coef_) self.coef_ = coef_ self.alpha_ = alpha_ self.sigma_ = sigma_ self.lambda_ = lambda_ self._set_intercept(X_mean, y_mean, X_std) return self
bsd-3-clause
clarkfitzg/xray
setup.py
2
4581
#!/usr/bin/env python import os import re import sys import warnings from setuptools import setup, find_packages MAJOR = 0 MINOR = 5 MICRO = 1 ISRELEASED = False VERSION = '%d.%d.%d' % (MAJOR, MINOR, MICRO) QUALIFIER = '' DISTNAME = 'xray' LICENSE = 'Apache' AUTHOR = 'xray Developers' AUTHOR_EMAIL = 'xray-dev@googlegroups.com' URL = 'https://github.com/xray/xray' CLASSIFIERS = [ 'Development Status :: 4 - Beta', 'License :: OSI Approved :: Apache Software License', 'Operating System :: OS Independent', 'Intended Audience :: Science/Research', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Topic :: Scientific/Engineering', ] INSTALL_REQUIRES = ['numpy >= 1.7', 'pandas >= 0.15.0'] TESTS_REQUIRE = ['nose >= 1.0'] if sys.version_info[:2] < (2, 7): TESTS_REQUIRE += ["unittest2 == 0.5.1"] DESCRIPTION = "N-D labeled arrays and datasets in Python" LONG_DESCRIPTION = """ **xray** is an open source project and Python package that aims to bring the labeled data power of pandas_ to the physical sciences, by providing N-dimensional variants of the core pandas data structures. Our goal is to provide a pandas-like and pandas-compatible toolkit for analytics on multi-dimensional arrays, rather than the tabular data for which pandas excels. Our approach adopts the `Common Data Model`_ for self- describing scientific data in widespread use in the Earth sciences: ``xray.Dataset`` is an in-memory representation of a netCDF file. .. _pandas: http://pandas.pydata.org .. _Common Data Model: http://www.unidata.ucar.edu/software/thredds/current/netcdf-java/CDM .. _netCDF: http://www.unidata.ucar.edu/software/netcdf .. _OPeNDAP: http://www.opendap.org/ Important links --------------- - HTML documentation: http://xray.readthedocs.org - Issue tracker: http://github.com/xray/xray/issues - Source code: http://github.com/xray/xray - PyData talk: https://www.youtube.com/watch?v=T5CZyNwBa9c """ # code to extract and write the version copied from pandas FULLVERSION = VERSION write_version = True if not ISRELEASED: import subprocess FULLVERSION += '.dev' pipe = None for cmd in ['git', 'git.cmd']: try: pipe = subprocess.Popen( [cmd, "describe", "--always", "--match", "v[0-9]*"], stdout=subprocess.PIPE) (so, serr) = pipe.communicate() if pipe.returncode == 0: break except: pass if pipe is None or pipe.returncode != 0: # no git, or not in git dir if os.path.exists('xray/version.py'): warnings.warn("WARNING: Couldn't get git revision, using existing xray/version.py") write_version = False else: warnings.warn("WARNING: Couldn't get git revision, using generic version string") else: # have git, in git dir, but may have used a shallow clone (travis does this) rev = so.strip() # makes distutils blow up on Python 2.7 if sys.version_info[0] >= 3: rev = rev.decode('ascii') if not rev.startswith('v') and re.match("[a-zA-Z0-9]{7,9}", rev): # partial clone, manually construct version string # this is the format before we started using git-describe # to get an ordering on dev version strings. rev = "v%s.dev-%s" % (VERSION, rev) # Strip leading v from tags format "vx.y.z" to get th version string FULLVERSION = rev.lstrip('v') else: FULLVERSION += QUALIFIER def write_version_py(filename=None): cnt = """\ version = '%s' short_version = '%s' """ if not filename: filename = os.path.join( os.path.dirname(__file__), 'xray', 'version.py') a = open(filename, 'w') try: a.write(cnt % (FULLVERSION, VERSION)) finally: a.close() if write_version: write_version_py() setup(name=DISTNAME, version=FULLVERSION, license=LICENSE, author=AUTHOR, author_email=AUTHOR_EMAIL, classifiers=CLASSIFIERS, description=DESCRIPTION, long_description=LONG_DESCRIPTION, install_requires=INSTALL_REQUIRES, tests_require=TESTS_REQUIRE, url=URL, test_suite='nose.collector', packages=find_packages(), package_data={'xray': ['test/data/*']})
apache-2.0
shangwuhencc/scikit-learn
examples/svm/plot_svm_anova.py
250
2000
""" ================================================= SVM-Anova: SVM with univariate feature selection ================================================= This example shows how to perform univariate feature before running a SVC (support vector classifier) to improve the classification scores. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets, feature_selection, cross_validation from sklearn.pipeline import Pipeline ############################################################################### # Import some data to play with digits = datasets.load_digits() y = digits.target # Throw away data, to be in the curse of dimension settings y = y[:200] X = digits.data[:200] n_samples = len(y) X = X.reshape((n_samples, -1)) # add 200 non-informative features X = np.hstack((X, 2 * np.random.random((n_samples, 200)))) ############################################################################### # Create a feature-selection transform and an instance of SVM that we # combine together to have an full-blown estimator transform = feature_selection.SelectPercentile(feature_selection.f_classif) clf = Pipeline([('anova', transform), ('svc', svm.SVC(C=1.0))]) ############################################################################### # Plot the cross-validation score as a function of percentile of features score_means = list() score_stds = list() percentiles = (1, 3, 6, 10, 15, 20, 30, 40, 60, 80, 100) for percentile in percentiles: clf.set_params(anova__percentile=percentile) # Compute cross-validation score using all CPUs this_scores = cross_validation.cross_val_score(clf, X, y, n_jobs=1) score_means.append(this_scores.mean()) score_stds.append(this_scores.std()) plt.errorbar(percentiles, score_means, np.array(score_stds)) plt.title( 'Performance of the SVM-Anova varying the percentile of features selected') plt.xlabel('Percentile') plt.ylabel('Prediction rate') plt.axis('tight') plt.show()
bsd-3-clause
rbalda/neural_ocr
env/lib/python2.7/site-packages/matplotlib/compat/subprocess.py
19
2827
""" A replacement wrapper around the subprocess module, with a number of work-arounds: - Provides the check_output function (which subprocess only provides from Python 2.7 onwards). - Provides a stub implementation of subprocess members on Google App Engine (which are missing in subprocess). Instead of importing subprocess, other modules should use this as follows: from matplotlib.compat import subprocess This module is safe to import from anywhere within matplotlib. """ from __future__ import absolute_import # Required to import subprocess from __future__ import print_function import subprocess __all__ = ['Popen', 'PIPE', 'STDOUT', 'check_output', 'CalledProcessError'] if hasattr(subprocess, 'Popen'): Popen = subprocess.Popen # Assume that it also has the other constants. PIPE = subprocess.PIPE STDOUT = subprocess.STDOUT CalledProcessError = subprocess.CalledProcessError else: # In restricted environments (such as Google App Engine), these are # non-existent. Replace them with dummy versions that always raise OSError. def Popen(*args, **kwargs): raise OSError("subprocess.Popen is not supported") PIPE = -1 STDOUT = -2 # There is no need to catch CalledProcessError. These stubs cannot raise # it. None in an except clause will simply not match any exceptions. CalledProcessError = None def _check_output(*popenargs, **kwargs): r"""Run command with arguments and return its output as a byte string. If the exit code was non-zero it raises a CalledProcessError. The CalledProcessError object will have the return code in the returncode attribute and output in the output attribute. The arguments are the same as for the Popen constructor. Example:: >>> check_output(["ls", "-l", "/dev/null"]) 'crw-rw-rw- 1 root root 1, 3 Oct 18 2007 /dev/null\n' The stdout argument is not allowed as it is used internally. To capture standard error in the result, use stderr=STDOUT.:: >>> check_output(["/bin/sh", "-c", ... "ls -l non_existent_file ; exit 0"], ... stderr=STDOUT) 'ls: non_existent_file: No such file or directory\n' """ if 'stdout' in kwargs: raise ValueError('stdout argument not allowed, it will be overridden.') process = Popen(stdout=PIPE, *popenargs, **kwargs) output, unused_err = process.communicate() retcode = process.poll() if retcode: cmd = kwargs.get("args") if cmd is None: cmd = popenargs[0] raise subprocess.CalledProcessError(retcode, cmd, output=output) return output # python2.7's subprocess provides a check_output method if hasattr(subprocess, 'check_output'): check_output = subprocess.check_output else: check_output = _check_output
mit
ycaihua/scikit-learn
sklearn/preprocessing/tests/test_imputation.py
28
11950
import numpy as np from scipy import sparse from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_true from sklearn.preprocessing.imputation import Imputer from sklearn.pipeline import Pipeline from sklearn import grid_search from sklearn import tree from sklearn.random_projection import sparse_random_matrix def _check_statistics(X, X_true, strategy, statistics, missing_values): """Utility function for testing imputation for a given strategy. Test: - along the two axes - with dense and sparse arrays Check that: - the statistics (mean, median, mode) are correct - the missing values are imputed correctly""" err_msg = "Parameters: strategy = %s, missing_values = %s, " \ "axis = {0}, sparse = {1}" % (strategy, missing_values) # Normal matrix, axis = 0 imputer = Imputer(missing_values, strategy=strategy, axis=0) X_trans = imputer.fit(X).transform(X.copy()) assert_array_equal(imputer.statistics_, statistics, err_msg.format(0, False)) assert_array_equal(X_trans, X_true, err_msg.format(0, False)) # Normal matrix, axis = 1 imputer = Imputer(missing_values, strategy=strategy, axis=1) imputer.fit(X.transpose()) if np.isnan(statistics).any(): assert_raises(ValueError, imputer.transform, X.copy().transpose()) else: X_trans = imputer.transform(X.copy().transpose()) assert_array_equal(X_trans, X_true.transpose(), err_msg.format(1, False)) # Sparse matrix, axis = 0 imputer = Imputer(missing_values, strategy=strategy, axis=0) imputer.fit(sparse.csc_matrix(X)) X_trans = imputer.transform(sparse.csc_matrix(X.copy())) if sparse.issparse(X_trans): X_trans = X_trans.toarray() assert_array_equal(imputer.statistics_, statistics, err_msg.format(0, True)) assert_array_equal(X_trans, X_true, err_msg.format(0, True)) # Sparse matrix, axis = 1 imputer = Imputer(missing_values, strategy=strategy, axis=1) imputer.fit(sparse.csc_matrix(X.transpose())) if np.isnan(statistics).any(): assert_raises(ValueError, imputer.transform, sparse.csc_matrix(X.copy().transpose())) else: X_trans = imputer.transform(sparse.csc_matrix(X.copy().transpose())) if sparse.issparse(X_trans): X_trans = X_trans.toarray() assert_array_equal(X_trans, X_true.transpose(), err_msg.format(1, True)) def test_imputation_shape(): """Verify the shapes of the imputed matrix for different strategies.""" X = np.random.randn(10, 2) X[::2] = np.nan for strategy in ['mean', 'median', 'most_frequent']: imputer = Imputer(strategy=strategy) X_imputed = imputer.fit_transform(X) assert_equal(X_imputed.shape, (10, 2)) X_imputed = imputer.fit_transform(sparse.csr_matrix(X)) assert_equal(X_imputed.shape, (10, 2)) def test_imputation_mean_median_only_zero(): """Test imputation using the mean and median strategies, when missing_values == 0.""" X = np.array([ [np.nan, 0, 0, 0, 5], [np.nan, 1, 0, np.nan, 3], [np.nan, 2, 0, 0, 0], [np.nan, 6, 0, 5, 13], ]) X_imputed_mean = np.array([ [3, 5], [1, 3], [2, 7], [6, 13], ]) statistics_mean = [np.nan, 3, np.nan, np.nan, 7] # Behaviour of median with NaN is undefined, e.g. different results in # np.median and np.ma.median X_for_median = X[:, [0, 1, 2, 4]] X_imputed_median = np.array([ [2, 5], [1, 3], [2, 5], [6, 13], ]) statistics_median = [np.nan, 2, np.nan, 5] _check_statistics(X, X_imputed_mean, "mean", statistics_mean, 0) _check_statistics(X_for_median, X_imputed_median, "median", statistics_median, 0) def test_imputation_mean_median(): """Test imputation using the mean and median strategies, when missing_values != 0.""" rng = np.random.RandomState(0) dim = 10 dec = 10 shape = (dim * dim, dim + dec) zeros = np.zeros(shape[0]) values = np.arange(1, shape[0]+1) values[4::2] = - values[4::2] tests = [("mean", "NaN", lambda z, v, p: np.mean(np.hstack((z, v)))), ("mean", 0, lambda z, v, p: np.mean(v)), ("median", "NaN", lambda z, v, p: np.median(np.hstack((z, v)))), ("median", 0, lambda z, v, p: np.median(v))] for strategy, test_missing_values, true_value_fun in tests: X = np.empty(shape) X_true = np.empty(shape) true_statistics = np.empty(shape[1]) # Create a matrix X with columns # - with only zeros, # - with only missing values # - with zeros, missing values and values # And a matrix X_true containing all true values for j in range(shape[1]): nb_zeros = (j - dec + 1 > 0) * (j - dec + 1) * (j - dec + 1) nb_missing_values = max(shape[0] + dec * dec - (j + dec) * (j + dec), 0) nb_values = shape[0] - nb_zeros - nb_missing_values z = zeros[:nb_zeros] p = np.repeat(test_missing_values, nb_missing_values) v = values[rng.permutation(len(values))[:nb_values]] true_statistics[j] = true_value_fun(z, v, p) # Create the columns X[:, j] = np.hstack((v, z, p)) if 0 == test_missing_values: X_true[:, j] = np.hstack((v, np.repeat( true_statistics[j], nb_missing_values + nb_zeros))) else: X_true[:, j] = np.hstack((v, z, np.repeat(true_statistics[j], nb_missing_values))) # Shuffle them the same way np.random.RandomState(j).shuffle(X[:, j]) np.random.RandomState(j).shuffle(X_true[:, j]) # Mean doesn't support columns containing NaNs, median does if strategy == "median": cols_to_keep = ~np.isnan(X_true).any(axis=0) else: cols_to_keep = ~np.isnan(X_true).all(axis=0) X_true = X_true[:, cols_to_keep] _check_statistics(X, X_true, strategy, true_statistics, test_missing_values) def test_imputation_median_special_cases(): """Test median imputation with sparse boundary cases """ X = np.array([ [0, np.nan, np.nan], # odd: implicit zero [5, np.nan, np.nan], # odd: explicit nonzero [0, 0, np.nan], # even: average two zeros [-5, 0, np.nan], # even: avg zero and neg [0, 5, np.nan], # even: avg zero and pos [4, 5, np.nan], # even: avg nonzeros [-4, -5, np.nan], # even: avg negatives [-1, 2, np.nan], # even: crossing neg and pos ]).transpose() X_imputed_median = np.array([ [0, 0, 0], [5, 5, 5], [0, 0, 0], [-5, 0, -2.5], [0, 5, 2.5], [4, 5, 4.5], [-4, -5, -4.5], [-1, 2, .5], ]).transpose() statistics_median = [0, 5, 0, -2.5, 2.5, 4.5, -4.5, .5] _check_statistics(X, X_imputed_median, "median", statistics_median, 'NaN') def test_imputation_most_frequent(): """Test imputation using the most-frequent strategy.""" X = np.array([ [-1, -1, 0, 5], [-1, 2, -1, 3], [-1, 1, 3, -1], [-1, 2, 3, 7], ]) X_true = np.array([ [2, 0, 5], [2, 3, 3], [1, 3, 3], [2, 3, 7], ]) # scipy.stats.mode, used in Imputer, doesn't return the first most # frequent as promised in the doc but the lowest most frequent. When this # test will fail after an update of scipy, Imputer will need to be updated # to be consistent with the new (correct) behaviour _check_statistics(X, X_true, "most_frequent", [np.nan, 2, 3, 3], -1) def test_imputation_pipeline_grid_search(): """Test imputation within a pipeline + gridsearch.""" pipeline = Pipeline([('imputer', Imputer(missing_values=0)), ('tree', tree.DecisionTreeRegressor(random_state=0))]) parameters = { 'imputer__strategy': ["mean", "median", "most_frequent"], 'imputer__axis': [0, 1] } l = 100 X = sparse_random_matrix(l, l, density=0.10) Y = sparse_random_matrix(l, 1, density=0.10).toarray() gs = grid_search.GridSearchCV(pipeline, parameters) gs.fit(X, Y) def test_imputation_pickle(): """Test for pickling imputers.""" import pickle l = 100 X = sparse_random_matrix(l, l, density=0.10) for strategy in ["mean", "median", "most_frequent"]: imputer = Imputer(missing_values=0, strategy=strategy) imputer.fit(X) imputer_pickled = pickle.loads(pickle.dumps(imputer)) assert_array_equal(imputer.transform(X.copy()), imputer_pickled.transform(X.copy()), "Fail to transform the data after pickling " "(strategy = %s)" % (strategy)) def test_imputation_copy(): """Test imputation with copy""" X_orig = sparse_random_matrix(5, 5, density=0.75, random_state=0) # copy=True, dense => copy X = X_orig.copy().toarray() imputer = Imputer(missing_values=0, strategy="mean", copy=True) Xt = imputer.fit(X).transform(X) Xt[0, 0] = -1 assert_false(np.all(X == Xt)) # copy=True, sparse csr => copy X = X_orig.copy() imputer = Imputer(missing_values=X.data[0], strategy="mean", copy=True) Xt = imputer.fit(X).transform(X) Xt.data[0] = -1 assert_false(np.all(X.data == Xt.data)) # copy=False, dense => no copy X = X_orig.copy().toarray() imputer = Imputer(missing_values=0, strategy="mean", copy=False) Xt = imputer.fit(X).transform(X) Xt[0, 0] = -1 assert_true(np.all(X == Xt)) # copy=False, sparse csr, axis=1 => no copy X = X_orig.copy() imputer = Imputer(missing_values=X.data[0], strategy="mean", copy=False, axis=1) Xt = imputer.fit(X).transform(X) Xt.data[0] = -1 assert_true(np.all(X.data == Xt.data)) # copy=False, sparse csc, axis=0 => no copy X = X_orig.copy().tocsc() imputer = Imputer(missing_values=X.data[0], strategy="mean", copy=False, axis=0) Xt = imputer.fit(X).transform(X) Xt.data[0] = -1 assert_true(np.all(X.data == Xt.data)) # copy=False, sparse csr, axis=0 => copy X = X_orig.copy() imputer = Imputer(missing_values=X.data[0], strategy="mean", copy=False, axis=0) Xt = imputer.fit(X).transform(X) Xt.data[0] = -1 assert_false(np.all(X.data == Xt.data)) # copy=False, sparse csc, axis=1 => copy X = X_orig.copy().tocsc() imputer = Imputer(missing_values=X.data[0], strategy="mean", copy=False, axis=1) Xt = imputer.fit(X).transform(X) Xt.data[0] = -1 assert_false(np.all(X.data == Xt.data)) # copy=False, sparse csr, axis=1, missing_values=0 => copy X = X_orig.copy() imputer = Imputer(missing_values=0, strategy="mean", copy=False, axis=1) Xt = imputer.fit(X).transform(X) assert_false(sparse.issparse(Xt)) # Note: If X is sparse and if missing_values=0, then a (dense) copy of X is # made, even if copy=False.
bsd-3-clause
SamStudio8/scikit-bio
skbio/sequence/tests/test_sequence.py
2
106092
# ---------------------------------------------------------------------------- # Copyright (c) 2013--, scikit-bio development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. # ---------------------------------------------------------------------------- from __future__ import absolute_import, division, print_function import six from six.moves import zip_longest import copy import re from types import GeneratorType from collections import Counter, defaultdict, Hashable from unittest import TestCase, main import numpy as np import numpy.testing as npt import pandas as pd from skbio import Sequence from skbio.util import assert_data_frame_almost_equal from skbio.sequence._sequence import (_single_index_to_slice, _is_single_index, _as_slice_if_single_index) class SequenceSubclass(Sequence): """Used for testing purposes.""" pass class TestSequence(TestCase): def setUp(self): self.lowercase_seq = Sequence('AAAAaaaa', lowercase='key') self.sequence_kinds = frozenset([ str, Sequence, lambda s: np.fromstring(s, dtype='|S1'), lambda s: np.fromstring(s, dtype=np.uint8)]) def empty_generator(): raise StopIteration() yield self.getitem_empty_indices = [ [], (), {}, empty_generator(), # ndarray of implicit float dtype np.array([]), np.array([], dtype=int)] def test_init_default_parameters(self): seq = Sequence('.ABC123xyz-') npt.assert_equal(seq.values, np.array('.ABC123xyz-', dtype='c')) self.assertEqual('.ABC123xyz-', str(seq)) self.assertFalse(seq.has_metadata()) self.assertEqual(seq.metadata, {}) self.assertFalse(seq.has_positional_metadata()) assert_data_frame_almost_equal(seq.positional_metadata, pd.DataFrame(index=np.arange(11))) def test_init_nondefault_parameters(self): seq = Sequence('.ABC123xyz-', metadata={'id': 'foo', 'description': 'bar baz'}, positional_metadata={'quality': range(11)}) npt.assert_equal(seq.values, np.array('.ABC123xyz-', dtype='c')) self.assertEqual('.ABC123xyz-', str(seq)) self.assertTrue(seq.has_metadata()) self.assertEqual(seq.metadata, {'id': 'foo', 'description': 'bar baz'}) self.assertTrue(seq.has_positional_metadata()) assert_data_frame_almost_equal( seq.positional_metadata, pd.DataFrame({'quality': range(11)}, index=np.arange(11))) def test_init_handles_missing_metadata_efficiently(self): seq = Sequence('ACGT') # metadata attributes should be None and not initialized to a "missing" # representation self.assertIsNone(seq._metadata) self.assertIsNone(seq._positional_metadata) # initializing from an existing Sequence object should handle metadata # attributes efficiently on both objects new_seq = Sequence(seq) self.assertIsNone(seq._metadata) self.assertIsNone(seq._positional_metadata) self.assertIsNone(new_seq._metadata) self.assertIsNone(new_seq._positional_metadata) self.assertFalse(seq.has_metadata()) self.assertFalse(seq.has_positional_metadata()) self.assertFalse(new_seq.has_metadata()) self.assertFalse(new_seq.has_positional_metadata()) def test_init_empty_sequence(self): # Test constructing an empty sequence using each supported input type. for s in (b'', # bytes u'', # unicode np.array('', dtype='c'), # char vector np.fromstring('', dtype=np.uint8), # byte vec Sequence('')): # another Sequence object seq = Sequence(s) self.assertIsInstance(seq.values, np.ndarray) self.assertEqual(seq.values.dtype, '|S1') self.assertEqual(seq.values.shape, (0, )) npt.assert_equal(seq.values, np.array('', dtype='c')) self.assertEqual(str(seq), '') self.assertEqual(len(seq), 0) self.assertFalse(seq.has_metadata()) self.assertEqual(seq.metadata, {}) self.assertFalse(seq.has_positional_metadata()) assert_data_frame_almost_equal(seq.positional_metadata, pd.DataFrame(index=np.arange(0))) def test_init_single_character_sequence(self): for s in (b'A', u'A', np.array('A', dtype='c'), np.fromstring('A', dtype=np.uint8), Sequence('A')): seq = Sequence(s) self.assertIsInstance(seq.values, np.ndarray) self.assertEqual(seq.values.dtype, '|S1') self.assertEqual(seq.values.shape, (1,)) npt.assert_equal(seq.values, np.array('A', dtype='c')) self.assertEqual(str(seq), 'A') self.assertEqual(len(seq), 1) self.assertFalse(seq.has_metadata()) self.assertEqual(seq.metadata, {}) self.assertFalse(seq.has_positional_metadata()) assert_data_frame_almost_equal(seq.positional_metadata, pd.DataFrame(index=np.arange(1))) def test_init_multiple_character_sequence(self): for s in (b'.ABC\t123 xyz-', u'.ABC\t123 xyz-', np.array('.ABC\t123 xyz-', dtype='c'), np.fromstring('.ABC\t123 xyz-', dtype=np.uint8), Sequence('.ABC\t123 xyz-')): seq = Sequence(s) self.assertIsInstance(seq.values, np.ndarray) self.assertEqual(seq.values.dtype, '|S1') self.assertEqual(seq.values.shape, (14,)) npt.assert_equal(seq.values, np.array('.ABC\t123 xyz-', dtype='c')) self.assertEqual(str(seq), '.ABC\t123 xyz-') self.assertEqual(len(seq), 14) self.assertFalse(seq.has_metadata()) self.assertEqual(seq.metadata, {}) self.assertFalse(seq.has_positional_metadata()) assert_data_frame_almost_equal(seq.positional_metadata, pd.DataFrame(index=np.arange(14))) def test_init_from_sequence_object(self): # We're testing this in its simplest form in other tests. This test # exercises more complicated cases of building a sequence from another # sequence. # just the sequence, no other metadata seq = Sequence('ACGT') self.assertEqual(Sequence(seq), seq) # sequence with metadata should have everything propagated seq = Sequence('ACGT', metadata={'id': 'foo', 'description': 'bar baz'}, positional_metadata={'quality': range(4)}) self.assertEqual(Sequence(seq), seq) # should be able to override metadata self.assertEqual( Sequence(seq, metadata={'id': 'abc', 'description': '123'}, positional_metadata={'quality': [42] * 4}), Sequence('ACGT', metadata={'id': 'abc', 'description': '123'}, positional_metadata={'quality': [42] * 4})) # subclasses work too seq = SequenceSubclass('ACGT', metadata={'id': 'foo', 'description': 'bar baz'}, positional_metadata={'quality': range(4)}) self.assertEqual( Sequence(seq), Sequence('ACGT', metadata={'id': 'foo', 'description': 'bar baz'}, positional_metadata={'quality': range(4)})) def test_init_from_contiguous_sequence_bytes_view(self): bytes = np.array([65, 42, 66, 42, 65], dtype=np.uint8) view = bytes[:3] seq = Sequence(view) # sequence should be what we'd expect self.assertEqual(seq, Sequence('A*B')) # we shouldn't own the memory because no copy should have been made self.assertFalse(seq._owns_bytes) # can't mutate view because it isn't writeable anymore with self.assertRaises(ValueError): view[1] = 100 # sequence shouldn't have changed self.assertEqual(seq, Sequence('A*B')) # mutate bytes (*not* the view) bytes[0] = 99 # Sequence changed because we are only able to make the view read-only, # not its source (bytes). This is somewhat inconsistent behavior that # is (to the best of our knowledge) outside our control. self.assertEqual(seq, Sequence('c*B')) def test_init_from_noncontiguous_sequence_bytes_view(self): bytes = np.array([65, 42, 66, 42, 65], dtype=np.uint8) view = bytes[::2] seq = Sequence(view) # sequence should be what we'd expect self.assertEqual(seq, Sequence('ABA')) # we should own the memory because a copy should have been made self.assertTrue(seq._owns_bytes) # mutate bytes and its view bytes[0] = 99 view[1] = 100 # sequence shouldn't have changed self.assertEqual(seq, Sequence('ABA')) def test_init_no_copy_of_sequence(self): bytes = np.array([65, 66, 65], dtype=np.uint8) seq = Sequence(bytes) # should share the same memory self.assertIs(seq._bytes, bytes) # shouldn't be able to mutate the Sequence object's internals by # mutating the shared memory with self.assertRaises(ValueError): bytes[1] = 42 def test_init_empty_metadata(self): for empty in None, {}: seq = Sequence('', metadata=empty) self.assertFalse(seq.has_metadata()) self.assertEqual(seq.metadata, {}) def test_init_empty_metadata_key(self): seq = Sequence('', metadata={'': ''}) self.assertTrue(seq.has_metadata()) self.assertEqual(seq.metadata, {'': ''}) def test_init_empty_metadata_item(self): seq = Sequence('', metadata={'foo': ''}) self.assertTrue(seq.has_metadata()) self.assertEqual(seq.metadata, {'foo': ''}) def test_init_single_character_metadata_item(self): seq = Sequence('', metadata={'foo': 'z'}) self.assertTrue(seq.has_metadata()) self.assertEqual(seq.metadata, {'foo': 'z'}) def test_init_multiple_character_metadata_item(self): seq = Sequence('', metadata={'foo': '\nabc\tdef G123'}) self.assertTrue(seq.has_metadata()) self.assertEqual(seq.metadata, {'foo': '\nabc\tdef G123'}) def test_init_metadata_multiple_keys(self): seq = Sequence('', metadata={'foo': 'abc', 42: {'nested': 'metadata'}}) self.assertTrue(seq.has_metadata()) self.assertEqual(seq.metadata, {'foo': 'abc', 42: {'nested': 'metadata'}}) def test_init_empty_positional_metadata(self): # empty seq with missing/empty positional metadata for empty in None, {}, pd.DataFrame(): seq = Sequence('', positional_metadata=empty) self.assertFalse(seq.has_metadata()) self.assertEqual(seq.metadata, {}) self.assertFalse(seq.has_positional_metadata()) assert_data_frame_almost_equal(seq.positional_metadata, pd.DataFrame(index=np.arange(0))) # non-empty seq with missing positional metadata seq = Sequence('xyz', positional_metadata=None) self.assertFalse(seq.has_metadata()) self.assertEqual(seq.metadata, {}) self.assertFalse(seq.has_positional_metadata()) assert_data_frame_almost_equal(seq.positional_metadata, pd.DataFrame(index=np.arange(3))) def test_init_empty_positional_metadata_item(self): for item in ([], (), np.array([])): seq = Sequence('', positional_metadata={'foo': item}) self.assertFalse(seq.has_metadata()) self.assertEqual(seq.metadata, {}) self.assertTrue(seq.has_positional_metadata()) assert_data_frame_almost_equal( seq.positional_metadata, pd.DataFrame({'foo': item}, index=np.arange(0))) def test_init_single_positional_metadata_item(self): for item in ([2], (2, ), np.array([2])): seq = Sequence('G', positional_metadata={'foo': item}) self.assertFalse(seq.has_metadata()) self.assertEqual(seq.metadata, {}) self.assertTrue(seq.has_positional_metadata()) assert_data_frame_almost_equal( seq.positional_metadata, pd.DataFrame({'foo': item}, index=np.arange(1))) def test_init_multiple_positional_metadata_item(self): for item in ([0, 42, 42, 1, 0, 8, 100, 0, 0], (0, 42, 42, 1, 0, 8, 100, 0, 0), np.array([0, 42, 42, 1, 0, 8, 100, 0, 0])): seq = Sequence('G' * 9, positional_metadata={'foo': item}) self.assertFalse(seq.has_metadata()) self.assertEqual(seq.metadata, {}) self.assertTrue(seq.has_positional_metadata()) assert_data_frame_almost_equal( seq.positional_metadata, pd.DataFrame({'foo': item}, index=np.arange(9))) def test_init_positional_metadata_multiple_columns(self): seq = Sequence('^' * 5, positional_metadata={'foo': np.arange(5), 'bar': np.arange(5)[::-1]}) self.assertFalse(seq.has_metadata()) self.assertEqual(seq.metadata, {}) self.assertTrue(seq.has_positional_metadata()) assert_data_frame_almost_equal( seq.positional_metadata, pd.DataFrame({'foo': np.arange(5), 'bar': np.arange(5)[::-1]}, index=np.arange(5))) def test_init_positional_metadata_with_custom_index(self): df = pd.DataFrame({'foo': np.arange(5), 'bar': np.arange(5)[::-1]}, index=['a', 'b', 'c', 'd', 'e']) seq = Sequence('^' * 5, positional_metadata=df) self.assertFalse(seq.has_metadata()) self.assertEqual(seq.metadata, {}) self.assertTrue(seq.has_positional_metadata()) assert_data_frame_almost_equal( seq.positional_metadata, pd.DataFrame({'foo': np.arange(5), 'bar': np.arange(5)[::-1]}, index=np.arange(5))) def test_init_invalid_sequence(self): # invalid dtype (numpy.ndarray input) with self.assertRaises(TypeError): # int64 Sequence(np.array([1, 2, 3])) with self.assertRaises(TypeError): # |S21 Sequence(np.array([1, "23", 3])) with self.assertRaises(TypeError): # object Sequence(np.array([1, {}, ()])) # invalid input type (non-numpy.ndarray input) with six.assertRaisesRegex(self, TypeError, 'tuple'): Sequence(('a', 'b', 'c')) with six.assertRaisesRegex(self, TypeError, 'list'): Sequence(['a', 'b', 'c']) with six.assertRaisesRegex(self, TypeError, 'set'): Sequence({'a', 'b', 'c'}) with six.assertRaisesRegex(self, TypeError, 'dict'): Sequence({'a': 42, 'b': 43, 'c': 44}) with six.assertRaisesRegex(self, TypeError, 'int'): Sequence(42) with six.assertRaisesRegex(self, TypeError, 'float'): Sequence(4.2) with six.assertRaisesRegex(self, TypeError, 'int64'): Sequence(np.int_(50)) with six.assertRaisesRegex(self, TypeError, 'float64'): Sequence(np.float_(50)) with six.assertRaisesRegex(self, TypeError, 'Foo'): class Foo(object): pass Sequence(Foo()) # out of ASCII range with self.assertRaises(UnicodeEncodeError): Sequence(u'abc\u1F30') def test_init_invalid_metadata(self): for md in (0, 'a', ('f', 'o', 'o'), np.array([]), pd.DataFrame()): with six.assertRaisesRegex(self, TypeError, 'metadata must be a dict'): Sequence('abc', metadata=md) def test_init_invalid_positional_metadata(self): # not consumable by Pandas with six.assertRaisesRegex(self, TypeError, 'Positional metadata invalid. Must be ' 'consumable by pd.DataFrame. ' 'Original pandas error message: '): Sequence('ACGT', positional_metadata=2) # 0 elements with six.assertRaisesRegex(self, ValueError, '\(0\).*\(4\)'): Sequence('ACGT', positional_metadata=[]) # not enough elements with six.assertRaisesRegex(self, ValueError, '\(3\).*\(4\)'): Sequence('ACGT', positional_metadata=[2, 3, 4]) # too many elements with six.assertRaisesRegex(self, ValueError, '\(5\).*\(4\)'): Sequence('ACGT', positional_metadata=[2, 3, 4, 5, 6]) # Series not enough rows with six.assertRaisesRegex(self, ValueError, '\(3\).*\(4\)'): Sequence('ACGT', positional_metadata=pd.Series(range(3))) # Series too many rows with six.assertRaisesRegex(self, ValueError, '\(5\).*\(4\)'): Sequence('ACGT', positional_metadata=pd.Series(range(5))) # DataFrame not enough rows with six.assertRaisesRegex(self, ValueError, '\(3\).*\(4\)'): Sequence('ACGT', positional_metadata=pd.DataFrame({'quality': range(3)})) # DataFrame too many rows with six.assertRaisesRegex(self, ValueError, '\(5\).*\(4\)'): Sequence('ACGT', positional_metadata=pd.DataFrame({'quality': range(5)})) def test_values_property(self): # Property tests are only concerned with testing the interface # provided by the property: that it can be accessed, can't be # reassigned or mutated in place, and that the correct type is # returned. More extensive testing of border cases (e.g., different # sequence lengths or input types, odd characters, etc.) are performed # in Sequence.__init__ tests. seq = Sequence('ACGT') # should get back a numpy.ndarray of '|S1' dtype self.assertIsInstance(seq.values, np.ndarray) self.assertEqual(seq.values.dtype, '|S1') npt.assert_equal(seq.values, np.array('ACGT', dtype='c')) # test that we can't mutate the property with self.assertRaises(ValueError): seq.values[1] = 'A' # test that we can't set the property with self.assertRaises(AttributeError): seq.values = np.array("GGGG", dtype='c') def test_metadata_property_getter(self): md = {'foo': 'bar'} seq = Sequence('', metadata=md) self.assertIsInstance(seq.metadata, dict) self.assertEqual(seq.metadata, md) self.assertIsNot(seq.metadata, md) # update existing key seq.metadata['foo'] = 'baz' self.assertEqual(seq.metadata, {'foo': 'baz'}) # add new key seq.metadata['foo2'] = 'bar2' self.assertEqual(seq.metadata, {'foo': 'baz', 'foo2': 'bar2'}) def test_metadata_property_getter_missing(self): seq = Sequence('ACGT') self.assertIsNone(seq._metadata) self.assertEqual(seq.metadata, {}) self.assertIsNotNone(seq._metadata) def test_metadata_property_setter(self): md = {'foo': 'bar'} seq = Sequence('', metadata=md) self.assertEqual(seq.metadata, md) self.assertIsNot(seq.metadata, md) new_md = {'bar': 'baz', 42: 42} seq.metadata = new_md self.assertEqual(seq.metadata, new_md) self.assertIsNot(seq.metadata, new_md) seq.metadata = {} self.assertEqual(seq.metadata, {}) self.assertFalse(seq.has_metadata()) def test_metadata_property_setter_invalid_type(self): seq = Sequence('abc', metadata={123: 456}) for md in (None, 0, 'a', ('f', 'o', 'o'), np.array([]), pd.DataFrame()): with six.assertRaisesRegex(self, TypeError, 'metadata must be a dict'): seq.metadata = md # object should still be usable and its original metadata shouldn't # have changed self.assertEqual(seq.metadata, {123: 456}) def test_metadata_property_deleter(self): md = {'foo': 'bar'} seq = Sequence('CAT', metadata=md) self.assertTrue(seq.has_metadata()) self.assertEqual(seq.metadata, md) self.assertIsNot(seq.metadata, md) del seq.metadata self.assertIsNone(seq._metadata) self.assertFalse(seq.has_metadata()) self.assertEqual(seq.metadata, {}) # test deleting again del seq.metadata self.assertIsNone(seq._metadata) self.assertFalse(seq.has_metadata()) self.assertEqual(seq.metadata, {}) # test deleting missing metadata immediately after instantiation seq = Sequence('ACGT') self.assertIsNone(seq._metadata) del seq.metadata self.assertIsNone(seq._metadata) def test_metadata_property_shallow_copy(self): md = {'key1': 'val1', 'key2': 'val2', 'key3': [1, 2]} seq = Sequence('CAT', metadata=md) self.assertTrue(seq.has_metadata()) self.assertEqual(seq.metadata, md) self.assertIsNot(seq.metadata, md) # updates to keys seq.metadata['key1'] = 'new val' self.assertEqual(seq.metadata, {'key1': 'new val', 'key2': 'val2', 'key3': [1, 2]}) # original metadata untouched self.assertEqual(md, {'key1': 'val1', 'key2': 'val2', 'key3': [1, 2]}) # updates to mutable value (by reference) seq.metadata['key3'].append(3) self.assertEqual( seq.metadata, {'key1': 'new val', 'key2': 'val2', 'key3': [1, 2, 3]}) # original metadata changed because we didn't deep copy self.assertEqual( md, {'key1': 'val1', 'key2': 'val2', 'key3': [1, 2, 3]}) def test_positional_metadata_property_getter(self): md = pd.DataFrame({'foo': [22, 22, 0]}) seq = Sequence('ACA', positional_metadata=md) assert_data_frame_almost_equal(seq.positional_metadata, pd.DataFrame({'foo': [22, 22, 0]})) self.assertIsNot(seq.positional_metadata, md) # update existing column seq.positional_metadata['foo'] = [42, 42, 43] assert_data_frame_almost_equal(seq.positional_metadata, pd.DataFrame({'foo': [42, 42, 43]})) # add new column seq.positional_metadata['foo2'] = [True, False, True] assert_data_frame_almost_equal( seq.positional_metadata, pd.DataFrame({'foo': [42, 42, 43], 'foo2': [True, False, True]})) def test_positional_metadata_property_getter_missing(self): seq = Sequence('ACGT') self.assertIsNone(seq._positional_metadata) assert_data_frame_almost_equal( seq.positional_metadata, pd.DataFrame(index=np.arange(4))) self.assertIsNotNone(seq._positional_metadata) def test_positional_metadata_property_setter(self): md = pd.DataFrame({'foo': [22, 22, 0]}) seq = Sequence('ACA', positional_metadata=md) assert_data_frame_almost_equal(seq.positional_metadata, pd.DataFrame({'foo': [22, 22, 0]})) self.assertIsNot(seq.positional_metadata, md) new_md = pd.DataFrame({'bar': np.arange(3)}, index=['a', 'b', 'c']) seq.positional_metadata = new_md assert_data_frame_almost_equal( seq.positional_metadata, pd.DataFrame({'bar': np.arange(3)}, index=np.arange(3))) self.assertIsNot(seq.positional_metadata, new_md) seq.positional_metadata = pd.DataFrame(index=np.arange(3)) assert_data_frame_almost_equal(seq.positional_metadata, pd.DataFrame(index=np.arange(3))) self.assertFalse(seq.has_positional_metadata()) def test_positional_metadata_property_setter_invalid_type(self): # More extensive tests for invalid input are on Sequence.__init__ tests seq = Sequence('abc', positional_metadata={'foo': [1, 2, 42]}) # not consumable by Pandas with six.assertRaisesRegex(self, TypeError, 'Positional metadata invalid. Must be ' 'consumable by pd.DataFrame. ' 'Original pandas error message: '): seq.positional_metadata = 2 # object should still be usable and its original metadata shouldn't # have changed assert_data_frame_almost_equal(seq.positional_metadata, pd.DataFrame({'foo': [1, 2, 42]})) # wrong length with six.assertRaisesRegex(self, ValueError, '\(2\).*\(3\)'): seq.positional_metadata = {'foo': [1, 2]} assert_data_frame_almost_equal(seq.positional_metadata, pd.DataFrame({'foo': [1, 2, 42]})) # None isn't valid when using setter (differs from constructor) with six.assertRaisesRegex(self, ValueError, '\(0\).*\(3\)'): seq.positional_metadata = None assert_data_frame_almost_equal(seq.positional_metadata, pd.DataFrame({'foo': [1, 2, 42]})) def test_positional_metadata_property_deleter(self): md = pd.DataFrame({'foo': [22, 22, 0]}) seq = Sequence('ACA', positional_metadata=md) self.assertTrue(seq.has_positional_metadata()) assert_data_frame_almost_equal(seq.positional_metadata, pd.DataFrame({'foo': [22, 22, 0]})) self.assertIsNot(seq.positional_metadata, md) del seq.positional_metadata self.assertIsNone(seq._positional_metadata) self.assertFalse(seq.has_positional_metadata()) assert_data_frame_almost_equal(seq.positional_metadata, pd.DataFrame(index=np.arange(3))) # test deleting again del seq.positional_metadata self.assertIsNone(seq._positional_metadata) self.assertFalse(seq.has_positional_metadata()) assert_data_frame_almost_equal(seq.positional_metadata, pd.DataFrame(index=np.arange(3))) # test deleting missing positional metadata immediately after # instantiation seq = Sequence('ACGT') self.assertIsNone(seq._positional_metadata) del seq.positional_metadata self.assertIsNone(seq._positional_metadata) def test_positional_metadata_property_shallow_copy(self): # define metadata as a DataFrame because this has the potential to have # its underlying data shared md = pd.DataFrame({'foo': [22, 22, 0]}, index=['a', 'b', 'c']) seq = Sequence('ACA', positional_metadata=md) self.assertTrue(seq.has_positional_metadata()) assert_data_frame_almost_equal( seq.positional_metadata, pd.DataFrame({'foo': [22, 22, 0]}, index=np.arange(3))) self.assertIsNot(seq.positional_metadata, md) # original metadata untouched orig_md = pd.DataFrame({'foo': [22, 22, 0]}, index=['a', 'b', 'c']) assert_data_frame_almost_equal(md, orig_md) # change values of column (using same dtype) seq.positional_metadata['foo'] = [42, 42, 42] assert_data_frame_almost_equal( seq.positional_metadata, pd.DataFrame({'foo': [42, 42, 42]}, index=np.arange(3))) # original metadata untouched assert_data_frame_almost_equal(md, orig_md) # change single value of underlying data seq.positional_metadata.values[0][0] = 10 assert_data_frame_almost_equal( seq.positional_metadata, pd.DataFrame({'foo': [10, 42, 42]}, index=np.arange(3))) # original metadata untouched assert_data_frame_almost_equal(md, orig_md) # create column of object dtype -- these aren't deep copied md = pd.DataFrame({'obj': [[], [], []]}, index=['a', 'b', 'c']) seq = Sequence('ACA', positional_metadata=md) assert_data_frame_almost_equal( seq.positional_metadata, pd.DataFrame({'obj': [[], [], []]}, index=np.arange(3))) # mutate list seq.positional_metadata['obj'][0].append(42) assert_data_frame_almost_equal( seq.positional_metadata, pd.DataFrame({'obj': [[42], [], []]}, index=np.arange(3))) # original metadata changed because we didn't do a full deep copy assert_data_frame_almost_equal( md, pd.DataFrame({'obj': [[42], [], []]}, index=['a', 'b', 'c'])) def test_positional_metadata_property_set_column_series(self): seq_text = 'ACGTACGT' l = len(seq_text) seq = Sequence(seq_text, positional_metadata={'foo': range(l)}) seq.positional_metadata['bar'] = pd.Series(range(l-3)) # pandas.Series will be padded with NaN if too short npt.assert_equal(seq.positional_metadata['bar'], np.array(list(range(l-3)) + [np.NaN]*3)) seq.positional_metadata['baz'] = pd.Series(range(l+3)) # pandas.Series will be truncated if too long npt.assert_equal(seq.positional_metadata['baz'], np.array(range(l))) def test_positional_metadata_property_set_column_array(self): seq_text = 'ACGTACGT' l = len(seq_text) seq = Sequence(seq_text, positional_metadata={'foo': range(l)}) # array-like objects will fail if wrong size for array_like in (np.array(range(l-1)), range(l-1), np.array(range(l+1)), range(l+1)): with six.assertRaisesRegex(self, ValueError, "Length of values does not match " "length of index"): seq.positional_metadata['bar'] = array_like def test_eq_and_ne(self): seq_a = Sequence("A") seq_b = Sequence("B") self.assertTrue(seq_a == seq_a) self.assertTrue(Sequence("a") == Sequence("a")) self.assertTrue(Sequence("a", metadata={'id': 'b'}) == Sequence("a", metadata={'id': 'b'})) self.assertTrue(Sequence("a", metadata={'id': 'b', 'description': 'c'}) == Sequence("a", metadata={'id': 'b', 'description': 'c'})) self.assertTrue(Sequence("a", metadata={'id': 'b', 'description': 'c'}, positional_metadata={'quality': [1]}) == Sequence("a", metadata={'id': 'b', 'description': 'c'}, positional_metadata={'quality': [1]})) self.assertTrue(seq_a != seq_b) self.assertTrue(SequenceSubclass("a") != Sequence("a")) self.assertTrue(Sequence("a") != Sequence("b")) self.assertTrue(Sequence("a") != Sequence("a", metadata={'id': 'b'})) self.assertTrue(Sequence("a", metadata={'id': 'c'}) != Sequence("a", metadata={'id': 'c', 'description': 't'})) self.assertTrue(Sequence("a", positional_metadata={'quality': [1]}) != Sequence("a")) self.assertTrue(Sequence("a", positional_metadata={'quality': [1]}) != Sequence("a", positional_metadata={'quality': [2]})) self.assertTrue(Sequence("c", positional_metadata={'quality': [3]}) != Sequence("b", positional_metadata={'quality': [3]})) self.assertTrue(Sequence("a", metadata={'id': 'b'}) != Sequence("c", metadata={'id': 'b'})) def test_eq_sequences_without_metadata_compare_equal(self): self.assertTrue(Sequence('') == Sequence('')) self.assertTrue(Sequence('z') == Sequence('z')) self.assertTrue( Sequence('ACGT') == Sequence('ACGT')) def test_eq_sequences_with_metadata_compare_equal(self): seq1 = Sequence('ACGT', metadata={'id': 'foo', 'desc': 'abc'}, positional_metadata={'qual': [1, 2, 3, 4]}) seq2 = Sequence('ACGT', metadata={'id': 'foo', 'desc': 'abc'}, positional_metadata={'qual': [1, 2, 3, 4]}) self.assertTrue(seq1 == seq2) # order shouldn't matter self.assertTrue(seq2 == seq1) def test_eq_sequences_from_different_sources_compare_equal(self): # sequences that have the same data but are constructed from different # types of data should compare equal seq1 = Sequence('ACGT', metadata={'id': 'foo', 'desc': 'abc'}, positional_metadata={'quality': (1, 2, 3, 4)}) seq2 = Sequence(np.array([65, 67, 71, 84], dtype=np.uint8), metadata={'id': 'foo', 'desc': 'abc'}, positional_metadata={'quality': np.array([1, 2, 3, 4])}) self.assertTrue(seq1 == seq2) def test_eq_type_mismatch(self): seq1 = Sequence('ACGT') seq2 = SequenceSubclass('ACGT') self.assertFalse(seq1 == seq2) def test_eq_metadata_mismatch(self): # both provided seq1 = Sequence('ACGT', metadata={'id': 'foo'}) seq2 = Sequence('ACGT', metadata={'id': 'bar'}) self.assertFalse(seq1 == seq2) # one provided seq1 = Sequence('ACGT', metadata={'id': 'foo'}) seq2 = Sequence('ACGT') self.assertFalse(seq1 == seq2) def test_eq_positional_metadata_mismatch(self): # both provided seq1 = Sequence('ACGT', positional_metadata={'quality': [1, 2, 3, 4]}) seq2 = Sequence('ACGT', positional_metadata={'quality': [1, 2, 3, 5]}) self.assertFalse(seq1 == seq2) # one provided seq1 = Sequence('ACGT', positional_metadata={'quality': [1, 2, 3, 4]}) seq2 = Sequence('ACGT') self.assertFalse(seq1 == seq2) def test_eq_sequence_mismatch(self): seq1 = Sequence('ACGT') seq2 = Sequence('TGCA') self.assertFalse(seq1 == seq2) def test_eq_handles_missing_metadata_efficiently(self): seq1 = Sequence('ACGT') seq2 = Sequence('ACGT') self.assertTrue(seq1 == seq2) # metadata attributes should be None and not initialized to a "missing" # representation self.assertIsNone(seq1._metadata) self.assertIsNone(seq1._positional_metadata) self.assertIsNone(seq2._metadata) self.assertIsNone(seq2._positional_metadata) def test_getitem_gives_new_sequence(self): seq = Sequence("Sequence string !1@2#3?.,") self.assertFalse(seq is seq[:]) def test_getitem_with_int_has_positional_metadata(self): s = "Sequence string !1@2#3?.," length = len(s) seq = Sequence(s, metadata={'id': 'id', 'description': 'dsc'}, positional_metadata={'quality': np.arange(length)}) eseq = Sequence("S", {'id': 'id', 'description': 'dsc'}, positional_metadata={'quality': np.array([0])}) self.assertEqual(seq[0], eseq) eseq = Sequence(",", metadata={'id': 'id', 'description': 'dsc'}, positional_metadata={'quality': np.array([len(seq) - 1])}) self.assertEqual(seq[len(seq) - 1], eseq) eseq = Sequence("t", metadata={'id': 'id', 'description': 'dsc'}, positional_metadata={'quality': [10]}) self.assertEqual(seq[10], eseq) def test_single_index_to_slice(self): a = [1, 2, 3, 4] self.assertEqual(slice(0, 1), _single_index_to_slice(0)) self.assertEqual([1], a[_single_index_to_slice(0)]) self.assertEqual(slice(-1, None), _single_index_to_slice(-1)) self.assertEqual([4], a[_single_index_to_slice(-1)]) def test_is_single_index(self): self.assertTrue(_is_single_index(0)) self.assertFalse(_is_single_index(True)) self.assertFalse(_is_single_index(bool())) self.assertFalse(_is_single_index('a')) def test_as_slice_if_single_index(self): self.assertEqual(slice(0, 1), _as_slice_if_single_index(0)) slice_obj = slice(2, 3) self.assertIs(slice_obj, _as_slice_if_single_index(slice_obj)) def test_slice_positional_metadata(self): seq = Sequence('ABCDEFGHIJ', positional_metadata={'foo': np.arange(10), 'bar': np.arange(100, 110)}) self.assertTrue(pd.DataFrame({'foo': [0], 'bar': [100]}).equals( seq._slice_positional_metadata(0))) self.assertTrue(pd.DataFrame({'foo': [0], 'bar': [100]}).equals( seq._slice_positional_metadata(slice(0, 1)))) self.assertTrue(pd.DataFrame({'foo': [0, 1], 'bar': [100, 101]}).equals( seq._slice_positional_metadata(slice(0, 2)))) self.assertTrue(pd.DataFrame( {'foo': [9], 'bar': [109]}, index=[9]).equals( seq._slice_positional_metadata(9))) def test_getitem_with_int_no_positional_metadata(self): seq = Sequence("Sequence string !1@2#3?.,", metadata={'id': 'id2', 'description': 'no_qual'}) eseq = Sequence("t", metadata={'id': 'id2', 'description': 'no_qual'}) self.assertEqual(seq[10], eseq) def test_getitem_with_slice_has_positional_metadata(self): s = "0123456789abcdef" length = len(s) seq = Sequence(s, metadata={'id': 'id3', 'description': 'dsc3'}, positional_metadata={'quality': np.arange(length)}) eseq = Sequence("012", metadata={'id': 'id3', 'description': 'dsc3'}, positional_metadata={'quality': np.arange(3)}) self.assertEqual(seq[0:3], eseq) self.assertEqual(seq[:3], eseq) self.assertEqual(seq[:3:1], eseq) eseq = Sequence("def", metadata={'id': 'id3', 'description': 'dsc3'}, positional_metadata={'quality': [13, 14, 15]}) self.assertEqual(seq[-3:], eseq) self.assertEqual(seq[-3::1], eseq) eseq = Sequence("02468ace", metadata={'id': 'id3', 'description': 'dsc3'}, positional_metadata={'quality': [0, 2, 4, 6, 8, 10, 12, 14]}) self.assertEqual(seq[0:length:2], eseq) self.assertEqual(seq[::2], eseq) eseq = Sequence(s[::-1], metadata={'id': 'id3', 'description': 'dsc3'}, positional_metadata={'quality': np.arange(length)[::-1]}) self.assertEqual(seq[length::-1], eseq) self.assertEqual(seq[::-1], eseq) eseq = Sequence('fdb97531', metadata={'id': 'id3', 'description': 'dsc3'}, positional_metadata={'quality': [15, 13, 11, 9, 7, 5, 3, 1]}) self.assertEqual(seq[length::-2], eseq) self.assertEqual(seq[::-2], eseq) self.assertEqual(seq[0:500:], seq) eseq = Sequence('', metadata={'id': 'id3', 'description': 'dsc3'}, positional_metadata={'quality': np.array([], dtype=np.int64)}) self.assertEqual(seq[length:0], eseq) self.assertEqual(seq[-length:0], eseq) self.assertEqual(seq[1:0], eseq) eseq = Sequence("0", metadata={'id': 'id3', 'description': 'dsc3'}, positional_metadata={'quality': [0]}) self.assertEqual(seq[0:1], eseq) self.assertEqual(seq[0:1:1], eseq) self.assertEqual(seq[-length::-1], eseq) def test_getitem_with_slice_no_positional_metadata(self): s = "0123456789abcdef" length = len(s) seq = Sequence(s, metadata={'id': 'id4', 'description': 'no_qual4'}) eseq = Sequence("02468ace", metadata={'id': 'id4', 'description': 'no_qual4'}) self.assertEqual(seq[0:length:2], eseq) self.assertEqual(seq[::2], eseq) def test_getitem_with_tuple_of_mixed_with_positional_metadata(self): s = "0123456789abcdef" length = len(s) seq = Sequence(s, metadata={'id': 'id5', 'description': 'dsc5'}, positional_metadata={'quality': np.arange(length)}) eseq = Sequence("00000", metadata={'id': 'id5', 'description': 'dsc5'}, positional_metadata={'quality': [0, 0, 0, 0, 0]}) self.assertEqual(seq[0, 0, 0, 0, 0], eseq) self.assertEqual(seq[0, 0:1, 0, 0, 0], eseq) self.assertEqual(seq[0, 0:1, 0, -length::-1, 0, 1:0], eseq) self.assertEqual(seq[0:1, 0:1, 0:1, 0:1, 0:1], eseq) self.assertEqual(seq[0:1, 0, 0, 0, 0], eseq) eseq = Sequence("0123fed9", metadata={'id': 'id5', 'description': 'dsc5'}, positional_metadata={'quality': [0, 1, 2, 3, 15, 14, 13, 9]}) self.assertEqual(seq[0, 1, 2, 3, 15, 14, 13, 9], eseq) self.assertEqual(seq[0, 1, 2, 3, :-4:-1, 9], eseq) self.assertEqual(seq[0:4, :-4:-1, 9, 1:0], eseq) self.assertEqual(seq[0:4, :-4:-1, 9:10], eseq) def test_getitem_with_tuple_of_mixed_no_positional_metadata(self): seq = Sequence("0123456789abcdef", metadata={'id': 'id6', 'description': 'no_qual6'}) eseq = Sequence("0123fed9", metadata={'id': 'id6', 'description': 'no_qual6'}) self.assertEqual(seq[0, 1, 2, 3, 15, 14, 13, 9], eseq) self.assertEqual(seq[0, 1, 2, 3, :-4:-1, 9], eseq) self.assertEqual(seq[0:4, :-4:-1, 9], eseq) self.assertEqual(seq[0:4, :-4:-1, 9:10], eseq) def test_getitem_with_iterable_of_mixed_has_positional_metadata(self): s = "0123456789abcdef" length = len(s) seq = Sequence(s, metadata={'id': 'id7', 'description': 'dsc7'}, positional_metadata={'quality': np.arange(length)}) def generator(): yield slice(0, 4) yield slice(200, 400) yield -1 yield slice(-2, -4, -1) yield 9 eseq = Sequence("0123fed9", metadata={'id': 'id7', 'description': 'dsc7'}, positional_metadata={'quality': [0, 1, 2, 3, 15, 14, 13, 9]}) self.assertEqual(seq[[0, 1, 2, 3, 15, 14, 13, 9]], eseq) self.assertEqual(seq[generator()], eseq) self.assertEqual(seq[[slice(0, 4), slice(None, -4, -1), 9]], eseq) self.assertEqual(seq[ [slice(0, 4), slice(None, -4, -1), slice(9, 10)]], eseq) def test_getitem_with_iterable_of_mixed_no_positional_metadata(self): s = "0123456789abcdef" seq = Sequence(s, metadata={'id': 'id7', 'description': 'dsc7'}) def generator(): yield slice(0, 4) yield slice(200, 400) yield slice(None, -4, -1) yield 9 eseq = Sequence("0123fed9", metadata={'id': 'id7', 'description': 'dsc7'}) self.assertEqual(seq[[0, 1, 2, 3, 15, 14, 13, 9]], eseq) self.assertEqual(seq[generator()], eseq) self.assertEqual(seq[[slice(0, 4), slice(None, -4, -1), 9]], eseq) self.assertEqual(seq[ [slice(0, 4), slice(None, -4, -1), slice(9, 10)]], eseq) def test_getitem_with_numpy_index_has_positional_metadata(self): s = "0123456789abcdef" length = len(s) seq = Sequence(s, metadata={'id': 'id9', 'description': 'dsc9'}, positional_metadata={'quality': np.arange(length)}) eseq = Sequence("0123fed9", metadata={'id': 'id9', 'description': 'dsc9'}, positional_metadata={'quality': [0, 1, 2, 3, 15, 14, 13, 9]}) self.assertEqual(seq[np.array([0, 1, 2, 3, 15, 14, 13, 9])], eseq) def test_getitem_with_numpy_index_no_positional_metadata(self): s = "0123456789abcdef" seq = Sequence(s, metadata={'id': 'id10', 'description': 'dsc10'}) eseq = Sequence("0123fed9", metadata={'id': 'id10', 'description': 'dsc10'}) self.assertEqual(seq[np.array([0, 1, 2, 3, 15, 14, 13, 9])], eseq) def test_getitem_with_empty_indices_empty_seq_no_pos_metadata(self): s = "" seq = Sequence(s, metadata={'id': 'id10', 'description': 'dsc10'}) eseq = Sequence('', metadata={'id': 'id10', 'description': 'dsc10'}) tested = 0 for index in self.getitem_empty_indices: tested += 1 self.assertEqual(seq[index], eseq) self.assertEqual(tested, 6) def test_getitem_with_empty_indices_non_empty_seq_no_pos_metadata(self): s = "0123456789abcdef" seq = Sequence(s, metadata={'id': 'id10', 'description': 'dsc10'}) eseq = Sequence('', metadata={'id': 'id10', 'description': 'dsc10'}) tested = 0 for index in self.getitem_empty_indices: tested += 1 self.assertEqual(seq[index], eseq) self.assertEqual(tested, 6) def test_getitem_with_boolean_vector_has_qual(self): s = "0123456789abcdef" length = len(s) seq = Sequence(s, metadata={'id': 'id11', 'description': 'dsc11'}, positional_metadata={'quality': np.arange(length)}) eseq = Sequence("13579bdf", metadata={'id': 'id11', 'description': 'dsc11'}, positional_metadata={'quality': [1, 3, 5, 7, 9, 11, 13, 15]}) self.assertEqual(seq[np.array([False, True] * 8)], eseq) self.assertEqual(seq[[False, True] * 8], eseq) def test_getitem_with_boolean_vector_no_positional_metadata(self): s = "0123456789abcdef" seq = Sequence(s, metadata={'id': 'id11', 'description': 'dsc11'}) eseq = Sequence("13579bdf", metadata={'id': 'id11', 'description': 'dsc11'}) self.assertEqual(seq[np.array([False, True] * 8)], eseq) def test_getitem_with_invalid(self): seq = Sequence("123456", metadata={'id': 'idm', 'description': 'description'}, positional_metadata={'quality': [1, 2, 3, 4, 5, 6]}) with self.assertRaises(IndexError): seq['not an index'] with self.assertRaises(IndexError): seq[['1', '2']] with self.assertRaises(IndexError): seq[[1, slice(1, 2), 'a']] with self.assertRaises(IndexError): seq[[1, slice(1, 2), True]] with self.assertRaises(IndexError): seq[True] with self.assertRaises(IndexError): seq[np.array([True, False])] with self.assertRaises(IndexError): seq[999] with self.assertRaises(IndexError): seq[0, 0, 999] # numpy 1.8.1 and 1.9.2 raise different error types # (ValueError, IndexError). with self.assertRaises(Exception): seq[100 * [True, False, True]] def test_getitem_handles_missing_metadata_efficiently(self): # there are two paths in __getitem__ we need to test for efficient # handling of missing metadata # path 1: mixed types seq = Sequence('ACGT') subseq = seq[1, 2:4] self.assertEqual(subseq, Sequence('CGT')) # metadata attributes should be None and not initialized to a "missing" # representation self.assertIsNone(seq._metadata) self.assertIsNone(seq._positional_metadata) self.assertIsNone(subseq._metadata) self.assertIsNone(subseq._positional_metadata) # path 2: uniform types seq = Sequence('ACGT') subseq = seq[1:3] self.assertEqual(subseq, Sequence('CG')) self.assertIsNone(seq._metadata) self.assertIsNone(seq._positional_metadata) self.assertIsNone(subseq._metadata) self.assertIsNone(subseq._positional_metadata) def test_len(self): self.assertEqual(len(Sequence("")), 0) self.assertEqual(len(Sequence("a")), 1) self.assertEqual(len(Sequence("abcdef")), 6) def test_nonzero(self): # blank self.assertFalse(Sequence("")) self.assertFalse(Sequence("", metadata={'id': 'foo'}, positional_metadata={'quality': range(0)})) # single self.assertTrue(Sequence("A")) self.assertTrue(Sequence("A", metadata={'id': 'foo'}, positional_metadata={'quality': range(1)})) # multi self.assertTrue(Sequence("ACGT")) self.assertTrue(Sequence("ACGT", metadata={'id': 'foo'}, positional_metadata={'quality': range(4)})) def test_contains(self): seq = Sequence("#@ACGT,24.13**02") tested = 0 for c in self.sequence_kinds: tested += 1 self.assertTrue(c(',24') in seq) self.assertTrue(c('*') in seq) self.assertTrue(c('') in seq) self.assertFalse(c("$") in seq) self.assertFalse(c("AGT") in seq) self.assertEqual(tested, 4) def test_contains_sequence_subclass(self): with self.assertRaises(TypeError): SequenceSubclass("A") in Sequence("AAA") self.assertTrue(SequenceSubclass("A").values in Sequence("AAA")) def test_hash(self): with self.assertRaises(TypeError): hash(Sequence("ABCDEFG")) self.assertNotIsInstance(Sequence("ABCDEFG"), Hashable) def test_iter_has_positional_metadata(self): tested = False seq = Sequence("0123456789", metadata={'id': 'a', 'desc': 'b'}, positional_metadata={'qual': np.arange(10)}) for i, s in enumerate(seq): tested = True self.assertEqual(s, Sequence(str(i), metadata={'id': 'a', 'desc': 'b'}, positional_metadata={'qual': [i]})) self.assertTrue(tested) def test_iter_no_positional_metadata(self): tested = False seq = Sequence("0123456789", metadata={'id': 'a', 'desc': 'b'}) for i, s in enumerate(seq): tested = True self.assertEqual(s, Sequence(str(i), metadata={'id': 'a', 'desc': 'b'})) self.assertTrue(tested) def test_reversed_has_positional_metadata(self): tested = False seq = Sequence("0123456789", metadata={'id': 'a', 'desc': 'b'}, positional_metadata={'qual': np.arange(10)}) for i, s in enumerate(reversed(seq)): tested = True self.assertEqual(s, Sequence(str(9 - i), metadata={'id': 'a', 'desc': 'b'}, positional_metadata={'qual': [9 - i]})) self.assertTrue(tested) def test_reversed_no_positional_metadata(self): tested = False seq = Sequence("0123456789", metadata={'id': 'a', 'desc': 'b'}) for i, s in enumerate(reversed(seq)): tested = True self.assertEqual(s, Sequence(str(9 - i), metadata={'id': 'a', 'desc': 'b'})) self.assertTrue(tested) def test_repr(self): # basic sanity checks -- more extensive testing of formatting and # special cases is performed in SequenceReprDoctests below. here we # only test that pieces of the repr are present. these tests also # exercise coverage for py2/3 since the doctests in # SequenceReprDoctests only currently run in py2. # minimal obs = repr(Sequence('')) self.assertEqual(obs.count('\n'), 4) self.assertTrue(obs.startswith('Sequence')) self.assertIn('length: 0', obs) self.assertTrue(obs.endswith('-')) # no metadata obs = repr(Sequence('ACGT')) self.assertEqual(obs.count('\n'), 5) self.assertTrue(obs.startswith('Sequence')) self.assertIn('length: 4', obs) self.assertTrue(obs.endswith('0 ACGT')) # metadata and positional metadata of mixed types obs = repr( Sequence( 'ACGT', metadata={'foo': 'bar', u'bar': 33.33, None: True, False: {}, (1, 2): 3, 'acb' * 100: "'", 10: 11}, positional_metadata={'foo': range(4), 42: ['a', 'b', [], 'c']})) self.assertEqual(obs.count('\n'), 16) self.assertTrue(obs.startswith('Sequence')) self.assertIn('None: True', obs) self.assertIn('\'foo\': \'bar\'', obs) self.assertIn('42: <dtype: object>', obs) self.assertIn('\'foo\': <dtype: int64>', obs) self.assertIn('length: 4', obs) self.assertTrue(obs.endswith('0 ACGT')) # sequence spanning > 5 lines obs = repr(Sequence('A' * 301)) self.assertEqual(obs.count('\n'), 9) self.assertTrue(obs.startswith('Sequence')) self.assertIn('length: 301', obs) self.assertIn('...', obs) self.assertTrue(obs.endswith('300 A')) def test_str(self): self.assertEqual(str(Sequence("GATTACA")), "GATTACA") self.assertEqual(str(Sequence("ACCGGTACC")), "ACCGGTACC") self.assertEqual(str(Sequence("GREG")), "GREG") self.assertEqual( str(Sequence("ABC", positional_metadata={'quality': [1, 2, 3]})), "ABC") self.assertIs(type(str(Sequence("A"))), str) def test_to_default_behavior(self): # minimal sequence, sequence with all optional attributes present, and # a subclass of Sequence for seq in (Sequence('ACGT'), Sequence('ACGT', metadata={'id': 'foo', 'desc': 'bar'}, positional_metadata={'quality': range(4)}), SequenceSubclass('ACGU', metadata={'id': 'rna seq'})): to = seq._to() self.assertEqual(seq, to) self.assertIsNot(seq, to) def test_to_update_single_attribute(self): seq = Sequence('HE..--..LLO', metadata={'id': 'hello', 'description': 'gapped hello'}, positional_metadata={'quality': range(11)}) to = seq._to(metadata={'id': 'new id'}) self.assertIsNot(seq, to) self.assertNotEqual(seq, to) self.assertEqual( to, Sequence('HE..--..LLO', metadata={'id': 'new id'}, positional_metadata={'quality': range(11)})) # metadata shouldn't have changed on the original sequence self.assertEqual(seq.metadata, {'id': 'hello', 'description': 'gapped hello'}) def test_to_update_multiple_attributes(self): seq = Sequence('HE..--..LLO', metadata={'id': 'hello', 'description': 'gapped hello'}, positional_metadata={'quality': range(11)}) to = seq._to(metadata={'id': 'new id', 'description': 'new desc'}, positional_metadata={'quality': range(20, 25)}, sequence='ACGTA') self.assertIsNot(seq, to) self.assertNotEqual(seq, to) # attributes should be what we specified in the _to call... self.assertEqual(to.metadata['id'], 'new id') npt.assert_array_equal(to.positional_metadata['quality'], np.array([20, 21, 22, 23, 24])) npt.assert_array_equal(to.values, np.array('ACGTA', dtype='c')) self.assertEqual(to.metadata['description'], 'new desc') # ...and shouldn't have changed on the original sequence self.assertEqual(seq.metadata['id'], 'hello') npt.assert_array_equal(seq.positional_metadata['quality'], range(11)) npt.assert_array_equal(seq.values, np.array('HE..--..LLO', dtype='c')) self.assertEqual(seq.metadata['description'], 'gapped hello') def test_to_invalid_kwargs(self): seq = Sequence('ACCGGTACC', metadata={'id': "test-seq", 'desc': "A test sequence"}) with self.assertRaises(TypeError): seq._to(metadata={'id': 'bar'}, unrecognized_kwarg='baz') def test_count(self): def construct_char_array(s): return np.fromstring(s, dtype='|S1') def construct_uint8_array(s): return np.fromstring(s, dtype=np.uint8) seq = Sequence("1234567899876555") tested = 0 for c in self.sequence_kinds: tested += 1 self.assertEqual(seq.count(c('4')), 1) self.assertEqual(seq.count(c('8')), 2) self.assertEqual(seq.count(c('5')), 4) self.assertEqual(seq.count(c('555')), 1) self.assertEqual(seq.count(c('555'), 0, 4), 0) self.assertEqual(seq.count(c('555'), start=0, end=4), 0) self.assertEqual(seq.count(c('5'), start=10), 3) self.assertEqual(seq.count(c('5'), end=10), 1) with self.assertRaises(ValueError): seq.count(c('')) self.assertEqual(tested, 4) def test_count_on_subclass(self): with self.assertRaises(TypeError) as cm: Sequence("abcd").count(SequenceSubclass("a")) self.assertIn("Sequence", str(cm.exception)) self.assertIn("SequenceSubclass", str(cm.exception)) def test_lowercase_mungeable_key(self): # NOTE: This test relies on Sequence._munge_to_index_array working # properly. If the internal implementation of the lowercase method # changes to no longer use _munge_to_index_array, this test may need # to be updated to cover cases currently covered by # _munge_to_index_array self.assertEqual('AAAAaaaa', self.lowercase_seq.lowercase('key')) def test_lowercase_array_key(self): # NOTE: This test relies on Sequence._munge_to_index_array working # properly. If the internal implementation of the lowercase method # changes to no longer use _munge_to_index_array, this test may need # to be updated to cover cases currently covered by # _munge_to_index_array self.assertEqual('aaAAaaaa', self.lowercase_seq.lowercase( np.array([True, True, False, False, True, True, True, True]))) self.assertEqual('AaAAaAAA', self.lowercase_seq.lowercase([1, 4])) def test_distance(self): tested = 0 for constructor in self.sequence_kinds: tested += 1 seq1 = Sequence("abcdef") seq2 = constructor("12bcef") self.assertIsInstance(seq1.distance(seq1), float) self.assertEqual(seq1.distance(seq2), 2.0/3.0) self.assertEqual(tested, 4) def test_distance_arbitrary_function(self): def metric(x, y): return len(x) ** 2 + len(y) ** 2 seq1 = Sequence("12345678") seq2 = Sequence("1234") result = seq1.distance(seq2, metric=metric) self.assertIsInstance(result, float) self.assertEqual(result, 80.0) def test_distance_default_metric(self): seq1 = Sequence("abcdef") seq2 = Sequence("12bcef") seq_wrong = Sequence("abcdefghijklmnop") self.assertIsInstance(seq1.distance(seq1), float) self.assertEqual(seq1.distance(seq1), 0.0) self.assertEqual(seq1.distance(seq2), 2.0/3.0) with self.assertRaises(ValueError): seq1.distance(seq_wrong) with self.assertRaises(ValueError): seq_wrong.distance(seq1) def test_distance_on_subclass(self): seq1 = Sequence("abcdef") seq2 = SequenceSubclass("12bcef") with self.assertRaises(TypeError): seq1.distance(seq2) def test_matches(self): tested = 0 for constructor in self.sequence_kinds: tested += 1 seq1 = Sequence("AACCEEGG") seq2 = constructor("ABCDEFGH") expected = np.array([True, False] * 4) npt.assert_equal(seq1.matches(seq2), expected) self.assertEqual(tested, 4) def test_matches_on_subclass(self): seq1 = Sequence("AACCEEGG") seq2 = SequenceSubclass("ABCDEFGH") with self.assertRaises(TypeError): seq1.matches(seq2) def test_matches_unequal_length(self): seq1 = Sequence("AACCEEGG") seq2 = Sequence("TOOLONGTOCOMPARE") with self.assertRaises(ValueError): seq1.matches(seq2) def test_mismatches(self): tested = 0 for constructor in self.sequence_kinds: tested += 1 seq1 = Sequence("AACCEEGG") seq2 = constructor("ABCDEFGH") expected = np.array([False, True] * 4) npt.assert_equal(seq1.mismatches(seq2), expected) self.assertEqual(tested, 4) def test_mismatches_on_subclass(self): seq1 = Sequence("AACCEEGG") seq2 = SequenceSubclass("ABCDEFGH") with self.assertRaises(TypeError): seq1.mismatches(seq2) def test_mismatches_unequal_length(self): seq1 = Sequence("AACCEEGG") seq2 = Sequence("TOOLONGTOCOMPARE") with self.assertRaises(ValueError): seq1.mismatches(seq2) def test_mismatch_frequency(self): seq1 = Sequence("AACCEEGG") seq2 = Sequence("ABCDEFGH") seq3 = Sequence("TTTTTTTT") self.assertIs(type(seq1.mismatch_frequency(seq1)), int) self.assertEqual(seq1.mismatch_frequency(seq1), 0) self.assertEqual(seq1.mismatch_frequency(seq2), 4) self.assertEqual(seq1.mismatch_frequency(seq3), 8) def test_mismatch_frequency_relative(self): seq1 = Sequence("AACCEEGG") seq2 = Sequence("ABCDEFGH") seq3 = Sequence("TTTTTTTT") self.assertIs(type(seq1.mismatch_frequency(seq1, relative=True)), float) self.assertEqual(seq1.mismatch_frequency(seq1, relative=True), 0.0) self.assertEqual(seq1.mismatch_frequency(seq2, relative=True), 0.5) self.assertEqual(seq1.mismatch_frequency(seq3, relative=True), 1.0) def test_mismatch_frequency_unequal_length(self): seq1 = Sequence("AACCEEGG") seq2 = Sequence("TOOLONGTOCOMPARE") with self.assertRaises(ValueError): seq1.mismatch_frequency(seq2) def test_mismatch_frequence_on_subclass(self): seq1 = Sequence("AACCEEGG") seq2 = SequenceSubclass("ABCDEFGH") with self.assertRaises(TypeError): seq1.mismatch_frequency(seq2) def test_match_frequency(self): seq1 = Sequence("AACCEEGG") seq2 = Sequence("ABCDEFGH") seq3 = Sequence("TTTTTTTT") self.assertIs(type(seq1.match_frequency(seq1)), int) self.assertEqual(seq1.match_frequency(seq1), 8) self.assertEqual(seq1.match_frequency(seq2), 4) self.assertEqual(seq1.match_frequency(seq3), 0) def test_match_frequency_relative(self): seq1 = Sequence("AACCEEGG") seq2 = Sequence("ABCDEFGH") seq3 = Sequence("TTTTTTTT") self.assertIs(type(seq1.match_frequency(seq1, relative=True)), float) self.assertEqual(seq1.match_frequency(seq1, relative=True), 1.0) self.assertEqual(seq1.match_frequency(seq2, relative=True), 0.5) self.assertEqual(seq1.match_frequency(seq3, relative=True), 0.0) def test_match_frequency_unequal_length(self): seq1 = Sequence("AACCEEGG") seq2 = Sequence("TOOLONGTOCOMPARE") with self.assertRaises(ValueError): seq1.match_frequency(seq2) def test_match_frequency_on_subclass(self): seq1 = Sequence("AACCEEGG") seq2 = SequenceSubclass("ABCDEFGH") with self.assertRaises(TypeError): seq1.match_frequency(seq2) def test_index(self): tested = 0 for c in self.sequence_kinds: tested += 1 seq = Sequence("ABCDEFG@@ABCDFOO") self.assertEqual(seq.index(c("A")), 0) self.assertEqual(seq.index(c("@")), 7) self.assertEqual(seq.index(c("@@")), 7) with self.assertRaises(ValueError): seq.index("A", start=1, end=5) self.assertEqual(tested, 4) def test_index_on_subclass(self): with self.assertRaises(TypeError): Sequence("ABCDEFG").index(SequenceSubclass("A")) self.assertEqual( SequenceSubclass("ABCDEFG").index(SequenceSubclass("A")), 0) def _compare_kmers_results(self, observed, expected): for obs, exp in zip_longest(observed, expected, fillvalue=None): self.assertEqual(obs, exp) def test_iter_kmers(self): seq = Sequence('GATTACA', positional_metadata={'quality': range(7)}) expected = [ Sequence('G', positional_metadata={'quality': [0]}), Sequence('A', positional_metadata={'quality': [1]}), Sequence('T', positional_metadata={'quality': [2]}), Sequence('T', positional_metadata={'quality': [3]}), Sequence('A', positional_metadata={'quality': [4]}), Sequence('C', positional_metadata={'quality': [5]}), Sequence('A', positional_metadata={'quality': [6]}) ] self._compare_kmers_results( seq.iter_kmers(1, overlap=False), expected) expected = [ Sequence('GA', positional_metadata={'quality': [0, 1]}), Sequence('TT', positional_metadata={'quality': [2, 3]}), Sequence('AC', positional_metadata={'quality': [4, 5]}) ] self._compare_kmers_results( seq.iter_kmers(2, overlap=False), expected) expected = [ Sequence('GAT', positional_metadata={'quality': [0, 1, 2]}), Sequence('TAC', positional_metadata={'quality': [3, 4, 5]}) ] self._compare_kmers_results( seq.iter_kmers(3, overlap=False), expected) expected = [ Sequence('GATTACA', positional_metadata={'quality': [0, 1, 2, 3, 4, 5, 6]}) ] self._compare_kmers_results( seq.iter_kmers(7, overlap=False), expected) expected = [] self._compare_kmers_results( seq.iter_kmers(8, overlap=False), expected) self.assertIs(type(seq.iter_kmers(1)), GeneratorType) def test_iter_kmers_no_positional_metadata(self): seq = Sequence('GATTACA') expected = [ Sequence('G'), Sequence('A'), Sequence('T'), Sequence('T'), Sequence('A'), Sequence('C'), Sequence('A') ] self._compare_kmers_results( seq.iter_kmers(1, overlap=False), expected) expected = [ Sequence('GA'), Sequence('TT'), Sequence('AC') ] self._compare_kmers_results( seq.iter_kmers(2, overlap=False), expected) expected = [ Sequence('GAT'), Sequence('TAC') ] self._compare_kmers_results( seq.iter_kmers(3, overlap=False), expected) expected = [ Sequence('GATTACA') ] self._compare_kmers_results( seq.iter_kmers(7, overlap=False), expected) expected = [] self._compare_kmers_results( seq.iter_kmers(8, overlap=False), expected) self.assertIs(type(seq.iter_kmers(1)), GeneratorType) def test_iter_kmers_with_overlap(self): seq = Sequence('GATTACA', positional_metadata={'quality': range(7)}) expected = [ Sequence('G', positional_metadata={'quality': [0]}), Sequence('A', positional_metadata={'quality': [1]}), Sequence('T', positional_metadata={'quality': [2]}), Sequence('T', positional_metadata={'quality': [3]}), Sequence('A', positional_metadata={'quality': [4]}), Sequence('C', positional_metadata={'quality': [5]}), Sequence('A', positional_metadata={'quality': [6]}) ] self._compare_kmers_results( seq.iter_kmers(1, overlap=True), expected) expected = [ Sequence('GA', positional_metadata={'quality': [0, 1]}), Sequence('AT', positional_metadata={'quality': [1, 2]}), Sequence('TT', positional_metadata={'quality': [2, 3]}), Sequence('TA', positional_metadata={'quality': [3, 4]}), Sequence('AC', positional_metadata={'quality': [4, 5]}), Sequence('CA', positional_metadata={'quality': [5, 6]}) ] self._compare_kmers_results( seq.iter_kmers(2, overlap=True), expected) expected = [ Sequence('GAT', positional_metadata={'quality': [0, 1, 2]}), Sequence('ATT', positional_metadata={'quality': [1, 2, 3]}), Sequence('TTA', positional_metadata={'quality': [2, 3, 4]}), Sequence('TAC', positional_metadata={'quality': [3, 4, 5]}), Sequence('ACA', positional_metadata={'quality': [4, 5, 6]}) ] self._compare_kmers_results( seq.iter_kmers(3, overlap=True), expected) expected = [ Sequence('GATTACA', positional_metadata={'quality': [0, 1, 2, 3, 4, 5, 6]}) ] self._compare_kmers_results( seq.iter_kmers(7, overlap=True), expected) expected = [] self._compare_kmers_results( seq.iter_kmers(8, overlap=True), expected) self.assertIs(type(seq.iter_kmers(1)), GeneratorType) def test_iter_kmers_with_overlap_no_positional_metadata(self): seq = Sequence('GATTACA') expected = [ Sequence('G'), Sequence('A'), Sequence('T'), Sequence('T'), Sequence('A'), Sequence('C'), Sequence('A') ] self._compare_kmers_results( seq.iter_kmers(1, overlap=True), expected) expected = [ Sequence('GA'), Sequence('AT'), Sequence('TT'), Sequence('TA'), Sequence('AC'), Sequence('CA') ] self._compare_kmers_results( seq.iter_kmers(2, overlap=True), expected) expected = [ Sequence('GAT'), Sequence('ATT'), Sequence('TTA'), Sequence('TAC'), Sequence('ACA') ] self._compare_kmers_results( seq.iter_kmers(3, overlap=True), expected) expected = [ Sequence('GATTACA') ] self._compare_kmers_results( seq.iter_kmers(7, overlap=True), expected) expected = [] self._compare_kmers_results( seq.iter_kmers(8, overlap=True), expected) self.assertIs(type(seq.iter_kmers(1)), GeneratorType) def test_iter_kmers_invalid_k(self): seq = Sequence('GATTACA', positional_metadata={'quality': range(7)}) with self.assertRaises(ValueError): list(seq.iter_kmers(0)) with self.assertRaises(ValueError): list(seq.iter_kmers(-42)) def test_iter_kmers_invalid_k_no_positional_metadata(self): seq = Sequence('GATTACA') with self.assertRaises(ValueError): list(seq.iter_kmers(0)) with self.assertRaises(ValueError): list(seq.iter_kmers(-42)) def test_iter_kmers_different_sequences(self): seq = Sequence('HE..--..LLO', metadata={'id': 'hello', 'desc': 'gapped hello'}, positional_metadata={'quality': range(11)}) expected = [ Sequence('HE.', positional_metadata={'quality': [0, 1, 2]}, metadata={'id': 'hello', 'desc': 'gapped hello'}), Sequence('.--', positional_metadata={'quality': [3, 4, 5]}, metadata={'id': 'hello', 'desc': 'gapped hello'}), Sequence('..L', positional_metadata={'quality': [6, 7, 8]}, metadata={'id': 'hello', 'desc': 'gapped hello'}) ] self._compare_kmers_results(seq.iter_kmers(3, overlap=False), expected) def test_iter_kmers_different_sequences_no_positional_metadata(self): seq = Sequence('HE..--..LLO', metadata={'id': 'hello', 'desc': 'gapped hello'}) expected = [ Sequence('HE.', metadata={'id': 'hello', 'desc': 'gapped hello'}), Sequence('.--', metadata={'id': 'hello', 'desc': 'gapped hello'}), Sequence('..L', metadata={'id': 'hello', 'desc': 'gapped hello'}) ] self._compare_kmers_results(seq.iter_kmers(3, overlap=False), expected) def test_kmer_frequencies(self): seq = Sequence('GATTACA', positional_metadata={'quality': range(7)}) # overlap = True expected = Counter('GATTACA') self.assertEqual(seq.kmer_frequencies(1, overlap=True), expected) expected = Counter(['GAT', 'ATT', 'TTA', 'TAC', 'ACA']) self.assertEqual(seq.kmer_frequencies(3, overlap=True), expected) expected = Counter([]) self.assertEqual(seq.kmer_frequencies(8, overlap=True), expected) # overlap = False expected = Counter(['GAT', 'TAC']) self.assertEqual(seq.kmer_frequencies(3, overlap=False), expected) expected = Counter(['GATTACA']) self.assertEqual(seq.kmer_frequencies(7, overlap=False), expected) expected = Counter([]) self.assertEqual(seq.kmer_frequencies(8, overlap=False), expected) def test_kmer_frequencies_relative(self): seq = Sequence('GATTACA', positional_metadata={'quality': range(7)}) # overlap = True expected = defaultdict(float) expected['A'] = 3/7. expected['C'] = 1/7. expected['G'] = 1/7. expected['T'] = 2/7. self.assertEqual(seq.kmer_frequencies(1, overlap=True, relative=True), expected) expected = defaultdict(float) expected['GAT'] = 1/5. expected['ATT'] = 1/5. expected['TTA'] = 1/5. expected['TAC'] = 1/5. expected['ACA'] = 1/5. self.assertEqual(seq.kmer_frequencies(3, overlap=True, relative=True), expected) expected = defaultdict(float) self.assertEqual(seq.kmer_frequencies(8, overlap=True, relative=True), expected) # overlap = False expected = defaultdict(float) expected['GAT'] = 1/2. expected['TAC'] = 1/2. self.assertEqual(seq.kmer_frequencies(3, overlap=False, relative=True), expected) expected = defaultdict(float) expected['GATTACA'] = 1.0 self.assertEqual(seq.kmer_frequencies(7, overlap=False, relative=True), expected) expected = defaultdict(float) self.assertEqual(seq.kmer_frequencies(8, overlap=False, relative=True), expected) def test_kmer_frequencies_floating_point_precision(self): # Test that a sequence having no variation in k-words yields a # frequency of exactly 1.0. Note that it is important to use # self.assertEqual here instead of self.assertAlmostEqual because we # want to test for exactly 1.0. A previous implementation of # Sequence.kmer_frequencies(relative=True) added (1 / num_words) for # each occurrence of a k-word to compute the frequencies (see # https://github.com/biocore/scikit-bio/issues/801). In certain cases, # this yielded a frequency slightly less than 1.0 due to roundoff # error. The test case here uses a sequence with 10 characters that are # all identical and computes k-word frequencies with k=1. This test # case exposes the roundoff error present in the previous # implementation because there are 10 k-words (which are all # identical), so 1/10 added 10 times yields a number slightly less than # 1.0. This occurs because 1/10 cannot be represented exactly as a # floating point number. seq = Sequence('AAAAAAAAAA') self.assertEqual(seq.kmer_frequencies(1, relative=True), defaultdict(float, {'A': 1.0})) def test_find_with_regex(self): seq = Sequence('GATTACA', positional_metadata={'quality': range(7)}) pat = re.compile('(T+A)(CA)') obs = list(seq.find_with_regex(pat)) exp = [slice(2, 5), slice(5, 7)] self.assertEqual(obs, exp) self.assertIs(type(seq.find_with_regex(pat)), GeneratorType) def test_find_with_regex_string_as_input(self): seq = Sequence('GATTACA', positional_metadata={'quality': range(7)}) pat = '(T+A)(CA)' obs = list(seq.find_with_regex(pat)) exp = [slice(2, 5), slice(5, 7)] self.assertEqual(obs, exp) self.assertIs(type(seq.find_with_regex(pat)), GeneratorType) def test_find_with_regex_no_groups(self): seq = Sequence('GATTACA', positional_metadata={'quality': range(7)}) pat = re.compile('(FOO)') self.assertEqual(list(seq.find_with_regex(pat)), []) def test_find_with_regex_ignore_no_difference(self): seq = Sequence('..ABCDEFG..') pat = "([A-Z]+)" exp = [slice(2, 9)] self.assertEqual(list(seq.find_with_regex(pat)), exp) obs = seq.find_with_regex( pat, ignore=np.array([1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1], dtype=bool)) self.assertEqual(list(obs), exp) def test_find_with_regex_ignore(self): obs = Sequence('A..A..BBAAB.A..AB..A.').find_with_regex( "(A+)", ignore=np.array([0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1], dtype=bool)) self.assertEqual(list(obs), [slice(0, 4), slice(8, 10), slice(12, 16), slice(19, 20)]) def test_find_with_regex_ignore_index_array(self): obs = Sequence('A..A..BBAAB.A..AB..A.').find_with_regex( "(A+)", ignore=np.array([1, 2, 4, 5, 11, 13, 14, 17, 18, 20])) self.assertEqual(list(obs), [slice(0, 4), slice(8, 10), slice(12, 16), slice(19, 20)]) def test_iter_contiguous_index_array(self): s = Sequence("0123456789abcdef") for c in list, tuple, np.array, pd.Series: exp = [Sequence("0123"), Sequence("89ab")] obs = s.iter_contiguous(c([0, 1, 2, 3, 8, 9, 10, 11])) self.assertEqual(list(obs), exp) def test_iter_contiguous_boolean_vector(self): s = Sequence("0123456789abcdef") for c in list, tuple, np.array, pd.Series: exp = [Sequence("0123"), Sequence("89ab")] obs = s.iter_contiguous(c(([True] * 4 + [False] * 4) * 2)) self.assertEqual(list(obs), exp) def test_iter_contiguous_iterable_slices(self): def spaced_out(): yield slice(0, 4) yield slice(8, 12) def contiguous(): yield slice(0, 4) yield slice(4, 8) yield slice(12, 16) s = Sequence("0123456789abcdef") for c in (lambda x: x, list, tuple, lambda x: np.array(tuple(x)), lambda x: pd.Series(tuple(x))): exp = [Sequence("0123"), Sequence("89ab")] obs = s.iter_contiguous(c(spaced_out())) self.assertEqual(list(obs), exp) exp = [Sequence("01234567"), Sequence("cdef")] obs = s.iter_contiguous(c(contiguous())) self.assertEqual(list(obs), exp) def test_iter_contiguous_with_max_length(self): s = Sequence("0123456789abcdef") for c in list, tuple, np.array, pd.Series: exp = [Sequence("234"), Sequence("678"), Sequence("abc")] obs = s.iter_contiguous(c([True, False, True, True] * 4), min_length=3) self.assertEqual(list(obs), exp) exp = [Sequence("0"), Sequence("234"), Sequence("678"), Sequence("abc"), Sequence("ef")] obs1 = list(s.iter_contiguous(c([True, False, True, True] * 4), min_length=1)) obs2 = list(s.iter_contiguous(c([True, False, True, True] * 4))) self.assertEqual(obs1, obs2) self.assertEqual(obs1, exp) def test_iter_contiguous_with_invert(self): def spaced_out(): yield slice(0, 4) yield slice(8, 12) def contiguous(): yield slice(0, 4) yield slice(4, 8) yield slice(12, 16) s = Sequence("0123456789abcdef") for c in (lambda x: x, list, tuple, lambda x: np.array(tuple(x)), lambda x: pd.Series(tuple(x))): exp = [Sequence("4567"), Sequence("cdef")] obs = s.iter_contiguous(c(spaced_out()), invert=True) self.assertEqual(list(obs), exp) exp = [Sequence("89ab")] obs = s.iter_contiguous(c(contiguous()), invert=True) self.assertEqual(list(obs), exp) def test_has_metadata(self): # truly missing seq = Sequence('ACGT') self.assertFalse(seq.has_metadata()) # metadata attribute should be None and not initialized to a "missing" # representation self.assertIsNone(seq._metadata) # looks empty seq = Sequence('ACGT', metadata={}) self.assertFalse(seq.has_metadata()) # metadata is present seq = Sequence('ACGT', metadata={'foo': 42}) self.assertTrue(seq.has_metadata()) def test_has_positional_metadata(self): # truly missing seq = Sequence('ACGT') self.assertFalse(seq.has_positional_metadata()) # positional metadata attribute should be None and not initialized to a # "missing" representation self.assertIsNone(seq._positional_metadata) # looks empty seq = Sequence('ACGT', positional_metadata=pd.DataFrame(index=np.arange(4))) self.assertFalse(seq.has_positional_metadata()) # positional metadata is present seq = Sequence('ACGT', positional_metadata={'foo': [1, 2, 3, 4]}) self.assertTrue(seq.has_positional_metadata()) def test_copy_without_metadata(self): # shallow vs deep copy with sequence only should be equivalent. thus, # copy.copy, copy.deepcopy, and Sequence.copy(deep=True|False) should # all be equivalent for copy_method in (lambda seq: seq.copy(deep=False), lambda seq: seq.copy(deep=True), copy.copy, copy.deepcopy): seq = Sequence('ACGT') seq_copy = copy_method(seq) self.assertEqual(seq_copy, seq) self.assertIsNot(seq_copy, seq) self.assertIsNot(seq_copy._bytes, seq._bytes) # metadata attributes should be None and not initialized to a # "missing" representation self.assertIsNone(seq._metadata) self.assertIsNone(seq._positional_metadata) self.assertIsNone(seq_copy._metadata) self.assertIsNone(seq_copy._positional_metadata) def test_copy_with_metadata_shallow(self): # copy.copy and Sequence.copy should behave identically for copy_method in lambda seq: seq.copy(), copy.copy: seq = Sequence('ACGT', metadata={'foo': [1]}, positional_metadata={'bar': [[], [], [], []], 'baz': [42, 42, 42, 42]}) seq_copy = copy_method(seq) self.assertEqual(seq_copy, seq) self.assertIsNot(seq_copy, seq) self.assertIsNot(seq_copy._bytes, seq._bytes) self.assertIsNot(seq_copy._metadata, seq._metadata) self.assertIsNot(seq_copy._positional_metadata, seq._positional_metadata) self.assertIsNot(seq_copy._positional_metadata.values, seq._positional_metadata.values) self.assertIs(seq_copy._metadata['foo'], seq._metadata['foo']) self.assertIs(seq_copy._positional_metadata.loc[0, 'bar'], seq._positional_metadata.loc[0, 'bar']) seq_copy.metadata['foo'].append(2) seq_copy.metadata['foo2'] = 42 self.assertEqual(seq_copy.metadata, {'foo': [1, 2], 'foo2': 42}) self.assertEqual(seq.metadata, {'foo': [1, 2]}) seq_copy.positional_metadata.loc[0, 'bar'].append(1) seq_copy.positional_metadata.loc[0, 'baz'] = 43 assert_data_frame_almost_equal( seq_copy.positional_metadata, pd.DataFrame({'bar': [[1], [], [], []], 'baz': [43, 42, 42, 42]})) assert_data_frame_almost_equal( seq.positional_metadata, pd.DataFrame({'bar': [[1], [], [], []], 'baz': [42, 42, 42, 42]})) def test_copy_with_metadata_deep(self): # copy.deepcopy and Sequence.copy(deep=True) should behave identically for copy_method in lambda seq: seq.copy(deep=True), copy.deepcopy: seq = Sequence('ACGT', metadata={'foo': [1]}, positional_metadata={'bar': [[], [], [], []], 'baz': [42, 42, 42, 42]}) seq_copy = copy_method(seq) self.assertEqual(seq_copy, seq) self.assertIsNot(seq_copy, seq) self.assertIsNot(seq_copy._bytes, seq._bytes) self.assertIsNot(seq_copy._metadata, seq._metadata) self.assertIsNot(seq_copy._positional_metadata, seq._positional_metadata) self.assertIsNot(seq_copy._positional_metadata.values, seq._positional_metadata.values) self.assertIsNot(seq_copy._metadata['foo'], seq._metadata['foo']) self.assertIsNot(seq_copy._positional_metadata.loc[0, 'bar'], seq._positional_metadata.loc[0, 'bar']) seq_copy.metadata['foo'].append(2) seq_copy.metadata['foo2'] = 42 self.assertEqual(seq_copy.metadata, {'foo': [1, 2], 'foo2': 42}) self.assertEqual(seq.metadata, {'foo': [1]}) seq_copy.positional_metadata.loc[0, 'bar'].append(1) seq_copy.positional_metadata.loc[0, 'baz'] = 43 assert_data_frame_almost_equal( seq_copy.positional_metadata, pd.DataFrame({'bar': [[1], [], [], []], 'baz': [43, 42, 42, 42]})) assert_data_frame_almost_equal( seq.positional_metadata, pd.DataFrame({'bar': [[], [], [], []], 'baz': [42, 42, 42, 42]})) def test_deepcopy_memo_is_respected(self): # basic test to ensure deepcopy's memo is passed through to recursive # deepcopy calls seq = Sequence('ACGT', metadata={'foo': 'bar'}) memo = {} copy.deepcopy(seq, memo) self.assertGreater(len(memo), 2) def test_munge_to_index_array_valid_index_array(self): s = Sequence('123456') for c in list, tuple, np.array, pd.Series: exp = np.array([1, 2, 3], dtype=int) obs = s._munge_to_index_array(c([1, 2, 3])) npt.assert_equal(obs, exp) exp = np.array([1, 3, 5], dtype=int) obs = s._munge_to_index_array(c([1, 3, 5])) npt.assert_equal(obs, exp) def test_munge_to_index_array_invalid_index_array(self): s = Sequence("12345678") for c in list, tuple, np.array, pd.Series: with self.assertRaises(ValueError): s._munge_to_index_array(c([3, 2, 1])) with self.assertRaises(ValueError): s._munge_to_index_array(c([5, 6, 7, 2])) with self.assertRaises(ValueError): s._munge_to_index_array(c([0, 1, 2, 1])) def test_munge_to_index_array_valid_bool_array(self): s = Sequence('123456') for c in list, tuple, np.array, pd.Series: exp = np.array([2, 3, 5], dtype=int) obs = s._munge_to_index_array( c([False, False, True, True, False, True])) npt.assert_equal(obs, exp) exp = np.array([], dtype=int) obs = s._munge_to_index_array( c([False] * 6)) npt.assert_equal(obs, exp) exp = np.arange(6) obs = s._munge_to_index_array( c([True] * 6)) npt.assert_equal(obs, exp) def test_munge_to_index_array_invalid_bool_array(self): s = Sequence('123456') for c in (list, tuple, lambda x: np.array(x, dtype=bool), lambda x: pd.Series(x, dtype=bool)): with self.assertRaises(ValueError): s._munge_to_index_array(c([])) with self.assertRaises(ValueError): s._munge_to_index_array(c([True])) with self.assertRaises(ValueError): s._munge_to_index_array(c([True] * 10)) def test_munge_to_index_array_valid_iterable(self): s = Sequence('') def slices_only(): return (slice(i, i+1) for i in range(0, 10, 2)) def mixed(): return (slice(i, i+1) if i % 2 == 0 else i for i in range(10)) def unthinkable(): for i in range(10): if i % 3 == 0: yield slice(i, i+1) elif i % 3 == 1: yield i else: yield np.array([i], dtype=int) for c in (lambda x: x, list, tuple, lambda x: np.array(tuple(x)), lambda x: pd.Series(tuple(x))): exp = np.arange(10, dtype=int) obs = s._munge_to_index_array(c(mixed())) npt.assert_equal(obs, exp) exp = np.arange(10, dtype=int) obs = s._munge_to_index_array(c(unthinkable())) npt.assert_equal(obs, exp) exp = np.arange(10, step=2, dtype=int) obs = s._munge_to_index_array(c(slices_only())) npt.assert_equal(obs, exp) def test_munge_to_index_array_invalid_iterable(self): s = Sequence('') def bad1(): yield "r" yield [1, 2, 3] def bad2(): yield 1 yield 'str' def bad3(): yield False yield True yield 2 def bad4(): yield np.array([False, True]) yield slice(2, 5) for c in (lambda x: x, list, tuple, lambda x: np.array(tuple(x)), lambda x: pd.Series(tuple(x))): with self.assertRaises(TypeError): s._munge_to_index_array(bad1()) with self.assertRaises(TypeError): s._munge_to_index_array(bad2()) with self.assertRaises(TypeError): s._munge_to_index_array(bad3()) with self.assertRaises(TypeError): s._munge_to_index_array(bad4()) def test_munge_to_index_array_valid_string(self): seq = Sequence('ACGTACGT', positional_metadata={'introns': [False, True, True, False, False, True, False, False]}) npt.assert_equal(np.array([1, 2, 5]), seq._munge_to_index_array('introns')) seq.positional_metadata['exons'] = ~seq.positional_metadata['introns'] npt.assert_equal(np.array([0, 3, 4, 6, 7]), seq._munge_to_index_array('exons')) def test_munge_to_index_array_invalid_string(self): seq_str = 'ACGT' seq = Sequence(seq_str, positional_metadata={'quality': range(len(seq_str))}) with six.assertRaisesRegex(self, ValueError, "No positional metadata associated with " "key 'introns'"): seq._munge_to_index_array('introns') with six.assertRaisesRegex(self, TypeError, "Column 'quality' in positional metadata " "does not correspond to a boolean " "vector"): seq._munge_to_index_array('quality') def test_munge_to_bytestring_return_bytes(self): seq = Sequence('') m = 'dummy_method' str_inputs = ('', 'a', 'acgt') unicode_inputs = (u'', u'a', u'acgt') byte_inputs = (b'', b'a', b'acgt') seq_inputs = (Sequence(''), Sequence('a'), Sequence('acgt')) all_inputs = str_inputs + unicode_inputs + byte_inputs + seq_inputs all_expected = [b'', b'a', b'acgt'] * 4 for input_, expected in zip(all_inputs, all_expected): observed = seq._munge_to_bytestring(input_, m) self.assertEqual(observed, expected) self.assertIs(type(observed), bytes) def test_munge_to_bytestring_unicode_out_of_ascii_range(self): seq = Sequence('') all_inputs = (u'\x80', u'abc\x80', u'\x80abc') for input_ in all_inputs: with six.assertRaisesRegex(self, UnicodeEncodeError, "'ascii' codec can't encode character" ".*in position.*: ordinal not in" " range\(128\)"): seq._munge_to_bytestring(input_, 'dummy_method') # NOTE: this must be a *separate* class for doctests only (no unit tests). nose # will not run the unit tests otherwise # # these doctests exercise the correct formatting of Sequence's repr in a # variety of situations. they are more extensive than the unit tests above # (TestSequence.test_repr) but are only currently run in py2. thus, they cannot # be relied upon for coverage (the unit tests take care of this) class SequenceReprDoctests(object): r""" >>> import pandas as pd >>> from skbio import Sequence Empty (minimal) sequence: >>> Sequence('') Sequence ------------- Stats: length: 0 ------------- Single character sequence: >>> Sequence('G') Sequence ------------- Stats: length: 1 ------------- 0 G Multicharacter sequence: >>> Sequence('ACGT') Sequence ------------- Stats: length: 4 ------------- 0 ACGT Full single line: >>> Sequence('A' * 60) Sequence ------------------------------------------------------------------- Stats: length: 60 ------------------------------------------------------------------- 0 AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA Full single line with 1 character overflow: >>> Sequence('A' * 61) Sequence -------------------------------------------------------------------- Stats: length: 61 -------------------------------------------------------------------- 0 AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA 60 A Two full lines: >>> Sequence('T' * 120) Sequence -------------------------------------------------------------------- Stats: length: 120 -------------------------------------------------------------------- 0 TTTTTTTTTT TTTTTTTTTT TTTTTTTTTT TTTTTTTTTT TTTTTTTTTT TTTTTTTTTT 60 TTTTTTTTTT TTTTTTTTTT TTTTTTTTTT TTTTTTTTTT TTTTTTTTTT TTTTTTTTTT Two full lines with 1 character overflow: >>> Sequence('T' * 121) Sequence --------------------------------------------------------------------- Stats: length: 121 --------------------------------------------------------------------- 0 TTTTTTTTTT TTTTTTTTTT TTTTTTTTTT TTTTTTTTTT TTTTTTTTTT TTTTTTTTTT 60 TTTTTTTTTT TTTTTTTTTT TTTTTTTTTT TTTTTTTTTT TTTTTTTTTT TTTTTTTTTT 120 T Five full lines (maximum amount of information): >>> Sequence('A' * 300) Sequence --------------------------------------------------------------------- Stats: length: 300 --------------------------------------------------------------------- 0 AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA 60 AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA 120 AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA 180 AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA 240 AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA Six lines starts "summarized" output: >>> Sequence('A' * 301) Sequence --------------------------------------------------------------------- Stats: length: 301 --------------------------------------------------------------------- 0 AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA 60 AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA ... 240 AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA 300 A A naive algorithm would assume the width of the first column (noting position) based on the sequence's length alone. This can be off by one if the last position (in the last line) has a shorter width than the width calculated from the sequence's length. This test case ensures that only a single space is inserted between position 99960 and the first sequence chunk: >>> Sequence('A' * 100000) Sequence ----------------------------------------------------------------------- Stats: length: 100000 ----------------------------------------------------------------------- 0 AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA 60 AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA ... 99900 AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA 99960 AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA The largest sequence that can be displayed using six chunks per line: >>> Sequence('A' * 100020) Sequence ----------------------------------------------------------------------- Stats: length: 100020 ----------------------------------------------------------------------- 0 AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA 60 AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA ... 99900 AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA 99960 AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA A single character longer than the previous sequence causes the optimal number of chunks per line to be 5: >>> Sequence('A' * 100021) Sequence ------------------------------------------------------------- Stats: length: 100021 ------------------------------------------------------------- 0 AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA 50 AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA ... 99950 AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA 100000 AAAAAAAAAA AAAAAAAAAA A Wide range of characters (locale-independent): >>> import string >>> Sequence((string.ascii_letters + string.punctuation + string.digits + ... 'a space') * 567) Sequence ----------------------------------------------------------------------- Stats: length: 57267 ----------------------------------------------------------------------- 0 abcdefghij klmnopqrst uvwxyzABCD EFGHIJKLMN OPQRSTUVWX YZ!"#$%&'( 60 )*+,-./:;< =>?@[\]^_` {|}~012345 6789a spac eabcdefghi jklmnopqrs ... 57180 opqrstuvwx yzABCDEFGH IJKLMNOPQR STUVWXYZ!" #$%&'()*+, -./:;<=>?@ 57240 [\]^_`{|}~ 0123456789 a space Supply horrendous metadata and positional metadata to exercise a variety of metadata formatting cases and rules. Sorting should be by type, then by value within each type (Python 3 doesn't allow sorting of mixed types): >>> metadata = { ... # str key, str value ... 'abc': 'some description', ... # int value ... 'foo': 42, ... # unsupported type (dict) value ... 'bar': {}, ... # int key, wrapped str (single line) ... 42: 'some words to test text wrapping and such... yada yada yada ' ... 'yada yada yada yada yada.', ... # bool key, wrapped str (multi-line) ... True: 'abc ' * 34, ... # float key, truncated str (too long) ... 42.5: 'abc ' * 200, ... # unsupported type (tuple) key, unsupported type (list) value ... ('foo', 'bar'): [1, 2, 3], ... # bytes key, single long word that wraps ... b'long word': 'abc' * 30, ... # truncated key (too long), None value ... 'too long of a key name to display in repr': None, ... # wrapped bytes value (has b'' prefix) ... 'bytes wrapped value': b'abcd' * 25, ... # float value ... 0.1: 99.9999, ... # bool value ... 43: False, ... # None key, complex value ... None: complex(-1.0, 0.0), ... # nested quotes ... 10: '"\'' ... } >>> positional_metadata = pd.DataFrame.from_items([ ... # str key, int list value ... ('foo', [1, 2, 3, 4]), ... # float key, float list value ... (42.5, [2.5, 3.0, 4.2, -0.00001]), ... # int key, object list value ... (42, [[], 4, 5, {}]), ... # truncated key (too long), bool list value ... ('abc' * 90, [True, False, False, True]), ... # None key ... (None, range(4))]) >>> Sequence('ACGT', metadata=metadata, ... positional_metadata=positional_metadata) Sequence ----------------------------------------------------------------------- Metadata: None: (-1+0j) True: 'abc abc abc abc abc abc abc abc abc abc abc abc abc abc abc abc abc abc abc abc abc abc abc abc abc abc abc abc abc abc abc abc abc abc ' b'long word': 'abcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabca bcabcabcabcabcabcabcabcabcabcabcabcabc' 0.1: 99.9999 42.5: <class 'str'> 10: '"\'' 42: 'some words to test text wrapping and such... yada yada yada yada yada yada yada yada.' 43: False 'abc': 'some description' 'bar': <class 'dict'> 'bytes wrapped value': b'abcdabcdabcdabcdabcdabcdabcdabcdabcdabcdab cdabcdabcdabcdabcdabcdabcdabcdabcdabcdabcd abcdabcdabcdabcd' 'foo': 42 <class 'str'>: None <class 'tuple'>: <class 'list'> Positional metadata: 'foo': <dtype: int64> 42.5: <dtype: float64> 42: <dtype: object> <class 'str'>: <dtype: bool> None: <dtype: int64> Stats: length: 4 ----------------------------------------------------------------------- 0 ACGT """ pass if __name__ == "__main__": main()
bsd-3-clause
kagayakidan/scikit-learn
examples/linear_model/plot_lasso_and_elasticnet.py
249
1982
""" ======================================== Lasso and Elastic Net for Sparse Signals ======================================== Estimates Lasso and Elastic-Net regression models on a manually generated sparse signal corrupted with an additive noise. Estimated coefficients are compared with the ground-truth. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.metrics import r2_score ############################################################################### # generate some sparse data to play with np.random.seed(42) n_samples, n_features = 50, 200 X = np.random.randn(n_samples, n_features) coef = 3 * np.random.randn(n_features) inds = np.arange(n_features) np.random.shuffle(inds) coef[inds[10:]] = 0 # sparsify coef y = np.dot(X, coef) # add noise y += 0.01 * np.random.normal((n_samples,)) # Split data in train set and test set n_samples = X.shape[0] X_train, y_train = X[:n_samples / 2], y[:n_samples / 2] X_test, y_test = X[n_samples / 2:], y[n_samples / 2:] ############################################################################### # Lasso from sklearn.linear_model import Lasso alpha = 0.1 lasso = Lasso(alpha=alpha) y_pred_lasso = lasso.fit(X_train, y_train).predict(X_test) r2_score_lasso = r2_score(y_test, y_pred_lasso) print(lasso) print("r^2 on test data : %f" % r2_score_lasso) ############################################################################### # ElasticNet from sklearn.linear_model import ElasticNet enet = ElasticNet(alpha=alpha, l1_ratio=0.7) y_pred_enet = enet.fit(X_train, y_train).predict(X_test) r2_score_enet = r2_score(y_test, y_pred_enet) print(enet) print("r^2 on test data : %f" % r2_score_enet) plt.plot(enet.coef_, label='Elastic net coefficients') plt.plot(lasso.coef_, label='Lasso coefficients') plt.plot(coef, '--', label='original coefficients') plt.legend(loc='best') plt.title("Lasso R^2: %f, Elastic Net R^2: %f" % (r2_score_lasso, r2_score_enet)) plt.show()
bsd-3-clause
yavalvas/yav_com
build/matplotlib/lib/mpl_examples/pylab_examples/centered_ticklabels.py
6
1355
# sometimes it is nice to have ticklabels centered. mpl currently # associates a label with a tick, and the label can be aligned # 'center', 'left', or 'right' using the horizontal alignment property: # # # for label in ax.xaxis.get_xticklabels(): # label.set_horizontalalignment('right') # # # but this doesn't help center the label between ticks. One solution # is to "face it". Use the minor ticks to place a tick centered # between the major ticks. Here is an example that labels the months, # centered between the ticks import numpy as np import matplotlib.cbook as cbook import matplotlib.dates as dates import matplotlib.ticker as ticker import matplotlib.pyplot as plt # load some financial data; apple's stock price fh = cbook.get_sample_data('aapl.npy.gz') r = np.load(fh); fh.close() r = r[-250:] # get the last 250 days fig, ax = plt.subplots() ax.plot(r.date, r.adj_close) ax.xaxis.set_major_locator(dates.MonthLocator()) ax.xaxis.set_minor_locator(dates.MonthLocator(bymonthday=15)) ax.xaxis.set_major_formatter(ticker.NullFormatter()) ax.xaxis.set_minor_formatter(dates.DateFormatter('%b')) for tick in ax.xaxis.get_minor_ticks(): tick.tick1line.set_markersize(0) tick.tick2line.set_markersize(0) tick.label1.set_horizontalalignment('center') imid = len(r)/2 ax.set_xlabel(str(r.date[imid].year)) plt.show()
mit
mne-tools/mne-tools.github.io
0.21/_downloads/ae7d4d6bcae82f99a78c3f8a0c94f7b0/plot_mne_inverse_envelope_correlation.py
3
4522
""" .. _ex-envelope-correlation: ============================================= Compute envelope correlations in source space ============================================= Compute envelope correlations of orthogonalized activity [1]_ [2]_ in source space using resting state CTF data. """ # Authors: Eric Larson <larson.eric.d@gmail.com> # Sheraz Khan <sheraz@khansheraz.com> # Denis Engemann <denis.engemann@gmail.com> # # License: BSD (3-clause) import os.path as op import numpy as np import matplotlib.pyplot as plt import mne from mne.connectivity import envelope_correlation from mne.minimum_norm import make_inverse_operator, apply_inverse_epochs from mne.preprocessing import compute_proj_ecg, compute_proj_eog data_path = mne.datasets.brainstorm.bst_resting.data_path() subjects_dir = op.join(data_path, 'subjects') subject = 'bst_resting' trans = op.join(data_path, 'MEG', 'bst_resting', 'bst_resting-trans.fif') src = op.join(subjects_dir, subject, 'bem', subject + '-oct-6-src.fif') bem = op.join(subjects_dir, subject, 'bem', subject + '-5120-bem-sol.fif') raw_fname = op.join(data_path, 'MEG', 'bst_resting', 'subj002_spontaneous_20111102_01_AUX.ds') ############################################################################## # Here we do some things in the name of speed, such as crop (which will # hurt SNR) and downsample. Then we compute SSP projectors and apply them. raw = mne.io.read_raw_ctf(raw_fname, verbose='error') raw.crop(0, 60).pick_types(meg=True, eeg=False).load_data().resample(80) raw.apply_gradient_compensation(3) projs_ecg, _ = compute_proj_ecg(raw, n_grad=1, n_mag=2) projs_eog, _ = compute_proj_eog(raw, n_grad=1, n_mag=2, ch_name='MLT31-4407') raw.info['projs'] += projs_ecg raw.info['projs'] += projs_eog raw.apply_proj() cov = mne.compute_raw_covariance(raw) # compute before band-pass of interest ############################################################################## # Now we band-pass filter our data and create epochs. raw.filter(14, 30) events = mne.make_fixed_length_events(raw, duration=5.) epochs = mne.Epochs(raw, events=events, tmin=0, tmax=5., baseline=None, reject=dict(mag=8e-13), preload=True) del raw ############################################################################## # Compute the forward and inverse # ------------------------------- src = mne.read_source_spaces(src) fwd = mne.make_forward_solution(epochs.info, trans, src, bem) inv = make_inverse_operator(epochs.info, fwd, cov) del fwd, src ############################################################################## # Compute label time series and do envelope correlation # ----------------------------------------------------- labels = mne.read_labels_from_annot(subject, 'aparc_sub', subjects_dir=subjects_dir) epochs.apply_hilbert() # faster to apply in sensor space stcs = apply_inverse_epochs(epochs, inv, lambda2=1. / 9., pick_ori='normal', return_generator=True) label_ts = mne.extract_label_time_course( stcs, labels, inv['src'], return_generator=True) corr = envelope_correlation(label_ts, verbose=True) # let's plot this matrix fig, ax = plt.subplots(figsize=(4, 4)) ax.imshow(corr, cmap='viridis', clim=np.percentile(corr, [5, 95])) fig.tight_layout() ############################################################################## # Compute the degree and plot it # ------------------------------ # sphinx_gallery_thumbnail_number = 2 threshold_prop = 0.15 # percentage of strongest edges to keep in the graph degree = mne.connectivity.degree(corr, threshold_prop=threshold_prop) stc = mne.labels_to_stc(labels, degree) stc = stc.in_label(mne.Label(inv['src'][0]['vertno'], hemi='lh') + mne.Label(inv['src'][1]['vertno'], hemi='rh')) brain = stc.plot( clim=dict(kind='percent', lims=[75, 85, 95]), colormap='gnuplot', subjects_dir=subjects_dir, views='dorsal', hemi='both', smoothing_steps=25, time_label='Beta band') ############################################################################## # References # ---------- # .. [1] Hipp JF, Hawellek DJ, Corbetta M, Siegel M, Engel AK (2012) # Large-scale cortical correlation structure of spontaneous # oscillatory activity. Nature Neuroscience 15:884–890 # .. [2] Khan S et al. (2018). Maturation trajectories of cortical # resting-state networks depend on the mediating frequency band. # Neuroimage 174:57–68
bsd-3-clause
dsquareindia/scikit-learn
examples/model_selection/plot_confusion_matrix.py
63
3231
""" ================ Confusion matrix ================ Example of confusion matrix usage to evaluate the quality of the output of a classifier on the iris data set. The diagonal elements represent the number of points for which the predicted label is equal to the true label, while off-diagonal elements are those that are mislabeled by the classifier. The higher the diagonal values of the confusion matrix the better, indicating many correct predictions. The figures show the confusion matrix with and without normalization by class support size (number of elements in each class). This kind of normalization can be interesting in case of class imbalance to have a more visual interpretation of which class is being misclassified. Here the results are not as good as they could be as our choice for the regularization parameter C was not the best. In real life applications this parameter is usually chosen using :ref:`grid_search`. """ print(__doc__) import itertools import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix # import some data to play with iris = datasets.load_iris() X = iris.data y = iris.target class_names = iris.target_names # Split the data into a training set and a test set X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) # Run classifier, using a model that is too regularized (C too low) to see # the impact on the results classifier = svm.SVC(kernel='linear', C=0.01) y_pred = classifier.fit(X_train, y_train).predict(X_test) def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): """ This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. """ if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] print("Normalized confusion matrix") else: print('Confusion matrix, without normalization') print(cm) plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) fmt = '.2f' if normalize else 'd' thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, format(cm[i, j], fmt), horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') # Compute confusion matrix cnf_matrix = confusion_matrix(y_test, y_pred) np.set_printoptions(precision=2) # Plot non-normalized confusion matrix plt.figure() plot_confusion_matrix(cnf_matrix, classes=class_names, title='Confusion matrix, without normalization') # Plot normalized confusion matrix plt.figure() plot_confusion_matrix(cnf_matrix, classes=class_names, normalize=True, title='Normalized confusion matrix') plt.show()
bsd-3-clause
lindemann09/pyForceDAQ
forceDAQ/data_handling/read_force_data.py
1
2147
""" Functions to read your force and event data """ __author__ = 'Oliver Lindemann' import os import sys import gzip from collections import OrderedDict import numpy as np TAG_COMMENTS = "#" TAG_UDPDATA = TAG_COMMENTS + "UDP" TAG_DAQEVENTS = TAG_COMMENTS + "T" def _csv(line): return list(map(lambda x: x.strip(), line.split(","))) def DataFrameDict(data, varnames): """data frame: Dict of numpy arrays does not require Pandas, but can be easily converted to pandas dataframe via pandas.DataFrame(data_frame_dict) """ rtn = OrderedDict() for v in varnames: rtn[v] = [] for row in data: for v, d in zip(varnames, row): rtn[v].append(d) return rtn def data_frame_to_text(data_frame): rtn = ",".join(data_frame.keys()) rtn += "\n" for x in np.array(list(data_frame.values())).T: rtn += ",".join(x) + "\n" return rtn def read_raw_data(path): """reading trigger and udp data Returns: data, udp_event, daq_events and comments data, udp_event, daq_events: DataFrameDict comments: text string """ daq_events = [] udp_events = [] comments = "" data = [] varnames = None app_dir = os.path.split(sys.argv[0])[0] path = os.path.abspath(os.path.join(app_dir, path)) if path.endswith("gz"): fl = gzip.open(path, "rt") else: fl = open(path, "rt") for ln in fl: if ln.startswith(TAG_COMMENTS): comments += ln if ln.startswith(TAG_UDPDATA + ","): udp_events.append(_csv(ln[len(TAG_UDPDATA) + 1:])) elif ln.startswith(TAG_DAQEVENTS): daq_events.append(_csv(ln[len(TAG_DAQEVENTS) + 1:])) else: # data if varnames is None: # first row contains varnames varnames = _csv(ln) else: data.append(_csv(ln)) fl.close() return (DataFrameDict(data, varnames), DataFrameDict(udp_events, ["time", "value"]), DataFrameDict(daq_events, ["time", "value"]), comments)
mit
cemarchi/biosphere
Src/BioAnalyzer/Analysis/GenePrioritization/Steps/DataIntegration/IntermediateRepresentation/Transformers/MicroRnaToGeneTransformer.py
1
4546
import math import statistics from itertools import groupby from random import randint from typing import Dict, Tuple, Counter import pandas as pd from Src.BioAnalyzer.Analysis.GenePrioritization.Steps.DataIntegration.IntermediateRepresentation.Generators import \ IntermediateRepresentationGeneratorBase from Src.BioAnalyzer.Analysis.GenePrioritization.Steps.DataIntegration.IntermediateRepresentation.Transformers.SampleTransformerBase import \ SampleTransformerBase from Src.BioDataManagement.CrossCutting.DTOs.ExpressionLevelStatusDto import ExpressionLevelStatusDto class MicroRnaToGeneTransformer(SampleTransformerBase): """ """ def __init__(self, intermediateRepresentationGenerator: IntermediateRepresentationGeneratorBase, get_global_diff_values_action, get_mirna_gene_target_action): super().__init__(intermediateRepresentationGenerator) self.__get_mirna_gene_target_action = get_mirna_gene_target_action self.__get_global_diff_values_action = get_global_diff_values_action def transform(self, from_sample_matrix: pd.DataFrame, is_highly_significant: bool) -> Tuple[pd.DataFrame, Dict[int, ExpressionLevelStatusDto]]: mirna_gene_targets = {mirna.lower(): g for mirna, g in self.__get_mirna_gene_targets(from_sample_matrix.columns.tolist()).items()} mirna_samples = self.__get_mirna_samples(from_sample_matrix, mirna_gene_targets) id_entrez_list = list(set([id_entrez for mirna_symbol, id_entrez_list in mirna_gene_targets.items() for id_entrez in id_entrez_list])) measure_matrix = dict([(g, []) for g in id_entrez_list]) key_func = lambda gene: gene[0] for patient_id, exp_values in mirna_samples.items(): gene_values = [(id_entrez, exp_value) for mirna_symbol, exp_value in exp_values.items() for id_entrez in mirna_gene_targets[mirna_symbol]] gene_values = sorted(gene_values, key=key_func) for id_entrez, measures in groupby(gene_values, key_func): measures = [measure for id_entrez, measure in list(measures) if not math.isnan(measure)] measure_matrix[id_entrez].append(float('NaN') if not measures else statistics.mean(measures)) gene_matrix = pd.DataFrame.from_dict(measure_matrix).dropna(axis=1,how='all') gene_matrix = self.intermediateRepresentationGenerator.generate(gene_matrix).dropna(axis=1,how='all') return gene_matrix, \ self.__get_gene_status(mirna_gene_targets, gene_matrix.columns.tolist(), is_highly_significant) def __get_mirna_gene_targets(self, mirnas): gene_targets = {} fe_target = self.__get_mirna_gene_target_action(mirnas) gene_targets.update(dict([(t.microrna_symbol, list(set(gene_targets[t.microrna_symbol] + t.id_entrez_genes))) if t.microrna_symbol in gene_targets else (t.microrna_symbol, t.id_entrez_genes) for t in fe_target.result_list])) return gene_targets def __get_mirna_samples(self, from_sample_matrix, mirna_gene_targets): from_sample_matrix = from_sample_matrix[list(mirna_gene_targets.keys()) + ['patient_id']] from_sample_matrix.set_index("patient_id", drop=True, inplace=True) return from_sample_matrix.to_dict(orient="index") def __get_gene_status(self, mirna_gene_targets, genes, is_highly_significant): diff_mirna = [diff for diff in self.__get_global_diff_values_action(is_highly_significant).result.values if diff.element_id in mirna_gene_targets] genes_status = [(g, diff.status) for diff in diff_mirna for g in mirna_gene_targets[diff.element_id] if g in genes] key_func = lambda gene: gene[0] genes_status = sorted(genes_status, key=key_func) genes_status_dict = {} for id_entrez, status in groupby(genes_status, key_func): status = list(status) status_counter = Counter(status) status = [k for k, v in status_counter.most_common()] len_status = len(status) - 1 genes_status_dict[id_entrez] = status[0] if len_status == 1 else status[randint(0, len_status)] return dict([(entrez_id, status[1]) for entrez_id, status in genes_status_dict.items()])
bsd-3-clause
phobson/statsmodels
statsmodels/datasets/randhie/data.py
3
2650
"""RAND Health Insurance Experiment Data""" __docformat__ = 'restructuredtext' COPYRIGHT = """This is in the public domain.""" TITLE = __doc__ SOURCE = """ The data was collected by the RAND corporation as part of the Health Insurance Experiment (HIE). http://www.rand.org/health/projects/hie.html This data was used in:: Cameron, A.C. amd Trivedi, P.K. 2005. `Microeconometrics: Methods and Applications,` Cambridge: New York. And was obtained from: <http://cameron.econ.ucdavis.edu/mmabook/mmadata.html> See randhie/src for the original data and description. The data included here contains only a subset of the original data. The data varies slightly compared to that reported in Cameron and Trivedi. """ DESCRSHORT = """The RAND Co. Health Insurance Experiment Data""" DESCRLONG = """""" NOTE = """:: Number of observations - 20,190 Number of variables - 10 Variable name definitions:: mdvis - Number of outpatient visits to an MD lncoins - ln(coinsurance + 1), 0 <= coninsurance <= 100 idp - 1 if individual deductible plan, 0 otherwise lpi - ln(max(1, annual participation incentive payment)) fmde - 0 if idp = 1; ln(max(1, MDE/(0.01 coinsurance))) otherwise physlm - 1 if the person has a physical limitation disea - number of chronic diseases hlthg - 1 if self-rated health is good hlthf - 1 if self-rated health is fair hlthp - 1 if self-rated health is poor (Omitted category is excellent self-rated health) """ from numpy import recfromtxt, column_stack, array from statsmodels.datasets import utils as du from os.path import dirname, abspath PATH = '%s/%s' % (dirname(abspath(__file__)), 'randhie.csv') def load(): """ Loads the RAND HIE data and returns a Dataset class. ---------- endog - response variable, mdvis exog - design Returns Load instance: a class of the data with array attrbutes 'endog' and 'exog' """ data = _get_data() return du.process_recarray(data, endog_idx=0, dtype=float) def load_pandas(): """ Loads the RAND HIE data and returns a Dataset class. ---------- endog - response variable, mdvis exog - design Returns Load instance: a class of the data with array attrbutes 'endog' and 'exog' """ from pandas import read_csv data = read_csv(PATH) return du.process_recarray_pandas(data, endog_idx=0) def _get_data(): with open(PATH, "rb") as f: data = recfromtxt(f, delimiter=",", names=True, dtype=float) return data
bsd-3-clause
pr-omethe-us/PyKED
pyked/chemked.py
1
44185
""" Main ChemKED module """ # Standard libraries from os.path import exists from collections import namedtuple from warnings import warn from copy import deepcopy import xml.etree.ElementTree as etree import xml.dom.minidom as minidom from itertools import chain import numpy as np # Local imports from .validation import schema, OurValidator, yaml, Q_ from .converters import datagroup_properties, ReSpecTh_to_ChemKED VolumeHistory = namedtuple('VolumeHistory', ['time', 'volume']) VolumeHistory.__doc__ = 'Time history of the volume in an RCM experiment. Deprecated, to be removed after PyKED 0.4' # noqa: E501 VolumeHistory.time.__doc__ = '(`~numpy.ndarray`): the time during the experiment' VolumeHistory.volume.__doc__ = '(`~numpy.ndarray`): the volume during the experiment' TimeHistory = namedtuple('TimeHistory', ['time', 'quantity', 'type']) TimeHistory.__doc__ = 'Time history of the quantity in an RCM experiment' TimeHistory.time.__doc__ = '(`~numpy.ndarray`): the time during the experiment' TimeHistory.quantity.__doc__ = '(`~numpy.ndarray`): the quantity of interest during the experiment' TimeHistory.type.__doc__ = """\ (`str`): the type of time history represented. Possible options are: * volume * temperature * pressure * piston position * light emission * OH emission * absorption """ RCMData = namedtuple( 'RCMData', ['compressed_pressure', 'compressed_temperature', 'compression_time', 'stroke', 'clearance', 'compression_ratio'] ) RCMData.__doc__ = 'Data fields specific to rapid compression machine experiments' RCMData.compressed_pressure.__doc__ = '(`~pint.Quantity`) The pressure at the end of compression' RCMData.compressed_temperature.__doc__ = """\ (`~pint.Quantity`) The temperature at the end of compression""" RCMData.compression_time.__doc__ = '(`~pint.Quantity`) The duration of the compression stroke' RCMData.stroke.__doc__ = '(`~pint.Quantity`) The length of the stroke' RCMData.clearance.__doc__ = """\ (`~pint.Quantity`) The clearance between piston face and end wall at the end of compression""" RCMData.compression_ratio.__doc__ = '(`~pint.Quantity`) The volumetric compression ratio' Reference = namedtuple('Reference', ['volume', 'journal', 'doi', 'authors', 'detail', 'year', 'pages']) Reference.__doc__ = 'Information about the article or report where the data can be found' Reference.volume.__doc__ = '(`str`) The journal volume' Reference.journal.__doc__ = '(`str`) The name of the journal' Reference.doi.__doc__ = '(`str`) The Digital Object Identifier of the article' Reference.authors.__doc__ = '(`list`) The list of authors of the article' Reference.detail.__doc__ = '(`str`) Detail about where the data can be found in the article' Reference.year.__doc__ = '(`str`) The year the article was published' Reference.pages.__doc__ = '(`str`) The pages in the journal where the article was published' Apparatus = namedtuple('Apparatus', ['kind', 'institution', 'facility']) Apparatus.__doc__ = 'Information about the experimental apparatus used to generate the data' Apparatus.kind.__doc__ = '(`str`) The kind of experimental apparatus' Apparatus.institution.__doc__ = '(`str`) The institution where the experiment is located' Apparatus.facility.__doc__ = '(`str`) The particular experimental facility at the location' Composition = namedtuple('Composition', 'species_name InChI SMILES atomic_composition amount') Composition.__doc__ = 'Detail of the initial composition of the mixture for the experiment' Composition.species_name.__doc__ = '(`str`) The name of the species' Composition.InChI.__doc__ = '(`str`) The InChI identifier for the species' Composition.SMILES.__doc__ = '(`str`) The SMILES identifier for the species' Composition.atomic_composition.__doc__ = '(`dict`) The atomic composition of the species' Composition.amount.__doc__ = '(`~pint.Quantity`) The amount of this species' class ChemKED(object): """Main ChemKED class. The ChemKED class stores information about the contents of a ChemKED database file. It stores each datapoint associated with the database and provides access the the reference information, versions, and file author. Arguments: yaml_file (`str`, optional): The filename of the YAML database in ChemKED format. dict_input (`dict`, optional): A dictionary with the parsed ouput of YAML file in ChemKED format. skip_validation (`bool`, optional): Whether validation of the ChemKED should be done. Must be supplied as a keyword-argument. Attributes: datapoints (`list`): List of `DataPoint` objects storing each datapoint in the database. reference (`~collections.namedtuple`): Attributes include ``volume``, ``journal``, ``doi``, ``authors``, ``detail``, ``year``, and ``pages`` describing the reference from which the datapoints are derived. apparatus (`~collections.namedtuple`): Attributes include ``kind`` of experimental apparatus, and the ``institution`` and ``facility`` where the experimental apparatus is located. chemked_version (`str`): Version of the ChemKED database schema used in this file. experiment_type (`str`): Type of exeperimental data contained in this database. file_author (`dict`): Information about the author of the ChemKED database file. file_version (`str`): Version of the ChemKED database file. _properties (`dict`): Original dictionary read from ChemKED database file, meant for internal use. """ def __init__(self, yaml_file=None, dict_input=None, *, skip_validation=False): if yaml_file is not None: with open(yaml_file, 'r') as f: self._properties = yaml.safe_load(f) elif dict_input is not None: self._properties = dict_input else: raise NameError("ChemKED needs either a YAML filename or dictionary as input.") if not skip_validation: self.validate_yaml(self._properties) self.datapoints = [] for point in self._properties['datapoints']: self.datapoints.append(DataPoint(point)) self.reference = Reference( volume=self._properties['reference'].get('volume'), journal=self._properties['reference'].get('journal'), doi=self._properties['reference'].get('doi'), authors=self._properties['reference'].get('authors'), detail=self._properties['reference'].get('detail'), year=self._properties['reference'].get('year'), pages=self._properties['reference'].get('pages'), ) self.apparatus = Apparatus( kind=self._properties['apparatus'].get('kind'), institution=self._properties['apparatus'].get('institution'), facility=self._properties['apparatus'].get('facility'), ) for prop in ['chemked-version', 'experiment-type', 'file-authors', 'file-version']: setattr(self, prop.replace('-', '_'), self._properties[prop]) @classmethod def from_respecth(cls, filename_xml, file_author='', file_author_orcid=''): """Construct a ChemKED instance directly from a ReSpecTh file. Arguments: filename_xml (`str`): Filename of the ReSpecTh-formatted XML file to be imported file_author (`str`, optional): File author to be added to the list generated from the XML file file_author_orcid (`str`, optional): ORCID for the file author being added to the list of file authors Returns: `ChemKED`: Instance of the `ChemKED` class containing the data in ``filename_xml``. Examples: >>> ck = ChemKED.from_respecth('respecth_file.xml') >>> ck = ChemKED.from_respecth('respecth_file.xml', file_author='Bryan W. Weber') >>> ck = ChemKED.from_respecth('respecth_file.xml', file_author='Bryan W. Weber', file_author_orcid='0000-0000-0000-0000') """ properties = ReSpecTh_to_ChemKED(filename_xml, file_author, file_author_orcid, validate=False) return cls(dict_input=properties) def validate_yaml(self, properties): """Validate the parsed YAML file for adherance to the ChemKED format. Arguments: properties (`dict`): Dictionary created from the parsed YAML file Raises: `ValueError`: If the YAML file cannot be validated, a `ValueError` is raised whose string contains the errors that are present. """ validator = OurValidator(schema) if not validator.validate(properties): for key, value in validator.errors.items(): if any(['unallowed value' in v for v in value]): print(('{key} has an illegal value. Allowed values are {values} and are case ' 'sensitive.').format(key=key, values=schema[key]['allowed'])) raise ValueError(validator.errors) def get_dataframe(self, output_columns=None): """Get a Pandas DataFrame of the datapoints in this instance. Arguments: output_columns (`list`, optional): List of strings specifying the columns to include in the output DataFrame. The default is `None`, which outputs all of the columns. Options include (not case sensitive): * ``Temperature`` * ``Pressure`` * ``Ignition Delay`` * ``Composition`` * ``Equivalence Ratio`` * ``Reference`` * ``Apparatus`` * ``Experiment Type`` * ``File Author`` * ``File Version`` * ``ChemKED Version`` In addition, specific fields from the ``Reference`` and ``Apparatus`` attributes can be included by specifying the name after a colon. These options are: * ``Reference:Volume`` * ``Reference:Journal`` * ``Reference:DOI`` * ``Reference:Authors`` * ``Reference:Detail`` * ``Reference:Year`` * ``Reference:Pages`` * ``Apparatus:Kind`` * ``Apparatus:Facility`` * ``Apparatus:Institution`` Only the first author is printed when ``Reference`` or ``Reference:Authors`` is selected because the whole author list may be quite long. Note: If the Composition is selected as an output type, the composition specified in the `DataPoint` is used. No attempt is made to convert to a consistent basis; mole fractions will remain mole fractions, mass fractions will remain mass fractions, and mole percent will remain mole percent. Therefore, it is possible to end up with more than one type of composition specification in a given column. However, if the composition is included in the resulting dataframe, the type of each composition will be specified by the "Kind" field in each row. Examples: >>> df = ChemKED(yaml_file).get_dataframe() >>> df = ChemKED(yaml_file).get_dataframe(['Temperature', 'Ignition Delay']) Returns: `~pandas.DataFrame`: Contains the information regarding each point in the ``datapoints`` attribute """ import pandas as pd valid_labels = [a.replace('_', ' ') for a in self.__dict__ if not (a.startswith('__') or a.startswith('_')) ] valid_labels.remove('datapoints') valid_labels.extend( ['composition', 'ignition delay', 'temperature', 'pressure', 'equivalence ratio'] ) ref_index = valid_labels.index('reference') valid_labels[ref_index:ref_index + 1] = ['reference:' + a for a in Reference._fields] app_index = valid_labels.index('apparatus') valid_labels[app_index:app_index + 1] = ['apparatus:' + a for a in Apparatus._fields] species_list = list(set(chain(*[list(d.composition.keys()) for d in self.datapoints]))) if output_columns is None or len(output_columns) == 0: col_labels = valid_labels comp_index = col_labels.index('composition') col_labels[comp_index:comp_index + 1] = species_list + ['Composition:Kind'] else: output_columns = [a.lower() for a in output_columns] col_labels = [] for col in output_columns: if col in valid_labels or col in ['reference', 'apparatus']: col_labels.append(col) else: raise ValueError('{} is not a valid output column choice'.format(col)) if 'composition' in col_labels: comp_index = col_labels.index('composition') col_labels[comp_index:comp_index + 1] = species_list + ['Composition:Kind'] if 'reference' in col_labels: ref_index = col_labels.index('reference') col_labels[ref_index:ref_index + 1] = ['reference:' + a for a in Reference._fields] if 'apparatus' in col_labels: app_index = col_labels.index('apparatus') col_labels[app_index:app_index + 1] = ['apparatus:' + a for a in Apparatus._fields] data = [] for d in self.datapoints: row = [] d_species = list(d.composition.keys()) for col in col_labels: if col in species_list: if col in d_species: row.append(d.composition[col].amount) else: row.append(Q_(0.0, 'dimensionless')) elif 'reference' in col or 'apparatus' in col: split_col = col.split(':') if split_col[1] == 'authors': row.append(getattr(getattr(self, split_col[0]), split_col[1])[0]['name']) else: row.append(getattr(getattr(self, split_col[0]), split_col[1])) elif col in ['temperature', 'pressure', 'ignition delay', 'equivalence ratio']: row.append(getattr(d, col.replace(' ', '_'))) elif col == 'file authors': row.append(getattr(self, col.replace(' ', '_'))[0]['name']) elif col == 'Composition:Kind': row.append(d.composition_type) else: row.append(getattr(self, col.replace(' ', '_'))) data.append(row) col_labels = [a.title() for a in col_labels] columns = pd.Index(col_labels) return pd.DataFrame(data=data, columns=columns) def write_file(self, filename, *, overwrite=False): """Write new ChemKED YAML file based on object. Arguments: filename (`str`): Filename for target YAML file overwrite (`bool`, optional): Whether to overwrite file with given name if present. Must be supplied as a keyword-argument. Raises: `NameError`: If ``filename`` is already present, and ``overwrite`` is not ``True``. Example: >>> dataset = ChemKED(yaml_file) >>> dataset.write_file(new_yaml_file) """ # Ensure file isn't already present if exists(filename) and not overwrite: raise OSError(filename + ' already present. Specify "overwrite=True" ' 'to overwrite, or rename.' ) with open(filename, 'w') as yaml_file: yaml.dump(self._properties, yaml_file) def convert_to_ReSpecTh(self, filename): """Convert ChemKED record to ReSpecTh XML file. This converter uses common information in a ChemKED file to generate a ReSpecTh XML file. Note that some information may be lost, as ChemKED stores some additional attributes. Arguments: filename (`str`): Filename for output ReSpecTh XML file. Example: >>> dataset = ChemKED(yaml_file) >>> dataset.convert_to_ReSpecTh(xml_file) """ root = etree.Element('experiment') file_author = etree.SubElement(root, 'fileAuthor') file_author.text = self.file_authors[0]['name'] # right now ChemKED just uses an integer file version file_version = etree.SubElement(root, 'fileVersion') major_version = etree.SubElement(file_version, 'major') major_version.text = str(self.file_version) minor_version = etree.SubElement(file_version, 'minor') minor_version.text = '0' respecth_version = etree.SubElement(root, 'ReSpecThVersion') major_version = etree.SubElement(respecth_version, 'major') major_version.text = '1' minor_version = etree.SubElement(respecth_version, 'minor') minor_version.text = '0' # Only ignition delay currently supported exp = etree.SubElement(root, 'experimentType') if self.experiment_type == 'ignition delay': exp.text = 'Ignition delay measurement' else: raise NotImplementedError('Only ignition delay type supported for conversion.') reference = etree.SubElement(root, 'bibliographyLink') citation = '' for author in self.reference.authors: citation += author['name'] + ', ' citation += (self.reference.journal + ' (' + str(self.reference.year) + ') ' + str(self.reference.volume) + ':' + self.reference.pages + '. ' + self.reference.detail ) reference.set('preferredKey', citation) reference.set('doi', self.reference.doi) apparatus = etree.SubElement(root, 'apparatus') kind = etree.SubElement(apparatus, 'kind') kind.text = self.apparatus.kind common_properties = etree.SubElement(root, 'commonProperties') # ChemKED objects have no common properties once loaded. Check for properties # among datapoints that tend to be common common = [] composition = self.datapoints[0].composition # Composition type *has* to be the same composition_type = self.datapoints[0].composition_type if not all(dp.composition_type == composition_type for dp in self.datapoints): raise NotImplementedError('Error: ReSpecTh does not support varying composition ' 'type among datapoints.' ) if all([composition == dp.composition for dp in self.datapoints]): # initial composition is common common.append('composition') prop = etree.SubElement(common_properties, 'property') prop.set('name', 'initial composition') for species_name, species in composition.items(): component = etree.SubElement(prop, 'component') species_link = etree.SubElement(component, 'speciesLink') species_link.set('preferredKey', species_name) if species.InChI is not None: species_link.set('InChI', species.InChI) amount = etree.SubElement(component, 'amount') amount.set('units', composition_type) amount.text = str(species.amount.magnitude) # If multiple datapoints present, then find any common properties. If only # one datapoint, then composition should be the only "common" property. if len(self.datapoints) > 1: for prop_name in datagroup_properties: attribute = prop_name.replace(' ', '_') quantities = [getattr(dp, attribute, False) for dp in self.datapoints] # All quantities must have the property in question and all the # values must be equal if all(quantities) and quantities.count(quantities[0]) == len(quantities): common.append(prop_name) prop = etree.SubElement(common_properties, 'property') prop.set('description', '') prop.set('name', prop_name) prop.set('units', str(quantities[0].units)) value = etree.SubElement(prop, 'value') value.text = str(quantities[0].magnitude) # Ignition delay can't be common, unless only a single datapoint. datagroup = etree.SubElement(root, 'dataGroup') datagroup.set('id', 'dg1') datagroup_link = etree.SubElement(datagroup, 'dataGroupLink') datagroup_link.set('dataGroupID', '') datagroup_link.set('dataPointID', '') property_idx = {} labels = {'temperature': 'T', 'pressure': 'P', 'ignition delay': 'tau', 'pressure rise': 'dP/dt', } for prop_name in datagroup_properties: attribute = prop_name.replace(' ', '_') # This can't be hasattr because properties are set to the value None # if no value is specified in the file, so the attribute always exists prop_indices = [i for i, dp in enumerate(self.datapoints) if getattr(dp, attribute) is not None ] if prop_name in common or not prop_indices: continue prop = etree.SubElement(datagroup, 'property') prop.set('description', '') prop.set('name', prop_name) units = str(getattr(self.datapoints[prop_indices[0]], attribute).units) prop.set('units', units) idx = 'x{}'.format(len(property_idx) + 1) property_idx[idx] = {'name': prop_name, 'units': units} prop.set('id', idx) prop.set('label', labels[prop_name]) # Need to handle datapoints with possibly different species in the initial composition if 'composition' not in common: for dp in self.datapoints: for species in dp.composition.values(): # Only add new property for species not already considered has_spec = any([species.species_name in d.values() for d in property_idx.values() ]) if not has_spec: prop = etree.SubElement(datagroup, 'property') prop.set('description', '') idx = 'x{}'.format(len(property_idx) + 1) property_idx[idx] = {'name': species.species_name} prop.set('id', idx) prop.set('label', '[' + species.species_name + ']') prop.set('name', 'composition') prop.set('units', self.datapoints[0].composition_type) species_link = etree.SubElement(prop, 'speciesLink') species_link.set('preferredKey', species.species_name) if species.InChI is not None: species_link.set('InChI', species.InChI) for dp in self.datapoints: datapoint = etree.SubElement(datagroup, 'dataPoint') for idx, val in property_idx.items(): # handle regular properties a bit differently than composition if val['name'] in datagroup_properties: value = etree.SubElement(datapoint, idx) quantity = getattr(dp, val['name'].replace(' ', '_')).to(val['units']) value.text = str(quantity.magnitude) else: # composition for item in dp.composition.values(): if item.species_name == val['name']: value = etree.SubElement(datapoint, idx) value.text = str(item.amount.magnitude) # See https://stackoverflow.com/a/16097112 for the None.__ne__ history_types = ['volume_history', 'temperature_history', 'pressure_history', 'piston_position_history', 'light_emission_history', 'OH_emission_history', 'absorption_history'] time_histories = [getattr(dp, p) for dp in self.datapoints for p in history_types] time_histories = list(filter(None.__ne__, time_histories)) if len(self.datapoints) > 1 and len(time_histories) > 1: raise NotImplementedError('Error: ReSpecTh files do not support multiple datapoints ' 'with a time history.') elif len(time_histories) > 0: for dg_idx, hist in enumerate(time_histories): if hist.type not in ['volume', 'temperature', 'pressure']: warn('The time-history type {} is not supported by ReSpecTh for ' 'ignition delay experiments'.format(hist.type)) continue datagroup = etree.SubElement(root, 'dataGroup') datagroup.set('id', 'dg{}'.format(dg_idx)) datagroup_link = etree.SubElement(datagroup, 'dataGroupLink') datagroup_link.set('dataGroupID', '') datagroup_link.set('dataPointID', '') # Time history has two properties: time and quantity. prop = etree.SubElement(datagroup, 'property') prop.set('description', '') prop.set('name', 'time') prop.set('units', str(hist.time.units)) time_idx = 'x{}'.format(len(property_idx) + 1) property_idx[time_idx] = {'name': 'time'} prop.set('id', time_idx) prop.set('label', 't') prop = etree.SubElement(datagroup, 'property') prop.set('description', '') prop.set('name', hist.type) prop.set('units', str(hist.quantity.units)) quant_idx = 'x{}'.format(len(property_idx) + 1) property_idx[quant_idx] = {'name': hist.type} prop.set('id', quant_idx) prop.set('label', 'V') for time, quantity in zip(hist.time, hist.quantity): datapoint = etree.SubElement(datagroup, 'dataPoint') value = etree.SubElement(datapoint, time_idx) value.text = str(time.magnitude) value = etree.SubElement(datapoint, quant_idx) value.text = str(quantity.magnitude) ign_types = [getattr(dp, 'ignition_type', False) for dp in self.datapoints] # All datapoints must have the same ignition target and type if all(ign_types) and ign_types.count(ign_types[0]) == len(ign_types): # In ReSpecTh files all datapoints must share ignition type ignition = etree.SubElement(root, 'ignitionType') if ign_types[0]['target'] in ['pressure', 'temperature']: ignition.set('target', ign_types[0]['target'][0].upper()) else: # options left are species ignition.set('target', self.datapoints[0].ignition_type['target']) if ign_types[0]['type'] == 'd/dt max extrapolated': ignition.set('type', 'baseline max intercept from d/dt') else: ignition.set('type', self.datapoints[0].ignition_type['type']) else: raise NotImplementedError('Different ignition targets or types for multiple datapoints ' 'are not supported in ReSpecTh.') et = etree.ElementTree(root) et.write(filename, encoding='utf-8', xml_declaration=True) # now do a "pretty" rewrite xml = minidom.parse(filename) xml_string = xml.toprettyxml(indent=' ') with open(filename, 'w') as f: f.write(xml_string) print('Converted to ' + filename) class DataPoint(object): """Class for a single datapoint. The `DataPoint` class stores the information associated with a single data point in the dataset parsed from the `ChemKED` YAML input. Arguments: properties (`dict`): Dictionary adhering to the ChemKED format for ``datapoints`` Attributes: composition (`list`): List of dictionaries representing the species and their quantities ignition_delay (pint.Quantity): The ignition delay of the experiment temperature (pint.Quantity): The temperature of the experiment pressure (pint.Quantity): The pressure of the experiment pressure_rise (pint.Quantity, optional): The amount of pressure rise during the induction period of a shock tube experiment. compression_time (pint.Quantity, optional): The compression time for an RCM experiment. compressed_pressure (pint.Quantity, optional): The pressure at the end of compression for an RCM experiment. compressed_temperature (pint.Quantity, optional): The temperature at the end of compression for an RCM experiment. first_stage_ignition_delay (pint.Quantity, optional): The first stage ignition delay of the experiment. compression_time (pint.Quantity, optional): The compression time for an RCM experiment. ignition_type (`dict`): Dictionary with the ignition target and type. volume_history (`~collections.namedtuple`, optional): The volume history of the reactor during an RCM experiment. pressure_history (`~collections.namedtuple`, optional): The pressure history of the reactor during an experiment. temperature_history (`~collections.namedtuple`, optional): The temperature history of the reactor during an experiment. piston_position_history (`~collections.namedtuple`, optional): The piston position history of the reactor during an RCM experiment. light_emission_history (`~collections.namedtuple`, optional): The light emission history of the reactor during an experiment. OH_emission_history (`~collections.namedtuple`, optional): The OH emission history of the reactor during an experiment. absorption_history (`~collections.namedtuple`, optional): The absorption history of the reactor during an experiment. """ value_unit_props = [ 'ignition-delay', 'first-stage-ignition-delay', 'temperature', 'pressure', 'pressure-rise', ] rcm_data_props = [ 'compressed-pressure', 'compressed-temperature', 'compression-time', 'stroke', 'clearance', 'compression-ratio' ] def __init__(self, properties): for prop in self.value_unit_props: if prop in properties: quant = self.process_quantity(properties[prop]) setattr(self, prop.replace('-', '_'), quant) else: setattr(self, prop.replace('-', '_'), None) if 'rcm-data' in properties: orig_rcm_data = properties['rcm-data'] rcm_props = {} for prop in self.rcm_data_props: if prop in orig_rcm_data: quant = self.process_quantity(orig_rcm_data[prop]) rcm_props[prop.replace('-', '_')] = quant else: rcm_props[prop.replace('-', '_')] = None self.rcm_data = RCMData(**rcm_props) else: self.rcm_data = None self.composition_type = properties['composition']['kind'] composition = {} for species in properties['composition']['species']: species_name = species['species-name'] amount = self.process_quantity(species['amount']) InChI = species.get('InChI') SMILES = species.get('SMILES') atomic_composition = species.get('atomic-composition') composition[species_name] = Composition( species_name=species_name, InChI=InChI, SMILES=SMILES, atomic_composition=atomic_composition, amount=amount) setattr(self, 'composition', composition) self.equivalence_ratio = properties.get('equivalence-ratio') self.ignition_type = deepcopy(properties.get('ignition-type')) if 'time-histories' in properties and 'volume-history' in properties: raise TypeError('time-histories and volume-history are mutually exclusive') if 'time-histories' in properties: for hist in properties['time-histories']: if hasattr(self, '{}_history'.format(hist['type'].replace(' ', '_'))): raise ValueError('Each history type may only be specified once. {} was ' 'specified multiple times'.format(hist['type'])) time_col = hist['time']['column'] time_units = hist['time']['units'] quant_col = hist['quantity']['column'] quant_units = hist['quantity']['units'] if isinstance(hist['values'], list): values = np.array(hist['values']) else: # Load the values from a file values = np.genfromtxt(hist['values']['filename'], delimiter=',') time_history = TimeHistory( time=Q_(values[:, time_col], time_units), quantity=Q_(values[:, quant_col], quant_units), type=hist['type'], ) setattr(self, '{}_history'.format(hist['type'].replace(' ', '_')), time_history) if 'volume-history' in properties: warn('The volume-history field should be replaced by time-histories. ' 'volume-history will be removed after PyKED 0.4', DeprecationWarning) time_col = properties['volume-history']['time']['column'] time_units = properties['volume-history']['time']['units'] volume_col = properties['volume-history']['volume']['column'] volume_units = properties['volume-history']['volume']['units'] values = np.array(properties['volume-history']['values']) self.volume_history = VolumeHistory( time=Q_(values[:, time_col], time_units), volume=Q_(values[:, volume_col], volume_units), ) history_types = ['volume', 'temperature', 'pressure', 'piston_position', 'light_emission', 'OH_emission', 'absorption'] for h in history_types: if not hasattr(self, '{}_history'.format(h)): setattr(self, '{}_history'.format(h), None) def process_quantity(self, properties): """Process the uncertainty information from a given quantity and return it """ quant = Q_(properties[0]) if len(properties) > 1: unc = properties[1] uncertainty = unc.get('uncertainty', False) upper_uncertainty = unc.get('upper-uncertainty', False) lower_uncertainty = unc.get('lower-uncertainty', False) uncertainty_type = unc.get('uncertainty-type') if uncertainty_type == 'relative': if uncertainty: quant = quant.plus_minus(float(uncertainty), relative=True) elif upper_uncertainty and lower_uncertainty: warn('Asymmetric uncertainties are not supported. The ' 'maximum of lower-uncertainty and upper-uncertainty ' 'has been used as the symmetric uncertainty.') uncertainty = max(float(upper_uncertainty), float(lower_uncertainty)) quant = quant.plus_minus(uncertainty, relative=True) else: raise ValueError('Either "uncertainty" or "upper-uncertainty" and ' '"lower-uncertainty" need to be specified.') elif uncertainty_type == 'absolute': if uncertainty: uncertainty = Q_(uncertainty) quant = quant.plus_minus(uncertainty.to(quant.units).magnitude) elif upper_uncertainty and lower_uncertainty: warn('Asymmetric uncertainties are not supported. The ' 'maximum of lower-uncertainty and upper-uncertainty ' 'has been used as the symmetric uncertainty.') uncertainty = max(Q_(upper_uncertainty), Q_(lower_uncertainty)) quant = quant.plus_minus(uncertainty.to(quant.units).magnitude) else: raise ValueError('Either "uncertainty" or "upper-uncertainty" and ' '"lower-uncertainty" need to be specified.') else: raise ValueError('uncertainty-type must be one of "absolute" or "relative"') return quant def get_cantera_composition_string(self, species_conversion=None): """Get the composition in a string format suitable for input to Cantera. Returns a formatted string no matter the type of composition. As such, this method is not recommended for end users; instead, prefer the `get_cantera_mole_fraction` or `get_cantera_mass_fraction` methods. Arguments: species_conversion (`dict`, optional): Mapping of species identifier to a species name. This argument should be supplied when the name of the species in the ChemKED YAML file does not match the name of the same species in a chemical kinetic mechanism. The species identifier (the key of the mapping) can be the name, InChI, or SMILES provided in the ChemKED file, while the value associated with a key should be the desired name in the Cantera format output string. Returns: `str`: String in the ``SPEC:AMT, SPEC:AMT`` format Raises: `ValueError`: If the composition type of the `DataPoint` is not one of ``'mass fraction'``, ``'mole fraction'``, or ``'mole percent'`` """ if self.composition_type in ['mole fraction', 'mass fraction']: factor = 1.0 elif self.composition_type == 'mole percent': factor = 100.0 else: raise ValueError('Unknown composition type: {}'.format(self.composition_type)) if species_conversion is None: comps = ['{!s}:{:.4e}'.format(c.species_name, c.amount.magnitude/factor) for c in self.composition.values()] else: comps = [] for c in self.composition.values(): amount = c.amount.magnitude/factor idents = [getattr(c, s, False) for s in ['species_name', 'InChI', 'SMILES']] present = [i in species_conversion for i in idents] if not any(present): comps.append('{!s}:{:.4e}'.format(c.species_name, amount)) else: if len([i for i in present if i]) > 1: raise ValueError('More than one conversion present for species {}'.format( c.species_name)) ident = idents[present.index(True)] species_replacement_name = species_conversion.pop(ident) comps.append('{!s}:{:.4e}'.format(species_replacement_name, amount)) if len(species_conversion) > 0: raise ValueError('Unknown species in conversion: {}'.format(species_conversion)) return ', '.join(comps) def get_cantera_mole_fraction(self, species_conversion=None): """Get the mole fractions in a string format suitable for input to Cantera. Arguments: species_conversion (`dict`, optional): Mapping of species identifier to a species name. This argument should be supplied when the name of the species in the ChemKED YAML file does not match the name of the same species in a chemical kinetic mechanism. The species identifier (the key of the mapping) can be the name, InChI, or SMILES provided in the ChemKED file, while the value associated with a key should be the desired name in the Cantera format output string. Returns: `str`: String of mole fractions in the ``SPEC:AMT, SPEC:AMT`` format Raises: `ValueError`: If the composition type is ``'mass fraction'``, the conversion cannot be done because no molecular weight information is known Examples: >>> dp = DataPoint(properties) >>> dp.get_cantera_mole_fraction() 'H2:4.4400e-03, O2:5.5600e-03, Ar:9.9000e-01' >>> species_conversion = {'H2': 'h2', 'O2': 'o2'} >>> dp.get_cantera_mole_fraction(species_conversion) 'h2:4.4400e-03, o2:5.5600e-03, Ar:9.9000e-01' >>> species_conversion = {'1S/H2/h1H': 'h2', '1S/O2/c1-2': 'o2'} >>> dp.get_cantera_mole_fraction(species_conversion) 'h2:4.4400e-03, o2:5.5600e-03, Ar:9.9000e-01' """ if self.composition_type == 'mass fraction': raise ValueError('Cannot get mole fractions from the given composition.\n' '{}'.format(self.composition)) else: return self.get_cantera_composition_string(species_conversion) def get_cantera_mass_fraction(self, species_conversion=None): """Get the mass fractions in a string format suitable for input to Cantera. Arguments: species_conversion (`dict`, optional): Mapping of species identifier to a species name. This argument should be supplied when the name of the species in the ChemKED YAML file does not match the name of the same species in a chemical kinetic mechanism. The species identifier (the key of the mapping) can be the name, InChI, or SMILES provided in the ChemKED file, while the value associated with a key should be the desired name in the Cantera format output string. Returns: `str`: String of mass fractions in the ``SPEC:AMT, SPEC:AMT`` format Raises: `ValueError`: If the composition type is ``'mole fraction'`` or ``'mole percent'``, the conversion cannot be done because no molecular weight information is known Examples: >>> dp = DataPoint(properties) >>> dp.get_cantera_mass_fraction() 'H2:2.2525e-04, O2:4.4775e-03, Ar:9.9530e-01' >>> species_conversion = {'H2': 'h2', 'O2': 'o2'} >>> dp.get_cantera_mass_fraction(species_conversion) 'h2:2.2525e-04, o2:4.4775e-03, Ar:9.9530e-01' >>> species_conversion = {'1S/H2/h1H': 'h2', '1S/O2/c1-2': 'o2'} >>> dp.get_cantera_mass_fraction(species_conversion) 'h2:2.2525e-04, o2:4.4775e-03, Ar:9.9530e-01' """ if self.composition_type in ['mole fraction', 'mole percent']: raise ValueError('Cannot get mass fractions from the given composition.\n' '{}'.format(self.composition) ) else: return self.get_cantera_composition_string(species_conversion)
bsd-3-clause
chen0031/Dato-Core
src/unity/python/graphlab/test/test_sarray_sketch.py
13
11788
''' Copyright (C) 2015 Dato, Inc. All rights reserved. This software may be modified and distributed under the terms of the BSD license. See the DATO-PYTHON-LICENSE file for details. ''' # from nose import with_setup # -*- coding: utf-8 -*- from graphlab.data_structures.sarray import SArray import pandas as pd import numpy as np import unittest import random import copy import os import math import shutil import array import util import time import itertools ####################################################### # Metrics tracking tests are in test_usage_metrics.py # ####################################################### class SArraySketchTest(unittest.TestCase): def setUp(self): pass def __validate_sketch_result(self, sketch, sa, delta = 1E-7): df = pd.DataFrame(list(sa.dropna())) pds = pd.Series(list(sa.dropna())) if (sa.dtype() == int or sa.dtype() == float): if (len(sa) == 0): self.assertTrue(math.isnan(sketch.min())) self.assertTrue(math.isnan(sketch.min())) self.assertEquals(sketch.sum(), 0.0) self.assertEquals(sketch.mean(), 0.0) self.assertEquals(sketch.var(), 0.0) self.assertEquals(sketch.std(), 0.0) else: self.assertEquals(sketch.min(), sa.min()) self.assertEquals(sketch.max(), sa.max()) self.assertEquals(sketch.sum(), sa.sum()) self.assertAlmostEqual(sketch.mean(), sa.dropna().mean(), delta=delta) self.assertAlmostEqual(sketch.var(), sa.dropna().var(), delta=delta) self.assertAlmostEqual(sketch.std(), sa.dropna().std(), delta=delta) self.assertAlmostEqual(sketch.quantile(0.5), df.quantile(0.5)[0], delta=1) self.assertEqual(sketch.quantile(0), df.quantile(0)[0]) self.assertEqual(sketch.quantile(1), df.quantile(1)[0]) self.assertEqual(sketch.frequent_items(), SArray(pds).sketch_summary().frequent_items()) for item in pds.value_counts().index: self.assertEqual(sketch.frequency_count(item), pds.value_counts()[item]) self.assertAlmostEqual(sketch.num_unique(), len(sa.unique()), delta=3) else: with self.assertRaises(RuntimeError): sketch.quantile((0.5)) self.assertEqual(sketch.num_undefined(), sa.num_missing()) self.assertEqual(sketch.size(), len(sa)) self.assertEqual(sketch.sketch_ready(), True) self.assertEqual(sketch.num_elements_processed(), sketch.size()) def __validate_nested_sketch_result(self, sa): sketch = sa.sketch_summary() self.__validate_sketch_result(sketch, sa) # element length summary t = sketch.element_length_summary() len_sa = sa.dropna().item_length() self.__validate_sketch_result(t, len_sa) def test_sketch_int(self): int_data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, None] sa = SArray(data=int_data) self.__validate_sketch_result(sa.sketch_summary(), sa) def test_sketch_float(self): int_data = [1.2, 3,.4, 6.789, None] sa = SArray(data=int_data) self.__validate_sketch_result(sa.sketch_summary(), sa) def test_vector_sketch(self): vector_data = [[], [1,2], [3], [4,5,6,7], [8,9,10], None] sa = SArray(data=vector_data) sketch = sa.sketch_summary(); self.__validate_sketch_result(sketch, sa) self.__validate_sketch_result(sketch.element_length_summary(), sa.dropna().item_length()) flattened = list(itertools.chain.from_iterable(list(sa.dropna()))) self.__validate_sketch_result(sketch.element_summary(), SArray(flattened)) fi = sketch.frequent_items() self.assertEqual(len(fi), 5) self.assertEqual((fi['[1 2]']), 1) self.assertEqual((fi['[4 5 6 7]']), 1) # sub sketch with one key s = sa.sketch_summary(sub_sketch_keys = 1).element_sub_sketch(1) expected = sa.vector_slice(1) self.__validate_sketch_result(s, expected) # sub sketch with multiple keys keys = [1,3] s = sa.sketch_summary(sub_sketch_keys = keys).element_sub_sketch(keys) self.assertEqual(len(s), len(keys)) for key in keys: self.assertTrue(s.has_key(key)) expected = sa.vector_slice(key) self.__validate_sketch_result(s[key], expected) indexes = range(0,10) s = sa.sketch_summary(sub_sketch_keys = indexes).element_sub_sketch() self.assertEqual(len(s), len(indexes)) def test_list_sketch(self): list_data = [[], [1,2],[1,2], ['a', 'a', 'a', 'b'], [ 1 ,1 , 2], None] sa = SArray(list_data) self.__validate_nested_sketch_result(sa) sketch = sa.sketch_summary(); self.assertEqual(sketch.num_unique(), 4) element_summary = sketch.element_summary() another_rep = list(itertools.chain.from_iterable(list(sa.dropna()))) self.__validate_sketch_result(element_summary, SArray(another_rep, str)) fi = sketch.frequent_items() self.assertEqual(len(fi), 4) self.assertEqual((fi['[1,2]']), 2) self.assertEqual((fi['["a","a","a","b"]']), 1) def test_dict_sketch_int_value(self): dict_data = [{}, {'a':1, 'b':2}, {'a':1, 'b':2}, {'a':3, 'c':1}, {'a': 1, 'b': 2, 'c': 3}, None] sa = SArray(data=dict_data) self.__validate_nested_sketch_result(sa) sketch = sa.sketch_summary() self.assertEqual(sketch.num_unique(), 4) fi = sketch.frequent_items() self.assertEqual(len(fi), 4) self.assertEqual((fi['{"a":1, "b":2}']), 2) self.assertEqual((fi['{"a":3, "c":1}']), 1) # Get dict key sketch key_summary = sketch.dict_key_summary() another_rep = list(itertools.chain.from_iterable(list(sa.dict_keys().dropna()))) self.__validate_sketch_result(key_summary, SArray(another_rep)) # Get dict value sketch value_summary = sketch.dict_value_summary() another_rep = list(itertools.chain.from_iterable(list(sa.dict_values().dropna()))) self.__validate_sketch_result(value_summary, SArray(another_rep)) # sub sketch with one key s = sa.sketch_summary(sub_sketch_keys ='a').element_sub_sketch('a') expected = sa.unpack(column_name_prefix="")['a'] self.__validate_sketch_result(s, expected) s = sa.sketch_summary(sub_sketch_keys ='Nonexist').element_sub_sketch('Nonexist') self.assertEqual(s.num_undefined(), len(sa)) # sub sketch with multiple keys keys = ['a', 'b'] s = sa.sketch_summary(sub_sketch_keys =keys).element_sub_sketch(keys) self.assertEqual(len(s), len(keys)) for key in keys: self.assertTrue(s.has_key(key)) expected = sa.unpack(column_name_prefix="")[key] self.__validate_sketch_result(s[key], expected) def test_dict_sketch_str_value(self): # Dict value sketch type should be auto inferred dict_data = [{'a':'b', 'b':'c'}, {'a':'b', 'b':'c'}, {'a':'d', 'b':'4'}, None] sa = SArray(data=dict_data) self.__validate_nested_sketch_result(sa) sketch = sa.sketch_summary() fi = sketch.frequent_items() self.assertEqual(len(fi), 2) self.assertEqual(fi['{"a":"b", "b":"c"}'], 2) self.assertEqual(fi['{"a":"d", "b":"4"}'], 1) # Get dict key sketch key_summary = sketch.dict_key_summary() another_rep = list(itertools.chain.from_iterable(list(sa.dict_keys().dropna()))) self.__validate_sketch_result(key_summary, SArray(another_rep)) # Get dict value sketch value_summary = sketch.dict_value_summary() another_rep = list(itertools.chain.from_iterable(list(sa.dict_values().dropna()))) self.__validate_sketch_result(value_summary, SArray(another_rep)) # sub sketch with one key s = sa.sketch_summary(sub_sketch_keys ='a').element_sub_sketch('a') expected = sa.unpack(column_name_prefix="")['a'] self.__validate_sketch_result(s, expected) s = sa.sketch_summary(sub_sketch_keys ='Nonexist').element_sub_sketch('Nonexist') self.assertEqual(s.num_undefined(), len(sa)) # sub sketch with multiple keys keys = ['a', 'b'] s = sa.sketch_summary(sub_sketch_keys =keys).element_sub_sketch(keys) self.assertEqual(len(s), len(keys)) for key in keys: self.assertTrue(s.has_key(key)) expected = sa.unpack(column_name_prefix="")[key] self.__validate_sketch_result(s[key], expected) # allow pass in empty keys, which will retrieve all keys s = sa.sketch_summary(sub_sketch_keys =keys).element_sub_sketch() self.assertEqual(len(s), len(keys)) for key in keys: self.assertTrue(s.has_key(key)) expected = sa.unpack(column_name_prefix="")[key] self.__validate_sketch_result(s[key], expected) def test_str_sketch(self): str_data = ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10", None] sa = SArray(data=str_data) sketch = sa.sketch_summary() with self.assertRaises(RuntimeError): sketch.min() with self.assertRaises(RuntimeError): sketch.max() with self.assertRaises(RuntimeError): sketch.sum() with self.assertRaises(RuntimeError): sketch.mean() with self.assertRaises(RuntimeError): sketch.var() with self.assertRaises(RuntimeError): sketch.std() self.assertAlmostEqual(sketch.num_unique(), 10, delta=3) self.assertEqual(sketch.num_undefined(), 1) self.assertEqual(sketch.size(), len(str_data)) with self.assertRaises(RuntimeError): sketch.quantile(0.5) self.assertEqual(sketch.frequency_count("1"), 1) self.assertEqual(sketch.frequency_count("2"), 1) t = sketch.frequent_items() self.assertEqual(len(t), 10) def test_empty_sketch(self): int_data = [] sa = SArray(data=int_data) sketch = sa.sketch_summary() self.assertTrue(math.isnan(sketch.min())) self.assertTrue(math.isnan(sketch.max())) self.assertEquals(sketch.sum(), 0) self.assertEqual(sketch.mean(), 0) self.assertEqual(sketch.var(), 0) self.assertEqual(sketch.std(), 0) self.assertEqual(sketch.num_unique(), 0) self.assertEqual(sketch.num_undefined(),0) self.assertEqual(sketch.size(), 0) with self.assertRaises(RuntimeError): sketch.quantile(0.5) t = sketch.frequent_items() self.assertEqual(len(t), 0) def test_background_sketch(self): dict_data = [{str(i):1} for i in range(1,10000)] sa = SArray(dict_data) s = sa.sketch_summary(background=True, sub_sketch_keys=[str(i ) for i in range(100,200)]) s.sketch_ready() # cannot check the actual value as it depends on the speed of processing t = s.element_sub_sketch([str(i) for i in range(100, 105)]) self.assertEqual(len(t), 5) def test_large_value_sketch(self): sa = SArray([1234567890 for i in range(100)]) sk = sa.sketch_summary(); self.__validate_sketch_result(sa.sketch_summary(), sa, 1E-5) def test_cancelation(self): sa = SArray(range(1,10000)) s = sa.sketch_summary(background=True) s.cancel() # this can be rather non-deterministic, so there is very little # real output validation that can be done...
agpl-3.0
tomlof/scikit-learn
examples/plot_digits_pipe.py
65
1652
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Pipelining: chaining a PCA and a logistic regression ========================================================= The PCA does an unsupervised dimensionality reduction, while the logistic regression does the prediction. We use a GridSearchCV to set the dimensionality of the PCA """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model, decomposition, datasets from sklearn.pipeline import Pipeline from sklearn.model_selection import GridSearchCV logistic = linear_model.LogisticRegression() pca = decomposition.PCA() pipe = Pipeline(steps=[('pca', pca), ('logistic', logistic)]) digits = datasets.load_digits() X_digits = digits.data y_digits = digits.target # Plot the PCA spectrum pca.fit(X_digits) plt.figure(1, figsize=(4, 3)) plt.clf() plt.axes([.2, .2, .7, .7]) plt.plot(pca.explained_variance_, linewidth=2) plt.axis('tight') plt.xlabel('n_components') plt.ylabel('explained_variance_') # Prediction n_components = [20, 40, 64] Cs = np.logspace(-4, 4, 3) # Parameters of pipelines can be set using ‘__’ separated parameter names: estimator = GridSearchCV(pipe, dict(pca__n_components=n_components, logistic__C=Cs)) estimator.fit(X_digits, y_digits) plt.axvline(estimator.best_estimator_.named_steps['pca'].n_components, linestyle=':', label='n_components chosen') plt.legend(prop=dict(size=12)) plt.show()
bsd-3-clause
mdhaber/scipy
scipy/optimize/_lsq/least_squares.py
12
39190
"""Generic interface for least-squares minimization.""" from warnings import warn import numpy as np from numpy.linalg import norm from scipy.sparse import issparse, csr_matrix from scipy.sparse.linalg import LinearOperator from scipy.optimize import _minpack, OptimizeResult from scipy.optimize._numdiff import approx_derivative, group_columns from .trf import trf from .dogbox import dogbox from .common import EPS, in_bounds, make_strictly_feasible TERMINATION_MESSAGES = { -1: "Improper input parameters status returned from `leastsq`", 0: "The maximum number of function evaluations is exceeded.", 1: "`gtol` termination condition is satisfied.", 2: "`ftol` termination condition is satisfied.", 3: "`xtol` termination condition is satisfied.", 4: "Both `ftol` and `xtol` termination conditions are satisfied." } FROM_MINPACK_TO_COMMON = { 0: -1, # Improper input parameters from MINPACK. 1: 2, 2: 3, 3: 4, 4: 1, 5: 0 # There are 6, 7, 8 for too small tolerance parameters, # but we guard against it by checking ftol, xtol, gtol beforehand. } def call_minpack(fun, x0, jac, ftol, xtol, gtol, max_nfev, x_scale, diff_step): n = x0.size if diff_step is None: epsfcn = EPS else: epsfcn = diff_step**2 # Compute MINPACK's `diag`, which is inverse of our `x_scale` and # ``x_scale='jac'`` corresponds to ``diag=None``. if isinstance(x_scale, str) and x_scale == 'jac': diag = None else: diag = 1 / x_scale full_output = True col_deriv = False factor = 100.0 if jac is None: if max_nfev is None: # n squared to account for Jacobian evaluations. max_nfev = 100 * n * (n + 1) x, info, status = _minpack._lmdif( fun, x0, (), full_output, ftol, xtol, gtol, max_nfev, epsfcn, factor, diag) else: if max_nfev is None: max_nfev = 100 * n x, info, status = _minpack._lmder( fun, jac, x0, (), full_output, col_deriv, ftol, xtol, gtol, max_nfev, factor, diag) f = info['fvec'] if callable(jac): J = jac(x) else: J = np.atleast_2d(approx_derivative(fun, x)) cost = 0.5 * np.dot(f, f) g = J.T.dot(f) g_norm = norm(g, ord=np.inf) nfev = info['nfev'] njev = info.get('njev', None) status = FROM_MINPACK_TO_COMMON[status] active_mask = np.zeros_like(x0, dtype=int) return OptimizeResult( x=x, cost=cost, fun=f, jac=J, grad=g, optimality=g_norm, active_mask=active_mask, nfev=nfev, njev=njev, status=status) def prepare_bounds(bounds, n): lb, ub = [np.asarray(b, dtype=float) for b in bounds] if lb.ndim == 0: lb = np.resize(lb, n) if ub.ndim == 0: ub = np.resize(ub, n) return lb, ub def check_tolerance(ftol, xtol, gtol, method): def check(tol, name): if tol is None: tol = 0 elif tol < EPS: warn("Setting `{}` below the machine epsilon ({:.2e}) effectively " "disables the corresponding termination condition." .format(name, EPS)) return tol ftol = check(ftol, "ftol") xtol = check(xtol, "xtol") gtol = check(gtol, "gtol") if method == "lm" and (ftol < EPS or xtol < EPS or gtol < EPS): raise ValueError("All tolerances must be higher than machine epsilon " "({:.2e}) for method 'lm'.".format(EPS)) elif ftol < EPS and xtol < EPS and gtol < EPS: raise ValueError("At least one of the tolerances must be higher than " "machine epsilon ({:.2e}).".format(EPS)) return ftol, xtol, gtol def check_x_scale(x_scale, x0): if isinstance(x_scale, str) and x_scale == 'jac': return x_scale try: x_scale = np.asarray(x_scale, dtype=float) valid = np.all(np.isfinite(x_scale)) and np.all(x_scale > 0) except (ValueError, TypeError): valid = False if not valid: raise ValueError("`x_scale` must be 'jac' or array_like with " "positive numbers.") if x_scale.ndim == 0: x_scale = np.resize(x_scale, x0.shape) if x_scale.shape != x0.shape: raise ValueError("Inconsistent shapes between `x_scale` and `x0`.") return x_scale def check_jac_sparsity(jac_sparsity, m, n): if jac_sparsity is None: return None if not issparse(jac_sparsity): jac_sparsity = np.atleast_2d(jac_sparsity) if jac_sparsity.shape != (m, n): raise ValueError("`jac_sparsity` has wrong shape.") return jac_sparsity, group_columns(jac_sparsity) # Loss functions. def huber(z, rho, cost_only): mask = z <= 1 rho[0, mask] = z[mask] rho[0, ~mask] = 2 * z[~mask]**0.5 - 1 if cost_only: return rho[1, mask] = 1 rho[1, ~mask] = z[~mask]**-0.5 rho[2, mask] = 0 rho[2, ~mask] = -0.5 * z[~mask]**-1.5 def soft_l1(z, rho, cost_only): t = 1 + z rho[0] = 2 * (t**0.5 - 1) if cost_only: return rho[1] = t**-0.5 rho[2] = -0.5 * t**-1.5 def cauchy(z, rho, cost_only): rho[0] = np.log1p(z) if cost_only: return t = 1 + z rho[1] = 1 / t rho[2] = -1 / t**2 def arctan(z, rho, cost_only): rho[0] = np.arctan(z) if cost_only: return t = 1 + z**2 rho[1] = 1 / t rho[2] = -2 * z / t**2 IMPLEMENTED_LOSSES = dict(linear=None, huber=huber, soft_l1=soft_l1, cauchy=cauchy, arctan=arctan) def construct_loss_function(m, loss, f_scale): if loss == 'linear': return None if not callable(loss): loss = IMPLEMENTED_LOSSES[loss] rho = np.empty((3, m)) def loss_function(f, cost_only=False): z = (f / f_scale) ** 2 loss(z, rho, cost_only=cost_only) if cost_only: return 0.5 * f_scale ** 2 * np.sum(rho[0]) rho[0] *= f_scale ** 2 rho[2] /= f_scale ** 2 return rho else: def loss_function(f, cost_only=False): z = (f / f_scale) ** 2 rho = loss(z) if cost_only: return 0.5 * f_scale ** 2 * np.sum(rho[0]) rho[0] *= f_scale ** 2 rho[2] /= f_scale ** 2 return rho return loss_function def least_squares( fun, x0, jac='2-point', bounds=(-np.inf, np.inf), method='trf', ftol=1e-8, xtol=1e-8, gtol=1e-8, x_scale=1.0, loss='linear', f_scale=1.0, diff_step=None, tr_solver=None, tr_options={}, jac_sparsity=None, max_nfev=None, verbose=0, args=(), kwargs={}): """Solve a nonlinear least-squares problem with bounds on the variables. Given the residuals f(x) (an m-D real function of n real variables) and the loss function rho(s) (a scalar function), `least_squares` finds a local minimum of the cost function F(x):: minimize F(x) = 0.5 * sum(rho(f_i(x)**2), i = 0, ..., m - 1) subject to lb <= x <= ub The purpose of the loss function rho(s) is to reduce the influence of outliers on the solution. Parameters ---------- fun : callable Function which computes the vector of residuals, with the signature ``fun(x, *args, **kwargs)``, i.e., the minimization proceeds with respect to its first argument. The argument ``x`` passed to this function is an ndarray of shape (n,) (never a scalar, even for n=1). It must allocate and return a 1-D array_like of shape (m,) or a scalar. If the argument ``x`` is complex or the function ``fun`` returns complex residuals, it must be wrapped in a real function of real arguments, as shown at the end of the Examples section. x0 : array_like with shape (n,) or float Initial guess on independent variables. If float, it will be treated as a 1-D array with one element. jac : {'2-point', '3-point', 'cs', callable}, optional Method of computing the Jacobian matrix (an m-by-n matrix, where element (i, j) is the partial derivative of f[i] with respect to x[j]). The keywords select a finite difference scheme for numerical estimation. The scheme '3-point' is more accurate, but requires twice as many operations as '2-point' (default). The scheme 'cs' uses complex steps, and while potentially the most accurate, it is applicable only when `fun` correctly handles complex inputs and can be analytically continued to the complex plane. Method 'lm' always uses the '2-point' scheme. If callable, it is used as ``jac(x, *args, **kwargs)`` and should return a good approximation (or the exact value) for the Jacobian as an array_like (np.atleast_2d is applied), a sparse matrix (csr_matrix preferred for performance) or a `scipy.sparse.linalg.LinearOperator`. bounds : 2-tuple of array_like, optional Lower and upper bounds on independent variables. Defaults to no bounds. Each array must match the size of `x0` or be a scalar, in the latter case a bound will be the same for all variables. Use ``np.inf`` with an appropriate sign to disable bounds on all or some variables. method : {'trf', 'dogbox', 'lm'}, optional Algorithm to perform minimization. * 'trf' : Trust Region Reflective algorithm, particularly suitable for large sparse problems with bounds. Generally robust method. * 'dogbox' : dogleg algorithm with rectangular trust regions, typical use case is small problems with bounds. Not recommended for problems with rank-deficient Jacobian. * 'lm' : Levenberg-Marquardt algorithm as implemented in MINPACK. Doesn't handle bounds and sparse Jacobians. Usually the most efficient method for small unconstrained problems. Default is 'trf'. See Notes for more information. ftol : float or None, optional Tolerance for termination by the change of the cost function. Default is 1e-8. The optimization process is stopped when ``dF < ftol * F``, and there was an adequate agreement between a local quadratic model and the true model in the last step. If None and 'method' is not 'lm', the termination by this condition is disabled. If 'method' is 'lm', this tolerance must be higher than machine epsilon. xtol : float or None, optional Tolerance for termination by the change of the independent variables. Default is 1e-8. The exact condition depends on the `method` used: * For 'trf' and 'dogbox' : ``norm(dx) < xtol * (xtol + norm(x))``. * For 'lm' : ``Delta < xtol * norm(xs)``, where ``Delta`` is a trust-region radius and ``xs`` is the value of ``x`` scaled according to `x_scale` parameter (see below). If None and 'method' is not 'lm', the termination by this condition is disabled. If 'method' is 'lm', this tolerance must be higher than machine epsilon. gtol : float or None, optional Tolerance for termination by the norm of the gradient. Default is 1e-8. The exact condition depends on a `method` used: * For 'trf' : ``norm(g_scaled, ord=np.inf) < gtol``, where ``g_scaled`` is the value of the gradient scaled to account for the presence of the bounds [STIR]_. * For 'dogbox' : ``norm(g_free, ord=np.inf) < gtol``, where ``g_free`` is the gradient with respect to the variables which are not in the optimal state on the boundary. * For 'lm' : the maximum absolute value of the cosine of angles between columns of the Jacobian and the residual vector is less than `gtol`, or the residual vector is zero. If None and 'method' is not 'lm', the termination by this condition is disabled. If 'method' is 'lm', this tolerance must be higher than machine epsilon. x_scale : array_like or 'jac', optional Characteristic scale of each variable. Setting `x_scale` is equivalent to reformulating the problem in scaled variables ``xs = x / x_scale``. An alternative view is that the size of a trust region along jth dimension is proportional to ``x_scale[j]``. Improved convergence may be achieved by setting `x_scale` such that a step of a given size along any of the scaled variables has a similar effect on the cost function. If set to 'jac', the scale is iteratively updated using the inverse norms of the columns of the Jacobian matrix (as described in [JJMore]_). loss : str or callable, optional Determines the loss function. The following keyword values are allowed: * 'linear' (default) : ``rho(z) = z``. Gives a standard least-squares problem. * 'soft_l1' : ``rho(z) = 2 * ((1 + z)**0.5 - 1)``. The smooth approximation of l1 (absolute value) loss. Usually a good choice for robust least squares. * 'huber' : ``rho(z) = z if z <= 1 else 2*z**0.5 - 1``. Works similarly to 'soft_l1'. * 'cauchy' : ``rho(z) = ln(1 + z)``. Severely weakens outliers influence, but may cause difficulties in optimization process. * 'arctan' : ``rho(z) = arctan(z)``. Limits a maximum loss on a single residual, has properties similar to 'cauchy'. If callable, it must take a 1-D ndarray ``z=f**2`` and return an array_like with shape (3, m) where row 0 contains function values, row 1 contains first derivatives and row 2 contains second derivatives. Method 'lm' supports only 'linear' loss. f_scale : float, optional Value of soft margin between inlier and outlier residuals, default is 1.0. The loss function is evaluated as follows ``rho_(f**2) = C**2 * rho(f**2 / C**2)``, where ``C`` is `f_scale`, and ``rho`` is determined by `loss` parameter. This parameter has no effect with ``loss='linear'``, but for other `loss` values it is of crucial importance. max_nfev : None or int, optional Maximum number of function evaluations before the termination. If None (default), the value is chosen automatically: * For 'trf' and 'dogbox' : 100 * n. * For 'lm' : 100 * n if `jac` is callable and 100 * n * (n + 1) otherwise (because 'lm' counts function calls in Jacobian estimation). diff_step : None or array_like, optional Determines the relative step size for the finite difference approximation of the Jacobian. The actual step is computed as ``x * diff_step``. If None (default), then `diff_step` is taken to be a conventional "optimal" power of machine epsilon for the finite difference scheme used [NR]_. tr_solver : {None, 'exact', 'lsmr'}, optional Method for solving trust-region subproblems, relevant only for 'trf' and 'dogbox' methods. * 'exact' is suitable for not very large problems with dense Jacobian matrices. The computational complexity per iteration is comparable to a singular value decomposition of the Jacobian matrix. * 'lsmr' is suitable for problems with sparse and large Jacobian matrices. It uses the iterative procedure `scipy.sparse.linalg.lsmr` for finding a solution of a linear least-squares problem and only requires matrix-vector product evaluations. If None (default), the solver is chosen based on the type of Jacobian returned on the first iteration. tr_options : dict, optional Keyword options passed to trust-region solver. * ``tr_solver='exact'``: `tr_options` are ignored. * ``tr_solver='lsmr'``: options for `scipy.sparse.linalg.lsmr`. Additionally, ``method='trf'`` supports 'regularize' option (bool, default is True), which adds a regularization term to the normal equation, which improves convergence if the Jacobian is rank-deficient [Byrd]_ (eq. 3.4). jac_sparsity : {None, array_like, sparse matrix}, optional Defines the sparsity structure of the Jacobian matrix for finite difference estimation, its shape must be (m, n). If the Jacobian has only few non-zero elements in *each* row, providing the sparsity structure will greatly speed up the computations [Curtis]_. A zero entry means that a corresponding element in the Jacobian is identically zero. If provided, forces the use of 'lsmr' trust-region solver. If None (default), then dense differencing will be used. Has no effect for 'lm' method. verbose : {0, 1, 2}, optional Level of algorithm's verbosity: * 0 (default) : work silently. * 1 : display a termination report. * 2 : display progress during iterations (not supported by 'lm' method). args, kwargs : tuple and dict, optional Additional arguments passed to `fun` and `jac`. Both empty by default. The calling signature is ``fun(x, *args, **kwargs)`` and the same for `jac`. Returns ------- result : OptimizeResult `OptimizeResult` with the following fields defined: x : ndarray, shape (n,) Solution found. cost : float Value of the cost function at the solution. fun : ndarray, shape (m,) Vector of residuals at the solution. jac : ndarray, sparse matrix or LinearOperator, shape (m, n) Modified Jacobian matrix at the solution, in the sense that J^T J is a Gauss-Newton approximation of the Hessian of the cost function. The type is the same as the one used by the algorithm. grad : ndarray, shape (m,) Gradient of the cost function at the solution. optimality : float First-order optimality measure. In unconstrained problems, it is always the uniform norm of the gradient. In constrained problems, it is the quantity which was compared with `gtol` during iterations. active_mask : ndarray of int, shape (n,) Each component shows whether a corresponding constraint is active (that is, whether a variable is at the bound): * 0 : a constraint is not active. * -1 : a lower bound is active. * 1 : an upper bound is active. Might be somewhat arbitrary for 'trf' method as it generates a sequence of strictly feasible iterates and `active_mask` is determined within a tolerance threshold. nfev : int Number of function evaluations done. Methods 'trf' and 'dogbox' do not count function calls for numerical Jacobian approximation, as opposed to 'lm' method. njev : int or None Number of Jacobian evaluations done. If numerical Jacobian approximation is used in 'lm' method, it is set to None. status : int The reason for algorithm termination: * -1 : improper input parameters status returned from MINPACK. * 0 : the maximum number of function evaluations is exceeded. * 1 : `gtol` termination condition is satisfied. * 2 : `ftol` termination condition is satisfied. * 3 : `xtol` termination condition is satisfied. * 4 : Both `ftol` and `xtol` termination conditions are satisfied. message : str Verbal description of the termination reason. success : bool True if one of the convergence criteria is satisfied (`status` > 0). See Also -------- leastsq : A legacy wrapper for the MINPACK implementation of the Levenberg-Marquadt algorithm. curve_fit : Least-squares minimization applied to a curve-fitting problem. Notes ----- Method 'lm' (Levenberg-Marquardt) calls a wrapper over least-squares algorithms implemented in MINPACK (lmder, lmdif). It runs the Levenberg-Marquardt algorithm formulated as a trust-region type algorithm. The implementation is based on paper [JJMore]_, it is very robust and efficient with a lot of smart tricks. It should be your first choice for unconstrained problems. Note that it doesn't support bounds. Also, it doesn't work when m < n. Method 'trf' (Trust Region Reflective) is motivated by the process of solving a system of equations, which constitute the first-order optimality condition for a bound-constrained minimization problem as formulated in [STIR]_. The algorithm iteratively solves trust-region subproblems augmented by a special diagonal quadratic term and with trust-region shape determined by the distance from the bounds and the direction of the gradient. This enhancements help to avoid making steps directly into bounds and efficiently explore the whole space of variables. To further improve convergence, the algorithm considers search directions reflected from the bounds. To obey theoretical requirements, the algorithm keeps iterates strictly feasible. With dense Jacobians trust-region subproblems are solved by an exact method very similar to the one described in [JJMore]_ (and implemented in MINPACK). The difference from the MINPACK implementation is that a singular value decomposition of a Jacobian matrix is done once per iteration, instead of a QR decomposition and series of Givens rotation eliminations. For large sparse Jacobians a 2-D subspace approach of solving trust-region subproblems is used [STIR]_, [Byrd]_. The subspace is spanned by a scaled gradient and an approximate Gauss-Newton solution delivered by `scipy.sparse.linalg.lsmr`. When no constraints are imposed the algorithm is very similar to MINPACK and has generally comparable performance. The algorithm works quite robust in unbounded and bounded problems, thus it is chosen as a default algorithm. Method 'dogbox' operates in a trust-region framework, but considers rectangular trust regions as opposed to conventional ellipsoids [Voglis]_. The intersection of a current trust region and initial bounds is again rectangular, so on each iteration a quadratic minimization problem subject to bound constraints is solved approximately by Powell's dogleg method [NumOpt]_. The required Gauss-Newton step can be computed exactly for dense Jacobians or approximately by `scipy.sparse.linalg.lsmr` for large sparse Jacobians. The algorithm is likely to exhibit slow convergence when the rank of Jacobian is less than the number of variables. The algorithm often outperforms 'trf' in bounded problems with a small number of variables. Robust loss functions are implemented as described in [BA]_. The idea is to modify a residual vector and a Jacobian matrix on each iteration such that computed gradient and Gauss-Newton Hessian approximation match the true gradient and Hessian approximation of the cost function. Then the algorithm proceeds in a normal way, i.e., robust loss functions are implemented as a simple wrapper over standard least-squares algorithms. .. versionadded:: 0.17.0 References ---------- .. [STIR] M. A. Branch, T. F. Coleman, and Y. Li, "A Subspace, Interior, and Conjugate Gradient Method for Large-Scale Bound-Constrained Minimization Problems," SIAM Journal on Scientific Computing, Vol. 21, Number 1, pp 1-23, 1999. .. [NR] William H. Press et. al., "Numerical Recipes. The Art of Scientific Computing. 3rd edition", Sec. 5.7. .. [Byrd] R. H. Byrd, R. B. Schnabel and G. A. Shultz, "Approximate solution of the trust region problem by minimization over two-dimensional subspaces", Math. Programming, 40, pp. 247-263, 1988. .. [Curtis] A. Curtis, M. J. D. Powell, and J. Reid, "On the estimation of sparse Jacobian matrices", Journal of the Institute of Mathematics and its Applications, 13, pp. 117-120, 1974. .. [JJMore] J. J. More, "The Levenberg-Marquardt Algorithm: Implementation and Theory," Numerical Analysis, ed. G. A. Watson, Lecture Notes in Mathematics 630, Springer Verlag, pp. 105-116, 1977. .. [Voglis] C. Voglis and I. E. Lagaris, "A Rectangular Trust Region Dogleg Approach for Unconstrained and Bound Constrained Nonlinear Optimization", WSEAS International Conference on Applied Mathematics, Corfu, Greece, 2004. .. [NumOpt] J. Nocedal and S. J. Wright, "Numerical optimization, 2nd edition", Chapter 4. .. [BA] B. Triggs et. al., "Bundle Adjustment - A Modern Synthesis", Proceedings of the International Workshop on Vision Algorithms: Theory and Practice, pp. 298-372, 1999. Examples -------- In this example we find a minimum of the Rosenbrock function without bounds on independent variables. >>> def fun_rosenbrock(x): ... return np.array([10 * (x[1] - x[0]**2), (1 - x[0])]) Notice that we only provide the vector of the residuals. The algorithm constructs the cost function as a sum of squares of the residuals, which gives the Rosenbrock function. The exact minimum is at ``x = [1.0, 1.0]``. >>> from scipy.optimize import least_squares >>> x0_rosenbrock = np.array([2, 2]) >>> res_1 = least_squares(fun_rosenbrock, x0_rosenbrock) >>> res_1.x array([ 1., 1.]) >>> res_1.cost 9.8669242910846867e-30 >>> res_1.optimality 8.8928864934219529e-14 We now constrain the variables, in such a way that the previous solution becomes infeasible. Specifically, we require that ``x[1] >= 1.5``, and ``x[0]`` left unconstrained. To this end, we specify the `bounds` parameter to `least_squares` in the form ``bounds=([-np.inf, 1.5], np.inf)``. We also provide the analytic Jacobian: >>> def jac_rosenbrock(x): ... return np.array([ ... [-20 * x[0], 10], ... [-1, 0]]) Putting this all together, we see that the new solution lies on the bound: >>> res_2 = least_squares(fun_rosenbrock, x0_rosenbrock, jac_rosenbrock, ... bounds=([-np.inf, 1.5], np.inf)) >>> res_2.x array([ 1.22437075, 1.5 ]) >>> res_2.cost 0.025213093946805685 >>> res_2.optimality 1.5885401433157753e-07 Now we solve a system of equations (i.e., the cost function should be zero at a minimum) for a Broyden tridiagonal vector-valued function of 100000 variables: >>> def fun_broyden(x): ... f = (3 - x) * x + 1 ... f[1:] -= x[:-1] ... f[:-1] -= 2 * x[1:] ... return f The corresponding Jacobian matrix is sparse. We tell the algorithm to estimate it by finite differences and provide the sparsity structure of Jacobian to significantly speed up this process. >>> from scipy.sparse import lil_matrix >>> def sparsity_broyden(n): ... sparsity = lil_matrix((n, n), dtype=int) ... i = np.arange(n) ... sparsity[i, i] = 1 ... i = np.arange(1, n) ... sparsity[i, i - 1] = 1 ... i = np.arange(n - 1) ... sparsity[i, i + 1] = 1 ... return sparsity ... >>> n = 100000 >>> x0_broyden = -np.ones(n) ... >>> res_3 = least_squares(fun_broyden, x0_broyden, ... jac_sparsity=sparsity_broyden(n)) >>> res_3.cost 4.5687069299604613e-23 >>> res_3.optimality 1.1650454296851518e-11 Let's also solve a curve fitting problem using robust loss function to take care of outliers in the data. Define the model function as ``y = a + b * exp(c * t)``, where t is a predictor variable, y is an observation and a, b, c are parameters to estimate. First, define the function which generates the data with noise and outliers, define the model parameters, and generate data: >>> from numpy.random import default_rng >>> rng = default_rng() >>> def gen_data(t, a, b, c, noise=0., n_outliers=0, seed=None): ... rng = default_rng(seed) ... ... y = a + b * np.exp(t * c) ... ... error = noise * rng.standard_normal(t.size) ... outliers = rng.integers(0, t.size, n_outliers) ... error[outliers] *= 10 ... ... return y + error ... >>> a = 0.5 >>> b = 2.0 >>> c = -1 >>> t_min = 0 >>> t_max = 10 >>> n_points = 15 ... >>> t_train = np.linspace(t_min, t_max, n_points) >>> y_train = gen_data(t_train, a, b, c, noise=0.1, n_outliers=3) Define function for computing residuals and initial estimate of parameters. >>> def fun(x, t, y): ... return x[0] + x[1] * np.exp(x[2] * t) - y ... >>> x0 = np.array([1.0, 1.0, 0.0]) Compute a standard least-squares solution: >>> res_lsq = least_squares(fun, x0, args=(t_train, y_train)) Now compute two solutions with two different robust loss functions. The parameter `f_scale` is set to 0.1, meaning that inlier residuals should not significantly exceed 0.1 (the noise level used). >>> res_soft_l1 = least_squares(fun, x0, loss='soft_l1', f_scale=0.1, ... args=(t_train, y_train)) >>> res_log = least_squares(fun, x0, loss='cauchy', f_scale=0.1, ... args=(t_train, y_train)) And, finally, plot all the curves. We see that by selecting an appropriate `loss` we can get estimates close to optimal even in the presence of strong outliers. But keep in mind that generally it is recommended to try 'soft_l1' or 'huber' losses first (if at all necessary) as the other two options may cause difficulties in optimization process. >>> t_test = np.linspace(t_min, t_max, n_points * 10) >>> y_true = gen_data(t_test, a, b, c) >>> y_lsq = gen_data(t_test, *res_lsq.x) >>> y_soft_l1 = gen_data(t_test, *res_soft_l1.x) >>> y_log = gen_data(t_test, *res_log.x) ... >>> import matplotlib.pyplot as plt >>> plt.plot(t_train, y_train, 'o') >>> plt.plot(t_test, y_true, 'k', linewidth=2, label='true') >>> plt.plot(t_test, y_lsq, label='linear loss') >>> plt.plot(t_test, y_soft_l1, label='soft_l1 loss') >>> plt.plot(t_test, y_log, label='cauchy loss') >>> plt.xlabel("t") >>> plt.ylabel("y") >>> plt.legend() >>> plt.show() In the next example, we show how complex-valued residual functions of complex variables can be optimized with ``least_squares()``. Consider the following function: >>> def f(z): ... return z - (0.5 + 0.5j) We wrap it into a function of real variables that returns real residuals by simply handling the real and imaginary parts as independent variables: >>> def f_wrap(x): ... fx = f(x[0] + 1j*x[1]) ... return np.array([fx.real, fx.imag]) Thus, instead of the original m-D complex function of n complex variables we optimize a 2m-D real function of 2n real variables: >>> from scipy.optimize import least_squares >>> res_wrapped = least_squares(f_wrap, (0.1, 0.1), bounds=([0, 0], [1, 1])) >>> z = res_wrapped.x[0] + res_wrapped.x[1]*1j >>> z (0.49999999999925893+0.49999999999925893j) """ if method not in ['trf', 'dogbox', 'lm']: raise ValueError("`method` must be 'trf', 'dogbox' or 'lm'.") if jac not in ['2-point', '3-point', 'cs'] and not callable(jac): raise ValueError("`jac` must be '2-point', '3-point', 'cs' or " "callable.") if tr_solver not in [None, 'exact', 'lsmr']: raise ValueError("`tr_solver` must be None, 'exact' or 'lsmr'.") if loss not in IMPLEMENTED_LOSSES and not callable(loss): raise ValueError("`loss` must be one of {0} or a callable." .format(IMPLEMENTED_LOSSES.keys())) if method == 'lm' and loss != 'linear': raise ValueError("method='lm' supports only 'linear' loss function.") if verbose not in [0, 1, 2]: raise ValueError("`verbose` must be in [0, 1, 2].") if len(bounds) != 2: raise ValueError("`bounds` must contain 2 elements.") if max_nfev is not None and max_nfev <= 0: raise ValueError("`max_nfev` must be None or positive integer.") if np.iscomplexobj(x0): raise ValueError("`x0` must be real.") x0 = np.atleast_1d(x0).astype(float) if x0.ndim > 1: raise ValueError("`x0` must have at most 1 dimension.") lb, ub = prepare_bounds(bounds, x0.shape[0]) if method == 'lm' and not np.all((lb == -np.inf) & (ub == np.inf)): raise ValueError("Method 'lm' doesn't support bounds.") if lb.shape != x0.shape or ub.shape != x0.shape: raise ValueError("Inconsistent shapes between bounds and `x0`.") if np.any(lb >= ub): raise ValueError("Each lower bound must be strictly less than each " "upper bound.") if not in_bounds(x0, lb, ub): raise ValueError("`x0` is infeasible.") x_scale = check_x_scale(x_scale, x0) ftol, xtol, gtol = check_tolerance(ftol, xtol, gtol, method) def fun_wrapped(x): return np.atleast_1d(fun(x, *args, **kwargs)) if method == 'trf': x0 = make_strictly_feasible(x0, lb, ub) f0 = fun_wrapped(x0) if f0.ndim != 1: raise ValueError("`fun` must return at most 1-d array_like. " "f0.shape: {0}".format(f0.shape)) if not np.all(np.isfinite(f0)): raise ValueError("Residuals are not finite in the initial point.") n = x0.size m = f0.size if method == 'lm' and m < n: raise ValueError("Method 'lm' doesn't work when the number of " "residuals is less than the number of variables.") loss_function = construct_loss_function(m, loss, f_scale) if callable(loss): rho = loss_function(f0) if rho.shape != (3, m): raise ValueError("The return value of `loss` callable has wrong " "shape.") initial_cost = 0.5 * np.sum(rho[0]) elif loss_function is not None: initial_cost = loss_function(f0, cost_only=True) else: initial_cost = 0.5 * np.dot(f0, f0) if callable(jac): J0 = jac(x0, *args, **kwargs) if issparse(J0): J0 = J0.tocsr() def jac_wrapped(x, _=None): return jac(x, *args, **kwargs).tocsr() elif isinstance(J0, LinearOperator): def jac_wrapped(x, _=None): return jac(x, *args, **kwargs) else: J0 = np.atleast_2d(J0) def jac_wrapped(x, _=None): return np.atleast_2d(jac(x, *args, **kwargs)) else: # Estimate Jacobian by finite differences. if method == 'lm': if jac_sparsity is not None: raise ValueError("method='lm' does not support " "`jac_sparsity`.") if jac != '2-point': warn("jac='{0}' works equivalently to '2-point' " "for method='lm'.".format(jac)) J0 = jac_wrapped = None else: if jac_sparsity is not None and tr_solver == 'exact': raise ValueError("tr_solver='exact' is incompatible " "with `jac_sparsity`.") jac_sparsity = check_jac_sparsity(jac_sparsity, m, n) def jac_wrapped(x, f): J = approx_derivative(fun, x, rel_step=diff_step, method=jac, f0=f, bounds=bounds, args=args, kwargs=kwargs, sparsity=jac_sparsity) if J.ndim != 2: # J is guaranteed not sparse. J = np.atleast_2d(J) return J J0 = jac_wrapped(x0, f0) if J0 is not None: if J0.shape != (m, n): raise ValueError( "The return value of `jac` has wrong shape: expected {0}, " "actual {1}.".format((m, n), J0.shape)) if not isinstance(J0, np.ndarray): if method == 'lm': raise ValueError("method='lm' works only with dense " "Jacobian matrices.") if tr_solver == 'exact': raise ValueError( "tr_solver='exact' works only with dense " "Jacobian matrices.") jac_scale = isinstance(x_scale, str) and x_scale == 'jac' if isinstance(J0, LinearOperator) and jac_scale: raise ValueError("x_scale='jac' can't be used when `jac` " "returns LinearOperator.") if tr_solver is None: if isinstance(J0, np.ndarray): tr_solver = 'exact' else: tr_solver = 'lsmr' if method == 'lm': result = call_minpack(fun_wrapped, x0, jac_wrapped, ftol, xtol, gtol, max_nfev, x_scale, diff_step) elif method == 'trf': result = trf(fun_wrapped, jac_wrapped, x0, f0, J0, lb, ub, ftol, xtol, gtol, max_nfev, x_scale, loss_function, tr_solver, tr_options.copy(), verbose) elif method == 'dogbox': if tr_solver == 'lsmr' and 'regularize' in tr_options: warn("The keyword 'regularize' in `tr_options` is not relevant " "for 'dogbox' method.") tr_options = tr_options.copy() del tr_options['regularize'] result = dogbox(fun_wrapped, jac_wrapped, x0, f0, J0, lb, ub, ftol, xtol, gtol, max_nfev, x_scale, loss_function, tr_solver, tr_options, verbose) result.message = TERMINATION_MESSAGES[result.status] result.success = result.status > 0 if verbose >= 1: print(result.message) print("Function evaluations {0}, initial cost {1:.4e}, final cost " "{2:.4e}, first-order optimality {3:.2e}." .format(result.nfev, initial_cost, result.cost, result.optimality)) return result
bsd-3-clause
chrisburr/scikit-learn
examples/linear_model/plot_sgd_loss_functions.py
73
1232
""" ========================== SGD: convex loss functions ========================== A plot that compares the various convex loss functions supported by :class:`sklearn.linear_model.SGDClassifier` . """ print(__doc__) import numpy as np import matplotlib.pyplot as plt def modified_huber_loss(y_true, y_pred): z = y_pred * y_true loss = -4 * z loss[z >= -1] = (1 - z[z >= -1]) ** 2 loss[z >= 1.] = 0 return loss xmin, xmax = -4, 4 xx = np.linspace(xmin, xmax, 100) lw = 2 plt.plot([xmin, 0, 0, xmax], [1, 1, 0, 0], color='gold', lw=lw, label="Zero-one loss") plt.plot(xx, np.where(xx < 1, 1 - xx, 0), color='teal', lw=lw, label="Hinge loss") plt.plot(xx, -np.minimum(xx, 0), color='yellowgreen', lw=lw, label="Perceptron loss") plt.plot(xx, np.log2(1 + np.exp(-xx)), color='cornflowerblue', lw=lw, label="Log loss") plt.plot(xx, np.where(xx < 1, 1 - xx, 0) ** 2, color='orange', lw=lw, label="Squared hinge loss") plt.plot(xx, modified_huber_loss(xx, 1), color='darkorchid', lw=lw, linestyle='--', label="Modified Huber loss") plt.ylim((0, 8)) plt.legend(loc="upper right") plt.xlabel(r"Decision function $f(x)$") plt.ylabel("$L(y, f(x))$") plt.show()
bsd-3-clause
stylianos-kampakis/scikit-learn
sklearn/manifold/tests/test_spectral_embedding.py
216
8091
from nose.tools import assert_true from nose.tools import assert_equal from scipy.sparse import csr_matrix from scipy.sparse import csc_matrix import numpy as np from numpy.testing import assert_array_almost_equal, assert_array_equal from nose.tools import assert_raises from nose.plugins.skip import SkipTest from sklearn.manifold.spectral_embedding_ import SpectralEmbedding from sklearn.manifold.spectral_embedding_ import _graph_is_connected from sklearn.manifold import spectral_embedding from sklearn.metrics.pairwise import rbf_kernel from sklearn.metrics import normalized_mutual_info_score from sklearn.cluster import KMeans from sklearn.datasets.samples_generator import make_blobs # non centered, sparse centers to check the centers = np.array([ [0.0, 5.0, 0.0, 0.0, 0.0], [0.0, 0.0, 4.0, 0.0, 0.0], [1.0, 0.0, 0.0, 5.0, 1.0], ]) n_samples = 1000 n_clusters, n_features = centers.shape S, true_labels = make_blobs(n_samples=n_samples, centers=centers, cluster_std=1., random_state=42) def _check_with_col_sign_flipping(A, B, tol=0.0): """ Check array A and B are equal with possible sign flipping on each columns""" sign = True for column_idx in range(A.shape[1]): sign = sign and ((((A[:, column_idx] - B[:, column_idx]) ** 2).mean() <= tol ** 2) or (((A[:, column_idx] + B[:, column_idx]) ** 2).mean() <= tol ** 2)) if not sign: return False return True def test_spectral_embedding_two_components(seed=36): # Test spectral embedding with two components random_state = np.random.RandomState(seed) n_sample = 100 affinity = np.zeros(shape=[n_sample * 2, n_sample * 2]) # first component affinity[0:n_sample, 0:n_sample] = np.abs(random_state.randn(n_sample, n_sample)) + 2 # second component affinity[n_sample::, n_sample::] = np.abs(random_state.randn(n_sample, n_sample)) + 2 # connection affinity[0, n_sample + 1] = 1 affinity[n_sample + 1, 0] = 1 affinity.flat[::2 * n_sample + 1] = 0 affinity = 0.5 * (affinity + affinity.T) true_label = np.zeros(shape=2 * n_sample) true_label[0:n_sample] = 1 se_precomp = SpectralEmbedding(n_components=1, affinity="precomputed", random_state=np.random.RandomState(seed)) embedded_coordinate = se_precomp.fit_transform(affinity) # Some numpy versions are touchy with types embedded_coordinate = \ se_precomp.fit_transform(affinity.astype(np.float32)) # thresholding on the first components using 0. label_ = np.array(embedded_coordinate.ravel() < 0, dtype="float") assert_equal(normalized_mutual_info_score(true_label, label_), 1.0) def test_spectral_embedding_precomputed_affinity(seed=36): # Test spectral embedding with precomputed kernel gamma = 1.0 se_precomp = SpectralEmbedding(n_components=2, affinity="precomputed", random_state=np.random.RandomState(seed)) se_rbf = SpectralEmbedding(n_components=2, affinity="rbf", gamma=gamma, random_state=np.random.RandomState(seed)) embed_precomp = se_precomp.fit_transform(rbf_kernel(S, gamma=gamma)) embed_rbf = se_rbf.fit_transform(S) assert_array_almost_equal( se_precomp.affinity_matrix_, se_rbf.affinity_matrix_) assert_true(_check_with_col_sign_flipping(embed_precomp, embed_rbf, 0.05)) def test_spectral_embedding_callable_affinity(seed=36): # Test spectral embedding with callable affinity gamma = 0.9 kern = rbf_kernel(S, gamma=gamma) se_callable = SpectralEmbedding(n_components=2, affinity=( lambda x: rbf_kernel(x, gamma=gamma)), gamma=gamma, random_state=np.random.RandomState(seed)) se_rbf = SpectralEmbedding(n_components=2, affinity="rbf", gamma=gamma, random_state=np.random.RandomState(seed)) embed_rbf = se_rbf.fit_transform(S) embed_callable = se_callable.fit_transform(S) assert_array_almost_equal( se_callable.affinity_matrix_, se_rbf.affinity_matrix_) assert_array_almost_equal(kern, se_rbf.affinity_matrix_) assert_true( _check_with_col_sign_flipping(embed_rbf, embed_callable, 0.05)) def test_spectral_embedding_amg_solver(seed=36): # Test spectral embedding with amg solver try: from pyamg import smoothed_aggregation_solver except ImportError: raise SkipTest("pyamg not available.") se_amg = SpectralEmbedding(n_components=2, affinity="nearest_neighbors", eigen_solver="amg", n_neighbors=5, random_state=np.random.RandomState(seed)) se_arpack = SpectralEmbedding(n_components=2, affinity="nearest_neighbors", eigen_solver="arpack", n_neighbors=5, random_state=np.random.RandomState(seed)) embed_amg = se_amg.fit_transform(S) embed_arpack = se_arpack.fit_transform(S) assert_true(_check_with_col_sign_flipping(embed_amg, embed_arpack, 0.05)) def test_pipeline_spectral_clustering(seed=36): # Test using pipeline to do spectral clustering random_state = np.random.RandomState(seed) se_rbf = SpectralEmbedding(n_components=n_clusters, affinity="rbf", random_state=random_state) se_knn = SpectralEmbedding(n_components=n_clusters, affinity="nearest_neighbors", n_neighbors=5, random_state=random_state) for se in [se_rbf, se_knn]: km = KMeans(n_clusters=n_clusters, random_state=random_state) km.fit(se.fit_transform(S)) assert_array_almost_equal( normalized_mutual_info_score( km.labels_, true_labels), 1.0, 2) def test_spectral_embedding_unknown_eigensolver(seed=36): # Test that SpectralClustering fails with an unknown eigensolver se = SpectralEmbedding(n_components=1, affinity="precomputed", random_state=np.random.RandomState(seed), eigen_solver="<unknown>") assert_raises(ValueError, se.fit, S) def test_spectral_embedding_unknown_affinity(seed=36): # Test that SpectralClustering fails with an unknown affinity type se = SpectralEmbedding(n_components=1, affinity="<unknown>", random_state=np.random.RandomState(seed)) assert_raises(ValueError, se.fit, S) def test_connectivity(seed=36): # Test that graph connectivity test works as expected graph = np.array([[1, 0, 0, 0, 0], [0, 1, 1, 0, 0], [0, 1, 1, 1, 0], [0, 0, 1, 1, 1], [0, 0, 0, 1, 1]]) assert_equal(_graph_is_connected(graph), False) assert_equal(_graph_is_connected(csr_matrix(graph)), False) assert_equal(_graph_is_connected(csc_matrix(graph)), False) graph = np.array([[1, 1, 0, 0, 0], [1, 1, 1, 0, 0], [0, 1, 1, 1, 0], [0, 0, 1, 1, 1], [0, 0, 0, 1, 1]]) assert_equal(_graph_is_connected(graph), True) assert_equal(_graph_is_connected(csr_matrix(graph)), True) assert_equal(_graph_is_connected(csc_matrix(graph)), True) def test_spectral_embedding_deterministic(): # Test that Spectral Embedding is deterministic random_state = np.random.RandomState(36) data = random_state.randn(10, 30) sims = rbf_kernel(data) embedding_1 = spectral_embedding(sims) embedding_2 = spectral_embedding(sims) assert_array_almost_equal(embedding_1, embedding_2)
bsd-3-clause
aerokappa/SantaClaus
handCodedOptimum_v4.py
1
2216
import numpy as np import pandas as pd from processInput import processInput def handCodedOptimum_v4 ( ): fileName = 'gifts.csv' giftList, giftListSummary = processInput( fileName ) packedBags = [] for i in np.arange(1000): print i currentBag = [] if (i< 333): itemCount = np.array([0 ,3 ,0 ,0 ,0 ,0 ,0 ,3 ,0]) elif ((i>=333) & (i<458)): itemCount = np.array([8, 0, 0, 0, 0, 0, 0, 0, 0]) elif ((i>=458) & (i<583)): itemCount = np.array([0, 0, 0, 0, 0, 0, 8, 0, 0]) elif ((i>=583) & (i<916)): itemCount = np.array([0, 0, 0, 3, 0, 2, 0, 0, 0]) elif ((i>=916) & (i<924)): itemCount = np.array([ 0, 0, 0, 0, 0, 0, 0, 0, 25]) elif ((i>=924) & (i<928)): itemCount = np.array([ 0, 23, 0, 0, 0, 0, 0, 0, 0]) elif ((i>=928) & (i<938)): itemCount = np.array([ 0, 0, 0, 0, 0, 19, 0, 0, 0]) elif ((i>=938) & (i<939)): itemCount = np.array([ 0, 0, 0, 0, 0, 11, 0, 1, 0]) elif ((i>=939) & (i<940)): itemCount = np.array([0, 9, 0, 1, 0, 0, 0, 0, 0]) else: itemCount = np.array([0, 0, 1, 0, 0, 5, 0, 0, 0]) for i in np.arange(len(itemCount)): if (itemCount[i] <= giftListSummary['nGiftsNotPacked'][i]): for j in np.arange(itemCount[i]): giftName = giftListSummary['GiftType'][i] currGiftID = giftListSummary['nGiftsPacked'][i] currentBag.append(giftName+'_'+str(currGiftID)) giftListSummary['nGiftsPacked'][i] += 1 giftListSummary['nGiftsNotPacked'][i] -= 1 packedBags.append(currentBag) # Write to File 'submission.csv' subFile = open('submission_5.csv','w') subFile.write('Gifts\n') for currentBag in packedBags: subFile.write(currentBag[0]) for currentItem in currentBag[1:]: subFile.write(' ') subFile.write(currentItem) subFile.write('\n') subFile.close() return packedBags
mit
combust-ml/mleap
python/tests/pyspark/feature/math_binary_test.py
2
6892
import math import os import shutil import tempfile import unittest import mleap.pyspark # noqa from mleap.pyspark.spark_support import SimpleSparkSerializer # noqa import pandas as pd from pandas.testing import assert_frame_equal from pyspark.ml import Pipeline from pyspark.sql.types import FloatType from pyspark.sql.types import StructType from pyspark.sql.types import StructField from mleap.pyspark.feature.math_binary import MathBinary from mleap.pyspark.feature.math_binary import BinaryOperation from tests.pyspark.lib.spark_session import spark_session INPUT_SCHEMA = StructType([ StructField('f1', FloatType()), StructField('f2', FloatType()), ]) class MathBinaryTest(unittest.TestCase): @classmethod def setUpClass(cls): cls.spark = spark_session() @classmethod def tearDownClass(cls): cls.spark.stop() def setUp(self): self.input = self.spark.createDataFrame([ ( float(i), float(i * 2), ) for i in range(1, 10) ], INPUT_SCHEMA) self.expected_add = pd.DataFrame( [( float(i + i * 2) ) for i in range(1, 10)], columns=['add(f1, f2)'], ) self.tmp_dir = tempfile.mkdtemp() def tearDown(self): shutil.rmtree(self.tmp_dir) def _new_add_math_binary(self): return MathBinary( operation=BinaryOperation.Add, inputA="f1", inputB="f2", outputCol="add(f1, f2)", ) def test_add_math_binary(self): add_transformer = self._new_add_math_binary() result = add_transformer.transform(self.input).toPandas()[['add(f1, f2)']] assert_frame_equal(self.expected_add, result) def test_math_binary_pipeline(self): add_transformer = self._new_add_math_binary() mul_transformer = MathBinary( operation=BinaryOperation.Multiply, inputA="f1", inputB="add(f1, f2)", outputCol="mul(f1, add(f1, f2))", ) expected = pd.DataFrame( [( float(i * (i + i * 2)) ) for i in range(1, 10)], columns=['mul(f1, add(f1, f2))'], ) pipeline = Pipeline( stages=[add_transformer, mul_transformer] ) pipeline_model = pipeline.fit(self.input) result = pipeline_model.transform(self.input).toPandas()[['mul(f1, add(f1, f2))']] assert_frame_equal(expected, result) def test_can_instantiate_all_math_binary(self): for binary_operation in BinaryOperation: transformer = MathBinary( operation=binary_operation, inputA="f1", inputB="f2", outputCol="operation", ) def test_serialize_deserialize_math_binary(self): add_transformer = self._new_add_math_binary() file_path = '{}{}'.format('jar:file:', os.path.join(self.tmp_dir, 'math_binary.zip')) add_transformer.serializeToBundle(file_path, self.input) deserialized_math_binary = SimpleSparkSerializer().deserializeFromBundle(file_path) result = deserialized_math_binary.transform(self.input).toPandas()[['add(f1, f2)']] assert_frame_equal(self.expected_add, result) def test_serialize_deserialize_pipeline(self): add_transformer = self._new_add_math_binary() mul_transformer = MathBinary( operation=BinaryOperation.Multiply, inputA="f1", inputB="add(f1, f2)", outputCol="mul(f1, add(f1, f2))", ) expected = pd.DataFrame( [( float(i * (i + i * 2)) ) for i in range(1, 10)], columns=['mul(f1, add(f1, f2))'], ) pipeline = Pipeline( stages=[add_transformer, mul_transformer] ) pipeline_model = pipeline.fit(self.input) file_path = '{}{}'.format('jar:file:', os.path.join(self.tmp_dir, 'math_binary_pipeline.zip')) pipeline_model.serializeToBundle(file_path, self.input) deserialized_pipeline = SimpleSparkSerializer().deserializeFromBundle(file_path) result = pipeline_model.transform(self.input).toPandas()[['mul(f1, add(f1, f2))']] assert_frame_equal(expected, result) def test_add_math_binary_defaults_none(self): add_transformer = self._new_add_math_binary() none_df = self.spark.createDataFrame([ (None, float(i * 2)) for i in range(1, 3) ], INPUT_SCHEMA) # Summing None + int yields Nones expected_df = pd.DataFrame([ (None,) for i in range(1, 3) ], columns=['add(f1, f2)']) result = add_transformer.transform(none_df).toPandas()[['add(f1, f2)']] assert_frame_equal(expected_df, result) def test_mult_math_binary_default_inputA(self): mult_transformer = MathBinary( operation=BinaryOperation.Multiply, inputB="f2", outputCol="mult(1, f2)", defaultA=1.0, ) none_df = self.spark.createDataFrame([ (None, float(i * 1234)) for i in range(1, 3) ], INPUT_SCHEMA) expected_df = pd.DataFrame([ (float(i * 1234), ) for i in range(1, 3) ], columns=['mult(1, f2)']) result = mult_transformer.transform(none_df).toPandas()[['mult(1, f2)']] assert_frame_equal(expected_df, result) def test_mult_math_binary_default_inputB(self): mult_transformer = MathBinary( operation=BinaryOperation.Multiply, inputA="f1", outputCol="mult(f1, 2)", defaultB=2.0, ) none_df = self.spark.createDataFrame([ (float(i * 1234), None) for i in range(1, 3) ], INPUT_SCHEMA) expected_df = pd.DataFrame([ (float(i * 1234 * 2), ) for i in range(1, 3) ], columns=['mult(f1, 2)']) result = mult_transformer.transform(none_df).toPandas()[['mult(f1, 2)']] assert_frame_equal(expected_df, result) def test_mult_math_binary_default_both(self): mult_transformer = MathBinary( operation=BinaryOperation.Multiply, outputCol="mult(7, 8)", defaultA=7.0, defaultB=8.0, ) none_df = self.spark.createDataFrame([ (None, None) for i in range(1, 3) ], INPUT_SCHEMA) expected_df = pd.DataFrame([ (float(7 * 8), ) for i in range(1, 3) ], columns=['mult(7, 8)']) result = mult_transformer.transform(none_df).toPandas()[['mult(7, 8)']] assert_frame_equal(expected_df, result)
apache-2.0
ryfeus/lambda-packs
Pandas_numpy/source/pandas/core/sorting.py
6
15948
""" miscellaneous sorting / groupby utilities """ import numpy as np from pandas.compat import long, string_types, PY3 from pandas.core.dtypes.common import ( _ensure_platform_int, _ensure_int64, is_list_like, is_categorical_dtype) from pandas.core.dtypes.cast import infer_dtype_from_array from pandas.core.dtypes.missing import isna import pandas.core.algorithms as algorithms from pandas._libs import lib, algos, hashtable from pandas._libs.hashtable import unique_label_indices _INT64_MAX = np.iinfo(np.int64).max def get_group_index(labels, shape, sort, xnull): """ For the particular label_list, gets the offsets into the hypothetical list representing the totally ordered cartesian product of all possible label combinations, *as long as* this space fits within int64 bounds; otherwise, though group indices identify unique combinations of labels, they cannot be deconstructed. - If `sort`, rank of returned ids preserve lexical ranks of labels. i.e. returned id's can be used to do lexical sort on labels; - If `xnull` nulls (-1 labels) are passed through. Parameters ---------- labels: sequence of arrays Integers identifying levels at each location shape: sequence of ints same length as labels Number of unique levels at each location sort: boolean If the ranks of returned ids should match lexical ranks of labels xnull: boolean If true nulls are excluded. i.e. -1 values in the labels are passed through Returns ------- An array of type int64 where two elements are equal if their corresponding labels are equal at all location. """ def _int64_cut_off(shape): acc = long(1) for i, mul in enumerate(shape): acc *= long(mul) if not acc < _INT64_MAX: return i return len(shape) def loop(labels, shape): # how many levels can be done without overflow: nlev = _int64_cut_off(shape) # compute flat ids for the first `nlev` levels stride = np.prod(shape[1:nlev], dtype='i8') out = stride * labels[0].astype('i8', subok=False, copy=False) for i in range(1, nlev): if shape[i] == 0: stride = 0 else: stride //= shape[i] out += labels[i] * stride if xnull: # exclude nulls mask = labels[0] == -1 for lab in labels[1:nlev]: mask |= lab == -1 out[mask] = -1 if nlev == len(shape): # all levels done! return out # compress what has been done so far in order to avoid overflow # to retain lexical ranks, obs_ids should be sorted comp_ids, obs_ids = compress_group_index(out, sort=sort) labels = [comp_ids] + labels[nlev:] shape = [len(obs_ids)] + shape[nlev:] return loop(labels, shape) def maybe_lift(lab, size): # pormote nan values return (lab + 1, size + 1) if (lab == -1).any() else (lab, size) labels = map(_ensure_int64, labels) if not xnull: labels, shape = map(list, zip(*map(maybe_lift, labels, shape))) return loop(list(labels), list(shape)) def get_compressed_ids(labels, sizes): """ Group_index is offsets into cartesian product of all possible labels. This space can be huge, so this function compresses it, by computing offsets (comp_ids) into the list of unique labels (obs_group_ids). Parameters ---------- labels : list of label arrays sizes : list of size of the levels Returns ------- tuple of (comp_ids, obs_group_ids) """ ids = get_group_index(labels, sizes, sort=True, xnull=False) return compress_group_index(ids, sort=True) def is_int64_overflow_possible(shape): the_prod = long(1) for x in shape: the_prod *= long(x) return the_prod >= _INT64_MAX def decons_group_index(comp_labels, shape): # reconstruct labels if is_int64_overflow_possible(shape): # at some point group indices are factorized, # and may not be deconstructed here! wrong path! raise ValueError('cannot deconstruct factorized group indices!') label_list = [] factor = 1 y = 0 x = comp_labels for i in reversed(range(len(shape))): labels = (x - y) % (factor * shape[i]) // factor np.putmask(labels, comp_labels < 0, -1) label_list.append(labels) y = labels * factor factor *= shape[i] return label_list[::-1] def decons_obs_group_ids(comp_ids, obs_ids, shape, labels, xnull): """ reconstruct labels from observed group ids Parameters ---------- xnull: boolean, if nulls are excluded; i.e. -1 labels are passed through """ if not xnull: lift = np.fromiter(((a == -1).any() for a in labels), dtype='i8') shape = np.asarray(shape, dtype='i8') + lift if not is_int64_overflow_possible(shape): # obs ids are deconstructable! take the fast route! out = decons_group_index(obs_ids, shape) return out if xnull or not lift.any() \ else [x - y for x, y in zip(out, lift)] i = unique_label_indices(comp_ids) i8copy = lambda a: a.astype('i8', subok=False, copy=True) return [i8copy(lab[i]) for lab in labels] def indexer_from_factorized(labels, shape, compress=True): ids = get_group_index(labels, shape, sort=True, xnull=False) if not compress: ngroups = (ids.size and ids.max()) + 1 else: ids, obs = compress_group_index(ids, sort=True) ngroups = len(obs) return get_group_index_sorter(ids, ngroups) def lexsort_indexer(keys, orders=None, na_position='last'): from pandas.core.categorical import Categorical labels = [] shape = [] if isinstance(orders, bool): orders = [orders] * len(keys) elif orders is None: orders = [True] * len(keys) for key, order in zip(keys, orders): # we are already a Categorical if is_categorical_dtype(key): c = key # create the Categorical else: c = Categorical(key, ordered=True) if na_position not in ['last', 'first']: raise ValueError('invalid na_position: {!r}'.format(na_position)) n = len(c.categories) codes = c.codes.copy() mask = (c.codes == -1) if order: # ascending if na_position == 'last': codes = np.where(mask, n, codes) elif na_position == 'first': codes += 1 else: # not order means descending if na_position == 'last': codes = np.where(mask, n, n - codes - 1) elif na_position == 'first': codes = np.where(mask, 0, n - codes) if mask.any(): n += 1 shape.append(n) labels.append(codes) return indexer_from_factorized(labels, shape) def nargsort(items, kind='quicksort', ascending=True, na_position='last'): """ This is intended to be a drop-in replacement for np.argsort which handles NaNs. It adds ascending and na_position parameters. GH #6399, #5231 """ # specially handle Categorical if is_categorical_dtype(items): return items.argsort(ascending=ascending, kind=kind) items = np.asanyarray(items) idx = np.arange(len(items)) mask = isna(items) non_nans = items[~mask] non_nan_idx = idx[~mask] nan_idx = np.nonzero(mask)[0] if not ascending: non_nans = non_nans[::-1] non_nan_idx = non_nan_idx[::-1] indexer = non_nan_idx[non_nans.argsort(kind=kind)] if not ascending: indexer = indexer[::-1] # Finally, place the NaNs at the end or the beginning according to # na_position if na_position == 'last': indexer = np.concatenate([indexer, nan_idx]) elif na_position == 'first': indexer = np.concatenate([nan_idx, indexer]) else: raise ValueError('invalid na_position: {!r}'.format(na_position)) return indexer class _KeyMapper(object): """ Ease my suffering. Map compressed group id -> key tuple """ def __init__(self, comp_ids, ngroups, levels, labels): self.levels = levels self.labels = labels self.comp_ids = comp_ids.astype(np.int64) self.k = len(labels) self.tables = [hashtable.Int64HashTable(ngroups) for _ in range(self.k)] self._populate_tables() def _populate_tables(self): for labs, table in zip(self.labels, self.tables): table.map(self.comp_ids, labs.astype(np.int64)) def get_key(self, comp_id): return tuple(level[table.get_item(comp_id)] for table, level in zip(self.tables, self.levels)) def get_flattened_iterator(comp_ids, ngroups, levels, labels): # provide "flattened" iterator for multi-group setting mapper = _KeyMapper(comp_ids, ngroups, levels, labels) return [mapper.get_key(i) for i in range(ngroups)] def get_indexer_dict(label_list, keys): """ return a diction of {labels} -> {indexers} """ shape = list(map(len, keys)) group_index = get_group_index(label_list, shape, sort=True, xnull=True) ngroups = ((group_index.size and group_index.max()) + 1) \ if is_int64_overflow_possible(shape) \ else np.prod(shape, dtype='i8') sorter = get_group_index_sorter(group_index, ngroups) sorted_labels = [lab.take(sorter) for lab in label_list] group_index = group_index.take(sorter) return lib.indices_fast(sorter, group_index, keys, sorted_labels) # ---------------------------------------------------------------------- # sorting levels...cleverly? def get_group_index_sorter(group_index, ngroups): """ algos.groupsort_indexer implements `counting sort` and it is at least O(ngroups), where ngroups = prod(shape) shape = map(len, keys) that is, linear in the number of combinations (cartesian product) of unique values of groupby keys. This can be huge when doing multi-key groupby. np.argsort(kind='mergesort') is O(count x log(count)) where count is the length of the data-frame; Both algorithms are `stable` sort and that is necessary for correctness of groupby operations. e.g. consider: df.groupby(key)[col].transform('first') """ count = len(group_index) alpha = 0.0 # taking complexities literally; there may be beta = 1.0 # some room for fine-tuning these parameters do_groupsort = (count > 0 and ((alpha + beta * ngroups) < (count * np.log(count)))) if do_groupsort: sorter, _ = algos.groupsort_indexer(_ensure_int64(group_index), ngroups) return _ensure_platform_int(sorter) else: return group_index.argsort(kind='mergesort') def compress_group_index(group_index, sort=True): """ Group_index is offsets into cartesian product of all possible labels. This space can be huge, so this function compresses it, by computing offsets (comp_ids) into the list of unique labels (obs_group_ids). """ size_hint = min(len(group_index), hashtable._SIZE_HINT_LIMIT) table = hashtable.Int64HashTable(size_hint) group_index = _ensure_int64(group_index) # note, group labels come out ascending (ie, 1,2,3 etc) comp_ids, obs_group_ids = table.get_labels_groupby(group_index) if sort and len(obs_group_ids) > 0: obs_group_ids, comp_ids = _reorder_by_uniques(obs_group_ids, comp_ids) return comp_ids, obs_group_ids def _reorder_by_uniques(uniques, labels): # sorter is index where elements ought to go sorter = uniques.argsort() # reverse_indexer is where elements came from reverse_indexer = np.empty(len(sorter), dtype=np.int64) reverse_indexer.put(sorter, np.arange(len(sorter))) mask = labels < 0 # move labels to right locations (ie, unsort ascending labels) labels = algorithms.take_nd(reverse_indexer, labels, allow_fill=False) np.putmask(labels, mask, -1) # sort observed ids uniques = algorithms.take_nd(uniques, sorter, allow_fill=False) return uniques, labels def safe_sort(values, labels=None, na_sentinel=-1, assume_unique=False): """ Sort ``values`` and reorder corresponding ``labels``. ``values`` should be unique if ``labels`` is not None. Safe for use with mixed types (int, str), orders ints before strs. .. versionadded:: 0.19.0 Parameters ---------- values : list-like Sequence; must be unique if ``labels`` is not None. labels : list_like Indices to ``values``. All out of bound indices are treated as "not found" and will be masked with ``na_sentinel``. na_sentinel : int, default -1 Value in ``labels`` to mark "not found". Ignored when ``labels`` is None. assume_unique : bool, default False When True, ``values`` are assumed to be unique, which can speed up the calculation. Ignored when ``labels`` is None. Returns ------- ordered : ndarray Sorted ``values`` new_labels : ndarray Reordered ``labels``; returned when ``labels`` is not None. Raises ------ TypeError * If ``values`` is not list-like or if ``labels`` is neither None nor list-like * If ``values`` cannot be sorted ValueError * If ``labels`` is not None and ``values`` contain duplicates. """ if not is_list_like(values): raise TypeError("Only list-like objects are allowed to be passed to" "safe_sort as values") if not isinstance(values, np.ndarray): # don't convert to string types dtype, _ = infer_dtype_from_array(values) values = np.asarray(values, dtype=dtype) def sort_mixed(values): # order ints before strings, safe in py3 str_pos = np.array([isinstance(x, string_types) for x in values], dtype=bool) nums = np.sort(values[~str_pos]) strs = np.sort(values[str_pos]) return np.concatenate([nums, np.asarray(strs, dtype=object)]) sorter = None if PY3 and lib.infer_dtype(values) == 'mixed-integer': # unorderable in py3 if mixed str/int ordered = sort_mixed(values) else: try: sorter = values.argsort() ordered = values.take(sorter) except TypeError: # try this anyway ordered = sort_mixed(values) # labels: if labels is None: return ordered if not is_list_like(labels): raise TypeError("Only list-like objects or None are allowed to be" "passed to safe_sort as labels") labels = _ensure_platform_int(np.asarray(labels)) from pandas import Index if not assume_unique and not Index(values).is_unique: raise ValueError("values should be unique if labels is not None") if sorter is None: # mixed types (hash_klass, _), values = algorithms._get_data_algo( values, algorithms._hashtables) t = hash_klass(len(values)) t.map_locations(values) sorter = _ensure_platform_int(t.lookup(ordered)) reverse_indexer = np.empty(len(sorter), dtype=np.int_) reverse_indexer.put(sorter, np.arange(len(sorter))) mask = (labels < -len(values)) | (labels >= len(values)) | \ (labels == na_sentinel) # (Out of bound indices will be masked with `na_sentinel` next, so we may # deal with them here without performance loss using `mode='wrap'`.) new_labels = reverse_indexer.take(labels, mode='wrap') np.putmask(new_labels, mask, na_sentinel) return ordered, _ensure_platform_int(new_labels)
mit
WilliamDiakite/ExperimentationsACA
processing/lsa.py
1
3364
import os import sys import itertools import operator import nltk import numpy as np import matplotlib.pyplot as plt from nltk.util import ngrams from collections import Counter from spell_checker import SpellChecker from sklearn.decomposition import TruncatedSVD from sklearn.pipeline import make_pipeline from sklearn.preprocessing import Normalizer sys.path.insert(0, '/Users/diakite_w/Documents/Dev/ExperimentationsACA/FrenchLefffLemmatizer') from FrenchLefffLemmatizer import FrenchLefffLemmatizer def extract_ngrams(documents, n): ''' Return list of n-grams ''' chained_documents = list(itertools.chain.from_iterable(documents)) return Counter(ngrams(chained_documents, n)) def tokenize(text): fll = FrenchLefffLemmatizer() splck = SpellChecker() contracted_pronouns = ["l'", "m'", "n'", "d'", "c'", "j'", "qu'", "s'"] dictionnary = [] stopwords = [w.rstrip() for w in open('stopwords-fr.txt')] # Put everything to lower case text = text.lower() # Tokenize text tokens = nltk.tokenize.word_tokenize(text) print('Nombre de tokens dans le texte :', len(tokens)) #tokens = [splck.correct(t) if t not in dictionnary else t for t in tokens] # Remove contacted pronous from tokens tokens = [t[2:] if t[:2] in contracted_pronouns else t for t in tokens] tokens = [t for t in tokens if len(t) > 2] tokens = [t for t in tokens if t not in stopwords] tokens = [fll.lemmatize(t) for t in tokens] print('Nombre de tokens apres traitement :', len(tokens), '\n') return tokens def tokens_to_vec(tokens): vec = np.zeros(len(word_index_map)) for token in tokens: idx = word_index_map[token] vec[idx] = 1 return vec def read_txt(textfile): with open(textfile, 'r') as f: text = f.read() text = text.replace('\n', ' ') text = text.replace('- ', '') text = text.replace('.', '') text = text.replace('-', '') text = text.replace("‘l'", 'ï') return text def get_all_doc(directory): ''' Read all txt documents and append them in string ''' documents = [] counter = 1 for filename in os.listdir(directory): if filename.endswith('.txt'): print('\n[...] Reading document', counter) filename = 'data/' + filename documents.append(read_txt(filename)) counter += 1 return documents documents = get_all_doc('data/') all_tokens = [tokenize(doc) for doc in documents] vocabulary = list(set(itertools.chain.from_iterable(all_tokens))) print ('\nVocab size:', len(vocabulary)) # Computing n-grams bigrams = extract_ngrams(all_tokens, 2) trigrams = extract_ngrams(all_tokens, 3) [print(t) for t in trigrams.most_common(5)] print('\n') [print(t) for t in bigrams.most_common(10)] ''' # Key: word - value: index word_index_map = {j: i for i, j in enumerate(vocabulary)} # Key: index - value: word index_word_map = sorted(word_index_map.items(), key=operator.itemgetter(1)) index_word_map = [t[0] for t in index_word_map] N = len(documents) D = len(word_index_map) X = np.zeros((D,N)) i = 0 for tokens in all_tokens: X[:,i] = tokens_to_vec(tokens) i += 1 print(X.shape) svd = TruncatedSVD() Z = svd.fit_transform(X) print('Z shape', Z.shape) plt.scatter(Z[:,0], Z[:,1]) print('D:', D) for i in range(D): plt.annotate(s=index_word_map[i], xy=(Z[i,0], Z[i,1])) plt.show() '''
mit
JaviMerino/lisa
libs/utils/analysis/frequency_analysis.py
1
24894
# SPDX-License-Identifier: Apache-2.0 # # Copyright (C) 2015, ARM Limited and contributors. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Frequency Analysis Module """ import matplotlib.gridspec as gridspec import matplotlib.pyplot as plt import pandas as pd import pylab as pl import operator from trappy.utils import listify from devlib.utils.misc import memoized from collections import namedtuple from analysis_module import AnalysisModule # Configure logging import logging NON_IDLE_STATE = 4294967295 ResidencyTime = namedtuple('ResidencyTime', ['total', 'active']) ResidencyData = namedtuple('ResidencyData', ['label', 'residency']) class FrequencyAnalysis(AnalysisModule): """ Support for plotting Frequency Analysis data :param trace: input Trace object :type trace: :mod:`libs.utils.Trace` """ def __init__(self, trace): super(FrequencyAnalysis, self).__init__(trace) ############################################################################### # DataFrame Getter Methods ############################################################################### def _dfg_cpu_frequency_residency(self, cpu, total=True): """ Get per-CPU frequency residency, i.e. amount of time CPU `cpu` spent at each frequency. :param cpu: CPU ID :type cpu: int :param total: if true returns the "total" time, otherwise the "active" time is returned :type total: bool :returns: :mod:`pandas.DataFrame` - "total" or "active" time residency at each frequency. """ residency = self._getCPUFrequencyResidency(cpu) if not residency: return None if total: return residency.total return residency.active def _dfg_cluster_frequency_residency(self, cluster, total=True): """ Get per-Cluster frequency residency, i.e. amount of time CLUSTER `cluster` spent at each frequency. :param cluster: this can be either a single CPU ID or a list of CPU IDs belonging to a cluster or the cluster name as specified in the platform description :type cluster: str or int or list(int) :param total: if true returns the "total" time, otherwise the "active" time is returned :type total: bool :returns: :mod:`pandas.DataFrame` - "total" or "active" time residency at each frequency. """ residency = self._getClusterFrequencyResidency(cluster) if not residency: return None if total: return residency.total return residency.active ############################################################################### # Plotting Methods ############################################################################### def plotClusterFrequencies(self, title='Clusters Frequencies'): """ Plot frequency trend for all clusters. If sched_overutilized events are available, the plots will also show the intervals of time where the cluster was overutilized. :param title: user-defined plot title :type title: str """ if not self._trace.hasEvents('cpu_frequency'): logging.warn('Events [cpu_frequency] not found, plot DISABLED!') return df = self._dfg_trace_event('cpu_frequency') pd.options.mode.chained_assignment = None # Extract LITTLE and big clusters frequencies # and scale them to [MHz] if len(self._platform['clusters']['little']): lfreq = df[df.cpu == self._platform['clusters']['little'][-1]] lfreq['frequency'] = lfreq['frequency']/1e3 else: lfreq = [] if len(self._platform['clusters']['big']): bfreq = df[df.cpu == self._platform['clusters']['big'][-1]] bfreq['frequency'] = bfreq['frequency']/1e3 else: bfreq = [] # Compute AVG frequency for LITTLE cluster avg_lfreq = 0 if len(lfreq) > 0: lfreq['timestamp'] = lfreq.index lfreq['delta'] = (lfreq['timestamp'] -lfreq['timestamp'].shift()).fillna(0).shift(-1) lfreq['cfreq'] = (lfreq['frequency'] * lfreq['delta']).fillna(0) timespan = lfreq.iloc[-1].timestamp - lfreq.iloc[0].timestamp avg_lfreq = lfreq['cfreq'].sum()/timespan # Compute AVG frequency for big cluster avg_bfreq = 0 if len(bfreq) > 0: bfreq['timestamp'] = bfreq.index bfreq['delta'] = (bfreq['timestamp'] - bfreq['timestamp'].shift()).fillna(0).shift(-1) bfreq['cfreq'] = (bfreq['frequency'] * bfreq['delta']).fillna(0) timespan = bfreq.iloc[-1].timestamp - bfreq.iloc[0].timestamp avg_bfreq = bfreq['cfreq'].sum()/timespan pd.options.mode.chained_assignment = 'warn' # Setup a dual cluster plot fig, pltaxes = plt.subplots(2, 1, figsize=(16, 8)) plt.suptitle(title, y=.97, fontsize=16, horizontalalignment='center') # Plot Cluster frequencies axes = pltaxes[0] axes.set_title('big Cluster') if avg_bfreq > 0: axes.axhline(avg_bfreq, color='r', linestyle='--', linewidth=2) axes.set_ylim( (self._platform['freqs']['big'][0] - 100000)/1e3, (self._platform['freqs']['big'][-1] + 100000)/1e3 ) if len(bfreq) > 0: bfreq['frequency'].plot(style=['r-'], ax=axes, drawstyle='steps-post', alpha=0.4) else: logging.warn('NO big CPUs frequency events to plot') axes.set_xlim(self._trace.x_min, self._trace.x_max) axes.set_ylabel('MHz') axes.grid(True) axes.set_xticklabels([]) axes.set_xlabel('') self._trace.analysis.status.plotOverutilized(axes) axes = pltaxes[1] axes.set_title('LITTLE Cluster') if avg_lfreq > 0: axes.axhline(avg_lfreq, color='b', linestyle='--', linewidth=2) axes.set_ylim( (self._platform['freqs']['little'][0] - 100000)/1e3, (self._platform['freqs']['little'][-1] + 100000)/1e3 ) if len(lfreq) > 0: lfreq['frequency'].plot(style=['b-'], ax=axes, drawstyle='steps-post', alpha=0.4) else: logging.warn('NO LITTLE CPUs frequency events to plot') axes.set_xlim(self._trace.x_min, self._trace.x_max) axes.set_ylabel('MHz') axes.grid(True) self._trace.analysis.status.plotOverutilized(axes) # Save generated plots into datadir figname = '{}/{}cluster_freqs.png'\ .format(self._trace.plots_dir, self._trace.plots_prefix) pl.savefig(figname, bbox_inches='tight') logging.info('LITTLE cluster average frequency: %.3f GHz', avg_lfreq/1e3) logging.info('big cluster average frequency: %.3f GHz', avg_bfreq/1e3) return (avg_lfreq/1e3, avg_bfreq/1e3) def plotCPUFrequencyResidency(self, cpus=None, pct=False, active=False): """ Plot per-CPU frequency residency. big CPUs are plotted first and then LITTLEs. Requires the following trace events: - cpu_frequency - cpu_idle :param cpus: List of cpus. By default plot all CPUs :type cpus: list(str) :param pct: plot residencies in percentage :type pct: bool :param active: for percentage plot specify whether to plot active or total time. Default is TOTAL time :type active: bool """ if not self._trace.hasEvents('cpu_frequency'): logging.warn('Events [cpu_frequency] not found, plot DISABLED!') return if not self._trace.hasEvents('cpu_idle'): logging.warn('Events [cpu_idle] not found, plot DISABLED!') return if cpus is None: # Generate plots only for available CPUs cpufreq_data = self._dfg_trace_event('cpu_frequency') _cpus = range(cpufreq_data.cpu.max()+1) else: _cpus = listify(cpus) # Split between big and LITTLE CPUs ordered from higher to lower ID _cpus.reverse() big_cpus = [c for c in _cpus if c in self._platform['clusters']['big']] little_cpus = [c for c in _cpus if c in self._platform['clusters']['little']] _cpus = big_cpus + little_cpus # Precompute active and total time for each CPU residencies = [] xmax = 0.0 for cpu in _cpus: res = self._getCPUFrequencyResidency(cpu) residencies.append(ResidencyData('CPU{}'.format(cpu), res)) max_time = res.total.max().values[0] if xmax < max_time: xmax = max_time self._plotFrequencyResidency(residencies, 'cpu', xmax, pct, active) def plotClusterFrequencyResidency(self, clusters=None, pct=False, active=False): """ Plot the frequency residency in a given cluster, i.e. the amount of time cluster `cluster` spent at frequency `f_i`. By default, both 'big' and 'LITTLE' clusters data are plotted. Requires the following trace events: - cpu_frequency - cpu_idle :param clusters: name of the clusters to be plotted (all of them by default) :type clusters: str ot list(str) :param pct: plot residencies in percentage :type pct: bool :param active: for percentage plot specify whether to plot active or total time. Default is TOTAL time :type active: bool """ if not self._trace.hasEvents('cpu_frequency'): logging.warn('Events [cpu_frequency] not found, plot DISABLED!') return if not self._trace.hasEvents('cpu_idle'): logging.warn('Events [cpu_idle] not found, plot DISABLED!') return # Assumption: all CPUs in a cluster run at the same frequency, i.e. the # frequency is scaled per-cluster not per-CPU. Hence, we can limit the # cluster frequencies data to a single CPU if not self._trace.freq_coherency: logging.warn('Cluster frequency is not coherent, plot DISABLED!') return # Sanitize clusters if clusters is None: _clusters = self._platform['clusters'].keys() else: _clusters = listify(clusters) # Precompute active and total time for each cluster residencies = [] xmax = 0.0 for cluster in _clusters: res = self._getClusterFrequencyResidency( self._platform['clusters'][cluster.lower()]) residencies.append(ResidencyData('{} Cluster'.format(cluster), res)) max_time = res.total.max().values[0] if xmax < max_time: xmax = max_time self._plotFrequencyResidency(residencies, 'cluster', xmax, pct, active) ############################################################################### # Utility Methods ############################################################################### @memoized def _getCPUActiveSignal(self, cpu): """ Build a square wave representing the active (i.e. non-idle) CPU time, i.e.: cpu_active[t] == 1 if at least one CPU is reported to be non-idle by CPUFreq at time t cpu_active[t] == 0 otherwise :param cpu: CPU ID :type cpu: int """ if not self._trace.hasEvents('cpu_idle'): logging.warn('Events [cpu_idle] not found, ' 'cannot compute CPU active signal!') return None idle_df = self._dfg_trace_event('cpu_idle') cpu_df = idle_df[idle_df.cpu_id == cpu] cpu_active = cpu_df.state.apply( lambda s: 1 if s == NON_IDLE_STATE else 0 ) start_time = 0.0 if not self._trace.ftrace.normalized_time: start_time = self._trace.ftrace.basetime if cpu_active.index[0] != start_time: entry_0 = pd.Series(cpu_active.iloc[0] ^ 1, index=[start_time]) cpu_active = pd.concat([entry_0, cpu_active]) return cpu_active @memoized def _getClusterActiveSignal(self, cluster): """ Build a square wave representing the active (i.e. non-idle) cluster time, i.e.: cluster_active[t] == 1 if at least one CPU is reported to be non-idle by CPUFreq at time t cluster_active[t] == 0 otherwise :param cluster: list of CPU IDs belonging to a cluster :type cluster: list(int) """ cpu_active = {} for cpu in cluster: cpu_active[cpu] = self._getCPUActiveSignal(cpu) active = pd.DataFrame(cpu_active) active.fillna(method='ffill', inplace=True) # Cluster active is the OR between the actives on each CPU # belonging to that specific cluster cluster_active = reduce( operator.or_, [cpu_active.astype(int) for _, cpu_active in active.iteritems()] ) return cluster_active @memoized def _getClusterFrequencyResidency(self, cluster): """ Get a DataFrame with per cluster frequency residency, i.e. amount of time spent at a given frequency in each cluster. :param cluster: this can be either a single CPU ID or a list of CPU IDs belonging to a cluster or the cluster name as specified in the platform description :type cluster: str or int or list(int) :returns: namedtuple(ResidencyTime) - tuple of total and active time dataframes :raises: KeyError """ if not self._trace.hasEvents('cpu_frequency'): logging.warn('Events [cpu_frequency] not found, ' 'frequency residency computation not possible!') return None if not self._trace.hasEvents('cpu_idle'): logging.warn('Events [cpu_idle] not found, ' 'frequency residency computation not possible!') return None if isinstance(cluster, str): try: _cluster = self._platform['clusters'][cluster.lower()] except KeyError: logging.warn('%s cluster not found!', cluster) return None else: _cluster = listify(cluster) freq_df = self._dfg_trace_event('cpu_frequency') # Assumption: all CPUs in a cluster run at the same frequency, i.e. the # frequency is scaled per-cluster not per-CPU. Hence, we can limit the # cluster frequencies data to a single CPU. This assumption is verified # by the Trace module when parsing the trace. if len(_cluster) > 1 and not self._trace.freq_coherency: logging.warn('Cluster frequency is NOT coherent,' 'cannot compute residency!') return None cluster_freqs = freq_df[freq_df.cpu == _cluster[0]] # Compute TOTAL Time time_intervals = cluster_freqs.index[1:] - cluster_freqs.index[:-1] total_time = pd.DataFrame({ 'time': time_intervals, 'frequency': [f/1000.0 for f in cluster_freqs.iloc[:-1].frequency] }) total_time = total_time.groupby(['frequency']).sum() # Compute ACTIVE Time cluster_active = self._getClusterActiveSignal(_cluster) # In order to compute the active time spent at each frequency we # multiply 2 square waves: # - cluster_active, a square wave of the form: # cluster_active[t] == 1 if at least one CPU is reported to be # non-idle by CPUFreq at time t # cluster_active[t] == 0 otherwise # - freq_active, square wave of the form: # freq_active[t] == 1 if at time t the frequency is f # freq_active[t] == 0 otherwise available_freqs = sorted(cluster_freqs.frequency.unique()) new_idx = sorted(cluster_freqs.index.tolist() + cluster_active.index.tolist()) cluster_freqs = cluster_freqs.reindex(new_idx, method='ffill') cluster_active = cluster_active.reindex(new_idx, method='ffill') nonidle_time = [] for f in available_freqs: freq_active = cluster_freqs.frequency.apply( lambda x: 1 if x == f else 0 ) active_t = cluster_active * freq_active # Compute total time by integrating the square wave nonidle_time.append(self._trace.integrate_square_wave(active_t)) active_time = pd.DataFrame({'time': nonidle_time}, index=[f/1000.0 for f in available_freqs]) active_time.index.name = 'frequency' return ResidencyTime(total_time, active_time) def _getCPUFrequencyResidency(self, cpu): """ Get a DataFrame with per-CPU frequency residency, i.e. amount of time CPU `cpu` spent at each frequency. Both total and active times will be computed. :param cpu: CPU ID :type cpu: int :returns: namedtuple(ResidencyTime) - tuple of total and active time dataframes """ return self._getClusterFrequencyResidency(cpu) def _plotFrequencyResidencyAbs(self, axes, residency, n_plots, is_first, is_last, xmax, title=''): """ Private method to generate frequency residency plots. :param axes: axes over which to generate the plot :type axes: matplotlib.axes.Axes :param residency: tuple of total and active time dataframes :type residency: namedtuple(ResidencyTime) :param n_plots: total number of plots :type n_plots: int :param is_first: if True this is the first plot :type is_first: bool :param is_last: if True this is the last plot :type is_last: bool :param xmax: x-axes higher bound :param xmax: double :param title: title of this subplot :type title: str """ yrange = 0.4 * max(6, len(residency.total)) * n_plots residency.total.plot.barh(ax=axes, color='g', legend=False, figsize=(16, yrange)) residency.active.plot.barh(ax=axes, color='r', legend=False, figsize=(16, yrange)) axes.set_xlim(0, 1.05*xmax) axes.set_ylabel('Frequency [MHz]') axes.set_title(title) axes.grid(True) if is_last: axes.set_xlabel('Time [s]') else: axes.set_xticklabels([]) if is_first: # Put title on top of the figure. As of now there is no clean way # to make the title appear always in the same position in the # figure because figure heights may vary between different # platforms (different number of OPPs). Hence, we use annotation legend_y = axes.get_ylim()[1] axes.annotate('OPP Residency Time', xy=(0, legend_y), xytext=(-50, 45), textcoords='offset points', fontsize=18) axes.annotate('GREEN: Total', xy=(0, legend_y), xytext=(-50, 25), textcoords='offset points', color='g', fontsize=14) axes.annotate('RED: Active', xy=(0, legend_y), xytext=(50, 25), textcoords='offset points', color='r', fontsize=14) def _plotFrequencyResidencyPct(self, axes, residency_df, label, n_plots, is_first, is_last, res_type): """ Private method to generate PERCENTAGE frequency residency plots. :param axes: axes over which to generate the plot :type axes: matplotlib.axes.Axes :param residency_df: residency time dataframe :type residency_df: :mod:`pandas.DataFrame` :param label: label to be used for percentage residency dataframe :type label: str :param n_plots: total number of plots :type n_plots: int :param is_first: if True this is the first plot :type is_first: bool :param is_first: if True this is the last plot :type is_first: bool :param res_type: type of residency, either TOTAL or ACTIVE :type title: str """ # Compute sum of the time intervals duration = residency_df.time.sum() residency_pct = pd.DataFrame( {label: residency_df.time.apply(lambda x: x*100/duration)}, index=residency_df.index ) yrange = 3 * n_plots residency_pct.T.plot.barh(ax=axes, stacked=True, figsize=(16, yrange)) axes.legend(loc='lower center', ncol=7) axes.set_xlim(0, 100) axes.grid(True) if is_last: axes.set_xlabel('Residency [%]') else: axes.set_xticklabels([]) if is_first: legend_y = axes.get_ylim()[1] axes.annotate('OPP {} Residency Time'.format(res_type), xy=(0, legend_y), xytext=(-50, 35), textcoords='offset points', fontsize=18) def _plotFrequencyResidency(self, residencies, entity_name, xmax, pct, active): """ Generate Frequency residency plots for the given entities. :param residencies: :type residencies: namedtuple(ResidencyData) - tuple containing: 1) as first element, a label to be used as subplot title 2) as second element, a namedtuple(ResidencyTime) :param entity_name: name of the entity ('cpu' or 'cluster') used in the figure name :type entity_name: str :param xmax: upper bound of x-axes :type xmax: double :param pct: plot residencies in percentage :type pct: bool :param active: for percentage plot specify whether to plot active or total time. Default is TOTAL time :type active: bool """ n_plots = len(residencies) gs = gridspec.GridSpec(n_plots, 1) fig = plt.figure() figtype = "" for idx, data in enumerate(residencies): if data.residency is None: plt.close(fig) return axes = fig.add_subplot(gs[idx]) is_first = idx == 0 is_last = idx+1 == n_plots if pct and active: self._plotFrequencyResidencyPct(axes, data.residency.active, data.label, n_plots, is_first, is_last, 'ACTIVE') figtype = "_pct_active" continue if pct: self._plotFrequencyResidencyPct(axes, data.residency.total, data.label, n_plots, is_first, is_last, 'TOTAL') figtype = "_pct_total" continue self._plotFrequencyResidencyAbs(axes, data.residency, n_plots, is_first, is_last, xmax, title=data.label) figname = '{}/{}{}_freq_residency{}.png'\ .format(self._trace.plots_dir, self._trace.plots_prefix, entity_name, figtype) pl.savefig(figname, bbox_inches='tight') # vim :set tabstop=4 shiftwidth=4 expandtab
apache-2.0
pglomski/shopnotes
drill_speed_chart.py
1
2778
#!/usr/bin/env python # -*- coding: UTF-8 -*- '''Produce a custom twist drill plot''' import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt plt.rc('text', usetex=True) # set some rcParams mpl.rcParams['font.weight'] = 'bold' mpl.rcParams['xtick.major.pad'] = 10 mpl.rcParams['xtick.direction'] = 'inout' mpl.rcParams['xtick.labelsize'] = 26 mpl.rcParams['ytick.direction'] = 'inout' mpl.rcParams['ytick.labelsize'] = 20 # define the constants for our chart materials = [ ('Acrylic' , 650 , 'c' , '-' ) , ('Aluminum' , 300 , 'b' , '-' ) , ('Brass' , 200 , 'g' , '-' ) , ('LC Steel' , 110 , 'k' , '-' ) , ('Wood' , 100 , 'brown' , '-' ) , ('MC Steel' , 80 , 'darkgray' , '-' ) , ('HC Steel' , 60 , 'lightgray' , '-' ) , ('Stainless' , 50 , 'purple' , '-' ) , ] drill_speeds = [250, 340, 390, 510, 600, 650, 990, 1550, 1620, 1900, 2620, 3100] #rpm speed_lims = (200., 4000.) # rpm max_in = 1. # in. incr = 1./16. # in. im_sz = 25. # in. ratio = 8.5/11. fig = plt.figure(figsize=(im_sz,ratio * im_sz), dpi=600) fig.patch.set_alpha(0) # generate a vector of drill bit diameter x = np.array([float(i) * incr for i in range(1,int(max_in/incr) + 1)]) # in. # calculate the drill speed curve for each material type and plot the curve for name, speed, color, linestyle in materials: plt.loglog(x, 12/np.pi/x*speed, label=name, linewidth=5, color=color, linestyle=linestyle) ax = plt.gca() # adjust the axis tick locators to match drill press speeds ax.yaxis.set_major_locator(mpl.ticker.FixedLocator(drill_speeds)) ax.yaxis.set_major_formatter(mpl.ticker.FormatStrFormatter('%4d')) ax.yaxis.set_minor_locator(mpl.ticker.NullLocator()) ax.set_ylim(speed_lims) # set the drill diameter locators and format the ticks with LaTeX ax.xaxis.set_major_locator(mpl.ticker.MultipleLocator(base=incr)) ax.xaxis.set_minor_locator(mpl.ticker.NullLocator()) ax.set_xlim((incr, max_in)) ticks = ['0', r'$$\frac{1}{16}$$' , r'$$\frac{1}{8}$$' , r'$$\frac{3}{16}$$' , r'$$\frac{1}{4}$$' , r'$$\frac{5}{16}$$' , r'$$\frac{3}{8}$$' , r'$$\frac{7}{16}$$' , r'$$\frac{1}{2}$$' , r'$$\frac{9}{16}$$' , r'$$\frac{5}{8}$$' , r'$$\frac{11}{16}$$' , r'$$\frac{3}{4}$$' , r'$$\frac{13}{16}$$' , r'$$\frac{7}{8}$$' , r'$$\frac{15}{16}$$' , r'$$1$$' ] ax.xaxis.set_ticklabels(ticks) # Add the Texts plt.xlabel('Bit Diameter (in.)', fontsize=26) plt.ylabel('Drill Speed (rpm)' , fontsize=26) plt.title('Twist Drill Speeds' , fontsize=50) plt.legend(ncol=2, loc=3, fontsize=40) plt.grid('on') plt.savefig('drill_speed_chart.png')
agpl-3.0
raghavrv/scikit-learn
examples/decomposition/plot_pca_iris.py
49
1511
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= PCA example with Iris Data-set ========================================================= Principal Component Analysis applied to the Iris dataset. See `here <https://en.wikipedia.org/wiki/Iris_flower_data_set>`_ for more information on this dataset. """ print(__doc__) # Code source: Gaël Varoquaux # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from sklearn import decomposition from sklearn import datasets np.random.seed(5) centers = [[1, 1], [-1, -1], [1, -1]] iris = datasets.load_iris() X = iris.data y = iris.target fig = plt.figure(1, figsize=(4, 3)) plt.clf() ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134) plt.cla() pca = decomposition.PCA(n_components=3) pca.fit(X) X = pca.transform(X) for name, label in [('Setosa', 0), ('Versicolour', 1), ('Virginica', 2)]: ax.text3D(X[y == label, 0].mean(), X[y == label, 1].mean() + 1.5, X[y == label, 2].mean(), name, horizontalalignment='center', bbox=dict(alpha=.5, edgecolor='w', facecolor='w')) # Reorder the labels to have colors matching the cluster results y = np.choose(y, [1, 2, 0]).astype(np.float) ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=y, cmap=plt.cm.spectral, edgecolor='k') ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) plt.show()
bsd-3-clause
LiaoPan/scikit-learn
examples/applications/plot_outlier_detection_housing.py
243
5577
""" ==================================== Outlier detection on a real data set ==================================== This example illustrates the need for robust covariance estimation on a real data set. It is useful both for outlier detection and for a better understanding of the data structure. We selected two sets of two variables from the Boston housing data set as an illustration of what kind of analysis can be done with several outlier detection tools. For the purpose of visualization, we are working with two-dimensional examples, but one should be aware that things are not so trivial in high-dimension, as it will be pointed out. In both examples below, the main result is that the empirical covariance estimate, as a non-robust one, is highly influenced by the heterogeneous structure of the observations. Although the robust covariance estimate is able to focus on the main mode of the data distribution, it sticks to the assumption that the data should be Gaussian distributed, yielding some biased estimation of the data structure, but yet accurate to some extent. The One-Class SVM algorithm First example ------------- The first example illustrates how robust covariance estimation can help concentrating on a relevant cluster when another one exists. Here, many observations are confounded into one and break down the empirical covariance estimation. Of course, some screening tools would have pointed out the presence of two clusters (Support Vector Machines, Gaussian Mixture Models, univariate outlier detection, ...). But had it been a high-dimensional example, none of these could be applied that easily. Second example -------------- The second example shows the ability of the Minimum Covariance Determinant robust estimator of covariance to concentrate on the main mode of the data distribution: the location seems to be well estimated, although the covariance is hard to estimate due to the banana-shaped distribution. Anyway, we can get rid of some outlying observations. The One-Class SVM is able to capture the real data structure, but the difficulty is to adjust its kernel bandwidth parameter so as to obtain a good compromise between the shape of the data scatter matrix and the risk of over-fitting the data. """ print(__doc__) # Author: Virgile Fritsch <virgile.fritsch@inria.fr> # License: BSD 3 clause import numpy as np from sklearn.covariance import EllipticEnvelope from sklearn.svm import OneClassSVM import matplotlib.pyplot as plt import matplotlib.font_manager from sklearn.datasets import load_boston # Get data X1 = load_boston()['data'][:, [8, 10]] # two clusters X2 = load_boston()['data'][:, [5, 12]] # "banana"-shaped # Define "classifiers" to be used classifiers = { "Empirical Covariance": EllipticEnvelope(support_fraction=1., contamination=0.261), "Robust Covariance (Minimum Covariance Determinant)": EllipticEnvelope(contamination=0.261), "OCSVM": OneClassSVM(nu=0.261, gamma=0.05)} colors = ['m', 'g', 'b'] legend1 = {} legend2 = {} # Learn a frontier for outlier detection with several classifiers xx1, yy1 = np.meshgrid(np.linspace(-8, 28, 500), np.linspace(3, 40, 500)) xx2, yy2 = np.meshgrid(np.linspace(3, 10, 500), np.linspace(-5, 45, 500)) for i, (clf_name, clf) in enumerate(classifiers.items()): plt.figure(1) clf.fit(X1) Z1 = clf.decision_function(np.c_[xx1.ravel(), yy1.ravel()]) Z1 = Z1.reshape(xx1.shape) legend1[clf_name] = plt.contour( xx1, yy1, Z1, levels=[0], linewidths=2, colors=colors[i]) plt.figure(2) clf.fit(X2) Z2 = clf.decision_function(np.c_[xx2.ravel(), yy2.ravel()]) Z2 = Z2.reshape(xx2.shape) legend2[clf_name] = plt.contour( xx2, yy2, Z2, levels=[0], linewidths=2, colors=colors[i]) legend1_values_list = list( legend1.values() ) legend1_keys_list = list( legend1.keys() ) # Plot the results (= shape of the data points cloud) plt.figure(1) # two clusters plt.title("Outlier detection on a real data set (boston housing)") plt.scatter(X1[:, 0], X1[:, 1], color='black') bbox_args = dict(boxstyle="round", fc="0.8") arrow_args = dict(arrowstyle="->") plt.annotate("several confounded points", xy=(24, 19), xycoords="data", textcoords="data", xytext=(13, 10), bbox=bbox_args, arrowprops=arrow_args) plt.xlim((xx1.min(), xx1.max())) plt.ylim((yy1.min(), yy1.max())) plt.legend((legend1_values_list[0].collections[0], legend1_values_list[1].collections[0], legend1_values_list[2].collections[0]), (legend1_keys_list[0], legend1_keys_list[1], legend1_keys_list[2]), loc="upper center", prop=matplotlib.font_manager.FontProperties(size=12)) plt.ylabel("accessibility to radial highways") plt.xlabel("pupil-teacher ratio by town") legend2_values_list = list( legend2.values() ) legend2_keys_list = list( legend2.keys() ) plt.figure(2) # "banana" shape plt.title("Outlier detection on a real data set (boston housing)") plt.scatter(X2[:, 0], X2[:, 1], color='black') plt.xlim((xx2.min(), xx2.max())) plt.ylim((yy2.min(), yy2.max())) plt.legend((legend2_values_list[0].collections[0], legend2_values_list[1].collections[0], legend2_values_list[2].collections[0]), (legend2_values_list[0], legend2_values_list[1], legend2_values_list[2]), loc="upper center", prop=matplotlib.font_manager.FontProperties(size=12)) plt.ylabel("% lower status of the population") plt.xlabel("average number of rooms per dwelling") plt.show()
bsd-3-clause
LarsDu/DeepNuc
deepnuc/nucbinaryclassifier.py
2
15464
import tensorflow as tf import numpy as np import sklearn.metrics as metrics #from databatcher import DataBatcher import nucconvmodel #import dubiotools as dbt import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import pprint from itertools import cycle import os import sys #Logging imports from logger import Logger from nucinference import NucInference from collections import OrderedDict class NucBinaryClassifier(NucInference): use_onehot_labels = True def __init__(self, sess, train_batcher, test_batcher, num_epochs, learning_rate, batch_size, seq_len, save_dir, keep_prob=0.5, beta1=0.9, concat_revcom_input=False, nn_method_key="inferenceA", pos_index=1): """NucBinaryClassifier encapsulates training and data evaluation for :param sess: tf.Session() object :param train_batcher: DataBatcher object for training set :param test_batcher: DataBatcher object for test set :param num_epochs: Number of epoch cycles to perform training :param learning_rate: Learning rate :param batch_size: Mini-batch pull size :param seq_len: Sequence length :param save_dir: Root save directory for binary classification model :param keep_prob: Probability of keeping weight for dropout regularization :param beta1: Beta1 parameter for AdamOptimizer :param concat_revcom_input: If true, concatenate reverse complement of nucleotide sequence to input vector :param nn_method_key: Dictionary key for inference method found in nucconvmodels.py file. Determines which model to use. Example: "inferenceA" will run nucconvmodels.inferenceA :param pos_index: The index to use for the positive class (defaults to 1) :returns: a NucBinaryClassifier object :rtype: NucBinaryClassifier """ super(NucBinaryClassifier, self).__init__(sess, train_batcher, test_batcher, num_epochs, learning_rate, batch_size, seq_len, save_dir, keep_prob, beta1, concat_revcom_input, nn_method_key="inferenceA") if self.train_batcher.num_classes != 2: print "Error, more than two classes detected in train batcher" else: self.num_classes = 2 #The index for the label that should be considered the positive class self.pos_index=pos_index self.save_on_epoch = 5 def build_model(self): self.dna_seq_placeholder = tf.placeholder(tf.float32, shape=[None,self.seq_len,4], name="dna_seq") self.labels_placeholder = tf.placeholder(tf.float32, shape=[None, self.num_classes], name="labels") self.keep_prob_placeholder = tf.placeholder(tf.float32,name="keep_prob") self.logits, self.network = self.nn_method(self.dna_seq_placeholder, self.keep_prob_placeholder, self.num_classes) self.probs = tf.nn.softmax(self.logits) self.loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(labels=self.labels_placeholder, logits=self.logits)) ''' Calculate metrics. num_true positives is the number of true positives for the current batch Table below shows index if tf.argmax is applied +-----+-----------+---------+ | | Classifier| Label | +-----+-----------+---------+ | TP | 1 | 1 | +-----+-----------+---------+ | FP | 1 | 0 | +-----+-----------+---------+ | TN | 0 | 0 | +-----+-----------+---------+ | FN | 0 | 1 | +-----+-----------+---------+ Precision = TP/(TP+FP) Recall = TP/(TP+FN) F1-score = 2*(Prec*Rec)/(Prec+Rec) # Note: I ended up not using the tp,fp,tn,fn ops because I ended up calculating # these metrics using sklearn. ''' #correct = TN+TP #Used for calculating accuracy self.logits_ind = tf.argmax(self.logits,1) self.labels_ind = tf.argmax(self.labels_placeholder,1) #Create max_mask of logits (ie: [-.5,.5] --> [0 1]. Note logits have # shape [batch_size * num_classes= 2] #self.inverse_logits_col = tf.ones_like(self.logits_ind) - self.logits_ind #self.max_mask_logits = tf.concat([self.inverse_logits_col,self.logits_ind],1) #True positives where logits_ind+labels_ind == 2 #True negatives where logits_ind+labels_ind == 0 self.sum_ind = tf.add(self.logits_ind,self.labels_ind) self.true_positives = tf.equal(self.sum_ind,2*tf.ones_like(self.sum_ind)) #bool self.num_true_positives =tf.reduce_sum(tf.cast(self.true_positives, tf.int32)) #For FP classifier index > label index self.false_positives=tf.greater(self.logits_ind,self.labels_ind) self.num_false_positives = tf.reduce_sum(tf.cast(self.false_positives, tf.int32)) self.true_negatives = tf.equal(self.sum_ind,tf.zeros_like(self.sum_ind)) #bool self.num_true_negatives= tf.reduce_sum(tf.cast(self.true_negatives,tf.int32)) #For FN classifier index < label index self.false_negatives=tf.less(self.logits_ind,self.labels_ind) self.num_false_negatives = tf.reduce_sum(tf.cast(self.false_negatives,tf.int32)) #num correct can be used to calculate accuracy self.correct = tf.equal(self.logits_ind,self.labels_ind) self.num_correct= tf.reduce_sum(tf.cast(self.correct, tf.int32)) self.relevance =self.network.relevance_backprop(tf.multiply(self.logits, self.labels_placeholder)) '''Write and consolidate summaries''' self.loss_summary = tf.summary.scalar('loss',self.loss) self.summary_writer = tf.summary.FileWriter(self.summary_dir,self.sess.graph) self.summary_op = tf.summary.merge([self.loss_summary]) #Note: Do not use tf.summary.merge_all() here. This will break encapsulation for # cross validation and lead to crashes when training multiple models # Add gradient ops to graph with learning rate self.train_op = tf.train.AdamOptimizer(self.learning_rate, beta1=self.beta1).minimize(self.loss) self.vars = tf.trainable_variables() self.var_names = [var.name for var in self.vars] #print "Trainable variables:\n" #for vname in self.var_names: # print vname self.saver = tf.train.Saver() self.init_op = tf.global_variables_initializer() #Important note: Restoring model does not require init_op. #In fact calling tf.global_variables_initializer() after loading a model #will overwrite loaded weights self.sess.run(self.init_op) self.load(self.checkpoint_dir) def eval_model_metrics(self, batcher, save_plots=False, image_name ='metrics.png', eval_batch_size=50): """ Note: This method only works for binary classification as auPRC and auROC graphs only apply to binary classificaton problems. TODO: Modify this code to perform auROC generation for one-vs-all in the case of multiclass classification. """ #Ref: http://scikit-learn.org/stable/modules/model_evaluation.html#roc-metrics ##auROC calculations #Keep batch size at 1 for now to ensure 1 full epoch is evaluated all_labels = np.zeros((batcher.num_records,self.num_classes), dtype = np.float32) all_probs = np.zeros((batcher.num_records,self.num_classes), dtype = np.float32) #num_correct = 0 #counts number of correct predictions num_whole_pulls = batcher.num_records//eval_batch_size num_single_pulls = batcher.num_records%eval_batch_size num_steps = num_whole_pulls+num_single_pulls for i in range(num_steps): if i<num_whole_pulls: batch_size=eval_batch_size else: batch_size=1 labels_batch, dna_seq_batch = batcher.pull_batch(batch_size) feed_dict = { self.dna_seq_placeholder:dna_seq_batch, self.labels_placeholder:labels_batch, self.keep_prob_placeholder:1.0 } cur_prob= self.sess.run(self.probs,feed_dict=feed_dict) #Fill labels array if batch_size > 1: start_ind = batch_size*i elif batch_size == 1: start_ind = num_whole_pulls*eval_batch_size+(i-num_whole_pulls) else: print "Never reach this condition" all_labels[start_ind:start_ind+batch_size,:] = labels_batch all_probs[start_ind:start_ind+batch_size,:] = cur_prob #Calculate metrics and save results in a dict md = self.calc_classifier_metrics(all_labels,all_probs) md["epoch"]=self.epoch md["step"]=self.step #print "Testing accuracy",float(num_correct)/float(batcher.num_records) print 'Num examples: %d Num correct: %d Accuracy: %0.04f' % \ (batcher.num_records, md["num_correct"], md["accuracy"])+'\n' if save_plots: ###Plot some metrics plot_colors = cycle(['cyan','blue','orange','teal']) #print "Labels shape",all_labels.shape #print "Probs shape",all_probs.shape #print "Preds shape",all_preds.shape #Generate auROC plot axes fig1,ax1 = plt.subplots(2) fig1.subplots_adjust(bottom=0.2) ax1[0].plot([0,1],[0,1],color='navy',lw=2,linestyle='--') ax1[0].set_xbound(0.0,1.0) ax1[0].set_ybound(0.0,1.05) ax1[0].set_xlabel('False Positive Rate') ax1[0].set_ylabel('True Positive Rate') ax1[0].set_title('auROC') #plt.legend(loc='lower right') ax1[0].plot(md["fpr"],md["tpr"],color=plot_colors.next(), lw=2,linestyle='-',label='auROC curve (area=%0.2f)' % md["auroc"] ) #Generate auPRC plot axes #ax1[1].plot([0,1],[1,1],color='royalblue',lw=2,linestyle='--') ax1[1].set_xlabel('Precision') ax1[1].set_ylabel('Recall') ax1[1].set_title('auPRC') ax1[1].plot(md["thresh_precision"],md["thresh_recall"],color=plot_colors.next(), lw=2,linestyle='-',label='auPRC curve (area=%0.2f)' % md["auprc"] ) ax1[1].set_xbound(0.0,1.0) ax1[1].set_ybound(0.0,1.05) #Note: avg prec score is the area under the prec recall curve #Note: Presumably class 1 (pos examples) should be the only f1 score we focus on #print "F1 score for class",i,"is",f1_score plt.tight_layout() plt_fname = self.save_dir+os.sep+image_name print "Saving auROC image to",plt_fname fig1.savefig(plt_fname) #Return metrics dictionary return md def calc_classifier_metrics(self,all_labels,all_probs): """Calculate some metrics for the dataset return dictionary with metrics :param all_probs: nx2 prob values :param all_labels: nx2 labels :returns: dictionary of metrics :rtype: dict() """ num_records = all_probs.shape[0] all_preds = np.zeros((num_records, self.num_classes),dtype = np.float32) all_preds[np.arange(num_records),all_probs.argmax(1)] = 1 #Calculate accuracy num_correct = metrics.accuracy_score(all_labels[:,self.pos_index],all_preds[:,self.pos_index],normalize=False) accuracy = num_correct/float(all_preds.shape[0]) ###Calculate auROC #http://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html #metrics.roc_curve(y_true, y_score[, ...]) #y_score is probs fpr,tpr,_ = metrics.roc_curve(all_labels[:,self.pos_index], all_probs[:,self.pos_index], pos_label=self.pos_index) auroc = metrics.auc(fpr,tpr) thresh_precision,thresh_recall,prc_thresholds = metrics.precision_recall_curve( all_labels[:,self.pos_index], all_probs[:,self.pos_index]) #Calculate precision, recall, and f1-score for threshold = 0.5 #confusion_matrix = metrics.confusion_matrix(all_labels[:,self.pos_index],all_probs[:,self.pos_index]) precision, recall, f1_score, support = metrics.precision_recall_fscore_support( all_labels[:,self.pos_index], all_preds[:,self.pos_index], pos_label=self.pos_index) precision = precision[self.pos_index] recall = recall[self.pos_index] f1_score = f1_score[self.pos_index] support = support[self.pos_index] auprc = metrics.average_precision_score(all_labels[:,self.pos_index], all_probs[:,self.pos_index]) return OrderedDict([ ("num_correct",num_correct), ("accuracy",accuracy), ("auroc",auroc), ("auprc",auprc), ("fpr",fpr), ("tpr",tpr), ("precision",precision), ("recall",recall), ("f1_score",f1_score), ("support",support), ("thresh_precision",thresh_precision), ("thresh_recall",thresh_recall), ("prc_thresholds",prc_thresholds) ])
gpl-3.0
valexandersaulys/prudential_insurance_kaggle
venv/lib/python2.7/site-packages/pandas/io/tests/test_common.py
9
2087
""" Tests for the pandas.io.common functionalities """ from pandas.compat import StringIO import os from os.path import isabs import nose import pandas.util.testing as tm from pandas.io import common try: from pathlib import Path except ImportError: pass try: from py.path import local as LocalPath except ImportError: pass class TestCommonIOCapabilities(tm.TestCase): def test_expand_user(self): filename = '~/sometest' expanded_name = common._expand_user(filename) self.assertNotEqual(expanded_name, filename) self.assertTrue(isabs(expanded_name)) self.assertEqual(os.path.expanduser(filename), expanded_name) def test_expand_user_normal_path(self): filename = '/somefolder/sometest' expanded_name = common._expand_user(filename) self.assertEqual(expanded_name, filename) self.assertEqual(os.path.expanduser(filename), expanded_name) def test_stringify_path_pathlib(self): tm._skip_if_no_pathlib() rel_path = common._stringify_path(Path('.')) self.assertEqual(rel_path, '.') redundant_path = common._stringify_path(Path('foo//bar')) self.assertEqual(redundant_path, os.path.join('foo', 'bar')) def test_stringify_path_localpath(self): tm._skip_if_no_localpath() path = os.path.join('foo', 'bar') abs_path = os.path.abspath(path) lpath = LocalPath(path) self.assertEqual(common._stringify_path(lpath), abs_path) def test_get_filepath_or_buffer_with_path(self): filename = '~/sometest' filepath_or_buffer, _, _ = common.get_filepath_or_buffer(filename) self.assertNotEqual(filepath_or_buffer, filename) self.assertTrue(isabs(filepath_or_buffer)) self.assertEqual(os.path.expanduser(filename), filepath_or_buffer) def test_get_filepath_or_buffer_with_buffer(self): input_buffer = StringIO() filepath_or_buffer, _, _ = common.get_filepath_or_buffer(input_buffer) self.assertEqual(filepath_or_buffer, input_buffer)
gpl-2.0
bdh1011/wau
venv/lib/python2.7/site-packages/pandas/io/tests/test_sql.py
1
93879
"""SQL io tests The SQL tests are broken down in different classes: - `PandasSQLTest`: base class with common methods for all test classes - Tests for the public API (only tests with sqlite3) - `_TestSQLApi` base class - `TestSQLApi`: test the public API with sqlalchemy engine - `TestSQLiteFallbackApi`: test the public API with a sqlite DBAPI connection - Tests for the different SQL flavors (flavor specific type conversions) - Tests for the sqlalchemy mode: `_TestSQLAlchemy` is the base class with common methods, the different tested flavors (sqlite3, MySQL, PostgreSQL) derive from the base class - Tests for the fallback mode (`TestSQLiteFallback` and `TestMySQLLegacy`) """ from __future__ import print_function import unittest import sqlite3 import csv import os import sys import nose import warnings import numpy as np from datetime import datetime, date, time from pandas import DataFrame, Series, Index, MultiIndex, isnull, concat from pandas import date_range, to_datetime, to_timedelta, Timestamp import pandas.compat as compat from pandas.compat import StringIO, range, lrange, string_types from pandas.core.datetools import format as date_format import pandas.io.sql as sql from pandas.io.sql import read_sql_table, read_sql_query import pandas.util.testing as tm try: import sqlalchemy import sqlalchemy.schema import sqlalchemy.sql.sqltypes as sqltypes SQLALCHEMY_INSTALLED = True except ImportError: SQLALCHEMY_INSTALLED = False SQL_STRINGS = { 'create_iris': { 'sqlite': """CREATE TABLE iris ( "SepalLength" REAL, "SepalWidth" REAL, "PetalLength" REAL, "PetalWidth" REAL, "Name" TEXT )""", 'mysql': """CREATE TABLE iris ( `SepalLength` DOUBLE, `SepalWidth` DOUBLE, `PetalLength` DOUBLE, `PetalWidth` DOUBLE, `Name` VARCHAR(200) )""", 'postgresql': """CREATE TABLE iris ( "SepalLength" DOUBLE PRECISION, "SepalWidth" DOUBLE PRECISION, "PetalLength" DOUBLE PRECISION, "PetalWidth" DOUBLE PRECISION, "Name" VARCHAR(200) )""" }, 'insert_iris': { 'sqlite': """INSERT INTO iris VALUES(?, ?, ?, ?, ?)""", 'mysql': """INSERT INTO iris VALUES(%s, %s, %s, %s, "%s");""", 'postgresql': """INSERT INTO iris VALUES(%s, %s, %s, %s, %s);""" }, 'create_test_types': { 'sqlite': """CREATE TABLE types_test_data ( "TextCol" TEXT, "DateCol" TEXT, "IntDateCol" INTEGER, "FloatCol" REAL, "IntCol" INTEGER, "BoolCol" INTEGER, "IntColWithNull" INTEGER, "BoolColWithNull" INTEGER )""", 'mysql': """CREATE TABLE types_test_data ( `TextCol` TEXT, `DateCol` DATETIME, `IntDateCol` INTEGER, `FloatCol` DOUBLE, `IntCol` INTEGER, `BoolCol` BOOLEAN, `IntColWithNull` INTEGER, `BoolColWithNull` BOOLEAN )""", 'postgresql': """CREATE TABLE types_test_data ( "TextCol" TEXT, "DateCol" TIMESTAMP, "DateColWithTz" TIMESTAMP WITH TIME ZONE, "IntDateCol" INTEGER, "FloatCol" DOUBLE PRECISION, "IntCol" INTEGER, "BoolCol" BOOLEAN, "IntColWithNull" INTEGER, "BoolColWithNull" BOOLEAN )""" }, 'insert_test_types': { 'sqlite': { 'query': """ INSERT INTO types_test_data VALUES(?, ?, ?, ?, ?, ?, ?, ?) """, 'fields': ( 'TextCol', 'DateCol', 'IntDateCol', 'FloatCol', 'IntCol', 'BoolCol', 'IntColWithNull', 'BoolColWithNull' ) }, 'mysql': { 'query': """ INSERT INTO types_test_data VALUES("%s", %s, %s, %s, %s, %s, %s, %s) """, 'fields': ( 'TextCol', 'DateCol', 'IntDateCol', 'FloatCol', 'IntCol', 'BoolCol', 'IntColWithNull', 'BoolColWithNull' ) }, 'postgresql': { 'query': """ INSERT INTO types_test_data VALUES(%s, %s, %s, %s, %s, %s, %s, %s, %s) """, 'fields': ( 'TextCol', 'DateCol', 'DateColWithTz', 'IntDateCol', 'FloatCol', 'IntCol', 'BoolCol', 'IntColWithNull', 'BoolColWithNull' ) }, }, 'read_parameters': { 'sqlite': "SELECT * FROM iris WHERE Name=? AND SepalLength=?", 'mysql': 'SELECT * FROM iris WHERE `Name`="%s" AND `SepalLength`=%s', 'postgresql': 'SELECT * FROM iris WHERE "Name"=%s AND "SepalLength"=%s' }, 'read_named_parameters': { 'sqlite': """ SELECT * FROM iris WHERE Name=:name AND SepalLength=:length """, 'mysql': """ SELECT * FROM iris WHERE `Name`="%(name)s" AND `SepalLength`=%(length)s """, 'postgresql': """ SELECT * FROM iris WHERE "Name"=%(name)s AND "SepalLength"=%(length)s """ } } class PandasSQLTest(unittest.TestCase): """ Base class with common private methods for SQLAlchemy and fallback cases. """ def drop_table(self, table_name): self._get_exec().execute("DROP TABLE IF EXISTS %s" % table_name) def _get_exec(self): if hasattr(self.conn, 'execute'): return self.conn else: return self.conn.cursor() def _load_iris_data(self): import io iris_csv_file = os.path.join(tm.get_data_path(), 'iris.csv') self.drop_table('iris') self._get_exec().execute(SQL_STRINGS['create_iris'][self.flavor]) with io.open(iris_csv_file, mode='r', newline=None) as iris_csv: r = csv.reader(iris_csv) next(r) # skip header row ins = SQL_STRINGS['insert_iris'][self.flavor] for row in r: self._get_exec().execute(ins, row) def _check_iris_loaded_frame(self, iris_frame): pytype = iris_frame.dtypes[0].type row = iris_frame.iloc[0] self.assertTrue( issubclass(pytype, np.floating), 'Loaded frame has incorrect type') tm.equalContents(row.values, [5.1, 3.5, 1.4, 0.2, 'Iris-setosa']) def _load_test1_data(self): columns = ['index', 'A', 'B', 'C', 'D'] data = [( '2000-01-03 00:00:00', 0.980268513777, 3.68573087906, -0.364216805298, -1.15973806169), ('2000-01-04 00:00:00', 1.04791624281, - 0.0412318367011, -0.16181208307, 0.212549316967), ('2000-01-05 00:00:00', 0.498580885705, 0.731167677815, -0.537677223318, 1.34627041952), ('2000-01-06 00:00:00', 1.12020151869, 1.56762092543, 0.00364077397681, 0.67525259227)] self.test_frame1 = DataFrame(data, columns=columns) def _load_test2_data(self): df = DataFrame(dict(A=[4, 1, 3, 6], B=['asd', 'gsq', 'ylt', 'jkl'], C=[1.1, 3.1, 6.9, 5.3], D=[False, True, True, False], E=['1990-11-22', '1991-10-26', '1993-11-26', '1995-12-12'])) df['E'] = to_datetime(df['E']) self.test_frame2 = df def _load_test3_data(self): columns = ['index', 'A', 'B'] data = [( '2000-01-03 00:00:00', 2 ** 31 - 1, -1.987670), ('2000-01-04 00:00:00', -29, -0.0412318367011), ('2000-01-05 00:00:00', 20000, 0.731167677815), ('2000-01-06 00:00:00', -290867, 1.56762092543)] self.test_frame3 = DataFrame(data, columns=columns) def _load_raw_sql(self): self.drop_table('types_test_data') self._get_exec().execute(SQL_STRINGS['create_test_types'][self.flavor]) ins = SQL_STRINGS['insert_test_types'][self.flavor] data = [ { 'TextCol': 'first', 'DateCol': '2000-01-03 00:00:00', 'DateColWithTz': '2000-01-01 00:00:00-08:00', 'IntDateCol': 535852800, 'FloatCol': 10.10, 'IntCol': 1, 'BoolCol': False, 'IntColWithNull': 1, 'BoolColWithNull': False, }, { 'TextCol': 'first', 'DateCol': '2000-01-04 00:00:00', 'DateColWithTz': '2000-06-01 00:00:00-07:00', 'IntDateCol': 1356998400, 'FloatCol': 10.10, 'IntCol': 1, 'BoolCol': False, 'IntColWithNull': None, 'BoolColWithNull': None, }, ] for d in data: self._get_exec().execute( ins['query'], [d[field] for field in ins['fields']] ) def _count_rows(self, table_name): result = self._get_exec().execute( "SELECT count(*) AS count_1 FROM %s" % table_name).fetchone() return result[0] def _read_sql_iris(self): iris_frame = self.pandasSQL.read_query("SELECT * FROM iris") self._check_iris_loaded_frame(iris_frame) def _read_sql_iris_parameter(self): query = SQL_STRINGS['read_parameters'][self.flavor] params = ['Iris-setosa', 5.1] iris_frame = self.pandasSQL.read_query(query, params=params) self._check_iris_loaded_frame(iris_frame) def _read_sql_iris_named_parameter(self): query = SQL_STRINGS['read_named_parameters'][self.flavor] params = {'name': 'Iris-setosa', 'length': 5.1} iris_frame = self.pandasSQL.read_query(query, params=params) self._check_iris_loaded_frame(iris_frame) def _to_sql(self): self.drop_table('test_frame1') self.pandasSQL.to_sql(self.test_frame1, 'test_frame1') self.assertTrue(self.pandasSQL.has_table( 'test_frame1'), 'Table not written to DB') # Nuke table self.drop_table('test_frame1') def _to_sql_empty(self): self.drop_table('test_frame1') self.pandasSQL.to_sql(self.test_frame1.iloc[:0], 'test_frame1') def _to_sql_fail(self): self.drop_table('test_frame1') self.pandasSQL.to_sql( self.test_frame1, 'test_frame1', if_exists='fail') self.assertTrue(self.pandasSQL.has_table( 'test_frame1'), 'Table not written to DB') self.assertRaises(ValueError, self.pandasSQL.to_sql, self.test_frame1, 'test_frame1', if_exists='fail') self.drop_table('test_frame1') def _to_sql_replace(self): self.drop_table('test_frame1') self.pandasSQL.to_sql( self.test_frame1, 'test_frame1', if_exists='fail') # Add to table again self.pandasSQL.to_sql( self.test_frame1, 'test_frame1', if_exists='replace') self.assertTrue(self.pandasSQL.has_table( 'test_frame1'), 'Table not written to DB') num_entries = len(self.test_frame1) num_rows = self._count_rows('test_frame1') self.assertEqual( num_rows, num_entries, "not the same number of rows as entries") self.drop_table('test_frame1') def _to_sql_append(self): # Nuke table just in case self.drop_table('test_frame1') self.pandasSQL.to_sql( self.test_frame1, 'test_frame1', if_exists='fail') # Add to table again self.pandasSQL.to_sql( self.test_frame1, 'test_frame1', if_exists='append') self.assertTrue(self.pandasSQL.has_table( 'test_frame1'), 'Table not written to DB') num_entries = 2 * len(self.test_frame1) num_rows = self._count_rows('test_frame1') self.assertEqual( num_rows, num_entries, "not the same number of rows as entries") self.drop_table('test_frame1') def _roundtrip(self): self.drop_table('test_frame_roundtrip') self.pandasSQL.to_sql(self.test_frame1, 'test_frame_roundtrip') result = self.pandasSQL.read_query('SELECT * FROM test_frame_roundtrip') result.set_index('level_0', inplace=True) # result.index.astype(int) result.index.name = None tm.assert_frame_equal(result, self.test_frame1) def _execute_sql(self): # drop_sql = "DROP TABLE IF EXISTS test" # should already be done iris_results = self.pandasSQL.execute("SELECT * FROM iris") row = iris_results.fetchone() tm.equalContents(row, [5.1, 3.5, 1.4, 0.2, 'Iris-setosa']) def _to_sql_save_index(self): df = DataFrame.from_records([(1,2.1,'line1'), (2,1.5,'line2')], columns=['A','B','C'], index=['A']) self.pandasSQL.to_sql(df, 'test_to_sql_saves_index') ix_cols = self._get_index_columns('test_to_sql_saves_index') self.assertEqual(ix_cols, [['A',],]) def _transaction_test(self): self.pandasSQL.execute("CREATE TABLE test_trans (A INT, B TEXT)") ins_sql = "INSERT INTO test_trans (A,B) VALUES (1, 'blah')" # Make sure when transaction is rolled back, no rows get inserted try: with self.pandasSQL.run_transaction() as trans: trans.execute(ins_sql) raise Exception('error') except: # ignore raised exception pass res = self.pandasSQL.read_query('SELECT * FROM test_trans') self.assertEqual(len(res), 0) # Make sure when transaction is committed, rows do get inserted with self.pandasSQL.run_transaction() as trans: trans.execute(ins_sql) res2 = self.pandasSQL.read_query('SELECT * FROM test_trans') self.assertEqual(len(res2), 1) #------------------------------------------------------------------------------ #--- Testing the public API class _TestSQLApi(PandasSQLTest): """ Base class to test the public API. From this two classes are derived to run these tests for both the sqlalchemy mode (`TestSQLApi`) and the fallback mode (`TestSQLiteFallbackApi`). These tests are run with sqlite3. Specific tests for the different sql flavours are included in `_TestSQLAlchemy`. Notes: flavor can always be passed even in SQLAlchemy mode, should be correctly ignored. we don't use drop_table because that isn't part of the public api """ flavor = 'sqlite' mode = None def setUp(self): self.conn = self.connect() self._load_iris_data() self._load_test1_data() self._load_test2_data() self._load_test3_data() self._load_raw_sql() def test_read_sql_iris(self): iris_frame = sql.read_sql_query( "SELECT * FROM iris", self.conn) self._check_iris_loaded_frame(iris_frame) def test_legacy_read_frame(self): with tm.assert_produces_warning(FutureWarning): iris_frame = sql.read_frame( "SELECT * FROM iris", self.conn) self._check_iris_loaded_frame(iris_frame) def test_to_sql(self): sql.to_sql(self.test_frame1, 'test_frame1', self.conn, flavor='sqlite') self.assertTrue( sql.has_table('test_frame1', self.conn, flavor='sqlite'), 'Table not written to DB') def test_to_sql_fail(self): sql.to_sql(self.test_frame1, 'test_frame2', self.conn, flavor='sqlite', if_exists='fail') self.assertTrue( sql.has_table('test_frame2', self.conn, flavor='sqlite'), 'Table not written to DB') self.assertRaises(ValueError, sql.to_sql, self.test_frame1, 'test_frame2', self.conn, flavor='sqlite', if_exists='fail') def test_to_sql_replace(self): sql.to_sql(self.test_frame1, 'test_frame3', self.conn, flavor='sqlite', if_exists='fail') # Add to table again sql.to_sql(self.test_frame1, 'test_frame3', self.conn, flavor='sqlite', if_exists='replace') self.assertTrue( sql.has_table('test_frame3', self.conn, flavor='sqlite'), 'Table not written to DB') num_entries = len(self.test_frame1) num_rows = self._count_rows('test_frame3') self.assertEqual( num_rows, num_entries, "not the same number of rows as entries") def test_to_sql_append(self): sql.to_sql(self.test_frame1, 'test_frame4', self.conn, flavor='sqlite', if_exists='fail') # Add to table again sql.to_sql(self.test_frame1, 'test_frame4', self.conn, flavor='sqlite', if_exists='append') self.assertTrue( sql.has_table('test_frame4', self.conn, flavor='sqlite'), 'Table not written to DB') num_entries = 2 * len(self.test_frame1) num_rows = self._count_rows('test_frame4') self.assertEqual( num_rows, num_entries, "not the same number of rows as entries") def test_to_sql_type_mapping(self): sql.to_sql(self.test_frame3, 'test_frame5', self.conn, flavor='sqlite', index=False) result = sql.read_sql("SELECT * FROM test_frame5", self.conn) tm.assert_frame_equal(self.test_frame3, result) def test_to_sql_series(self): s = Series(np.arange(5, dtype='int64'), name='series') sql.to_sql(s, "test_series", self.conn, flavor='sqlite', index=False) s2 = sql.read_sql_query("SELECT * FROM test_series", self.conn) tm.assert_frame_equal(s.to_frame(), s2) def test_to_sql_panel(self): panel = tm.makePanel() self.assertRaises(NotImplementedError, sql.to_sql, panel, 'test_panel', self.conn, flavor='sqlite') def test_legacy_write_frame(self): # Assume that functionality is already tested above so just do # quick check that it basically works with tm.assert_produces_warning(FutureWarning): sql.write_frame(self.test_frame1, 'test_frame_legacy', self.conn, flavor='sqlite') self.assertTrue( sql.has_table('test_frame_legacy', self.conn, flavor='sqlite'), 'Table not written to DB') def test_roundtrip(self): sql.to_sql(self.test_frame1, 'test_frame_roundtrip', con=self.conn, flavor='sqlite') result = sql.read_sql_query( 'SELECT * FROM test_frame_roundtrip', con=self.conn) # HACK! result.index = self.test_frame1.index result.set_index('level_0', inplace=True) result.index.astype(int) result.index.name = None tm.assert_frame_equal(result, self.test_frame1) def test_roundtrip_chunksize(self): sql.to_sql(self.test_frame1, 'test_frame_roundtrip', con=self.conn, index=False, flavor='sqlite', chunksize=2) result = sql.read_sql_query( 'SELECT * FROM test_frame_roundtrip', con=self.conn) tm.assert_frame_equal(result, self.test_frame1) def test_execute_sql(self): # drop_sql = "DROP TABLE IF EXISTS test" # should already be done iris_results = sql.execute("SELECT * FROM iris", con=self.conn) row = iris_results.fetchone() tm.equalContents(row, [5.1, 3.5, 1.4, 0.2, 'Iris-setosa']) def test_date_parsing(self): # Test date parsing in read_sq # No Parsing df = sql.read_sql_query("SELECT * FROM types_test_data", self.conn) self.assertFalse( issubclass(df.DateCol.dtype.type, np.datetime64), "DateCol loaded with incorrect type") df = sql.read_sql_query("SELECT * FROM types_test_data", self.conn, parse_dates=['DateCol']) self.assertTrue( issubclass(df.DateCol.dtype.type, np.datetime64), "DateCol loaded with incorrect type") df = sql.read_sql_query("SELECT * FROM types_test_data", self.conn, parse_dates={'DateCol': '%Y-%m-%d %H:%M:%S'}) self.assertTrue( issubclass(df.DateCol.dtype.type, np.datetime64), "DateCol loaded with incorrect type") df = sql.read_sql_query("SELECT * FROM types_test_data", self.conn, parse_dates=['IntDateCol']) self.assertTrue(issubclass(df.IntDateCol.dtype.type, np.datetime64), "IntDateCol loaded with incorrect type") df = sql.read_sql_query("SELECT * FROM types_test_data", self.conn, parse_dates={'IntDateCol': 's'}) self.assertTrue(issubclass(df.IntDateCol.dtype.type, np.datetime64), "IntDateCol loaded with incorrect type") def test_date_and_index(self): # Test case where same column appears in parse_date and index_col df = sql.read_sql_query("SELECT * FROM types_test_data", self.conn, index_col='DateCol', parse_dates=['DateCol', 'IntDateCol']) self.assertTrue(issubclass(df.index.dtype.type, np.datetime64), "DateCol loaded with incorrect type") self.assertTrue(issubclass(df.IntDateCol.dtype.type, np.datetime64), "IntDateCol loaded with incorrect type") def test_timedelta(self): # see #6921 df = to_timedelta(Series(['00:00:01', '00:00:03'], name='foo')).to_frame() with tm.assert_produces_warning(UserWarning): df.to_sql('test_timedelta', self.conn) result = sql.read_sql_query('SELECT * FROM test_timedelta', self.conn) tm.assert_series_equal(result['foo'], df['foo'].astype('int64')) def test_complex(self): df = DataFrame({'a':[1+1j, 2j]}) # Complex data type should raise error self.assertRaises(ValueError, df.to_sql, 'test_complex', self.conn) def test_to_sql_index_label(self): temp_frame = DataFrame({'col1': range(4)}) # no index name, defaults to 'index' sql.to_sql(temp_frame, 'test_index_label', self.conn) frame = sql.read_sql_query('SELECT * FROM test_index_label', self.conn) self.assertEqual(frame.columns[0], 'index') # specifying index_label sql.to_sql(temp_frame, 'test_index_label', self.conn, if_exists='replace', index_label='other_label') frame = sql.read_sql_query('SELECT * FROM test_index_label', self.conn) self.assertEqual(frame.columns[0], 'other_label', "Specified index_label not written to database") # using the index name temp_frame.index.name = 'index_name' sql.to_sql(temp_frame, 'test_index_label', self.conn, if_exists='replace') frame = sql.read_sql_query('SELECT * FROM test_index_label', self.conn) self.assertEqual(frame.columns[0], 'index_name', "Index name not written to database") # has index name, but specifying index_label sql.to_sql(temp_frame, 'test_index_label', self.conn, if_exists='replace', index_label='other_label') frame = sql.read_sql_query('SELECT * FROM test_index_label', self.conn) self.assertEqual(frame.columns[0], 'other_label', "Specified index_label not written to database") def test_to_sql_index_label_multiindex(self): temp_frame = DataFrame({'col1': range(4)}, index=MultiIndex.from_product([('A0', 'A1'), ('B0', 'B1')])) # no index name, defaults to 'level_0' and 'level_1' sql.to_sql(temp_frame, 'test_index_label', self.conn) frame = sql.read_sql_query('SELECT * FROM test_index_label', self.conn) self.assertEqual(frame.columns[0], 'level_0') self.assertEqual(frame.columns[1], 'level_1') # specifying index_label sql.to_sql(temp_frame, 'test_index_label', self.conn, if_exists='replace', index_label=['A', 'B']) frame = sql.read_sql_query('SELECT * FROM test_index_label', self.conn) self.assertEqual(frame.columns[:2].tolist(), ['A', 'B'], "Specified index_labels not written to database") # using the index name temp_frame.index.names = ['A', 'B'] sql.to_sql(temp_frame, 'test_index_label', self.conn, if_exists='replace') frame = sql.read_sql_query('SELECT * FROM test_index_label', self.conn) self.assertEqual(frame.columns[:2].tolist(), ['A', 'B'], "Index names not written to database") # has index name, but specifying index_label sql.to_sql(temp_frame, 'test_index_label', self.conn, if_exists='replace', index_label=['C', 'D']) frame = sql.read_sql_query('SELECT * FROM test_index_label', self.conn) self.assertEqual(frame.columns[:2].tolist(), ['C', 'D'], "Specified index_labels not written to database") # wrong length of index_label self.assertRaises(ValueError, sql.to_sql, temp_frame, 'test_index_label', self.conn, if_exists='replace', index_label='C') def test_multiindex_roundtrip(self): df = DataFrame.from_records([(1,2.1,'line1'), (2,1.5,'line2')], columns=['A','B','C'], index=['A','B']) df.to_sql('test_multiindex_roundtrip', self.conn) result = sql.read_sql_query('SELECT * FROM test_multiindex_roundtrip', self.conn, index_col=['A','B']) tm.assert_frame_equal(df, result, check_index_type=True) def test_integer_col_names(self): df = DataFrame([[1, 2], [3, 4]], columns=[0, 1]) sql.to_sql(df, "test_frame_integer_col_names", self.conn, if_exists='replace') def test_get_schema(self): create_sql = sql.get_schema(self.test_frame1, 'test', 'sqlite', con=self.conn) self.assertTrue('CREATE' in create_sql) def test_get_schema_dtypes(self): float_frame = DataFrame({'a':[1.1,1.2], 'b':[2.1,2.2]}) dtype = sqlalchemy.Integer if self.mode == 'sqlalchemy' else 'INTEGER' create_sql = sql.get_schema(float_frame, 'test', 'sqlite', con=self.conn, dtype={'b':dtype}) self.assertTrue('CREATE' in create_sql) self.assertTrue('INTEGER' in create_sql) def test_chunksize_read(self): df = DataFrame(np.random.randn(22, 5), columns=list('abcde')) df.to_sql('test_chunksize', self.conn, index=False) # reading the query in one time res1 = sql.read_sql_query("select * from test_chunksize", self.conn) # reading the query in chunks with read_sql_query res2 = DataFrame() i = 0 sizes = [5, 5, 5, 5, 2] for chunk in sql.read_sql_query("select * from test_chunksize", self.conn, chunksize=5): res2 = concat([res2, chunk], ignore_index=True) self.assertEqual(len(chunk), sizes[i]) i += 1 tm.assert_frame_equal(res1, res2) # reading the query in chunks with read_sql_query if self.mode == 'sqlalchemy': res3 = DataFrame() i = 0 sizes = [5, 5, 5, 5, 2] for chunk in sql.read_sql_table("test_chunksize", self.conn, chunksize=5): res3 = concat([res3, chunk], ignore_index=True) self.assertEqual(len(chunk), sizes[i]) i += 1 tm.assert_frame_equal(res1, res3) def test_categorical(self): # GH8624 # test that categorical gets written correctly as dense column df = DataFrame( {'person_id': [1, 2, 3], 'person_name': ['John P. Doe', 'Jane Dove', 'John P. Doe']}) df2 = df.copy() df2['person_name'] = df2['person_name'].astype('category') df2.to_sql('test_categorical', self.conn, index=False) res = sql.read_sql_query('SELECT * FROM test_categorical', self.conn) tm.assert_frame_equal(res, df) class TestSQLApi(_TestSQLApi): """ Test the public API as it would be used directly Tests for `read_sql_table` are included here, as this is specific for the sqlalchemy mode. """ flavor = 'sqlite' mode = 'sqlalchemy' def connect(self): if SQLALCHEMY_INSTALLED: return sqlalchemy.create_engine('sqlite:///:memory:') else: raise nose.SkipTest('SQLAlchemy not installed') def test_read_table_columns(self): # test columns argument in read_table sql.to_sql(self.test_frame1, 'test_frame', self.conn) cols = ['A', 'B'] result = sql.read_sql_table('test_frame', self.conn, columns=cols) self.assertEqual(result.columns.tolist(), cols, "Columns not correctly selected") def test_read_table_index_col(self): # test columns argument in read_table sql.to_sql(self.test_frame1, 'test_frame', self.conn) result = sql.read_sql_table('test_frame', self.conn, index_col="index") self.assertEqual(result.index.names, ["index"], "index_col not correctly set") result = sql.read_sql_table('test_frame', self.conn, index_col=["A", "B"]) self.assertEqual(result.index.names, ["A", "B"], "index_col not correctly set") result = sql.read_sql_table('test_frame', self.conn, index_col=["A", "B"], columns=["C", "D"]) self.assertEqual(result.index.names, ["A", "B"], "index_col not correctly set") self.assertEqual(result.columns.tolist(), ["C", "D"], "columns not set correctly whith index_col") def test_read_sql_delegate(self): iris_frame1 = sql.read_sql_query( "SELECT * FROM iris", self.conn) iris_frame2 = sql.read_sql( "SELECT * FROM iris", self.conn) tm.assert_frame_equal(iris_frame1, iris_frame2) iris_frame1 = sql.read_sql_table('iris', self.conn) iris_frame2 = sql.read_sql('iris', self.conn) tm.assert_frame_equal(iris_frame1, iris_frame2) def test_not_reflect_all_tables(self): # create invalid table qry = """CREATE TABLE invalid (x INTEGER, y UNKNOWN);""" self.conn.execute(qry) qry = """CREATE TABLE other_table (x INTEGER, y INTEGER);""" self.conn.execute(qry) with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") # Trigger a warning. sql.read_sql_table('other_table', self.conn) sql.read_sql_query('SELECT * FROM other_table', self.conn) # Verify some things self.assertEqual(len(w), 0, "Warning triggered for other table") def test_warning_case_insensitive_table_name(self): # see GH7815. # We can't test that this warning is triggered, a the database # configuration would have to be altered. But here we test that # the warning is certainly NOT triggered in a normal case. with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") # This should not trigger a Warning self.test_frame1.to_sql('CaseSensitive', self.conn) # Verify some things self.assertEqual(len(w), 0, "Warning triggered for writing a table") def _get_index_columns(self, tbl_name): from sqlalchemy.engine import reflection insp = reflection.Inspector.from_engine(self.conn) ixs = insp.get_indexes('test_index_saved') ixs = [i['column_names'] for i in ixs] return ixs def test_sqlalchemy_type_mapping(self): # Test Timestamp objects (no datetime64 because of timezone) (GH9085) df = DataFrame({'time': to_datetime(['201412120154', '201412110254'], utc=True)}) db = sql.SQLDatabase(self.conn) table = sql.SQLTable("test_type", db, frame=df) self.assertTrue(isinstance(table.table.c['time'].type, sqltypes.DateTime)) class TestSQLiteFallbackApi(_TestSQLApi): """ Test the public sqlite connection fallback API """ flavor = 'sqlite' mode = 'fallback' def connect(self, database=":memory:"): return sqlite3.connect(database) def test_sql_open_close(self): # Test if the IO in the database still work if the connection closed # between the writing and reading (as in many real situations). with tm.ensure_clean() as name: conn = self.connect(name) sql.to_sql(self.test_frame3, "test_frame3_legacy", conn, flavor="sqlite", index=False) conn.close() conn = self.connect(name) result = sql.read_sql_query("SELECT * FROM test_frame3_legacy;", conn) conn.close() tm.assert_frame_equal(self.test_frame3, result) def test_read_sql_delegate(self): iris_frame1 = sql.read_sql_query("SELECT * FROM iris", self.conn) iris_frame2 = sql.read_sql("SELECT * FROM iris", self.conn) tm.assert_frame_equal(iris_frame1, iris_frame2) self.assertRaises(sql.DatabaseError, sql.read_sql, 'iris', self.conn) def test_safe_names_warning(self): # GH 6798 df = DataFrame([[1, 2], [3, 4]], columns=['a', 'b ']) # has a space # warns on create table with spaces in names with tm.assert_produces_warning(): sql.to_sql(df, "test_frame3_legacy", self.conn, flavor="sqlite", index=False) def test_get_schema2(self): # without providing a connection object (available for backwards comp) create_sql = sql.get_schema(self.test_frame1, 'test', 'sqlite') self.assertTrue('CREATE' in create_sql) def test_tquery(self): with tm.assert_produces_warning(FutureWarning): iris_results = sql.tquery("SELECT * FROM iris", con=self.conn) row = iris_results[0] tm.equalContents(row, [5.1, 3.5, 1.4, 0.2, 'Iris-setosa']) def test_uquery(self): with tm.assert_produces_warning(FutureWarning): rows = sql.uquery("SELECT * FROM iris LIMIT 1", con=self.conn) self.assertEqual(rows, -1) def _get_sqlite_column_type(self, schema, column): for col in schema.split('\n'): if col.split()[0].strip('""') == column: return col.split()[1] raise ValueError('Column %s not found' % (column)) def test_sqlite_type_mapping(self): # Test Timestamp objects (no datetime64 because of timezone) (GH9085) df = DataFrame({'time': to_datetime(['201412120154', '201412110254'], utc=True)}) db = sql.SQLiteDatabase(self.conn, self.flavor) table = sql.SQLiteTable("test_type", db, frame=df) schema = table.sql_schema() self.assertEqual(self._get_sqlite_column_type(schema, 'time'), "TIMESTAMP") #------------------------------------------------------------------------------ #--- Database flavor specific tests class _TestSQLAlchemy(PandasSQLTest): """ Base class for testing the sqlalchemy backend. Subclasses for specific database types are created below. Tests that deviate for each flavor are overwritten there. """ flavor = None @classmethod def setUpClass(cls): cls.setup_import() cls.setup_driver() # test connection try: conn = cls.connect() conn.connect() except sqlalchemy.exc.OperationalError: msg = "{0} - can't connect to {1} server".format(cls, cls.flavor) raise nose.SkipTest(msg) def setUp(self): self.setup_connect() self._load_iris_data() self._load_raw_sql() self._load_test1_data() @classmethod def setup_import(cls): # Skip this test if SQLAlchemy not available if not SQLALCHEMY_INSTALLED: raise nose.SkipTest('SQLAlchemy not installed') @classmethod def setup_driver(cls): raise NotImplementedError() @classmethod def connect(cls): raise NotImplementedError() def setup_connect(self): try: self.conn = self.connect() self.pandasSQL = sql.SQLDatabase(self.conn) # to test if connection can be made: self.conn.connect() except sqlalchemy.exc.OperationalError: raise nose.SkipTest("Can't connect to {0} server".format(self.flavor)) def tearDown(self): raise NotImplementedError() def test_aread_sql(self): self._read_sql_iris() def test_read_sql_parameter(self): self._read_sql_iris_parameter() def test_read_sql_named_parameter(self): self._read_sql_iris_named_parameter() def test_to_sql(self): self._to_sql() def test_to_sql_empty(self): self._to_sql_empty() def test_to_sql_fail(self): self._to_sql_fail() def test_to_sql_replace(self): self._to_sql_replace() def test_to_sql_append(self): self._to_sql_append() def test_create_table(self): temp_conn = self.connect() temp_frame = DataFrame( {'one': [1., 2., 3., 4.], 'two': [4., 3., 2., 1.]}) pandasSQL = sql.SQLDatabase(temp_conn) pandasSQL.to_sql(temp_frame, 'temp_frame') self.assertTrue( temp_conn.has_table('temp_frame'), 'Table not written to DB') def test_drop_table(self): temp_conn = self.connect() temp_frame = DataFrame( {'one': [1., 2., 3., 4.], 'two': [4., 3., 2., 1.]}) pandasSQL = sql.SQLDatabase(temp_conn) pandasSQL.to_sql(temp_frame, 'temp_frame') self.assertTrue( temp_conn.has_table('temp_frame'), 'Table not written to DB') pandasSQL.drop_table('temp_frame') self.assertFalse( temp_conn.has_table('temp_frame'), 'Table not deleted from DB') def test_roundtrip(self): self._roundtrip() def test_execute_sql(self): self._execute_sql() def test_read_table(self): iris_frame = sql.read_sql_table("iris", con=self.conn) self._check_iris_loaded_frame(iris_frame) def test_read_table_columns(self): iris_frame = sql.read_sql_table( "iris", con=self.conn, columns=['SepalLength', 'SepalLength']) tm.equalContents( iris_frame.columns.values, ['SepalLength', 'SepalLength']) def test_read_table_absent(self): self.assertRaises( ValueError, sql.read_sql_table, "this_doesnt_exist", con=self.conn) def test_default_type_conversion(self): df = sql.read_sql_table("types_test_data", self.conn) self.assertTrue(issubclass(df.FloatCol.dtype.type, np.floating), "FloatCol loaded with incorrect type") self.assertTrue(issubclass(df.IntCol.dtype.type, np.integer), "IntCol loaded with incorrect type") self.assertTrue(issubclass(df.BoolCol.dtype.type, np.bool_), "BoolCol loaded with incorrect type") # Int column with NA values stays as float self.assertTrue(issubclass(df.IntColWithNull.dtype.type, np.floating), "IntColWithNull loaded with incorrect type") # Bool column with NA values becomes object self.assertTrue(issubclass(df.BoolColWithNull.dtype.type, np.object), "BoolColWithNull loaded with incorrect type") def test_bigint(self): # int64 should be converted to BigInteger, GH7433 df = DataFrame(data={'i64':[2**62]}) df.to_sql('test_bigint', self.conn, index=False) result = sql.read_sql_table('test_bigint', self.conn) tm.assert_frame_equal(df, result) def test_default_date_load(self): df = sql.read_sql_table("types_test_data", self.conn) # IMPORTANT - sqlite has no native date type, so shouldn't parse, but # MySQL SHOULD be converted. self.assertTrue(issubclass(df.DateCol.dtype.type, np.datetime64), "DateCol loaded with incorrect type") def test_date_parsing(self): # No Parsing df = sql.read_sql_table("types_test_data", self.conn) df = sql.read_sql_table("types_test_data", self.conn, parse_dates=['DateCol']) self.assertTrue(issubclass(df.DateCol.dtype.type, np.datetime64), "DateCol loaded with incorrect type") df = sql.read_sql_table("types_test_data", self.conn, parse_dates={'DateCol': '%Y-%m-%d %H:%M:%S'}) self.assertTrue(issubclass(df.DateCol.dtype.type, np.datetime64), "DateCol loaded with incorrect type") df = sql.read_sql_table("types_test_data", self.conn, parse_dates={ 'DateCol': {'format': '%Y-%m-%d %H:%M:%S'}}) self.assertTrue(issubclass(df.DateCol.dtype.type, np.datetime64), "IntDateCol loaded with incorrect type") df = sql.read_sql_table( "types_test_data", self.conn, parse_dates=['IntDateCol']) self.assertTrue(issubclass(df.IntDateCol.dtype.type, np.datetime64), "IntDateCol loaded with incorrect type") df = sql.read_sql_table( "types_test_data", self.conn, parse_dates={'IntDateCol': 's'}) self.assertTrue(issubclass(df.IntDateCol.dtype.type, np.datetime64), "IntDateCol loaded with incorrect type") df = sql.read_sql_table( "types_test_data", self.conn, parse_dates={'IntDateCol': {'unit': 's'}}) self.assertTrue(issubclass(df.IntDateCol.dtype.type, np.datetime64), "IntDateCol loaded with incorrect type") def test_datetime(self): df = DataFrame({'A': date_range('2013-01-01 09:00:00', periods=3), 'B': np.arange(3.0)}) df.to_sql('test_datetime', self.conn) # with read_table -> type information from schema used result = sql.read_sql_table('test_datetime', self.conn) result = result.drop('index', axis=1) tm.assert_frame_equal(result, df) # with read_sql -> no type information -> sqlite has no native result = sql.read_sql_query('SELECT * FROM test_datetime', self.conn) result = result.drop('index', axis=1) if self.flavor == 'sqlite': self.assertTrue(isinstance(result.loc[0, 'A'], string_types)) result['A'] = to_datetime(result['A']) tm.assert_frame_equal(result, df) else: tm.assert_frame_equal(result, df) def test_datetime_NaT(self): df = DataFrame({'A': date_range('2013-01-01 09:00:00', periods=3), 'B': np.arange(3.0)}) df.loc[1, 'A'] = np.nan df.to_sql('test_datetime', self.conn, index=False) # with read_table -> type information from schema used result = sql.read_sql_table('test_datetime', self.conn) tm.assert_frame_equal(result, df) # with read_sql -> no type information -> sqlite has no native result = sql.read_sql_query('SELECT * FROM test_datetime', self.conn) if self.flavor == 'sqlite': self.assertTrue(isinstance(result.loc[0, 'A'], string_types)) result['A'] = to_datetime(result['A'], coerce=True) tm.assert_frame_equal(result, df) else: tm.assert_frame_equal(result, df) def test_datetime_date(self): # test support for datetime.date df = DataFrame([date(2014, 1, 1), date(2014, 1, 2)], columns=["a"]) df.to_sql('test_date', self.conn, index=False) res = read_sql_table('test_date', self.conn) # comes back as datetime64 tm.assert_series_equal(res['a'], to_datetime(df['a'])) def test_datetime_time(self): # test support for datetime.time df = DataFrame([time(9, 0, 0), time(9, 1, 30)], columns=["a"]) df.to_sql('test_time', self.conn, index=False) res = read_sql_table('test_time', self.conn) tm.assert_frame_equal(res, df) def test_mixed_dtype_insert(self): # see GH6509 s1 = Series(2**25 + 1,dtype=np.int32) s2 = Series(0.0,dtype=np.float32) df = DataFrame({'s1': s1, 's2': s2}) # write and read again df.to_sql("test_read_write", self.conn, index=False) df2 = sql.read_sql_table("test_read_write", self.conn) tm.assert_frame_equal(df, df2, check_dtype=False, check_exact=True) def test_nan_numeric(self): # NaNs in numeric float column df = DataFrame({'A':[0, 1, 2], 'B':[0.2, np.nan, 5.6]}) df.to_sql('test_nan', self.conn, index=False) # with read_table result = sql.read_sql_table('test_nan', self.conn) tm.assert_frame_equal(result, df) # with read_sql result = sql.read_sql_query('SELECT * FROM test_nan', self.conn) tm.assert_frame_equal(result, df) def test_nan_fullcolumn(self): # full NaN column (numeric float column) df = DataFrame({'A':[0, 1, 2], 'B':[np.nan, np.nan, np.nan]}) df.to_sql('test_nan', self.conn, index=False) # with read_table result = sql.read_sql_table('test_nan', self.conn) tm.assert_frame_equal(result, df) # with read_sql -> not type info from table -> stays None df['B'] = df['B'].astype('object') df['B'] = None result = sql.read_sql_query('SELECT * FROM test_nan', self.conn) tm.assert_frame_equal(result, df) def test_nan_string(self): # NaNs in string column df = DataFrame({'A':[0, 1, 2], 'B':['a', 'b', np.nan]}) df.to_sql('test_nan', self.conn, index=False) # NaNs are coming back as None df.loc[2, 'B'] = None # with read_table result = sql.read_sql_table('test_nan', self.conn) tm.assert_frame_equal(result, df) # with read_sql result = sql.read_sql_query('SELECT * FROM test_nan', self.conn) tm.assert_frame_equal(result, df) def _get_index_columns(self, tbl_name): from sqlalchemy.engine import reflection insp = reflection.Inspector.from_engine(self.conn) ixs = insp.get_indexes(tbl_name) ixs = [i['column_names'] for i in ixs] return ixs def test_to_sql_save_index(self): self._to_sql_save_index() def test_transactions(self): self._transaction_test() def test_get_schema_create_table(self): # Use a dataframe without a bool column, since MySQL converts bool to # TINYINT (which read_sql_table returns as an int and causes a dtype # mismatch) self._load_test3_data() tbl = 'test_get_schema_create_table' create_sql = sql.get_schema(self.test_frame3, tbl, con=self.conn) blank_test_df = self.test_frame3.iloc[:0] self.drop_table(tbl) self.conn.execute(create_sql) returned_df = sql.read_sql_table(tbl, self.conn) tm.assert_frame_equal(returned_df, blank_test_df) self.drop_table(tbl) def test_dtype(self): cols = ['A', 'B'] data = [(0.8, True), (0.9, None)] df = DataFrame(data, columns=cols) df.to_sql('dtype_test', self.conn) df.to_sql('dtype_test2', self.conn, dtype={'B': sqlalchemy.TEXT}) meta = sqlalchemy.schema.MetaData(bind=self.conn) meta.reflect() sqltype = meta.tables['dtype_test2'].columns['B'].type self.assertTrue(isinstance(sqltype, sqlalchemy.TEXT)) self.assertRaises(ValueError, df.to_sql, 'error', self.conn, dtype={'B': str}) # GH9083 df.to_sql('dtype_test3', self.conn, dtype={'B': sqlalchemy.String(10)}) meta.reflect() sqltype = meta.tables['dtype_test3'].columns['B'].type self.assertTrue(isinstance(sqltype, sqlalchemy.String)) self.assertEqual(sqltype.length, 10) def test_notnull_dtype(self): cols = {'Bool': Series([True,None]), 'Date': Series([datetime(2012, 5, 1), None]), 'Int' : Series([1, None], dtype='object'), 'Float': Series([1.1, None]) } df = DataFrame(cols) tbl = 'notnull_dtype_test' df.to_sql(tbl, self.conn) returned_df = sql.read_sql_table(tbl, self.conn) meta = sqlalchemy.schema.MetaData(bind=self.conn) meta.reflect() if self.flavor == 'mysql': my_type = sqltypes.Integer else: my_type = sqltypes.Boolean col_dict = meta.tables[tbl].columns self.assertTrue(isinstance(col_dict['Bool'].type, my_type)) self.assertTrue(isinstance(col_dict['Date'].type, sqltypes.DateTime)) self.assertTrue(isinstance(col_dict['Int'].type, sqltypes.Integer)) self.assertTrue(isinstance(col_dict['Float'].type, sqltypes.Float)) def test_double_precision(self): V = 1.23456789101112131415 df = DataFrame({'f32':Series([V,], dtype='float32'), 'f64':Series([V,], dtype='float64'), 'f64_as_f32':Series([V,], dtype='float64'), 'i32':Series([5,], dtype='int32'), 'i64':Series([5,], dtype='int64'), }) df.to_sql('test_dtypes', self.conn, index=False, if_exists='replace', dtype={'f64_as_f32':sqlalchemy.Float(precision=23)}) res = sql.read_sql_table('test_dtypes', self.conn) # check precision of float64 self.assertEqual(np.round(df['f64'].iloc[0],14), np.round(res['f64'].iloc[0],14)) # check sql types meta = sqlalchemy.schema.MetaData(bind=self.conn) meta.reflect() col_dict = meta.tables['test_dtypes'].columns self.assertEqual(str(col_dict['f32'].type), str(col_dict['f64_as_f32'].type)) self.assertTrue(isinstance(col_dict['f32'].type, sqltypes.Float)) self.assertTrue(isinstance(col_dict['f64'].type, sqltypes.Float)) self.assertTrue(isinstance(col_dict['i32'].type, sqltypes.Integer)) self.assertTrue(isinstance(col_dict['i64'].type, sqltypes.BigInteger)) class TestSQLiteAlchemy(_TestSQLAlchemy): """ Test the sqlalchemy backend against an in-memory sqlite database. """ flavor = 'sqlite' @classmethod def connect(cls): return sqlalchemy.create_engine('sqlite:///:memory:') @classmethod def setup_driver(cls): # sqlite3 is built-in cls.driver = None def tearDown(self): # in memory so tables should not be removed explicitly pass def test_default_type_conversion(self): df = sql.read_sql_table("types_test_data", self.conn) self.assertTrue(issubclass(df.FloatCol.dtype.type, np.floating), "FloatCol loaded with incorrect type") self.assertTrue(issubclass(df.IntCol.dtype.type, np.integer), "IntCol loaded with incorrect type") # sqlite has no boolean type, so integer type is returned self.assertTrue(issubclass(df.BoolCol.dtype.type, np.integer), "BoolCol loaded with incorrect type") # Int column with NA values stays as float self.assertTrue(issubclass(df.IntColWithNull.dtype.type, np.floating), "IntColWithNull loaded with incorrect type") # Non-native Bool column with NA values stays as float self.assertTrue(issubclass(df.BoolColWithNull.dtype.type, np.floating), "BoolColWithNull loaded with incorrect type") def test_default_date_load(self): df = sql.read_sql_table("types_test_data", self.conn) # IMPORTANT - sqlite has no native date type, so shouldn't parse, but self.assertFalse(issubclass(df.DateCol.dtype.type, np.datetime64), "DateCol loaded with incorrect type") def test_bigint_warning(self): # test no warning for BIGINT (to support int64) is raised (GH7433) df = DataFrame({'a':[1,2]}, dtype='int64') df.to_sql('test_bigintwarning', self.conn, index=False) with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") sql.read_sql_table('test_bigintwarning', self.conn) self.assertEqual(len(w), 0, "Warning triggered for other table") class TestMySQLAlchemy(_TestSQLAlchemy): """ Test the sqlalchemy backend against an MySQL database. """ flavor = 'mysql' @classmethod def connect(cls): url = 'mysql+{driver}://root@localhost/pandas_nosetest' return sqlalchemy.create_engine(url.format(driver=cls.driver)) @classmethod def setup_driver(cls): try: import pymysql cls.driver = 'pymysql' except ImportError: raise nose.SkipTest('pymysql not installed') def tearDown(self): c = self.conn.execute('SHOW TABLES') for table in c.fetchall(): self.conn.execute('DROP TABLE %s' % table[0]) def test_default_type_conversion(self): df = sql.read_sql_table("types_test_data", self.conn) self.assertTrue(issubclass(df.FloatCol.dtype.type, np.floating), "FloatCol loaded with incorrect type") self.assertTrue(issubclass(df.IntCol.dtype.type, np.integer), "IntCol loaded with incorrect type") # MySQL has no real BOOL type (it's an alias for TINYINT) self.assertTrue(issubclass(df.BoolCol.dtype.type, np.integer), "BoolCol loaded with incorrect type") # Int column with NA values stays as float self.assertTrue(issubclass(df.IntColWithNull.dtype.type, np.floating), "IntColWithNull loaded with incorrect type") # Bool column with NA = int column with NA values => becomes float self.assertTrue(issubclass(df.BoolColWithNull.dtype.type, np.floating), "BoolColWithNull loaded with incorrect type") def test_read_procedure(self): # see GH7324. Although it is more an api test, it is added to the # mysql tests as sqlite does not have stored procedures df = DataFrame({'a': [1, 2, 3], 'b':[0.1, 0.2, 0.3]}) df.to_sql('test_procedure', self.conn, index=False) proc = """DROP PROCEDURE IF EXISTS get_testdb; CREATE PROCEDURE get_testdb () BEGIN SELECT * FROM test_procedure; END""" connection = self.conn.connect() trans = connection.begin() try: r1 = connection.execute(proc) trans.commit() except: trans.rollback() raise res1 = sql.read_sql_query("CALL get_testdb();", self.conn) tm.assert_frame_equal(df, res1) # test delegation to read_sql_query res2 = sql.read_sql("CALL get_testdb();", self.conn) tm.assert_frame_equal(df, res2) class TestPostgreSQLAlchemy(_TestSQLAlchemy): """ Test the sqlalchemy backend against an PostgreSQL database. """ flavor = 'postgresql' @classmethod def connect(cls): url = 'postgresql+{driver}://postgres@localhost/pandas_nosetest' return sqlalchemy.create_engine(url.format(driver=cls.driver)) @classmethod def setup_driver(cls): try: import psycopg2 cls.driver = 'psycopg2' except ImportError: raise nose.SkipTest('psycopg2 not installed') def tearDown(self): c = self.conn.execute( "SELECT table_name FROM information_schema.tables" " WHERE table_schema = 'public'") for table in c.fetchall(): self.conn.execute("DROP TABLE %s" % table[0]) def test_schema_support(self): # only test this for postgresql (schema's not supported in mysql/sqlite) df = DataFrame({'col1':[1, 2], 'col2':[0.1, 0.2], 'col3':['a', 'n']}) # create a schema self.conn.execute("DROP SCHEMA IF EXISTS other CASCADE;") self.conn.execute("CREATE SCHEMA other;") # write dataframe to different schema's df.to_sql('test_schema_public', self.conn, index=False) df.to_sql('test_schema_public_explicit', self.conn, index=False, schema='public') df.to_sql('test_schema_other', self.conn, index=False, schema='other') # read dataframes back in res1 = sql.read_sql_table('test_schema_public', self.conn) tm.assert_frame_equal(df, res1) res2 = sql.read_sql_table('test_schema_public_explicit', self.conn) tm.assert_frame_equal(df, res2) res3 = sql.read_sql_table('test_schema_public_explicit', self.conn, schema='public') tm.assert_frame_equal(df, res3) res4 = sql.read_sql_table('test_schema_other', self.conn, schema='other') tm.assert_frame_equal(df, res4) self.assertRaises(ValueError, sql.read_sql_table, 'test_schema_other', self.conn, schema='public') ## different if_exists options # create a schema self.conn.execute("DROP SCHEMA IF EXISTS other CASCADE;") self.conn.execute("CREATE SCHEMA other;") # write dataframe with different if_exists options df.to_sql('test_schema_other', self.conn, schema='other', index=False) df.to_sql('test_schema_other', self.conn, schema='other', index=False, if_exists='replace') df.to_sql('test_schema_other', self.conn, schema='other', index=False, if_exists='append') res = sql.read_sql_table('test_schema_other', self.conn, schema='other') tm.assert_frame_equal(concat([df, df], ignore_index=True), res) ## specifying schema in user-provided meta engine2 = self.connect() meta = sqlalchemy.MetaData(engine2, schema='other') pdsql = sql.SQLDatabase(engine2, meta=meta) pdsql.to_sql(df, 'test_schema_other2', index=False) pdsql.to_sql(df, 'test_schema_other2', index=False, if_exists='replace') pdsql.to_sql(df, 'test_schema_other2', index=False, if_exists='append') res1 = sql.read_sql_table('test_schema_other2', self.conn, schema='other') res2 = pdsql.read_table('test_schema_other2') tm.assert_frame_equal(res1, res2) def test_datetime_with_time_zone(self): # Test to see if we read the date column with timezones that # the timezone information is converted to utc and into a # np.datetime64 (GH #7139) df = sql.read_sql_table("types_test_data", self.conn) self.assertTrue(issubclass(df.DateColWithTz.dtype.type, np.datetime64), "DateColWithTz loaded with incorrect type") # "2000-01-01 00:00:00-08:00" should convert to "2000-01-01 08:00:00" self.assertEqual(df.DateColWithTz[0], Timestamp('2000-01-01 08:00:00')) # "2000-06-01 00:00:00-07:00" should convert to "2000-06-01 07:00:00" self.assertEqual(df.DateColWithTz[1], Timestamp('2000-06-01 07:00:00')) #------------------------------------------------------------------------------ #--- Test Sqlite / MySQL fallback class TestSQLiteFallback(PandasSQLTest): """ Test the fallback mode against an in-memory sqlite database. """ flavor = 'sqlite' @classmethod def connect(cls): return sqlite3.connect(':memory:') def drop_table(self, table_name): cur = self.conn.cursor() cur.execute("DROP TABLE IF EXISTS %s" % table_name) self.conn.commit() def setUp(self): self.conn = self.connect() self.pandasSQL = sql.SQLiteDatabase(self.conn, 'sqlite') self._load_iris_data() self._load_test1_data() def test_invalid_flavor(self): self.assertRaises( NotImplementedError, sql.SQLiteDatabase, self.conn, 'oracle') def test_read_sql(self): self._read_sql_iris() def test_read_sql_parameter(self): self._read_sql_iris_parameter() def test_read_sql_named_parameter(self): self._read_sql_iris_named_parameter() def test_to_sql(self): self._to_sql() def test_to_sql_empty(self): self._to_sql_empty() def test_to_sql_fail(self): self._to_sql_fail() def test_to_sql_replace(self): self._to_sql_replace() def test_to_sql_append(self): self._to_sql_append() def test_create_and_drop_table(self): temp_frame = DataFrame( {'one': [1., 2., 3., 4.], 'two': [4., 3., 2., 1.]}) self.pandasSQL.to_sql(temp_frame, 'drop_test_frame') self.assertTrue(self.pandasSQL.has_table('drop_test_frame'), 'Table not written to DB') self.pandasSQL.drop_table('drop_test_frame') self.assertFalse(self.pandasSQL.has_table('drop_test_frame'), 'Table not deleted from DB') def test_roundtrip(self): self._roundtrip() def test_execute_sql(self): self._execute_sql() def test_datetime_date(self): # test support for datetime.date df = DataFrame([date(2014, 1, 1), date(2014, 1, 2)], columns=["a"]) df.to_sql('test_date', self.conn, index=False, flavor=self.flavor) res = read_sql_query('SELECT * FROM test_date', self.conn) if self.flavor == 'sqlite': # comes back as strings tm.assert_frame_equal(res, df.astype(str)) elif self.flavor == 'mysql': tm.assert_frame_equal(res, df) def test_datetime_time(self): # test support for datetime.time df = DataFrame([time(9, 0, 0), time(9, 1, 30)], columns=["a"]) # test it raises an error and not fails silently (GH8341) if self.flavor == 'sqlite': self.assertRaises(sqlite3.InterfaceError, sql.to_sql, df, 'test_time', self.conn) def _get_index_columns(self, tbl_name): ixs = sql.read_sql_query( "SELECT * FROM sqlite_master WHERE type = 'index' " + "AND tbl_name = '%s'" % tbl_name, self.conn) ix_cols = [] for ix_name in ixs.name: ix_info = sql.read_sql_query( "PRAGMA index_info(%s)" % ix_name, self.conn) ix_cols.append(ix_info.name.tolist()) return ix_cols def test_to_sql_save_index(self): self._to_sql_save_index() def test_transactions(self): self._transaction_test() def _get_sqlite_column_type(self, table, column): recs = self.conn.execute('PRAGMA table_info(%s)' % table) for cid, name, ctype, not_null, default, pk in recs: if name == column: return ctype raise ValueError('Table %s, column %s not found' % (table, column)) def test_dtype(self): if self.flavor == 'mysql': raise nose.SkipTest('Not applicable to MySQL legacy') cols = ['A', 'B'] data = [(0.8, True), (0.9, None)] df = DataFrame(data, columns=cols) df.to_sql('dtype_test', self.conn) df.to_sql('dtype_test2', self.conn, dtype={'B': 'STRING'}) # sqlite stores Boolean values as INTEGER self.assertEqual(self._get_sqlite_column_type('dtype_test', 'B'), 'INTEGER') self.assertEqual(self._get_sqlite_column_type('dtype_test2', 'B'), 'STRING') self.assertRaises(ValueError, df.to_sql, 'error', self.conn, dtype={'B': bool}) def test_notnull_dtype(self): if self.flavor == 'mysql': raise nose.SkipTest('Not applicable to MySQL legacy') cols = {'Bool': Series([True,None]), 'Date': Series([datetime(2012, 5, 1), None]), 'Int' : Series([1, None], dtype='object'), 'Float': Series([1.1, None]) } df = DataFrame(cols) tbl = 'notnull_dtype_test' df.to_sql(tbl, self.conn) self.assertEqual(self._get_sqlite_column_type(tbl, 'Bool'), 'INTEGER') self.assertEqual(self._get_sqlite_column_type(tbl, 'Date'), 'TIMESTAMP') self.assertEqual(self._get_sqlite_column_type(tbl, 'Int'), 'INTEGER') self.assertEqual(self._get_sqlite_column_type(tbl, 'Float'), 'REAL') def test_illegal_names(self): # For sqlite, these should work fine df = DataFrame([[1, 2], [3, 4]], columns=['a', 'b']) # Raise error on blank self.assertRaises(ValueError, df.to_sql, "", self.conn, flavor=self.flavor) for ndx, weird_name in enumerate(['test_weird_name]','test_weird_name[', 'test_weird_name`','test_weird_name"', 'test_weird_name\'', '_b.test_weird_name_01-30', '"_b.test_weird_name_01-30"', '12345','12345blah']): df.to_sql(weird_name, self.conn, flavor=self.flavor) sql.table_exists(weird_name, self.conn) df2 = DataFrame([[1, 2], [3, 4]], columns=['a', weird_name]) c_tbl = 'test_weird_col_name%d'%ndx df2.to_sql(c_tbl, self.conn, flavor=self.flavor) sql.table_exists(c_tbl, self.conn) class TestMySQLLegacy(TestSQLiteFallback): """ Test the legacy mode against a MySQL database. """ flavor = 'mysql' @classmethod def setUpClass(cls): cls.setup_driver() # test connection try: cls.connect() except cls.driver.err.OperationalError: raise nose.SkipTest("{0} - can't connect to MySQL server".format(cls)) @classmethod def setup_driver(cls): try: import pymysql cls.driver = pymysql except ImportError: raise nose.SkipTest('pymysql not installed') @classmethod def connect(cls): return cls.driver.connect(host='127.0.0.1', user='root', passwd='', db='pandas_nosetest') def drop_table(self, table_name): cur = self.conn.cursor() cur.execute("DROP TABLE IF EXISTS %s" % table_name) self.conn.commit() def _count_rows(self, table_name): cur = self._get_exec() cur.execute( "SELECT count(*) AS count_1 FROM %s" % table_name) rows = cur.fetchall() return rows[0][0] def setUp(self): try: self.conn = self.connect() except self.driver.err.OperationalError: raise nose.SkipTest("Can't connect to MySQL server") self.pandasSQL = sql.SQLiteDatabase(self.conn, 'mysql') self._load_iris_data() self._load_test1_data() def tearDown(self): c = self.conn.cursor() c.execute('SHOW TABLES') for table in c.fetchall(): c.execute('DROP TABLE %s' % table[0]) self.conn.commit() self.conn.close() def test_a_deprecation(self): with tm.assert_produces_warning(FutureWarning): sql.to_sql(self.test_frame1, 'test_frame1', self.conn, flavor='mysql') self.assertTrue( sql.has_table('test_frame1', self.conn, flavor='mysql'), 'Table not written to DB') def _get_index_columns(self, tbl_name): ixs = sql.read_sql_query( "SHOW INDEX IN %s" % tbl_name, self.conn) ix_cols = {} for ix_name, ix_col in zip(ixs.Key_name, ixs.Column_name): if ix_name not in ix_cols: ix_cols[ix_name] = [] ix_cols[ix_name].append(ix_col) return list(ix_cols.values()) def test_to_sql_save_index(self): self._to_sql_save_index() for ix_name, ix_col in zip(ixs.Key_name, ixs.Column_name): if ix_name not in ix_cols: ix_cols[ix_name] = [] ix_cols[ix_name].append(ix_col) return ix_cols.values() def test_to_sql_save_index(self): self._to_sql_save_index() def test_illegal_names(self): df = DataFrame([[1, 2], [3, 4]], columns=['a', 'b']) # These tables and columns should be ok for ndx, ok_name in enumerate(['99beginswithnumber','12345']): df.to_sql(ok_name, self.conn, flavor=self.flavor, index=False, if_exists='replace') self.conn.cursor().execute("DROP TABLE `%s`" % ok_name) self.conn.commit() df2 = DataFrame([[1, 2], [3, 4]], columns=['a', ok_name]) c_tbl = 'test_ok_col_name%d'%ndx df2.to_sql(c_tbl, self.conn, flavor=self.flavor, index=False, if_exists='replace') self.conn.cursor().execute("DROP TABLE `%s`" % c_tbl) self.conn.commit() # For MySQL, these should raise ValueError for ndx, illegal_name in enumerate(['test_illegal_name]','test_illegal_name[', 'test_illegal_name`','test_illegal_name"', 'test_illegal_name\'', '']): self.assertRaises(ValueError, df.to_sql, illegal_name, self.conn, flavor=self.flavor, index=False) df2 = DataFrame([[1, 2], [3, 4]], columns=['a', illegal_name]) c_tbl = 'test_illegal_col_name%d'%ndx self.assertRaises(ValueError, df2.to_sql, c_tbl, self.conn, flavor=self.flavor, index=False) #------------------------------------------------------------------------------ #--- Old tests from 0.13.1 (before refactor using sqlalchemy) _formatters = { datetime: lambda dt: "'%s'" % date_format(dt), str: lambda x: "'%s'" % x, np.str_: lambda x: "'%s'" % x, compat.text_type: lambda x: "'%s'" % x, compat.binary_type: lambda x: "'%s'" % x, float: lambda x: "%.8f" % x, int: lambda x: "%s" % x, type(None): lambda x: "NULL", np.float64: lambda x: "%.10f" % x, bool: lambda x: "'%s'" % x, } def format_query(sql, *args): """ """ processed_args = [] for arg in args: if isinstance(arg, float) and isnull(arg): arg = None formatter = _formatters[type(arg)] processed_args.append(formatter(arg)) return sql % tuple(processed_args) def _skip_if_no_pymysql(): try: import pymysql except ImportError: raise nose.SkipTest('pymysql not installed, skipping') class TestXSQLite(tm.TestCase): def setUp(self): self.db = sqlite3.connect(':memory:') def test_basic(self): frame = tm.makeTimeDataFrame() self._check_roundtrip(frame) def test_write_row_by_row(self): frame = tm.makeTimeDataFrame() frame.ix[0, 0] = np.nan create_sql = sql.get_schema(frame, 'test', 'sqlite') cur = self.db.cursor() cur.execute(create_sql) cur = self.db.cursor() ins = "INSERT INTO test VALUES (%s, %s, %s, %s)" for idx, row in frame.iterrows(): fmt_sql = format_query(ins, *row) sql.tquery(fmt_sql, cur=cur) self.db.commit() result = sql.read_frame("select * from test", con=self.db) result.index = frame.index tm.assert_frame_equal(result, frame) def test_execute(self): frame = tm.makeTimeDataFrame() create_sql = sql.get_schema(frame, 'test', 'sqlite') cur = self.db.cursor() cur.execute(create_sql) ins = "INSERT INTO test VALUES (?, ?, ?, ?)" row = frame.ix[0] sql.execute(ins, self.db, params=tuple(row)) self.db.commit() result = sql.read_frame("select * from test", self.db) result.index = frame.index[:1] tm.assert_frame_equal(result, frame[:1]) def test_schema(self): frame = tm.makeTimeDataFrame() create_sql = sql.get_schema(frame, 'test', 'sqlite') lines = create_sql.splitlines() for l in lines: tokens = l.split(' ') if len(tokens) == 2 and tokens[0] == 'A': self.assertTrue(tokens[1] == 'DATETIME') frame = tm.makeTimeDataFrame() create_sql = sql.get_schema(frame, 'test', 'sqlite', keys=['A', 'B'],) lines = create_sql.splitlines() self.assertTrue('PRIMARY KEY ("A","B")' in create_sql) cur = self.db.cursor() cur.execute(create_sql) def test_execute_fail(self): create_sql = """ CREATE TABLE test ( a TEXT, b TEXT, c REAL, PRIMARY KEY (a, b) ); """ cur = self.db.cursor() cur.execute(create_sql) sql.execute('INSERT INTO test VALUES("foo", "bar", 1.234)', self.db) sql.execute('INSERT INTO test VALUES("foo", "baz", 2.567)', self.db) try: sys.stdout = StringIO() self.assertRaises(Exception, sql.execute, 'INSERT INTO test VALUES("foo", "bar", 7)', self.db) finally: sys.stdout = sys.__stdout__ def test_execute_closed_connection(self): create_sql = """ CREATE TABLE test ( a TEXT, b TEXT, c REAL, PRIMARY KEY (a, b) ); """ cur = self.db.cursor() cur.execute(create_sql) sql.execute('INSERT INTO test VALUES("foo", "bar", 1.234)', self.db) self.db.close() try: sys.stdout = StringIO() self.assertRaises(Exception, sql.tquery, "select * from test", con=self.db) finally: sys.stdout = sys.__stdout__ def test_na_roundtrip(self): pass def _check_roundtrip(self, frame): sql.write_frame(frame, name='test_table', con=self.db) result = sql.read_frame("select * from test_table", self.db) # HACK! Change this once indexes are handled properly. result.index = frame.index expected = frame tm.assert_frame_equal(result, expected) frame['txt'] = ['a'] * len(frame) frame2 = frame.copy() frame2['Idx'] = Index(lrange(len(frame2))) + 10 sql.write_frame(frame2, name='test_table2', con=self.db) result = sql.read_frame("select * from test_table2", self.db, index_col='Idx') expected = frame.copy() expected.index = Index(lrange(len(frame2))) + 10 expected.index.name = 'Idx' tm.assert_frame_equal(expected, result) def test_tquery(self): frame = tm.makeTimeDataFrame() sql.write_frame(frame, name='test_table', con=self.db) result = sql.tquery("select A from test_table", self.db) expected = Series(frame.A.values, frame.index) # not to have name result = Series(result, frame.index) tm.assert_series_equal(result, expected) try: sys.stdout = StringIO() self.assertRaises(sql.DatabaseError, sql.tquery, 'select * from blah', con=self.db) self.assertRaises(sql.DatabaseError, sql.tquery, 'select * from blah', con=self.db, retry=True) finally: sys.stdout = sys.__stdout__ def test_uquery(self): frame = tm.makeTimeDataFrame() sql.write_frame(frame, name='test_table', con=self.db) stmt = 'INSERT INTO test_table VALUES(2.314, -123.1, 1.234, 2.3)' self.assertEqual(sql.uquery(stmt, con=self.db), 1) try: sys.stdout = StringIO() self.assertRaises(sql.DatabaseError, sql.tquery, 'insert into blah values (1)', con=self.db) self.assertRaises(sql.DatabaseError, sql.tquery, 'insert into blah values (1)', con=self.db, retry=True) finally: sys.stdout = sys.__stdout__ def test_keyword_as_column_names(self): ''' ''' df = DataFrame({'From':np.ones(5)}) sql.write_frame(df, con = self.db, name = 'testkeywords') def test_onecolumn_of_integer(self): # GH 3628 # a column_of_integers dataframe should transfer well to sql mono_df=DataFrame([1 , 2], columns=['c0']) sql.write_frame(mono_df, con = self.db, name = 'mono_df') # computing the sum via sql con_x=self.db the_sum=sum([my_c0[0] for my_c0 in con_x.execute("select * from mono_df")]) # it should not fail, and gives 3 ( Issue #3628 ) self.assertEqual(the_sum , 3) result = sql.read_frame("select * from mono_df",con_x) tm.assert_frame_equal(result,mono_df) def test_if_exists(self): df_if_exists_1 = DataFrame({'col1': [1, 2], 'col2': ['A', 'B']}) df_if_exists_2 = DataFrame({'col1': [3, 4, 5], 'col2': ['C', 'D', 'E']}) table_name = 'table_if_exists' sql_select = "SELECT * FROM %s" % table_name def clean_up(test_table_to_drop): """ Drops tables created from individual tests so no dependencies arise from sequential tests """ if sql.table_exists(test_table_to_drop, self.db, flavor='sqlite'): cur = self.db.cursor() cur.execute("DROP TABLE %s" % test_table_to_drop) cur.close() # test if invalid value for if_exists raises appropriate error self.assertRaises(ValueError, sql.write_frame, frame=df_if_exists_1, con=self.db, name=table_name, flavor='sqlite', if_exists='notvalidvalue') clean_up(table_name) # test if_exists='fail' sql.write_frame(frame=df_if_exists_1, con=self.db, name=table_name, flavor='sqlite', if_exists='fail') self.assertRaises(ValueError, sql.write_frame, frame=df_if_exists_1, con=self.db, name=table_name, flavor='sqlite', if_exists='fail') # test if_exists='replace' sql.write_frame(frame=df_if_exists_1, con=self.db, name=table_name, flavor='sqlite', if_exists='replace') self.assertEqual(sql.tquery(sql_select, con=self.db), [(1, 'A'), (2, 'B')]) sql.write_frame(frame=df_if_exists_2, con=self.db, name=table_name, flavor='sqlite', if_exists='replace') self.assertEqual(sql.tquery(sql_select, con=self.db), [(3, 'C'), (4, 'D'), (5, 'E')]) clean_up(table_name) # test if_exists='append' sql.write_frame(frame=df_if_exists_1, con=self.db, name=table_name, flavor='sqlite', if_exists='fail') self.assertEqual(sql.tquery(sql_select, con=self.db), [(1, 'A'), (2, 'B')]) sql.write_frame(frame=df_if_exists_2, con=self.db, name=table_name, flavor='sqlite', if_exists='append') self.assertEqual(sql.tquery(sql_select, con=self.db), [(1, 'A'), (2, 'B'), (3, 'C'), (4, 'D'), (5, 'E')]) clean_up(table_name) class TestXMySQL(tm.TestCase): @classmethod def setUpClass(cls): _skip_if_no_pymysql() # test connection import pymysql try: # Try Travis defaults. # No real user should allow root access with a blank password. pymysql.connect(host='localhost', user='root', passwd='', db='pandas_nosetest') except: pass else: return try: pymysql.connect(read_default_group='pandas') except pymysql.ProgrammingError as e: raise nose.SkipTest( "Create a group of connection parameters under the heading " "[pandas] in your system's mysql default file, " "typically located at ~/.my.cnf or /etc/.my.cnf. ") except pymysql.Error as e: raise nose.SkipTest( "Cannot connect to database. " "Create a group of connection parameters under the heading " "[pandas] in your system's mysql default file, " "typically located at ~/.my.cnf or /etc/.my.cnf. ") def setUp(self): _skip_if_no_pymysql() import pymysql try: # Try Travis defaults. # No real user should allow root access with a blank password. self.db = pymysql.connect(host='localhost', user='root', passwd='', db='pandas_nosetest') except: pass else: return try: self.db = pymysql.connect(read_default_group='pandas') except pymysql.ProgrammingError as e: raise nose.SkipTest( "Create a group of connection parameters under the heading " "[pandas] in your system's mysql default file, " "typically located at ~/.my.cnf or /etc/.my.cnf. ") except pymysql.Error as e: raise nose.SkipTest( "Cannot connect to database. " "Create a group of connection parameters under the heading " "[pandas] in your system's mysql default file, " "typically located at ~/.my.cnf or /etc/.my.cnf. ") def tearDown(self): from pymysql.err import Error try: self.db.close() except Error: pass def test_basic(self): _skip_if_no_pymysql() frame = tm.makeTimeDataFrame() self._check_roundtrip(frame) def test_write_row_by_row(self): _skip_if_no_pymysql() frame = tm.makeTimeDataFrame() frame.ix[0, 0] = np.nan drop_sql = "DROP TABLE IF EXISTS test" create_sql = sql.get_schema(frame, 'test', 'mysql') cur = self.db.cursor() cur.execute(drop_sql) cur.execute(create_sql) ins = "INSERT INTO test VALUES (%s, %s, %s, %s)" for idx, row in frame.iterrows(): fmt_sql = format_query(ins, *row) sql.tquery(fmt_sql, cur=cur) self.db.commit() result = sql.read_frame("select * from test", con=self.db) result.index = frame.index tm.assert_frame_equal(result, frame) def test_execute(self): _skip_if_no_pymysql() frame = tm.makeTimeDataFrame() drop_sql = "DROP TABLE IF EXISTS test" create_sql = sql.get_schema(frame, 'test', 'mysql') cur = self.db.cursor() with warnings.catch_warnings(): warnings.filterwarnings("ignore", "Unknown table.*") cur.execute(drop_sql) cur.execute(create_sql) ins = "INSERT INTO test VALUES (%s, %s, %s, %s)" row = frame.ix[0].values.tolist() sql.execute(ins, self.db, params=tuple(row)) self.db.commit() result = sql.read_frame("select * from test", self.db) result.index = frame.index[:1] tm.assert_frame_equal(result, frame[:1]) def test_schema(self): _skip_if_no_pymysql() frame = tm.makeTimeDataFrame() create_sql = sql.get_schema(frame, 'test', 'mysql') lines = create_sql.splitlines() for l in lines: tokens = l.split(' ') if len(tokens) == 2 and tokens[0] == 'A': self.assertTrue(tokens[1] == 'DATETIME') frame = tm.makeTimeDataFrame() drop_sql = "DROP TABLE IF EXISTS test" create_sql = sql.get_schema(frame, 'test', 'mysql', keys=['A', 'B'],) lines = create_sql.splitlines() self.assertTrue('PRIMARY KEY (`A`,`B`)' in create_sql) cur = self.db.cursor() cur.execute(drop_sql) cur.execute(create_sql) def test_execute_fail(self): _skip_if_no_pymysql() drop_sql = "DROP TABLE IF EXISTS test" create_sql = """ CREATE TABLE test ( a TEXT, b TEXT, c REAL, PRIMARY KEY (a(5), b(5)) ); """ cur = self.db.cursor() cur.execute(drop_sql) cur.execute(create_sql) sql.execute('INSERT INTO test VALUES("foo", "bar", 1.234)', self.db) sql.execute('INSERT INTO test VALUES("foo", "baz", 2.567)', self.db) try: sys.stdout = StringIO() self.assertRaises(Exception, sql.execute, 'INSERT INTO test VALUES("foo", "bar", 7)', self.db) finally: sys.stdout = sys.__stdout__ def test_execute_closed_connection(self): _skip_if_no_pymysql() drop_sql = "DROP TABLE IF EXISTS test" create_sql = """ CREATE TABLE test ( a TEXT, b TEXT, c REAL, PRIMARY KEY (a(5), b(5)) ); """ cur = self.db.cursor() cur.execute(drop_sql) cur.execute(create_sql) sql.execute('INSERT INTO test VALUES("foo", "bar", 1.234)', self.db) self.db.close() try: sys.stdout = StringIO() self.assertRaises(Exception, sql.tquery, "select * from test", con=self.db) finally: sys.stdout = sys.__stdout__ def test_na_roundtrip(self): _skip_if_no_pymysql() pass def _check_roundtrip(self, frame): _skip_if_no_pymysql() drop_sql = "DROP TABLE IF EXISTS test_table" cur = self.db.cursor() with warnings.catch_warnings(): warnings.filterwarnings("ignore", "Unknown table.*") cur.execute(drop_sql) sql.write_frame(frame, name='test_table', con=self.db, flavor='mysql') result = sql.read_frame("select * from test_table", self.db) # HACK! Change this once indexes are handled properly. result.index = frame.index result.index.name = frame.index.name expected = frame tm.assert_frame_equal(result, expected) frame['txt'] = ['a'] * len(frame) frame2 = frame.copy() index = Index(lrange(len(frame2))) + 10 frame2['Idx'] = index drop_sql = "DROP TABLE IF EXISTS test_table2" cur = self.db.cursor() with warnings.catch_warnings(): warnings.filterwarnings("ignore", "Unknown table.*") cur.execute(drop_sql) sql.write_frame(frame2, name='test_table2', con=self.db, flavor='mysql') result = sql.read_frame("select * from test_table2", self.db, index_col='Idx') expected = frame.copy() # HACK! Change this once indexes are handled properly. expected.index = index expected.index.names = result.index.names tm.assert_frame_equal(expected, result) def test_tquery(self): try: import pymysql except ImportError: raise nose.SkipTest("no pymysql") frame = tm.makeTimeDataFrame() drop_sql = "DROP TABLE IF EXISTS test_table" cur = self.db.cursor() cur.execute(drop_sql) sql.write_frame(frame, name='test_table', con=self.db, flavor='mysql') result = sql.tquery("select A from test_table", self.db) expected = Series(frame.A.values, frame.index) # not to have name result = Series(result, frame.index) tm.assert_series_equal(result, expected) try: sys.stdout = StringIO() self.assertRaises(sql.DatabaseError, sql.tquery, 'select * from blah', con=self.db) self.assertRaises(sql.DatabaseError, sql.tquery, 'select * from blah', con=self.db, retry=True) finally: sys.stdout = sys.__stdout__ def test_uquery(self): try: import pymysql except ImportError: raise nose.SkipTest("no pymysql") frame = tm.makeTimeDataFrame() drop_sql = "DROP TABLE IF EXISTS test_table" cur = self.db.cursor() cur.execute(drop_sql) sql.write_frame(frame, name='test_table', con=self.db, flavor='mysql') stmt = 'INSERT INTO test_table VALUES(2.314, -123.1, 1.234, 2.3)' self.assertEqual(sql.uquery(stmt, con=self.db), 1) try: sys.stdout = StringIO() self.assertRaises(sql.DatabaseError, sql.tquery, 'insert into blah values (1)', con=self.db) self.assertRaises(sql.DatabaseError, sql.tquery, 'insert into blah values (1)', con=self.db, retry=True) finally: sys.stdout = sys.__stdout__ def test_keyword_as_column_names(self): ''' ''' _skip_if_no_pymysql() df = DataFrame({'From':np.ones(5)}) sql.write_frame(df, con = self.db, name = 'testkeywords', if_exists='replace', flavor='mysql') def test_if_exists(self): _skip_if_no_pymysql() df_if_exists_1 = DataFrame({'col1': [1, 2], 'col2': ['A', 'B']}) df_if_exists_2 = DataFrame({'col1': [3, 4, 5], 'col2': ['C', 'D', 'E']}) table_name = 'table_if_exists' sql_select = "SELECT * FROM %s" % table_name def clean_up(test_table_to_drop): """ Drops tables created from individual tests so no dependencies arise from sequential tests """ if sql.table_exists(test_table_to_drop, self.db, flavor='mysql'): cur = self.db.cursor() cur.execute("DROP TABLE %s" % test_table_to_drop) cur.close() # test if invalid value for if_exists raises appropriate error self.assertRaises(ValueError, sql.write_frame, frame=df_if_exists_1, con=self.db, name=table_name, flavor='mysql', if_exists='notvalidvalue') clean_up(table_name) # test if_exists='fail' sql.write_frame(frame=df_if_exists_1, con=self.db, name=table_name, flavor='mysql', if_exists='fail') self.assertRaises(ValueError, sql.write_frame, frame=df_if_exists_1, con=self.db, name=table_name, flavor='mysql', if_exists='fail') # test if_exists='replace' sql.write_frame(frame=df_if_exists_1, con=self.db, name=table_name, flavor='mysql', if_exists='replace') self.assertEqual(sql.tquery(sql_select, con=self.db), [(1, 'A'), (2, 'B')]) sql.write_frame(frame=df_if_exists_2, con=self.db, name=table_name, flavor='mysql', if_exists='replace') self.assertEqual(sql.tquery(sql_select, con=self.db), [(3, 'C'), (4, 'D'), (5, 'E')]) clean_up(table_name) # test if_exists='append' sql.write_frame(frame=df_if_exists_1, con=self.db, name=table_name, flavor='mysql', if_exists='fail') self.assertEqual(sql.tquery(sql_select, con=self.db), [(1, 'A'), (2, 'B')]) sql.write_frame(frame=df_if_exists_2, con=self.db, name=table_name, flavor='mysql', if_exists='append') self.assertEqual(sql.tquery(sql_select, con=self.db), [(1, 'A'), (2, 'B'), (3, 'C'), (4, 'D'), (5, 'E')]) clean_up(table_name) if __name__ == '__main__': nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'], exit=False)
mit
Pragmatismo/TimelapsePi-EasyControl
webcamcap_show_numpy.py
1
8684
#!/usr/bin/python import time import os import sys import pygame import numpy from PIL import Image, ImageDraw, ImageChops print("") print("") print(" USE l=3 to take a photo every 3 somethings, try a 1000 or 2") print(" t to take triggered photos ") print(" cap=/home/pi/folder/ to set caps path other than current dir") print(" ") pi_paper = False #updates pi wall paper, use -nopaper to turn it off. s_val = "10" c_val = "2" g_val = "10" b_val = "15" x_dim = 1600 y_dim = 896 additonal_commands = "-d/dev/video1 -w" try: cappath = os.getcwd() cappath += "/" except: print(" COULD NOT GET CURRENT DIR SET WITH A FLAG ") cappath = "./" print(" COULD NOT GET CURRENT DIR SET WITH A FLAG ") loc_settings = "./camera_settings.txt" try: with open(loc_settings, "r") as f: for line in f: s_item = line.split("=") if s_item[0] == "s_val": s_val = s_item[1].split("\n")[0] elif s_item[0] == "c_val": c_val = s_item[1].split("\n")[0] elif s_item[0] == "g_val": g_val = s_item[1].split("\n")[0] elif s_item[0] == "b_val": b_val = s_item[1].split("\n")[0] elif s_item[0] == "x_dim": x_dim = s_item[1].split("\n")[0] elif s_item[0] == "y_dim": y_dim = s_item[1].split("\n")[0] elif s_item[0] == "additonal_commands": additonal_commands = s_item[1].split("\n")[0] except: print("No config file for camera, using default") print("Run cam_config.py to create one") def photo(): # take and save photo timenow = time.time() timenow = str(timenow)[0:10] filename= "cap_"+str(timenow)+".jpg" #os.system("uvccapture "+additonal_commands+" -S"+s_val+" -C" + c_val + " -G"+ g_val +" -B"+ b_val +" -x"+str(x_dim)+" -y"+str(y_dim)+" -v -t0 -o"+cappath+filename) cmd = str("uvccapture "+additonal_commands+" -x"+str(x_dim)+" -y"+str(y_dim)+" -v -t0 -o"+cappath+filename) print("####") print("####") print cmd print("####") print("####") os.system(cmd) print("Image taken and saved to "+cappath+filename) if pi_paper == True: os.system("export DISPLAY=:0 && pcmanfm --set-wallpaper "+cappath+filename) return filename if 'wp' in sys.argv or 'wallpaper' in sys.argv: pi_paper = True print(" Going to try changing wall paper") loop = False trig = False for argu in sys.argv[1:]: try: thearg = str(argu).split('=')[0] except: thearg = str(argu) if thearg == 'cap' or thearg =='cappath': cappath = str(argu).split('=')[1] elif thearg == 'l' or thearg == 'looped': try: num = int(str(argu).split('=')[1]) except: print("No speed supplied, taking every 10") num = 10 loop = True elif thearg == 't' or thearg == 'TRIGGERED': trig = True print(" Saving files to, " + str(cappath)) pygame.init() display_width = x_dim display_height = y_dim gameDisplay = pygame.display.set_mode((display_width,display_height)) pygame.display.set_caption('Most recent image') black = (0,0,0) white = (255,255,255) clock = pygame.time.Clock() crashed = False import matplotlib.pyplot as plt def show_pic(imgtaken, x=0,y=0): gameDisplay.blit(imgtaken, (x,y)) gameDisplay.fill(white) c_photo = photo() pil_c_photo = Image.open(c_photo) numpy_pic = numpy.array(pil_c_photo) b_photo = photo() pil_b_photo = Image.open(b_photo) numpy_pic_b = numpy.array(pil_b_photo) mask = numpy_pic_b > numpy_pic + 30 #the +30 gets rid of noise mask2 = numpy_pic_b < numpy_pic - 30 lol = mask + mask2 e_pic = numpy_pic.copy() num = 0 while not crashed: for event in pygame.event.get(): if event.type == pygame.QUIT: crashed = True timenow = time.time() e_photo = str(timenow).split(".")[0] e_photo= "numpy_"+str(timenow)+".jpg" num = num + 1 b_photo = c_photo c_photo = photo() numpy_pic_b = numpy_pic.copy() pil_c_photo = Image.open(c_photo) numpy_pic = numpy.array(pil_c_photo) print numpy_pic.size #print len(numpy_pic[3]) print "###" #print numpy_pic[1:,1,1] #a = np.arange(100) print "##########" #numpy_pic[1:500, range(0, len(numpy_pic[2]), 10), 1] = 0 #for x in numpy_pic[1:500, range(0, len(numpy_pic[2])), 1]: # if x >= 100: # x = 255 #for x in range(10,170,10): # mask = numpy_pic < x # numpy_pic[mask] = 255-x #numpy_pic[mask] + numpy_pic[mask] #for x in range(200,255,5): # mask = numpy_pic > x # numpy_pic[mask] = 0+(x/10) # numpy_pic[mask] / numpy_pic[mask]+(numpy_pic[mask]/numpy_pic[mask]) #print numpy_pic[1:,1,1] #print numpy_pic.min() print "###" #print numpy_pic.shape #Array dimensions #print numpy_pic.ndim #Number of array dimensions #print numpy_pic.dtype #Data type of array elements #print numpy_pic.dtype.name #Name of data type #print numpy_pic.mean() #print numpy_pic.max() #print numpy_pic.min() #print numpy.info(numpy.ndarray.dtype) #print numpy_pic.astype(int) #mask = numpy_pic > numpy_pic_b #mask = numpy_pic[:, :, 2] > 150 #numpy_pic[mask] = [0, 0, 255] #lol = numpy_pic + #mask = numpy_pic_b > numpy_pic + 30 #the +30 gets rid of noise #mask2 = numpy_pic_b < numpy_pic - 30 margin = 20 maskr = numpy_pic[:, :, 0] < numpy_pic_b[:, :, 0] - margin maskg = numpy_pic[:, :, 1] < numpy_pic_b[:, :, 1] - margin maskb = numpy_pic[:, :, 2] < numpy_pic_b[:, :, 2] - margin maskr2 = numpy_pic[:, :, 0] > numpy_pic_b[:, :, 0] + margin maskg2 = numpy_pic[:, :, 1] > numpy_pic_b[:, :, 1] + margin maskb2 = numpy_pic[:, :, 2] > numpy_pic_b[:, :, 2] + margin #numpy_pic[mask] = [0, 0, 255] #lol_old = lol #lol = mask + mask2 #lol = lol + lol_old persist = 'ohhh' if persist == 'True': numpy_pic[maskr] = [255, 0, 0] numpy_pic[maskg] = [0, 255, 0] numpy_pic[maskb] = [0, 0, 255] numpy_pic[maskb2] = [0, 0, 100] numpy_pic[maskr2] = [100, 0, 0] numpy_pic[maskg2] = [0, 100, 0] Image.fromarray(numpy_pic).save(e_photo) elif persist == 'False': old_e = e_pic e_pic = numpy_pic.copy() e_pic[maskr] = [255, 0, 0] e_pic[maskg] = [0, 255, 0] e_pic[maskb] = [0, 0, 255] e_pic[maskr2] = [100, 0, 0] e_pic[maskg2] = [0, 100, 0] e_pic[maskb2] = [0, 0, 100] show1 = 'waa' if show1 == '1': e_pic = ((e_pic/4) - (numpy_pic))*3 e_pic = e_pic / 3 + old_e / 2 elif show1 == 'tripsy': e_pic = ((e_pic/4) - (numpy_pic))*3 e_pic = e_pic - old_e / 2 elif show1 == 'waa': e_pic = ((e_pic/4) - (numpy_pic))*3 #e_pic = old_e * 0.8 + e_pic * 0.2 Image.fromarray(e_pic).save(e_photo) elif persist == 'ohhh': old_e = e_pic.copy() mask_b_pic = numpy_pic.copy() mask_d_pic = numpy_pic.copy() mask_b_pic[maskr] = [255, 255, 255] mask_b_pic[maskg] = [255, 255, 255] mask_b_pic[maskb] = [255, 255, 255] mask_d_pic[maskr2] = [0, 0, 0] mask_d_pic[maskg2] = [0, 0, 0] mask_d_pic[maskb2] = [0, 0, 0] #e_pic = e_pic/6 + old_e e_pic = [200, 200, 0] #e_pic = e_pic/2 - ((mask_d_pic) + (mask_b_pic)) #e_pic = e_pic/2 + ((mask_d_pic) + (mask_b_pic)) #choose one of the following #e_pic = mask_d_pic #shows when pixel is darker than it was #e_pic = mask_b_pic #shows when pixel is lighter than prior e_pic = mask_d_pic - mask_b_pic #black execpt for movement e_pic = mask_b_pic / (mask_d_pic / 100) #black execpt for movement #e_pic = mask_d_pic + mask_b_pic #looks odd Image.fromarray(e_pic).save(e_photo) #plt.imshow(lol) #plt.show() #Image.fromarray(numpy_pic).save(e_photo) onscreen = pygame.image.load(e_photo) gameDisplay.blit(onscreen, (0,0)) pygame.display.update() if trig == True: print("Waiting for input before taking next image...") tp = raw_input("press return to take picture; ") if tp == "q": print("---bye!") exit() clock.tick(20) if loop == True: pygame.time.wait(num) clock.tick(20) elif trig == False and loop == False: crashed = True #while True: #pygame.time.wait(1000) #clock.tick(20) pygame.quit() quit()
gpl-2.0
SMTorg/smt
smt/surrogate_models/tests/test_surrogate_model_examples.py
2
17391
""" Author: John Hwang <<hwangjt@umich.edu>> This package is distributed under New BSD license. """ import unittest import matplotlib matplotlib.use("Agg") try: from smt.surrogate_models import IDW, RBF, RMTB, RMTC compiled_available = True except: compiled_available = False class Test(unittest.TestCase): @unittest.skipIf(not compiled_available, "C compilation failed") def test_idw(self): import numpy as np import matplotlib.pyplot as plt from smt.surrogate_models import IDW xt = np.array([0.0, 1.0, 2.0, 3.0, 4.0]) yt = np.array([0.0, 1.0, 1.5, 0.9, 1.0]) sm = IDW(p=2) sm.set_training_values(xt, yt) sm.train() num = 100 x = np.linspace(0.0, 4.0, num) y = sm.predict_values(x) plt.plot(xt, yt, "o") plt.plot(x, y) plt.xlabel("x") plt.ylabel("y") plt.legend(["Training data", "Prediction"]) plt.show() @unittest.skipIf(not compiled_available, "C compilation failed") def test_rbf(self): import numpy as np import matplotlib.pyplot as plt from smt.surrogate_models import RBF xt = np.array([0.0, 1.0, 2.0, 3.0, 4.0]) yt = np.array([0.0, 1.0, 1.5, 0.9, 1.0]) sm = RBF(d0=5) sm.set_training_values(xt, yt) sm.train() num = 100 x = np.linspace(0.0, 4.0, num) y = sm.predict_values(x) plt.plot(xt, yt, "o") plt.plot(x, y) plt.xlabel("x") plt.ylabel("y") plt.legend(["Training data", "Prediction"]) plt.show() @unittest.skipIf(not compiled_available, "C compilation failed") def test_rmtb(self): import numpy as np import matplotlib.pyplot as plt from smt.surrogate_models import RMTB xt = np.array([0.0, 1.0, 2.0, 3.0, 4.0]) yt = np.array([0.0, 1.0, 1.5, 0.9, 1.0]) xlimits = np.array([[0.0, 4.0]]) sm = RMTB( xlimits=xlimits, order=4, num_ctrl_pts=20, energy_weight=1e-15, regularization_weight=0.0, ) sm.set_training_values(xt, yt) sm.train() num = 100 x = np.linspace(0.0, 4.0, num) y = sm.predict_values(x) plt.plot(xt, yt, "o") plt.plot(x, y) plt.xlabel("x") plt.ylabel("y") plt.legend(["Training data", "Prediction"]) plt.show() @unittest.skipIf(not compiled_available, "C compilation failed") def test_rmtc(self): import numpy as np import matplotlib.pyplot as plt from smt.surrogate_models import RMTC xt = np.array([0.0, 1.0, 2.0, 3.0, 4.0]) yt = np.array([0.0, 1.0, 1.5, 0.9, 1.0]) xlimits = np.array([[0.0, 4.0]]) sm = RMTC( xlimits=xlimits, num_elements=20, energy_weight=1e-15, regularization_weight=0.0, ) sm.set_training_values(xt, yt) sm.train() num = 100 x = np.linspace(0.0, 4.0, num) y = sm.predict_values(x) plt.plot(xt, yt, "o") plt.plot(x, y) plt.xlabel("x") plt.ylabel("y") plt.legend(["Training data", "Prediction"]) plt.show() def test_ls(self): import numpy as np import matplotlib.pyplot as plt from smt.surrogate_models import LS xt = np.array([0.0, 1.0, 2.0, 3.0, 4.0]) yt = np.array([0.0, 1.0, 1.5, 0.9, 1.0]) sm = LS() sm.set_training_values(xt, yt) sm.train() num = 100 x = np.linspace(0.0, 4.0, num) y = sm.predict_values(x) plt.plot(xt, yt, "o") plt.plot(x, y) plt.xlabel("x") plt.ylabel("y") plt.legend(["Training data", "Prediction"]) plt.show() def test_qp(self): import numpy as np import matplotlib.pyplot as plt from smt.surrogate_models import QP xt = np.array([[0.0, 1.0, 2.0, 3.0, 4.0]]).T yt = np.array([[0.2, 1.4, 1.5, 0.9, 1.0], [0.0, 1.0, 2.0, 4, 3]]).T sm = QP() sm.set_training_values(xt, yt) sm.train() num = 100 x = np.linspace(0.0, 4.0, num) y = sm.predict_values(x) t1, _ = plt.plot(xt, yt[:, 0], "o", "C0") p1 = plt.plot(x, y[:, 0], "C0", label="Prediction 1") t2, _ = plt.plot(xt, yt[:, 1], "o", "C1") p2 = plt.plot(x, y[:, 1], "C1", label="Prediction 2") plt.xlabel("x") plt.ylabel("y") plt.legend() plt.show() def test_krg(self): import numpy as np import matplotlib.pyplot as plt from smt.surrogate_models import KRG xt = np.array([0.0, 1.0, 2.0, 3.0, 4.0]) yt = np.array([0.0, 1.0, 1.5, 0.9, 1.0]) sm = KRG(theta0=[1e-2]) sm.set_training_values(xt, yt) sm.train() num = 100 x = np.linspace(0.0, 4.0, num) y = sm.predict_values(x) # estimated variance s2 = sm.predict_variances(x) # derivative according to the first variable dydx = sm.predict_derivatives(xt, 0) fig, axs = plt.subplots(1) # add a plot with variance axs.plot(xt, yt, "o") axs.plot(x, y) axs.fill_between( np.ravel(x), np.ravel(y - 3 * np.sqrt(s2)), np.ravel(y + 3 * np.sqrt(s2)), color="lightgrey", ) axs.set_xlabel("x") axs.set_ylabel("y") axs.legend( ["Training data", "Prediction", "Confidence Interval 99%"], loc="lower right", ) plt.show() def test_mixed_int_krg(self): import numpy as np import matplotlib.pyplot as plt from smt.surrogate_models import KRG from smt.applications.mixed_integer import MixedIntegerSurrogateModel, INT xt = np.array([0.0, 2.0, 3.0]) yt = np.array([0.0, 1.5, 0.9]) # xtypes = [FLOAT, INT, (ENUM, 3), (ENUM, 2)] # FLOAT means x1 continuous # INT means x2 integer # (ENUM, 3) means x3, x4 & x5 are 3 levels of the same categorical variable # (ENUM, 2) means x6 & x7 are 2 levels of the same categorical variable sm = MixedIntegerSurrogateModel( xtypes=[INT], xlimits=[[0, 4]], surrogate=KRG(theta0=[1e-2]) ) sm.set_training_values(xt, yt) sm.train() num = 500 x = np.linspace(0.0, 4.0, num) y = sm.predict_values(x) # estimated variance s2 = sm.predict_variances(x) fig, axs = plt.subplots(1) axs.plot(xt, yt, "o") axs.plot(x, y) axs.fill_between( np.ravel(x), np.ravel(y - 3 * np.sqrt(s2)), np.ravel(y + 3 * np.sqrt(s2)), color="lightgrey", ) axs.set_xlabel("x") axs.set_ylabel("y") axs.legend( ["Training data", "Prediction", "Confidence Interval 99%"], loc="lower right", ) plt.show() def test_mixed_gower_krg(self): import numpy as np import matplotlib.pyplot as plt from smt.surrogate_models import KRG from smt.applications.mixed_integer import MixedIntegerSurrogateModel from smt.applications.mixed_integer import ENUM # xtypes = [FLOAT, INT, (ENUM, 3), (ENUM, 2)] # FLOAT means x1 continuous # INT means x2 integer # (ENUM, 3) means x3, x4 & x5 are 3 levels of the same categorical variable # (ENUM, 2) means x6 & x7 are 2 levels of the same categorical variable xt = np.linspace(1.0, 5.0, 5) x_train = np.array(["%.2f" % i for i in xt], dtype=object) yt = np.array([0.0, 1.0, 1.5, 0.5, 1.0]) xlimits = [["0.0", "1.0", " 2.0", "3.0", "4.0"]] sm = MixedIntegerSurrogateModel( use_gower_distance=True, xtypes=[(ENUM, 5)], xlimits=xlimits, surrogate=KRG(theta0=[1e-2]), ) sm.set_training_values(x_train, yt) sm.train() num = 101 x = np.linspace(0, 5, num) x_pred = np.array(["%.2f" % i for i in x], dtype=object) y = sm.predict_values(x_pred) plt.plot(xt, yt, "o") plt.plot(x, y) plt.xlabel("x") plt.ylabel("y") plt.legend(["Training data", "Prediction"]) plt.show() def test_kpls(self): import numpy as np import matplotlib.pyplot as plt from smt.surrogate_models import KPLS xt = np.array([0.0, 1.0, 2.0, 3.0, 4.0]) yt = np.array([0.0, 1.0, 1.5, 0.9, 1.0]) sm = KPLS(theta0=[1e-2]) sm.set_training_values(xt, yt) sm.train() num = 100 x = np.linspace(0.0, 4.0, num) y = sm.predict_values(x) # estimated variance s2 = sm.predict_variances(x) # to compute the derivative according to the first variable dydx = sm.predict_derivatives(xt, 0) plt.plot(xt, yt, "o") plt.plot(x, y) plt.xlabel("x") plt.ylabel("y") plt.legend(["Training data", "Prediction"]) plt.show() # add a plot with variance plt.plot(xt, yt, "o") plt.plot(x, y) plt.fill_between( np.ravel(x), np.ravel(y - 3 * np.sqrt(s2)), np.ravel(y + 3 * np.sqrt(s2)), color="lightgrey", ) plt.xlabel("x") plt.ylabel("y") plt.legend(["Training data", "Prediction", "Confidence Interval 99%"]) plt.show() def test_kplsk(self): import numpy as np import matplotlib.pyplot as plt from smt.surrogate_models import KPLSK xt = np.array([0.0, 1.0, 2.0, 3.0, 4.0]) yt = np.array([0.0, 1.0, 1.5, 0.9, 1.0]) sm = KPLSK(theta0=[1e-2]) sm.set_training_values(xt, yt) sm.train() num = 100 x = np.linspace(0.0, 4.0, num) y = sm.predict_values(x) # estimated variance s2 = sm.predict_variances(x) # derivative according to the first variable dydx = sm.predict_derivatives(xt, 0) plt.plot(xt, yt, "o") plt.plot(x, y) plt.xlabel("x") plt.ylabel("y") plt.legend(["Training data", "Prediction"]) plt.show() # add a plot with variance plt.plot(xt, yt, "o") plt.plot(x, y) plt.fill_between( np.ravel(x), np.ravel(y - 3 * np.sqrt(s2)), np.ravel(y + 3 * np.sqrt(s2)), color="lightgrey", ) plt.xlabel("x") plt.ylabel("y") plt.legend(["Training data", "Prediction", "Confidence Interval 99%"]) plt.show() def test_gekpls(self): import numpy as np from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt from smt.surrogate_models import GEKPLS from smt.problems import Sphere from smt.sampling_methods import LHS # Construction of the DOE fun = Sphere(ndim=2) sampling = LHS(xlimits=fun.xlimits, criterion="m") xt = sampling(20) yt = fun(xt) # Compute the gradient for i in range(2): yd = fun(xt, kx=i) yt = np.concatenate((yt, yd), axis=1) # Build the GEKPLS model sm = GEKPLS( theta0=[1e-2], xlimits=fun.xlimits, extra_points=1, print_prediction=False ) sm.set_training_values(xt, yt[:, 0]) for i in range(2): sm.set_training_derivatives(xt, yt[:, 1 + i].reshape((yt.shape[0], 1)), i) sm.train() # Test the model X = np.arange(fun.xlimits[0, 0], fun.xlimits[0, 1], 0.25) Y = np.arange(fun.xlimits[1, 0], fun.xlimits[1, 1], 0.25) X, Y = np.meshgrid(X, Y) Z = np.zeros((X.shape[0], X.shape[1])) for i in range(X.shape[0]): for j in range(X.shape[1]): Z[i, j] = sm.predict_values( np.hstack((X[i, j], Y[i, j])).reshape((1, 2)) ) fig = plt.figure() ax = fig.gca(projection="3d") surf = ax.plot_surface(X, Y, Z) plt.show() def test_genn(self): import numpy as np import matplotlib.pyplot as plt from smt.surrogate_models.genn import GENN, load_smt_data # Training data lower_bound = -np.pi upper_bound = np.pi number_of_training_points = 4 xt = np.linspace(lower_bound, upper_bound, number_of_training_points) yt = xt * np.sin(xt) dyt_dxt = np.sin(xt) + xt * np.cos(xt) # Validation data number_of_validation_points = 30 xv = np.linspace(lower_bound, upper_bound, number_of_validation_points) yv = xv * np.sin(xv) dyv_dxv = np.sin(xv) + xv * np.cos(xv) # Truth model x = np.arange(lower_bound, upper_bound, 0.01) y = x * np.sin(x) # GENN genn = GENN() genn.options["alpha"] = 0.1 # learning rate that controls optimizer step size genn.options["beta1"] = 0.9 # tuning parameter to control ADAM optimization genn.options["beta2"] = 0.99 # tuning parameter to control ADAM optimization genn.options[ "lambd" ] = 0.1 # lambd = 0. = no regularization, lambd > 0 = regularization genn.options[ "gamma" ] = 1.0 # gamma = 0. = no grad-enhancement, gamma > 0 = grad-enhancement genn.options["deep"] = 2 # number of hidden layers genn.options["wide"] = 6 # number of nodes per hidden layer genn.options[ "mini_batch_size" ] = 64 # used to divide data into training batches (use for large data sets) genn.options["num_epochs"] = 20 # number of passes through data genn.options[ "num_iterations" ] = 100 # number of optimizer iterations per mini-batch genn.options["is_print"] = True # print output (or not) load_smt_data( genn, xt, yt, dyt_dxt ) # convenience function to read in data that is in SMT format genn.train() # API function to train model genn.plot_training_history() # non-API function to plot training history (to check convergence) genn.goodness_of_fit( xv, yv, dyv_dxv ) # non-API function to check accuracy of regression y_pred = genn.predict_values( x ) # API function to predict values at new (unseen) points # Plot fig, ax = plt.subplots() ax.plot(x, y_pred) ax.plot(x, y, "k--") ax.plot(xv, yv, "ro") ax.plot(xt, yt, "k+", mew=3, ms=10) ax.set(xlabel="x", ylabel="y", title="GENN") ax.legend(["Predicted", "True", "Test", "Train"]) plt.show() def test_mgp(self): import numpy as np import matplotlib.pyplot as plt from smt.surrogate_models import MGP from smt.sampling_methods import LHS # Construction of the DOE dim = 3 def fun(x): import numpy as np res = ( np.sum(x, axis=1) ** 2 - np.sum(x, axis=1) + 0.2 * (np.sum(x, axis=1) * 1.2) ** 3 ) return res sampling = LHS(xlimits=np.asarray([(-1, 1)] * dim), criterion="m") xt = sampling(8) yt = np.atleast_2d(fun(xt)).T # Build the MGP model sm = MGP( theta0=[1e-2], print_prediction=False, n_comp=1, ) sm.set_training_values(xt, yt[:, 0]) sm.train() # Get the transfert matrix A emb = sm.embedding["C"] # Compute the smallest box containing all points of A upper = np.sum(np.abs(emb), axis=0) lower = -upper # Test the model u_plot = np.atleast_2d(np.arange(lower, upper, 0.01)).T x_plot = sm.get_x_from_u(u_plot) # Get corresponding points in Omega y_plot_true = fun(x_plot) y_plot_pred = sm.predict_values(u_plot) sigma_MGP, sigma_KRG = sm.predict_variances(u_plot, True) u_train = sm.get_u_from_x(xt) # Get corresponding points in A # Plots fig, ax = plt.subplots() ax.plot(u_plot, y_plot_pred, label="Predicted") ax.plot(u_plot, y_plot_true, "k--", label="True") ax.plot(u_train, yt, "k+", mew=3, ms=10, label="Train") ax.fill_between( u_plot[:, 0], y_plot_pred - 3 * sigma_MGP, y_plot_pred + 3 * sigma_MGP, color="r", alpha=0.5, label="Variance with hyperparameters uncertainty", ) ax.fill_between( u_plot[:, 0], y_plot_pred - 3 * sigma_KRG, y_plot_pred + 3 * sigma_KRG, color="b", alpha=0.5, label="Variance without hyperparameters uncertainty", ) ax.set(xlabel="x", ylabel="y", title="MGP") fig.legend(loc="upper center", ncol=2) fig.tight_layout() fig.subplots_adjust(top=0.74) plt.show() if __name__ == "__main__": unittest.main()
bsd-3-clause
hainm/scipy
scipy/stats/_discrete_distns.py
34
21220
# # Author: Travis Oliphant 2002-2011 with contributions from # SciPy Developers 2004-2011 # from __future__ import division, print_function, absolute_import from scipy import special from scipy.special import entr, gammaln as gamln from scipy.misc import logsumexp from numpy import floor, ceil, log, exp, sqrt, log1p, expm1, tanh, cosh, sinh import numpy as np from ._distn_infrastructure import ( rv_discrete, _lazywhere, _ncx2_pdf, _ncx2_cdf, get_distribution_names) class binom_gen(rv_discrete): """A binomial discrete random variable. %(before_notes)s Notes ----- The probability mass function for `binom` is:: binom.pmf(k) = choose(n, k) * p**k * (1-p)**(n-k) for ``k`` in ``{0, 1,..., n}``. `binom` takes ``n`` and ``p`` as shape parameters. %(after_notes)s %(example)s """ def _rvs(self, n, p): return self._random_state.binomial(n, p, self._size) def _argcheck(self, n, p): self.b = n return (n >= 0) & (p >= 0) & (p <= 1) def _logpmf(self, x, n, p): k = floor(x) combiln = (gamln(n+1) - (gamln(k+1) + gamln(n-k+1))) return combiln + special.xlogy(k, p) + special.xlog1py(n-k, -p) def _pmf(self, x, n, p): return exp(self._logpmf(x, n, p)) def _cdf(self, x, n, p): k = floor(x) vals = special.bdtr(k, n, p) return vals def _sf(self, x, n, p): k = floor(x) return special.bdtrc(k, n, p) def _ppf(self, q, n, p): vals = ceil(special.bdtrik(q, n, p)) vals1 = np.maximum(vals - 1, 0) temp = special.bdtr(vals1, n, p) return np.where(temp >= q, vals1, vals) def _stats(self, n, p, moments='mv'): q = 1.0 - p mu = n * p var = n * p * q g1, g2 = None, None if 's' in moments: g1 = (q - p) / sqrt(var) if 'k' in moments: g2 = (1.0 - 6*p*q) / var return mu, var, g1, g2 def _entropy(self, n, p): k = np.r_[0:n + 1] vals = self._pmf(k, n, p) return np.sum(entr(vals), axis=0) binom = binom_gen(name='binom') class bernoulli_gen(binom_gen): """A Bernoulli discrete random variable. %(before_notes)s Notes ----- The probability mass function for `bernoulli` is:: bernoulli.pmf(k) = 1-p if k = 0 = p if k = 1 for ``k`` in ``{0, 1}``. `bernoulli` takes ``p`` as shape parameter. %(after_notes)s %(example)s """ def _rvs(self, p): return binom_gen._rvs(self, 1, p) def _argcheck(self, p): return (p >= 0) & (p <= 1) def _logpmf(self, x, p): return binom._logpmf(x, 1, p) def _pmf(self, x, p): return binom._pmf(x, 1, p) def _cdf(self, x, p): return binom._cdf(x, 1, p) def _sf(self, x, p): return binom._sf(x, 1, p) def _ppf(self, q, p): return binom._ppf(q, 1, p) def _stats(self, p): return binom._stats(1, p) def _entropy(self, p): return entr(p) + entr(1-p) bernoulli = bernoulli_gen(b=1, name='bernoulli') class nbinom_gen(rv_discrete): """A negative binomial discrete random variable. %(before_notes)s Notes ----- The probability mass function for `nbinom` is:: nbinom.pmf(k) = choose(k+n-1, n-1) * p**n * (1-p)**k for ``k >= 0``. `nbinom` takes ``n`` and ``p`` as shape parameters. %(after_notes)s %(example)s """ def _rvs(self, n, p): return self._random_state.negative_binomial(n, p, self._size) def _argcheck(self, n, p): return (n > 0) & (p >= 0) & (p <= 1) def _pmf(self, x, n, p): return exp(self._logpmf(x, n, p)) def _logpmf(self, x, n, p): coeff = gamln(n+x) - gamln(x+1) - gamln(n) return coeff + n*log(p) + special.xlog1py(x, -p) def _cdf(self, x, n, p): k = floor(x) return special.betainc(n, k+1, p) def _sf_skip(self, x, n, p): # skip because special.nbdtrc doesn't work for 0<n<1 k = floor(x) return special.nbdtrc(k, n, p) def _ppf(self, q, n, p): vals = ceil(special.nbdtrik(q, n, p)) vals1 = (vals-1).clip(0.0, np.inf) temp = self._cdf(vals1, n, p) return np.where(temp >= q, vals1, vals) def _stats(self, n, p): Q = 1.0 / p P = Q - 1.0 mu = n*P var = n*P*Q g1 = (Q+P)/sqrt(n*P*Q) g2 = (1.0 + 6*P*Q) / (n*P*Q) return mu, var, g1, g2 nbinom = nbinom_gen(name='nbinom') class geom_gen(rv_discrete): """A geometric discrete random variable. %(before_notes)s Notes ----- The probability mass function for `geom` is:: geom.pmf(k) = (1-p)**(k-1)*p for ``k >= 1``. `geom` takes ``p`` as shape parameter. %(after_notes)s %(example)s """ def _rvs(self, p): return self._random_state.geometric(p, size=self._size) def _argcheck(self, p): return (p <= 1) & (p >= 0) def _pmf(self, k, p): return np.power(1-p, k-1) * p def _logpmf(self, k, p): return special.xlog1py(k - 1, -p) + log(p) def _cdf(self, x, p): k = floor(x) return -expm1(log1p(-p)*k) def _sf(self, x, p): return np.exp(self._logsf(x, p)) def _logsf(self, x, p): k = floor(x) return k*log1p(-p) def _ppf(self, q, p): vals = ceil(log(1.0-q)/log(1-p)) temp = self._cdf(vals-1, p) return np.where((temp >= q) & (vals > 0), vals-1, vals) def _stats(self, p): mu = 1.0/p qr = 1.0-p var = qr / p / p g1 = (2.0-p) / sqrt(qr) g2 = np.polyval([1, -6, 6], p)/(1.0-p) return mu, var, g1, g2 geom = geom_gen(a=1, name='geom', longname="A geometric") class hypergeom_gen(rv_discrete): """A hypergeometric discrete random variable. The hypergeometric distribution models drawing objects from a bin. M is the total number of objects, n is total number of Type I objects. The random variate represents the number of Type I objects in N drawn without replacement from the total population. %(before_notes)s Notes ----- The probability mass function is defined as:: pmf(k, M, n, N) = choose(n, k) * choose(M - n, N - k) / choose(M, N), for max(0, N - (M-n)) <= k <= min(n, N) %(after_notes)s Examples -------- >>> from scipy.stats import hypergeom >>> import matplotlib.pyplot as plt Suppose we have a collection of 20 animals, of which 7 are dogs. Then if we want to know the probability of finding a given number of dogs if we choose at random 12 of the 20 animals, we can initialize a frozen distribution and plot the probability mass function: >>> [M, n, N] = [20, 7, 12] >>> rv = hypergeom(M, n, N) >>> x = np.arange(0, n+1) >>> pmf_dogs = rv.pmf(x) >>> fig = plt.figure() >>> ax = fig.add_subplot(111) >>> ax.plot(x, pmf_dogs, 'bo') >>> ax.vlines(x, 0, pmf_dogs, lw=2) >>> ax.set_xlabel('# of dogs in our group of chosen animals') >>> ax.set_ylabel('hypergeom PMF') >>> plt.show() Instead of using a frozen distribution we can also use `hypergeom` methods directly. To for example obtain the cumulative distribution function, use: >>> prb = hypergeom.cdf(x, M, n, N) And to generate random numbers: >>> R = hypergeom.rvs(M, n, N, size=10) """ def _rvs(self, M, n, N): return self._random_state.hypergeometric(n, M-n, N, size=self._size) def _argcheck(self, M, n, N): cond = (M > 0) & (n >= 0) & (N >= 0) cond &= (n <= M) & (N <= M) self.a = max(N-(M-n), 0) self.b = min(n, N) return cond def _logpmf(self, k, M, n, N): tot, good = M, n bad = tot - good return gamln(good+1) - gamln(good-k+1) - gamln(k+1) + gamln(bad+1) \ - gamln(bad-N+k+1) - gamln(N-k+1) - gamln(tot+1) + gamln(tot-N+1) \ + gamln(N+1) def _pmf(self, k, M, n, N): # same as the following but numerically more precise # return comb(good, k) * comb(bad, N-k) / comb(tot, N) return exp(self._logpmf(k, M, n, N)) def _stats(self, M, n, N): # tot, good, sample_size = M, n, N # "wikipedia".replace('N', 'M').replace('n', 'N').replace('K', 'n') M, n, N = 1.*M, 1.*n, 1.*N m = M - n p = n/M mu = N*p var = m*n*N*(M - N)*1.0/(M*M*(M-1)) g1 = (m - n)*(M-2*N) / (M-2.0) * sqrt((M-1.0) / (m*n*N*(M-N))) g2 = M*(M+1) - 6.*N*(M-N) - 6.*n*m g2 *= (M-1)*M*M g2 += 6.*n*N*(M-N)*m*(5.*M-6) g2 /= n * N * (M-N) * m * (M-2.) * (M-3.) return mu, var, g1, g2 def _entropy(self, M, n, N): k = np.r_[N - (M - n):min(n, N) + 1] vals = self.pmf(k, M, n, N) return np.sum(entr(vals), axis=0) def _sf(self, k, M, n, N): """More precise calculation, 1 - cdf doesn't cut it.""" # This for loop is needed because `k` can be an array. If that's the # case, the sf() method makes M, n and N arrays of the same shape. We # therefore unpack all inputs args, so we can do the manual # integration. res = [] for quant, tot, good, draw in zip(k, M, n, N): # Manual integration over probability mass function. More accurate # than integrate.quad. k2 = np.arange(quant + 1, draw + 1) res.append(np.sum(self._pmf(k2, tot, good, draw))) return np.asarray(res) def _logsf(self, k, M, n, N): """ More precise calculation than log(sf) """ res = [] for quant, tot, good, draw in zip(k, M, n, N): # Integration over probability mass function using logsumexp k2 = np.arange(quant + 1, draw + 1) res.append(logsumexp(self._logpmf(k2, tot, good, draw))) return np.asarray(res) hypergeom = hypergeom_gen(name='hypergeom') # FIXME: Fails _cdfvec class logser_gen(rv_discrete): """A Logarithmic (Log-Series, Series) discrete random variable. %(before_notes)s Notes ----- The probability mass function for `logser` is:: logser.pmf(k) = - p**k / (k*log(1-p)) for ``k >= 1``. `logser` takes ``p`` as shape parameter. %(after_notes)s %(example)s """ def _rvs(self, p): # looks wrong for p>0.5, too few k=1 # trying to use generic is worse, no k=1 at all return self._random_state.logseries(p, size=self._size) def _argcheck(self, p): return (p > 0) & (p < 1) def _pmf(self, k, p): return -np.power(p, k) * 1.0 / k / log(1 - p) def _stats(self, p): r = log(1 - p) mu = p / (p - 1.0) / r mu2p = -p / r / (p - 1.0)**2 var = mu2p - mu*mu mu3p = -p / r * (1.0+p) / (1.0 - p)**3 mu3 = mu3p - 3*mu*mu2p + 2*mu**3 g1 = mu3 / np.power(var, 1.5) mu4p = -p / r * ( 1.0 / (p-1)**2 - 6*p / (p - 1)**3 + 6*p*p / (p-1)**4) mu4 = mu4p - 4*mu3p*mu + 6*mu2p*mu*mu - 3*mu**4 g2 = mu4 / var**2 - 3.0 return mu, var, g1, g2 logser = logser_gen(a=1, name='logser', longname='A logarithmic') class poisson_gen(rv_discrete): """A Poisson discrete random variable. %(before_notes)s Notes ----- The probability mass function for `poisson` is:: poisson.pmf(k) = exp(-mu) * mu**k / k! for ``k >= 0``. `poisson` takes ``mu`` as shape parameter. %(after_notes)s %(example)s """ def _rvs(self, mu): return self._random_state.poisson(mu, self._size) def _logpmf(self, k, mu): Pk = k*log(mu)-gamln(k+1) - mu return Pk def _pmf(self, k, mu): return exp(self._logpmf(k, mu)) def _cdf(self, x, mu): k = floor(x) return special.pdtr(k, mu) def _sf(self, x, mu): k = floor(x) return special.pdtrc(k, mu) def _ppf(self, q, mu): vals = ceil(special.pdtrik(q, mu)) vals1 = np.maximum(vals - 1, 0) temp = special.pdtr(vals1, mu) return np.where(temp >= q, vals1, vals) def _stats(self, mu): var = mu tmp = np.asarray(mu) g1 = sqrt(1.0 / tmp) g2 = 1.0 / tmp return mu, var, g1, g2 poisson = poisson_gen(name="poisson", longname='A Poisson') class planck_gen(rv_discrete): """A Planck discrete exponential random variable. %(before_notes)s Notes ----- The probability mass function for `planck` is:: planck.pmf(k) = (1-exp(-lambda_))*exp(-lambda_*k) for ``k*lambda_ >= 0``. `planck` takes ``lambda_`` as shape parameter. %(after_notes)s %(example)s """ def _argcheck(self, lambda_): if (lambda_ > 0): self.a = 0 self.b = np.inf return 1 elif (lambda_ < 0): self.a = -np.inf self.b = 0 return 1 else: return 0 def _pmf(self, k, lambda_): fact = (1-exp(-lambda_)) return fact*exp(-lambda_*k) def _cdf(self, x, lambda_): k = floor(x) return 1-exp(-lambda_*(k+1)) def _ppf(self, q, lambda_): vals = ceil(-1.0/lambda_ * log1p(-q)-1) vals1 = (vals-1).clip(self.a, np.inf) temp = self._cdf(vals1, lambda_) return np.where(temp >= q, vals1, vals) def _stats(self, lambda_): mu = 1/(exp(lambda_)-1) var = exp(-lambda_)/(expm1(-lambda_))**2 g1 = 2*cosh(lambda_/2.0) g2 = 4+2*cosh(lambda_) return mu, var, g1, g2 def _entropy(self, lambda_): l = lambda_ C = (1-exp(-l)) return l*exp(-l)/C - log(C) planck = planck_gen(name='planck', longname='A discrete exponential ') class boltzmann_gen(rv_discrete): """A Boltzmann (Truncated Discrete Exponential) random variable. %(before_notes)s Notes ----- The probability mass function for `boltzmann` is:: boltzmann.pmf(k) = (1-exp(-lambda_)*exp(-lambda_*k)/(1-exp(-lambda_*N)) for ``k = 0,..., N-1``. `boltzmann` takes ``lambda_`` and ``N`` as shape parameters. %(after_notes)s %(example)s """ def _pmf(self, k, lambda_, N): fact = (1-exp(-lambda_))/(1-exp(-lambda_*N)) return fact*exp(-lambda_*k) def _cdf(self, x, lambda_, N): k = floor(x) return (1-exp(-lambda_*(k+1)))/(1-exp(-lambda_*N)) def _ppf(self, q, lambda_, N): qnew = q*(1-exp(-lambda_*N)) vals = ceil(-1.0/lambda_ * log(1-qnew)-1) vals1 = (vals-1).clip(0.0, np.inf) temp = self._cdf(vals1, lambda_, N) return np.where(temp >= q, vals1, vals) def _stats(self, lambda_, N): z = exp(-lambda_) zN = exp(-lambda_*N) mu = z/(1.0-z)-N*zN/(1-zN) var = z/(1.0-z)**2 - N*N*zN/(1-zN)**2 trm = (1-zN)/(1-z) trm2 = (z*trm**2 - N*N*zN) g1 = z*(1+z)*trm**3 - N**3*zN*(1+zN) g1 = g1 / trm2**(1.5) g2 = z*(1+4*z+z*z)*trm**4 - N**4 * zN*(1+4*zN+zN*zN) g2 = g2 / trm2 / trm2 return mu, var, g1, g2 boltzmann = boltzmann_gen(name='boltzmann', longname='A truncated discrete exponential ') class randint_gen(rv_discrete): """A uniform discrete random variable. %(before_notes)s Notes ----- The probability mass function for `randint` is:: randint.pmf(k) = 1./(high - low) for ``k = low, ..., high - 1``. `randint` takes ``low`` and ``high`` as shape parameters. Note the difference to the numpy ``random_integers`` which returns integers on a *closed* interval ``[low, high]``. %(after_notes)s %(example)s """ def _argcheck(self, low, high): self.a = low self.b = high - 1 return (high > low) def _pmf(self, k, low, high): p = np.ones_like(k) / (high - low) return np.where((k >= low) & (k < high), p, 0.) def _cdf(self, x, low, high): k = floor(x) return (k - low + 1.) / (high - low) def _ppf(self, q, low, high): vals = ceil(q * (high - low) + low) - 1 vals1 = (vals - 1).clip(low, high) temp = self._cdf(vals1, low, high) return np.where(temp >= q, vals1, vals) def _stats(self, low, high): m2, m1 = np.asarray(high), np.asarray(low) mu = (m2 + m1 - 1.0) / 2 d = m2 - m1 var = (d*d - 1) / 12.0 g1 = 0.0 g2 = -6.0/5.0 * (d*d + 1.0) / (d*d - 1.0) return mu, var, g1, g2 def _rvs(self, low, high=None): """An array of *size* random integers >= ``low`` and < ``high``. If ``high`` is ``None``, then range is >=0 and < low """ return self._random_state.randint(low, high, self._size) def _entropy(self, low, high): return log(high - low) randint = randint_gen(name='randint', longname='A discrete uniform ' '(random integer)') # FIXME: problems sampling. class zipf_gen(rv_discrete): """A Zipf discrete random variable. %(before_notes)s Notes ----- The probability mass function for `zipf` is:: zipf.pmf(k, a) = 1/(zeta(a) * k**a) for ``k >= 1``. `zipf` takes ``a`` as shape parameter. %(after_notes)s %(example)s """ def _rvs(self, a): return self._random_state.zipf(a, size=self._size) def _argcheck(self, a): return a > 1 def _pmf(self, k, a): Pk = 1.0 / special.zeta(a, 1) / k**a return Pk def _munp(self, n, a): return _lazywhere( a > n + 1, (a, n), lambda a, n: special.zeta(a - n, 1) / special.zeta(a, 1), np.inf) zipf = zipf_gen(a=1, name='zipf', longname='A Zipf') class dlaplace_gen(rv_discrete): """A Laplacian discrete random variable. %(before_notes)s Notes ----- The probability mass function for `dlaplace` is:: dlaplace.pmf(k) = tanh(a/2) * exp(-a*abs(k)) for ``a > 0``. `dlaplace` takes ``a`` as shape parameter. %(after_notes)s %(example)s """ def _pmf(self, k, a): return tanh(a/2.0) * exp(-a * abs(k)) def _cdf(self, x, a): k = floor(x) f = lambda k, a: 1.0 - exp(-a * k) / (exp(a) + 1) f2 = lambda k, a: exp(a * (k+1)) / (exp(a) + 1) return _lazywhere(k >= 0, (k, a), f=f, f2=f2) def _ppf(self, q, a): const = 1 + exp(a) vals = ceil(np.where(q < 1.0 / (1 + exp(-a)), log(q*const) / a - 1, -log((1-q) * const) / a)) vals1 = vals - 1 return np.where(self._cdf(vals1, a) >= q, vals1, vals) def _stats(self, a): ea = exp(a) mu2 = 2.*ea/(ea-1.)**2 mu4 = 2.*ea*(ea**2+10.*ea+1.) / (ea-1.)**4 return 0., mu2, 0., mu4/mu2**2 - 3. def _entropy(self, a): return a / sinh(a) - log(tanh(a/2.0)) dlaplace = dlaplace_gen(a=-np.inf, name='dlaplace', longname='A discrete Laplacian') class skellam_gen(rv_discrete): """A Skellam discrete random variable. %(before_notes)s Notes ----- Probability distribution of the difference of two correlated or uncorrelated Poisson random variables. Let k1 and k2 be two Poisson-distributed r.v. with expected values lam1 and lam2. Then, ``k1 - k2`` follows a Skellam distribution with parameters ``mu1 = lam1 - rho*sqrt(lam1*lam2)`` and ``mu2 = lam2 - rho*sqrt(lam1*lam2)``, where rho is the correlation coefficient between k1 and k2. If the two Poisson-distributed r.v. are independent then ``rho = 0``. Parameters mu1 and mu2 must be strictly positive. For details see: http://en.wikipedia.org/wiki/Skellam_distribution `skellam` takes ``mu1`` and ``mu2`` as shape parameters. %(after_notes)s %(example)s """ def _rvs(self, mu1, mu2): n = self._size return (self._random_state.poisson(mu1, n) - self._random_state.poisson(mu2, n)) def _pmf(self, x, mu1, mu2): px = np.where(x < 0, _ncx2_pdf(2*mu2, 2*(1-x), 2*mu1)*2, _ncx2_pdf(2*mu1, 2*(1+x), 2*mu2)*2) # ncx2.pdf() returns nan's for extremely low probabilities return px def _cdf(self, x, mu1, mu2): x = floor(x) px = np.where(x < 0, _ncx2_cdf(2*mu2, -2*x, 2*mu1), 1-_ncx2_cdf(2*mu1, 2*(x+1), 2*mu2)) return px def _stats(self, mu1, mu2): mean = mu1 - mu2 var = mu1 + mu2 g1 = mean / sqrt((var)**3) g2 = 1 / var return mean, var, g1, g2 skellam = skellam_gen(a=-np.inf, name="skellam", longname='A Skellam') # Collect names of classes and objects in this module. pairs = list(globals().items()) _distn_names, _distn_gen_names = get_distribution_names(pairs, rv_discrete) __all__ = _distn_names + _distn_gen_names
bsd-3-clause
chinageology/GeoPython
Experimental/PreTreat.py
2
6940
# coding:utf-8 import math import sys import os import csv import random from bs4 import BeautifulSoup import pandas as pd import numpy as np from mpl_toolkits.mplot3d import Axes3D from sklearn import datasets from sklearn.decomposition import PCA from sklearn.neighbors import NearestNeighbors import matplotlib import scipy.stats as st matplotlib.use('Qt5Agg') import matplotlib.pyplot as plt import matplotlib.font_manager as fm from matplotlib import ft2font from matplotlib.font_manager import ttfFontProperty import matplotlib.font_manager as font_manager import matplotlib.image as mpimg from pandas.plotting import radviz from sklearn.neighbors import KNeighborsRegressor def Del(prepath='/Volumes/Virtual/FastTmp/', path='raw', name='test.txt', head=3, end=-2): lines = open(path + '/' + name, 'r', encoding='windows-1252').readlines() open(prepath + 'new' + path + '/' + 'new' + name, 'w', encoding='utf-8').writelines(lines[head:end]) def OldJoin(prepath='/Volumes/Virtual/FastTmp/', path='Raw'): SourceList = os.listdir(path) for i in SourceList: if 'csv' in i and 'new' not in i and i[0] != '.': Del(prepath=prepath, path=path, name=i, head=3, end=-2) TargetList = [] for i in SourceList: if 'csv' in i: df = pd.read_csv(prepath + 'new' + path + '/' + 'new' + i) TargetList.append(df) result = pd.concat(TargetList) result.reindex() result.to_csv(prepath + 'result.csv', sep=',', encoding='utf-8') return (result) def Join(prepath='/Volumes/Virtual/FastTmp/', path='Excel', name='result'): SourceList = os.listdir(prepath + path) TargetList = [] for i in SourceList: if 'csv' in i and '~' not in i and i[0] != '.': print(prepath + path + '/' + i) try: df = pd.read_csv(prepath + path + '/' + i) except(): pass elif 'xls' in i and '~' not in i and i[0] != '.': try: df = pd.read_excel(prepath + path + '/' + i) except(): pass TargetList.append(df) result = pd.concat(TargetList) result.reindex() result.to_excel(prepath + name + '.xlsx', encoding='utf-8') return (result) def CsvToExcel(name='result'): if 'csv' in name and '~' not in name and name[0] != '.': df = pd.read_csv(name) df.to_excel('new' + name[0:-4] + '.xlsx', encoding='utf-8') pass def ExcelToCsv(name='result'): if 'xls' in name and '~' not in name and name[0] != '.': df = pd.read_excel(name) df.to_csv('new' + name[0:-5] + '.csv', sep=',', encoding='utf-8') pass prepath = '/Volumes/Virtual/FastTmp/' path = 'Target' df = pd.read_excel(prepath + 'XiaYing-SiO2-FeMg.xlsx') # m = ['Width', 'Style', 'Alpha', 'Size', 'Color', 'Marker', 'Author'] # for i in m: # df = df.drop(i, 1) df.set_index('Label', inplace=True) newdf = pd.concat([df.SiO2, df.Ratio], axis=1) numpyMatrix = df.as_matrix() # X = numpyMatrix[:, :3] # we only take the first two features. # y = df.index X = numpyMatrix y = df.index color = [] for i in range(len(y)): if i == 0: color.append(1) else: if y[i] == y[0]: color.append(1) else: color.append(2) # x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 # y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 X_reduced = PCA(n_components=5).fit_transform(numpyMatrix) df = pd.read_excel(prepath + 'XiaYing-SiO2-FeMg.xlsx') df.set_index('Label', inplace=True) x = df.SiO2 y = df.Ratio xtouse = x.values ytouse = y.values XtoFit=[] YtoFit=[] for i in range(len(x.values)): if x.values[i] < 60: XtoFit.append(x.values[i]) YtoFit.append(y.values[i]) z = np.polyfit(YtoFit, XtoFit, 3) Yline = np.linspace(min(YtoFit), max(YtoFit), 30) p = np.poly1d(z) Xline = p(Yline) newXline = [] ##################################### xmin,xmax = min(x),max(x) ymin,ymax = min(y),max(y) # Peform the kernel density estimate xx, yy = np.mgrid[xmin:xmax:100j, ymin:ymax:100j] positions = np.vstack([xx.ravel(), yy.ravel()]) values = np.vstack([x, y]) kernel = st.gaussian_kde(values) f = np.reshape(kernel(positions).T, xx.shape) fig = plt.figure() ax = fig.gca() # Contourf plot cfset = ax.contourf(xx, yy, f, cmap='Blues',alpha=0.3) ## Or kernel density estimate plot instead of the contourf plot #ax.imshow(np.rot90(f), cmap='Blues', extent=[xmin, xmax, ymin, ymax]) # Contour plot cset = ax.contour(xx, yy, f, colors='k',alpha=0.3) # Label plot ax.clabel(cset, inline=1, fontsize=10) ##################################### plt.plot(Xline, Yline, 'b-') alphatouse = [] leveldistance=[] for i in range(len(xtouse)): tmp = abs(p(ytouse[i]) - xtouse[i]) leveldistance.append(tmp) alphatouse.append(tmp) a = [] group= 100 step= abs(min(alphatouse)-max(alphatouse))/group for i in alphatouse: if min(alphatouse)<=i<min(alphatouse)+step: a.append(0.8) elif min(alphatouse)+step<=i<min(alphatouse)+2*step: a.append(0.6) elif min(alphatouse)+2*step<=i<min(alphatouse)+3*step: a.append(0.4) else: a.append(0.2) #plt.scatter(x, y, label='', s=3, color='red', alpha=a) for i in range(len(xtouse)): plt.scatter(xtouse[i], ytouse[i], label='', s=3, color='red', alpha=a[i]) pass #fig = plt.figure(1, figsize=(8, 6)) # ax = Axes3D(fig, elev=-150, azim=110) # plt.scatter(X_reduced[:, 1], X_reduced[:, 2], c=color, cmap=plt.cm.Set1, edgecolor='k', s=40) # plt.scatter(x, y, label='', s=3, color='blue', alpha=0.3) # z= np.polyfit(x, y, 2) # ax.set_title("First three PCA directions") # ax.set_xlabel("SiO2") # ax.w_xaxis.set_ticklabels([]) # ax.set_ylabel("TFeO") # ax.w_yaxis.set_ticklabels([]) # ax.set_zlabel("MgO") # ax.w_zaxis.set_ticklabels([]) plt.show() tm=Join(path='塔木兰沟组',name='新塔木兰沟') ''' SourceList = os.listdir(prepath + path) TargetList = [] for i in SourceList: ExcelToCsv(path='塔木兰沟组',name=i) #df = pd.read_excel(prepath+"塔木兰沟组数据交集.xlsx",keep_default_na=False, na_values=[""]) #tm=Join(path='Target',name='满克头鄂博组数据交集') #DataToPlot = pd.read_excel(prepath+'result.xlsx') #DataToPlot.plot() #DataToPlot.plot.area() #plt.figure() #radviz(DataToPlot , 'Ag109') #plt.show() # created by Huang Lu # 27/08/2016 17:05:45 # Department of EE, Tsinghua Univ. import cv2 import numpy as np cap = cv2.VideoCapture(1) while(1): # get a frame ret, frame = cap.read() # show a frame cv2.imshow("capture", frame) if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows() for i in alphatouse: #tmp = - np.power(np.e,i / max(alphatouse)) #tmp = 1- np.power(i / max(alphatouse),2) tmp = np.power(np.e,i) a.append(tmp) '''
gpl-3.0
tmhm/scikit-learn
examples/model_selection/plot_roc_crossval.py
247
3253
""" ============================================================= Receiver Operating Characteristic (ROC) with cross validation ============================================================= Example of Receiver Operating Characteristic (ROC) metric to evaluate classifier output quality using cross-validation. ROC curves typically feature true positive rate on the Y axis, and false positive rate on the X axis. This means that the top left corner of the plot is the "ideal" point - a false positive rate of zero, and a true positive rate of one. This is not very realistic, but it does mean that a larger area under the curve (AUC) is usually better. The "steepness" of ROC curves is also important, since it is ideal to maximize the true positive rate while minimizing the false positive rate. This example shows the ROC response of different datasets, created from K-fold cross-validation. Taking all of these curves, it is possible to calculate the mean area under curve, and see the variance of the curve when the training set is split into different subsets. This roughly shows how the classifier output is affected by changes in the training data, and how different the splits generated by K-fold cross-validation are from one another. .. note:: See also :func:`sklearn.metrics.auc_score`, :func:`sklearn.cross_validation.cross_val_score`, :ref:`example_model_selection_plot_roc.py`, """ print(__doc__) import numpy as np from scipy import interp import matplotlib.pyplot as plt from sklearn import svm, datasets from sklearn.metrics import roc_curve, auc from sklearn.cross_validation import StratifiedKFold ############################################################################### # Data IO and generation # import some data to play with iris = datasets.load_iris() X = iris.data y = iris.target X, y = X[y != 2], y[y != 2] n_samples, n_features = X.shape # Add noisy features random_state = np.random.RandomState(0) X = np.c_[X, random_state.randn(n_samples, 200 * n_features)] ############################################################################### # Classification and ROC analysis # Run classifier with cross-validation and plot ROC curves cv = StratifiedKFold(y, n_folds=6) classifier = svm.SVC(kernel='linear', probability=True, random_state=random_state) mean_tpr = 0.0 mean_fpr = np.linspace(0, 1, 100) all_tpr = [] for i, (train, test) in enumerate(cv): probas_ = classifier.fit(X[train], y[train]).predict_proba(X[test]) # Compute ROC curve and area the curve fpr, tpr, thresholds = roc_curve(y[test], probas_[:, 1]) mean_tpr += interp(mean_fpr, fpr, tpr) mean_tpr[0] = 0.0 roc_auc = auc(fpr, tpr) plt.plot(fpr, tpr, lw=1, label='ROC fold %d (area = %0.2f)' % (i, roc_auc)) plt.plot([0, 1], [0, 1], '--', color=(0.6, 0.6, 0.6), label='Luck') mean_tpr /= len(cv) mean_tpr[-1] = 1.0 mean_auc = auc(mean_fpr, mean_tpr) plt.plot(mean_fpr, mean_tpr, 'k--', label='Mean ROC (area = %0.2f)' % mean_auc, lw=2) plt.xlim([-0.05, 1.05]) plt.ylim([-0.05, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic example') plt.legend(loc="lower right") plt.show()
bsd-3-clause
endrebak/epic
tests/run/test_merge_chip_and_input.py
1
4225
import pytest import pandas as pd import numpy as np import logging from io import StringIO from joblib import delayed, Parallel @pytest.fixture def input_data(): pass @pytest.fixture def expected_result(): pass def merge_chip_and_input(windows, nb_cpu): """Merge lists of chromosome bin df chromosome-wise. Returns a list of dataframes, one per chromosome, with the collective count per bin for all files. Keyword Arguments: windows -- OrderedDict where the keys are files, the values are lists of dfs, one per chromosome. nb_cpu -- cores to use """ windows = iter(windows) merged = next(windows) for chromosome_dfs in windows: merged = merge_two_bin_dfs(merged, chromosome_dfs, nb_cpu) return merged # @pytest.mark.unit # def test_merge_two_bin_files(sample1_dfs, sample2_dfs): # """TODO: Need to test that the lists might not have the same/all chromosomes. # It might be possible that there are no sig islands on one chromosome in one # file, while there are in the others. Solve by taking in dict with chromos # instead of list with files? # You will probably be asked about a bug due to this some time. # """ # print("Read run epic code. Begin there!\n" * 5) # result = merge_chip_and_input([sample2_dfs, sample2_dfs], 1) # print(result) # assert 1 def merge_two_bin_dfs(sample1_dfs, sample2_dfs, nb_cpu): merged_chromosome_dfs = Parallel(n_jobs=nb_cpu)( delayed(_merge_two_bin_dfs)(df1, df2) for df1, df2 in zip(sample1_dfs, sample2_dfs)) return merged_chromosome_dfs def _merge_two_bin_dfs(df1, df2): merged_df = df1.merge(df2, how="outer", on=["Chromosome", "Bin"]) #, # suffixes=("_x", "_y")) print(merged_df) raise merged_df = merged_df.fillna(0) merged_df["Count"] = merged_df["Count_x"] + merged_df["Count_y"] merged_df = merged_df.drop(["Count_x", "Count_y"], axis=1) return merged_df @pytest.fixture def sample1_dfs(): return [pd.read_table( StringIO(u""" Count Chromosome Bin 1 chrM 400 1 chrM 2600 1 chrM 3600 1 chrM 3800 1 chrM 12800 1 chrM 14200"""), sep="\s+", header=0), pd.read_table( StringIO(u"""Count Chromosome Bin 1 chrX 2820000 1 chrX 2854800 1 chrX 3001400 1 chrX 3354400 1 chrX 3489400 1 chrX 3560200 1 chrX 4011200 1 chrX 4644600 1 chrX 4653600 1 chrX 4793400 1 chrX 5136800 1 chrX 5572800 1 chrX 5589400 1 chrX 5792000 1 chrX 5961800 1 chrX 6951000 1 chrX 7125800 1 chrX 7199000 1 chrX 7443200 1 chrX 7606000 1 chrX 7627800 1 chrX 8035600 1 chrX 8073600 1 chrX 8367800 1 chrX 9021000 1 chrX 9472400 1 chrX 9620800 1 chrX 9652000 1 chrX 9801000 1 chrX 9953800"""), sep="\s+", header=0)] @pytest.fixture def sample2_dfs(): return [pd.read_table( StringIO(u""" Count Chromosome Bin 1 chrM 400 1 chrM 2600 1 chrM 3600 1 chrM 3800 1 chrM 12800 1 chrM 14200"""), header=0, sep="\s+", ), pd.read_table( StringIO(u"""Count Chromosome Bin 1 chrX 2820000 1 chrX 2854800 1 chrX 3001400 1 chrX 3354400 1 chrX 3489400 1 chrX 3560200 1 chrX 4011200 1 chrX 4644600 1 chrX 4653600 1 chrX 4793400 1 chrX 5136800 1 chrX 5572800 1 chrX 5589400 1 chrX 5792000 1 chrX 5961800 1 chrX 6951000 1 chrX 7125800 1 chrX 7199000 1 chrX 7443200 1 chrX 7606000 1 chrX 7627800 1 chrX 8035600 1 chrX 8073600 1 chrX 8367800 1 chrX 9021000 1 chrX 9472400 1 chrX 9620800 1 chrX 9652000 1 chrX 9801000 1 chrX 9953800"""), sep="\s+", header=0)]
mit
rlpy/rlpy
rlpy/Representations/LocalBases.py
1
7491
""" Representations which use local bases function (e.g. kernels) distributed in the statespace according to some scheme (e.g. grid, random, on previous samples) """ from __future__ import division from __future__ import print_function from __future__ import absolute_import from __future__ import unicode_literals from builtins import super from future import standard_library standard_library.install_aliases() from builtins import range from past.utils import old_div from .Representation import Representation import numpy as np from rlpy.Tools.GeneralTools import addNewElementForAllActions import matplotlib.pyplot as plt try: from .kernels import batch except ImportError: from .slow_kernels import batch print("C-Extensions for kernels not available, expect slow runtime") __copyright__ = "Copyright 2013, RLPy http://acl.mit.edu/RLPy" __credits__ = ["Alborz Geramifard", "Robert H. Klein", "Christoph Dann", "William Dabney", "Jonathan P. How"] __license__ = "BSD 3-Clause" class LocalBases(Representation): """ abstract base class for representations that use local basis functions """ #: centers of bases centers = None #: widths of bases widths = None def __init__(self, domain, kernel, normalization=False, seed=1, **kwargs): """ :param domain: domain to learn on. :param kernel: function handle to use for kernel function evaluations. :param normalization: (Boolean) If true, normalize feature vector so that sum( phi(s) ) = 1. Associates a kernel function with each """ self.kernel = batch[kernel.__name__] self.normalization = normalization self.centers = np.zeros((0, domain.statespace_limits.shape[0])) self.widths = np.zeros((0, domain.statespace_limits.shape[0])) super(LocalBases, self).__init__(domain, seed=seed) def phi_nonTerminal(self, s): v = self.kernel(s, self.centers, self.widths) if self.normalization and not v.sum() == 0.: # normalize such that each vector has a l1 norm of 1 v /= v.sum() return v def plot_2d_feature_centers(self, d1=None, d2=None): """ :param d1: 1 (of 2 possible) indices of dimensions to plot; ignore all others, purely visual. :param d2: 1 (of 2 possible) indices of dimensions to plot; ignore all others, purely visual. Phe centers of all features in dimension d1 and d2. If no dimensions are specified, the first two continuous dimensions are shown. """ if d1 is None and d2 is None: # just take the first two dimensions d1, d2 = self.domain.continuous_dims[:2] plt.figure("Feature Dimensions {} and {}".format(d1, d2)) for i in range(self.centers.shape[0]): plt.plot([self.centers[i, d1]], [self.centers[i, d2]], "r", marker="x") plt.draw() class NonparametricLocalBases(LocalBases): def __init__(self, domain, kernel, max_similarity=0.9, resolution=5, **kwargs): """ :param domain: domain to learn on. :param kernel: function handle to use for kernel function evaluations. :param max_similarity: threshold to allow feature to be added to representation. Larger max_similarity makes it \"easier\" to add more features by permitting larger values of phi(s) before discarding. (An existing feature function in phi() with large value at phi(s) implies that it is very representative of the true function at *s*. i.e., the value of a feature in phi(s) is inversely related to the \"similarity\" of a potential new feature. :param resolution: to be used by the ``kernel()`` function, see parent. Determines *width* of basis functions, eg sigma in Gaussian basis. """ self.max_similarity = max_similarity self.common_width = old_div((domain.statespace_limits[:, 1] - domain.statespace_limits[:, 0]), resolution) self.features_num = 0 super( NonparametricLocalBases, self).__init__( domain, kernel, **kwargs) def pre_discover(self, s, terminal, a, sn, terminaln): norm = self.normalization expanded = 0 self.normalization = False if not terminal: phi_s = self.phi_nonTerminal(s) if np.all(phi_s < self.max_similarity): self._add_feature(s) expanded += 1 if not terminaln: phi_s = self.phi_nonTerminal(sn) if np.all(phi_s < self.max_similarity): self._add_feature(sn) expanded += 1 self.normalization = norm return expanded def _add_feature(self, center): self.features_num += 1 self.centers = np.vstack((self.centers, center)) self.widths = np.vstack((self.widths, self.common_width)) # TODO if normalized, use Q estimate for center to fill weight_vec new = np.zeros((self.domain.actions_num, 1)) self.weight_vec = addNewElementForAllActions( self.weight_vec, self.domain.actions_num, new) class RandomLocalBases(LocalBases): def __init__(self, domain, kernel, num=100, resolution_min=5, resolution_max=None, seed=1, **kwargs): """ :param domain: domain to learn on. :param kernel: function handle to use for kernel function evaluations. :param num: Fixed number of feature (kernel) functions to use in EACH dimension. (for a total of features_num=numDims * num) :param resolution_min: resolution selected uniform random, lower bound. :param resolution_max: resolution selected uniform random, upper bound. :param seed: the random seed to use when scattering basis functions. Randomly scatter ``num`` feature functions throughout the domain, with sigma / noise parameter selected uniform random between ``resolution_min`` and ``resolution_max``. NOTE these are sensitive to the choice of coordinate (scale with coordinate units). """ self.features_num = num self.dim_widths = (domain.statespace_limits[:, 1] - domain.statespace_limits[:, 0]) self.resolution_max = resolution_max self.resolution_min = resolution_min super( RandomLocalBases, self).__init__( domain, kernel, seed=seed, **kwargs) self.centers = np.zeros((num, len(self.dim_widths))) self.widths = np.zeros((num, len(self.dim_widths))) self.init_randomization() def init_randomization(self): for i in range(self.features_num): for d in range(len(self.dim_widths)): self.centers[i, d] = self.random_state.uniform( self.domain.statespace_limits[d, 0], self.domain.statespace_limits[d, 1]) self.widths[i, d] = self.random_state.uniform( old_div(self.dim_widths[d], self.resolution_max), old_div(self.dim_widths[d], self.resolution_min))
bsd-3-clause
valexandersaulys/airbnb_kaggle_contest
venv/lib/python3.4/site-packages/numpy/lib/function_base.py
7
134697
from __future__ import division, absolute_import, print_function import warnings import sys import collections import operator import numpy as np import numpy.core.numeric as _nx from numpy.core import linspace, atleast_1d, atleast_2d from numpy.core.numeric import ( ones, zeros, arange, concatenate, array, asarray, asanyarray, empty, empty_like, ndarray, around, floor, ceil, take, dot, where, intp, integer, isscalar ) from numpy.core.umath import ( pi, multiply, add, arctan2, frompyfunc, cos, less_equal, sqrt, sin, mod, exp, log10 ) from numpy.core.fromnumeric import ( ravel, nonzero, sort, partition, mean, any, sum ) from numpy.core.numerictypes import typecodes, number from numpy.lib.twodim_base import diag from .utils import deprecate from numpy.core.multiarray import _insert, add_docstring from numpy.core.multiarray import digitize, bincount, interp as compiled_interp from numpy.core.umath import _add_newdoc_ufunc as add_newdoc_ufunc from numpy.compat import long # Force range to be a generator, for np.delete's usage. if sys.version_info[0] < 3: range = xrange __all__ = [ 'select', 'piecewise', 'trim_zeros', 'copy', 'iterable', 'percentile', 'diff', 'gradient', 'angle', 'unwrap', 'sort_complex', 'disp', 'extract', 'place', 'vectorize', 'asarray_chkfinite', 'average', 'histogram', 'histogramdd', 'bincount', 'digitize', 'cov', 'corrcoef', 'msort', 'median', 'sinc', 'hamming', 'hanning', 'bartlett', 'blackman', 'kaiser', 'trapz', 'i0', 'add_newdoc', 'add_docstring', 'meshgrid', 'delete', 'insert', 'append', 'interp', 'add_newdoc_ufunc' ] def iterable(y): """ Check whether or not an object can be iterated over. Parameters ---------- y : object Input object. Returns ------- b : {0, 1} Return 1 if the object has an iterator method or is a sequence, and 0 otherwise. Examples -------- >>> np.iterable([1, 2, 3]) 1 >>> np.iterable(2) 0 """ try: iter(y) except: return 0 return 1 def histogram(a, bins=10, range=None, normed=False, weights=None, density=None): """ Compute the histogram of a set of data. Parameters ---------- a : array_like Input data. The histogram is computed over the flattened array. bins : int or sequence of scalars, optional If `bins` is an int, it defines the number of equal-width bins in the given range (10, by default). If `bins` is a sequence, it defines the bin edges, including the rightmost edge, allowing for non-uniform bin widths. range : (float, float), optional The lower and upper range of the bins. If not provided, range is simply ``(a.min(), a.max())``. Values outside the range are ignored. normed : bool, optional This keyword is deprecated in Numpy 1.6 due to confusing/buggy behavior. It will be removed in Numpy 2.0. Use the density keyword instead. If False, the result will contain the number of samples in each bin. If True, the result is the value of the probability *density* function at the bin, normalized such that the *integral* over the range is 1. Note that this latter behavior is known to be buggy with unequal bin widths; use `density` instead. weights : array_like, optional An array of weights, of the same shape as `a`. Each value in `a` only contributes its associated weight towards the bin count (instead of 1). If `normed` is True, the weights are normalized, so that the integral of the density over the range remains 1 density : bool, optional If False, the result will contain the number of samples in each bin. If True, the result is the value of the probability *density* function at the bin, normalized such that the *integral* over the range is 1. Note that the sum of the histogram values will not be equal to 1 unless bins of unity width are chosen; it is not a probability *mass* function. Overrides the `normed` keyword if given. Returns ------- hist : array The values of the histogram. See `normed` and `weights` for a description of the possible semantics. bin_edges : array of dtype float Return the bin edges ``(length(hist)+1)``. See Also -------- histogramdd, bincount, searchsorted, digitize Notes ----- All but the last (righthand-most) bin is half-open. In other words, if `bins` is:: [1, 2, 3, 4] then the first bin is ``[1, 2)`` (including 1, but excluding 2) and the second ``[2, 3)``. The last bin, however, is ``[3, 4]``, which *includes* 4. Examples -------- >>> np.histogram([1, 2, 1], bins=[0, 1, 2, 3]) (array([0, 2, 1]), array([0, 1, 2, 3])) >>> np.histogram(np.arange(4), bins=np.arange(5), density=True) (array([ 0.25, 0.25, 0.25, 0.25]), array([0, 1, 2, 3, 4])) >>> np.histogram([[1, 2, 1], [1, 0, 1]], bins=[0,1,2,3]) (array([1, 4, 1]), array([0, 1, 2, 3])) >>> a = np.arange(5) >>> hist, bin_edges = np.histogram(a, density=True) >>> hist array([ 0.5, 0. , 0.5, 0. , 0. , 0.5, 0. , 0.5, 0. , 0.5]) >>> hist.sum() 2.4999999999999996 >>> np.sum(hist*np.diff(bin_edges)) 1.0 """ a = asarray(a) if weights is not None: weights = asarray(weights) if np.any(weights.shape != a.shape): raise ValueError( 'weights should have the same shape as a.') weights = weights.ravel() a = a.ravel() if (range is not None): mn, mx = range if (mn > mx): raise AttributeError( 'max must be larger than min in range parameter.') # Histogram is an integer or a float array depending on the weights. if weights is None: ntype = np.dtype(np.intp) else: ntype = weights.dtype # We set a block size, as this allows us to iterate over chunks when # computing histograms, to minimize memory usage. BLOCK = 65536 if not iterable(bins): if np.isscalar(bins) and bins < 1: raise ValueError( '`bins` should be a positive integer.') if range is None: if a.size == 0: # handle empty arrays. Can't determine range, so use 0-1. range = (0, 1) else: range = (a.min(), a.max()) mn, mx = [mi + 0.0 for mi in range] if mn == mx: mn -= 0.5 mx += 0.5 # At this point, if the weights are not integer, floating point, or # complex, we have to use the slow algorithm. if weights is not None and not (np.can_cast(weights.dtype, np.double) or np.can_cast(weights.dtype, np.complex)): bins = linspace(mn, mx, bins + 1, endpoint=True) if not iterable(bins): # We now convert values of a to bin indices, under the assumption of # equal bin widths (which is valid here). # Initialize empty histogram n = np.zeros(bins, ntype) # Pre-compute histogram scaling factor norm = bins / (mx - mn) # We iterate over blocks here for two reasons: the first is that for # large arrays, it is actually faster (for example for a 10^8 array it # is 2x as fast) and it results in a memory footprint 3x lower in the # limit of large arrays. for i in arange(0, len(a), BLOCK): tmp_a = a[i:i+BLOCK] if weights is None: tmp_w = None else: tmp_w = weights[i:i + BLOCK] # Only include values in the right range keep = (tmp_a >= mn) keep &= (tmp_a <= mx) if not np.logical_and.reduce(keep): tmp_a = tmp_a[keep] if tmp_w is not None: tmp_w = tmp_w[keep] tmp_a = tmp_a.astype(float) tmp_a -= mn tmp_a *= norm # Compute the bin indices, and for values that lie exactly on mx we # need to subtract one indices = tmp_a.astype(np.intp) indices[indices == bins] -= 1 # We now compute the histogram using bincount if ntype.kind == 'c': n.real += np.bincount(indices, weights=tmp_w.real, minlength=bins) n.imag += np.bincount(indices, weights=tmp_w.imag, minlength=bins) else: n += np.bincount(indices, weights=tmp_w, minlength=bins).astype(ntype) # We now compute the bin edges since these are returned bins = linspace(mn, mx, bins + 1, endpoint=True) else: bins = asarray(bins) if (np.diff(bins) < 0).any(): raise AttributeError( 'bins must increase monotonically.') # Initialize empty histogram n = np.zeros(bins.shape, ntype) if weights is None: for i in arange(0, len(a), BLOCK): sa = sort(a[i:i+BLOCK]) n += np.r_[sa.searchsorted(bins[:-1], 'left'), sa.searchsorted(bins[-1], 'right')] else: zero = array(0, dtype=ntype) for i in arange(0, len(a), BLOCK): tmp_a = a[i:i+BLOCK] tmp_w = weights[i:i+BLOCK] sorting_index = np.argsort(tmp_a) sa = tmp_a[sorting_index] sw = tmp_w[sorting_index] cw = np.concatenate(([zero, ], sw.cumsum())) bin_index = np.r_[sa.searchsorted(bins[:-1], 'left'), sa.searchsorted(bins[-1], 'right')] n += cw[bin_index] n = np.diff(n) if density is not None: if density: db = array(np.diff(bins), float) return n/db/n.sum(), bins else: return n, bins else: # deprecated, buggy behavior. Remove for Numpy 2.0 if normed: db = array(np.diff(bins), float) return n/(n*db).sum(), bins else: return n, bins def histogramdd(sample, bins=10, range=None, normed=False, weights=None): """ Compute the multidimensional histogram of some data. Parameters ---------- sample : array_like The data to be histogrammed. It must be an (N,D) array or data that can be converted to such. The rows of the resulting array are the coordinates of points in a D dimensional polytope. bins : sequence or int, optional The bin specification: * A sequence of arrays describing the bin edges along each dimension. * The number of bins for each dimension (nx, ny, ... =bins) * The number of bins for all dimensions (nx=ny=...=bins). range : sequence, optional A sequence of lower and upper bin edges to be used if the edges are not given explicitly in `bins`. Defaults to the minimum and maximum values along each dimension. normed : bool, optional If False, returns the number of samples in each bin. If True, returns the bin density ``bin_count / sample_count / bin_volume``. weights : (N,) array_like, optional An array of values `w_i` weighing each sample `(x_i, y_i, z_i, ...)`. Weights are normalized to 1 if normed is True. If normed is False, the values of the returned histogram are equal to the sum of the weights belonging to the samples falling into each bin. Returns ------- H : ndarray The multidimensional histogram of sample x. See normed and weights for the different possible semantics. edges : list A list of D arrays describing the bin edges for each dimension. See Also -------- histogram: 1-D histogram histogram2d: 2-D histogram Examples -------- >>> r = np.random.randn(100,3) >>> H, edges = np.histogramdd(r, bins = (5, 8, 4)) >>> H.shape, edges[0].size, edges[1].size, edges[2].size ((5, 8, 4), 6, 9, 5) """ try: # Sample is an ND-array. N, D = sample.shape except (AttributeError, ValueError): # Sample is a sequence of 1D arrays. sample = atleast_2d(sample).T N, D = sample.shape nbin = empty(D, int) edges = D*[None] dedges = D*[None] if weights is not None: weights = asarray(weights) try: M = len(bins) if M != D: raise AttributeError( 'The dimension of bins must be equal to the dimension of the ' ' sample x.') except TypeError: # bins is an integer bins = D*[bins] # Select range for each dimension # Used only if number of bins is given. if range is None: # Handle empty input. Range can't be determined in that case, use 0-1. if N == 0: smin = zeros(D) smax = ones(D) else: smin = atleast_1d(array(sample.min(0), float)) smax = atleast_1d(array(sample.max(0), float)) else: smin = zeros(D) smax = zeros(D) for i in arange(D): smin[i], smax[i] = range[i] # Make sure the bins have a finite width. for i in arange(len(smin)): if smin[i] == smax[i]: smin[i] = smin[i] - .5 smax[i] = smax[i] + .5 # avoid rounding issues for comparisons when dealing with inexact types if np.issubdtype(sample.dtype, np.inexact): edge_dt = sample.dtype else: edge_dt = float # Create edge arrays for i in arange(D): if isscalar(bins[i]): if bins[i] < 1: raise ValueError( "Element at index %s in `bins` should be a positive " "integer." % i) nbin[i] = bins[i] + 2 # +2 for outlier bins edges[i] = linspace(smin[i], smax[i], nbin[i]-1, dtype=edge_dt) else: edges[i] = asarray(bins[i], edge_dt) nbin[i] = len(edges[i]) + 1 # +1 for outlier bins dedges[i] = diff(edges[i]) if np.any(np.asarray(dedges[i]) <= 0): raise ValueError( "Found bin edge of size <= 0. Did you specify `bins` with" "non-monotonic sequence?") nbin = asarray(nbin) # Handle empty input. if N == 0: return np.zeros(nbin-2), edges # Compute the bin number each sample falls into. Ncount = {} for i in arange(D): Ncount[i] = digitize(sample[:, i], edges[i]) # Using digitize, values that fall on an edge are put in the right bin. # For the rightmost bin, we want values equal to the right edge to be # counted in the last bin, and not as an outlier. for i in arange(D): # Rounding precision mindiff = dedges[i].min() if not np.isinf(mindiff): decimal = int(-log10(mindiff)) + 6 # Find which points are on the rightmost edge. not_smaller_than_edge = (sample[:, i] >= edges[i][-1]) on_edge = (around(sample[:, i], decimal) == around(edges[i][-1], decimal)) # Shift these points one bin to the left. Ncount[i][where(on_edge & not_smaller_than_edge)[0]] -= 1 # Flattened histogram matrix (1D) # Reshape is used so that overlarge arrays # will raise an error. hist = zeros(nbin, float).reshape(-1) # Compute the sample indices in the flattened histogram matrix. ni = nbin.argsort() xy = zeros(N, int) for i in arange(0, D-1): xy += Ncount[ni[i]] * nbin[ni[i+1:]].prod() xy += Ncount[ni[-1]] # Compute the number of repetitions in xy and assign it to the # flattened histmat. if len(xy) == 0: return zeros(nbin-2, int), edges flatcount = bincount(xy, weights) a = arange(len(flatcount)) hist[a] = flatcount # Shape into a proper matrix hist = hist.reshape(sort(nbin)) for i in arange(nbin.size): j = ni.argsort()[i] hist = hist.swapaxes(i, j) ni[i], ni[j] = ni[j], ni[i] # Remove outliers (indices 0 and -1 for each dimension). core = D*[slice(1, -1)] hist = hist[core] # Normalize if normed is True if normed: s = hist.sum() for i in arange(D): shape = ones(D, int) shape[i] = nbin[i] - 2 hist = hist / dedges[i].reshape(shape) hist /= s if (hist.shape != nbin - 2).any(): raise RuntimeError( "Internal Shape Error") return hist, edges def average(a, axis=None, weights=None, returned=False): """ Compute the weighted average along the specified axis. Parameters ---------- a : array_like Array containing data to be averaged. If `a` is not an array, a conversion is attempted. axis : int, optional Axis along which to average `a`. If `None`, averaging is done over the flattened array. weights : array_like, optional An array of weights associated with the values in `a`. Each value in `a` contributes to the average according to its associated weight. The weights array can either be 1-D (in which case its length must be the size of `a` along the given axis) or of the same shape as `a`. If `weights=None`, then all data in `a` are assumed to have a weight equal to one. returned : bool, optional Default is `False`. If `True`, the tuple (`average`, `sum_of_weights`) is returned, otherwise only the average is returned. If `weights=None`, `sum_of_weights` is equivalent to the number of elements over which the average is taken. Returns ------- average, [sum_of_weights] : array_type or double Return the average along the specified axis. When returned is `True`, return a tuple with the average as the first element and the sum of the weights as the second element. The return type is `Float` if `a` is of integer type, otherwise it is of the same type as `a`. `sum_of_weights` is of the same type as `average`. Raises ------ ZeroDivisionError When all weights along axis are zero. See `numpy.ma.average` for a version robust to this type of error. TypeError When the length of 1D `weights` is not the same as the shape of `a` along axis. See Also -------- mean ma.average : average for masked arrays -- useful if your data contains "missing" values Examples -------- >>> data = range(1,5) >>> data [1, 2, 3, 4] >>> np.average(data) 2.5 >>> np.average(range(1,11), weights=range(10,0,-1)) 4.0 >>> data = np.arange(6).reshape((3,2)) >>> data array([[0, 1], [2, 3], [4, 5]]) >>> np.average(data, axis=1, weights=[1./4, 3./4]) array([ 0.75, 2.75, 4.75]) >>> np.average(data, weights=[1./4, 3./4]) Traceback (most recent call last): ... TypeError: Axis must be specified when shapes of a and weights differ. """ if not isinstance(a, np.matrix): a = np.asarray(a) if weights is None: avg = a.mean(axis) scl = avg.dtype.type(a.size/avg.size) else: a = a + 0.0 wgt = np.asarray(weights) # Sanity checks if a.shape != wgt.shape: if axis is None: raise TypeError( "Axis must be specified when shapes of a and weights " "differ.") if wgt.ndim != 1: raise TypeError( "1D weights expected when shapes of a and weights differ.") if wgt.shape[0] != a.shape[axis]: raise ValueError( "Length of weights not compatible with specified axis.") # setup wgt to broadcast along axis wgt = np.array(wgt, copy=0, ndmin=a.ndim).swapaxes(-1, axis) scl = wgt.sum(axis=axis, dtype=np.result_type(a.dtype, wgt.dtype)) if (scl == 0.0).any(): raise ZeroDivisionError( "Weights sum to zero, can't be normalized") avg = np.multiply(a, wgt).sum(axis)/scl if returned: scl = np.multiply(avg, 0) + scl return avg, scl else: return avg def asarray_chkfinite(a, dtype=None, order=None): """Convert the input to an array, checking for NaNs or Infs. Parameters ---------- a : array_like Input data, in any form that can be converted to an array. This includes lists, lists of tuples, tuples, tuples of tuples, tuples of lists and ndarrays. Success requires no NaNs or Infs. dtype : data-type, optional By default, the data-type is inferred from the input data. order : {'C', 'F'}, optional Whether to use row-major (C-style) or column-major (Fortran-style) memory representation. Defaults to 'C'. Returns ------- out : ndarray Array interpretation of `a`. No copy is performed if the input is already an ndarray. If `a` is a subclass of ndarray, a base class ndarray is returned. Raises ------ ValueError Raises ValueError if `a` contains NaN (Not a Number) or Inf (Infinity). See Also -------- asarray : Create and array. asanyarray : Similar function which passes through subclasses. ascontiguousarray : Convert input to a contiguous array. asfarray : Convert input to a floating point ndarray. asfortranarray : Convert input to an ndarray with column-major memory order. fromiter : Create an array from an iterator. fromfunction : Construct an array by executing a function on grid positions. Examples -------- Convert a list into an array. If all elements are finite ``asarray_chkfinite`` is identical to ``asarray``. >>> a = [1, 2] >>> np.asarray_chkfinite(a, dtype=float) array([1., 2.]) Raises ValueError if array_like contains Nans or Infs. >>> a = [1, 2, np.inf] >>> try: ... np.asarray_chkfinite(a) ... except ValueError: ... print 'ValueError' ... ValueError """ a = asarray(a, dtype=dtype, order=order) if a.dtype.char in typecodes['AllFloat'] and not np.isfinite(a).all(): raise ValueError( "array must not contain infs or NaNs") return a def piecewise(x, condlist, funclist, *args, **kw): """ Evaluate a piecewise-defined function. Given a set of conditions and corresponding functions, evaluate each function on the input data wherever its condition is true. Parameters ---------- x : ndarray The input domain. condlist : list of bool arrays Each boolean array corresponds to a function in `funclist`. Wherever `condlist[i]` is True, `funclist[i](x)` is used as the output value. Each boolean array in `condlist` selects a piece of `x`, and should therefore be of the same shape as `x`. The length of `condlist` must correspond to that of `funclist`. If one extra function is given, i.e. if ``len(funclist) - len(condlist) == 1``, then that extra function is the default value, used wherever all conditions are false. funclist : list of callables, f(x,*args,**kw), or scalars Each function is evaluated over `x` wherever its corresponding condition is True. It should take an array as input and give an array or a scalar value as output. If, instead of a callable, a scalar is provided then a constant function (``lambda x: scalar``) is assumed. args : tuple, optional Any further arguments given to `piecewise` are passed to the functions upon execution, i.e., if called ``piecewise(..., ..., 1, 'a')``, then each function is called as ``f(x, 1, 'a')``. kw : dict, optional Keyword arguments used in calling `piecewise` are passed to the functions upon execution, i.e., if called ``piecewise(..., ..., lambda=1)``, then each function is called as ``f(x, lambda=1)``. Returns ------- out : ndarray The output is the same shape and type as x and is found by calling the functions in `funclist` on the appropriate portions of `x`, as defined by the boolean arrays in `condlist`. Portions not covered by any condition have a default value of 0. See Also -------- choose, select, where Notes ----- This is similar to choose or select, except that functions are evaluated on elements of `x` that satisfy the corresponding condition from `condlist`. The result is:: |-- |funclist[0](x[condlist[0]]) out = |funclist[1](x[condlist[1]]) |... |funclist[n2](x[condlist[n2]]) |-- Examples -------- Define the sigma function, which is -1 for ``x < 0`` and +1 for ``x >= 0``. >>> x = np.linspace(-2.5, 2.5, 6) >>> np.piecewise(x, [x < 0, x >= 0], [-1, 1]) array([-1., -1., -1., 1., 1., 1.]) Define the absolute value, which is ``-x`` for ``x <0`` and ``x`` for ``x >= 0``. >>> np.piecewise(x, [x < 0, x >= 0], [lambda x: -x, lambda x: x]) array([ 2.5, 1.5, 0.5, 0.5, 1.5, 2.5]) """ x = asanyarray(x) n2 = len(funclist) if (isscalar(condlist) or not (isinstance(condlist[0], list) or isinstance(condlist[0], ndarray))): condlist = [condlist] condlist = array(condlist, dtype=bool) n = len(condlist) # This is a hack to work around problems with NumPy's # handling of 0-d arrays and boolean indexing with # numpy.bool_ scalars zerod = False if x.ndim == 0: x = x[None] zerod = True if condlist.shape[-1] != 1: condlist = condlist.T if n == n2 - 1: # compute the "otherwise" condition. totlist = np.logical_or.reduce(condlist, axis=0) condlist = np.vstack([condlist, ~totlist]) n += 1 if (n != n2): raise ValueError( "function list and condition list must be the same") y = zeros(x.shape, x.dtype) for k in range(n): item = funclist[k] if not isinstance(item, collections.Callable): y[condlist[k]] = item else: vals = x[condlist[k]] if vals.size > 0: y[condlist[k]] = item(vals, *args, **kw) if zerod: y = y.squeeze() return y def select(condlist, choicelist, default=0): """ Return an array drawn from elements in choicelist, depending on conditions. Parameters ---------- condlist : list of bool ndarrays The list of conditions which determine from which array in `choicelist` the output elements are taken. When multiple conditions are satisfied, the first one encountered in `condlist` is used. choicelist : list of ndarrays The list of arrays from which the output elements are taken. It has to be of the same length as `condlist`. default : scalar, optional The element inserted in `output` when all conditions evaluate to False. Returns ------- output : ndarray The output at position m is the m-th element of the array in `choicelist` where the m-th element of the corresponding array in `condlist` is True. See Also -------- where : Return elements from one of two arrays depending on condition. take, choose, compress, diag, diagonal Examples -------- >>> x = np.arange(10) >>> condlist = [x<3, x>5] >>> choicelist = [x, x**2] >>> np.select(condlist, choicelist) array([ 0, 1, 2, 0, 0, 0, 36, 49, 64, 81]) """ # Check the size of condlist and choicelist are the same, or abort. if len(condlist) != len(choicelist): raise ValueError( 'list of cases must be same length as list of conditions') # Now that the dtype is known, handle the deprecated select([], []) case if len(condlist) == 0: # 2014-02-24, 1.9 warnings.warn("select with an empty condition list is not possible" "and will be deprecated", DeprecationWarning) return np.asarray(default)[()] choicelist = [np.asarray(choice) for choice in choicelist] choicelist.append(np.asarray(default)) # need to get the result type before broadcasting for correct scalar # behaviour dtype = np.result_type(*choicelist) # Convert conditions to arrays and broadcast conditions and choices # as the shape is needed for the result. Doing it seperatly optimizes # for example when all choices are scalars. condlist = np.broadcast_arrays(*condlist) choicelist = np.broadcast_arrays(*choicelist) # If cond array is not an ndarray in boolean format or scalar bool, abort. deprecated_ints = False for i in range(len(condlist)): cond = condlist[i] if cond.dtype.type is not np.bool_: if np.issubdtype(cond.dtype, np.integer): # A previous implementation accepted int ndarrays accidentally. # Supported here deliberately, but deprecated. condlist[i] = condlist[i].astype(bool) deprecated_ints = True else: raise ValueError( 'invalid entry in choicelist: should be boolean ndarray') if deprecated_ints: # 2014-02-24, 1.9 msg = "select condlists containing integer ndarrays is deprecated " \ "and will be removed in the future. Use `.astype(bool)` to " \ "convert to bools." warnings.warn(msg, DeprecationWarning) if choicelist[0].ndim == 0: # This may be common, so avoid the call. result_shape = condlist[0].shape else: result_shape = np.broadcast_arrays(condlist[0], choicelist[0])[0].shape result = np.full(result_shape, choicelist[-1], dtype) # Use np.copyto to burn each choicelist array onto result, using the # corresponding condlist as a boolean mask. This is done in reverse # order since the first choice should take precedence. choicelist = choicelist[-2::-1] condlist = condlist[::-1] for choice, cond in zip(choicelist, condlist): np.copyto(result, choice, where=cond) return result def copy(a, order='K'): """ Return an array copy of the given object. Parameters ---------- a : array_like Input data. order : {'C', 'F', 'A', 'K'}, optional Controls the memory layout of the copy. 'C' means C-order, 'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous, 'C' otherwise. 'K' means match the layout of `a` as closely as possible. (Note that this function and :meth:ndarray.copy are very similar, but have different default values for their order= arguments.) Returns ------- arr : ndarray Array interpretation of `a`. Notes ----- This is equivalent to >>> np.array(a, copy=True) #doctest: +SKIP Examples -------- Create an array x, with a reference y and a copy z: >>> x = np.array([1, 2, 3]) >>> y = x >>> z = np.copy(x) Note that, when we modify x, y changes, but not z: >>> x[0] = 10 >>> x[0] == y[0] True >>> x[0] == z[0] False """ return array(a, order=order, copy=True) # Basic operations def gradient(f, *varargs, **kwargs): """ Return the gradient of an N-dimensional array. The gradient is computed using second order accurate central differences in the interior and either first differences or second order accurate one-sides (forward or backwards) differences at the boundaries. The returned gradient hence has the same shape as the input array. Parameters ---------- f : array_like An N-dimensional array containing samples of a scalar function. varargs : list of scalar, optional N scalars specifying the sample distances for each dimension, i.e. `dx`, `dy`, `dz`, ... Default distance: 1. edge_order : {1, 2}, optional Gradient is calculated using N\ :sup:`th` order accurate differences at the boundaries. Default: 1. .. versionadded:: 1.9.1 Returns ------- gradient : list of ndarray Each element of `list` has the same shape as `f` giving the derivative of `f` with respect to each dimension. Examples -------- >>> x = np.array([1, 2, 4, 7, 11, 16], dtype=np.float) >>> np.gradient(x) array([ 1. , 1.5, 2.5, 3.5, 4.5, 5. ]) >>> np.gradient(x, 2) array([ 0.5 , 0.75, 1.25, 1.75, 2.25, 2.5 ]) For two dimensional arrays, the return will be two arrays ordered by axis. In this example the first array stands for the gradient in rows and the second one in columns direction: >>> np.gradient(np.array([[1, 2, 6], [3, 4, 5]], dtype=np.float)) [array([[ 2., 2., -1.], [ 2., 2., -1.]]), array([[ 1. , 2.5, 4. ], [ 1. , 1. , 1. ]])] >>> x = np.array([0, 1, 2, 3, 4]) >>> dx = np.gradient(x) >>> y = x**2 >>> np.gradient(y, dx, edge_order=2) array([-0., 2., 4., 6., 8.]) """ f = np.asanyarray(f) N = len(f.shape) # number of dimensions n = len(varargs) if n == 0: dx = [1.0]*N elif n == 1: dx = [varargs[0]]*N elif n == N: dx = list(varargs) else: raise SyntaxError( "invalid number of arguments") edge_order = kwargs.pop('edge_order', 1) if kwargs: raise TypeError('"{}" are not valid keyword arguments.'.format( '", "'.join(kwargs.keys()))) if edge_order > 2: raise ValueError("'edge_order' greater than 2 not supported") # use central differences on interior and one-sided differences on the # endpoints. This preserves second order-accuracy over the full domain. outvals = [] # create slice objects --- initially all are [:, :, ..., :] slice1 = [slice(None)]*N slice2 = [slice(None)]*N slice3 = [slice(None)]*N slice4 = [slice(None)]*N otype = f.dtype.char if otype not in ['f', 'd', 'F', 'D', 'm', 'M']: otype = 'd' # Difference of datetime64 elements results in timedelta64 if otype == 'M': # Need to use the full dtype name because it contains unit information otype = f.dtype.name.replace('datetime', 'timedelta') elif otype == 'm': # Needs to keep the specific units, can't be a general unit otype = f.dtype # Convert datetime64 data into ints. Make dummy variable `y` # that is a view of ints if the data is datetime64, otherwise # just set y equal to the the array `f`. if f.dtype.char in ["M", "m"]: y = f.view('int64') else: y = f for axis in range(N): if y.shape[axis] < 2: raise ValueError( "Shape of array too small to calculate a numerical gradient, " "at least two elements are required.") # Numerical differentiation: 1st order edges, 2nd order interior if y.shape[axis] == 2 or edge_order == 1: # Use first order differences for time data out = np.empty_like(y, dtype=otype) slice1[axis] = slice(1, -1) slice2[axis] = slice(2, None) slice3[axis] = slice(None, -2) # 1D equivalent -- out[1:-1] = (y[2:] - y[:-2])/2.0 out[slice1] = (y[slice2] - y[slice3])/2.0 slice1[axis] = 0 slice2[axis] = 1 slice3[axis] = 0 # 1D equivalent -- out[0] = (y[1] - y[0]) out[slice1] = (y[slice2] - y[slice3]) slice1[axis] = -1 slice2[axis] = -1 slice3[axis] = -2 # 1D equivalent -- out[-1] = (y[-1] - y[-2]) out[slice1] = (y[slice2] - y[slice3]) # Numerical differentiation: 2st order edges, 2nd order interior else: # Use second order differences where possible out = np.empty_like(y, dtype=otype) slice1[axis] = slice(1, -1) slice2[axis] = slice(2, None) slice3[axis] = slice(None, -2) # 1D equivalent -- out[1:-1] = (y[2:] - y[:-2])/2.0 out[slice1] = (y[slice2] - y[slice3])/2.0 slice1[axis] = 0 slice2[axis] = 0 slice3[axis] = 1 slice4[axis] = 2 # 1D equivalent -- out[0] = -(3*y[0] - 4*y[1] + y[2]) / 2.0 out[slice1] = -(3.0*y[slice2] - 4.0*y[slice3] + y[slice4])/2.0 slice1[axis] = -1 slice2[axis] = -1 slice3[axis] = -2 slice4[axis] = -3 # 1D equivalent -- out[-1] = (3*y[-1] - 4*y[-2] + y[-3]) out[slice1] = (3.0*y[slice2] - 4.0*y[slice3] + y[slice4])/2.0 # divide by step size out /= dx[axis] outvals.append(out) # reset the slice object in this dimension to ":" slice1[axis] = slice(None) slice2[axis] = slice(None) slice3[axis] = slice(None) slice4[axis] = slice(None) if N == 1: return outvals[0] else: return outvals def diff(a, n=1, axis=-1): """ Calculate the n-th order discrete difference along given axis. The first order difference is given by ``out[n] = a[n+1] - a[n]`` along the given axis, higher order differences are calculated by using `diff` recursively. Parameters ---------- a : array_like Input array n : int, optional The number of times values are differenced. axis : int, optional The axis along which the difference is taken, default is the last axis. Returns ------- diff : ndarray The `n` order differences. The shape of the output is the same as `a` except along `axis` where the dimension is smaller by `n`. See Also -------- gradient, ediff1d, cumsum Examples -------- >>> x = np.array([1, 2, 4, 7, 0]) >>> np.diff(x) array([ 1, 2, 3, -7]) >>> np.diff(x, n=2) array([ 1, 1, -10]) >>> x = np.array([[1, 3, 6, 10], [0, 5, 6, 8]]) >>> np.diff(x) array([[2, 3, 4], [5, 1, 2]]) >>> np.diff(x, axis=0) array([[-1, 2, 0, -2]]) """ if n == 0: return a if n < 0: raise ValueError( "order must be non-negative but got " + repr(n)) a = asanyarray(a) nd = len(a.shape) slice1 = [slice(None)]*nd slice2 = [slice(None)]*nd slice1[axis] = slice(1, None) slice2[axis] = slice(None, -1) slice1 = tuple(slice1) slice2 = tuple(slice2) if n > 1: return diff(a[slice1]-a[slice2], n-1, axis=axis) else: return a[slice1]-a[slice2] def interp(x, xp, fp, left=None, right=None, period=None): """ One-dimensional linear interpolation. Returns the one-dimensional piecewise linear interpolant to a function with given values at discrete data-points. Parameters ---------- x : array_like The x-coordinates of the interpolated values. xp : 1-D sequence of floats The x-coordinates of the data points, must be increasing if argument `period` is not specified. Otherwise, `xp` is internally sorted after normalizing the periodic boundaries with ``xp = xp % period``. fp : 1-D sequence of floats The y-coordinates of the data points, same length as `xp`. left : float, optional Value to return for `x < xp[0]`, default is `fp[0]`. right : float, optional Value to return for `x > xp[-1]`, default is `fp[-1]`. period : None or float, optional A period for the x-coordinates. This parameter allows the proper interpolation of angular x-coordinates. Parameters `left` and `right` are ignored if `period` is specified. .. versionadded:: 1.10.0 Returns ------- y : float or ndarray The interpolated values, same shape as `x`. Raises ------ ValueError If `xp` and `fp` have different length If `xp` or `fp` are not 1-D sequences If `period == 0` Notes ----- Does not check that the x-coordinate sequence `xp` is increasing. If `xp` is not increasing, the results are nonsense. A simple check for increasing is:: np.all(np.diff(xp) > 0) Examples -------- >>> xp = [1, 2, 3] >>> fp = [3, 2, 0] >>> np.interp(2.5, xp, fp) 1.0 >>> np.interp([0, 1, 1.5, 2.72, 3.14], xp, fp) array([ 3. , 3. , 2.5 , 0.56, 0. ]) >>> UNDEF = -99.0 >>> np.interp(3.14, xp, fp, right=UNDEF) -99.0 Plot an interpolant to the sine function: >>> x = np.linspace(0, 2*np.pi, 10) >>> y = np.sin(x) >>> xvals = np.linspace(0, 2*np.pi, 50) >>> yinterp = np.interp(xvals, x, y) >>> import matplotlib.pyplot as plt >>> plt.plot(x, y, 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.plot(xvals, yinterp, '-x') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.show() Interpolation with periodic x-coordinates: >>> x = [-180, -170, -185, 185, -10, -5, 0, 365] >>> xp = [190, -190, 350, -350] >>> fp = [5, 10, 3, 4] >>> np.interp(x, xp, fp, period=360) array([7.5, 5., 8.75, 6.25, 3., 3.25, 3.5, 3.75]) """ if period is None: if isinstance(x, (float, int, number)): return compiled_interp([x], xp, fp, left, right).item() elif isinstance(x, np.ndarray) and x.ndim == 0: return compiled_interp([x], xp, fp, left, right).item() else: return compiled_interp(x, xp, fp, left, right) else: if period == 0: raise ValueError("period must be a non-zero value") period = abs(period) left = None right = None return_array = True if isinstance(x, (float, int, number)): return_array = False x = [x] x = np.asarray(x, dtype=np.float64) xp = np.asarray(xp, dtype=np.float64) fp = np.asarray(fp, dtype=np.float64) if xp.ndim != 1 or fp.ndim != 1: raise ValueError("Data points must be 1-D sequences") if xp.shape[0] != fp.shape[0]: raise ValueError("fp and xp are not of the same length") # normalizing periodic boundaries x = x % period xp = xp % period asort_xp = np.argsort(xp) xp = xp[asort_xp] fp = fp[asort_xp] xp = np.concatenate((xp[-1:]-period, xp, xp[0:1]+period)) fp = np.concatenate((fp[-1:], fp, fp[0:1])) if return_array: return compiled_interp(x, xp, fp, left, right) else: return compiled_interp(x, xp, fp, left, right).item() def angle(z, deg=0): """ Return the angle of the complex argument. Parameters ---------- z : array_like A complex number or sequence of complex numbers. deg : bool, optional Return angle in degrees if True, radians if False (default). Returns ------- angle : ndarray or scalar The counterclockwise angle from the positive real axis on the complex plane, with dtype as numpy.float64. See Also -------- arctan2 absolute Examples -------- >>> np.angle([1.0, 1.0j, 1+1j]) # in radians array([ 0. , 1.57079633, 0.78539816]) >>> np.angle(1+1j, deg=True) # in degrees 45.0 """ if deg: fact = 180/pi else: fact = 1.0 z = asarray(z) if (issubclass(z.dtype.type, _nx.complexfloating)): zimag = z.imag zreal = z.real else: zimag = 0 zreal = z return arctan2(zimag, zreal) * fact def unwrap(p, discont=pi, axis=-1): """ Unwrap by changing deltas between values to 2*pi complement. Unwrap radian phase `p` by changing absolute jumps greater than `discont` to their 2*pi complement along the given axis. Parameters ---------- p : array_like Input array. discont : float, optional Maximum discontinuity between values, default is ``pi``. axis : int, optional Axis along which unwrap will operate, default is the last axis. Returns ------- out : ndarray Output array. See Also -------- rad2deg, deg2rad Notes ----- If the discontinuity in `p` is smaller than ``pi``, but larger than `discont`, no unwrapping is done because taking the 2*pi complement would only make the discontinuity larger. Examples -------- >>> phase = np.linspace(0, np.pi, num=5) >>> phase[3:] += np.pi >>> phase array([ 0. , 0.78539816, 1.57079633, 5.49778714, 6.28318531]) >>> np.unwrap(phase) array([ 0. , 0.78539816, 1.57079633, -0.78539816, 0. ]) """ p = asarray(p) nd = len(p.shape) dd = diff(p, axis=axis) slice1 = [slice(None, None)]*nd # full slices slice1[axis] = slice(1, None) ddmod = mod(dd + pi, 2*pi) - pi _nx.copyto(ddmod, pi, where=(ddmod == -pi) & (dd > 0)) ph_correct = ddmod - dd _nx.copyto(ph_correct, 0, where=abs(dd) < discont) up = array(p, copy=True, dtype='d') up[slice1] = p[slice1] + ph_correct.cumsum(axis) return up def sort_complex(a): """ Sort a complex array using the real part first, then the imaginary part. Parameters ---------- a : array_like Input array Returns ------- out : complex ndarray Always returns a sorted complex array. Examples -------- >>> np.sort_complex([5, 3, 6, 2, 1]) array([ 1.+0.j, 2.+0.j, 3.+0.j, 5.+0.j, 6.+0.j]) >>> np.sort_complex([1 + 2j, 2 - 1j, 3 - 2j, 3 - 3j, 3 + 5j]) array([ 1.+2.j, 2.-1.j, 3.-3.j, 3.-2.j, 3.+5.j]) """ b = array(a, copy=True) b.sort() if not issubclass(b.dtype.type, _nx.complexfloating): if b.dtype.char in 'bhBH': return b.astype('F') elif b.dtype.char == 'g': return b.astype('G') else: return b.astype('D') else: return b def trim_zeros(filt, trim='fb'): """ Trim the leading and/or trailing zeros from a 1-D array or sequence. Parameters ---------- filt : 1-D array or sequence Input array. trim : str, optional A string with 'f' representing trim from front and 'b' to trim from back. Default is 'fb', trim zeros from both front and back of the array. Returns ------- trimmed : 1-D array or sequence The result of trimming the input. The input data type is preserved. Examples -------- >>> a = np.array((0, 0, 0, 1, 2, 3, 0, 2, 1, 0)) >>> np.trim_zeros(a) array([1, 2, 3, 0, 2, 1]) >>> np.trim_zeros(a, 'b') array([0, 0, 0, 1, 2, 3, 0, 2, 1]) The input data type is preserved, list/tuple in means list/tuple out. >>> np.trim_zeros([0, 1, 2, 0]) [1, 2] """ first = 0 trim = trim.upper() if 'F' in trim: for i in filt: if i != 0.: break else: first = first + 1 last = len(filt) if 'B' in trim: for i in filt[::-1]: if i != 0.: break else: last = last - 1 return filt[first:last] @deprecate def unique(x): """ This function is deprecated. Use numpy.lib.arraysetops.unique() instead. """ try: tmp = x.flatten() if tmp.size == 0: return tmp tmp.sort() idx = concatenate(([True], tmp[1:] != tmp[:-1])) return tmp[idx] except AttributeError: items = sorted(set(x)) return asarray(items) def extract(condition, arr): """ Return the elements of an array that satisfy some condition. This is equivalent to ``np.compress(ravel(condition), ravel(arr))``. If `condition` is boolean ``np.extract`` is equivalent to ``arr[condition]``. Note that `place` does the exact opposite of `extract`. Parameters ---------- condition : array_like An array whose nonzero or True entries indicate the elements of `arr` to extract. arr : array_like Input array of the same size as `condition`. Returns ------- extract : ndarray Rank 1 array of values from `arr` where `condition` is True. See Also -------- take, put, copyto, compress, place Examples -------- >>> arr = np.arange(12).reshape((3, 4)) >>> arr array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]) >>> condition = np.mod(arr, 3)==0 >>> condition array([[ True, False, False, True], [False, False, True, False], [False, True, False, False]], dtype=bool) >>> np.extract(condition, arr) array([0, 3, 6, 9]) If `condition` is boolean: >>> arr[condition] array([0, 3, 6, 9]) """ return _nx.take(ravel(arr), nonzero(ravel(condition))[0]) def place(arr, mask, vals): """ Change elements of an array based on conditional and input values. Similar to ``np.copyto(arr, vals, where=mask)``, the difference is that `place` uses the first N elements of `vals`, where N is the number of True values in `mask`, while `copyto` uses the elements where `mask` is True. Note that `extract` does the exact opposite of `place`. Parameters ---------- arr : array_like Array to put data into. mask : array_like Boolean mask array. Must have the same size as `a`. vals : 1-D sequence Values to put into `a`. Only the first N elements are used, where N is the number of True values in `mask`. If `vals` is smaller than N it will be repeated. See Also -------- copyto, put, take, extract Examples -------- >>> arr = np.arange(6).reshape(2, 3) >>> np.place(arr, arr>2, [44, 55]) >>> arr array([[ 0, 1, 2], [44, 55, 44]]) """ return _insert(arr, mask, vals) def disp(mesg, device=None, linefeed=True): """ Display a message on a device. Parameters ---------- mesg : str Message to display. device : object Device to write message. If None, defaults to ``sys.stdout`` which is very similar to ``print``. `device` needs to have ``write()`` and ``flush()`` methods. linefeed : bool, optional Option whether to print a line feed or not. Defaults to True. Raises ------ AttributeError If `device` does not have a ``write()`` or ``flush()`` method. Examples -------- Besides ``sys.stdout``, a file-like object can also be used as it has both required methods: >>> from StringIO import StringIO >>> buf = StringIO() >>> np.disp('"Display" in a file', device=buf) >>> buf.getvalue() '"Display" in a file\\n' """ if device is None: device = sys.stdout if linefeed: device.write('%s\n' % mesg) else: device.write('%s' % mesg) device.flush() return class vectorize(object): """ vectorize(pyfunc, otypes='', doc=None, excluded=None, cache=False) Generalized function class. Define a vectorized function which takes a nested sequence of objects or numpy arrays as inputs and returns a numpy array as output. The vectorized function evaluates `pyfunc` over successive tuples of the input arrays like the python map function, except it uses the broadcasting rules of numpy. The data type of the output of `vectorized` is determined by calling the function with the first element of the input. This can be avoided by specifying the `otypes` argument. Parameters ---------- pyfunc : callable A python function or method. otypes : str or list of dtypes, optional The output data type. It must be specified as either a string of typecode characters or a list of data type specifiers. There should be one data type specifier for each output. doc : str, optional The docstring for the function. If `None`, the docstring will be the ``pyfunc.__doc__``. excluded : set, optional Set of strings or integers representing the positional or keyword arguments for which the function will not be vectorized. These will be passed directly to `pyfunc` unmodified. .. versionadded:: 1.7.0 cache : bool, optional If `True`, then cache the first function call that determines the number of outputs if `otypes` is not provided. .. versionadded:: 1.7.0 Returns ------- vectorized : callable Vectorized function. Examples -------- >>> def myfunc(a, b): ... "Return a-b if a>b, otherwise return a+b" ... if a > b: ... return a - b ... else: ... return a + b >>> vfunc = np.vectorize(myfunc) >>> vfunc([1, 2, 3, 4], 2) array([3, 4, 1, 2]) The docstring is taken from the input function to `vectorize` unless it is specified >>> vfunc.__doc__ 'Return a-b if a>b, otherwise return a+b' >>> vfunc = np.vectorize(myfunc, doc='Vectorized `myfunc`') >>> vfunc.__doc__ 'Vectorized `myfunc`' The output type is determined by evaluating the first element of the input, unless it is specified >>> out = vfunc([1, 2, 3, 4], 2) >>> type(out[0]) <type 'numpy.int32'> >>> vfunc = np.vectorize(myfunc, otypes=[np.float]) >>> out = vfunc([1, 2, 3, 4], 2) >>> type(out[0]) <type 'numpy.float64'> The `excluded` argument can be used to prevent vectorizing over certain arguments. This can be useful for array-like arguments of a fixed length such as the coefficients for a polynomial as in `polyval`: >>> def mypolyval(p, x): ... _p = list(p) ... res = _p.pop(0) ... while _p: ... res = res*x + _p.pop(0) ... return res >>> vpolyval = np.vectorize(mypolyval, excluded=['p']) >>> vpolyval(p=[1, 2, 3], x=[0, 1]) array([3, 6]) Positional arguments may also be excluded by specifying their position: >>> vpolyval.excluded.add(0) >>> vpolyval([1, 2, 3], x=[0, 1]) array([3, 6]) Notes ----- The `vectorize` function is provided primarily for convenience, not for performance. The implementation is essentially a for loop. If `otypes` is not specified, then a call to the function with the first argument will be used to determine the number of outputs. The results of this call will be cached if `cache` is `True` to prevent calling the function twice. However, to implement the cache, the original function must be wrapped which will slow down subsequent calls, so only do this if your function is expensive. The new keyword argument interface and `excluded` argument support further degrades performance. """ def __init__(self, pyfunc, otypes='', doc=None, excluded=None, cache=False): self.pyfunc = pyfunc self.cache = cache self._ufunc = None # Caching to improve default performance if doc is None: self.__doc__ = pyfunc.__doc__ else: self.__doc__ = doc if isinstance(otypes, str): self.otypes = otypes for char in self.otypes: if char not in typecodes['All']: raise ValueError( "Invalid otype specified: %s" % (char,)) elif iterable(otypes): self.otypes = ''.join([_nx.dtype(x).char for x in otypes]) else: raise ValueError( "Invalid otype specification") # Excluded variable support if excluded is None: excluded = set() self.excluded = set(excluded) def __call__(self, *args, **kwargs): """ Return arrays with the results of `pyfunc` broadcast (vectorized) over `args` and `kwargs` not in `excluded`. """ excluded = self.excluded if not kwargs and not excluded: func = self.pyfunc vargs = args else: # The wrapper accepts only positional arguments: we use `names` and # `inds` to mutate `the_args` and `kwargs` to pass to the original # function. nargs = len(args) names = [_n for _n in kwargs if _n not in excluded] inds = [_i for _i in range(nargs) if _i not in excluded] the_args = list(args) def func(*vargs): for _n, _i in enumerate(inds): the_args[_i] = vargs[_n] kwargs.update(zip(names, vargs[len(inds):])) return self.pyfunc(*the_args, **kwargs) vargs = [args[_i] for _i in inds] vargs.extend([kwargs[_n] for _n in names]) return self._vectorize_call(func=func, args=vargs) def _get_ufunc_and_otypes(self, func, args): """Return (ufunc, otypes).""" # frompyfunc will fail if args is empty if not args: raise ValueError('args can not be empty') if self.otypes: otypes = self.otypes nout = len(otypes) # Note logic here: We only *use* self._ufunc if func is self.pyfunc # even though we set self._ufunc regardless. if func is self.pyfunc and self._ufunc is not None: ufunc = self._ufunc else: ufunc = self._ufunc = frompyfunc(func, len(args), nout) else: # Get number of outputs and output types by calling the function on # the first entries of args. We also cache the result to prevent # the subsequent call when the ufunc is evaluated. # Assumes that ufunc first evaluates the 0th elements in the input # arrays (the input values are not checked to ensure this) inputs = [asarray(_a).flat[0] for _a in args] outputs = func(*inputs) # Performance note: profiling indicates that -- for simple # functions at least -- this wrapping can almost double the # execution time. # Hence we make it optional. if self.cache: _cache = [outputs] def _func(*vargs): if _cache: return _cache.pop() else: return func(*vargs) else: _func = func if isinstance(outputs, tuple): nout = len(outputs) else: nout = 1 outputs = (outputs,) otypes = ''.join([asarray(outputs[_k]).dtype.char for _k in range(nout)]) # Performance note: profiling indicates that creating the ufunc is # not a significant cost compared with wrapping so it seems not # worth trying to cache this. ufunc = frompyfunc(_func, len(args), nout) return ufunc, otypes def _vectorize_call(self, func, args): """Vectorized call to `func` over positional `args`.""" if not args: _res = func() else: ufunc, otypes = self._get_ufunc_and_otypes(func=func, args=args) # Convert args to object arrays first inputs = [array(_a, copy=False, subok=True, dtype=object) for _a in args] outputs = ufunc(*inputs) if ufunc.nout == 1: _res = array(outputs, copy=False, subok=True, dtype=otypes[0]) else: _res = tuple([array(_x, copy=False, subok=True, dtype=_t) for _x, _t in zip(outputs, otypes)]) return _res def cov(m, y=None, rowvar=1, bias=0, ddof=None, fweights=None, aweights=None): """ Estimate a covariance matrix, given data and weights. Covariance indicates the level to which two variables vary together. If we examine N-dimensional samples, :math:`X = [x_1, x_2, ... x_N]^T`, then the covariance matrix element :math:`C_{ij}` is the covariance of :math:`x_i` and :math:`x_j`. The element :math:`C_{ii}` is the variance of :math:`x_i`. See the notes for an outline of the algorithm. Parameters ---------- m : array_like A 1-D or 2-D array containing multiple variables and observations. Each row of `m` represents a variable, and each column a single observation of all those variables. Also see `rowvar` below. y : array_like, optional An additional set of variables and observations. `y` has the same form as that of `m`. rowvar : int, optional If `rowvar` is non-zero (default), then each row represents a variable, with observations in the columns. Otherwise, the relationship is transposed: each column represents a variable, while the rows contain observations. bias : int, optional Default normalization is by ``(N - 1)``, where ``N`` corresponds to the number of observations given (unbiased estimate). If `bias` is 1, then normalization is by ``N``. These values can be overridden by using the keyword ``ddof`` in numpy versions >= 1.5. ddof : int, optional If not ``None`` the default value implied by `bias` is overridden. Note that ``ddof=1`` will return the unbiased estimate, even if both `fweights` and `aweights` are specified, and ``ddof=0`` will return the simple average. See the notes for the details. The default value is ``None``. .. versionadded:: 1.5 fweights : array_like, int, optional 1-D array of integer freguency weights; the number of times each observation vector should be repeated. .. versionadded:: 1.10 aweights : array_like, optional 1-D array of observation vector weights. These relative weights are typically large for observations considered "important" and smaller for observations considered less "important". If ``ddof=0`` the array of weights can be used to assign probabilities to observation vectors. .. versionadded:: 1.10 Returns ------- out : ndarray The covariance matrix of the variables. See Also -------- corrcoef : Normalized covariance matrix Notes ----- Assume that the observations are in the columns of the observation array `m` and let ``f = fweights`` and ``a = aweights`` for brevity. The steps to compute the weighted covariance are as follows:: >>> w = f * a >>> v1 = np.sum(w) >>> v2 = np.sum(w * a) >>> m -= np.sum(m * w, axis=1, keepdims=True) / v1 >>> cov = np.dot(m * w, m.T) * v1 / (v1**2 - ddof * v2) Note that when ``a == 1``, the normalization factor ``v1 / (v1**2 - ddof * v2)`` goes over to ``1 / (np.sum(f) - ddof)`` as it should. Examples -------- Consider two variables, :math:`x_0` and :math:`x_1`, which correlate perfectly, but in opposite directions: >>> x = np.array([[0, 2], [1, 1], [2, 0]]).T >>> x array([[0, 1, 2], [2, 1, 0]]) Note how :math:`x_0` increases while :math:`x_1` decreases. The covariance matrix shows this clearly: >>> np.cov(x) array([[ 1., -1.], [-1., 1.]]) Note that element :math:`C_{0,1}`, which shows the correlation between :math:`x_0` and :math:`x_1`, is negative. Further, note how `x` and `y` are combined: >>> x = [-2.1, -1, 4.3] >>> y = [3, 1.1, 0.12] >>> X = np.vstack((x,y)) >>> print np.cov(X) [[ 11.71 -4.286 ] [ -4.286 2.14413333]] >>> print np.cov(x, y) [[ 11.71 -4.286 ] [ -4.286 2.14413333]] >>> print np.cov(x) 11.71 """ # Check inputs if ddof is not None and ddof != int(ddof): raise ValueError( "ddof must be integer") # Handles complex arrays too m = np.asarray(m) if y is None: dtype = np.result_type(m, np.float64) else: y = np.asarray(y) dtype = np.result_type(m, y, np.float64) X = array(m, ndmin=2, dtype=dtype) if rowvar == 0 and X.shape[0] != 1: X = X.T if X.shape[0] == 0: return np.array([]).reshape(0, 0) if y is not None: y = array(y, copy=False, ndmin=2, dtype=dtype) if rowvar == 0 and y.shape[0] != 1: y = y.T X = np.vstack((X, y)) if ddof is None: if bias == 0: ddof = 1 else: ddof = 0 # Get the product of frequencies and weights w = None if fweights is not None: fweights = np.asarray(fweights, dtype=np.float) if not np.all(fweights == np.around(fweights)): raise TypeError( "fweights must be integer") if fweights.ndim > 1: raise RuntimeError( "cannot handle multidimensional fweights") if fweights.shape[0] != X.shape[1]: raise RuntimeError( "incompatible numbers of samples and fweights") if any(fweights < 0): raise ValueError( "fweights cannot be negative") w = fweights if aweights is not None: aweights = np.asarray(aweights, dtype=np.float) if aweights.ndim > 1: raise RuntimeError( "cannot handle multidimensional aweights") if aweights.shape[0] != X.shape[1]: raise RuntimeError( "incompatible numbers of samples and aweights") if any(aweights < 0): raise ValueError( "aweights cannot be negative") if w is None: w = aweights else: w *= aweights avg, w_sum = average(X, axis=1, weights=w, returned=True) w_sum = w_sum[0] # Determine the normalization if w is None: fact = float(X.shape[1] - ddof) elif ddof == 0: fact = w_sum elif aweights is None: fact = w_sum - ddof else: fact = w_sum - ddof*sum(w*aweights)/w_sum if fact <= 0: warnings.warn("Degrees of freedom <= 0 for slice", RuntimeWarning) fact = 0.0 X -= avg[:, None] if w is None: X_T = X.T else: X_T = (X*w).T return (dot(X, X_T.conj())/fact).squeeze() def corrcoef(x, y=None, rowvar=1, bias=np._NoValue, ddof=np._NoValue): """ Return Pearson product-moment correlation coefficients. Please refer to the documentation for `cov` for more detail. The relationship between the correlation coefficient matrix, `R`, and the covariance matrix, `C`, is .. math:: R_{ij} = \\frac{ C_{ij} } { \\sqrt{ C_{ii} * C_{jj} } } The values of `R` are between -1 and 1, inclusive. Parameters ---------- x : array_like A 1-D or 2-D array containing multiple variables and observations. Each row of `x` represents a variable, and each column a single observation of all those variables. Also see `rowvar` below. y : array_like, optional An additional set of variables and observations. `y` has the same shape as `x`. rowvar : int, optional If `rowvar` is non-zero (default), then each row represents a variable, with observations in the columns. Otherwise, the relationship is transposed: each column represents a variable, while the rows contain observations. bias : _NoValue, optional Has no affect, do not use. .. deprecated:: 1.10.0 ddof : _NoValue, optional Has no affect, do not use. .. deprecated:: 1.10.0 Returns ------- R : ndarray The correlation coefficient matrix of the variables. See Also -------- cov : Covariance matrix Notes ----- This function accepts but discards arguments `bias` and `ddof`. This is for backwards compatibility with previous versions of this function. These arguments had no effect on the return values of the function and can be safely ignored in this and previous versions of numpy. """ if bias is not np._NoValue or ddof is not np._NoValue: # 2015-03-15, 1.10 warnings.warn('bias and ddof have no affect and are deprecated', DeprecationWarning) c = cov(x, y, rowvar) try: d = diag(c) except ValueError: # scalar covariance # nan if incorrect value (nan, inf, 0), 1 otherwise return c / c return c / sqrt(multiply.outer(d, d)) def blackman(M): """ Return the Blackman window. The Blackman window is a taper formed by using the first three terms of a summation of cosines. It was designed to have close to the minimal leakage possible. It is close to optimal, only slightly worse than a Kaiser window. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. Returns ------- out : ndarray The window, with the maximum value normalized to one (the value one appears only if the number of samples is odd). See Also -------- bartlett, hamming, hanning, kaiser Notes ----- The Blackman window is defined as .. math:: w(n) = 0.42 - 0.5 \\cos(2\\pi n/M) + 0.08 \\cos(4\\pi n/M) Most references to the Blackman window come from the signal processing literature, where it is used as one of many windowing functions for smoothing values. It is also known as an apodization (which means "removing the foot", i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function. It is known as a "near optimal" tapering function, almost as good (by some measures) as the kaiser window. References ---------- Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra, Dover Publications, New York. Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing. Upper Saddle River, NJ: Prentice-Hall, 1999, pp. 468-471. Examples -------- >>> np.blackman(12) array([ -1.38777878e-17, 3.26064346e-02, 1.59903635e-01, 4.14397981e-01, 7.36045180e-01, 9.67046769e-01, 9.67046769e-01, 7.36045180e-01, 4.14397981e-01, 1.59903635e-01, 3.26064346e-02, -1.38777878e-17]) Plot the window and the frequency response: >>> from numpy.fft import fft, fftshift >>> window = np.blackman(51) >>> plt.plot(window) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Blackman window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Amplitude") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Sample") <matplotlib.text.Text object at 0x...> >>> plt.show() >>> plt.figure() <matplotlib.figure.Figure object at 0x...> >>> A = fft(window, 2048) / 25.5 >>> mag = np.abs(fftshift(A)) >>> freq = np.linspace(-0.5, 0.5, len(A)) >>> response = 20 * np.log10(mag) >>> response = np.clip(response, -100, 100) >>> plt.plot(freq, response) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Frequency response of Blackman window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Magnitude [dB]") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Normalized frequency [cycles per sample]") <matplotlib.text.Text object at 0x...> >>> plt.axis('tight') (-0.5, 0.5, -100.0, ...) >>> plt.show() """ if M < 1: return array([]) if M == 1: return ones(1, float) n = arange(0, M) return 0.42 - 0.5*cos(2.0*pi*n/(M-1)) + 0.08*cos(4.0*pi*n/(M-1)) def bartlett(M): """ Return the Bartlett window. The Bartlett window is very similar to a triangular window, except that the end points are at zero. It is often used in signal processing for tapering a signal, without generating too much ripple in the frequency domain. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. Returns ------- out : array The triangular window, with the maximum value normalized to one (the value one appears only if the number of samples is odd), with the first and last samples equal to zero. See Also -------- blackman, hamming, hanning, kaiser Notes ----- The Bartlett window is defined as .. math:: w(n) = \\frac{2}{M-1} \\left( \\frac{M-1}{2} - \\left|n - \\frac{M-1}{2}\\right| \\right) Most references to the Bartlett window come from the signal processing literature, where it is used as one of many windowing functions for smoothing values. Note that convolution with this window produces linear interpolation. It is also known as an apodization (which means"removing the foot", i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function. The fourier transform of the Bartlett is the product of two sinc functions. Note the excellent discussion in Kanasewich. References ---------- .. [1] M.S. Bartlett, "Periodogram Analysis and Continuous Spectra", Biometrika 37, 1-16, 1950. .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The University of Alberta Press, 1975, pp. 109-110. .. [3] A.V. Oppenheim and R.W. Schafer, "Discrete-Time Signal Processing", Prentice-Hall, 1999, pp. 468-471. .. [4] Wikipedia, "Window function", http://en.wikipedia.org/wiki/Window_function .. [5] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, "Numerical Recipes", Cambridge University Press, 1986, page 429. Examples -------- >>> np.bartlett(12) array([ 0. , 0.18181818, 0.36363636, 0.54545455, 0.72727273, 0.90909091, 0.90909091, 0.72727273, 0.54545455, 0.36363636, 0.18181818, 0. ]) Plot the window and its frequency response (requires SciPy and matplotlib): >>> from numpy.fft import fft, fftshift >>> window = np.bartlett(51) >>> plt.plot(window) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Bartlett window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Amplitude") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Sample") <matplotlib.text.Text object at 0x...> >>> plt.show() >>> plt.figure() <matplotlib.figure.Figure object at 0x...> >>> A = fft(window, 2048) / 25.5 >>> mag = np.abs(fftshift(A)) >>> freq = np.linspace(-0.5, 0.5, len(A)) >>> response = 20 * np.log10(mag) >>> response = np.clip(response, -100, 100) >>> plt.plot(freq, response) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Frequency response of Bartlett window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Magnitude [dB]") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Normalized frequency [cycles per sample]") <matplotlib.text.Text object at 0x...> >>> plt.axis('tight') (-0.5, 0.5, -100.0, ...) >>> plt.show() """ if M < 1: return array([]) if M == 1: return ones(1, float) n = arange(0, M) return where(less_equal(n, (M-1)/2.0), 2.0*n/(M-1), 2.0 - 2.0*n/(M-1)) def hanning(M): """ Return the Hanning window. The Hanning window is a taper formed by using a weighted cosine. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. Returns ------- out : ndarray, shape(M,) The window, with the maximum value normalized to one (the value one appears only if `M` is odd). See Also -------- bartlett, blackman, hamming, kaiser Notes ----- The Hanning window is defined as .. math:: w(n) = 0.5 - 0.5cos\\left(\\frac{2\\pi{n}}{M-1}\\right) \\qquad 0 \\leq n \\leq M-1 The Hanning was named for Julius von Hann, an Austrian meteorologist. It is also known as the Cosine Bell. Some authors prefer that it be called a Hann window, to help avoid confusion with the very similar Hamming window. Most references to the Hanning window come from the signal processing literature, where it is used as one of many windowing functions for smoothing values. It is also known as an apodization (which means "removing the foot", i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function. References ---------- .. [1] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra, Dover Publications, New York. .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The University of Alberta Press, 1975, pp. 106-108. .. [3] Wikipedia, "Window function", http://en.wikipedia.org/wiki/Window_function .. [4] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, "Numerical Recipes", Cambridge University Press, 1986, page 425. Examples -------- >>> np.hanning(12) array([ 0. , 0.07937323, 0.29229249, 0.57115742, 0.82743037, 0.97974649, 0.97974649, 0.82743037, 0.57115742, 0.29229249, 0.07937323, 0. ]) Plot the window and its frequency response: >>> from numpy.fft import fft, fftshift >>> window = np.hanning(51) >>> plt.plot(window) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Hann window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Amplitude") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Sample") <matplotlib.text.Text object at 0x...> >>> plt.show() >>> plt.figure() <matplotlib.figure.Figure object at 0x...> >>> A = fft(window, 2048) / 25.5 >>> mag = np.abs(fftshift(A)) >>> freq = np.linspace(-0.5, 0.5, len(A)) >>> response = 20 * np.log10(mag) >>> response = np.clip(response, -100, 100) >>> plt.plot(freq, response) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Frequency response of the Hann window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Magnitude [dB]") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Normalized frequency [cycles per sample]") <matplotlib.text.Text object at 0x...> >>> plt.axis('tight') (-0.5, 0.5, -100.0, ...) >>> plt.show() """ if M < 1: return array([]) if M == 1: return ones(1, float) n = arange(0, M) return 0.5 - 0.5*cos(2.0*pi*n/(M-1)) def hamming(M): """ Return the Hamming window. The Hamming window is a taper formed by using a weighted cosine. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. Returns ------- out : ndarray The window, with the maximum value normalized to one (the value one appears only if the number of samples is odd). See Also -------- bartlett, blackman, hanning, kaiser Notes ----- The Hamming window is defined as .. math:: w(n) = 0.54 - 0.46cos\\left(\\frac{2\\pi{n}}{M-1}\\right) \\qquad 0 \\leq n \\leq M-1 The Hamming was named for R. W. Hamming, an associate of J. W. Tukey and is described in Blackman and Tukey. It was recommended for smoothing the truncated autocovariance function in the time domain. Most references to the Hamming window come from the signal processing literature, where it is used as one of many windowing functions for smoothing values. It is also known as an apodization (which means "removing the foot", i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function. References ---------- .. [1] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra, Dover Publications, New York. .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The University of Alberta Press, 1975, pp. 109-110. .. [3] Wikipedia, "Window function", http://en.wikipedia.org/wiki/Window_function .. [4] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, "Numerical Recipes", Cambridge University Press, 1986, page 425. Examples -------- >>> np.hamming(12) array([ 0.08 , 0.15302337, 0.34890909, 0.60546483, 0.84123594, 0.98136677, 0.98136677, 0.84123594, 0.60546483, 0.34890909, 0.15302337, 0.08 ]) Plot the window and the frequency response: >>> from numpy.fft import fft, fftshift >>> window = np.hamming(51) >>> plt.plot(window) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Hamming window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Amplitude") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Sample") <matplotlib.text.Text object at 0x...> >>> plt.show() >>> plt.figure() <matplotlib.figure.Figure object at 0x...> >>> A = fft(window, 2048) / 25.5 >>> mag = np.abs(fftshift(A)) >>> freq = np.linspace(-0.5, 0.5, len(A)) >>> response = 20 * np.log10(mag) >>> response = np.clip(response, -100, 100) >>> plt.plot(freq, response) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Frequency response of Hamming window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Magnitude [dB]") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Normalized frequency [cycles per sample]") <matplotlib.text.Text object at 0x...> >>> plt.axis('tight') (-0.5, 0.5, -100.0, ...) >>> plt.show() """ if M < 1: return array([]) if M == 1: return ones(1, float) n = arange(0, M) return 0.54 - 0.46*cos(2.0*pi*n/(M-1)) ## Code from cephes for i0 _i0A = [ -4.41534164647933937950E-18, 3.33079451882223809783E-17, -2.43127984654795469359E-16, 1.71539128555513303061E-15, -1.16853328779934516808E-14, 7.67618549860493561688E-14, -4.85644678311192946090E-13, 2.95505266312963983461E-12, -1.72682629144155570723E-11, 9.67580903537323691224E-11, -5.18979560163526290666E-10, 2.65982372468238665035E-9, -1.30002500998624804212E-8, 6.04699502254191894932E-8, -2.67079385394061173391E-7, 1.11738753912010371815E-6, -4.41673835845875056359E-6, 1.64484480707288970893E-5, -5.75419501008210370398E-5, 1.88502885095841655729E-4, -5.76375574538582365885E-4, 1.63947561694133579842E-3, -4.32430999505057594430E-3, 1.05464603945949983183E-2, -2.37374148058994688156E-2, 4.93052842396707084878E-2, -9.49010970480476444210E-2, 1.71620901522208775349E-1, -3.04682672343198398683E-1, 6.76795274409476084995E-1 ] _i0B = [ -7.23318048787475395456E-18, -4.83050448594418207126E-18, 4.46562142029675999901E-17, 3.46122286769746109310E-17, -2.82762398051658348494E-16, -3.42548561967721913462E-16, 1.77256013305652638360E-15, 3.81168066935262242075E-15, -9.55484669882830764870E-15, -4.15056934728722208663E-14, 1.54008621752140982691E-14, 3.85277838274214270114E-13, 7.18012445138366623367E-13, -1.79417853150680611778E-12, -1.32158118404477131188E-11, -3.14991652796324136454E-11, 1.18891471078464383424E-11, 4.94060238822496958910E-10, 3.39623202570838634515E-9, 2.26666899049817806459E-8, 2.04891858946906374183E-7, 2.89137052083475648297E-6, 6.88975834691682398426E-5, 3.36911647825569408990E-3, 8.04490411014108831608E-1 ] def _chbevl(x, vals): b0 = vals[0] b1 = 0.0 for i in range(1, len(vals)): b2 = b1 b1 = b0 b0 = x*b1 - b2 + vals[i] return 0.5*(b0 - b2) def _i0_1(x): return exp(x) * _chbevl(x/2.0-2, _i0A) def _i0_2(x): return exp(x) * _chbevl(32.0/x - 2.0, _i0B) / sqrt(x) def i0(x): """ Modified Bessel function of the first kind, order 0. Usually denoted :math:`I_0`. This function does broadcast, but will *not* "up-cast" int dtype arguments unless accompanied by at least one float or complex dtype argument (see Raises below). Parameters ---------- x : array_like, dtype float or complex Argument of the Bessel function. Returns ------- out : ndarray, shape = x.shape, dtype = x.dtype The modified Bessel function evaluated at each of the elements of `x`. Raises ------ TypeError: array cannot be safely cast to required type If argument consists exclusively of int dtypes. See Also -------- scipy.special.iv, scipy.special.ive Notes ----- We use the algorithm published by Clenshaw [1]_ and referenced by Abramowitz and Stegun [2]_, for which the function domain is partitioned into the two intervals [0,8] and (8,inf), and Chebyshev polynomial expansions are employed in each interval. Relative error on the domain [0,30] using IEEE arithmetic is documented [3]_ as having a peak of 5.8e-16 with an rms of 1.4e-16 (n = 30000). References ---------- .. [1] C. W. Clenshaw, "Chebyshev series for mathematical functions", in *National Physical Laboratory Mathematical Tables*, vol. 5, London: Her Majesty's Stationery Office, 1962. .. [2] M. Abramowitz and I. A. Stegun, *Handbook of Mathematical Functions*, 10th printing, New York: Dover, 1964, pp. 379. http://www.math.sfu.ca/~cbm/aands/page_379.htm .. [3] http://kobesearch.cpan.org/htdocs/Math-Cephes/Math/Cephes.html Examples -------- >>> np.i0([0.]) array(1.0) >>> np.i0([0., 1. + 2j]) array([ 1.00000000+0.j , 0.18785373+0.64616944j]) """ x = atleast_1d(x).copy() y = empty_like(x) ind = (x < 0) x[ind] = -x[ind] ind = (x <= 8.0) y[ind] = _i0_1(x[ind]) ind2 = ~ind y[ind2] = _i0_2(x[ind2]) return y.squeeze() ## End of cephes code for i0 def kaiser(M, beta): """ Return the Kaiser window. The Kaiser window is a taper formed by using a Bessel function. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. beta : float Shape parameter for window. Returns ------- out : array The window, with the maximum value normalized to one (the value one appears only if the number of samples is odd). See Also -------- bartlett, blackman, hamming, hanning Notes ----- The Kaiser window is defined as .. math:: w(n) = I_0\\left( \\beta \\sqrt{1-\\frac{4n^2}{(M-1)^2}} \\right)/I_0(\\beta) with .. math:: \\quad -\\frac{M-1}{2} \\leq n \\leq \\frac{M-1}{2}, where :math:`I_0` is the modified zeroth-order Bessel function. The Kaiser was named for Jim Kaiser, who discovered a simple approximation to the DPSS window based on Bessel functions. The Kaiser window is a very good approximation to the Digital Prolate Spheroidal Sequence, or Slepian window, which is the transform which maximizes the energy in the main lobe of the window relative to total energy. The Kaiser can approximate many other windows by varying the beta parameter. ==== ======================= beta Window shape ==== ======================= 0 Rectangular 5 Similar to a Hamming 6 Similar to a Hanning 8.6 Similar to a Blackman ==== ======================= A beta value of 14 is probably a good starting point. Note that as beta gets large, the window narrows, and so the number of samples needs to be large enough to sample the increasingly narrow spike, otherwise NaNs will get returned. Most references to the Kaiser window come from the signal processing literature, where it is used as one of many windowing functions for smoothing values. It is also known as an apodization (which means "removing the foot", i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function. References ---------- .. [1] J. F. Kaiser, "Digital Filters" - Ch 7 in "Systems analysis by digital computer", Editors: F.F. Kuo and J.F. Kaiser, p 218-285. John Wiley and Sons, New York, (1966). .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The University of Alberta Press, 1975, pp. 177-178. .. [3] Wikipedia, "Window function", http://en.wikipedia.org/wiki/Window_function Examples -------- >>> np.kaiser(12, 14) array([ 7.72686684e-06, 3.46009194e-03, 4.65200189e-02, 2.29737120e-01, 5.99885316e-01, 9.45674898e-01, 9.45674898e-01, 5.99885316e-01, 2.29737120e-01, 4.65200189e-02, 3.46009194e-03, 7.72686684e-06]) Plot the window and the frequency response: >>> from numpy.fft import fft, fftshift >>> window = np.kaiser(51, 14) >>> plt.plot(window) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Kaiser window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Amplitude") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Sample") <matplotlib.text.Text object at 0x...> >>> plt.show() >>> plt.figure() <matplotlib.figure.Figure object at 0x...> >>> A = fft(window, 2048) / 25.5 >>> mag = np.abs(fftshift(A)) >>> freq = np.linspace(-0.5, 0.5, len(A)) >>> response = 20 * np.log10(mag) >>> response = np.clip(response, -100, 100) >>> plt.plot(freq, response) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Frequency response of Kaiser window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Magnitude [dB]") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Normalized frequency [cycles per sample]") <matplotlib.text.Text object at 0x...> >>> plt.axis('tight') (-0.5, 0.5, -100.0, ...) >>> plt.show() """ from numpy.dual import i0 if M == 1: return np.array([1.]) n = arange(0, M) alpha = (M-1)/2.0 return i0(beta * sqrt(1-((n-alpha)/alpha)**2.0))/i0(float(beta)) def sinc(x): """ Return the sinc function. The sinc function is :math:`\\sin(\\pi x)/(\\pi x)`. Parameters ---------- x : ndarray Array (possibly multi-dimensional) of values for which to to calculate ``sinc(x)``. Returns ------- out : ndarray ``sinc(x)``, which has the same shape as the input. Notes ----- ``sinc(0)`` is the limit value 1. The name sinc is short for "sine cardinal" or "sinus cardinalis". The sinc function is used in various signal processing applications, including in anti-aliasing, in the construction of a Lanczos resampling filter, and in interpolation. For bandlimited interpolation of discrete-time signals, the ideal interpolation kernel is proportional to the sinc function. References ---------- .. [1] Weisstein, Eric W. "Sinc Function." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/SincFunction.html .. [2] Wikipedia, "Sinc function", http://en.wikipedia.org/wiki/Sinc_function Examples -------- >>> x = np.linspace(-4, 4, 41) >>> np.sinc(x) array([ -3.89804309e-17, -4.92362781e-02, -8.40918587e-02, -8.90384387e-02, -5.84680802e-02, 3.89804309e-17, 6.68206631e-02, 1.16434881e-01, 1.26137788e-01, 8.50444803e-02, -3.89804309e-17, -1.03943254e-01, -1.89206682e-01, -2.16236208e-01, -1.55914881e-01, 3.89804309e-17, 2.33872321e-01, 5.04551152e-01, 7.56826729e-01, 9.35489284e-01, 1.00000000e+00, 9.35489284e-01, 7.56826729e-01, 5.04551152e-01, 2.33872321e-01, 3.89804309e-17, -1.55914881e-01, -2.16236208e-01, -1.89206682e-01, -1.03943254e-01, -3.89804309e-17, 8.50444803e-02, 1.26137788e-01, 1.16434881e-01, 6.68206631e-02, 3.89804309e-17, -5.84680802e-02, -8.90384387e-02, -8.40918587e-02, -4.92362781e-02, -3.89804309e-17]) >>> plt.plot(x, np.sinc(x)) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Sinc Function") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Amplitude") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("X") <matplotlib.text.Text object at 0x...> >>> plt.show() It works in 2-D as well: >>> x = np.linspace(-4, 4, 401) >>> xx = np.outer(x, x) >>> plt.imshow(np.sinc(xx)) <matplotlib.image.AxesImage object at 0x...> """ x = np.asanyarray(x) y = pi * where(x == 0, 1.0e-20, x) return sin(y)/y def msort(a): """ Return a copy of an array sorted along the first axis. Parameters ---------- a : array_like Array to be sorted. Returns ------- sorted_array : ndarray Array of the same type and shape as `a`. See Also -------- sort Notes ----- ``np.msort(a)`` is equivalent to ``np.sort(a, axis=0)``. """ b = array(a, subok=True, copy=True) b.sort(0) return b def _ureduce(a, func, **kwargs): """ Internal Function. Call `func` with `a` as first argument swapping the axes to use extended axis on functions that don't support it natively. Returns result and a.shape with axis dims set to 1. Parameters ---------- a : array_like Input array or object that can be converted to an array. func : callable Reduction function Kapable of receiving an axis argument. It is is called with `a` as first argument followed by `kwargs`. kwargs : keyword arguments additional keyword arguments to pass to `func`. Returns ------- result : tuple Result of func(a, **kwargs) and a.shape with axis dims set to 1 which can be used to reshape the result to the same shape a ufunc with keepdims=True would produce. """ a = np.asanyarray(a) axis = kwargs.get('axis', None) if axis is not None: keepdim = list(a.shape) nd = a.ndim try: axis = operator.index(axis) if axis >= nd or axis < -nd: raise IndexError("axis %d out of bounds (%d)" % (axis, a.ndim)) keepdim[axis] = 1 except TypeError: sax = set() for x in axis: if x >= nd or x < -nd: raise IndexError("axis %d out of bounds (%d)" % (x, nd)) if x in sax: raise ValueError("duplicate value in axis") sax.add(x % nd) keepdim[x] = 1 keep = sax.symmetric_difference(frozenset(range(nd))) nkeep = len(keep) # swap axis that should not be reduced to front for i, s in enumerate(sorted(keep)): a = a.swapaxes(i, s) # merge reduced axis a = a.reshape(a.shape[:nkeep] + (-1,)) kwargs['axis'] = -1 else: keepdim = [1] * a.ndim r = func(a, **kwargs) return r, keepdim def median(a, axis=None, out=None, overwrite_input=False, keepdims=False): """ Compute the median along the specified axis. Returns the median of the array elements. Parameters ---------- a : array_like Input array or object that can be converted to an array. axis : int or sequence of int, optional Axis along which the medians are computed. The default (axis=None) is to compute the median along a flattened version of the array. A sequence of axes is supported since version 1.9.0. out : ndarray, optional Alternative output array in which to place the result. It must have the same shape and buffer length as the expected output, but the type (of the output) will be cast if necessary. overwrite_input : bool, optional If True, then allow use of memory of input array (a) for calculations. The input array will be modified by the call to median. This will save memory when you do not need to preserve the contents of the input array. Treat the input as undefined, but it will probably be fully or partially sorted. Default is False. Note that, if `overwrite_input` is True and the input is not already an ndarray, an error will be raised. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original `arr`. .. versionadded:: 1.9.0 Returns ------- median : ndarray A new array holding the result (unless `out` is specified, in which case that array is returned instead). If the input contains integers, or floats of smaller precision than 64, then the output data-type is float64. Otherwise, the output data-type is the same as that of the input. See Also -------- mean, percentile Notes ----- Given a vector V of length N, the median of V is the middle value of a sorted copy of V, ``V_sorted`` - i.e., ``V_sorted[(N-1)/2]``, when N is odd. When N is even, it is the average of the two middle values of ``V_sorted``. Examples -------- >>> a = np.array([[10, 7, 4], [3, 2, 1]]) >>> a array([[10, 7, 4], [ 3, 2, 1]]) >>> np.median(a) 3.5 >>> np.median(a, axis=0) array([ 6.5, 4.5, 2.5]) >>> np.median(a, axis=1) array([ 7., 2.]) >>> m = np.median(a, axis=0) >>> out = np.zeros_like(m) >>> np.median(a, axis=0, out=m) array([ 6.5, 4.5, 2.5]) >>> m array([ 6.5, 4.5, 2.5]) >>> b = a.copy() >>> np.median(b, axis=1, overwrite_input=True) array([ 7., 2.]) >>> assert not np.all(a==b) >>> b = a.copy() >>> np.median(b, axis=None, overwrite_input=True) 3.5 >>> assert not np.all(a==b) """ r, k = _ureduce(a, func=_median, axis=axis, out=out, overwrite_input=overwrite_input) if keepdims: return r.reshape(k) else: return r def _median(a, axis=None, out=None, overwrite_input=False): # can't be reasonably be implemented in terms of percentile as we have to # call mean to not break astropy a = np.asanyarray(a) # Set the partition indexes if axis is None: sz = a.size else: sz = a.shape[axis] if sz % 2 == 0: szh = sz // 2 kth = [szh - 1, szh] else: kth = [(sz - 1) // 2] # Check if the array contains any nan's if np.issubdtype(a.dtype, np.inexact): kth.append(-1) if overwrite_input: if axis is None: part = a.ravel() part.partition(kth) else: a.partition(kth, axis=axis) part = a else: part = partition(a, kth, axis=axis) if part.shape == (): # make 0-D arrays work return part.item() if axis is None: axis = 0 indexer = [slice(None)] * part.ndim index = part.shape[axis] // 2 if part.shape[axis] % 2 == 1: # index with slice to allow mean (below) to work indexer[axis] = slice(index, index+1) else: indexer[axis] = slice(index-1, index+1) # Check if the array contains any nan's if np.issubdtype(a.dtype, np.inexact): # warn and return nans like mean would rout = mean(part[indexer], axis=axis, out=out) part = np.rollaxis(part, axis, part.ndim) n = np.isnan(part[..., -1]) if rout.ndim == 0: if n == True: warnings.warn("Invalid value encountered in median", RuntimeWarning) if out is not None: out[...] = a.dtype.type(np.nan) rout = out else: rout = a.dtype.type(np.nan) elif np.count_nonzero(n.ravel()) > 0: warnings.warn("Invalid value encountered in median for" + " %d results" % np.count_nonzero(n.ravel()), RuntimeWarning) rout[n] = np.nan return rout else: # if there are no nans # Use mean in odd and even case to coerce data type # and check, use out array. return mean(part[indexer], axis=axis, out=out) def percentile(a, q, axis=None, out=None, overwrite_input=False, interpolation='linear', keepdims=False): """ Compute the qth percentile of the data along the specified axis. Returns the qth percentile of the array elements. Parameters ---------- a : array_like Input array or object that can be converted to an array. q : float in range of [0,100] (or sequence of floats) Percentile to compute which must be between 0 and 100 inclusive. axis : int or sequence of int, optional Axis along which the percentiles are computed. The default (None) is to compute the percentiles along a flattened version of the array. A sequence of axes is supported since version 1.9.0. out : ndarray, optional Alternative output array in which to place the result. It must have the same shape and buffer length as the expected output, but the type (of the output) will be cast if necessary. overwrite_input : bool, optional If True, then allow use of memory of input array `a` for calculations. The input array will be modified by the call to percentile. This will save memory when you do not need to preserve the contents of the input array. In this case you should not make any assumptions about the content of the passed in array `a` after this function completes -- treat it as undefined. Default is False. Note that, if the `a` input is not already an array this parameter will have no effect, `a` will be converted to an array internally regardless of the value of this parameter. interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points `i` and `j`: * linear: `i + (j - i) * fraction`, where `fraction` is the fractional part of the index surrounded by `i` and `j`. * lower: `i`. * higher: `j`. * nearest: `i` or `j` whichever is nearest. * midpoint: (`i` + `j`) / 2. .. versionadded:: 1.9.0 keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original array `a`. .. versionadded:: 1.9.0 Returns ------- percentile : scalar or ndarray If a single percentile `q` is given and axis=None a scalar is returned. If multiple percentiles `q` are given an array holding the result is returned. The results are listed in the first axis. (If `out` is specified, in which case that array is returned instead). If the input contains integers, or floats of smaller precision than 64, then the output data-type is float64. Otherwise, the output data-type is the same as that of the input. See Also -------- mean, median Notes ----- Given a vector V of length N, the q-th percentile of V is the q-th ranked value in a sorted copy of V. The values and distances of the two nearest neighbors as well as the `interpolation` parameter will determine the percentile if the normalized ranking does not match q exactly. This function is the same as the median if ``q=50``, the same as the minimum if ``q=0`` and the same as the maximum if ``q=100``. Examples -------- >>> a = np.array([[10, 7, 4], [3, 2, 1]]) >>> a array([[10, 7, 4], [ 3, 2, 1]]) >>> np.percentile(a, 50) array([ 3.5]) >>> np.percentile(a, 50, axis=0) array([[ 6.5, 4.5, 2.5]]) >>> np.percentile(a, 50, axis=1) array([[ 7.], [ 2.]]) >>> m = np.percentile(a, 50, axis=0) >>> out = np.zeros_like(m) >>> np.percentile(a, 50, axis=0, out=m) array([[ 6.5, 4.5, 2.5]]) >>> m array([[ 6.5, 4.5, 2.5]]) >>> b = a.copy() >>> np.percentile(b, 50, axis=1, overwrite_input=True) array([[ 7.], [ 2.]]) >>> assert not np.all(a==b) >>> b = a.copy() >>> np.percentile(b, 50, axis=None, overwrite_input=True) array([ 3.5]) """ q = array(q, dtype=np.float64, copy=True) r, k = _ureduce(a, func=_percentile, q=q, axis=axis, out=out, overwrite_input=overwrite_input, interpolation=interpolation) if keepdims: if q.ndim == 0: return r.reshape(k) else: return r.reshape([len(q)] + k) else: return r def _percentile(a, q, axis=None, out=None, overwrite_input=False, interpolation='linear', keepdims=False): a = asarray(a) if q.ndim == 0: # Do not allow 0-d arrays because following code fails for scalar zerod = True q = q[None] else: zerod = False # avoid expensive reductions, relevant for arrays with < O(1000) elements if q.size < 10: for i in range(q.size): if q[i] < 0. or q[i] > 100.: raise ValueError("Percentiles must be in the range [0,100]") q[i] /= 100. else: # faster than any() if np.count_nonzero(q < 0.) or np.count_nonzero(q > 100.): raise ValueError("Percentiles must be in the range [0,100]") q /= 100. # prepare a for partioning if overwrite_input: if axis is None: ap = a.ravel() else: ap = a else: if axis is None: ap = a.flatten() else: ap = a.copy() if axis is None: axis = 0 Nx = ap.shape[axis] indices = q * (Nx - 1) # round fractional indices according to interpolation method if interpolation == 'lower': indices = floor(indices).astype(intp) elif interpolation == 'higher': indices = ceil(indices).astype(intp) elif interpolation == 'midpoint': indices = floor(indices) + 0.5 elif interpolation == 'nearest': indices = around(indices).astype(intp) elif interpolation == 'linear': pass # keep index as fraction and interpolate else: raise ValueError( "interpolation can only be 'linear', 'lower' 'higher', " "'midpoint', or 'nearest'") n = np.array(False, dtype=bool) # check for nan's flag if indices.dtype == intp: # take the points along axis # Check if the array contains any nan's if np.issubdtype(a.dtype, np.inexact): indices = concatenate((indices, [-1])) ap.partition(indices, axis=axis) # ensure axis with qth is first ap = np.rollaxis(ap, axis, 0) axis = 0 # Check if the array contains any nan's if np.issubdtype(a.dtype, np.inexact): indices = indices[:-1] n = np.isnan(ap[-1:, ...]) if zerod: indices = indices[0] r = take(ap, indices, axis=axis, out=out) else: # weight the points above and below the indices indices_below = floor(indices).astype(intp) indices_above = indices_below + 1 indices_above[indices_above > Nx - 1] = Nx - 1 # Check if the array contains any nan's if np.issubdtype(a.dtype, np.inexact): indices_above = concatenate((indices_above, [-1])) weights_above = indices - indices_below weights_below = 1.0 - weights_above weights_shape = [1, ] * ap.ndim weights_shape[axis] = len(indices) weights_below.shape = weights_shape weights_above.shape = weights_shape ap.partition(concatenate((indices_below, indices_above)), axis=axis) # ensure axis with qth is first ap = np.rollaxis(ap, axis, 0) weights_below = np.rollaxis(weights_below, axis, 0) weights_above = np.rollaxis(weights_above, axis, 0) axis = 0 # Check if the array contains any nan's if np.issubdtype(a.dtype, np.inexact): indices_above = indices_above[:-1] n = np.isnan(ap[-1:, ...]) x1 = take(ap, indices_below, axis=axis) * weights_below x2 = take(ap, indices_above, axis=axis) * weights_above # ensure axis with qth is first x1 = np.rollaxis(x1, axis, 0) x2 = np.rollaxis(x2, axis, 0) if zerod: x1 = x1.squeeze(0) x2 = x2.squeeze(0) if out is not None: r = add(x1, x2, out=out) else: r = add(x1, x2) if np.any(n): warnings.warn("Invalid value encountered in median", RuntimeWarning) if zerod: if ap.ndim == 1: if out is not None: out[...] = a.dtype.type(np.nan) r = out else: r = a.dtype.type(np.nan) else: r[..., n.squeeze(0)] = a.dtype.type(np.nan) else: if r.ndim == 1: r[:] = a.dtype.type(np.nan) else: r[..., n.repeat(q.size, 0)] = a.dtype.type(np.nan) return r def trapz(y, x=None, dx=1.0, axis=-1): """ Integrate along the given axis using the composite trapezoidal rule. Integrate `y` (`x`) along given axis. Parameters ---------- y : array_like Input array to integrate. x : array_like, optional If `x` is None, then spacing between all `y` elements is `dx`. dx : scalar, optional If `x` is None, spacing given by `dx` is assumed. Default is 1. axis : int, optional Specify the axis. Returns ------- trapz : float Definite integral as approximated by trapezoidal rule. See Also -------- sum, cumsum Notes ----- Image [2]_ illustrates trapezoidal rule -- y-axis locations of points will be taken from `y` array, by default x-axis distances between points will be 1.0, alternatively they can be provided with `x` array or with `dx` scalar. Return value will be equal to combined area under the red lines. References ---------- .. [1] Wikipedia page: http://en.wikipedia.org/wiki/Trapezoidal_rule .. [2] Illustration image: http://en.wikipedia.org/wiki/File:Composite_trapezoidal_rule_illustration.png Examples -------- >>> np.trapz([1,2,3]) 4.0 >>> np.trapz([1,2,3], x=[4,6,8]) 8.0 >>> np.trapz([1,2,3], dx=2) 8.0 >>> a = np.arange(6).reshape(2, 3) >>> a array([[0, 1, 2], [3, 4, 5]]) >>> np.trapz(a, axis=0) array([ 1.5, 2.5, 3.5]) >>> np.trapz(a, axis=1) array([ 2., 8.]) """ y = asanyarray(y) if x is None: d = dx else: x = asanyarray(x) if x.ndim == 1: d = diff(x) # reshape to correct shape shape = [1]*y.ndim shape[axis] = d.shape[0] d = d.reshape(shape) else: d = diff(x, axis=axis) nd = len(y.shape) slice1 = [slice(None)]*nd slice2 = [slice(None)]*nd slice1[axis] = slice(1, None) slice2[axis] = slice(None, -1) try: ret = (d * (y[slice1] + y[slice2]) / 2.0).sum(axis) except ValueError: # Operations didn't work, cast to ndarray d = np.asarray(d) y = np.asarray(y) ret = add.reduce(d * (y[slice1]+y[slice2])/2.0, axis) return ret #always succeed def add_newdoc(place, obj, doc): """Adds documentation to obj which is in module place. If doc is a string add it to obj as a docstring If doc is a tuple, then the first element is interpreted as an attribute of obj and the second as the docstring (method, docstring) If doc is a list, then each element of the list should be a sequence of length two --> [(method1, docstring1), (method2, docstring2), ...] This routine never raises an error. This routine cannot modify read-only docstrings, as appear in new-style classes or built-in functions. Because this routine never raises an error the caller must check manually that the docstrings were changed. """ try: new = getattr(__import__(place, globals(), {}, [obj]), obj) if isinstance(doc, str): add_docstring(new, doc.strip()) elif isinstance(doc, tuple): add_docstring(getattr(new, doc[0]), doc[1].strip()) elif isinstance(doc, list): for val in doc: add_docstring(getattr(new, val[0]), val[1].strip()) except: pass # Based on scitools meshgrid def meshgrid(*xi, **kwargs): """ Return coordinate matrices from coordinate vectors. Make N-D coordinate arrays for vectorized evaluations of N-D scalar/vector fields over N-D grids, given one-dimensional coordinate arrays x1, x2,..., xn. .. versionchanged:: 1.9 1-D and 0-D cases are allowed. Parameters ---------- x1, x2,..., xn : array_like 1-D arrays representing the coordinates of a grid. indexing : {'xy', 'ij'}, optional Cartesian ('xy', default) or matrix ('ij') indexing of output. See Notes for more details. .. versionadded:: 1.7.0 sparse : bool, optional If True a sparse grid is returned in order to conserve memory. Default is False. .. versionadded:: 1.7.0 copy : bool, optional If False, a view into the original arrays are returned in order to conserve memory. Default is True. Please note that ``sparse=False, copy=False`` will likely return non-contiguous arrays. Furthermore, more than one element of a broadcast array may refer to a single memory location. If you need to write to the arrays, make copies first. .. versionadded:: 1.7.0 Returns ------- X1, X2,..., XN : ndarray For vectors `x1`, `x2`,..., 'xn' with lengths ``Ni=len(xi)`` , return ``(N1, N2, N3,...Nn)`` shaped arrays if indexing='ij' or ``(N2, N1, N3,...Nn)`` shaped arrays if indexing='xy' with the elements of `xi` repeated to fill the matrix along the first dimension for `x1`, the second for `x2` and so on. Notes ----- This function supports both indexing conventions through the indexing keyword argument. Giving the string 'ij' returns a meshgrid with matrix indexing, while 'xy' returns a meshgrid with Cartesian indexing. In the 2-D case with inputs of length M and N, the outputs are of shape (N, M) for 'xy' indexing and (M, N) for 'ij' indexing. In the 3-D case with inputs of length M, N and P, outputs are of shape (N, M, P) for 'xy' indexing and (M, N, P) for 'ij' indexing. The difference is illustrated by the following code snippet:: xv, yv = meshgrid(x, y, sparse=False, indexing='ij') for i in range(nx): for j in range(ny): # treat xv[i,j], yv[i,j] xv, yv = meshgrid(x, y, sparse=False, indexing='xy') for i in range(nx): for j in range(ny): # treat xv[j,i], yv[j,i] In the 1-D and 0-D case, the indexing and sparse keywords have no effect. See Also -------- index_tricks.mgrid : Construct a multi-dimensional "meshgrid" using indexing notation. index_tricks.ogrid : Construct an open multi-dimensional "meshgrid" using indexing notation. Examples -------- >>> nx, ny = (3, 2) >>> x = np.linspace(0, 1, nx) >>> y = np.linspace(0, 1, ny) >>> xv, yv = meshgrid(x, y) >>> xv array([[ 0. , 0.5, 1. ], [ 0. , 0.5, 1. ]]) >>> yv array([[ 0., 0., 0.], [ 1., 1., 1.]]) >>> xv, yv = meshgrid(x, y, sparse=True) # make sparse output arrays >>> xv array([[ 0. , 0.5, 1. ]]) >>> yv array([[ 0.], [ 1.]]) `meshgrid` is very useful to evaluate functions on a grid. >>> x = np.arange(-5, 5, 0.1) >>> y = np.arange(-5, 5, 0.1) >>> xx, yy = meshgrid(x, y, sparse=True) >>> z = np.sin(xx**2 + yy**2) / (xx**2 + yy**2) >>> h = plt.contourf(x,y,z) """ ndim = len(xi) copy_ = kwargs.pop('copy', True) sparse = kwargs.pop('sparse', False) indexing = kwargs.pop('indexing', 'xy') if kwargs: raise TypeError("meshgrid() got an unexpected keyword argument '%s'" % (list(kwargs)[0],)) if indexing not in ['xy', 'ij']: raise ValueError( "Valid values for `indexing` are 'xy' and 'ij'.") s0 = (1,) * ndim output = [np.asanyarray(x).reshape(s0[:i] + (-1,) + s0[i + 1::]) for i, x in enumerate(xi)] shape = [x.size for x in output] if indexing == 'xy' and ndim > 1: # switch first and second axis output[0].shape = (1, -1) + (1,)*(ndim - 2) output[1].shape = (-1, 1) + (1,)*(ndim - 2) shape[0], shape[1] = shape[1], shape[0] if sparse: if copy_: return [x.copy() for x in output] else: return output else: # Return the full N-D matrix (not only the 1-D vector) if copy_: mult_fact = np.ones(shape, dtype=int) return [x * mult_fact for x in output] else: return np.broadcast_arrays(*output) def delete(arr, obj, axis=None): """ Return a new array with sub-arrays along an axis deleted. For a one dimensional array, this returns those entries not returned by `arr[obj]`. Parameters ---------- arr : array_like Input array. obj : slice, int or array of ints Indicate which sub-arrays to remove. axis : int, optional The axis along which to delete the subarray defined by `obj`. If `axis` is None, `obj` is applied to the flattened array. Returns ------- out : ndarray A copy of `arr` with the elements specified by `obj` removed. Note that `delete` does not occur in-place. If `axis` is None, `out` is a flattened array. See Also -------- insert : Insert elements into an array. append : Append elements at the end of an array. Notes ----- Often it is preferable to use a boolean mask. For example: >>> mask = np.ones(len(arr), dtype=bool) >>> mask[[0,2,4]] = False >>> result = arr[mask,...] Is equivalent to `np.delete(arr, [0,2,4], axis=0)`, but allows further use of `mask`. Examples -------- >>> arr = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]]) >>> arr array([[ 1, 2, 3, 4], [ 5, 6, 7, 8], [ 9, 10, 11, 12]]) >>> np.delete(arr, 1, 0) array([[ 1, 2, 3, 4], [ 9, 10, 11, 12]]) >>> np.delete(arr, np.s_[::2], 1) array([[ 2, 4], [ 6, 8], [10, 12]]) >>> np.delete(arr, [1,3,5], None) array([ 1, 3, 5, 7, 8, 9, 10, 11, 12]) """ wrap = None if type(arr) is not ndarray: try: wrap = arr.__array_wrap__ except AttributeError: pass arr = asarray(arr) ndim = arr.ndim if axis is None: if ndim != 1: arr = arr.ravel() ndim = arr.ndim axis = ndim - 1 if ndim == 0: # 2013-09-24, 1.9 warnings.warn( "in the future the special handling of scalars will be removed " "from delete and raise an error", DeprecationWarning) if wrap: return wrap(arr) else: return arr.copy() slobj = [slice(None)]*ndim N = arr.shape[axis] newshape = list(arr.shape) if isinstance(obj, slice): start, stop, step = obj.indices(N) xr = range(start, stop, step) numtodel = len(xr) if numtodel <= 0: if wrap: return wrap(arr.copy()) else: return arr.copy() # Invert if step is negative: if step < 0: step = -step start = xr[-1] stop = xr[0] + 1 newshape[axis] -= numtodel new = empty(newshape, arr.dtype, arr.flags.fnc) # copy initial chunk if start == 0: pass else: slobj[axis] = slice(None, start) new[slobj] = arr[slobj] # copy end chunck if stop == N: pass else: slobj[axis] = slice(stop-numtodel, None) slobj2 = [slice(None)]*ndim slobj2[axis] = slice(stop, None) new[slobj] = arr[slobj2] # copy middle pieces if step == 1: pass else: # use array indexing. keep = ones(stop-start, dtype=bool) keep[:stop-start:step] = False slobj[axis] = slice(start, stop-numtodel) slobj2 = [slice(None)]*ndim slobj2[axis] = slice(start, stop) arr = arr[slobj2] slobj2[axis] = keep new[slobj] = arr[slobj2] if wrap: return wrap(new) else: return new _obj = obj obj = np.asarray(obj) # After removing the special handling of booleans and out of # bounds values, the conversion to the array can be removed. if obj.dtype == bool: warnings.warn( "in the future insert will treat boolean arrays and array-likes " "as boolean index instead of casting it to integer", FutureWarning) obj = obj.astype(intp) if isinstance(_obj, (int, long, integer)): # optimization for a single value obj = obj.item() if (obj < -N or obj >= N): raise IndexError( "index %i is out of bounds for axis %i with " "size %i" % (obj, axis, N)) if (obj < 0): obj += N newshape[axis] -= 1 new = empty(newshape, arr.dtype, arr.flags.fnc) slobj[axis] = slice(None, obj) new[slobj] = arr[slobj] slobj[axis] = slice(obj, None) slobj2 = [slice(None)]*ndim slobj2[axis] = slice(obj+1, None) new[slobj] = arr[slobj2] else: if obj.size == 0 and not isinstance(_obj, np.ndarray): obj = obj.astype(intp) if not np.can_cast(obj, intp, 'same_kind'): # obj.size = 1 special case always failed and would just # give superfluous warnings. # 2013-09-24, 1.9 warnings.warn( "using a non-integer array as obj in delete will result in an " "error in the future", DeprecationWarning) obj = obj.astype(intp) keep = ones(N, dtype=bool) # Test if there are out of bound indices, this is deprecated inside_bounds = (obj < N) & (obj >= -N) if not inside_bounds.all(): # 2013-09-24, 1.9 warnings.warn( "in the future out of bounds indices will raise an error " "instead of being ignored by `numpy.delete`.", DeprecationWarning) obj = obj[inside_bounds] positive_indices = obj >= 0 if not positive_indices.all(): warnings.warn( "in the future negative indices will not be ignored by " "`numpy.delete`.", FutureWarning) obj = obj[positive_indices] keep[obj, ] = False slobj[axis] = keep new = arr[slobj] if wrap: return wrap(new) else: return new def insert(arr, obj, values, axis=None): """ Insert values along the given axis before the given indices. Parameters ---------- arr : array_like Input array. obj : int, slice or sequence of ints Object that defines the index or indices before which `values` is inserted. .. versionadded:: 1.8.0 Support for multiple insertions when `obj` is a single scalar or a sequence with one element (similar to calling insert multiple times). values : array_like Values to insert into `arr`. If the type of `values` is different from that of `arr`, `values` is converted to the type of `arr`. `values` should be shaped so that ``arr[...,obj,...] = values`` is legal. axis : int, optional Axis along which to insert `values`. If `axis` is None then `arr` is flattened first. Returns ------- out : ndarray A copy of `arr` with `values` inserted. Note that `insert` does not occur in-place: a new array is returned. If `axis` is None, `out` is a flattened array. See Also -------- append : Append elements at the end of an array. concatenate : Join a sequence of arrays along an existing axis. delete : Delete elements from an array. Notes ----- Note that for higher dimensional inserts `obj=0` behaves very different from `obj=[0]` just like `arr[:,0,:] = values` is different from `arr[:,[0],:] = values`. Examples -------- >>> a = np.array([[1, 1], [2, 2], [3, 3]]) >>> a array([[1, 1], [2, 2], [3, 3]]) >>> np.insert(a, 1, 5) array([1, 5, 1, 2, 2, 3, 3]) >>> np.insert(a, 1, 5, axis=1) array([[1, 5, 1], [2, 5, 2], [3, 5, 3]]) Difference between sequence and scalars: >>> np.insert(a, [1], [[1],[2],[3]], axis=1) array([[1, 1, 1], [2, 2, 2], [3, 3, 3]]) >>> np.array_equal(np.insert(a, 1, [1, 2, 3], axis=1), ... np.insert(a, [1], [[1],[2],[3]], axis=1)) True >>> b = a.flatten() >>> b array([1, 1, 2, 2, 3, 3]) >>> np.insert(b, [2, 2], [5, 6]) array([1, 1, 5, 6, 2, 2, 3, 3]) >>> np.insert(b, slice(2, 4), [5, 6]) array([1, 1, 5, 2, 6, 2, 3, 3]) >>> np.insert(b, [2, 2], [7.13, False]) # type casting array([1, 1, 7, 0, 2, 2, 3, 3]) >>> x = np.arange(8).reshape(2, 4) >>> idx = (1, 3) >>> np.insert(x, idx, 999, axis=1) array([[ 0, 999, 1, 2, 999, 3], [ 4, 999, 5, 6, 999, 7]]) """ wrap = None if type(arr) is not ndarray: try: wrap = arr.__array_wrap__ except AttributeError: pass arr = asarray(arr) ndim = arr.ndim if axis is None: if ndim != 1: arr = arr.ravel() ndim = arr.ndim axis = ndim - 1 else: if ndim > 0 and (axis < -ndim or axis >= ndim): raise IndexError( "axis %i is out of bounds for an array of " "dimension %i" % (axis, ndim)) if (axis < 0): axis += ndim if (ndim == 0): # 2013-09-24, 1.9 warnings.warn( "in the future the special handling of scalars will be removed " "from insert and raise an error", DeprecationWarning) arr = arr.copy() arr[...] = values if wrap: return wrap(arr) else: return arr slobj = [slice(None)]*ndim N = arr.shape[axis] newshape = list(arr.shape) if isinstance(obj, slice): # turn it into a range object indices = arange(*obj.indices(N), **{'dtype': intp}) else: # need to copy obj, because indices will be changed in-place indices = np.array(obj) if indices.dtype == bool: # See also delete warnings.warn( "in the future insert will treat boolean arrays and " "array-likes as a boolean index instead of casting it to " "integer", FutureWarning) indices = indices.astype(intp) # Code after warning period: #if obj.ndim != 1: # raise ValueError('boolean array argument obj to insert ' # 'must be one dimensional') #indices = np.flatnonzero(obj) elif indices.ndim > 1: raise ValueError( "index array argument obj to insert must be one dimensional " "or scalar") if indices.size == 1: index = indices.item() if index < -N or index > N: raise IndexError( "index %i is out of bounds for axis %i with " "size %i" % (obj, axis, N)) if (index < 0): index += N # There are some object array corner cases here, but we cannot avoid # that: values = array(values, copy=False, ndmin=arr.ndim, dtype=arr.dtype) if indices.ndim == 0: # broadcasting is very different here, since a[:,0,:] = ... behaves # very different from a[:,[0],:] = ...! This changes values so that # it works likes the second case. (here a[:,0:1,:]) values = np.rollaxis(values, 0, (axis % values.ndim) + 1) numnew = values.shape[axis] newshape[axis] += numnew new = empty(newshape, arr.dtype, arr.flags.fnc) slobj[axis] = slice(None, index) new[slobj] = arr[slobj] slobj[axis] = slice(index, index+numnew) new[slobj] = values slobj[axis] = slice(index+numnew, None) slobj2 = [slice(None)] * ndim slobj2[axis] = slice(index, None) new[slobj] = arr[slobj2] if wrap: return wrap(new) return new elif indices.size == 0 and not isinstance(obj, np.ndarray): # Can safely cast the empty list to intp indices = indices.astype(intp) if not np.can_cast(indices, intp, 'same_kind'): # 2013-09-24, 1.9 warnings.warn( "using a non-integer array as obj in insert will result in an " "error in the future", DeprecationWarning) indices = indices.astype(intp) indices[indices < 0] += N numnew = len(indices) order = indices.argsort(kind='mergesort') # stable sort indices[order] += np.arange(numnew) newshape[axis] += numnew old_mask = ones(newshape[axis], dtype=bool) old_mask[indices] = False new = empty(newshape, arr.dtype, arr.flags.fnc) slobj2 = [slice(None)]*ndim slobj[axis] = indices slobj2[axis] = old_mask new[slobj] = values new[slobj2] = arr if wrap: return wrap(new) return new def append(arr, values, axis=None): """ Append values to the end of an array. Parameters ---------- arr : array_like Values are appended to a copy of this array. values : array_like These values are appended to a copy of `arr`. It must be of the correct shape (the same shape as `arr`, excluding `axis`). If `axis` is not specified, `values` can be any shape and will be flattened before use. axis : int, optional The axis along which `values` are appended. If `axis` is not given, both `arr` and `values` are flattened before use. Returns ------- append : ndarray A copy of `arr` with `values` appended to `axis`. Note that `append` does not occur in-place: a new array is allocated and filled. If `axis` is None, `out` is a flattened array. See Also -------- insert : Insert elements into an array. delete : Delete elements from an array. Examples -------- >>> np.append([1, 2, 3], [[4, 5, 6], [7, 8, 9]]) array([1, 2, 3, 4, 5, 6, 7, 8, 9]) When `axis` is specified, `values` must have the correct shape. >>> np.append([[1, 2, 3], [4, 5, 6]], [[7, 8, 9]], axis=0) array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> np.append([[1, 2, 3], [4, 5, 6]], [7, 8, 9], axis=0) Traceback (most recent call last): ... ValueError: arrays must have same number of dimensions """ arr = asanyarray(arr) if axis is None: if arr.ndim != 1: arr = arr.ravel() values = ravel(values) axis = arr.ndim-1 return concatenate((arr, values), axis=axis)
gpl-2.0
Agent007/deep-learning
image-classification/helper.py
155
5631
import pickle import numpy as np import matplotlib.pyplot as plt from sklearn.preprocessing import LabelBinarizer def _load_label_names(): """ Load the label names from file """ return ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] def load_cfar10_batch(cifar10_dataset_folder_path, batch_id): """ Load a batch of the dataset """ with open(cifar10_dataset_folder_path + '/data_batch_' + str(batch_id), mode='rb') as file: batch = pickle.load(file, encoding='latin1') features = batch['data'].reshape((len(batch['data']), 3, 32, 32)).transpose(0, 2, 3, 1) labels = batch['labels'] return features, labels def display_stats(cifar10_dataset_folder_path, batch_id, sample_id): """ Display Stats of the the dataset """ batch_ids = list(range(1, 6)) if batch_id not in batch_ids: print('Batch Id out of Range. Possible Batch Ids: {}'.format(batch_ids)) return None features, labels = load_cfar10_batch(cifar10_dataset_folder_path, batch_id) if not (0 <= sample_id < len(features)): print('{} samples in batch {}. {} is out of range.'.format(len(features), batch_id, sample_id)) return None print('\nStats of batch {}:'.format(batch_id)) print('Samples: {}'.format(len(features))) print('Label Counts: {}'.format(dict(zip(*np.unique(labels, return_counts=True))))) print('First 20 Labels: {}'.format(labels[:20])) sample_image = features[sample_id] sample_label = labels[sample_id] label_names = _load_label_names() print('\nExample of Image {}:'.format(sample_id)) print('Image - Min Value: {} Max Value: {}'.format(sample_image.min(), sample_image.max())) print('Image - Shape: {}'.format(sample_image.shape)) print('Label - Label Id: {} Name: {}'.format(sample_label, label_names[sample_label])) plt.axis('off') plt.imshow(sample_image) def _preprocess_and_save(normalize, one_hot_encode, features, labels, filename): """ Preprocess data and save it to file """ features = normalize(features) labels = one_hot_encode(labels) pickle.dump((features, labels), open(filename, 'wb')) def preprocess_and_save_data(cifar10_dataset_folder_path, normalize, one_hot_encode): """ Preprocess Training and Validation Data """ n_batches = 5 valid_features = [] valid_labels = [] for batch_i in range(1, n_batches + 1): features, labels = load_cfar10_batch(cifar10_dataset_folder_path, batch_i) validation_count = int(len(features) * 0.1) # Prprocess and save a batch of training data _preprocess_and_save( normalize, one_hot_encode, features[:-validation_count], labels[:-validation_count], 'preprocess_batch_' + str(batch_i) + '.p') # Use a portion of training batch for validation valid_features.extend(features[-validation_count:]) valid_labels.extend(labels[-validation_count:]) # Preprocess and Save all validation data _preprocess_and_save( normalize, one_hot_encode, np.array(valid_features), np.array(valid_labels), 'preprocess_validation.p') with open(cifar10_dataset_folder_path + '/test_batch', mode='rb') as file: batch = pickle.load(file, encoding='latin1') # load the test data test_features = batch['data'].reshape((len(batch['data']), 3, 32, 32)).transpose(0, 2, 3, 1) test_labels = batch['labels'] # Preprocess and Save all test data _preprocess_and_save( normalize, one_hot_encode, np.array(test_features), np.array(test_labels), 'preprocess_test.p') def batch_features_labels(features, labels, batch_size): """ Split features and labels into batches """ for start in range(0, len(features), batch_size): end = min(start + batch_size, len(features)) yield features[start:end], labels[start:end] def load_preprocess_training_batch(batch_id, batch_size): """ Load the Preprocessed Training data and return them in batches of <batch_size> or less """ filename = 'preprocess_batch_' + str(batch_id) + '.p' features, labels = pickle.load(open(filename, mode='rb')) # Return the training data in batches of size <batch_size> or less return batch_features_labels(features, labels, batch_size) def display_image_predictions(features, labels, predictions): n_classes = 10 label_names = _load_label_names() label_binarizer = LabelBinarizer() label_binarizer.fit(range(n_classes)) label_ids = label_binarizer.inverse_transform(np.array(labels)) fig, axies = plt.subplots(nrows=4, ncols=2) fig.tight_layout() fig.suptitle('Softmax Predictions', fontsize=20, y=1.1) n_predictions = 3 margin = 0.05 ind = np.arange(n_predictions) width = (1. - 2. * margin) / n_predictions for image_i, (feature, label_id, pred_indicies, pred_values) in enumerate(zip(features, label_ids, predictions.indices, predictions.values)): pred_names = [label_names[pred_i] for pred_i in pred_indicies] correct_name = label_names[label_id] axies[image_i][0].imshow(feature) axies[image_i][0].set_title(correct_name) axies[image_i][0].set_axis_off() axies[image_i][1].barh(ind + margin, pred_values[::-1], width) axies[image_i][1].set_yticks(ind + margin) axies[image_i][1].set_yticklabels(pred_names[::-1]) axies[image_i][1].set_xticks([0, 0.5, 1.0])
mit
JanNash/sms-tools
lectures/06-Harmonic-model/plots-code/spectral-peaks.py
22
1161
import numpy as np import matplotlib.pyplot as plt from scipy.signal import hamming, triang, blackmanharris import math import sys, os, functools, time sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../../software/models/')) import dftModel as DFT import utilFunctions as UF (fs, x) = UF.wavread('../../../sounds/oboe-A4.wav') N = 512*2 M = 511 t = -60 w = np.hamming(M) start = .8*fs hN = N/2 hM = (M+1)/2 x1 = x[start:start+M] mX, pX = DFT.dftAnal(x1, w, N) ploc = UF.peakDetection(mX, t) iploc, ipmag, ipphase = UF.peakInterp(mX, pX, ploc) pmag = mX[ploc] freqaxis = fs*np.arange(mX.size)/float(N) plt.figure(1, figsize=(9, 6)) plt.subplot (2,1,1) plt.plot(freqaxis, mX,'r', lw=1.5) plt.axis([0,7000,-80,max(mX)+1]) plt.plot(fs * iploc / N, ipmag, marker='x', color='b', linestyle='', markeredgewidth=1.5) plt.title('mX + peaks (oboe-A4.wav)') plt.subplot (2,1,2) plt.plot(freqaxis, pX,'c', lw=1.5) plt.axis([0,7000, min(pX),10]) plt.plot(fs * iploc/N, ipphase, marker='x', color='b', linestyle='', markeredgewidth=1.5) plt.title('pX + peaks') plt.tight_layout() plt.savefig('spectral-peaks.png') plt.show()
agpl-3.0
rosswhitfield/mantid
qt/python/mantidqt/widgets/sliceviewer/test/test_sliceviewer_presenter.py
3
24997
# Mantid Repository : https://github.com/mantidproject/mantid # # Copyright &copy; 2018 ISIS Rutherford Appleton Laboratory UKRI, # NScD Oak Ridge National Laboratory, European Spallation Source, # Institut Laue - Langevin & CSNS, Institute of High Energy Physics, CAS # SPDX - License - Identifier: GPL - 3.0 + # This file is part of the mantid workbench. # # import sys import unittest from unittest import mock from unittest.mock import patch from mantid.api import MultipleExperimentInfos import matplotlib matplotlib.use('Agg') # Mock out simpleapi to import expensive import of something we don't use anyway sys.modules['mantid.simpleapi'] = mock.MagicMock() from mantidqt.widgets.sliceviewer.model import SliceViewerModel, WS_TYPE # noqa: E402 from mantidqt.widgets.sliceviewer.presenter import ( # noqa: E402 PeaksViewerCollectionPresenter, SliceViewer) from mantidqt.widgets.sliceviewer.transform import NonOrthogonalTransform # noqa: E402 from mantidqt.widgets.sliceviewer.toolbar import ToolItemText # noqa: E402 from mantidqt.widgets.sliceviewer.view import SliceViewerView, SliceViewerDataView # noqa: E402 def _create_presenter(model, view, mock_sliceinfo_cls, enable_nonortho_axes, supports_nonortho): model.get_ws_type = mock.Mock(return_value=WS_TYPE.MDH) model.is_ragged_matrix_plotted.return_value = False model.get_dim_limits.return_value = ((-1, 1), (-2, 2)) data_view_mock = view.data_view data_view_mock.plot_MDH = mock.Mock() presenter = SliceViewer(None, model=model, view=view) if enable_nonortho_axes: data_view_mock.nonorthogonal_mode = True data_view_mock.nonortho_transform = mock.MagicMock(NonOrthogonalTransform) data_view_mock.nonortho_transform.tr.return_value = (0, 1) presenter.nonorthogonal_axes(True) else: data_view_mock.nonorthogonal_mode = False data_view_mock.nonortho_transform = None data_view_mock.disable_tool_button.reset_mock() data_view_mock.create_axes_orthogonal.reset_mock() data_view_mock.create_axes_nonorthogonal.reset_mock() mock_sliceinfo_instance = mock_sliceinfo_cls.return_value mock_sliceinfo_instance.can_support_nonorthogonal_axes.return_value = supports_nonortho return presenter, data_view_mock def create_workspace_mock(): # Mock out workspace methods needed for SliceViewerModel.__init__ workspace = mock.Mock(spec=MultipleExperimentInfos) workspace.isMDHistoWorkspace = lambda: False workspace.getNumDims = lambda: 2 workspace.name = lambda: "workspace" return workspace class SliceViewerTest(unittest.TestCase): def setUp(self): self.view = mock.Mock(spec=SliceViewerView) data_view = mock.Mock(spec=SliceViewerDataView) data_view.plot_MDH = mock.Mock() data_view.dimensions = mock.Mock() data_view.norm_opts = mock.Mock() data_view.image_info_widget = mock.Mock() data_view.canvas = mock.Mock() data_view.nonorthogonal_mode = False data_view.nonortho_transform = None data_view.get_axes_limits.return_value = None dimensions = mock.Mock() dimensions.get_slicepoint.return_value = [None, None, 0.5] dimensions.transpose = False dimensions.get_slicerange.return_value = [None, None, (-15, 15)] dimensions.qflags = [True, True, True] data_view.dimensions = dimensions self.view.data_view = data_view self.model = mock.Mock(spec=SliceViewerModel) self.model.get_ws = mock.Mock() self.model.get_data = mock.Mock() self.model.rebin = mock.Mock() self.model.workspace_equals = mock.Mock() self.model.get_properties.return_value = { "workspace_type": "WS_TYPE.MATRIX", "supports_normalise": True, "supports_nonorthogonal_axes": False, "supports_dynamic_rebinning": False, "supports_peaks_overlays": True } @patch("sip.isdeleted", return_value=False) def test_sliceviewer_MDH(self, _): self.model.get_ws_type = mock.Mock(return_value=WS_TYPE.MDH) presenter = SliceViewer(None, model=self.model, view=self.view) # setup calls self.assertEqual(self.model.get_dimensions_info.call_count, 0) self.assertEqual(self.model.get_ws.call_count, 1) self.assertEqual(self.model.get_properties.call_count, 1) self.assertEqual(self.view.data_view.dimensions.get_slicepoint.call_count, 1) self.assertEqual(self.view.data_view.plot_MDH.call_count, 1) # new_plot self.model.reset_mock() self.view.reset_mock() presenter.new_plot() self.assertEqual(self.model.get_ws.call_count, 1) self.assertEqual(self.view.data_view.dimensions.get_slicepoint.call_count, 1) self.assertEqual(self.view.data_view.plot_MDH.call_count, 1) # update_plot_data self.model.reset_mock() self.view.reset_mock() presenter.update_plot_data() self.assertEqual(self.model.get_data.call_count, 1) self.assertEqual(self.view.data_view.dimensions.get_slicepoint.call_count, 1) self.assertEqual(self.view.data_view.update_plot_data.call_count, 1) @patch("sip.isdeleted", return_value=False) def test_sliceviewer_MDE(self, _): self.model.get_ws_type = mock.Mock(return_value=WS_TYPE.MDE) presenter = SliceViewer(None, model=self.model, view=self.view) # setup calls self.assertEqual(self.model.get_dimensions_info.call_count, 0) self.assertEqual(self.model.get_ws_MDE.call_count, 1) self.assertEqual(self.model.get_properties.call_count, 1) self.assertEqual(self.view.data_view.dimensions.get_slicepoint.call_count, 1) self.assertEqual(self.view.data_view.dimensions.get_bin_params.call_count, 1) self.assertEqual(self.view.data_view.plot_MDH.call_count, 1) # new_plot self.model.reset_mock() self.view.reset_mock() presenter.new_plot() self.assertEqual(self.model.get_ws_MDE.call_count, 1) self.assertEqual(self.view.data_view.dimensions.get_slicepoint.call_count, 1) self.assertEqual(self.view.data_view.dimensions.get_bin_params.call_count, 1) self.assertEqual(self.view.data_view.plot_MDH.call_count, 1) # update_plot_data self.model.reset_mock() self.view.reset_mock() presenter.update_plot_data() self.assertEqual(self.model.get_data.call_count, 1) self.assertEqual(self.view.data_view.dimensions.get_slicepoint.call_count, 1) self.assertEqual(self.view.data_view.dimensions.get_bin_params.call_count, 1) self.assertEqual(self.view.data_view.update_plot_data.call_count, 1) @patch("sip.isdeleted", return_value=False) def test_sliceviewer_matrix(self, _): self.model.get_ws_type = mock.Mock(return_value=WS_TYPE.MATRIX) presenter = SliceViewer(None, model=self.model, view=self.view) # setup calls self.assertEqual(self.model.get_dimensions_info.call_count, 0) self.assertEqual(self.model.get_ws.call_count, 1) self.assertEqual(self.model.get_properties.call_count, 1) self.assertEqual(self.view.data_view.dimensions.get_slicepoint.call_count, 0) self.assertEqual(self.view.data_view.plot_matrix.call_count, 1) # new_plot self.model.reset_mock() self.view.reset_mock() presenter.new_plot() self.assertEqual(self.model.get_ws.call_count, 1) self.assertEqual(self.view.data_view.dimensions.get_slicepoint.call_count, 0) self.assertEqual(self.view.data_view.plot_matrix.call_count, 1) @patch("sip.isdeleted", return_value=False) def test_normalization_change_set_correct_normalization(self, _): self.model.get_ws_type = mock.Mock(return_value=WS_TYPE.MATRIX) self.view.data_view.plot_matrix = mock.Mock() presenter = SliceViewer(None, model=self.model, view=self.view) presenter.normalization_changed("By bin width") self.view.data_view.plot_matrix.assert_called_with(self.model.get_ws(), distribution=False) def peaks_button_disabled_if_model_cannot_support_it(self): self.model.get_ws_type = mock.Mock(return_value=WS_TYPE.MATRIX) self.model.can_support_peaks_overlay.return_value = False SliceViewer(None, model=self.model, view=self.view) self.view.data_view.disable_tool_button.assert_called_once_with(ToolItemText.OVERLAY_PEAKS) def peaks_button_not_disabled_if_model_can_support_it(self): self.model.get_ws_type = mock.Mock(return_value=WS_TYPE.MATRIX) self.model.can_support_peaks_overlay.return_value = True SliceViewer(None, model=self.model, view=self.view) self.view.data_view.disable_tool_button.assert_not_called() @patch("sip.isdeleted", return_value=False) def test_non_orthogonal_axes_toggled_on(self, _): self.model.get_ws_type = mock.Mock(return_value=WS_TYPE.MDE) self.model.get_dim_limits.return_value = ((-1, 1), (-2, 2)) self.model.is_ragged_matrix_plotted.return_value = False data_view_mock = self.view.data_view data_view_mock.plot_MDH = mock.Mock() presenter = SliceViewer(None, model=self.model, view=self.view) data_view_mock.plot_MDH.reset_mock() # clear initial plot call data_view_mock.create_axes_orthogonal.reset_mock() presenter.nonorthogonal_axes(True) data_view_mock.deactivate_and_disable_tool.assert_called_once_with( ToolItemText.REGIONSELECTION) data_view_mock.create_axes_nonorthogonal.assert_called_once() data_view_mock.create_axes_orthogonal.assert_not_called() self.assertEqual(data_view_mock.plot_MDH.call_count, 2) data_view_mock.disable_tool_button.assert_has_calls([mock.call(ToolItemText.LINEPLOTS)]) @patch("sip.isdeleted", return_value=False) @mock.patch("mantidqt.widgets.sliceviewer.presenter.SliceInfo") def test_non_orthogonal_axes_toggled_off(self, mock_sliceinfo_cls, _): self.model.get_ws_type = mock.Mock(return_value=WS_TYPE.MDE) presenter, data_view_mock = _create_presenter(self.model, self.view, mock_sliceinfo_cls, enable_nonortho_axes=True, supports_nonortho=True) data_view_mock.plot_MDH.reset_mock() # clear initial plot call data_view_mock.create_axes_orthogonal.reset_mock() data_view_mock.create_axes_nonorthogonal.reset_mock() data_view_mock.enable_tool_button.reset_mock() data_view_mock.disable_tool_button.reset_mock() data_view_mock.remove_line_plots.reset_mock() presenter.nonorthogonal_axes(False) data_view_mock.create_axes_orthogonal.assert_called_once() data_view_mock.create_axes_nonorthogonal.assert_not_called() data_view_mock.plot_MDH.assert_called_once() data_view_mock.enable_tool_button.assert_has_calls( (mock.call(ToolItemText.LINEPLOTS), mock.call(ToolItemText.REGIONSELECTION))) @patch("sip.isdeleted", return_value=False) def test_request_to_show_all_data_sets_correct_limits_on_view_MD(self, _): presenter = SliceViewer(None, model=self.model, view=self.view) self.model.is_ragged_matrix_plotted.return_value = False self.model.get_dim_limits.return_value = ((-1, 1), (-2, 2)) presenter.show_all_data_requested() data_view = self.view.data_view self.model.get_dim_limits.assert_called_once_with([None, None, 0.5], data_view.dimensions.transpose) data_view.get_full_extent.assert_not_called() data_view.set_axes_limits.assert_called_once_with((-1, 1), (-2, 2)) @patch("sip.isdeleted", return_value=False) def test_request_to_show_all_data_sets_correct_limits_on_view_ragged_matrix(self, _): presenter = SliceViewer(None, model=self.model, view=self.view) self.model.is_ragged_matrix_plotted.return_value = True self.view.data_view.get_full_extent.return_value = [-1, 1, -2, 2] presenter.show_all_data_requested() data_view = self.view.data_view self.model.get_dim_limits.assert_not_called() data_view.set_axes_limits.assert_called_once_with((-1, 1), (-2, 2)) @patch("sip.isdeleted", return_value=False) def test_data_limits_changed_creates_new_plot_if_dynamic_rebinning_supported(self, _): presenter = SliceViewer(None, model=self.model, view=self.view) self.model.can_support_dynamic_rebinning.return_value = True new_plot_mock = mock.MagicMock() presenter.new_plot = new_plot_mock presenter.data_limits_changed() new_plot_mock.assert_called_once() @patch("sip.isdeleted", return_value=False) def test_data_limits_changed_does_not_create_new_plot_if_dynamic_rebinning_not_supported(self, _): presenter = SliceViewer(None, model=self.model, view=self.view) self.model.can_support_dynamic_rebinning.return_value = False new_plot_mock = mock.MagicMock() presenter.new_plot = new_plot_mock presenter.data_limits_changed() new_plot_mock.assert_not_called() @patch("sip.isdeleted", return_value=False) @mock.patch("mantidqt.widgets.sliceviewer.presenter.SliceInfo") def test_changing_dimensions_in_nonortho_mode_switches_to_ortho_when_dim_not_Q( self, mock_sliceinfo_cls, is_view_delete): presenter, data_view_mock = _create_presenter(self.model, self.view, mock_sliceinfo_cls, enable_nonortho_axes=True, supports_nonortho=False) presenter.dimensions_changed() data_view_mock.disable_tool_button.assert_called_once_with(ToolItemText.NONORTHOGONAL_AXES) data_view_mock.create_axes_orthogonal.assert_called_once() data_view_mock.create_axes_nonorthogonal.assert_not_called() @patch("sip.isdeleted", return_value=False) @mock.patch("mantidqt.widgets.sliceviewer.presenter.SliceInfo") def test_changing_dimensions_in_nonortho_mode_keeps_nonortho_when_dim_is_Q( self, mock_sliceinfo_cls, _): presenter, data_view_mock = _create_presenter(self.model, self.view, mock_sliceinfo_cls, enable_nonortho_axes=True, supports_nonortho=True) presenter.dimensions_changed() data_view_mock.create_axes_nonorthogonal.assert_called_once() data_view_mock.disable_tool_button.assert_not_called() data_view_mock.create_axes_orthogonal.assert_not_called() @patch("sip.isdeleted", return_value=False) @mock.patch("mantidqt.widgets.sliceviewer.presenter.SliceInfo") def test_changing_dimensions_in_ortho_mode_disables_nonortho_btn_if_not_supported( self, mock_sliceinfo_cls, _): presenter, data_view_mock = _create_presenter(self.model, self.view, mock_sliceinfo_cls, enable_nonortho_axes=False, supports_nonortho=False) presenter.dimensions_changed() data_view_mock.disable_tool_button.assert_called_once_with(ToolItemText.NONORTHOGONAL_AXES) @patch("sip.isdeleted", return_value=False) @mock.patch("mantidqt.widgets.sliceviewer.presenter.SliceInfo") def test_changing_dimensions_in_ortho_mode_enables_nonortho_btn_if_supported( self, mock_sliceinfo_cls, _): presenter, data_view_mock = _create_presenter(self.model, self.view, mock_sliceinfo_cls, enable_nonortho_axes=False, supports_nonortho=True) presenter.dimensions_changed() data_view_mock.enable_tool_button.assert_called_once_with(ToolItemText.NONORTHOGONAL_AXES) @patch("sip.isdeleted", return_value=False) @mock.patch("mantidqt.widgets.sliceviewer.peaksviewer.presenter.TableWorkspaceDataPresenterStandard") @mock.patch("mantidqt.widgets.sliceviewer.presenter.PeaksViewerCollectionPresenter", spec=PeaksViewerCollectionPresenter) def test_overlay_peaks_workspaces_attaches_view_and_draws_peaks(self, mock_peaks_presenter, *_): for nonortho_axes in (False, True): presenter, _ = _create_presenter(self.model, self.view, mock.MagicMock(), nonortho_axes, nonortho_axes) presenter.view.query_peaks_to_overlay.side_effect = ["peaks_workspace"] presenter.overlay_peaks_workspaces() presenter.view.query_peaks_to_overlay.assert_called_once() mock_peaks_presenter.assert_called_once() mock_peaks_presenter.overlay_peaksworkspaces.asssert_called_once() mock_peaks_presenter.reset_mock() presenter.view.query_peaks_to_overlay.reset_mock() @patch("sip.isdeleted", return_value=False) def test_gui_starts_with_zoom_selected(self, _): SliceViewer(None, model=self.model, view=self.view) self.view.data_view.activate_tool.assert_called_once_with(ToolItemText.ZOOM) @patch("sip.isdeleted", return_value=False) def test_replace_workspace_returns_when_the_workspace_is_not_the_model_workspace(self, _): self.model.workspace_equals.return_value = False presenter, _ = _create_presenter(self.model, self.view, mock.MagicMock(), enable_nonortho_axes=False, supports_nonortho=False) presenter.update_view = mock.Mock() presenter._decide_plot_update_methods = mock.Mock() other_workspace = mock.Mock() presenter.replace_workspace('other_workspace', other_workspace) presenter._decide_plot_update_methods.assert_not_called() presenter.update_view.assert_not_called() @patch("sip.isdeleted", return_value=False) def test_replace_workspace_closes_view_when_model_properties_change(self, _): self.model.workspace_equals.return_value = True presenter, _ = _create_presenter(self.model, self.view, mock.MagicMock(), enable_nonortho_axes=False, supports_nonortho=False) presenter.refresh_view = mock.Mock() presenter._decide_plot_update_methods = mock.Mock() workspace = create_workspace_mock() # Not equivalent to self.model.get_properties() new_model_properties = { "workspace_type": "WS_TYPE.MDE", "supports_normalise": False, "supports_nonorthogonal_axes": False, "supports_dynamic_rebinning": False, "supports_peaks_overlays": True } with patch.object(SliceViewerModel, "get_properties", return_value=new_model_properties): presenter.replace_workspace('workspace', workspace) self.view.emit_close.assert_called_once() presenter._decide_plot_update_methods.assert_not_called() presenter.refresh_view.assert_not_called() @patch("sip.isdeleted", return_value=False) def test_replace_workspace_updates_view(self, _): presenter, _ = _create_presenter(self.model, self.view, mock.MagicMock(), enable_nonortho_axes=False, supports_nonortho=False) self.view.delayed_refresh = mock.Mock() presenter._decide_plot_update_methods = mock.Mock( return_value=(presenter.new_plot_matrix(), presenter.update_plot_data_matrix())) workspace = create_workspace_mock() new_model_properties = self.model.get_properties() # Patch get_properties so that the properties of the new model match those of self.model with patch.object(SliceViewerModel, "get_properties", return_value=new_model_properties): presenter.replace_workspace('workspace', workspace) self.view.emit_close.assert_not_called() presenter._decide_plot_update_methods.assert_called_once() self.view.delayed_refresh.assert_called_once() @patch("sip.isdeleted", return_value=False) def test_refresh_view(self, _): presenter, _ = _create_presenter(self.model, self.view, mock.MagicMock(), enable_nonortho_axes=False, supports_nonortho=False) presenter.new_plot = mock.Mock() presenter.refresh_view() self.view.data_view.image_info_widget.setWorkspace.assert_called() self.view.setWindowTitle.assert_called_with(self.model.get_title()) presenter.new_plot.assert_called_once() @patch("sip.isdeleted", return_value=True) def test_refresh_view_does_nothing_when_view_deleted(self, _): presenter, _ = _create_presenter(self.model, self.view, mock.MagicMock(), enable_nonortho_axes=False, supports_nonortho=False) presenter.new_plot = mock.Mock() presenter.refresh_view() self.view.data_view.image_info_widget.setWorkspace.assert_not_called() presenter.new_plot.assert_not_called() @patch("sip.isdeleted", return_value=False) def test_clear_observer_peaks_presenter_not_none(self, _): presenter, _ = _create_presenter(self.model, self.view, mock.MagicMock(), enable_nonortho_axes=False, supports_nonortho=False) presenter._peaks_presenter = mock.MagicMock() presenter.clear_observer() presenter._peaks_presenter.clear_observer.assert_called_once() @patch("sip.isdeleted", return_value=False) def test_clear_observer_peaks_presenter_is_none(self, _): presenter, _ = _create_presenter(self.model, self.view, mock.MagicMock(), enable_nonortho_axes=False, supports_nonortho=False) presenter._peaks_presenter = None # Will raise exception if misbehaving. presenter.clear_observer() @patch("sip.isdeleted", return_value=False) @mock.patch("mantidqt.widgets.sliceviewer.presenter.SliceInfo") @mock.patch("mantidqt.widgets.sliceviewer.presenter.PeaksViewerCollectionPresenter", spec=PeaksViewerCollectionPresenter) def test_peak_add_delete_event(self, mock_peaks_presenter, mock_sliceinfo_cls, _): mock_sliceinfo_cls().inverse_transform = mock.Mock(side_effect=lambda pos: pos[::-1]) mock_sliceinfo_cls().z_value = 3 presenter, _ = _create_presenter(self.model, self.view, mock_sliceinfo_cls, enable_nonortho_axes=False, supports_nonortho=True) presenter._peaks_presenter = mock_peaks_presenter event = mock.Mock() event.inaxes = True event.xdata = 1.0 event.ydata = 2.0 presenter.add_delete_peak(event) mock_sliceinfo_cls.get_sliceinfo.assert_not_called() mock_peaks_presenter.add_delete_peak.assert_called_once_with([3, 2, 1]) self.view.data_view.canvas.draw_idle.assert_called_once() if __name__ == '__main__': unittest.main()
gpl-3.0