repo_name
stringlengths
7
92
path
stringlengths
5
149
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
911
693k
license
stringclasses
15 values
dhhjx880713/GPy
GPy/plotting/matplot_dep/variational_plots.py
6
4094
from matplotlib import pyplot as pb, numpy as np def plot(parameterized, fignum=None, ax=None, colors=None, figsize=(12, 6)): """ Plot latent space X in 1D: - if fig is given, create input_dim subplots in fig and plot in these - if ax is given plot input_dim 1D latent space plots of X into each `axis` - if neither fig nor ax is given create a figure with fignum and plot in there colors: colors of different latent space dimensions input_dim """ if ax is None: fig = pb.figure(num=fignum, figsize=figsize) if colors is None: from ..Tango import mediumList from itertools import cycle colors = cycle(mediumList) pb.clf() else: colors = iter(colors) lines = [] fills = [] bg_lines = [] means, variances = parameterized.mean.values, parameterized.variance.values x = np.arange(means.shape[0]) for i in range(means.shape[1]): if ax is None: a = fig.add_subplot(means.shape[1], 1, i + 1) elif isinstance(ax, (tuple, list)): a = ax[i] else: raise ValueError("Need one ax per latent dimension input_dim") bg_lines.append(a.plot(means, c='k', alpha=.3)) lines.extend(a.plot(x, means.T[i], c=next(colors), label=r"$\mathbf{{X_{{{}}}}}$".format(i))) fills.append(a.fill_between(x, means.T[i] - 2 * np.sqrt(variances.T[i]), means.T[i] + 2 * np.sqrt(variances.T[i]), facecolor=lines[-1].get_color(), alpha=.3)) a.legend(borderaxespad=0.) a.set_xlim(x.min(), x.max()) if i < means.shape[1] - 1: a.set_xticklabels('') pb.draw() a.figure.tight_layout(h_pad=.01) # , rect=(0, 0, 1, .95)) return dict(lines=lines, fills=fills, bg_lines=bg_lines) def plot_SpikeSlab(parameterized, fignum=None, ax=None, colors=None, side_by_side=True): """ Plot latent space X in 1D: - if fig is given, create input_dim subplots in fig and plot in these - if ax is given plot input_dim 1D latent space plots of X into each `axis` - if neither fig nor ax is given create a figure with fignum and plot in there colors: colors of different latent space dimensions input_dim """ if ax is None: if side_by_side: fig = pb.figure(num=fignum, figsize=(16, min(12, (2 * parameterized.mean.shape[1])))) else: fig = pb.figure(num=fignum, figsize=(8, min(12, (2 * parameterized.mean.shape[1])))) if colors is None: from ..Tango import mediumList from itertools import cycle colors = cycle(mediumList) pb.clf() else: colors = iter(colors) plots = [] means, variances, gamma = parameterized.mean, parameterized.variance, parameterized.binary_prob x = np.arange(means.shape[0]) for i in range(means.shape[1]): if side_by_side: sub1 = (means.shape[1],2,2*i+1) sub2 = (means.shape[1],2,2*i+2) else: sub1 = (means.shape[1]*2,1,2*i+1) sub2 = (means.shape[1]*2,1,2*i+2) # mean and variance plot a = fig.add_subplot(*sub1) a.plot(means, c='k', alpha=.3) plots.extend(a.plot(x, means.T[i], c=next(colors), label=r"$\mathbf{{X_{{{}}}}}$".format(i))) a.fill_between(x, means.T[i] - 2 * np.sqrt(variances.T[i]), means.T[i] + 2 * np.sqrt(variances.T[i]), facecolor=plots[-1].get_color(), alpha=.3) a.legend(borderaxespad=0.) a.set_xlim(x.min(), x.max()) if i < means.shape[1] - 1: a.set_xticklabels('') # binary prob plot a = fig.add_subplot(*sub2) a.bar(x,gamma[:,i],bottom=0.,linewidth=1.,width=1.0,align='center') a.set_xlim(x.min(), x.max()) a.set_ylim([0.,1.]) pb.draw() fig.tight_layout(h_pad=.01) # , rect=(0, 0, 1, .95)) return fig
bsd-3-clause
Akshay0724/scikit-learn
examples/text/hashing_vs_dict_vectorizer.py
93
3243
""" =========================================== FeatureHasher and DictVectorizer Comparison =========================================== Compares FeatureHasher and DictVectorizer by using both to vectorize text documents. The example demonstrates syntax and speed only; it doesn't actually do anything useful with the extracted vectors. See the example scripts {document_classification_20newsgroups,clustering}.py for actual learning on text documents. A discrepancy between the number of terms reported for DictVectorizer and for FeatureHasher is to be expected due to hash collisions. """ # Author: Lars Buitinck # License: BSD 3 clause from __future__ import print_function from collections import defaultdict import re import sys from time import time import numpy as np from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction import DictVectorizer, FeatureHasher def n_nonzero_columns(X): """Returns the number of non-zero columns in a CSR matrix X.""" return len(np.unique(X.nonzero()[1])) def tokens(doc): """Extract tokens from doc. This uses a simple regex to break strings into tokens. For a more principled approach, see CountVectorizer or TfidfVectorizer. """ return (tok.lower() for tok in re.findall(r"\w+", doc)) def token_freqs(doc): """Extract a dict mapping tokens from doc to their frequencies.""" freq = defaultdict(int) for tok in tokens(doc): freq[tok] += 1 return freq categories = [ 'alt.atheism', 'comp.graphics', 'comp.sys.ibm.pc.hardware', 'misc.forsale', 'rec.autos', 'sci.space', 'talk.religion.misc', ] # Uncomment the following line to use a larger set (11k+ documents) #categories = None print(__doc__) print("Usage: %s [n_features_for_hashing]" % sys.argv[0]) print(" The default number of features is 2**18.") print() try: n_features = int(sys.argv[1]) except IndexError: n_features = 2 ** 18 except ValueError: print("not a valid number of features: %r" % sys.argv[1]) sys.exit(1) print("Loading 20 newsgroups training data") raw_data = fetch_20newsgroups(subset='train', categories=categories).data data_size_mb = sum(len(s.encode('utf-8')) for s in raw_data) / 1e6 print("%d documents - %0.3fMB" % (len(raw_data), data_size_mb)) print() print("DictVectorizer") t0 = time() vectorizer = DictVectorizer() vectorizer.fit_transform(token_freqs(d) for d in raw_data) duration = time() - t0 print("done in %fs at %0.3fMB/s" % (duration, data_size_mb / duration)) print("Found %d unique terms" % len(vectorizer.get_feature_names())) print() print("FeatureHasher on frequency dicts") t0 = time() hasher = FeatureHasher(n_features=n_features) X = hasher.transform(token_freqs(d) for d in raw_data) duration = time() - t0 print("done in %fs at %0.3fMB/s" % (duration, data_size_mb / duration)) print("Found %d unique terms" % n_nonzero_columns(X)) print() print("FeatureHasher on raw tokens") t0 = time() hasher = FeatureHasher(n_features=n_features, input_type="string") X = hasher.transform(tokens(d) for d in raw_data) duration = time() - t0 print("done in %fs at %0.3fMB/s" % (duration, data_size_mb / duration)) print("Found %d unique terms" % n_nonzero_columns(X))
bsd-3-clause
elkingtonmcb/scikit-learn
sklearn/gaussian_process/gaussian_process.py
78
34552
# -*- coding: utf-8 -*- # Author: Vincent Dubourg <vincent.dubourg@gmail.com> # (mostly translation, see implementation details) # Licence: BSD 3 clause from __future__ import print_function import numpy as np from scipy import linalg, optimize from ..base import BaseEstimator, RegressorMixin from ..metrics.pairwise import manhattan_distances from ..utils import check_random_state, check_array, check_X_y from ..utils.validation import check_is_fitted from . import regression_models as regression from . import correlation_models as correlation MACHINE_EPSILON = np.finfo(np.double).eps def l1_cross_distances(X): """ Computes the nonzero componentwise L1 cross-distances between the vectors in X. Parameters ---------- X: array_like An array with shape (n_samples, n_features) Returns ------- D: array with shape (n_samples * (n_samples - 1) / 2, n_features) The array of componentwise L1 cross-distances. ij: arrays with shape (n_samples * (n_samples - 1) / 2, 2) The indices i and j of the vectors in X associated to the cross- distances in D: D[k] = np.abs(X[ij[k, 0]] - Y[ij[k, 1]]). """ X = check_array(X) n_samples, n_features = X.shape n_nonzero_cross_dist = n_samples * (n_samples - 1) // 2 ij = np.zeros((n_nonzero_cross_dist, 2), dtype=np.int) D = np.zeros((n_nonzero_cross_dist, n_features)) ll_1 = 0 for k in range(n_samples - 1): ll_0 = ll_1 ll_1 = ll_0 + n_samples - k - 1 ij[ll_0:ll_1, 0] = k ij[ll_0:ll_1, 1] = np.arange(k + 1, n_samples) D[ll_0:ll_1] = np.abs(X[k] - X[(k + 1):n_samples]) return D, ij class GaussianProcess(BaseEstimator, RegressorMixin): """The Gaussian Process model class. Read more in the :ref:`User Guide <gaussian_process>`. Parameters ---------- regr : string or callable, optional A regression function returning an array of outputs of the linear regression functional basis. The number of observations n_samples should be greater than the size p of this basis. Default assumes a simple constant regression trend. Available built-in regression models are:: 'constant', 'linear', 'quadratic' corr : string or callable, optional A stationary autocorrelation function returning the autocorrelation between two points x and x'. Default assumes a squared-exponential autocorrelation model. Built-in correlation models are:: 'absolute_exponential', 'squared_exponential', 'generalized_exponential', 'cubic', 'linear' beta0 : double array_like, optional The regression weight vector to perform Ordinary Kriging (OK). Default assumes Universal Kriging (UK) so that the vector beta of regression weights is estimated using the maximum likelihood principle. storage_mode : string, optional A string specifying whether the Cholesky decomposition of the correlation matrix should be stored in the class (storage_mode = 'full') or not (storage_mode = 'light'). Default assumes storage_mode = 'full', so that the Cholesky decomposition of the correlation matrix is stored. This might be a useful parameter when one is not interested in the MSE and only plan to estimate the BLUP, for which the correlation matrix is not required. verbose : boolean, optional A boolean specifying the verbose level. Default is verbose = False. theta0 : double array_like, optional An array with shape (n_features, ) or (1, ). The parameters in the autocorrelation model. If thetaL and thetaU are also specified, theta0 is considered as the starting point for the maximum likelihood estimation of the best set of parameters. Default assumes isotropic autocorrelation model with theta0 = 1e-1. thetaL : double array_like, optional An array with shape matching theta0's. Lower bound on the autocorrelation parameters for maximum likelihood estimation. Default is None, so that it skips maximum likelihood estimation and it uses theta0. thetaU : double array_like, optional An array with shape matching theta0's. Upper bound on the autocorrelation parameters for maximum likelihood estimation. Default is None, so that it skips maximum likelihood estimation and it uses theta0. normalize : boolean, optional Input X and observations y are centered and reduced wrt means and standard deviations estimated from the n_samples observations provided. Default is normalize = True so that data is normalized to ease maximum likelihood estimation. nugget : double or ndarray, optional Introduce a nugget effect to allow smooth predictions from noisy data. If nugget is an ndarray, it must be the same length as the number of data points used for the fit. The nugget is added to the diagonal of the assumed training covariance; in this way it acts as a Tikhonov regularization in the problem. In the special case of the squared exponential correlation function, the nugget mathematically represents the variance of the input values. Default assumes a nugget close to machine precision for the sake of robustness (nugget = 10. * MACHINE_EPSILON). optimizer : string, optional A string specifying the optimization algorithm to be used. Default uses 'fmin_cobyla' algorithm from scipy.optimize. Available optimizers are:: 'fmin_cobyla', 'Welch' 'Welch' optimizer is dued to Welch et al., see reference [WBSWM1992]_. It consists in iterating over several one-dimensional optimizations instead of running one single multi-dimensional optimization. random_start : int, optional The number of times the Maximum Likelihood Estimation should be performed from a random starting point. The first MLE always uses the specified starting point (theta0), the next starting points are picked at random according to an exponential distribution (log-uniform on [thetaL, thetaU]). Default does not use random starting point (random_start = 1). random_state: integer or numpy.RandomState, optional The generator used to shuffle the sequence of coordinates of theta in the Welch optimizer. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. Attributes ---------- theta_ : array Specified theta OR the best set of autocorrelation parameters (the \ sought maximizer of the reduced likelihood function). reduced_likelihood_function_value_ : array The optimal reduced likelihood function value. Examples -------- >>> import numpy as np >>> from sklearn.gaussian_process import GaussianProcess >>> X = np.array([[1., 3., 5., 6., 7., 8.]]).T >>> y = (X * np.sin(X)).ravel() >>> gp = GaussianProcess(theta0=0.1, thetaL=.001, thetaU=1.) >>> gp.fit(X, y) # doctest: +ELLIPSIS GaussianProcess(beta0=None... ... Notes ----- The presentation implementation is based on a translation of the DACE Matlab toolbox, see reference [NLNS2002]_. References ---------- .. [NLNS2002] `H.B. Nielsen, S.N. Lophaven, H. B. Nielsen and J. Sondergaard. DACE - A MATLAB Kriging Toolbox.` (2002) http://www2.imm.dtu.dk/~hbn/dace/dace.pdf .. [WBSWM1992] `W.J. Welch, R.J. Buck, J. Sacks, H.P. Wynn, T.J. Mitchell, and M.D. Morris (1992). Screening, predicting, and computer experiments. Technometrics, 34(1) 15--25.` http://www.jstor.org/pss/1269548 """ _regression_types = { 'constant': regression.constant, 'linear': regression.linear, 'quadratic': regression.quadratic} _correlation_types = { 'absolute_exponential': correlation.absolute_exponential, 'squared_exponential': correlation.squared_exponential, 'generalized_exponential': correlation.generalized_exponential, 'cubic': correlation.cubic, 'linear': correlation.linear} _optimizer_types = [ 'fmin_cobyla', 'Welch'] def __init__(self, regr='constant', corr='squared_exponential', beta0=None, storage_mode='full', verbose=False, theta0=1e-1, thetaL=None, thetaU=None, optimizer='fmin_cobyla', random_start=1, normalize=True, nugget=10. * MACHINE_EPSILON, random_state=None): self.regr = regr self.corr = corr self.beta0 = beta0 self.storage_mode = storage_mode self.verbose = verbose self.theta0 = theta0 self.thetaL = thetaL self.thetaU = thetaU self.normalize = normalize self.nugget = nugget self.optimizer = optimizer self.random_start = random_start self.random_state = random_state def fit(self, X, y): """ The Gaussian Process model fitting method. Parameters ---------- X : double array_like An array with shape (n_samples, n_features) with the input at which observations were made. y : double array_like An array with shape (n_samples, ) or shape (n_samples, n_targets) with the observations of the output to be predicted. Returns ------- gp : self A fitted Gaussian Process model object awaiting data to perform predictions. """ # Run input checks self._check_params() self.random_state = check_random_state(self.random_state) # Force data to 2D numpy.array X, y = check_X_y(X, y, multi_output=True, y_numeric=True) self.y_ndim_ = y.ndim if y.ndim == 1: y = y[:, np.newaxis] # Check shapes of DOE & observations n_samples, n_features = X.shape _, n_targets = y.shape # Run input checks self._check_params(n_samples) # Normalize data or don't if self.normalize: X_mean = np.mean(X, axis=0) X_std = np.std(X, axis=0) y_mean = np.mean(y, axis=0) y_std = np.std(y, axis=0) X_std[X_std == 0.] = 1. y_std[y_std == 0.] = 1. # center and scale X if necessary X = (X - X_mean) / X_std y = (y - y_mean) / y_std else: X_mean = np.zeros(1) X_std = np.ones(1) y_mean = np.zeros(1) y_std = np.ones(1) # Calculate matrix of distances D between samples D, ij = l1_cross_distances(X) if (np.min(np.sum(D, axis=1)) == 0. and self.corr != correlation.pure_nugget): raise Exception("Multiple input features cannot have the same" " target value.") # Regression matrix and parameters F = self.regr(X) n_samples_F = F.shape[0] if F.ndim > 1: p = F.shape[1] else: p = 1 if n_samples_F != n_samples: raise Exception("Number of rows in F and X do not match. Most " "likely something is going wrong with the " "regression model.") if p > n_samples_F: raise Exception(("Ordinary least squares problem is undetermined " "n_samples=%d must be greater than the " "regression model size p=%d.") % (n_samples, p)) if self.beta0 is not None: if self.beta0.shape[0] != p: raise Exception("Shapes of beta0 and F do not match.") # Set attributes self.X = X self.y = y self.D = D self.ij = ij self.F = F self.X_mean, self.X_std = X_mean, X_std self.y_mean, self.y_std = y_mean, y_std # Determine Gaussian Process model parameters if self.thetaL is not None and self.thetaU is not None: # Maximum Likelihood Estimation of the parameters if self.verbose: print("Performing Maximum Likelihood Estimation of the " "autocorrelation parameters...") self.theta_, self.reduced_likelihood_function_value_, par = \ self._arg_max_reduced_likelihood_function() if np.isinf(self.reduced_likelihood_function_value_): raise Exception("Bad parameter region. " "Try increasing upper bound") else: # Given parameters if self.verbose: print("Given autocorrelation parameters. " "Computing Gaussian Process model parameters...") self.theta_ = self.theta0 self.reduced_likelihood_function_value_, par = \ self.reduced_likelihood_function() if np.isinf(self.reduced_likelihood_function_value_): raise Exception("Bad point. Try increasing theta0.") self.beta = par['beta'] self.gamma = par['gamma'] self.sigma2 = par['sigma2'] self.C = par['C'] self.Ft = par['Ft'] self.G = par['G'] if self.storage_mode == 'light': # Delete heavy data (it will be computed again if required) # (it is required only when MSE is wanted in self.predict) if self.verbose: print("Light storage mode specified. " "Flushing autocorrelation matrix...") self.D = None self.ij = None self.F = None self.C = None self.Ft = None self.G = None return self def predict(self, X, eval_MSE=False, batch_size=None): """ This function evaluates the Gaussian Process model at x. Parameters ---------- X : array_like An array with shape (n_eval, n_features) giving the point(s) at which the prediction(s) should be made. eval_MSE : boolean, optional A boolean specifying whether the Mean Squared Error should be evaluated or not. Default assumes evalMSE = False and evaluates only the BLUP (mean prediction). batch_size : integer, optional An integer giving the maximum number of points that can be evaluated simultaneously (depending on the available memory). Default is None so that all given points are evaluated at the same time. Returns ------- y : array_like, shape (n_samples, ) or (n_samples, n_targets) An array with shape (n_eval, ) if the Gaussian Process was trained on an array of shape (n_samples, ) or an array with shape (n_eval, n_targets) if the Gaussian Process was trained on an array of shape (n_samples, n_targets) with the Best Linear Unbiased Prediction at x. MSE : array_like, optional (if eval_MSE == True) An array with shape (n_eval, ) or (n_eval, n_targets) as with y, with the Mean Squared Error at x. """ check_is_fitted(self, "X") # Check input shapes X = check_array(X) n_eval, _ = X.shape n_samples, n_features = self.X.shape n_samples_y, n_targets = self.y.shape # Run input checks self._check_params(n_samples) if X.shape[1] != n_features: raise ValueError(("The number of features in X (X.shape[1] = %d) " "should match the number of features used " "for fit() " "which is %d.") % (X.shape[1], n_features)) if batch_size is None: # No memory management # (evaluates all given points in a single batch run) # Normalize input X = (X - self.X_mean) / self.X_std # Initialize output y = np.zeros(n_eval) if eval_MSE: MSE = np.zeros(n_eval) # Get pairwise componentwise L1-distances to the input training set dx = manhattan_distances(X, Y=self.X, sum_over_features=False) # Get regression function and correlation f = self.regr(X) r = self.corr(self.theta_, dx).reshape(n_eval, n_samples) # Scaled predictor y_ = np.dot(f, self.beta) + np.dot(r, self.gamma) # Predictor y = (self.y_mean + self.y_std * y_).reshape(n_eval, n_targets) if self.y_ndim_ == 1: y = y.ravel() # Mean Squared Error if eval_MSE: C = self.C if C is None: # Light storage mode (need to recompute C, F, Ft and G) if self.verbose: print("This GaussianProcess used 'light' storage mode " "at instantiation. Need to recompute " "autocorrelation matrix...") reduced_likelihood_function_value, par = \ self.reduced_likelihood_function() self.C = par['C'] self.Ft = par['Ft'] self.G = par['G'] rt = linalg.solve_triangular(self.C, r.T, lower=True) if self.beta0 is None: # Universal Kriging u = linalg.solve_triangular(self.G.T, np.dot(self.Ft.T, rt) - f.T, lower=True) else: # Ordinary Kriging u = np.zeros((n_targets, n_eval)) MSE = np.dot(self.sigma2.reshape(n_targets, 1), (1. - (rt ** 2.).sum(axis=0) + (u ** 2.).sum(axis=0))[np.newaxis, :]) MSE = np.sqrt((MSE ** 2.).sum(axis=0) / n_targets) # Mean Squared Error might be slightly negative depending on # machine precision: force to zero! MSE[MSE < 0.] = 0. if self.y_ndim_ == 1: MSE = MSE.ravel() return y, MSE else: return y else: # Memory management if type(batch_size) is not int or batch_size <= 0: raise Exception("batch_size must be a positive integer") if eval_MSE: y, MSE = np.zeros(n_eval), np.zeros(n_eval) for k in range(max(1, n_eval / batch_size)): batch_from = k * batch_size batch_to = min([(k + 1) * batch_size + 1, n_eval + 1]) y[batch_from:batch_to], MSE[batch_from:batch_to] = \ self.predict(X[batch_from:batch_to], eval_MSE=eval_MSE, batch_size=None) return y, MSE else: y = np.zeros(n_eval) for k in range(max(1, n_eval / batch_size)): batch_from = k * batch_size batch_to = min([(k + 1) * batch_size + 1, n_eval + 1]) y[batch_from:batch_to] = \ self.predict(X[batch_from:batch_to], eval_MSE=eval_MSE, batch_size=None) return y def reduced_likelihood_function(self, theta=None): """ This function determines the BLUP parameters and evaluates the reduced likelihood function for the given autocorrelation parameters theta. Maximizing this function wrt the autocorrelation parameters theta is equivalent to maximizing the likelihood of the assumed joint Gaussian distribution of the observations y evaluated onto the design of experiments X. Parameters ---------- theta : array_like, optional An array containing the autocorrelation parameters at which the Gaussian Process model parameters should be determined. Default uses the built-in autocorrelation parameters (ie ``theta = self.theta_``). Returns ------- reduced_likelihood_function_value : double The value of the reduced likelihood function associated to the given autocorrelation parameters theta. par : dict A dictionary containing the requested Gaussian Process model parameters: sigma2 Gaussian Process variance. beta Generalized least-squares regression weights for Universal Kriging or given beta0 for Ordinary Kriging. gamma Gaussian Process weights. C Cholesky decomposition of the correlation matrix [R]. Ft Solution of the linear equation system : [R] x Ft = F G QR decomposition of the matrix Ft. """ check_is_fitted(self, "X") if theta is None: # Use built-in autocorrelation parameters theta = self.theta_ # Initialize output reduced_likelihood_function_value = - np.inf par = {} # Retrieve data n_samples = self.X.shape[0] D = self.D ij = self.ij F = self.F if D is None: # Light storage mode (need to recompute D, ij and F) D, ij = l1_cross_distances(self.X) if (np.min(np.sum(D, axis=1)) == 0. and self.corr != correlation.pure_nugget): raise Exception("Multiple X are not allowed") F = self.regr(self.X) # Set up R r = self.corr(theta, D) R = np.eye(n_samples) * (1. + self.nugget) R[ij[:, 0], ij[:, 1]] = r R[ij[:, 1], ij[:, 0]] = r # Cholesky decomposition of R try: C = linalg.cholesky(R, lower=True) except linalg.LinAlgError: return reduced_likelihood_function_value, par # Get generalized least squares solution Ft = linalg.solve_triangular(C, F, lower=True) try: Q, G = linalg.qr(Ft, econ=True) except: #/usr/lib/python2.6/dist-packages/scipy/linalg/decomp.py:1177: # DeprecationWarning: qr econ argument will be removed after scipy # 0.7. The economy transform will then be available through the # mode='economic' argument. Q, G = linalg.qr(Ft, mode='economic') pass sv = linalg.svd(G, compute_uv=False) rcondG = sv[-1] / sv[0] if rcondG < 1e-10: # Check F sv = linalg.svd(F, compute_uv=False) condF = sv[0] / sv[-1] if condF > 1e15: raise Exception("F is too ill conditioned. Poor combination " "of regression model and observations.") else: # Ft is too ill conditioned, get out (try different theta) return reduced_likelihood_function_value, par Yt = linalg.solve_triangular(C, self.y, lower=True) if self.beta0 is None: # Universal Kriging beta = linalg.solve_triangular(G, np.dot(Q.T, Yt)) else: # Ordinary Kriging beta = np.array(self.beta0) rho = Yt - np.dot(Ft, beta) sigma2 = (rho ** 2.).sum(axis=0) / n_samples # The determinant of R is equal to the squared product of the diagonal # elements of its Cholesky decomposition C detR = (np.diag(C) ** (2. / n_samples)).prod() # Compute/Organize output reduced_likelihood_function_value = - sigma2.sum() * detR par['sigma2'] = sigma2 * self.y_std ** 2. par['beta'] = beta par['gamma'] = linalg.solve_triangular(C.T, rho) par['C'] = C par['Ft'] = Ft par['G'] = G return reduced_likelihood_function_value, par def _arg_max_reduced_likelihood_function(self): """ This function estimates the autocorrelation parameters theta as the maximizer of the reduced likelihood function. (Minimization of the opposite reduced likelihood function is used for convenience) Parameters ---------- self : All parameters are stored in the Gaussian Process model object. Returns ------- optimal_theta : array_like The best set of autocorrelation parameters (the sought maximizer of the reduced likelihood function). optimal_reduced_likelihood_function_value : double The optimal reduced likelihood function value. optimal_par : dict The BLUP parameters associated to thetaOpt. """ # Initialize output best_optimal_theta = [] best_optimal_rlf_value = [] best_optimal_par = [] if self.verbose: print("The chosen optimizer is: " + str(self.optimizer)) if self.random_start > 1: print(str(self.random_start) + " random starts are required.") percent_completed = 0. # Force optimizer to fmin_cobyla if the model is meant to be isotropic if self.optimizer == 'Welch' and self.theta0.size == 1: self.optimizer = 'fmin_cobyla' if self.optimizer == 'fmin_cobyla': def minus_reduced_likelihood_function(log10t): return - self.reduced_likelihood_function( theta=10. ** log10t)[0] constraints = [] for i in range(self.theta0.size): constraints.append(lambda log10t, i=i: log10t[i] - np.log10(self.thetaL[0, i])) constraints.append(lambda log10t, i=i: np.log10(self.thetaU[0, i]) - log10t[i]) for k in range(self.random_start): if k == 0: # Use specified starting point as first guess theta0 = self.theta0 else: # Generate a random starting point log10-uniformly # distributed between bounds log10theta0 = (np.log10(self.thetaL) + self.random_state.rand(*self.theta0.shape) * np.log10(self.thetaU / self.thetaL)) theta0 = 10. ** log10theta0 # Run Cobyla try: log10_optimal_theta = \ optimize.fmin_cobyla(minus_reduced_likelihood_function, np.log10(theta0).ravel(), constraints, iprint=0) except ValueError as ve: print("Optimization failed. Try increasing the ``nugget``") raise ve optimal_theta = 10. ** log10_optimal_theta optimal_rlf_value, optimal_par = \ self.reduced_likelihood_function(theta=optimal_theta) # Compare the new optimizer to the best previous one if k > 0: if optimal_rlf_value > best_optimal_rlf_value: best_optimal_rlf_value = optimal_rlf_value best_optimal_par = optimal_par best_optimal_theta = optimal_theta else: best_optimal_rlf_value = optimal_rlf_value best_optimal_par = optimal_par best_optimal_theta = optimal_theta if self.verbose and self.random_start > 1: if (20 * k) / self.random_start > percent_completed: percent_completed = (20 * k) / self.random_start print("%s completed" % (5 * percent_completed)) optimal_rlf_value = best_optimal_rlf_value optimal_par = best_optimal_par optimal_theta = best_optimal_theta elif self.optimizer == 'Welch': # Backup of the given atrributes theta0, thetaL, thetaU = self.theta0, self.thetaL, self.thetaU corr = self.corr verbose = self.verbose # This will iterate over fmin_cobyla optimizer self.optimizer = 'fmin_cobyla' self.verbose = False # Initialize under isotropy assumption if verbose: print("Initialize under isotropy assumption...") self.theta0 = check_array(self.theta0.min()) self.thetaL = check_array(self.thetaL.min()) self.thetaU = check_array(self.thetaU.max()) theta_iso, optimal_rlf_value_iso, par_iso = \ self._arg_max_reduced_likelihood_function() optimal_theta = theta_iso + np.zeros(theta0.shape) # Iterate over all dimensions of theta allowing for anisotropy if verbose: print("Now improving allowing for anisotropy...") for i in self.random_state.permutation(theta0.size): if verbose: print("Proceeding along dimension %d..." % (i + 1)) self.theta0 = check_array(theta_iso) self.thetaL = check_array(thetaL[0, i]) self.thetaU = check_array(thetaU[0, i]) def corr_cut(t, d): return corr(check_array(np.hstack([optimal_theta[0][0:i], t[0], optimal_theta[0][(i + 1)::]])), d) self.corr = corr_cut optimal_theta[0, i], optimal_rlf_value, optimal_par = \ self._arg_max_reduced_likelihood_function() # Restore the given atrributes self.theta0, self.thetaL, self.thetaU = theta0, thetaL, thetaU self.corr = corr self.optimizer = 'Welch' self.verbose = verbose else: raise NotImplementedError("This optimizer ('%s') is not " "implemented yet. Please contribute!" % self.optimizer) return optimal_theta, optimal_rlf_value, optimal_par def _check_params(self, n_samples=None): # Check regression model if not callable(self.regr): if self.regr in self._regression_types: self.regr = self._regression_types[self.regr] else: raise ValueError("regr should be one of %s or callable, " "%s was given." % (self._regression_types.keys(), self.regr)) # Check regression weights if given (Ordinary Kriging) if self.beta0 is not None: self.beta0 = np.atleast_2d(self.beta0) if self.beta0.shape[1] != 1: # Force to column vector self.beta0 = self.beta0.T # Check correlation model if not callable(self.corr): if self.corr in self._correlation_types: self.corr = self._correlation_types[self.corr] else: raise ValueError("corr should be one of %s or callable, " "%s was given." % (self._correlation_types.keys(), self.corr)) # Check storage mode if self.storage_mode != 'full' and self.storage_mode != 'light': raise ValueError("Storage mode should either be 'full' or " "'light', %s was given." % self.storage_mode) # Check correlation parameters self.theta0 = np.atleast_2d(self.theta0) lth = self.theta0.size if self.thetaL is not None and self.thetaU is not None: self.thetaL = np.atleast_2d(self.thetaL) self.thetaU = np.atleast_2d(self.thetaU) if self.thetaL.size != lth or self.thetaU.size != lth: raise ValueError("theta0, thetaL and thetaU must have the " "same length.") if np.any(self.thetaL <= 0) or np.any(self.thetaU < self.thetaL): raise ValueError("The bounds must satisfy O < thetaL <= " "thetaU.") elif self.thetaL is None and self.thetaU is None: if np.any(self.theta0 <= 0): raise ValueError("theta0 must be strictly positive.") elif self.thetaL is None or self.thetaU is None: raise ValueError("thetaL and thetaU should either be both or " "neither specified.") # Force verbose type to bool self.verbose = bool(self.verbose) # Force normalize type to bool self.normalize = bool(self.normalize) # Check nugget value self.nugget = np.asarray(self.nugget) if np.any(self.nugget) < 0.: raise ValueError("nugget must be positive or zero.") if (n_samples is not None and self.nugget.shape not in [(), (n_samples,)]): raise ValueError("nugget must be either a scalar " "or array of length n_samples.") # Check optimizer if self.optimizer not in self._optimizer_types: raise ValueError("optimizer should be one of %s" % self._optimizer_types) # Force random_start type to int self.random_start = int(self.random_start)
bsd-3-clause
rbalda/neural_ocr
env/lib/python2.7/site-packages/numpy/lib/npyio.py
42
71218
from __future__ import division, absolute_import, print_function import sys import os import re import itertools import warnings import weakref from operator import itemgetter import numpy as np from . import format from ._datasource import DataSource from numpy.core.multiarray import packbits, unpackbits from ._iotools import ( LineSplitter, NameValidator, StringConverter, ConverterError, ConverterLockError, ConversionWarning, _is_string_like, has_nested_fields, flatten_dtype, easy_dtype, _bytes_to_name ) from numpy.compat import ( asbytes, asstr, asbytes_nested, bytes, basestring, unicode ) if sys.version_info[0] >= 3: import pickle else: import cPickle as pickle from future_builtins import map loads = pickle.loads __all__ = [ 'savetxt', 'loadtxt', 'genfromtxt', 'ndfromtxt', 'mafromtxt', 'recfromtxt', 'recfromcsv', 'load', 'loads', 'save', 'savez', 'savez_compressed', 'packbits', 'unpackbits', 'fromregex', 'DataSource' ] class BagObj(object): """ BagObj(obj) Convert attribute look-ups to getitems on the object passed in. Parameters ---------- obj : class instance Object on which attribute look-up is performed. Examples -------- >>> from numpy.lib.npyio import BagObj as BO >>> class BagDemo(object): ... def __getitem__(self, key): # An instance of BagObj(BagDemo) ... # will call this method when any ... # attribute look-up is required ... result = "Doesn't matter what you want, " ... return result + "you're gonna get this" ... >>> demo_obj = BagDemo() >>> bagobj = BO(demo_obj) >>> bagobj.hello_there "Doesn't matter what you want, you're gonna get this" >>> bagobj.I_can_be_anything "Doesn't matter what you want, you're gonna get this" """ def __init__(self, obj): # Use weakref to make NpzFile objects collectable by refcount self._obj = weakref.proxy(obj) def __getattribute__(self, key): try: return object.__getattribute__(self, '_obj')[key] except KeyError: raise AttributeError(key) def __dir__(self): """ Enables dir(bagobj) to list the files in an NpzFile. This also enables tab-completion in an interpreter or IPython. """ return object.__getattribute__(self, '_obj').keys() def zipfile_factory(*args, **kwargs): import zipfile kwargs['allowZip64'] = True return zipfile.ZipFile(*args, **kwargs) class NpzFile(object): """ NpzFile(fid) A dictionary-like object with lazy-loading of files in the zipped archive provided on construction. `NpzFile` is used to load files in the NumPy ``.npz`` data archive format. It assumes that files in the archive have a ``.npy`` extension, other files are ignored. The arrays and file strings are lazily loaded on either getitem access using ``obj['key']`` or attribute lookup using ``obj.f.key``. A list of all files (without ``.npy`` extensions) can be obtained with ``obj.files`` and the ZipFile object itself using ``obj.zip``. Attributes ---------- files : list of str List of all files in the archive with a ``.npy`` extension. zip : ZipFile instance The ZipFile object initialized with the zipped archive. f : BagObj instance An object on which attribute can be performed as an alternative to getitem access on the `NpzFile` instance itself. allow_pickle : bool, optional Allow loading pickled data. Default: True pickle_kwargs : dict, optional Additional keyword arguments to pass on to pickle.load. These are only useful when loading object arrays saved on Python 2 when using Python 3. Parameters ---------- fid : file or str The zipped archive to open. This is either a file-like object or a string containing the path to the archive. own_fid : bool, optional Whether NpzFile should close the file handle. Requires that `fid` is a file-like object. Examples -------- >>> from tempfile import TemporaryFile >>> outfile = TemporaryFile() >>> x = np.arange(10) >>> y = np.sin(x) >>> np.savez(outfile, x=x, y=y) >>> outfile.seek(0) >>> npz = np.load(outfile) >>> isinstance(npz, np.lib.io.NpzFile) True >>> npz.files ['y', 'x'] >>> npz['x'] # getitem access array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> npz.f.x # attribute lookup array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) """ def __init__(self, fid, own_fid=False, allow_pickle=True, pickle_kwargs=None): # Import is postponed to here since zipfile depends on gzip, an # optional component of the so-called standard library. _zip = zipfile_factory(fid) self._files = _zip.namelist() self.files = [] self.allow_pickle = allow_pickle self.pickle_kwargs = pickle_kwargs for x in self._files: if x.endswith('.npy'): self.files.append(x[:-4]) else: self.files.append(x) self.zip = _zip self.f = BagObj(self) if own_fid: self.fid = fid else: self.fid = None def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def close(self): """ Close the file. """ if self.zip is not None: self.zip.close() self.zip = None if self.fid is not None: self.fid.close() self.fid = None self.f = None # break reference cycle def __del__(self): self.close() def __getitem__(self, key): # FIXME: This seems like it will copy strings around # more than is strictly necessary. The zipfile # will read the string and then # the format.read_array will copy the string # to another place in memory. # It would be better if the zipfile could read # (or at least uncompress) the data # directly into the array memory. member = 0 if key in self._files: member = 1 elif key in self.files: member = 1 key += '.npy' if member: bytes = self.zip.open(key) magic = bytes.read(len(format.MAGIC_PREFIX)) bytes.close() if magic == format.MAGIC_PREFIX: bytes = self.zip.open(key) return format.read_array(bytes, allow_pickle=self.allow_pickle, pickle_kwargs=self.pickle_kwargs) else: return self.zip.read(key) else: raise KeyError("%s is not a file in the archive" % key) def __iter__(self): return iter(self.files) def items(self): """ Return a list of tuples, with each tuple (filename, array in file). """ return [(f, self[f]) for f in self.files] def iteritems(self): """Generator that returns tuples (filename, array in file).""" for f in self.files: yield (f, self[f]) def keys(self): """Return files in the archive with a ``.npy`` extension.""" return self.files def iterkeys(self): """Return an iterator over the files in the archive.""" return self.__iter__() def __contains__(self, key): return self.files.__contains__(key) def load(file, mmap_mode=None, allow_pickle=True, fix_imports=True, encoding='ASCII'): """ Load arrays or pickled objects from ``.npy``, ``.npz`` or pickled files. Parameters ---------- file : file-like object or string The file to read. File-like objects must support the ``seek()`` and ``read()`` methods. Pickled files require that the file-like object support the ``readline()`` method as well. mmap_mode : {None, 'r+', 'r', 'w+', 'c'}, optional If not None, then memory-map the file, using the given mode (see `numpy.memmap` for a detailed description of the modes). A memory-mapped array is kept on disk. However, it can be accessed and sliced like any ndarray. Memory mapping is especially useful for accessing small fragments of large files without reading the entire file into memory. allow_pickle : bool, optional Allow loading pickled object arrays stored in npy files. Reasons for disallowing pickles include security, as loading pickled data can execute arbitrary code. If pickles are disallowed, loading object arrays will fail. Default: True fix_imports : bool, optional Only useful when loading Python 2 generated pickled files on Python 3, which includes npy/npz files containing object arrays. If `fix_imports` is True, pickle will try to map the old Python 2 names to the new names used in Python 3. encoding : str, optional What encoding to use when reading Python 2 strings. Only useful when loading Python 2 generated pickled files on Python 3, which includes npy/npz files containing object arrays. Values other than 'latin1', 'ASCII', and 'bytes' are not allowed, as they can corrupt numerical data. Default: 'ASCII' Returns ------- result : array, tuple, dict, etc. Data stored in the file. For ``.npz`` files, the returned instance of NpzFile class must be closed to avoid leaking file descriptors. Raises ------ IOError If the input file does not exist or cannot be read. ValueError The file contains an object array, but allow_pickle=False given. See Also -------- save, savez, savez_compressed, loadtxt memmap : Create a memory-map to an array stored in a file on disk. Notes ----- - If the file contains pickle data, then whatever object is stored in the pickle is returned. - If the file is a ``.npy`` file, then a single array is returned. - If the file is a ``.npz`` file, then a dictionary-like object is returned, containing ``{filename: array}`` key-value pairs, one for each file in the archive. - If the file is a ``.npz`` file, the returned value supports the context manager protocol in a similar fashion to the open function:: with load('foo.npz') as data: a = data['a'] The underlying file descriptor is closed when exiting the 'with' block. Examples -------- Store data to disk, and load it again: >>> np.save('/tmp/123', np.array([[1, 2, 3], [4, 5, 6]])) >>> np.load('/tmp/123.npy') array([[1, 2, 3], [4, 5, 6]]) Store compressed data to disk, and load it again: >>> a=np.array([[1, 2, 3], [4, 5, 6]]) >>> b=np.array([1, 2]) >>> np.savez('/tmp/123.npz', a=a, b=b) >>> data = np.load('/tmp/123.npz') >>> data['a'] array([[1, 2, 3], [4, 5, 6]]) >>> data['b'] array([1, 2]) >>> data.close() Mem-map the stored array, and then access the second row directly from disk: >>> X = np.load('/tmp/123.npy', mmap_mode='r') >>> X[1, :] memmap([4, 5, 6]) """ import gzip own_fid = False if isinstance(file, basestring): fid = open(file, "rb") own_fid = True else: fid = file if encoding not in ('ASCII', 'latin1', 'bytes'): # The 'encoding' value for pickle also affects what encoding # the serialized binary data of Numpy arrays is loaded # in. Pickle does not pass on the encoding information to # Numpy. The unpickling code in numpy.core.multiarray is # written to assume that unicode data appearing where binary # should be is in 'latin1'. 'bytes' is also safe, as is 'ASCII'. # # Other encoding values can corrupt binary data, and we # purposefully disallow them. For the same reason, the errors= # argument is not exposed, as values other than 'strict' # result can similarly silently corrupt numerical data. raise ValueError("encoding must be 'ASCII', 'latin1', or 'bytes'") if sys.version_info[0] >= 3: pickle_kwargs = dict(encoding=encoding, fix_imports=fix_imports) else: # Nothing to do on Python 2 pickle_kwargs = {} try: # Code to distinguish from NumPy binary files and pickles. _ZIP_PREFIX = asbytes('PK\x03\x04') N = len(format.MAGIC_PREFIX) magic = fid.read(N) fid.seek(-N, 1) # back-up if magic.startswith(_ZIP_PREFIX): # zip-file (assume .npz) # Transfer file ownership to NpzFile tmp = own_fid own_fid = False return NpzFile(fid, own_fid=tmp, allow_pickle=allow_pickle, pickle_kwargs=pickle_kwargs) elif magic == format.MAGIC_PREFIX: # .npy file if mmap_mode: return format.open_memmap(file, mode=mmap_mode) else: return format.read_array(fid, allow_pickle=allow_pickle, pickle_kwargs=pickle_kwargs) else: # Try a pickle if not allow_pickle: raise ValueError("allow_pickle=False, but file does not contain " "non-pickled data") try: return pickle.load(fid, **pickle_kwargs) except: raise IOError( "Failed to interpret file %s as a pickle" % repr(file)) finally: if own_fid: fid.close() def save(file, arr, allow_pickle=True, fix_imports=True): """ Save an array to a binary file in NumPy ``.npy`` format. Parameters ---------- file : file or str File or filename to which the data is saved. If file is a file-object, then the filename is unchanged. If file is a string, a ``.npy`` extension will be appended to the file name if it does not already have one. allow_pickle : bool, optional Allow saving object arrays using Python pickles. Reasons for disallowing pickles include security (loading pickled data can execute arbitrary code) and portability (pickled objects may not be loadable on different Python installations, for example if the stored objects require libraries that are not available, and not all pickled data is compatible between Python 2 and Python 3). Default: True fix_imports : bool, optional Only useful in forcing objects in object arrays on Python 3 to be pickled in a Python 2 compatible way. If `fix_imports` is True, pickle will try to map the new Python 3 names to the old module names used in Python 2, so that the pickle data stream is readable with Python 2. arr : array_like Array data to be saved. See Also -------- savez : Save several arrays into a ``.npz`` archive savetxt, load Notes ----- For a description of the ``.npy`` format, see the module docstring of `numpy.lib.format` or the Numpy Enhancement Proposal http://docs.scipy.org/doc/numpy/neps/npy-format.html Examples -------- >>> from tempfile import TemporaryFile >>> outfile = TemporaryFile() >>> x = np.arange(10) >>> np.save(outfile, x) >>> outfile.seek(0) # Only needed here to simulate closing & reopening file >>> np.load(outfile) array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) """ own_fid = False if isinstance(file, basestring): if not file.endswith('.npy'): file = file + '.npy' fid = open(file, "wb") own_fid = True else: fid = file if sys.version_info[0] >= 3: pickle_kwargs = dict(fix_imports=fix_imports) else: # Nothing to do on Python 2 pickle_kwargs = None try: arr = np.asanyarray(arr) format.write_array(fid, arr, allow_pickle=allow_pickle, pickle_kwargs=pickle_kwargs) finally: if own_fid: fid.close() def savez(file, *args, **kwds): """ Save several arrays into a single file in uncompressed ``.npz`` format. If arguments are passed in with no keywords, the corresponding variable names, in the ``.npz`` file, are 'arr_0', 'arr_1', etc. If keyword arguments are given, the corresponding variable names, in the ``.npz`` file will match the keyword names. Parameters ---------- file : str or file Either the file name (string) or an open file (file-like object) where the data will be saved. If file is a string, the ``.npz`` extension will be appended to the file name if it is not already there. args : Arguments, optional Arrays to save to the file. Since it is not possible for Python to know the names of the arrays outside `savez`, the arrays will be saved with names "arr_0", "arr_1", and so on. These arguments can be any expression. kwds : Keyword arguments, optional Arrays to save to the file. Arrays will be saved in the file with the keyword names. Returns ------- None See Also -------- save : Save a single array to a binary file in NumPy format. savetxt : Save an array to a file as plain text. savez_compressed : Save several arrays into a compressed ``.npz`` archive Notes ----- The ``.npz`` file format is a zipped archive of files named after the variables they contain. The archive is not compressed and each file in the archive contains one variable in ``.npy`` format. For a description of the ``.npy`` format, see `numpy.lib.format` or the Numpy Enhancement Proposal http://docs.scipy.org/doc/numpy/neps/npy-format.html When opening the saved ``.npz`` file with `load` a `NpzFile` object is returned. This is a dictionary-like object which can be queried for its list of arrays (with the ``.files`` attribute), and for the arrays themselves. Examples -------- >>> from tempfile import TemporaryFile >>> outfile = TemporaryFile() >>> x = np.arange(10) >>> y = np.sin(x) Using `savez` with \\*args, the arrays are saved with default names. >>> np.savez(outfile, x, y) >>> outfile.seek(0) # Only needed here to simulate closing & reopening file >>> npzfile = np.load(outfile) >>> npzfile.files ['arr_1', 'arr_0'] >>> npzfile['arr_0'] array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) Using `savez` with \\**kwds, the arrays are saved with the keyword names. >>> outfile = TemporaryFile() >>> np.savez(outfile, x=x, y=y) >>> outfile.seek(0) >>> npzfile = np.load(outfile) >>> npzfile.files ['y', 'x'] >>> npzfile['x'] array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) """ _savez(file, args, kwds, False) def savez_compressed(file, *args, **kwds): """ Save several arrays into a single file in compressed ``.npz`` format. If keyword arguments are given, then filenames are taken from the keywords. If arguments are passed in with no keywords, then stored file names are arr_0, arr_1, etc. Parameters ---------- file : str File name of ``.npz`` file. args : Arguments Function arguments. kwds : Keyword arguments Keywords. See Also -------- numpy.savez : Save several arrays into an uncompressed ``.npz`` file format numpy.load : Load the files created by savez_compressed. """ _savez(file, args, kwds, True) def _savez(file, args, kwds, compress, allow_pickle=True, pickle_kwargs=None): # Import is postponed to here since zipfile depends on gzip, an optional # component of the so-called standard library. import zipfile # Import deferred for startup time improvement import tempfile if isinstance(file, basestring): if not file.endswith('.npz'): file = file + '.npz' namedict = kwds for i, val in enumerate(args): key = 'arr_%d' % i if key in namedict.keys(): raise ValueError( "Cannot use un-named variables and keyword %s" % key) namedict[key] = val if compress: compression = zipfile.ZIP_DEFLATED else: compression = zipfile.ZIP_STORED zipf = zipfile_factory(file, mode="w", compression=compression) # Stage arrays in a temporary file on disk, before writing to zip. fd, tmpfile = tempfile.mkstemp(suffix='-numpy.npy') os.close(fd) try: for key, val in namedict.items(): fname = key + '.npy' fid = open(tmpfile, 'wb') try: format.write_array(fid, np.asanyarray(val), allow_pickle=allow_pickle, pickle_kwargs=pickle_kwargs) fid.close() fid = None zipf.write(tmpfile, arcname=fname) finally: if fid: fid.close() finally: os.remove(tmpfile) zipf.close() def _getconv(dtype): """ Find the correct dtype converter. Adapted from matplotlib """ def floatconv(x): x.lower() if b'0x' in x: return float.fromhex(asstr(x)) return float(x) typ = dtype.type if issubclass(typ, np.bool_): return lambda x: bool(int(x)) if issubclass(typ, np.uint64): return np.uint64 if issubclass(typ, np.int64): return np.int64 if issubclass(typ, np.integer): return lambda x: int(float(x)) elif issubclass(typ, np.floating): return floatconv elif issubclass(typ, np.complex): return lambda x: complex(asstr(x)) elif issubclass(typ, np.bytes_): return bytes else: return str def loadtxt(fname, dtype=float, comments='#', delimiter=None, converters=None, skiprows=0, usecols=None, unpack=False, ndmin=0): """ Load data from a text file. Each row in the text file must have the same number of values. Parameters ---------- fname : file or str File, filename, or generator to read. If the filename extension is ``.gz`` or ``.bz2``, the file is first decompressed. Note that generators should return byte strings for Python 3k. dtype : data-type, optional Data-type of the resulting array; default: float. If this is a structured data-type, the resulting array will be 1-dimensional, and each row will be interpreted as an element of the array. In this case, the number of columns used must match the number of fields in the data-type. comments : str or sequence, optional The characters or list of characters used to indicate the start of a comment; default: '#'. delimiter : str, optional The string used to separate values. By default, this is any whitespace. converters : dict, optional A dictionary mapping column number to a function that will convert that column to a float. E.g., if column 0 is a date string: ``converters = {0: datestr2num}``. Converters can also be used to provide a default value for missing data (but see also `genfromtxt`): ``converters = {3: lambda s: float(s.strip() or 0)}``. Default: None. skiprows : int, optional Skip the first `skiprows` lines; default: 0. usecols : sequence, optional Which columns to read, with 0 being the first. For example, ``usecols = (1,4,5)`` will extract the 2nd, 5th and 6th columns. The default, None, results in all columns being read. unpack : bool, optional If True, the returned array is transposed, so that arguments may be unpacked using ``x, y, z = loadtxt(...)``. When used with a structured data-type, arrays are returned for each field. Default is False. ndmin : int, optional The returned array will have at least `ndmin` dimensions. Otherwise mono-dimensional axes will be squeezed. Legal values: 0 (default), 1 or 2. .. versionadded:: 1.6.0 Returns ------- out : ndarray Data read from the text file. See Also -------- load, fromstring, fromregex genfromtxt : Load data with missing values handled as specified. scipy.io.loadmat : reads MATLAB data files Notes ----- This function aims to be a fast reader for simply formatted files. The `genfromtxt` function provides more sophisticated handling of, e.g., lines with missing values. .. versionadded:: 1.10.0 The strings produced by the Python float.hex method can be used as input for floats. Examples -------- >>> from io import StringIO # StringIO behaves like a file object >>> c = StringIO("0 1\\n2 3") >>> np.loadtxt(c) array([[ 0., 1.], [ 2., 3.]]) >>> d = StringIO("M 21 72\\nF 35 58") >>> np.loadtxt(d, dtype={'names': ('gender', 'age', 'weight'), ... 'formats': ('S1', 'i4', 'f4')}) array([('M', 21, 72.0), ('F', 35, 58.0)], dtype=[('gender', '|S1'), ('age', '<i4'), ('weight', '<f4')]) >>> c = StringIO("1,0,2\\n3,0,4") >>> x, y = np.loadtxt(c, delimiter=',', usecols=(0, 2), unpack=True) >>> x array([ 1., 3.]) >>> y array([ 2., 4.]) """ # Type conversions for Py3 convenience if comments is not None: if isinstance(comments, (basestring, bytes)): comments = [asbytes(comments)] else: comments = [asbytes(comment) for comment in comments] # Compile regex for comments beforehand comments = (re.escape(comment) for comment in comments) regex_comments = re.compile(asbytes('|').join(comments)) user_converters = converters if delimiter is not None: delimiter = asbytes(delimiter) if usecols is not None: usecols = list(usecols) fown = False try: if _is_string_like(fname): fown = True if fname.endswith('.gz'): import gzip fh = iter(gzip.GzipFile(fname)) elif fname.endswith('.bz2'): import bz2 fh = iter(bz2.BZ2File(fname)) elif sys.version_info[0] == 2: fh = iter(open(fname, 'U')) else: fh = iter(open(fname)) else: fh = iter(fname) except TypeError: raise ValueError('fname must be a string, file handle, or generator') X = [] def flatten_dtype(dt): """Unpack a structured data-type, and produce re-packing info.""" if dt.names is None: # If the dtype is flattened, return. # If the dtype has a shape, the dtype occurs # in the list more than once. shape = dt.shape if len(shape) == 0: return ([dt.base], None) else: packing = [(shape[-1], list)] if len(shape) > 1: for dim in dt.shape[-2::-1]: packing = [(dim*packing[0][0], packing*dim)] return ([dt.base] * int(np.prod(dt.shape)), packing) else: types = [] packing = [] for field in dt.names: tp, bytes = dt.fields[field] flat_dt, flat_packing = flatten_dtype(tp) types.extend(flat_dt) # Avoid extra nesting for subarrays if len(tp.shape) > 0: packing.extend(flat_packing) else: packing.append((len(flat_dt), flat_packing)) return (types, packing) def pack_items(items, packing): """Pack items into nested lists based on re-packing info.""" if packing is None: return items[0] elif packing is tuple: return tuple(items) elif packing is list: return list(items) else: start = 0 ret = [] for length, subpacking in packing: ret.append(pack_items(items[start:start+length], subpacking)) start += length return tuple(ret) def split_line(line): """Chop off comments, strip, and split at delimiter. Note that although the file is opened as text, this function returns bytes. """ line = asbytes(line) if comments is not None: line = regex_comments.split(asbytes(line), maxsplit=1)[0] line = line.strip(asbytes('\r\n')) if line: return line.split(delimiter) else: return [] try: # Make sure we're dealing with a proper dtype dtype = np.dtype(dtype) defconv = _getconv(dtype) # Skip the first `skiprows` lines for i in range(skiprows): next(fh) # Read until we find a line with some values, and use # it to estimate the number of columns, N. first_vals = None try: while not first_vals: first_line = next(fh) first_vals = split_line(first_line) except StopIteration: # End of lines reached first_line = '' first_vals = [] warnings.warn('loadtxt: Empty input file: "%s"' % fname) N = len(usecols or first_vals) dtype_types, packing = flatten_dtype(dtype) if len(dtype_types) > 1: # We're dealing with a structured array, each field of # the dtype matches a column converters = [_getconv(dt) for dt in dtype_types] else: # All fields have the same dtype converters = [defconv for i in range(N)] if N > 1: packing = [(N, tuple)] # By preference, use the converters specified by the user for i, conv in (user_converters or {}).items(): if usecols: try: i = usecols.index(i) except ValueError: # Unused converter specified continue converters[i] = conv # Parse each line, including the first for i, line in enumerate(itertools.chain([first_line], fh)): vals = split_line(line) if len(vals) == 0: continue if usecols: vals = [vals[i] for i in usecols] if len(vals) != N: line_num = i + skiprows + 1 raise ValueError("Wrong number of columns at line %d" % line_num) # Convert each value according to its column and store items = [conv(val) for (conv, val) in zip(converters, vals)] # Then pack it according to the dtype's nesting items = pack_items(items, packing) X.append(items) finally: if fown: fh.close() X = np.array(X, dtype) # Multicolumn data are returned with shape (1, N, M), i.e. # (1, 1, M) for a single row - remove the singleton dimension there if X.ndim == 3 and X.shape[:2] == (1, 1): X.shape = (1, -1) # Verify that the array has at least dimensions `ndmin`. # Check correctness of the values of `ndmin` if ndmin not in [0, 1, 2]: raise ValueError('Illegal value of ndmin keyword: %s' % ndmin) # Tweak the size and shape of the arrays - remove extraneous dimensions if X.ndim > ndmin: X = np.squeeze(X) # and ensure we have the minimum number of dimensions asked for # - has to be in this order for the odd case ndmin=1, X.squeeze().ndim=0 if X.ndim < ndmin: if ndmin == 1: X = np.atleast_1d(X) elif ndmin == 2: X = np.atleast_2d(X).T if unpack: if len(dtype_types) > 1: # For structured arrays, return an array for each field. return [X[field] for field in dtype.names] else: return X.T else: return X def savetxt(fname, X, fmt='%.18e', delimiter=' ', newline='\n', header='', footer='', comments='# '): """ Save an array to a text file. Parameters ---------- fname : filename or file handle If the filename ends in ``.gz``, the file is automatically saved in compressed gzip format. `loadtxt` understands gzipped files transparently. X : array_like Data to be saved to a text file. fmt : str or sequence of strs, optional A single format (%10.5f), a sequence of formats, or a multi-format string, e.g. 'Iteration %d -- %10.5f', in which case `delimiter` is ignored. For complex `X`, the legal options for `fmt` are: a) a single specifier, `fmt='%.4e'`, resulting in numbers formatted like `' (%s+%sj)' % (fmt, fmt)` b) a full string specifying every real and imaginary part, e.g. `' %.4e %+.4j %.4e %+.4j %.4e %+.4j'` for 3 columns c) a list of specifiers, one per column - in this case, the real and imaginary part must have separate specifiers, e.g. `['%.3e + %.3ej', '(%.15e%+.15ej)']` for 2 columns delimiter : str, optional String or character separating columns. newline : str, optional String or character separating lines. .. versionadded:: 1.5.0 header : str, optional String that will be written at the beginning of the file. .. versionadded:: 1.7.0 footer : str, optional String that will be written at the end of the file. .. versionadded:: 1.7.0 comments : str, optional String that will be prepended to the ``header`` and ``footer`` strings, to mark them as comments. Default: '# ', as expected by e.g. ``numpy.loadtxt``. .. versionadded:: 1.7.0 See Also -------- save : Save an array to a binary file in NumPy ``.npy`` format savez : Save several arrays into an uncompressed ``.npz`` archive savez_compressed : Save several arrays into a compressed ``.npz`` archive Notes ----- Further explanation of the `fmt` parameter (``%[flag]width[.precision]specifier``): flags: ``-`` : left justify ``+`` : Forces to precede result with + or -. ``0`` : Left pad the number with zeros instead of space (see width). width: Minimum number of characters to be printed. The value is not truncated if it has more characters. precision: - For integer specifiers (eg. ``d,i,o,x``), the minimum number of digits. - For ``e, E`` and ``f`` specifiers, the number of digits to print after the decimal point. - For ``g`` and ``G``, the maximum number of significant digits. - For ``s``, the maximum number of characters. specifiers: ``c`` : character ``d`` or ``i`` : signed decimal integer ``e`` or ``E`` : scientific notation with ``e`` or ``E``. ``f`` : decimal floating point ``g,G`` : use the shorter of ``e,E`` or ``f`` ``o`` : signed octal ``s`` : string of characters ``u`` : unsigned decimal integer ``x,X`` : unsigned hexadecimal integer This explanation of ``fmt`` is not complete, for an exhaustive specification see [1]_. References ---------- .. [1] `Format Specification Mini-Language <http://docs.python.org/library/string.html# format-specification-mini-language>`_, Python Documentation. Examples -------- >>> x = y = z = np.arange(0.0,5.0,1.0) >>> np.savetxt('test.out', x, delimiter=',') # X is an array >>> np.savetxt('test.out', (x,y,z)) # x,y,z equal sized 1D arrays >>> np.savetxt('test.out', x, fmt='%1.4e') # use exponential notation """ # Py3 conversions first if isinstance(fmt, bytes): fmt = asstr(fmt) delimiter = asstr(delimiter) own_fh = False if _is_string_like(fname): own_fh = True if fname.endswith('.gz'): import gzip fh = gzip.open(fname, 'wb') else: if sys.version_info[0] >= 3: fh = open(fname, 'wb') else: fh = open(fname, 'w') elif hasattr(fname, 'write'): fh = fname else: raise ValueError('fname must be a string or file handle') try: X = np.asarray(X) # Handle 1-dimensional arrays if X.ndim == 1: # Common case -- 1d array of numbers if X.dtype.names is None: X = np.atleast_2d(X).T ncol = 1 # Complex dtype -- each field indicates a separate column else: ncol = len(X.dtype.descr) else: ncol = X.shape[1] iscomplex_X = np.iscomplexobj(X) # `fmt` can be a string with multiple insertion points or a # list of formats. E.g. '%10.5f\t%10d' or ('%10.5f', '$10d') if type(fmt) in (list, tuple): if len(fmt) != ncol: raise AttributeError('fmt has wrong shape. %s' % str(fmt)) format = asstr(delimiter).join(map(asstr, fmt)) elif isinstance(fmt, str): n_fmt_chars = fmt.count('%') error = ValueError('fmt has wrong number of %% formats: %s' % fmt) if n_fmt_chars == 1: if iscomplex_X: fmt = [' (%s+%sj)' % (fmt, fmt), ] * ncol else: fmt = [fmt, ] * ncol format = delimiter.join(fmt) elif iscomplex_X and n_fmt_chars != (2 * ncol): raise error elif ((not iscomplex_X) and n_fmt_chars != ncol): raise error else: format = fmt else: raise ValueError('invalid fmt: %r' % (fmt,)) if len(header) > 0: header = header.replace('\n', '\n' + comments) fh.write(asbytes(comments + header + newline)) if iscomplex_X: for row in X: row2 = [] for number in row: row2.append(number.real) row2.append(number.imag) fh.write(asbytes(format % tuple(row2) + newline)) else: for row in X: try: fh.write(asbytes(format % tuple(row) + newline)) except TypeError: raise TypeError("Mismatch between array dtype ('%s') and " "format specifier ('%s')" % (str(X.dtype), format)) if len(footer) > 0: footer = footer.replace('\n', '\n' + comments) fh.write(asbytes(comments + footer + newline)) finally: if own_fh: fh.close() def fromregex(file, regexp, dtype): """ Construct an array from a text file, using regular expression parsing. The returned array is always a structured array, and is constructed from all matches of the regular expression in the file. Groups in the regular expression are converted to fields of the structured array. Parameters ---------- file : str or file File name or file object to read. regexp : str or regexp Regular expression used to parse the file. Groups in the regular expression correspond to fields in the dtype. dtype : dtype or list of dtypes Dtype for the structured array. Returns ------- output : ndarray The output array, containing the part of the content of `file` that was matched by `regexp`. `output` is always a structured array. Raises ------ TypeError When `dtype` is not a valid dtype for a structured array. See Also -------- fromstring, loadtxt Notes ----- Dtypes for structured arrays can be specified in several forms, but all forms specify at least the data type and field name. For details see `doc.structured_arrays`. Examples -------- >>> f = open('test.dat', 'w') >>> f.write("1312 foo\\n1534 bar\\n444 qux") >>> f.close() >>> regexp = r"(\\d+)\\s+(...)" # match [digits, whitespace, anything] >>> output = np.fromregex('test.dat', regexp, ... [('num', np.int64), ('key', 'S3')]) >>> output array([(1312L, 'foo'), (1534L, 'bar'), (444L, 'qux')], dtype=[('num', '<i8'), ('key', '|S3')]) >>> output['num'] array([1312, 1534, 444], dtype=int64) """ own_fh = False if not hasattr(file, "read"): file = open(file, 'rb') own_fh = True try: if not hasattr(regexp, 'match'): regexp = re.compile(asbytes(regexp)) if not isinstance(dtype, np.dtype): dtype = np.dtype(dtype) seq = regexp.findall(file.read()) if seq and not isinstance(seq[0], tuple): # Only one group is in the regexp. # Create the new array as a single data-type and then # re-interpret as a single-field structured array. newdtype = np.dtype(dtype[dtype.names[0]]) output = np.array(seq, dtype=newdtype) output.dtype = dtype else: output = np.array(seq, dtype=dtype) return output finally: if own_fh: file.close() #####-------------------------------------------------------------------------- #---- --- ASCII functions --- #####-------------------------------------------------------------------------- def genfromtxt(fname, dtype=float, comments='#', delimiter=None, skip_header=0, skip_footer=0, converters=None, missing_values=None, filling_values=None, usecols=None, names=None, excludelist=None, deletechars=None, replace_space='_', autostrip=False, case_sensitive=True, defaultfmt="f%i", unpack=None, usemask=False, loose=True, invalid_raise=True, max_rows=None): """ Load data from a text file, with missing values handled as specified. Each line past the first `skip_header` lines is split at the `delimiter` character, and characters following the `comments` character are discarded. Parameters ---------- fname : file or str File, filename, or generator to read. If the filename extension is `.gz` or `.bz2`, the file is first decompressed. Note that generators must return byte strings in Python 3k. dtype : dtype, optional Data type of the resulting array. If None, the dtypes will be determined by the contents of each column, individually. comments : str, optional The character used to indicate the start of a comment. All the characters occurring on a line after a comment are discarded delimiter : str, int, or sequence, optional The string used to separate values. By default, any consecutive whitespaces act as delimiter. An integer or sequence of integers can also be provided as width(s) of each field. skiprows : int, optional `skiprows` was removed in numpy 1.10. Please use `skip_header` instead. skip_header : int, optional The number of lines to skip at the beginning of the file. skip_footer : int, optional The number of lines to skip at the end of the file. converters : variable, optional The set of functions that convert the data of a column to a value. The converters can also be used to provide a default value for missing data: ``converters = {3: lambda s: float(s or 0)}``. missing : variable, optional `missing` was removed in numpy 1.10. Please use `missing_values` instead. missing_values : variable, optional The set of strings corresponding to missing data. filling_values : variable, optional The set of values to be used as default when the data are missing. usecols : sequence, optional Which columns to read, with 0 being the first. For example, ``usecols = (1, 4, 5)`` will extract the 2nd, 5th and 6th columns. names : {None, True, str, sequence}, optional If `names` is True, the field names are read from the first valid line after the first `skip_header` lines. If `names` is a sequence or a single-string of comma-separated names, the names will be used to define the field names in a structured dtype. If `names` is None, the names of the dtype fields will be used, if any. excludelist : sequence, optional A list of names to exclude. This list is appended to the default list ['return','file','print']. Excluded names are appended an underscore: for example, `file` would become `file_`. deletechars : str, optional A string combining invalid characters that must be deleted from the names. defaultfmt : str, optional A format used to define default field names, such as "f%i" or "f_%02i". autostrip : bool, optional Whether to automatically strip white spaces from the variables. replace_space : char, optional Character(s) used in replacement of white spaces in the variables names. By default, use a '_'. case_sensitive : {True, False, 'upper', 'lower'}, optional If True, field names are case sensitive. If False or 'upper', field names are converted to upper case. If 'lower', field names are converted to lower case. unpack : bool, optional If True, the returned array is transposed, so that arguments may be unpacked using ``x, y, z = loadtxt(...)`` usemask : bool, optional If True, return a masked array. If False, return a regular array. loose : bool, optional If True, do not raise errors for invalid values. invalid_raise : bool, optional If True, an exception is raised if an inconsistency is detected in the number of columns. If False, a warning is emitted and the offending lines are skipped. max_rows : int, optional The maximum number of rows to read. Must not be used with skip_footer at the same time. If given, the value must be at least 1. Default is to read the entire file. .. versionadded:: 1.10.0 Returns ------- out : ndarray Data read from the text file. If `usemask` is True, this is a masked array. See Also -------- numpy.loadtxt : equivalent function when no data is missing. Notes ----- * When spaces are used as delimiters, or when no delimiter has been given as input, there should not be any missing data between two fields. * When the variables are named (either by a flexible dtype or with `names`, there must not be any header in the file (else a ValueError exception is raised). * Individual values are not stripped of spaces by default. When using a custom converter, make sure the function does remove spaces. References ---------- .. [1] Numpy User Guide, section `I/O with Numpy <http://docs.scipy.org/doc/numpy/user/basics.io.genfromtxt.html>`_. Examples --------- >>> from io import StringIO >>> import numpy as np Comma delimited file with mixed dtype >>> s = StringIO("1,1.3,abcde") >>> data = np.genfromtxt(s, dtype=[('myint','i8'),('myfloat','f8'), ... ('mystring','S5')], delimiter=",") >>> data array((1, 1.3, 'abcde'), dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) Using dtype = None >>> s.seek(0) # needed for StringIO example only >>> data = np.genfromtxt(s, dtype=None, ... names = ['myint','myfloat','mystring'], delimiter=",") >>> data array((1, 1.3, 'abcde'), dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) Specifying dtype and names >>> s.seek(0) >>> data = np.genfromtxt(s, dtype="i8,f8,S5", ... names=['myint','myfloat','mystring'], delimiter=",") >>> data array((1, 1.3, 'abcde'), dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) An example with fixed-width columns >>> s = StringIO("11.3abcde") >>> data = np.genfromtxt(s, dtype=None, names=['intvar','fltvar','strvar'], ... delimiter=[1,3,5]) >>> data array((1, 1.3, 'abcde'), dtype=[('intvar', '<i8'), ('fltvar', '<f8'), ('strvar', '|S5')]) """ if max_rows is not None: if skip_footer: raise ValueError( "The keywords 'skip_footer' and 'max_rows' can not be " "specified at the same time.") if max_rows < 1: raise ValueError("'max_rows' must be at least 1.") # Py3 data conversions to bytes, for convenience if comments is not None: comments = asbytes(comments) if isinstance(delimiter, unicode): delimiter = asbytes(delimiter) if isinstance(missing_values, (unicode, list, tuple)): missing_values = asbytes_nested(missing_values) # if usemask: from numpy.ma import MaskedArray, make_mask_descr # Check the input dictionary of converters user_converters = converters or {} if not isinstance(user_converters, dict): raise TypeError( "The input argument 'converter' should be a valid dictionary " "(got '%s' instead)" % type(user_converters)) # Initialize the filehandle, the LineSplitter and the NameValidator own_fhd = False try: if isinstance(fname, basestring): if sys.version_info[0] == 2: fhd = iter(np.lib._datasource.open(fname, 'rbU')) else: fhd = iter(np.lib._datasource.open(fname, 'rb')) own_fhd = True else: fhd = iter(fname) except TypeError: raise TypeError( "fname must be a string, filehandle, or generator. " "(got %s instead)" % type(fname)) split_line = LineSplitter(delimiter=delimiter, comments=comments, autostrip=autostrip)._handyman validate_names = NameValidator(excludelist=excludelist, deletechars=deletechars, case_sensitive=case_sensitive, replace_space=replace_space) # Skip the first `skip_header` rows for i in range(skip_header): next(fhd) # Keep on until we find the first valid values first_values = None try: while not first_values: first_line = next(fhd) if names is True: if comments in first_line: first_line = ( asbytes('').join(first_line.split(comments)[1:])) first_values = split_line(first_line) except StopIteration: # return an empty array if the datafile is empty first_line = asbytes('') first_values = [] warnings.warn('genfromtxt: Empty input file: "%s"' % fname) # Should we take the first values as names ? if names is True: fval = first_values[0].strip() if fval in comments: del first_values[0] # Check the columns to use: make sure `usecols` is a list if usecols is not None: try: usecols = [_.strip() for _ in usecols.split(",")] except AttributeError: try: usecols = list(usecols) except TypeError: usecols = [usecols, ] nbcols = len(usecols or first_values) # Check the names and overwrite the dtype.names if needed if names is True: names = validate_names([_bytes_to_name(_.strip()) for _ in first_values]) first_line = asbytes('') elif _is_string_like(names): names = validate_names([_.strip() for _ in names.split(',')]) elif names: names = validate_names(names) # Get the dtype if dtype is not None: dtype = easy_dtype(dtype, defaultfmt=defaultfmt, names=names, excludelist=excludelist, deletechars=deletechars, case_sensitive=case_sensitive, replace_space=replace_space) # Make sure the names is a list (for 2.5) if names is not None: names = list(names) if usecols: for (i, current) in enumerate(usecols): # if usecols is a list of names, convert to a list of indices if _is_string_like(current): usecols[i] = names.index(current) elif current < 0: usecols[i] = current + len(first_values) # If the dtype is not None, make sure we update it if (dtype is not None) and (len(dtype) > nbcols): descr = dtype.descr dtype = np.dtype([descr[_] for _ in usecols]) names = list(dtype.names) # If `names` is not None, update the names elif (names is not None) and (len(names) > nbcols): names = [names[_] for _ in usecols] elif (names is not None) and (dtype is not None): names = list(dtype.names) # Process the missing values ............................... # Rename missing_values for convenience user_missing_values = missing_values or () # Define the list of missing_values (one column: one list) missing_values = [list([asbytes('')]) for _ in range(nbcols)] # We have a dictionary: process it field by field if isinstance(user_missing_values, dict): # Loop on the items for (key, val) in user_missing_values.items(): # Is the key a string ? if _is_string_like(key): try: # Transform it into an integer key = names.index(key) except ValueError: # We couldn't find it: the name must have been dropped continue # Redefine the key as needed if it's a column number if usecols: try: key = usecols.index(key) except ValueError: pass # Transform the value as a list of string if isinstance(val, (list, tuple)): val = [str(_) for _ in val] else: val = [str(val), ] # Add the value(s) to the current list of missing if key is None: # None acts as default for miss in missing_values: miss.extend(val) else: missing_values[key].extend(val) # We have a sequence : each item matches a column elif isinstance(user_missing_values, (list, tuple)): for (value, entry) in zip(user_missing_values, missing_values): value = str(value) if value not in entry: entry.append(value) # We have a string : apply it to all entries elif isinstance(user_missing_values, bytes): user_value = user_missing_values.split(asbytes(",")) for entry in missing_values: entry.extend(user_value) # We have something else: apply it to all entries else: for entry in missing_values: entry.extend([str(user_missing_values)]) # Process the filling_values ............................... # Rename the input for convenience user_filling_values = filling_values if user_filling_values is None: user_filling_values = [] # Define the default filling_values = [None] * nbcols # We have a dictionary : update each entry individually if isinstance(user_filling_values, dict): for (key, val) in user_filling_values.items(): if _is_string_like(key): try: # Transform it into an integer key = names.index(key) except ValueError: # We couldn't find it: the name must have been dropped, continue # Redefine the key if it's a column number and usecols is defined if usecols: try: key = usecols.index(key) except ValueError: pass # Add the value to the list filling_values[key] = val # We have a sequence : update on a one-to-one basis elif isinstance(user_filling_values, (list, tuple)): n = len(user_filling_values) if (n <= nbcols): filling_values[:n] = user_filling_values else: filling_values = user_filling_values[:nbcols] # We have something else : use it for all entries else: filling_values = [user_filling_values] * nbcols # Initialize the converters ................................ if dtype is None: # Note: we can't use a [...]*nbcols, as we would have 3 times the same # ... converter, instead of 3 different converters. converters = [StringConverter(None, missing_values=miss, default=fill) for (miss, fill) in zip(missing_values, filling_values)] else: dtype_flat = flatten_dtype(dtype, flatten_base=True) # Initialize the converters if len(dtype_flat) > 1: # Flexible type : get a converter from each dtype zipit = zip(dtype_flat, missing_values, filling_values) converters = [StringConverter(dt, locked=True, missing_values=miss, default=fill) for (dt, miss, fill) in zipit] else: # Set to a default converter (but w/ different missing values) zipit = zip(missing_values, filling_values) converters = [StringConverter(dtype, locked=True, missing_values=miss, default=fill) for (miss, fill) in zipit] # Update the converters to use the user-defined ones uc_update = [] for (j, conv) in user_converters.items(): # If the converter is specified by column names, use the index instead if _is_string_like(j): try: j = names.index(j) i = j except ValueError: continue elif usecols: try: i = usecols.index(j) except ValueError: # Unused converter specified continue else: i = j # Find the value to test - first_line is not filtered by usecols: if len(first_line): testing_value = first_values[j] else: testing_value = None converters[i].update(conv, locked=True, testing_value=testing_value, default=filling_values[i], missing_values=missing_values[i],) uc_update.append((i, conv)) # Make sure we have the corrected keys in user_converters... user_converters.update(uc_update) # Fixme: possible error as following variable never used. #miss_chars = [_.missing_values for _ in converters] # Initialize the output lists ... # ... rows rows = [] append_to_rows = rows.append # ... masks if usemask: masks = [] append_to_masks = masks.append # ... invalid invalid = [] append_to_invalid = invalid.append # Parse each line for (i, line) in enumerate(itertools.chain([first_line, ], fhd)): values = split_line(line) nbvalues = len(values) # Skip an empty line if nbvalues == 0: continue if usecols: # Select only the columns we need try: values = [values[_] for _ in usecols] except IndexError: append_to_invalid((i + skip_header + 1, nbvalues)) continue elif nbvalues != nbcols: append_to_invalid((i + skip_header + 1, nbvalues)) continue # Store the values append_to_rows(tuple(values)) if usemask: append_to_masks(tuple([v.strip() in m for (v, m) in zip(values, missing_values)])) if len(rows) == max_rows: break if own_fhd: fhd.close() # Upgrade the converters (if needed) if dtype is None: for (i, converter) in enumerate(converters): current_column = [itemgetter(i)(_m) for _m in rows] try: converter.iterupgrade(current_column) except ConverterLockError: errmsg = "Converter #%i is locked and cannot be upgraded: " % i current_column = map(itemgetter(i), rows) for (j, value) in enumerate(current_column): try: converter.upgrade(value) except (ConverterError, ValueError): errmsg += "(occurred line #%i for value '%s')" errmsg %= (j + 1 + skip_header, value) raise ConverterError(errmsg) # Check that we don't have invalid values nbinvalid = len(invalid) if nbinvalid > 0: nbrows = len(rows) + nbinvalid - skip_footer # Construct the error message template = " Line #%%i (got %%i columns instead of %i)" % nbcols if skip_footer > 0: nbinvalid_skipped = len([_ for _ in invalid if _[0] > nbrows + skip_header]) invalid = invalid[:nbinvalid - nbinvalid_skipped] skip_footer -= nbinvalid_skipped # # nbrows -= skip_footer # errmsg = [template % (i, nb) # for (i, nb) in invalid if i < nbrows] # else: errmsg = [template % (i, nb) for (i, nb) in invalid] if len(errmsg): errmsg.insert(0, "Some errors were detected !") errmsg = "\n".join(errmsg) # Raise an exception ? if invalid_raise: raise ValueError(errmsg) # Issue a warning ? else: warnings.warn(errmsg, ConversionWarning) # Strip the last skip_footer data if skip_footer > 0: rows = rows[:-skip_footer] if usemask: masks = masks[:-skip_footer] # Convert each value according to the converter: # We want to modify the list in place to avoid creating a new one... if loose: rows = list( zip(*[[conv._loose_call(_r) for _r in map(itemgetter(i), rows)] for (i, conv) in enumerate(converters)])) else: rows = list( zip(*[[conv._strict_call(_r) for _r in map(itemgetter(i), rows)] for (i, conv) in enumerate(converters)])) # Reset the dtype data = rows if dtype is None: # Get the dtypes from the types of the converters column_types = [conv.type for conv in converters] # Find the columns with strings... strcolidx = [i for (i, v) in enumerate(column_types) if v in (type('S'), np.string_)] # ... and take the largest number of chars. for i in strcolidx: column_types[i] = "|S%i" % max(len(row[i]) for row in data) # if names is None: # If the dtype is uniform, don't define names, else use '' base = set([c.type for c in converters if c._checked]) if len(base) == 1: (ddtype, mdtype) = (list(base)[0], np.bool) else: ddtype = [(defaultfmt % i, dt) for (i, dt) in enumerate(column_types)] if usemask: mdtype = [(defaultfmt % i, np.bool) for (i, dt) in enumerate(column_types)] else: ddtype = list(zip(names, column_types)) mdtype = list(zip(names, [np.bool] * len(column_types))) output = np.array(data, dtype=ddtype) if usemask: outputmask = np.array(masks, dtype=mdtype) else: # Overwrite the initial dtype names if needed if names and dtype.names: dtype.names = names # Case 1. We have a structured type if len(dtype_flat) > 1: # Nested dtype, eg [('a', int), ('b', [('b0', int), ('b1', 'f4')])] # First, create the array using a flattened dtype: # [('a', int), ('b1', int), ('b2', float)] # Then, view the array using the specified dtype. if 'O' in (_.char for _ in dtype_flat): if has_nested_fields(dtype): raise NotImplementedError( "Nested fields involving objects are not supported...") else: output = np.array(data, dtype=dtype) else: rows = np.array(data, dtype=[('', _) for _ in dtype_flat]) output = rows.view(dtype) # Now, process the rowmasks the same way if usemask: rowmasks = np.array( masks, dtype=np.dtype([('', np.bool) for t in dtype_flat])) # Construct the new dtype mdtype = make_mask_descr(dtype) outputmask = rowmasks.view(mdtype) # Case #2. We have a basic dtype else: # We used some user-defined converters if user_converters: ishomogeneous = True descr = [] for i, ttype in enumerate([conv.type for conv in converters]): # Keep the dtype of the current converter if i in user_converters: ishomogeneous &= (ttype == dtype.type) if ttype == np.string_: ttype = "|S%i" % max(len(row[i]) for row in data) descr.append(('', ttype)) else: descr.append(('', dtype)) # So we changed the dtype ? if not ishomogeneous: # We have more than one field if len(descr) > 1: dtype = np.dtype(descr) # We have only one field: drop the name if not needed. else: dtype = np.dtype(ttype) # output = np.array(data, dtype) if usemask: if dtype.names: mdtype = [(_, np.bool) for _ in dtype.names] else: mdtype = np.bool outputmask = np.array(masks, dtype=mdtype) # Try to take care of the missing data we missed names = output.dtype.names if usemask and names: for (name, conv) in zip(names or (), converters): missing_values = [conv(_) for _ in conv.missing_values if _ != asbytes('')] for mval in missing_values: outputmask[name] |= (output[name] == mval) # Construct the final array if usemask: output = output.view(MaskedArray) output._mask = outputmask if unpack: return output.squeeze().T return output.squeeze() def ndfromtxt(fname, **kwargs): """ Load ASCII data stored in a file and return it as a single array. Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function. """ kwargs['usemask'] = False return genfromtxt(fname, **kwargs) def mafromtxt(fname, **kwargs): """ Load ASCII data stored in a text file and return a masked array. Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function to load ASCII data. """ kwargs['usemask'] = True return genfromtxt(fname, **kwargs) def recfromtxt(fname, **kwargs): """ Load ASCII data from a file and return it in a record array. If ``usemask=False`` a standard `recarray` is returned, if ``usemask=True`` a MaskedRecords array is returned. Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function Notes ----- By default, `dtype` is None, which means that the data-type of the output array will be determined from the data. """ kwargs.setdefault("dtype", None) usemask = kwargs.get('usemask', False) output = genfromtxt(fname, **kwargs) if usemask: from numpy.ma.mrecords import MaskedRecords output = output.view(MaskedRecords) else: output = output.view(np.recarray) return output def recfromcsv(fname, **kwargs): """ Load ASCII data stored in a comma-separated file. The returned array is a record array (if ``usemask=False``, see `recarray`) or a masked record array (if ``usemask=True``, see `ma.mrecords.MaskedRecords`). Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function to load ASCII data. Notes ----- By default, `dtype` is None, which means that the data-type of the output array will be determined from the data. """ # Set default kwargs for genfromtxt as relevant to csv import. kwargs.setdefault("case_sensitive", "lower") kwargs.setdefault("names", True) kwargs.setdefault("delimiter", ",") kwargs.setdefault("dtype", None) output = genfromtxt(fname, **kwargs) usemask = kwargs.get("usemask", False) if usemask: from numpy.ma.mrecords import MaskedRecords output = output.view(MaskedRecords) else: output = output.view(np.recarray) return output
mit
kysolvik/reservoir-id
reservoir-id/classifier_train.py
1
6974
#!/usr/bin/env python """ Train random forest classifier Inputs: CSV from build_att_table, small area cutoff Outputs: Packaged up Random Forest model @authors: Kylen Solvik Date Create: 3/17/17 """ # Load libraries import pandas as pd from sklearn import model_selection from sklearn import preprocessing from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from sklearn.metrics import accuracy_score from sklearn.externals import joblib from sklearn.cross_validation import train_test_split from sklearn.grid_search import GridSearchCV from sklearn.cross_validation import * import numpy as np import sys import argparse import os import xgboost as xgb # Parse arguments parser = argparse.ArgumentParser(description='Train Random Forest classifier.', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('prop_csv', help='Path to attribute table (from build_att_table.py).', type=str) parser.add_argument('xgb_pkl', help='Path to save random forest model as .pkl.', type=str) parser.add_argument('--area_lowbound', help='Lower area bound. All regions <= in size will be ignored', default=2, type=int) parser.add_argument('--path_prefix', help='To be placed at beginnings of all other path args', type=str,default='') args = parser.parse_args() def select_training_obs(full_csv_path): """Takes full csv and selects only the training observations. Writes out to csv for further use""" training_csv_path = full_csv_path.replace('.csv','_trainonly.csv') if not os.path.isfile(training_csv_path): dataset = pd.read_csv(full_csv_path,header=0) training_dataset = dataset.loc[dataset['class'] > 0] training_dataset.to_csv(training_csv_path,header=True,index=False) return(training_csv_path) def main(): # Set any attributes to exclude for this run exclude_att_patterns = [] # Load dataset training_csv = select_training_obs(args.path_prefix + args.prop_csv) dataset = pd.read_csv(training_csv,header=0) dataset_acut = dataset.loc[dataset['area'] > args.area_lowbound] # Exclude attributes matching user input patterns, or if they are all nans exclude_atts = [] for pattern in exclude_att_patterns: col_list = [col for col in dataset_acut.columns if pattern in col] exclude_atts.extend(col_list) for att in dataset.columns[1:]: if sum(np.isfinite(dataset[att])) == 0: exclude_atts.append(att) for att in list(set(exclude_atts)): del dataset_acut[att] (ds_y,ds_x) = dataset_acut.shape print(ds_y,ds_x) # Convert dataset to array feature_names = dataset_acut.columns[2:] array = dataset_acut.values X = array[:,2:ds_x].astype(float) Y = array[:,1].astype(int) Y = Y-1 # Convert from 1s and 2s to 0-1 # Set nans to 0 X = np.nan_to_num(X) # Separate test data test_size = 0.2 seed = 5 X_train, X_test, Y_train, Y_test = model_selection.train_test_split( X, Y, test_size=test_size, random_state=seed) # Convert data to xgboost matrices d_train = xgb.DMatrix(X_train,label=Y_train) # d_test = xgb.DMatrix(X_test,label=Y_test) #---------------------------------------------------------------------- # Paramater tuning # Step 1: Find approximate n_estimators to use early_stop_rounds = 40 n_folds = 5 xgb_model = xgb.XGBClassifier( learning_rate =0.1, n_estimators=1000, max_depth=5, min_child_weight=1, gamma=0, subsample=0.8, colsample_bytree=0.8, objective= 'binary:logistic', seed=27) xgb_params = xgb_model.get_xgb_params() cvresult = xgb.cv(xgb_params, d_train, num_boost_round=xgb_params['n_estimators'], nfold=n_folds, metrics='auc', early_stopping_rounds=early_stop_rounds, ) n_est_best = (cvresult.shape[0] - early_stop_rounds) print('Best number of rounds = {}'.format(n_est_best)) # Step 2: Tune hyperparameters xgb_model = xgb.XGBClassifier() params = {'max_depth': range(5,10,2), 'learning_rate': [0.1], 'gamma':[0,0.5,1], 'silent': [1], 'objective': ['binary:logistic'], 'n_estimators' : [n_est_best], 'subsample' : [0.7, 0.8,1], 'min_child_weight' : range(1,4,2), 'colsample_bytree':[0.7,0.8,1], } clf = GridSearchCV(xgb_model,params,n_jobs = 1, cv = StratifiedKFold(Y_train, n_folds=5, shuffle=True), scoring = 'roc_auc', verbose = 2, refit = True) clf.fit(X_train,Y_train) best_parameters,score,_ = max(clf.grid_scores_,key=lambda x: x[1]) print('Raw AUC score:',score) for param_name in sorted(best_parameters.keys()): print("%s: %r" % (param_name, best_parameters[param_name])) # Step 3: Decrease learning rate and up the # of trees #xgb_finalcv = XGBClassifier() tuned_params = clf.best_params_ tuned_params['n_estimators'] = 10000 tuned_params['learning_rate'] = 0.01 cvresult = xgb.cv(tuned_params, d_train, num_boost_round=tuned_params['n_estimators'], nfold=n_folds, metrics='auc', early_stopping_rounds=early_stop_rounds, ) # Train model with cv results and predict on test set For test accuracy n_est_final = int((cvresult.shape[0] - early_stop_rounds) / (1 - 1 / n_folds)) tuned_params['n_estimators'] = n_est_final print(tuned_params) xgb_train = xgb.XGBClassifier() xgb_train.set_params(**tuned_params) xgb_train.fit(X_train,Y_train) bst_preds = xgb_train.predict(X_test) print("Xgboost Test acc = " + str(accuracy_score(Y_test, bst_preds))) print(confusion_matrix(Y_test, bst_preds)) print(classification_report(Y_test, bst_preds)) # Export cv classifier joblib.dump(cvresult, args.path_prefix + args.xgb_pkl + 'cv') # Export classifier trained on full data set xgb_full = xgb.XGBClassifier() xgb_full.set_params(**tuned_params) xgb_full.fit(X,Y) joblib.dump(xgb_full, args.path_prefix + args.xgb_pkl) if __name__ == '__main__': main()
gpl-3.0
nburn42/tensorflow
tensorflow/examples/learn/text_classification_character_cnn.py
33
5463
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Example of using convolutional networks over characters for DBpedia dataset. This model is similar to one described in this paper: "Character-level Convolutional Networks for Text Classification" http://arxiv.org/abs/1509.01626 and is somewhat alternative to the Lua code from here: https://github.com/zhangxiangxiao/Crepe """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import sys import numpy as np import pandas import tensorflow as tf FLAGS = None MAX_DOCUMENT_LENGTH = 100 N_FILTERS = 10 FILTER_SHAPE1 = [20, 256] FILTER_SHAPE2 = [20, N_FILTERS] POOLING_WINDOW = 4 POOLING_STRIDE = 2 MAX_LABEL = 15 CHARS_FEATURE = 'chars' # Name of the input character feature. def char_cnn_model(features, labels, mode): """Character level convolutional neural network model to predict classes.""" features_onehot = tf.one_hot(features[CHARS_FEATURE], 256) input_layer = tf.reshape( features_onehot, [-1, MAX_DOCUMENT_LENGTH, 256, 1]) with tf.variable_scope('CNN_Layer1'): # Apply Convolution filtering on input sequence. conv1 = tf.layers.conv2d( input_layer, filters=N_FILTERS, kernel_size=FILTER_SHAPE1, padding='VALID', # Add a ReLU for non linearity. activation=tf.nn.relu) # Max pooling across output of Convolution+Relu. pool1 = tf.layers.max_pooling2d( conv1, pool_size=POOLING_WINDOW, strides=POOLING_STRIDE, padding='SAME') # Transpose matrix so that n_filters from convolution becomes width. pool1 = tf.transpose(pool1, [0, 1, 3, 2]) with tf.variable_scope('CNN_Layer2'): # Second level of convolution filtering. conv2 = tf.layers.conv2d( pool1, filters=N_FILTERS, kernel_size=FILTER_SHAPE2, padding='VALID') # Max across each filter to get useful features for classification. pool2 = tf.squeeze(tf.reduce_max(conv2, 1), squeeze_dims=[1]) # Apply regular WX + B and classification. logits = tf.layers.dense(pool2, MAX_LABEL, activation=None) predicted_classes = tf.argmax(logits, 1) if mode == tf.estimator.ModeKeys.PREDICT: return tf.estimator.EstimatorSpec( mode=mode, predictions={ 'class': predicted_classes, 'prob': tf.nn.softmax(logits) }) loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits) if mode == tf.estimator.ModeKeys.TRAIN: optimizer = tf.train.AdamOptimizer(learning_rate=0.01) train_op = optimizer.minimize(loss, global_step=tf.train.get_global_step()) return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op) eval_metric_ops = { 'accuracy': tf.metrics.accuracy( labels=labels, predictions=predicted_classes) } return tf.estimator.EstimatorSpec( mode=mode, loss=loss, eval_metric_ops=eval_metric_ops) def main(unused_argv): tf.logging.set_verbosity(tf.logging.INFO) # Prepare training and testing data dbpedia = tf.contrib.learn.datasets.load_dataset( 'dbpedia', test_with_fake_data=FLAGS.test_with_fake_data, size='large') x_train = pandas.DataFrame(dbpedia.train.data)[1] y_train = pandas.Series(dbpedia.train.target) x_test = pandas.DataFrame(dbpedia.test.data)[1] y_test = pandas.Series(dbpedia.test.target) # Process vocabulary char_processor = tf.contrib.learn.preprocessing.ByteProcessor( MAX_DOCUMENT_LENGTH) x_train = np.array(list(char_processor.fit_transform(x_train))) x_test = np.array(list(char_processor.transform(x_test))) x_train = x_train.reshape([-1, MAX_DOCUMENT_LENGTH, 1, 1]) x_test = x_test.reshape([-1, MAX_DOCUMENT_LENGTH, 1, 1]) # Build model classifier = tf.estimator.Estimator(model_fn=char_cnn_model) # Train. train_input_fn = tf.estimator.inputs.numpy_input_fn( x={CHARS_FEATURE: x_train}, y=y_train, batch_size=128, num_epochs=None, shuffle=True) classifier.train(input_fn=train_input_fn, steps=100) # Predict. test_input_fn = tf.estimator.inputs.numpy_input_fn( x={CHARS_FEATURE: x_test}, y=y_test, num_epochs=1, shuffle=False) predictions = classifier.predict(input_fn=test_input_fn) y_predicted = np.array(list(p['class'] for p in predictions)) y_predicted = y_predicted.reshape(np.array(y_test).shape) # Score with tensorflow. scores = classifier.evaluate(input_fn=test_input_fn) print('Accuracy: {0:f}'.format(scores['accuracy'])) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--test_with_fake_data', default=False, help='Test the example code with fake data.', action='store_true') FLAGS, unparsed = parser.parse_known_args() tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
apache-2.0
Evervolv/android_external_chromium_org
ppapi/native_client/tests/breakpad_crash_test/crash_dump_tester.py
154
8545
#!/usr/bin/python # Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import os import subprocess import sys import tempfile import time script_dir = os.path.dirname(__file__) sys.path.append(os.path.join(script_dir, '../../tools/browser_tester')) import browser_tester import browsertester.browserlauncher # This script extends browser_tester to check for the presence of # Breakpad crash dumps. # This reads a file of lines containing 'key:value' pairs. # The file contains entries like the following: # plat:Win32 # prod:Chromium # ptype:nacl-loader # rept:crash svc def ReadDumpTxtFile(filename): dump_info = {} fh = open(filename, 'r') for line in fh: if ':' in line: key, value = line.rstrip().split(':', 1) dump_info[key] = value fh.close() return dump_info def StartCrashService(browser_path, dumps_dir, windows_pipe_name, cleanup_funcs, crash_service_exe, skip_if_missing=False): # Find crash_service.exe relative to chrome.exe. This is a bit icky. browser_dir = os.path.dirname(browser_path) crash_service_path = os.path.join(browser_dir, crash_service_exe) if skip_if_missing and not os.path.exists(crash_service_path): return proc = subprocess.Popen([crash_service_path, '--v=1', # Verbose output for debugging failures '--dumps-dir=%s' % dumps_dir, '--pipe-name=%s' % windows_pipe_name]) def Cleanup(): # Note that if the process has already exited, this will raise # an 'Access is denied' WindowsError exception, but # crash_service.exe is not supposed to do this and such # behaviour should make the test fail. proc.terminate() status = proc.wait() sys.stdout.write('crash_dump_tester: %s exited with status %s\n' % (crash_service_exe, status)) cleanup_funcs.append(Cleanup) def ListPathsInDir(dir_path): if os.path.exists(dir_path): return [os.path.join(dir_path, name) for name in os.listdir(dir_path)] else: return [] def GetDumpFiles(dumps_dirs): all_files = [filename for dumps_dir in dumps_dirs for filename in ListPathsInDir(dumps_dir)] sys.stdout.write('crash_dump_tester: Found %i files\n' % len(all_files)) for dump_file in all_files: sys.stdout.write(' %s (size %i)\n' % (dump_file, os.stat(dump_file).st_size)) return [dump_file for dump_file in all_files if dump_file.endswith('.dmp')] def Main(cleanup_funcs): parser = browser_tester.BuildArgParser() parser.add_option('--expected_crash_dumps', dest='expected_crash_dumps', type=int, default=0, help='The number of crash dumps that we should expect') parser.add_option('--expected_process_type_for_crash', dest='expected_process_type_for_crash', type=str, default='nacl-loader', help='The type of Chromium process that we expect the ' 'crash dump to be for') # Ideally we would just query the OS here to find out whether we are # running x86-32 or x86-64 Windows, but Python's win32api module # does not contain a wrapper for GetNativeSystemInfo(), which is # what NaCl uses to check this, or for IsWow64Process(), which is # what Chromium uses. Instead, we just rely on the build system to # tell us. parser.add_option('--win64', dest='win64', action='store_true', help='Pass this if we are running tests for x86-64 Windows') options, args = parser.parse_args() temp_dir = tempfile.mkdtemp(prefix='nacl_crash_dump_tester_') def CleanUpTempDir(): browsertester.browserlauncher.RemoveDirectory(temp_dir) cleanup_funcs.append(CleanUpTempDir) # To get a guaranteed unique pipe name, use the base name of the # directory we just created. windows_pipe_name = r'\\.\pipe\%s_crash_service' % os.path.basename(temp_dir) # This environment variable enables Breakpad crash dumping in # non-official builds of Chromium. os.environ['CHROME_HEADLESS'] = '1' if sys.platform == 'win32': dumps_dir = temp_dir # Override the default (global) Windows pipe name that Chromium will # use for out-of-process crash reporting. os.environ['CHROME_BREAKPAD_PIPE_NAME'] = windows_pipe_name # Launch the x86-32 crash service so that we can handle crashes in # the browser process. StartCrashService(options.browser_path, dumps_dir, windows_pipe_name, cleanup_funcs, 'crash_service.exe') if options.win64: # Launch the x86-64 crash service so that we can handle crashes # in the NaCl loader process (nacl64.exe). # Skip if missing, since in win64 builds crash_service.exe is 64-bit # and crash_service64.exe does not exist. StartCrashService(options.browser_path, dumps_dir, windows_pipe_name, cleanup_funcs, 'crash_service64.exe', skip_if_missing=True) # We add a delay because there is probably a race condition: # crash_service.exe might not have finished doing # CreateNamedPipe() before NaCl does a crash dump and tries to # connect to that pipe. # TODO(mseaborn): We could change crash_service.exe to report when # it has successfully created the named pipe. time.sleep(1) elif sys.platform == 'darwin': dumps_dir = temp_dir os.environ['BREAKPAD_DUMP_LOCATION'] = dumps_dir elif sys.platform.startswith('linux'): # The "--user-data-dir" option is not effective for the Breakpad # setup in Linux Chromium, because Breakpad is initialized before # "--user-data-dir" is read. So we set HOME to redirect the crash # dumps to a temporary directory. home_dir = temp_dir os.environ['HOME'] = home_dir options.enable_crash_reporter = True result = browser_tester.Run(options.url, options) # Find crash dump results. if sys.platform.startswith('linux'): # Look in "~/.config/*/Crash Reports". This will find crash # reports under ~/.config/chromium or ~/.config/google-chrome, or # under other subdirectories in case the branding is changed. dumps_dirs = [os.path.join(path, 'Crash Reports') for path in ListPathsInDir(os.path.join(home_dir, '.config'))] else: dumps_dirs = [dumps_dir] dmp_files = GetDumpFiles(dumps_dirs) failed = False msg = ('crash_dump_tester: ERROR: Got %i crash dumps but expected %i\n' % (len(dmp_files), options.expected_crash_dumps)) if len(dmp_files) != options.expected_crash_dumps: sys.stdout.write(msg) failed = True for dump_file in dmp_files: # Sanity check: Make sure dumping did not fail after opening the file. msg = 'crash_dump_tester: ERROR: Dump file is empty\n' if os.stat(dump_file).st_size == 0: sys.stdout.write(msg) failed = True # On Windows, the crash dumps should come in pairs of a .dmp and # .txt file. if sys.platform == 'win32': second_file = dump_file[:-4] + '.txt' msg = ('crash_dump_tester: ERROR: File %r is missing a corresponding ' '%r file\n' % (dump_file, second_file)) if not os.path.exists(second_file): sys.stdout.write(msg) failed = True continue # Check that the crash dump comes from the NaCl process. dump_info = ReadDumpTxtFile(second_file) if 'ptype' in dump_info: msg = ('crash_dump_tester: ERROR: Unexpected ptype value: %r != %r\n' % (dump_info['ptype'], options.expected_process_type_for_crash)) if dump_info['ptype'] != options.expected_process_type_for_crash: sys.stdout.write(msg) failed = True else: sys.stdout.write('crash_dump_tester: ERROR: Missing ptype field\n') failed = True # TODO(mseaborn): Ideally we would also check that a backtrace # containing an expected function name can be extracted from the # crash dump. if failed: sys.stdout.write('crash_dump_tester: FAILED\n') result = 1 else: sys.stdout.write('crash_dump_tester: PASSED\n') return result def MainWrapper(): cleanup_funcs = [] try: return Main(cleanup_funcs) finally: for func in cleanup_funcs: func() if __name__ == '__main__': sys.exit(MainWrapper())
bsd-3-clause
DrSkippy/Gravitational-Three-Body-Symmetric
sim_pendulum.py
1
1975
#!/usr/bin/env python import csv import sys import numpy as np import pandas as pd import matplotlib.pyplot as plt plt.style.use('ggplot') # arg 1 = w init # arg 2 = n periods # arg 3 = n ratio # time step dt = np.float64(0.00010) # constants L_0 = np.float64(1.0) # unstretched length g = np.float64(9.81) # gravitation n = np.float64(sys.argv[3]) K_over_M = (n*n - 1)*g/L_0 # initial conditions theta = np.float64(0) L = L_0 + g/K_over_M # equilibrium length with gravity # 2mgl = 1/2 m l^2 w^2 w_sep = np.sqrt(4.*g/L) w_0 = np.float64(sys.argv[1]) w = w_0 # v_l_0 = 0 v_l = v_l_0 # periods T_p = 2.*np.pi/np.sqrt(g/L) T_k = 2.*np.pi/np.sqrt(K_over_M) # record some stuff print "Tp = {} T/dt = {}".format(T_p, T_p/dt) print "Tk = {} T/dt = {}".format(T_k, T_k/dt) print "Tk/Tp = {}".format(T_k/T_p) print "w_esc = {}".format(w_sep) t = np.float64(0.0) theta_last = theta # keep some records data = [] t_s = [] theta += w*dt/2. L += v_l*dt/2. for i in range(int(sys.argv[2])*int(T_p/dt)): w += -dt*g*np.sin(theta)/L v_l += -K_over_M*(L-L_0) + g*np.cos(theta) + w*w*L theta += w*dt theta = np.fmod(theta, 2.*np.pi) L += v_l*dt t += dt data.append([t, theta, w, L, v_l]) if theta_last < 0 and theta > 0: t_s.append(t) theta_last = theta # periods by measure t_s = [t_s[i] - t_s[i-1] for i in range(1,len(t_s)) ] print "avg period = {} std periods = {}".format(np.average(t_s), np.std(t_s)) # plots df = pd.DataFrame().from_records(data) df.columns = ["t", "theta", "omega", "l", "v_l"] df.set_index("t") ax = df.plot(kind="scatter", x="theta", y="omega", marker=".") fig = ax.get_figure() fig.savefig("phase1.png") ax = df.plot(kind="scatter", x="l", y="v_l", marker=".") fig = ax.get_figure() fig.savefig("phase2.png") # config space df["y_c"] = -df["l"] df["x_c"] = df["l"] * np.sin(df["theta"]) ax = df.plot(kind="scatter", x="x_c", y="y_c", marker=".") fig = ax.get_figure() fig.savefig("config.png")
cc0-1.0
brian-o/CS-CourseWork
CS491/Program2/testForks.py
1
2677
############################################################ ''' testForks.py Written by: Brian O'Dell, Spetember 2017 A program to run each program a 500 times per thread count. Then uses the data collected to make graphs and tables that are useful to evaluate the programs running time. ''' ############################################################ from subprocess import * from numba import jit import numpy as np import csv as csv import pandas as pd from pandas.plotting import table import matplotlib.pyplot as plt ''' Call the C program multiple times with variable arguments to gather data The name of the executable should exist before running ''' @jit def doCount(name): j = 0 while (j < 1025): for i in range(0,501): call([name,"-t",str(j), "-w"]) if (j == 0): j = 1 else: j = 2*j; ''' Turn the data into something meaningful. Takes all the data gets the average and standard deviation for each number of threads. Then plots a graph based on it. Also, makes a csv with the avg and stddev ''' @jit def exportData(name): DF = pd.read_csv("data/"+name+".csv") f = {'ExecTime':['mean','std']} #group by the number of threads in the csv and #apply the mean and standard deviation functions to the groups avgDF = DF.groupby('NumThreads').agg(f) avgTable = DF.groupby('NumThreads', as_index=False).agg(f) #When the data csv was saved we used 0 to indicate serial execution #this was so the rows would be in numerical order instead of Alphabetical #Now rename index 0 to Serial to be an accurate representation indexList = avgDF.index.tolist() indexList[0] = 'Serial' avgDF.index = indexList #make the bar chart and set the axes avgPlot = avgDF.plot(kind='bar', title=('Run Times Using '+ name), legend='False', figsize=(15,8)) avgPlot.set_xlabel("Number of Forks") avgPlot.set_ylabel("Run Time (seconds)") #put the data values on top of the bars for clarity avgPlot.legend(['mean','std deviation']) for p in avgPlot.patches: avgPlot.annotate((str(p.get_height())[:6]), (p.get_x()-.01, p.get_height()), fontsize=9) #save the files we need plt.savefig('data/'+name+'Graph.png') avgTable.to_csv('data/'+name+'Table.csv', index=False, encoding='utf-8') def main(): doCount("./forkedSemaphor") doCount("./forkedPrivateCount") doCount("./forkedPrivateCount32") exportData("forkedSemaphor") exportData("forkedPrivateCount") exportData("forkedPrivateCount32") if __name__ == '__main__': main()
gpl-3.0
gfyoung/pandas
pandas/tests/io/pytables/test_complex.py
1
6374
from warnings import catch_warnings import numpy as np import pytest import pandas.util._test_decorators as td import pandas as pd from pandas import DataFrame, Series import pandas._testing as tm from pandas.tests.io.pytables.common import ensure_clean_path, ensure_clean_store from pandas.io.pytables import read_hdf # TODO(ArrayManager) HDFStore relies on accessing the blocks pytestmark = td.skip_array_manager_not_yet_implemented def test_complex_fixed(setup_path): df = DataFrame( np.random.rand(4, 5).astype(np.complex64), index=list("abcd"), columns=list("ABCDE"), ) with ensure_clean_path(setup_path) as path: df.to_hdf(path, "df") reread = read_hdf(path, "df") tm.assert_frame_equal(df, reread) df = DataFrame( np.random.rand(4, 5).astype(np.complex128), index=list("abcd"), columns=list("ABCDE"), ) with ensure_clean_path(setup_path) as path: df.to_hdf(path, "df") reread = read_hdf(path, "df") tm.assert_frame_equal(df, reread) def test_complex_table(setup_path): df = DataFrame( np.random.rand(4, 5).astype(np.complex64), index=list("abcd"), columns=list("ABCDE"), ) with ensure_clean_path(setup_path) as path: df.to_hdf(path, "df", format="table") reread = read_hdf(path, "df") tm.assert_frame_equal(df, reread) df = DataFrame( np.random.rand(4, 5).astype(np.complex128), index=list("abcd"), columns=list("ABCDE"), ) with ensure_clean_path(setup_path) as path: df.to_hdf(path, "df", format="table", mode="w") reread = read_hdf(path, "df") tm.assert_frame_equal(df, reread) def test_complex_mixed_fixed(setup_path): complex64 = np.array( [1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j], dtype=np.complex64 ) complex128 = np.array( [1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j], dtype=np.complex128 ) df = DataFrame( { "A": [1, 2, 3, 4], "B": ["a", "b", "c", "d"], "C": complex64, "D": complex128, "E": [1.0, 2.0, 3.0, 4.0], }, index=list("abcd"), ) with ensure_clean_path(setup_path) as path: df.to_hdf(path, "df") reread = read_hdf(path, "df") tm.assert_frame_equal(df, reread) def test_complex_mixed_table(setup_path): complex64 = np.array( [1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j], dtype=np.complex64 ) complex128 = np.array( [1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j], dtype=np.complex128 ) df = DataFrame( { "A": [1, 2, 3, 4], "B": ["a", "b", "c", "d"], "C": complex64, "D": complex128, "E": [1.0, 2.0, 3.0, 4.0], }, index=list("abcd"), ) with ensure_clean_store(setup_path) as store: store.append("df", df, data_columns=["A", "B"]) result = store.select("df", where="A>2") tm.assert_frame_equal(df.loc[df.A > 2], result) with ensure_clean_path(setup_path) as path: df.to_hdf(path, "df", format="table") reread = read_hdf(path, "df") tm.assert_frame_equal(df, reread) def test_complex_across_dimensions_fixed(setup_path): with catch_warnings(record=True): complex128 = np.array([1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j]) s = Series(complex128, index=list("abcd")) df = DataFrame({"A": s, "B": s}) objs = [s, df] comps = [tm.assert_series_equal, tm.assert_frame_equal] for obj, comp in zip(objs, comps): with ensure_clean_path(setup_path) as path: obj.to_hdf(path, "obj", format="fixed") reread = read_hdf(path, "obj") comp(obj, reread) def test_complex_across_dimensions(setup_path): complex128 = np.array([1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j]) s = Series(complex128, index=list("abcd")) df = DataFrame({"A": s, "B": s}) with catch_warnings(record=True): objs = [df] comps = [tm.assert_frame_equal] for obj, comp in zip(objs, comps): with ensure_clean_path(setup_path) as path: obj.to_hdf(path, "obj", format="table") reread = read_hdf(path, "obj") comp(obj, reread) def test_complex_indexing_error(setup_path): complex128 = np.array( [1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j], dtype=np.complex128 ) df = DataFrame( {"A": [1, 2, 3, 4], "B": ["a", "b", "c", "d"], "C": complex128}, index=list("abcd"), ) msg = ( "Columns containing complex values can be stored " "but cannot be indexed when using table format. " "Either use fixed format, set index=False, " "or do not include the columns containing complex " "values to data_columns when initializing the table." ) with ensure_clean_store(setup_path) as store: with pytest.raises(TypeError, match=msg): store.append("df", df, data_columns=["C"]) def test_complex_series_error(setup_path): complex128 = np.array([1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j]) s = Series(complex128, index=list("abcd")) msg = ( "Columns containing complex values can be stored " "but cannot be indexed when using table format. " "Either use fixed format, set index=False, " "or do not include the columns containing complex " "values to data_columns when initializing the table." ) with ensure_clean_path(setup_path) as path: with pytest.raises(TypeError, match=msg): s.to_hdf(path, "obj", format="t") with ensure_clean_path(setup_path) as path: s.to_hdf(path, "obj", format="t", index=False) reread = read_hdf(path, "obj") tm.assert_series_equal(s, reread) def test_complex_append(setup_path): df = DataFrame( {"a": np.random.randn(100).astype(np.complex128), "b": np.random.randn(100)} ) with ensure_clean_store(setup_path) as store: store.append("df", df, data_columns=["b"]) store.append("df", df) result = store.select("df") tm.assert_frame_equal(pd.concat([df, df], 0), result)
bsd-3-clause
edxnercel/edx-platform
.pycharm_helpers/pydev/pydev_ipython/inputhook.py
52
18411
# coding: utf-8 """ Inputhook management for GUI event loop integration. """ #----------------------------------------------------------------------------- # Copyright (C) 2008-2011 The IPython Development Team # # Distributed under the terms of the BSD License. The full license is in # the file COPYING, distributed as part of this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- import sys import select #----------------------------------------------------------------------------- # Constants #----------------------------------------------------------------------------- # Constants for identifying the GUI toolkits. GUI_WX = 'wx' GUI_QT = 'qt' GUI_QT4 = 'qt4' GUI_GTK = 'gtk' GUI_TK = 'tk' GUI_OSX = 'osx' GUI_GLUT = 'glut' GUI_PYGLET = 'pyglet' GUI_GTK3 = 'gtk3' GUI_NONE = 'none' # i.e. disable #----------------------------------------------------------------------------- # Utilities #----------------------------------------------------------------------------- def ignore_CTRL_C(): """Ignore CTRL+C (not implemented).""" pass def allow_CTRL_C(): """Take CTRL+C into account (not implemented).""" pass #----------------------------------------------------------------------------- # Main InputHookManager class #----------------------------------------------------------------------------- class InputHookManager(object): """Manage PyOS_InputHook for different GUI toolkits. This class installs various hooks under ``PyOSInputHook`` to handle GUI event loop integration. """ def __init__(self): self._return_control_callback = None self._apps = {} self._reset() self.pyplot_imported = False def _reset(self): self._callback_pyfunctype = None self._callback = None self._current_gui = None def set_return_control_callback(self, return_control_callback): self._return_control_callback = return_control_callback def get_return_control_callback(self): return self._return_control_callback def return_control(self): return self._return_control_callback() def get_inputhook(self): return self._callback def set_inputhook(self, callback): """Set inputhook to callback.""" # We don't (in the context of PyDev console) actually set PyOS_InputHook, but rather # while waiting for input on xmlrpc we run this code self._callback = callback def clear_inputhook(self, app=None): """Clear input hook. Parameters ---------- app : optional, ignored This parameter is allowed only so that clear_inputhook() can be called with a similar interface as all the ``enable_*`` methods. But the actual value of the parameter is ignored. This uniform interface makes it easier to have user-level entry points in the main IPython app like :meth:`enable_gui`.""" self._reset() def clear_app_refs(self, gui=None): """Clear IPython's internal reference to an application instance. Whenever we create an app for a user on qt4 or wx, we hold a reference to the app. This is needed because in some cases bad things can happen if a user doesn't hold a reference themselves. This method is provided to clear the references we are holding. Parameters ---------- gui : None or str If None, clear all app references. If ('wx', 'qt4') clear the app for that toolkit. References are not held for gtk or tk as those toolkits don't have the notion of an app. """ if gui is None: self._apps = {} elif gui in self._apps: del self._apps[gui] def enable_wx(self, app=None): """Enable event loop integration with wxPython. Parameters ---------- app : WX Application, optional. Running application to use. If not given, we probe WX for an existing application object, and create a new one if none is found. Notes ----- This methods sets the ``PyOS_InputHook`` for wxPython, which allows the wxPython to integrate with terminal based applications like IPython. If ``app`` is not given we probe for an existing one, and return it if found. If no existing app is found, we create an :class:`wx.App` as follows:: import wx app = wx.App(redirect=False, clearSigInt=False) """ import wx from distutils.version import LooseVersion as V wx_version = V(wx.__version__).version if wx_version < [2, 8]: raise ValueError("requires wxPython >= 2.8, but you have %s" % wx.__version__) from pydev_ipython.inputhookwx import inputhook_wx self.set_inputhook(inputhook_wx) self._current_gui = GUI_WX if app is None: app = wx.GetApp() if app is None: app = wx.App(redirect=False, clearSigInt=False) app._in_event_loop = True self._apps[GUI_WX] = app return app def disable_wx(self): """Disable event loop integration with wxPython. This merely sets PyOS_InputHook to NULL. """ if GUI_WX in self._apps: self._apps[GUI_WX]._in_event_loop = False self.clear_inputhook() def enable_qt4(self, app=None): """Enable event loop integration with PyQt4. Parameters ---------- app : Qt Application, optional. Running application to use. If not given, we probe Qt for an existing application object, and create a new one if none is found. Notes ----- This methods sets the PyOS_InputHook for PyQt4, which allows the PyQt4 to integrate with terminal based applications like IPython. If ``app`` is not given we probe for an existing one, and return it if found. If no existing app is found, we create an :class:`QApplication` as follows:: from PyQt4 import QtCore app = QtGui.QApplication(sys.argv) """ from pydev_ipython.inputhookqt4 import create_inputhook_qt4 app, inputhook_qt4 = create_inputhook_qt4(self, app) self.set_inputhook(inputhook_qt4) self._current_gui = GUI_QT4 app._in_event_loop = True self._apps[GUI_QT4] = app return app def disable_qt4(self): """Disable event loop integration with PyQt4. This merely sets PyOS_InputHook to NULL. """ if GUI_QT4 in self._apps: self._apps[GUI_QT4]._in_event_loop = False self.clear_inputhook() def enable_gtk(self, app=None): """Enable event loop integration with PyGTK. Parameters ---------- app : ignored Ignored, it's only a placeholder to keep the call signature of all gui activation methods consistent, which simplifies the logic of supporting magics. Notes ----- This methods sets the PyOS_InputHook for PyGTK, which allows the PyGTK to integrate with terminal based applications like IPython. """ from pydev_ipython.inputhookgtk import create_inputhook_gtk self.set_inputhook(create_inputhook_gtk(self._stdin_file)) self._current_gui = GUI_GTK def disable_gtk(self): """Disable event loop integration with PyGTK. This merely sets PyOS_InputHook to NULL. """ self.clear_inputhook() def enable_tk(self, app=None): """Enable event loop integration with Tk. Parameters ---------- app : toplevel :class:`Tkinter.Tk` widget, optional. Running toplevel widget to use. If not given, we probe Tk for an existing one, and create a new one if none is found. Notes ----- If you have already created a :class:`Tkinter.Tk` object, the only thing done by this method is to register with the :class:`InputHookManager`, since creating that object automatically sets ``PyOS_InputHook``. """ self._current_gui = GUI_TK if app is None: try: import Tkinter as _TK except: # Python 3 import tkinter as _TK app = _TK.Tk() app.withdraw() self._apps[GUI_TK] = app from pydev_ipython.inputhooktk import create_inputhook_tk self.set_inputhook(create_inputhook_tk(app)) return app def disable_tk(self): """Disable event loop integration with Tkinter. This merely sets PyOS_InputHook to NULL. """ self.clear_inputhook() def enable_glut(self, app=None): """ Enable event loop integration with GLUT. Parameters ---------- app : ignored Ignored, it's only a placeholder to keep the call signature of all gui activation methods consistent, which simplifies the logic of supporting magics. Notes ----- This methods sets the PyOS_InputHook for GLUT, which allows the GLUT to integrate with terminal based applications like IPython. Due to GLUT limitations, it is currently not possible to start the event loop without first creating a window. You should thus not create another window but use instead the created one. See 'gui-glut.py' in the docs/examples/lib directory. The default screen mode is set to: glut.GLUT_DOUBLE | glut.GLUT_RGBA | glut.GLUT_DEPTH """ import OpenGL.GLUT as glut from pydev_ipython.inputhookglut import glut_display_mode, \ glut_close, glut_display, \ glut_idle, inputhook_glut if GUI_GLUT not in self._apps: glut.glutInit(sys.argv) glut.glutInitDisplayMode(glut_display_mode) # This is specific to freeglut if bool(glut.glutSetOption): glut.glutSetOption(glut.GLUT_ACTION_ON_WINDOW_CLOSE, glut.GLUT_ACTION_GLUTMAINLOOP_RETURNS) glut.glutCreateWindow(sys.argv[0]) glut.glutReshapeWindow(1, 1) glut.glutHideWindow() glut.glutWMCloseFunc(glut_close) glut.glutDisplayFunc(glut_display) glut.glutIdleFunc(glut_idle) else: glut.glutWMCloseFunc(glut_close) glut.glutDisplayFunc(glut_display) glut.glutIdleFunc(glut_idle) self.set_inputhook(inputhook_glut) self._current_gui = GUI_GLUT self._apps[GUI_GLUT] = True def disable_glut(self): """Disable event loop integration with glut. This sets PyOS_InputHook to NULL and set the display function to a dummy one and set the timer to a dummy timer that will be triggered very far in the future. """ import OpenGL.GLUT as glut from glut_support import glutMainLoopEvent # @UnresolvedImport glut.glutHideWindow() # This is an event to be processed below glutMainLoopEvent() self.clear_inputhook() def enable_pyglet(self, app=None): """Enable event loop integration with pyglet. Parameters ---------- app : ignored Ignored, it's only a placeholder to keep the call signature of all gui activation methods consistent, which simplifies the logic of supporting magics. Notes ----- This methods sets the ``PyOS_InputHook`` for pyglet, which allows pyglet to integrate with terminal based applications like IPython. """ from pydev_ipython.inputhookpyglet import inputhook_pyglet self.set_inputhook(inputhook_pyglet) self._current_gui = GUI_PYGLET return app def disable_pyglet(self): """Disable event loop integration with pyglet. This merely sets PyOS_InputHook to NULL. """ self.clear_inputhook() def enable_gtk3(self, app=None): """Enable event loop integration with Gtk3 (gir bindings). Parameters ---------- app : ignored Ignored, it's only a placeholder to keep the call signature of all gui activation methods consistent, which simplifies the logic of supporting magics. Notes ----- This methods sets the PyOS_InputHook for Gtk3, which allows the Gtk3 to integrate with terminal based applications like IPython. """ from pydev_ipython.inputhookgtk3 import create_inputhook_gtk3 self.set_inputhook(create_inputhook_gtk3(self._stdin_file)) self._current_gui = GUI_GTK def disable_gtk3(self): """Disable event loop integration with PyGTK. This merely sets PyOS_InputHook to NULL. """ self.clear_inputhook() def enable_mac(self, app=None): """ Enable event loop integration with MacOSX. We call function pyplot.pause, which updates and displays active figure during pause. It's not MacOSX-specific, but it enables to avoid inputhooks in native MacOSX backend. Also we shouldn't import pyplot, until user does it. Cause it's possible to choose backend before importing pyplot for the first time only. """ def inputhook_mac(app=None): if self.pyplot_imported: pyplot = sys.modules['matplotlib.pyplot'] try: pyplot.pause(0.01) except: pass else: if 'matplotlib.pyplot' in sys.modules: self.pyplot_imported = True self.set_inputhook(inputhook_mac) self._current_gui = GUI_OSX def disable_mac(self): self.clear_inputhook() def current_gui(self): """Return a string indicating the currently active GUI or None.""" return self._current_gui inputhook_manager = InputHookManager() enable_wx = inputhook_manager.enable_wx disable_wx = inputhook_manager.disable_wx enable_qt4 = inputhook_manager.enable_qt4 disable_qt4 = inputhook_manager.disable_qt4 enable_gtk = inputhook_manager.enable_gtk disable_gtk = inputhook_manager.disable_gtk enable_tk = inputhook_manager.enable_tk disable_tk = inputhook_manager.disable_tk enable_glut = inputhook_manager.enable_glut disable_glut = inputhook_manager.disable_glut enable_pyglet = inputhook_manager.enable_pyglet disable_pyglet = inputhook_manager.disable_pyglet enable_gtk3 = inputhook_manager.enable_gtk3 disable_gtk3 = inputhook_manager.disable_gtk3 enable_mac = inputhook_manager.enable_mac disable_mac = inputhook_manager.disable_mac clear_inputhook = inputhook_manager.clear_inputhook set_inputhook = inputhook_manager.set_inputhook current_gui = inputhook_manager.current_gui clear_app_refs = inputhook_manager.clear_app_refs # We maintain this as stdin_ready so that the individual inputhooks # can diverge as little as possible from their IPython sources stdin_ready = inputhook_manager.return_control set_return_control_callback = inputhook_manager.set_return_control_callback get_return_control_callback = inputhook_manager.get_return_control_callback get_inputhook = inputhook_manager.get_inputhook # Convenience function to switch amongst them def enable_gui(gui=None, app=None): """Switch amongst GUI input hooks by name. This is just a utility wrapper around the methods of the InputHookManager object. Parameters ---------- gui : optional, string or None If None (or 'none'), clears input hook, otherwise it must be one of the recognized GUI names (see ``GUI_*`` constants in module). app : optional, existing application object. For toolkits that have the concept of a global app, you can supply an existing one. If not given, the toolkit will be probed for one, and if none is found, a new one will be created. Note that GTK does not have this concept, and passing an app if ``gui=="GTK"`` will raise an error. Returns ------- The output of the underlying gui switch routine, typically the actual PyOS_InputHook wrapper object or the GUI toolkit app created, if there was one. """ if get_return_control_callback() is None: raise ValueError("A return_control_callback must be supplied as a reference before a gui can be enabled") guis = {GUI_NONE: clear_inputhook, GUI_OSX: enable_mac, GUI_TK: enable_tk, GUI_GTK: enable_gtk, GUI_WX: enable_wx, GUI_QT: enable_qt4, # qt3 not supported GUI_QT4: enable_qt4, GUI_GLUT: enable_glut, GUI_PYGLET: enable_pyglet, GUI_GTK3: enable_gtk3, } try: gui_hook = guis[gui] except KeyError: if gui is None or gui == '': gui_hook = clear_inputhook else: e = "Invalid GUI request %r, valid ones are:%s" % (gui, guis.keys()) raise ValueError(e) return gui_hook(app) __all__ = [ "GUI_WX", "GUI_QT", "GUI_QT4", "GUI_GTK", "GUI_TK", "GUI_OSX", "GUI_GLUT", "GUI_PYGLET", "GUI_GTK3", "GUI_NONE", "ignore_CTRL_C", "allow_CTRL_C", "InputHookManager", "inputhook_manager", "enable_wx", "disable_wx", "enable_qt4", "disable_qt4", "enable_gtk", "disable_gtk", "enable_tk", "disable_tk", "enable_glut", "disable_glut", "enable_pyglet", "disable_pyglet", "enable_gtk3", "disable_gtk3", "enable_mac", "disable_mac", "clear_inputhook", "set_inputhook", "current_gui", "clear_app_refs", "stdin_ready", "set_return_control_callback", "get_return_control_callback", "get_inputhook", "enable_gui"]
agpl-3.0
tcarmelveilleux/IcarusAltimeter
Analysis/altitude_analysis.py
1
1202
# -*- coding: utf-8 -*- """ Created on Tue Jul 14 19:34:31 2015 @author: Tennessee """ import numpy as np import matplotlib.pyplot as plt def altitude(atm_hpa, sea_level_hpa): return 44330 * (1.0 - np.power(atm_hpa / sea_level_hpa, 0.1903)) def plot_alt(): default_msl = 101300.0 pressure = np.linspace(97772.58 / 100.0, 79495.0 / 100.0, 2000) alt_nominal = altitude(pressure, default_msl) - altitude(97772.58 / 100.0, default_msl) alt_too_high = altitude(pressure, default_msl + (1000 / 100.0)) - altitude(97772.58 / 100.0, default_msl + (1000 / 100.0)) alt_too_low = altitude(pressure, default_msl - (1000 / 100.0)) - altitude(97772.58 / 100.0, default_msl - (1000 / 100.0)) f1 = plt.figure() ax = f1.gca() ax.plot(pressure, alt_nominal, "b-", label="nom") ax.plot(pressure, alt_too_high, "r-", label="high") ax.plot(pressure, alt_too_low, "g-", label="low") ax.legend() f1.show() f2 = plt.figure() ax = f2.gca() ax.plot(pressure, alt_too_high - alt_nominal, "r-", label="high") ax.plot(pressure, alt_too_low - alt_nominal, "g-", label="low") ax.legend() f2.show()
mit
harmslab/epistasis
docs/conf.py
2
10687
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # epistasis documentation build configuration file, created by # sphinx-quickstart on Thu Jul 7 15:47:18 2016. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import os import sys # Import sphinx gallery sys.path.insert(0, os.path.abspath('sphinxext')) import sphinx_gallery # importing modules with weird dependencies try: from mock import Mock as MagicMock except ImportError: from unittest.mock import MagicMock class Mock(MagicMock): @classmethod def __getattr__(cls, name): return Mock() MOCK_MODULES = [ 'ipython', 'ipywidgets', 'jupyter', 'notebook', 'Cython.Build', 'emcee', 'pandas' ] try: sys.modules.update((mod_name, Mock()) for mod_name in MOCK_MODULES) except RecursionError: pass highlight_language = "python3" # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.mathjax', 'sphinx.ext.napoleon', 'sphinx_gallery.gen_gallery' ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = 'epistasis' copyright = '2016, Zach Sailer' author = 'Zach Sailer' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '0.1' # The full version, including alpha/beta/rc tags. release = '0.1' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'default' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'alabaster' # 'sphinx_rtd_theme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. # "<project> v<release> documentation" by default. #html_title = 'epistasis v0.1' # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (relative to this directory) to use as a favicon of # the docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not None, a 'Last updated on:' timestamp is inserted at every page # bottom, using the given strftime format. # The empty string is equivalent to '%b %d, %Y'. #html_last_updated_fmt = None # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Language to be used for generating the HTML full-text search index. # Sphinx supports the following languages: # 'da', 'de', 'en', 'es', 'fi', 'fr', 'h', 'it', 'ja' # 'nl', 'no', 'pt', 'ro', 'r', 'sv', 'tr', 'zh' #html_search_language = 'en' # A dictionary with options for the search language support, empty by default. # 'ja' uses this config value. # 'zh' user can custom change `jieba` dictionary path. #html_search_options = {'type': 'default'} # The name of a javascript file (relative to the configuration directory) that # implements a search results scorer. If empty, the default will be used. #html_search_scorer = 'scorer.js' # Output file base name for HTML help builder. htmlhelp_basename = 'epistasisdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', # Latex figure (float) alignment #'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'epistasis.tex', 'epistasis Documentation', 'Zach Sailer', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'epistasis', 'epistasis Documentation', [author], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'epistasis', 'epistasis Documentation', author, 'epistasis', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False # Napoleon settings napoleon_google_docstring = False napoleon_numpy_docstring = True napoleon_include_private_with_doc = False napoleon_include_special_with_doc = True napoleon_use_admonition_for_examples = True napoleon_use_admonition_for_notes = False napoleon_use_admonition_for_references = False napoleon_use_ivar = False napoleon_use_param = True napoleon_use_rtype = True # ------------------------- Sphinx Gallery ------------------------ # Sphinx gallery conf sphinx_gallery_conf = { # path to your examples scripts 'examples_dirs' : '../examples', # path where to save gallery generated examples 'gallery_dirs' : 'gallery', 'backreferences_dir': 'generated/modules', 'download_section_examples' : False, 'reference_url': { 'epistasis': None, }, } plot_gallery = 'True'
unlicense
iamkingmaker/zipline
zipline/utils/test_utils.py
8
9150
from contextlib import contextmanager from itertools import ( product, ) from logbook import FileHandler from mock import patch from numpy.testing import assert_array_equal import operator from zipline.finance.blotter import ORDER_STATUS from zipline.utils import security_list from six import ( itervalues, ) from six.moves import filter import os import pandas as pd import shutil import tempfile EPOCH = pd.Timestamp(0, tz='UTC') def seconds_to_timestamp(seconds): return pd.Timestamp(seconds, unit='s', tz='UTC') def to_utc(time_str): """Convert a string in US/Eastern time to UTC""" return pd.Timestamp(time_str, tz='US/Eastern').tz_convert('UTC') def str_to_seconds(s): """ Convert a pandas-intelligible string to (integer) seconds since UTC. >>> from pandas import Timestamp >>> (Timestamp('2014-01-01') - Timestamp(0)).total_seconds() 1388534400.0 >>> str_to_seconds('2014-01-01') 1388534400 """ return int((pd.Timestamp(s, tz='UTC') - EPOCH).total_seconds()) def setup_logger(test, path='test.log'): test.log_handler = FileHandler(path) test.log_handler.push_application() def teardown_logger(test): test.log_handler.pop_application() test.log_handler.close() def drain_zipline(test, zipline): output = [] transaction_count = 0 msg_counter = 0 # start the simulation for update in zipline: msg_counter += 1 output.append(update) if 'daily_perf' in update: transaction_count += \ len(update['daily_perf']['transactions']) return output, transaction_count def assert_single_position(test, zipline): output, transaction_count = drain_zipline(test, zipline) if 'expected_transactions' in test.zipline_test_config: test.assertEqual( test.zipline_test_config['expected_transactions'], transaction_count ) else: test.assertEqual( test.zipline_test_config['order_count'], transaction_count ) # the final message is the risk report, the second to # last is the final day's results. Positions is a list of # dicts. closing_positions = output[-2]['daily_perf']['positions'] # confirm that all orders were filled. # iterate over the output updates, overwriting # orders when they are updated. Then check the status on all. orders_by_id = {} for update in output: if 'daily_perf' in update: if 'orders' in update['daily_perf']: for order in update['daily_perf']['orders']: orders_by_id[order['id']] = order for order in itervalues(orders_by_id): test.assertEqual( order['status'], ORDER_STATUS.FILLED, "") test.assertEqual( len(closing_positions), 1, "Portfolio should have one position." ) sid = test.zipline_test_config['sid'] test.assertEqual( closing_positions[0]['sid'], sid, "Portfolio should have one position in " + str(sid) ) return output, transaction_count class ExceptionSource(object): def __init__(self): pass def get_hash(self): return "ExceptionSource" def __iter__(self): return self def next(self): 5 / 0 def __next__(self): 5 / 0 @contextmanager def security_list_copy(): old_dir = security_list.SECURITY_LISTS_DIR new_dir = tempfile.mkdtemp() try: for subdir in os.listdir(old_dir): shutil.copytree(os.path.join(old_dir, subdir), os.path.join(new_dir, subdir)) with patch.object(security_list, 'SECURITY_LISTS_DIR', new_dir), \ patch.object(security_list, 'using_copy', True, create=True): yield finally: shutil.rmtree(new_dir, True) def add_security_data(adds, deletes): if not hasattr(security_list, 'using_copy'): raise Exception('add_security_data must be used within ' 'security_list_copy context') directory = os.path.join( security_list.SECURITY_LISTS_DIR, "leveraged_etf_list/20150127/20150125" ) if not os.path.exists(directory): os.makedirs(directory) del_path = os.path.join(directory, "delete") with open(del_path, 'w') as f: for sym in deletes: f.write(sym) f.write('\n') add_path = os.path.join(directory, "add") with open(add_path, 'w') as f: for sym in adds: f.write(sym) f.write('\n') def all_pairs_matching_predicate(values, pred): """ Return an iterator of all pairs, (v0, v1) from values such that `pred(v0, v1) == True` Parameters ---------- values : iterable pred : function Returns ------- pairs_iterator : generator Generator yielding pairs matching `pred`. Examples -------- >>> from zipline.utils.test_utils import all_pairs_matching_predicate >>> from operator import eq, lt >>> list(all_pairs_matching_predicate(range(5), eq)) [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)] >>> list(all_pairs_matching_predicate("abcd", lt)) [('a', 'b'), ('a', 'c'), ('a', 'd'), ('b', 'c'), ('b', 'd'), ('c', 'd')] """ return filter(lambda pair: pred(*pair), product(values, repeat=2)) def product_upper_triangle(values, include_diagonal=False): """ Return an iterator over pairs, (v0, v1), drawn from values. If `include_diagonal` is True, returns all pairs such that v0 <= v1. If `include_diagonal` is False, returns all pairs such that v0 < v1. """ return all_pairs_matching_predicate( values, operator.le if include_diagonal else operator.lt, ) def all_subindices(index): """ Return all valid sub-indices of a pandas Index. """ return ( index[start:stop] for start, stop in product_upper_triangle(range(len(index) + 1)) ) def make_rotating_asset_info(num_assets, first_start, frequency, periods_between_starts, asset_lifetime): """ Create a DataFrame representing lifetimes of assets that are constantly rotating in and out of existence. Parameters ---------- num_assets : int How many assets to create. first_start : pd.Timestamp The start date for the first asset. frequency : str or pd.tseries.offsets.Offset (e.g. trading_day) Frequency used to interpret next two arguments. periods_between_starts : int Create a new asset every `frequency` * `periods_between_new` asset_lifetime : int Each asset exists for `frequency` * `asset_lifetime` days. Returns ------- info : pd.DataFrame DataFrame representing newly-created assets. """ return pd.DataFrame( { 'sid': range(num_assets), 'symbol': [chr(ord('A') + i) for i in range(num_assets)], 'asset_type': ['equity'] * num_assets, # Start a new asset every `periods_between_starts` days. 'start_date': pd.date_range( first_start, freq=(periods_between_starts * frequency), periods=num_assets, ), # Each asset lasts for `asset_lifetime` days. 'end_date': pd.date_range( first_start + (asset_lifetime * frequency), freq=(periods_between_starts * frequency), periods=num_assets, ), 'exchange': 'TEST', } ) def make_simple_asset_info(assets, start_date, end_date, symbols=None): """ Create a DataFrame representing assets that exist for the full duration between `start_date` and `end_date`. Parameters ---------- assets : array-like start_date : pd.DatetimeIndex end_date : pd.DatetimeIndex symbols : list, optional Symbols to use for the assets. If not provided, symbols are generated from upper-case letters. Returns ------- info : pd.DataFrame DataFrame representing newly-created assets. """ num_assets = len(assets) if symbols is None: symbols = [chr(ord('A') + i) for i in range(num_assets)] return pd.DataFrame( { 'sid': assets, 'symbol': symbols, 'asset_type': ['equity'] * num_assets, 'start_date': [start_date] * num_assets, 'end_date': [end_date] * num_assets, 'exchange': 'TEST', } ) def check_arrays(left, right, err_msg='', verbose=True): """ Wrapper around np.assert_array_equal that also verifies that inputs are ndarrays. See Also -------- np.assert_array_equal """ if type(left) != type(right): raise AssertionError("%s != %s" % (type(left), type(right))) return assert_array_equal(left, right, err_msg=err_msg, verbose=True)
apache-2.0
jeremyclover/airflow
airflow/hooks/base_hook.py
20
1812
from builtins import object import logging import os import random from airflow import settings from airflow.models import Connection from airflow.utils import AirflowException CONN_ENV_PREFIX = 'AIRFLOW_CONN_' class BaseHook(object): """ Abstract base class for hooks, hooks are meant as an interface to interact with external systems. MySqlHook, HiveHook, PigHook return object that can handle the connection and interaction to specific instances of these systems, and expose consistent methods to interact with them. """ def __init__(self, source): pass @classmethod def get_connections(cls, conn_id): session = settings.Session() db = ( session.query(Connection) .filter(Connection.conn_id == conn_id) .all() ) if not db: raise AirflowException( "The conn_id `{0}` isn't defined".format(conn_id)) session.expunge_all() session.close() return db @classmethod def get_connection(cls, conn_id): environment_uri = os.environ.get(CONN_ENV_PREFIX + conn_id.upper()) conn = None if environment_uri: conn = Connection(uri=environment_uri) else: conn = random.choice(cls.get_connections(conn_id)) if conn.host: logging.info("Using connection to: " + conn.host) return conn @classmethod def get_hook(cls, conn_id): connection = cls.get_connection(conn_id) return connection.get_hook() def get_conn(self): raise NotImplemented() def get_records(self, sql): raise NotImplemented() def get_pandas_df(self, sql): raise NotImplemented() def run(self, sql): raise NotImplemented()
apache-2.0
PatrickOReilly/scikit-learn
examples/plot_johnson_lindenstrauss_bound.py
67
7474
r""" ===================================================================== The Johnson-Lindenstrauss bound for embedding with random projections ===================================================================== The `Johnson-Lindenstrauss lemma`_ states that any high dimensional dataset can be randomly projected into a lower dimensional Euclidean space while controlling the distortion in the pairwise distances. .. _`Johnson-Lindenstrauss lemma`: https://en.wikipedia.org/wiki/Johnson%E2%80%93Lindenstrauss_lemma Theoretical bounds ================== The distortion introduced by a random projection `p` is asserted by the fact that `p` is defining an eps-embedding with good probability as defined by: .. math:: (1 - eps) \|u - v\|^2 < \|p(u) - p(v)\|^2 < (1 + eps) \|u - v\|^2 Where u and v are any rows taken from a dataset of shape [n_samples, n_features] and p is a projection by a random Gaussian N(0, 1) matrix with shape [n_components, n_features] (or a sparse Achlioptas matrix). The minimum number of components to guarantees the eps-embedding is given by: .. math:: n\_components >= 4 log(n\_samples) / (eps^2 / 2 - eps^3 / 3) The first plot shows that with an increasing number of samples ``n_samples``, the minimal number of dimensions ``n_components`` increased logarithmically in order to guarantee an ``eps``-embedding. The second plot shows that an increase of the admissible distortion ``eps`` allows to reduce drastically the minimal number of dimensions ``n_components`` for a given number of samples ``n_samples`` Empirical validation ==================== We validate the above bounds on the digits dataset or on the 20 newsgroups text document (TF-IDF word frequencies) dataset: - for the digits dataset, some 8x8 gray level pixels data for 500 handwritten digits pictures are randomly projected to spaces for various larger number of dimensions ``n_components``. - for the 20 newsgroups dataset some 500 documents with 100k features in total are projected using a sparse random matrix to smaller euclidean spaces with various values for the target number of dimensions ``n_components``. The default dataset is the digits dataset. To run the example on the twenty newsgroups dataset, pass the --twenty-newsgroups command line argument to this script. For each value of ``n_components``, we plot: - 2D distribution of sample pairs with pairwise distances in original and projected spaces as x and y axis respectively. - 1D histogram of the ratio of those distances (projected / original). We can see that for low values of ``n_components`` the distribution is wide with many distorted pairs and a skewed distribution (due to the hard limit of zero ratio on the left as distances are always positives) while for larger values of n_components the distortion is controlled and the distances are well preserved by the random projection. Remarks ======= According to the JL lemma, projecting 500 samples without too much distortion will require at least several thousands dimensions, irrespective of the number of features of the original dataset. Hence using random projections on the digits dataset which only has 64 features in the input space does not make sense: it does not allow for dimensionality reduction in this case. On the twenty newsgroups on the other hand the dimensionality can be decreased from 56436 down to 10000 while reasonably preserving pairwise distances. """ print(__doc__) import sys from time import time import numpy as np import matplotlib.pyplot as plt from sklearn.random_projection import johnson_lindenstrauss_min_dim from sklearn.random_projection import SparseRandomProjection from sklearn.datasets import fetch_20newsgroups_vectorized from sklearn.datasets import load_digits from sklearn.metrics.pairwise import euclidean_distances # Part 1: plot the theoretical dependency between n_components_min and # n_samples # range of admissible distortions eps_range = np.linspace(0.1, 0.99, 5) colors = plt.cm.Blues(np.linspace(0.3, 1.0, len(eps_range))) # range of number of samples (observation) to embed n_samples_range = np.logspace(1, 9, 9) plt.figure() for eps, color in zip(eps_range, colors): min_n_components = johnson_lindenstrauss_min_dim(n_samples_range, eps=eps) plt.loglog(n_samples_range, min_n_components, color=color) plt.legend(["eps = %0.1f" % eps for eps in eps_range], loc="lower right") plt.xlabel("Number of observations to eps-embed") plt.ylabel("Minimum number of dimensions") plt.title("Johnson-Lindenstrauss bounds:\nn_samples vs n_components") # range of admissible distortions eps_range = np.linspace(0.01, 0.99, 100) # range of number of samples (observation) to embed n_samples_range = np.logspace(2, 6, 5) colors = plt.cm.Blues(np.linspace(0.3, 1.0, len(n_samples_range))) plt.figure() for n_samples, color in zip(n_samples_range, colors): min_n_components = johnson_lindenstrauss_min_dim(n_samples, eps=eps_range) plt.semilogy(eps_range, min_n_components, color=color) plt.legend(["n_samples = %d" % n for n in n_samples_range], loc="upper right") plt.xlabel("Distortion eps") plt.ylabel("Minimum number of dimensions") plt.title("Johnson-Lindenstrauss bounds:\nn_components vs eps") # Part 2: perform sparse random projection of some digits images which are # quite low dimensional and dense or documents of the 20 newsgroups dataset # which is both high dimensional and sparse if '--twenty-newsgroups' in sys.argv: # Need an internet connection hence not enabled by default data = fetch_20newsgroups_vectorized().data[:500] else: data = load_digits().data[:500] n_samples, n_features = data.shape print("Embedding %d samples with dim %d using various random projections" % (n_samples, n_features)) n_components_range = np.array([300, 1000, 10000]) dists = euclidean_distances(data, squared=True).ravel() # select only non-identical samples pairs nonzero = dists != 0 dists = dists[nonzero] for n_components in n_components_range: t0 = time() rp = SparseRandomProjection(n_components=n_components) projected_data = rp.fit_transform(data) print("Projected %d samples from %d to %d in %0.3fs" % (n_samples, n_features, n_components, time() - t0)) if hasattr(rp, 'components_'): n_bytes = rp.components_.data.nbytes n_bytes += rp.components_.indices.nbytes print("Random matrix with size: %0.3fMB" % (n_bytes / 1e6)) projected_dists = euclidean_distances( projected_data, squared=True).ravel()[nonzero] plt.figure() plt.hexbin(dists, projected_dists, gridsize=100, cmap=plt.cm.PuBu) plt.xlabel("Pairwise squared distances in original space") plt.ylabel("Pairwise squared distances in projected space") plt.title("Pairwise distances distribution for n_components=%d" % n_components) cb = plt.colorbar() cb.set_label('Sample pairs counts') rates = projected_dists / dists print("Mean distances rate: %0.2f (%0.2f)" % (np.mean(rates), np.std(rates))) plt.figure() plt.hist(rates, bins=50, normed=True, range=(0., 2.)) plt.xlabel("Squared distances rate: projected / original") plt.ylabel("Distribution of samples pairs") plt.title("Histogram of pairwise distance rates for n_components=%d" % n_components) # TODO: compute the expected value of eps and add them to the previous plot # as vertical lines / region plt.show()
bsd-3-clause
do-mpc/do-mpc
testing/test_oscillating_masses_discrete_dae.py
1
3206
# # This file is part of do-mpc # # do-mpc: An environment for the easy, modular and efficient implementation of # robust nonlinear model predictive control # # Copyright (c) 2014-2019 Sergio Lucia, Alexandru Tatulea-Codrean # TU Dortmund. All rights reserved # # do-mpc is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as # published by the Free Software Foundation, either version 3 # of the License, or (at your option) any later version. # # do-mpc is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU General Public License # along with do-mpc. If not, see <http://www.gnu.org/licenses/>. import numpy as np import matplotlib.pyplot as plt from casadi import * from casadi.tools import * import pdb import sys import unittest sys.path.append('../') import do_mpc sys.path.pop(-1) sys.path.append('../examples/oscillating_masses_discrete_dae/') from template_model import template_model from template_mpc import template_mpc from template_simulator import template_simulator sys.path.pop(-1) class TestOscillatingMassesDiscrete(unittest.TestCase): def test_oscillating_masses_discrete(self): """ Get configured do-mpc modules: """ model = template_model() mpc = template_mpc(model) simulator = template_simulator(model) estimator = do_mpc.estimator.StateFeedback(model) """ Set initial state """ np.random.seed(99) x0 = np.random.rand(model.n_x)-0.5 mpc.x0 = x0 simulator.x0 = x0 estimator.x0 = x0 # Use initial state to set the initial guess. mpc.set_initial_guess() # This is only meaningful for DAE systems. simulator.set_initial_guess() """ Run some steps: """ for k in range(5): u0 = mpc.make_step(x0) y_next = simulator.make_step(u0) x0 = estimator.make_step(y_next) """ Store results (from reference run): """ #do_mpc.data.save_results([mpc, simulator, estimator], 'results_oscillatingMasses_dae', overwrite=True) """ Compare results to reference run: """ ref = do_mpc.data.load_results('./results/results_oscillatingMasses_dae.pkl') test = ['_x', '_u', '_aux', '_time', '_z'] for test_i in test: # Check MPC check = np.allclose(mpc.data.__dict__[test_i], ref['mpc'].__dict__[test_i]) self.assertTrue(check) # Check Simulator check = np.allclose(simulator.data.__dict__[test_i], ref['simulator'].__dict__[test_i]) self.assertTrue(check) # Estimator check = np.allclose(estimator.data.__dict__[test_i], ref['estimator'].__dict__[test_i]) self.assertTrue(check) if __name__ == '__main__': unittest.main()
lgpl-3.0
eepgwde/pyeg0
gmus/GMus0.py
1
1699
## @file GMus0.py # @brief Application support class for the Unofficial Google Music API. # @author weaves # # @details # This class uses @c gmusicapi. # # @note # An application support class is one that uses a set of driver classes # to provide a set of higher-level application specific methods. # # @see # https://github.com/simon-weber/Unofficial-Google-Music-API # http://unofficial-google-music-api.readthedocs.org/en/latest/ from __future__ import print_function from GMus00 import GMus00 import logging import ConfigParser, os, logging import pandas as pd import json from gmusicapi import Mobileclient ## Set of file paths for the configuration file. paths = ['site.cfg', os.path.expanduser('~/share/site/.safe/gmusic.cfg')] ## Google Music API login, search and result cache. # # The class needs to a configuration file with these contents. (The # values of the keys must be a valid Google Play account.) # # <pre> # [credentials] # username=username\@gmail.com # password=SomePassword9 # </pre> class GMus0(GMus00): ## Ad-hoc method to find the indices of duplicated entries. def duplicated(self): # self._df = self._df.sort(['album', 'title', 'creationTimestamp'], # ascending=[1, 1, 0]) df = self.df[list(['title', 'album', 'creationTimestamp'])] df['n0'] = df['title'] + '|' + df['album'] df = df.sort(['n0','creationTimestamp'], ascending=[1, 0]) # Only rely on counts of 2. s0 = pd.Series(df.n0) s1 = s0.value_counts() s2 = set( (s1[s1.values >= 2]).index ) df1 = df[df.n0.isin(s2)] df1['d'] = df1.duplicated('n0') s3 = list(df1[df1.d].index) return s3
gpl-3.0
mdmueller/ascii-profiling
parallel.py
1
4245
import timeit import time from astropy.io import ascii import pandas import numpy as np from astropy.table import Table, Column from tempfile import NamedTemporaryFile import random import string import matplotlib.pyplot as plt import webbrowser def make_table(table, size=10000, n_floats=10, n_ints=0, n_strs=0, float_format=None, str_val=None): if str_val is None: str_val = "abcde12345" cols = [] for i in xrange(n_floats): dat = np.random.uniform(low=1, high=10, size=size) cols.append(Column(dat, name='f{}'.format(i))) for i in xrange(n_ints): dat = np.random.randint(low=-9999999, high=9999999, size=size) cols.append(Column(dat, name='i{}'.format(i))) for i in xrange(n_strs): if str_val == 'random': dat = np.array([''.join([random.choice(string.letters) for j in range(10)]) for k in range(size)]) else: dat = np.repeat(str_val, size) cols.append(Column(dat, name='s{}'.format(i))) t = Table(cols) if float_format is not None: for col in t.columns.values(): if col.name.startswith('f'): col.format = float_format t.write(table.name, format='ascii') output_text = [] def plot_case(n_floats=10, n_ints=0, n_strs=0, float_format=None, str_val=None): global table1, output_text n_rows = (10000, 20000, 50000, 100000, 200000) # include 200000 for publish run numbers = (1, 1, 1, 1, 1) repeats = (3, 2, 1, 1, 1) times_fast = [] times_fast_parallel = [] times_pandas = [] for n_row, number, repeat in zip(n_rows, numbers, repeats): table1 = NamedTemporaryFile() make_table(table1, n_row, n_floats, n_ints, n_strs, float_format, str_val) t = timeit.repeat("ascii.read(table1.name, format='basic', guess=False, use_fast_converter=True)", setup='from __main__ import ascii, table1', number=number, repeat=repeat) times_fast.append(min(t) / number) t = timeit.repeat("ascii.read(table1.name, format='basic', guess=False, parallel=True, use_fast_converter=True)", setup='from __main__ import ascii, table1', number=number, repeat=repeat) times_fast_parallel.append(min(t) / number) t = timeit.repeat("pandas.read_csv(table1.name, sep=' ', header=0)", setup='from __main__ import table1, pandas', number=number, repeat=repeat) times_pandas.append(min(t) / number) plt.loglog(n_rows, times_fast, '-or', label='io.ascii Fast-c') plt.loglog(n_rows, times_fast_parallel, '-og', label='io.ascii Parallel Fast-c') plt.loglog(n_rows, times_pandas, '-oc', label='Pandas') plt.grid() plt.legend(loc='best') plt.title('n_floats={} n_ints={} n_strs={} float_format={} str_val={}'.format( n_floats, n_ints, n_strs, float_format, str_val)) plt.xlabel('Number of rows') plt.ylabel('Time (sec)') img_file = 'graph{}.png'.format(len(output_text) + 1) plt.savefig(img_file) plt.clf() text = 'Pandas to io.ascii Fast-C speed ratio: {:.2f} : 1<br/>'.format(times_fast[-1] / times_pandas[-1]) text += 'io.ascii parallel to Pandas speed ratio: {:.2f} : 1'.format(times_pandas[-1] / times_fast_parallel[-1]) output_text.append((img_file, text)) plot_case(n_floats=10, n_ints=0, n_strs=0) plot_case(n_floats=10, n_ints=10, n_strs=10) plot_case(n_floats=10, n_ints=10, n_strs=10, float_format='%.4f') plot_case(n_floats=10, n_ints=0, n_strs=0, float_format='%.4f') plot_case(n_floats=0, n_ints=0, n_strs=10) plot_case(n_floats=0, n_ints=0, n_strs=10, str_val="'asdf asdfa'") plot_case(n_floats=0, n_ints=0, n_strs=10, str_val="random") plot_case(n_floats=0, n_ints=10, n_strs=0) html_file = open('out.html', 'w') html_file.write('<html><head><meta charset="utf-8"/><meta content="text/html;charset=UTF-8" http-equiv="Content-type"/>') html_file.write('</html><body><h1 style="text-align:center;">Profile of io.ascii</h1>') for img, descr in output_text: html_file.write('<img src="{}"><p style="font-weight:bold;">{}</p><hr>'.format(img, descr)) html_file.write('</body></html>') html_file.close() webbrowser.open('out.html')
mit
gtcasl/eiger
Eiger.py
1
20400
#!/usr/bin/python # # \file Eiger.py # \author Eric Anger <eanger@gatech.edu> # \date July 6, 2012 # # \brief Command line interface into Eiger modeling framework # # \changes Added more plot functionality; Benjamin Allan, SNL 5/2013 # import argparse import matplotlib.pyplot as plt import numpy as np import math import tempfile import shutil import os from ast import literal_eval import json import sys from collections import namedtuple from tabulate import tabulate from sklearn.cluster import KMeans from eiger import database, PCA, LinearRegression Model = namedtuple('Model', ['metric_names', 'means', 'stdevs', 'rotation_matrix', 'kmeans', 'models']) def import_model(args): database.addModelFromFile(args.database, args.file, args.source_name, args.description) def export_model(args): database.dumpModelToFile(args.database, args.file, args.id) def list_models(args): all_models = database.getModels(args.database) print tabulate(all_models, headers=['ID', 'Description', 'Created', 'Source']) def trainModel(args): print "Training the model..." training_DC = database.DataCollection(args.training_dc, args.database) try: performance_metric_id = [m[0] for m in training_DC.metrics].index(args.target) except ValueError: print "Unable to find target metric '%s', " \ "please specify a valid one: " % (args.target,) for (my_name,my_desc,my_type) in training_DC.metrics: print "\t%s" % (my_name,) return training_performance = training_DC.profile[:,performance_metric_id] metric_names = [m[0] for m in training_DC.metrics if m[0] != args.target] if args.predictor_metrics != None: metric_names = filter(lambda x: x in args.predictor_metrics, metric_names) metric_ids = [[m[0] for m in training_DC.metrics].index(n) for n in metric_names] if not metric_ids: print "Unable to make model for empty data collection. Aborting..." return training_profile = training_DC.profile[:,metric_ids] #pca training_pca = PCA.PCA(training_profile) nonzero_components = training_pca.nonzeroComponents() rotation_matrix = training_pca.components[:,nonzero_components] rotated_training_profile = np.dot(training_profile, rotation_matrix) #kmeans n_clusters = args.clusters kmeans = KMeans(n_clusters) means = np.mean(rotated_training_profile, axis=0) stdevs = np.std(rotated_training_profile - means, axis=0, ddof=1) stdevs[stdevs==0.0] = 1.0 clusters = kmeans.fit_predict((rotated_training_profile - means)/stdevs) # reserve a vector for each model created per cluster models = [0] * len(clusters) print "Modeling..." for i in range(n_clusters): cluster_profile = rotated_training_profile[clusters==i,:] cluster_performance = training_performance[clusters==i] regression = LinearRegression.LinearRegression(cluster_profile, cluster_performance) pool = [LinearRegression.identityFunction()] for col in range(cluster_profile.shape[1]): if('inv_quadratic' in args.regressor_functions): pool.append(LinearRegression.powerFunction(col, -2)) if('inv_linear' in args.regressor_functions): pool.append(LinearRegression.powerFunction(col, -1)) if('inv_sqrt' in args.regressor_functions): pool.append(LinearRegression.powerFunction(col, -.5)) if('sqrt' in args.regressor_functions): pool.append(LinearRegression.powerFunction(col, .5)) if('linear' in args.regressor_functions): pool.append(LinearRegression.powerFunction(col, 1)) if('quadratic' in args.regressor_functions): pool.append(LinearRegression.powerFunction(col, 2)) if('log' in args.regressor_functions): pool.append(LinearRegression.logFunction(col)) if('cross' in args.regressor_functions): for xcol in range(col, cluster_profile.shape[1]): pool.append(LinearRegression.crossFunction(col, xcol)) if('div' in args.regressor_functions): for xcol in range(col, cluster_profile.shape[1]): pool.append(LinearRegression.divFunction(col,xcol)) pool.append(LinearRegression.divFunction(xcol,col)) (models[i], r_squared, r_squared_adj) = regression.select(pool, threshold=args.threshold, folds=args.nfolds) print "Index\tMetric Name" print '\n'.join("%s\t%s" % metric for metric in enumerate(metric_names)) print "PCA matrix:" print rotation_matrix print "Model:\n" + str(models[i]) print "Finished modeling cluster %s:" % (i,) print "r squared = %s" % (r_squared,) print "adjusted r squared = %s" % (r_squared_adj,) model = Model(metric_names, means, stdevs, rotation_matrix, kmeans, models) # if we want to save the model file, copy it now outfilename = training_DC.name + '.model' if args.output == None else args.output if args.json == True: writeToFileJSON(model, outfilename) else: writeToFile(model, outfilename) if args.test_fit: args.experiment_dc = args.training_dc args.model = outfilename testModel(args) def dumpCSV(args): training_DC = database.DataCollection(args.training_dc, args.database) names = [met[0] for met in training_DC.metrics] if args.metrics != None: names = args.metrics header = ','.join(names) idxs = training_DC.metricIndexByName(names) profile = training_DC.profile[:,idxs] outfile = sys.stdout if args.output == None else args.output np.savetxt(outfile, profile, delimiter=',', header=header, comments='') def testModel(args): print "Testing the model fit..." test_DC = database.DataCollection(args.experiment_dc, args.database) model = readFile(args.model) _runExperiment(model.kmeans, model.means, model.stdevs, model.models, model.rotation_matrix, test_DC, args, model.metric_names) def readFile(infile): with open(infile, 'r') as modelfile: first_char = modelfile.readline()[0] if first_char == '{': return readJSONFile(infile) else: return readBespokeFile(infile) def plotModel(args): print "Plotting model..." model = readFile(args.model) if args.plot_pcs_per_metric: PCA.PlotPCsPerMetric(rotation_matrix, metric_names, title="PCs Per Metric") if args.plot_metrics_per_pc: PCA.PlotMetricsPerPC(rotation_matrix, metric_names, title="Metrics Per PC") def _stringToArray(string): """ Parse string of form [len](number,number,number,...) to a numpy array. """ length = string[:string.find('(')] values = string[string.find('('):] arr = np.array(literal_eval(values)) return np.reshape(arr, literal_eval(length)) def _runExperiment(kmeans, means, stdevs, models, rotation_matrix, experiment_DC, args, metric_names): unordered_metric_ids = experiment_DC.metricIndexByType('deterministic', 'nondeterministic') unordered_metric_names = [experiment_DC.metrics[mid][0] for mid in unordered_metric_ids] # make sure all metric_names are in experiment_DC.metrics[:][0] have_metrics = [x in unordered_metric_names for x in metric_names] if not all(have_metrics): print("Experiment DC does not have matching metrics. Aborting...") return # set the correct ordering expr_metric_ids = [unordered_metric_ids[unordered_metric_names.index(name)] for name in metric_names] for idx,metric in enumerate(experiment_DC.metrics): if(metric[0] == args.target): performance_metric_id = idx performance = experiment_DC.profile[:,performance_metric_id] profile = experiment_DC.profile[:,expr_metric_ids] rotated_profile = np.dot(profile, rotation_matrix) means = np.mean(rotated_profile, axis=0) stdevs = np.std(rotated_profile - means, axis=0, ddof=1) stdevs = np.nan_to_num(stdevs) stdevs[stdevs==0.0] = 1.0 clusters = kmeans.predict((rotated_profile - means)/stdevs) prediction = np.empty_like(performance) for i in range(len(kmeans.cluster_centers_)): prediction[clusters==i] = abs(models[i].poll(rotated_profile[clusters==i])) if args.show_prediction: print "Actual\t\tPredicted" print '\n'.join("%s\t%s" % x for x in zip(performance,prediction)) mse = sum([(a-p)**2 for a,p in zip(performance, prediction)]) / len(performance) rmse = math.sqrt(mse) mape = 100 * sum([abs((a-p)/a) for a,p in zip(performance,prediction)]) / len(performance) print "Number of experiment trials: %s" % len(performance) print "Mean Average Percent Error: %s" % mape print "Mean Squared Error: %s" % mse print "Root Mean Squared Error: %s" % rmse def writeToFileJSON(model, outfile): # Let's assume model has all the attributes we care about json_root = {} json_root["metric_names"] = [name for name in model.metric_names] json_root["means"] = [mean for mean in model.means.tolist()] json_root["std_devs"] = [stdev for stdev in model.stdevs.tolist()] json_root["rotation_matrix"] = [[elem for elem in row] for row in model.rotation_matrix.tolist()] json_root["clusters"] = [] for i in range(len(model.kmeans.cluster_centers_)): json_cluster = {} json_cluster["center"] = [center for center in model.kmeans.cluster_centers_[i].tolist()] # get models in json format json_cluster["regressors"] = model.models[i].toJSONObject() json_root["clusters"].append(json_cluster) with open(outfile, 'w') as out: json.dump(json_root, out, indent=4) def readJSONFile(infile): with open(infile, 'r') as modelfile: json_root = json.load(modelfile) metric_names = json_root['metric_names'] means = np.array(json_root['means']) stdevs = np.array(json_root['std_devs']) rotation_matrix = np.array(json_root['rotation_matrix']) empty_kmeans = KMeans(n_clusters=len(json_root['clusters']), n_init=1) centers = [] models = [] for cluster in json_root['clusters']: centers.append(np.array(cluster['center'])) models.append(LinearRegression.Model.fromJSONObject(cluster['regressors'])) kmeans = empty_kmeans.fit(centers) return Model(metric_names, means, stdevs, rotation_matrix, kmeans, models) def writeToFile(model, outfile): with open(outfile, 'w') as modelfile: # For printing the original model file encoding modelfile.write("%s\n%s\n" % (len(model.metric_names), '\n'.join(model.metric_names))) modelfile.write("[%s](%s)\n" % (len(model.means), ','.join([str(mean) for mean in model.means.tolist()]))) modelfile.write("[%s](%s)\n" % (len(model.stdevs), ','.join([str(stdev) for stdev in model.stdevs.tolist()]))) modelfile.write("[%s,%s]" % model.rotation_matrix.shape) modelfile.write("(%s)\n" % ','.join(["(%s)" % ','.join([str(elem) for elem in row]) for row in model.rotation_matrix.tolist()])) for i in range(len(model.kmeans.cluster_centers_)): modelfile.write('Model %s\n' % i) modelfile.write("[%s](%s)\n" % (model.rotation_matrix.shape[1], ','.join([str(center) for center in model.kmeans.cluster_centers_[i].tolist()]))) modelfile.write(repr(model.models[i])) modelfile.write('\n') # need a trailing newline def readBespokeFile(infile): """Returns a Model namedtuple with all the model parts""" with open(infile, 'r') as modelfile: lines = iter(modelfile.read().splitlines()) n_params = int(lines.next()) metric_names = [lines.next() for i in range(n_params)] means = _stringToArray(lines.next()) stdevs = _stringToArray(lines.next()) rotation_matrix = _stringToArray(lines.next()) models = [] centroids = [] try: while True: name = lines.next() # kill a line centroids.append(_stringToArray(lines.next())) weights = _stringToArray(lines.next()) functions = [LinearRegression.stringToFunction(lines.next()) for i in range(weights.shape[0])] models.append(LinearRegression.Model(functions, weights)) except StopIteration: pass kmeans = KMeans(len(centroids)) kmeans.cluster_centers_ = np.array(centroids) return Model(metric_names, means, stdevs, rotation_matrix, kmeans, models) def convert(args): print "Converting model..." with open(args.input, 'r') as modelfile: first_char = modelfile.readline()[0] if first_char == '{': model = readJSONFile(args.input) writeToFile(model, args.output) else: model = readBespokeFile(args.input) writeToFileJSON(model, args.output) if __name__ == "__main__": parser = argparse.ArgumentParser(description = \ 'Command line interface into Eiger performance modeling framework \ for all model generation, polling, and serialization tasks.', argument_default=None, fromfile_prefix_chars='@') subparsers = parser.add_subparsers(title='subcommands') train_parser = subparsers.add_parser('train', help='train a model with data from the database', description='Train a model with data from the database') train_parser.set_defaults(func=trainModel) dump_parser = subparsers.add_parser('dump', help='dump data collection to CSV', description='Dump data collection as CSV') dump_parser.set_defaults(func=dumpCSV) test_parser = subparsers.add_parser('test', help='test how well a model predicts a data collection', description='Test how well a model predicts a data collection') test_parser.set_defaults(func=testModel) plot_parser = subparsers.add_parser('plot', help='plot the behavior of a model', description='Plot the behavior of a model') plot_parser.set_defaults(func=plotModel) convert_parser = subparsers.add_parser('convert', help='transform a model into a different file format', description='Transform a model into a different file format') convert_parser.set_defaults(func=convert) list_model_parser = subparsers.add_parser('list', help='list available models in the Eiger DB', description='List available models in the Eiger DB') list_model_parser.set_defaults(func=list_models) import_model_parser = subparsers.add_parser('import', help='import model file into the Eiger DB', description='Import model file into the Eiger DB') import_model_parser.set_defaults(func=import_model) export_model_parser = subparsers.add_parser('export', help='export model from Eiger DB to file', description='Export model from Eiger DB to file') export_model_parser.set_defaults(func=export_model) """TRAINING ARGUMENTS""" train_parser.add_argument('database', type=str, help='Name of the database file') train_parser.add_argument('training_dc', type=str, help='Name of the training data collection') train_parser.add_argument('target', type=str, help='Name of the target metric to predict') train_parser.add_argument('--test-fit', action='store_true', default=False, help='If set will test the model fit against the training data.') train_parser.add_argument('--show-prediction', action='store_true', default=False, help='If set, send the actual and predicted values to stdout.') train_parser.add_argument('--predictor-metrics', nargs='*', help='Only use these metrics when building a model.') train_parser.add_argument('--output', type=str, help='Filename to output file to, otherwise use "<training_dc>.model"') train_parser.add_argument('--clusters', '-k', type=int, default=1, help='Number of clusters for kmeans') train_parser.add_argument('--threshold', type=float, help='Cutoff threshold of increase in adjusted R-squared value when' ' adding new predictors to the model') train_parser.add_argument('--nfolds', type=int, help='Number of folds to use in k-fold cross validation.') train_parser.add_argument('--regressor-functions', nargs='*', default=['inv_quadratic', 'inv_linear', 'inv_sqrt', 'sqrt', 'linear', 'quadratic', 'log', 'cross', 'div'], help='Regressor functions to use. Options are linear, quadratic, ' 'sqrt, inv_linear, inv_quadratic, inv_sqrt, log, cross, and div. ' 'Defaults to all.') train_parser.add_argument('--json', action='store_true', default=False, help='Output model in JSON format, rather than bespoke') """DUMP CSV ARGUMENTS""" dump_parser.add_argument('database', type=str, help='Name of the database file') dump_parser.add_argument('training_dc', type=str, help='Name of the data collection to dump') dump_parser.add_argument('--metrics', nargs='*', help='Only dump these metrics.') dump_parser.add_argument('--output', type=str, help='Name of file to dump CSV to') """TEST ARGUMENTS""" test_parser.add_argument('database', type=str, help='Name of the database file') test_parser.add_argument('experiment_dc', type=str, help='Name of the data collection to experiment on') test_parser.add_argument('model', type=str, help='Name of the model to use') test_parser.add_argument('target', type=str, help='Name of the target metric to predict') test_parser.add_argument('--show-prediction', action='store_true', default=False, help='If set, send the actual and predicted values to stdout.') """PLOT ARGUMENTS""" plot_parser.add_argument('model', type=str, help='Name of the model to use') plot_parser.add_argument('--plot-pcs-per-metric', action='store_true', default=False, help='If set, plots the breakdown of principal components per metric.') plot_parser.add_argument('--plot-metrics-per-pc', action='store_true', default=False, help='If set, plots the breakdown of metrics per principal component.') """CONVERT ARGUMENTS""" convert_parser.add_argument('input', type=str, help='Name of input model to convert from') convert_parser.add_argument('output', type=str, help='Name of output model to convert to') """LIST ARGUMENTS""" list_model_parser.add_argument('database', type=str, help='Name of the database file') """IMPORT ARGUMENTS""" import_model_parser.add_argument('database', type=str, help='Name of the database file') import_model_parser.add_argument('file', type=str, help='Name of the model file to import') import_model_parser.add_argument('source_name', type=str, help='Name of the source of the model (ie Eiger)') import_model_parser.add_argument('--description', type=str, default='', help='String to describe the model') """EXPORT ARGUMENTS""" export_model_parser.add_argument('database', type=str, help='Name of the database file') export_model_parser.add_argument('id', type=int, help='ID number identifying which model in the database to export ') export_model_parser.add_argument('file', type=str, help='Name of the file to export into') args = parser.parse_args() args.func(args) print "Done."
bsd-3-clause
sandeepdsouza93/TensorFlow-15712
tensorflow/examples/learn/hdf5_classification.py
17
2201
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Example of DNNClassifier for Iris plant dataset, h5 format.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from sklearn import cross_validation from sklearn import metrics import tensorflow as tf from tensorflow.contrib import learn import h5py # pylint: disable=g-bad-import-order def main(unused_argv): # Load dataset. iris = learn.datasets.load_dataset('iris') x_train, x_test, y_train, y_test = cross_validation.train_test_split( iris.data, iris.target, test_size=0.2, random_state=42) # Note that we are saving and load iris data as h5 format as a simple # demonstration here. h5f = h5py.File('/tmp/test_hdf5.h5', 'w') h5f.create_dataset('X_train', data=x_train) h5f.create_dataset('X_test', data=x_test) h5f.create_dataset('y_train', data=y_train) h5f.create_dataset('y_test', data=y_test) h5f.close() h5f = h5py.File('/tmp/test_hdf5.h5', 'r') x_train = np.array(h5f['X_train']) x_test = np.array(h5f['X_test']) y_train = np.array(h5f['y_train']) y_test = np.array(h5f['y_test']) # Build 3 layer DNN with 10, 20, 10 units respectively. feature_columns = learn.infer_real_valued_columns_from_input(x_train) classifier = learn.DNNClassifier( feature_columns=feature_columns, hidden_units=[10, 20, 10], n_classes=3) # Fit and predict. classifier.fit(x_train, y_train, steps=200) score = metrics.accuracy_score(y_test, classifier.predict(x_test)) print('Accuracy: {0:f}'.format(score)) if __name__ == '__main__': tf.app.run()
apache-2.0
droundy/deft
talks/colloquium/figs/plot-walls.py
1
3242
#!/usr/bin/python # We need the following two lines in order for matplotlib to work # without access to an X server. from __future__ import division import matplotlib matplotlib.use('Agg') import pylab, numpy, sys xmax = 2.5 xmin = -0.4 def plotit(dftdata, mcdata): dft_len = len(dftdata[:,0]) dft_dr = dftdata[2,0] - dftdata[1,0] mcdata = numpy.insert(mcdata,0,0,0) mcdata[0,0]=-10 mcoffset = 10/2 offset = -3/2 n0 = dftdata[:,6] nA = dftdata[:,8] nAmc = mcdata[:,11] n0mc = mcdata[:,10] pylab.figure(figsize=(6, 6)) pylab.subplots_adjust(hspace=0.001) n_plt = pylab.subplot(3,1,3) n_plt.plot(mcdata[:,0]/2+mcoffset,mcdata[:,1]*4*numpy.pi/3,"b-",label='$n$ Monte Carlo') n_plt.plot(dftdata[:,0]/2+offset,dftdata[:,1]*4*numpy.pi/3,"b--",label='$n$ DFT') n_plt.legend(loc='best', ncol=1).draw_frame(False) #.get_frame().set_alpha(0.5) n_plt.yaxis.set_major_locator(pylab.MaxNLocator(6,steps=[1,5,10],prune='upper')) pylab.ylim(ymin=0) pylab.xlim(xmin, xmax) pylab.xlabel("$z/\sigma$") pylab.ylabel("$n(\mathbf{r})$") n_plt.axvline(x=0, color='k', linestyle=':') n = len(mcdata[:,0]) #pylab.twinx() dftr = dftdata[:,0]/2+offset thiswork = dftdata[:,5] gross = dftdata[:,7] stop_here = int(dft_len - 1/dft_dr) print stop_here start_here = int(2.5/dft_dr) off = 1 me = 40 A_plt = pylab.subplot(3,1,1) A_plt.axvline(x=0, color='k', linestyle=':') A_plt.plot(mcdata[:,0]/2+mcoffset,mcdata[:,2+2*off]/nAmc,"r-",label="$g_\sigma^A$ Monte Carlo") A_plt.plot(dftr[dftr>=0],thiswork[dftr>=0],"ro",markevery=me*.8,label="$g_\sigma^A$ this work") A_plt.plot(dftr[dftr>=0],gross[dftr>=0],"rx",markevery=me,label="Gross", markerfacecolor='none',markeredgecolor='red', markeredgewidth=1) A_plt.legend(loc='best', ncol=1).draw_frame(False) #.get_frame().set_alpha(0.5) A_plt.yaxis.set_major_locator(pylab.MaxNLocator(integer=True,prune='upper')) pylab.ylim(ymin=0) pylab.ylabel("$g_\sigma^A$") pylab.xlim(xmin, xmax) n0mc[0]=1 mcdata[0,10]=1 S_plt = pylab.subplot(3,1,2) S_plt.axvline(x=0, color='k', linestyle=':') S_plt.plot(mcdata[:,0]/2+mcoffset,mcdata[:,3+2*off]/n0mc,"g-",label="$g_\sigma^S$ Monte Carlo") S_plt.plot(dftdata[:,0]/2+offset,dftdata[:,4],"gx",markevery=me/2,label="Yu and Wu") S_plt.legend(loc='best', ncol=1).draw_frame(False) #.get_frame().set_alpha(0.5) #pylab.ylim(ymax=12) S_plt.yaxis.set_major_locator(pylab.MaxNLocator(5,integer=True,prune='upper')) pylab.xlim(xmin, xmax) pylab.ylim(ymin=0) pylab.ylabel("$g_\sigma^S$") xticklabels = A_plt.get_xticklabels() + S_plt.get_xticklabels() pylab.setp(xticklabels, visible=False) mcdata10 = numpy.loadtxt('../../papers/contact/figs/mc-walls-20-196.dat') dftdata10 = numpy.loadtxt('../../papers/contact/figs/wallsWB-0.10.dat') mcdata40 = numpy.loadtxt('../../papers/contact/figs/mc-walls-20-817.dat') dftdata40 = numpy.loadtxt('../../papers/contact/figs/wallsWB-0.40.dat') plotit(dftdata10, mcdata10) pylab.savefig('figs/walls-10.pdf', transparent=True) plotit(dftdata40, mcdata40) pylab.savefig('figs/walls-40.pdf', transparent=True)
gpl-2.0
chintak/scikit-image
skimage/feature/util.py
1
4726
import numpy as np from skimage.util import img_as_float class FeatureDetector(object): def __init__(self): self.keypoints_ = np.array([]) def detect(self, image): """Detect keypoints in image. Parameters ---------- image : 2D array Input image. """ raise NotImplementedError() class DescriptorExtractor(object): def __init__(self): self.descriptors_ = np.array([]) def extract(self, image, keypoints): """Extract feature descriptors in image for given keypoints. Parameters ---------- image : 2D array Input image. keypoints : (N, 2) array Keypoint locations as ``(row, col)``. """ raise NotImplementedError() def plot_matches(ax, image1, image2, keypoints1, keypoints2, matches, keypoints_color='k', matches_color=None, only_matches=False): """Plot matched features. Parameters ---------- ax : matplotlib.axes.Axes Matches and image are drawn in this ax. image1 : (N, M [, 3]) array First grayscale or color image. image2 : (N, M [, 3]) array Second grayscale or color image. keypoints1 : (K1, 2) array First keypoint coordinates as ``(row, col)``. keypoints2 : (K2, 2) array Second keypoint coordinates as ``(row, col)``. matches : (Q, 2) array Indices of corresponding matches in first and second set of descriptors, where ``matches[:, 0]`` denote the indices in the first and ``matches[:, 1]`` the indices in the second set of descriptors. keypoints_color : matplotlib color, optional Color for keypoint locations. matches_color : matplotlib color, optional Color for lines which connect keypoint matches. By default the color is chosen randomly. only_matches : bool, optional Whether to only plot matches and not plot the keypoint locations. """ image1 = img_as_float(image1) image2 = img_as_float(image2) new_shape1 = list(image1.shape) new_shape2 = list(image2.shape) if image1.shape[0] < image2.shape[0]: new_shape1[0] = image2.shape[0] elif image1.shape[0] > image2.shape[0]: new_shape2[0] = image1.shape[0] if image1.shape[1] < image2.shape[1]: new_shape1[1] = image2.shape[1] elif image1.shape[1] > image2.shape[1]: new_shape2[1] = image1.shape[1] if new_shape1 != image1.shape: new_image1 = np.zeros(new_shape1, dtype=image1.dtype) new_image1[:image1.shape[0], :image1.shape[1]] = image1 image1 = new_image1 if new_shape2 != image2.shape: new_image2 = np.zeros(new_shape2, dtype=image2.dtype) new_image2[:image2.shape[0], :image2.shape[1]] = image2 image2 = new_image2 image = np.concatenate([image1, image2], axis=1) offset = image1.shape if not only_matches: ax.scatter(keypoints1[:, 1], keypoints1[:, 0], facecolors='none', edgecolors=keypoints_color) ax.scatter(keypoints2[:, 1] + offset[1], keypoints2[:, 0], facecolors='none', edgecolors=keypoints_color) ax.imshow(image) ax.axis((0, 2 * offset[1], offset[0], 0)) for i in range(matches.shape[0]): idx1 = matches[i, 0] idx2 = matches[i, 1] if matches_color is None: color = np.random.rand(3, 1) else: color = matches_color ax.plot((keypoints1[idx1, 1], keypoints2[idx2, 1] + offset[1]), (keypoints1[idx1, 0], keypoints2[idx2, 0]), '-', color=color) def _prepare_grayscale_input_2D(image): image = np.squeeze(image) if image.ndim != 2: raise ValueError("Only 2-D gray-scale images supported.") return img_as_float(image) def _mask_border_keypoints(image_shape, keypoints, distance): """Mask coordinates that are within certain distance from the image border. Parameters ---------- image_shape : (2, ) array_like Shape of the image as ``(rows, cols)``. keypoints : (N, 2) array Keypoint coordinates as ``(rows, cols)``. distance : int Image border distance. Returns ------- mask : (N, ) bool array Mask indicating if pixels are within the image (``True``) or in the border region of the image (``False``). """ rows = image_shape[0] cols = image_shape[1] mask = (((distance - 1) < keypoints[:, 0]) & (keypoints[:, 0] < (rows - distance + 1)) & ((distance - 1) < keypoints[:, 1]) & (keypoints[:, 1] < (cols - distance + 1))) return mask
bsd-3-clause
NicWayand/xray
xarray/plot/utils.py
1
6442
import pkg_resources import numpy as np import pandas as pd from ..core.pycompat import basestring def _load_default_cmap(fname='default_colormap.csv'): """ Returns viridis color map """ from matplotlib.colors import LinearSegmentedColormap # Not sure what the first arg here should be f = pkg_resources.resource_stream(__name__, fname) cm_data = pd.read_csv(f, header=None).values return LinearSegmentedColormap.from_list('viridis', cm_data) def _determine_extend(calc_data, vmin, vmax): extend_min = calc_data.min() < vmin extend_max = calc_data.max() > vmax if extend_min and extend_max: extend = 'both' elif extend_min: extend = 'min' elif extend_max: extend = 'max' else: extend = 'neither' return extend def _build_discrete_cmap(cmap, levels, extend, filled): """ Build a discrete colormap and normalization of the data. """ import matplotlib as mpl if not filled: # non-filled contour plots extend = 'max' if extend == 'both': ext_n = 2 elif extend in ['min', 'max']: ext_n = 1 else: ext_n = 0 n_colors = len(levels) + ext_n - 1 pal = _color_palette(cmap, n_colors) new_cmap, cnorm = mpl.colors.from_levels_and_colors( levels, pal, extend=extend) # copy the old cmap name, for easier testing new_cmap.name = getattr(cmap, 'name', cmap) return new_cmap, cnorm def _color_palette(cmap, n_colors): import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap colors_i = np.linspace(0, 1., n_colors) if isinstance(cmap, (list, tuple)): # we have a list of colors try: # first try to turn it into a palette with seaborn from seaborn.apionly import color_palette pal = color_palette(cmap, n_colors=n_colors) except ImportError: # if that fails, use matplotlib # in this case, is there any difference between mpl and seaborn? cmap = ListedColormap(cmap, N=n_colors) pal = cmap(colors_i) elif isinstance(cmap, basestring): # we have some sort of named palette try: # first try to turn it into a palette with seaborn from seaborn.apionly import color_palette pal = color_palette(cmap, n_colors=n_colors) except (ImportError, ValueError): # ValueError is raised when seaborn doesn't like a colormap # (e.g. jet). If that fails, use matplotlib try: # is this a matplotlib cmap? cmap = plt.get_cmap(cmap) except ValueError: # or maybe we just got a single color as a string cmap = ListedColormap([cmap], N=n_colors) pal = cmap(colors_i) else: # cmap better be a LinearSegmentedColormap (e.g. viridis) pal = cmap(colors_i) return pal def _determine_cmap_params(plot_data, vmin=None, vmax=None, cmap=None, center=None, robust=False, extend=None, levels=None, filled=True, cnorm=None): """ Use some heuristics to set good defaults for colorbar and range. Adapted from Seaborn: https://github.com/mwaskom/seaborn/blob/v0.6/seaborn/matrix.py#L158 Parameters ========== plot_data: Numpy array Doesn't handle xarray objects Returns ======= cmap_params : dict Use depends on the type of the plotting function """ ROBUST_PERCENTILE = 2.0 import matplotlib as mpl calc_data = np.ravel(plot_data[~pd.isnull(plot_data)]) # Setting center=False prevents a divergent cmap possibly_divergent = center is not False # Set center to 0 so math below makes sense but remember its state center_is_none = False if center is None: center = 0 center_is_none = True # Setting both vmin and vmax prevents a divergent cmap if (vmin is not None) and (vmax is not None): possibly_divergent = False # vlim might be computed below vlim = None if vmin is None: if robust: vmin = np.percentile(calc_data, ROBUST_PERCENTILE) else: vmin = calc_data.min() elif possibly_divergent: vlim = abs(vmin - center) if vmax is None: if robust: vmax = np.percentile(calc_data, 100 - ROBUST_PERCENTILE) else: vmax = calc_data.max() elif possibly_divergent: vlim = abs(vmax - center) if possibly_divergent: # kwargs not specific about divergent or not: infer defaults from data divergent = ((vmin < 0) and (vmax > 0)) or not center_is_none else: divergent = False # A divergent map should be symmetric around the center value if divergent: if vlim is None: vlim = max(abs(vmin - center), abs(vmax - center)) vmin, vmax = -vlim, vlim # Now add in the centering value and set the limits vmin += center vmax += center # Choose default colormaps if not provided if cmap is None: if divergent: cmap = "RdBu_r" else: cmap = "viridis" # Allow viridis before matplotlib 1.5 if cmap == "viridis": cmap = _load_default_cmap() # Handle discrete levels if levels is not None: if isinstance(levels, int): ticker = mpl.ticker.MaxNLocator(levels) levels = ticker.tick_values(vmin, vmax) vmin, vmax = levels[0], levels[-1] if extend is None: extend = _determine_extend(calc_data, vmin, vmax) if levels is not None: cmap, cnorm = _build_discrete_cmap(cmap, levels, extend, filled) return dict(vmin=vmin, vmax=vmax, cmap=cmap, extend=extend, levels=levels, norm=cnorm) def _infer_xy_labels(darray, x, y): """ Determine x and y labels. For use in _plot2d darray must be a 2 dimensional data array. """ if x is None and y is None: if darray.ndim != 2: raise ValueError('DataArray must be 2d') y, x = darray.dims elif x is None or y is None: raise ValueError('cannot supply only one of x and y') elif any(k not in darray.coords for k in (x, y)): raise ValueError('x and y must be coordinate variables') return x, y
apache-2.0
sinhrks/seaborn
seaborn/matrix.py
5
40890
"""Functions to visualize matrices of data.""" import itertools import colorsys import matplotlib as mpl import matplotlib.pyplot as plt from matplotlib import gridspec import numpy as np import pandas as pd from scipy.spatial import distance from scipy.cluster import hierarchy from .axisgrid import Grid from .palettes import cubehelix_palette from .utils import despine, axis_ticklabels_overlap from .external.six.moves import range def _index_to_label(index): """Convert a pandas index or multiindex to an axis label.""" if isinstance(index, pd.MultiIndex): return "-".join(map(str, index.names)) else: return index.name def _index_to_ticklabels(index): """Convert a pandas index or multiindex into ticklabels.""" if isinstance(index, pd.MultiIndex): return ["-".join(map(str, i)) for i in index.values] else: return index.values def _convert_colors(colors): """Convert either a list of colors or nested lists of colors to RGB.""" to_rgb = mpl.colors.colorConverter.to_rgb try: to_rgb(colors[0]) # If this works, there is only one level of colors return list(map(to_rgb, colors)) except ValueError: # If we get here, we have nested lists return [list(map(to_rgb, l)) for l in colors] def _matrix_mask(data, mask): """Ensure that data and mask are compatabile and add missing values. Values will be plotted for cells where ``mask`` is ``False``. ``data`` is expected to be a DataFrame; ``mask`` can be an array or a DataFrame. """ if mask is None: mask = np.zeros(data.shape, np.bool) if isinstance(mask, np.ndarray): # For array masks, ensure that shape matches data then convert if mask.shape != data.shape: raise ValueError("Mask must have the same shape as data.") mask = pd.DataFrame(mask, index=data.index, columns=data.columns, dtype=np.bool) elif isinstance(mask, pd.DataFrame): # For DataFrame masks, ensure that semantic labels match data if not mask.index.equals(data.index) \ and mask.columns.equals(data.columns): err = "Mask must have the same index and columns as data." raise ValueError(err) # Add any cells with missing data to the mask # This works around an issue where `plt.pcolormesh` doesn't represent # missing data properly mask = mask | pd.isnull(data) return mask class _HeatMapper(object): """Draw a heatmap plot of a matrix with nice labels and colormaps.""" def __init__(self, data, vmin, vmax, cmap, center, robust, annot, fmt, annot_kws, cbar, cbar_kws, xticklabels=True, yticklabels=True, mask=None): """Initialize the plotting object.""" # We always want to have a DataFrame with semantic information # and an ndarray to pass to matplotlib if isinstance(data, pd.DataFrame): plot_data = data.values else: plot_data = np.asarray(data) data = pd.DataFrame(plot_data) # Validate the mask and convet to DataFrame mask = _matrix_mask(data, mask) # Reverse the rows so the plot looks like the matrix plot_data = plot_data[::-1] data = data.ix[::-1] mask = mask.ix[::-1] plot_data = np.ma.masked_where(np.asarray(mask), plot_data) # Get good names for the rows and columns xtickevery = 1 if isinstance(xticklabels, int) and xticklabels > 1: xtickevery = xticklabels xticklabels = _index_to_ticklabels(data.columns) elif isinstance(xticklabels, bool) and xticklabels: xticklabels = _index_to_ticklabels(data.columns) elif isinstance(xticklabels, bool) and not xticklabels: xticklabels = ['' for _ in range(data.shape[1])] ytickevery = 1 if isinstance(yticklabels, int) and yticklabels > 1: ytickevery = yticklabels yticklabels = _index_to_ticklabels(data.index) elif isinstance(yticklabels, bool) and yticklabels: yticklabels = _index_to_ticklabels(data.index) elif isinstance(yticklabels, bool) and not yticklabels: yticklabels = ['' for _ in range(data.shape[0])] else: yticklabels = yticklabels[::-1] # Get the positions and used label for the ticks nx, ny = data.T.shape xstart, xend, xstep = 0, nx, xtickevery self.xticks = np.arange(xstart, xend, xstep) + .5 self.xticklabels = xticklabels[xstart:xend:xstep] ystart, yend, ystep = (ny - 1) % ytickevery, ny, ytickevery self.yticks = np.arange(ystart, yend, ystep) + .5 self.yticklabels = yticklabels[ystart:yend:ystep] # Get good names for the axis labels xlabel = _index_to_label(data.columns) ylabel = _index_to_label(data.index) self.xlabel = xlabel if xlabel is not None else "" self.ylabel = ylabel if ylabel is not None else "" # Determine good default values for the colormapping self._determine_cmap_params(plot_data, vmin, vmax, cmap, center, robust) # Save other attributes to the object self.data = data self.plot_data = plot_data self.annot = annot self.fmt = fmt self.annot_kws = {} if annot_kws is None else annot_kws self.cbar = cbar self.cbar_kws = {} if cbar_kws is None else cbar_kws def _determine_cmap_params(self, plot_data, vmin, vmax, cmap, center, robust): """Use some heuristics to set good defaults for colorbar and range.""" calc_data = plot_data.data[~np.isnan(plot_data.data)] if vmin is None: vmin = np.percentile(calc_data, 2) if robust else calc_data.min() if vmax is None: vmax = np.percentile(calc_data, 98) if robust else calc_data.max() # Simple heuristics for whether these data should have a divergent map divergent = ((vmin < 0) and (vmax > 0)) or center is not None # Now set center to 0 so math below makes sense if center is None: center = 0 # A divergent map should be symmetric around the center value if divergent: vlim = max(abs(vmin - center), abs(vmax - center)) vmin, vmax = -vlim, vlim self.divergent = divergent # Now add in the centering value and set the limits vmin += center vmax += center self.vmin = vmin self.vmax = vmax # Choose default colormaps if not provided if cmap is None: if divergent: self.cmap = "RdBu_r" else: self.cmap = cubehelix_palette(light=.95, as_cmap=True) else: self.cmap = cmap def _annotate_heatmap(self, ax, mesh): """Add textual labels with the value in each cell.""" xpos, ypos = np.meshgrid(ax.get_xticks(), ax.get_yticks()) for x, y, val, color in zip(xpos.flat, ypos.flat, mesh.get_array(), mesh.get_facecolors()): if val is not np.ma.masked: _, l, _ = colorsys.rgb_to_hls(*color[:3]) text_color = ".15" if l > .5 else "w" val = ("{:" + self.fmt + "}").format(val) ax.text(x, y, val, color=text_color, ha="center", va="center", **self.annot_kws) def plot(self, ax, cax, kws): """Draw the heatmap on the provided Axes.""" # Remove all the Axes spines despine(ax=ax, left=True, bottom=True) # Draw the heatmap mesh = ax.pcolormesh(self.plot_data, vmin=self.vmin, vmax=self.vmax, cmap=self.cmap, **kws) # Set the axis limits ax.set(xlim=(0, self.data.shape[1]), ylim=(0, self.data.shape[0])) # Add row and column labels ax.set(xticks=self.xticks, yticks=self.yticks) xtl = ax.set_xticklabels(self.xticklabels) ytl = ax.set_yticklabels(self.yticklabels, rotation="vertical") # Possibly rotate them if they overlap plt.draw() if axis_ticklabels_overlap(xtl): plt.setp(xtl, rotation="vertical") if axis_ticklabels_overlap(ytl): plt.setp(ytl, rotation="horizontal") # Add the axis labels ax.set(xlabel=self.xlabel, ylabel=self.ylabel) # Annotate the cells with the formatted values if self.annot: self._annotate_heatmap(ax, mesh) # Possibly add a colorbar if self.cbar: ticker = mpl.ticker.MaxNLocator(6) cb = ax.figure.colorbar(mesh, cax, ax, ticks=ticker, **self.cbar_kws) cb.outline.set_linewidth(0) def heatmap(data, vmin=None, vmax=None, cmap=None, center=None, robust=False, annot=False, fmt=".2g", annot_kws=None, linewidths=0, linecolor="white", cbar=True, cbar_kws=None, cbar_ax=None, square=False, ax=None, xticklabels=True, yticklabels=True, mask=None, **kwargs): """Plot rectangular data as a color-encoded matrix. This function tries to infer a good colormap to use from the data, but this is not guaranteed to work, so take care to make sure the kind of colormap (sequential or diverging) and its limits are appropriate. This is an Axes-level function and will draw the heatmap into the currently-active Axes if none is provided to the ``ax`` argument. Part of this Axes space will be taken and used to plot a colormap, unless ``cbar`` is False or a separate Axes is provided to ``cbar_ax``. Parameters ---------- data : rectangular dataset 2D dataset that can be coerced into an ndarray. If a Pandas DataFrame is provided, the index/column information will be used to label the columns and rows. vmin, vmax : floats, optional Values to anchor the colormap, otherwise they are inferred from the data and other keyword arguments. When a diverging dataset is inferred, one of these values may be ignored. cmap : matplotlib colormap name or object, optional The mapping from data values to color space. If not provided, this will be either a cubehelix map (if the function infers a sequential dataset) or ``RdBu_r`` (if the function infers a diverging dataset). center : float, optional The value at which to center the colormap. Passing this value implies use of a diverging colormap. robust : bool, optional If True and ``vmin`` or ``vmax`` are absent, the colormap range is computed with robust quantiles instead of the extreme values. annot : bool, optional If True, write the data value in each cell. fmt : string, optional String formatting code to use when ``annot`` is True. annot_kws : dict of key, value mappings, optional Keyword arguments for ``ax.text`` when ``annot`` is True. linewidths : float, optional Width of the lines that will divide each cell. linecolor : color, optional Color of the lines that will divide each cell. cbar : boolean, optional Whether to draw a colorbar. cbar_kws : dict of key, value mappings, optional Keyword arguments for `fig.colorbar`. cbar_ax : matplotlib Axes, optional Axes in which to draw the colorbar, otherwise take space from the main Axes. square : boolean, optional If True, set the Axes aspect to "equal" so each cell will be square-shaped. ax : matplotlib Axes, optional Axes in which to draw the plot, otherwise use the currently-active Axes. xticklabels : list-like, int, or bool, optional If True, plot the column names of the dataframe. If False, don't plot the column names. If list-like, plot these alternate labels as the xticklabels. If an integer, use the column names but plot only every n label. yticklabels : list-like, int, or bool, optional If True, plot the row names of the dataframe. If False, don't plot the row names. If list-like, plot these alternate labels as the yticklabels. If an integer, use the index names but plot only every n label. mask : boolean array or DataFrame, optional If passed, data will not be shown in cells where ``mask`` is True. Cells with missing values are automatically masked. kwargs : other keyword arguments All other keyword arguments are passed to ``ax.pcolormesh``. Returns ------- ax : matplotlib Axes Axes object with the heatmap. Examples -------- Plot a heatmap for a numpy array: .. plot:: :context: close-figs >>> import numpy as np; np.random.seed(0) >>> import seaborn as sns; sns.set() >>> uniform_data = np.random.rand(10, 12) >>> ax = sns.heatmap(uniform_data) Change the limits of the colormap: .. plot:: :context: close-figs >>> ax = sns.heatmap(uniform_data, vmin=0, vmax=1) Plot a heatmap for data centered on 0: .. plot:: :context: close-figs >>> normal_data = np.random.randn(10, 12) >>> ax = sns.heatmap(normal_data) Plot a dataframe with meaningful row and column labels: .. plot:: :context: close-figs >>> flights = sns.load_dataset("flights") >>> flights = flights.pivot("month", "year", "passengers") >>> ax = sns.heatmap(flights) Annotate each cell with the numeric value using integer formatting: .. plot:: :context: close-figs >>> ax = sns.heatmap(flights, annot=True, fmt="d") Add lines between each cell: .. plot:: :context: close-figs >>> ax = sns.heatmap(flights, linewidths=.5) Use a different colormap: .. plot:: :context: close-figs >>> ax = sns.heatmap(flights, cmap="YlGnBu") Center the colormap at a specific value: .. plot:: :context: close-figs >>> ax = sns.heatmap(flights, center=flights.loc["January", 1955]) Plot every other column label and don't plot row labels: .. plot:: :context: close-figs >>> data = np.random.randn(50, 20) >>> ax = sns.heatmap(data, xticklabels=2, yticklabels=False) Don't draw a colorbar: .. plot:: :context: close-figs >>> ax = sns.heatmap(flights, cbar=False) Use different axes for the colorbar: .. plot:: :context: close-figs >>> grid_kws = {"height_ratios": (.9, .05), "hspace": .3} >>> f, (ax, cbar_ax) = plt.subplots(2, gridspec_kw=grid_kws) >>> ax = sns.heatmap(flights, ax=ax, ... cbar_ax=cbar_ax, ... cbar_kws={"orientation": "horizontal"}) Use a mask to plot only part of a matrix .. plot:: :context: close-figs >>> corr = np.corrcoef(np.random.randn(10, 200)) >>> mask = np.zeros_like(corr) >>> mask[np.triu_indices_from(mask)] = True >>> with sns.axes_style("white"): ... ax = sns.heatmap(corr, mask=mask, vmax=.3, square=True) """ # Initialize the plotter object plotter = _HeatMapper(data, vmin, vmax, cmap, center, robust, annot, fmt, annot_kws, cbar, cbar_kws, xticklabels, yticklabels, mask) # Add the pcolormesh kwargs here kwargs["linewidths"] = linewidths kwargs["edgecolor"] = linecolor # Draw the plot and return the Axes if ax is None: ax = plt.gca() if square: ax.set_aspect("equal") plotter.plot(ax, cbar_ax, kwargs) return ax class _DendrogramPlotter(object): """Object for drawing tree of similarities between data rows/columns""" def __init__(self, data, linkage, metric, method, axis, label, rotate): """Plot a dendrogram of the relationships between the columns of data Parameters ---------- data : pandas.DataFrame Rectangular data """ self.axis = axis if self.axis == 1: data = data.T if isinstance(data, pd.DataFrame): array = data.values else: array = np.asarray(data) data = pd.DataFrame(array) self.array = array self.data = data self.shape = self.data.shape self.metric = metric self.method = method self.axis = axis self.label = label self.rotate = rotate if linkage is None: self.linkage = self.calculated_linkage else: self.linkage = linkage self.dendrogram = self.calculate_dendrogram() # Dendrogram ends are always at multiples of 5, who knows why ticks = 10 * np.arange(self.data.shape[0]) + 5 if self.label: ticklabels = _index_to_ticklabels(self.data.index) ticklabels = [ticklabels[i] for i in self.reordered_ind] if self.rotate: self.xticks = [] self.yticks = ticks self.xticklabels = [] self.yticklabels = ticklabels self.ylabel = _index_to_label(self.data.index) self.xlabel = '' else: self.xticks = ticks self.yticks = [] self.xticklabels = ticklabels self.yticklabels = [] self.ylabel = '' self.xlabel = _index_to_label(self.data.index) else: self.xticks, self.yticks = [], [] self.yticklabels, self.xticklabels = [], [] self.xlabel, self.ylabel = '', '' if self.rotate: self.X = self.dendrogram['dcoord'] self.Y = self.dendrogram['icoord'] else: self.X = self.dendrogram['icoord'] self.Y = self.dendrogram['dcoord'] def _calculate_linkage_scipy(self): if np.product(self.shape) >= 10000: UserWarning('This will be slow... (gentle suggestion: ' '"pip install fastcluster")') pairwise_dists = distance.pdist(self.array, metric=self.metric) linkage = hierarchy.linkage(pairwise_dists, method=self.method) del pairwise_dists return linkage def _calculate_linkage_fastcluster(self): import fastcluster # Fastcluster has a memory-saving vectorized version, but only # with certain linkage methods, and mostly with euclidean metric vector_methods = ('single', 'centroid', 'median', 'ward') euclidean_methods = ('centroid', 'median', 'ward') euclidean = self.metric == 'euclidean' and self.method in \ euclidean_methods if euclidean or self.method == 'single': return fastcluster.linkage_vector(self.array, method=self.method, metric=self.metric) else: pairwise_dists = distance.pdist(self.array, metric=self.metric) linkage = fastcluster.linkage(pairwise_dists, method=self.method) del pairwise_dists return linkage @property def calculated_linkage(self): try: return self._calculate_linkage_fastcluster() except ImportError: return self._calculate_linkage_scipy() def calculate_dendrogram(self): """Calculates a dendrogram based on the linkage matrix Made a separate function, not a property because don't want to recalculate the dendrogram every time it is accessed. Returns ------- dendrogram : dict Dendrogram dictionary as returned by scipy.cluster.hierarchy .dendrogram. The important key-value pairing is "reordered_ind" which indicates the re-ordering of the matrix """ return hierarchy.dendrogram(self.linkage, no_plot=True, color_list=['k'], color_threshold=-np.inf) @property def reordered_ind(self): """Indices of the matrix, reordered by the dendrogram""" return self.dendrogram['leaves'] def plot(self, ax): """Plots a dendrogram of the similarities between data on the axes Parameters ---------- ax : matplotlib.axes.Axes Axes object upon which the dendrogram is plotted """ for x, y in zip(self.X, self.Y): ax.plot(x, y, color='k', linewidth=.5) if self.rotate and self.axis == 0: ax.invert_xaxis() ax.yaxis.set_ticks_position('right') ymax = min(map(min, self.Y)) + max(map(max, self.Y)) ax.set_ylim(0, ymax) ax.invert_yaxis() else: xmax = min(map(min, self.X)) + max(map(max, self.X)) ax.set_xlim(0, xmax) despine(ax=ax, bottom=True, left=True) ax.set(xticks=self.xticks, yticks=self.yticks, xlabel=self.xlabel, ylabel=self.ylabel) xtl = ax.set_xticklabels(self.xticklabels) ytl = ax.set_yticklabels(self.yticklabels, rotation='vertical') # Force a draw of the plot to avoid matplotlib window error plt.draw() if len(ytl) > 0 and axis_ticklabels_overlap(ytl): plt.setp(ytl, rotation="horizontal") if len(xtl) > 0 and axis_ticklabels_overlap(xtl): plt.setp(xtl, rotation="vertical") return self def dendrogram(data, linkage=None, axis=1, label=True, metric='euclidean', method='average', rotate=False, ax=None): """Draw a tree diagram of relationships within a matrix Parameters ---------- data : pandas.DataFrame Rectangular data linkage : numpy.array, optional Linkage matrix axis : int, optional Which axis to use to calculate linkage. 0 is rows, 1 is columns. label : bool, optional If True, label the dendrogram at leaves with column or row names metric : str, optional Distance metric. Anything valid for scipy.spatial.distance.pdist method : str, optional Linkage method to use. Anything valid for scipy.cluster.hierarchy.linkage rotate : bool, optional When plotting the matrix, whether to rotate it 90 degrees counter-clockwise, so the leaves face right ax : matplotlib axis, optional Axis to plot on, otherwise uses current axis Returns ------- dendrogramplotter : _DendrogramPlotter A Dendrogram plotter object. Notes ----- Access the reordered dendrogram indices with dendrogramplotter.reordered_ind """ plotter = _DendrogramPlotter(data, linkage=linkage, axis=axis, metric=metric, method=method, label=label, rotate=rotate) if ax is None: ax = plt.gca() return plotter.plot(ax=ax) class ClusterGrid(Grid): def __init__(self, data, pivot_kws=None, z_score=None, standard_scale=None, figsize=None, row_colors=None, col_colors=None, mask=None): """Grid object for organizing clustered heatmap input on to axes""" if isinstance(data, pd.DataFrame): self.data = data else: self.data = pd.DataFrame(data) self.data2d = self.format_data(self.data, pivot_kws, z_score, standard_scale) self.mask = _matrix_mask(self.data2d, mask) if figsize is None: width, height = 10, 10 figsize = (width, height) self.fig = plt.figure(figsize=figsize) if row_colors is not None: row_colors = _convert_colors(row_colors) self.row_colors = row_colors if col_colors is not None: col_colors = _convert_colors(col_colors) self.col_colors = col_colors width_ratios = self.dim_ratios(self.row_colors, figsize=figsize, axis=1) height_ratios = self.dim_ratios(self.col_colors, figsize=figsize, axis=0) nrows = 3 if self.col_colors is None else 4 ncols = 3 if self.row_colors is None else 4 self.gs = gridspec.GridSpec(nrows, ncols, wspace=0.01, hspace=0.01, width_ratios=width_ratios, height_ratios=height_ratios) self.ax_row_dendrogram = self.fig.add_subplot(self.gs[nrows - 1, 0:2], axisbg="white") self.ax_col_dendrogram = self.fig.add_subplot(self.gs[0:2, ncols - 1], axisbg="white") self.ax_row_colors = None self.ax_col_colors = None if self.row_colors is not None: self.ax_row_colors = self.fig.add_subplot( self.gs[nrows - 1, ncols - 2]) if self.col_colors is not None: self.ax_col_colors = self.fig.add_subplot( self.gs[nrows - 2, ncols - 1]) self.ax_heatmap = self.fig.add_subplot(self.gs[nrows - 1, ncols - 1]) # colorbar for scale to left corner self.cax = self.fig.add_subplot(self.gs[0, 0]) self.dendrogram_row = None self.dendrogram_col = None def format_data(self, data, pivot_kws, z_score=None, standard_scale=None): """Extract variables from data or use directly.""" # Either the data is already in 2d matrix format, or need to do a pivot if pivot_kws is not None: data2d = data.pivot(**pivot_kws) else: data2d = data if z_score is not None and standard_scale is not None: raise ValueError( 'Cannot perform both z-scoring and standard-scaling on data') if z_score is not None: data2d = self.z_score(data2d, z_score) if standard_scale is not None: data2d = self.standard_scale(data2d, standard_scale) return data2d @staticmethod def z_score(data2d, axis=1): """Standarize the mean and variance of the data axis Parameters ---------- data2d : pandas.DataFrame Data to normalize axis : int Which axis to normalize across. If 0, normalize across rows, if 1, normalize across columns. Returns ------- normalized : pandas.DataFrame Noramlized data with a mean of 0 and variance of 1 across the specified axis. """ if axis == 1: z_scored = data2d else: z_scored = data2d.T z_scored = (z_scored - z_scored.mean()) / z_scored.std() if axis == 1: return z_scored else: return z_scored.T @staticmethod def standard_scale(data2d, axis=1): """Divide the data by the difference between the max and min Parameters ---------- data2d : pandas.DataFrame Data to normalize axis : int Which axis to normalize across. If 0, normalize across rows, if 1, normalize across columns. vmin : int If 0, then subtract the minimum of the data before dividing by the range. Returns ------- standardized : pandas.DataFrame Noramlized data with a mean of 0 and variance of 1 across the specified axis. >>> import numpy as np >>> d = np.arange(5, 8, 0.5) >>> ClusterGrid.standard_scale(d) array([ 0. , 0.2, 0.4, 0.6, 0.8, 1. ]) """ # Normalize these values to range from 0 to 1 if axis == 1: standardized = data2d else: standardized = data2d.T subtract = standardized.min() standardized = (standardized - subtract) / ( standardized.max() - standardized.min()) if axis == 1: return standardized else: return standardized.T def dim_ratios(self, side_colors, axis, figsize, side_colors_ratio=0.05): """Get the proportions of the figure taken up by each axes """ figdim = figsize[axis] # Get resizing proportion of this figure for the dendrogram and # colorbar, so only the heatmap gets bigger but the dendrogram stays # the same size. dendrogram = min(2. / figdim, .2) # add the colorbar colorbar_width = .8 * dendrogram colorbar_height = .2 * dendrogram if axis == 0: ratios = [colorbar_width, colorbar_height] else: ratios = [colorbar_height, colorbar_width] if side_colors is not None: # Add room for the colors ratios += [side_colors_ratio] # Add the ratio for the heatmap itself ratios += [.8] return ratios @staticmethod def color_list_to_matrix_and_cmap(colors, ind, axis=0): """Turns a list of colors into a numpy matrix and matplotlib colormap These arguments can now be plotted using heatmap(matrix, cmap) and the provided colors will be plotted. Parameters ---------- colors : list of matplotlib colors Colors to label the rows or columns of a dataframe. ind : list of ints Ordering of the rows or columns, to reorder the original colors by the clustered dendrogram order axis : int Which axis this is labeling Returns ------- matrix : numpy.array A numpy array of integer values, where each corresponds to a color from the originally provided list of colors cmap : matplotlib.colors.ListedColormap """ # check for nested lists/color palettes. # Will fail if matplotlib color is list not tuple if any(issubclass(type(x), list) for x in colors): all_colors = set(itertools.chain(*colors)) n = len(colors) m = len(colors[0]) else: all_colors = set(colors) n = 1 m = len(colors) colors = [colors] color_to_value = dict((col, i) for i, col in enumerate(all_colors)) matrix = np.array([color_to_value[c] for color in colors for c in color]) shape = (n, m) matrix = matrix.reshape(shape) matrix = matrix[:, ind] if axis == 0: # row-side: matrix = matrix.T cmap = mpl.colors.ListedColormap(all_colors) return matrix, cmap def savefig(self, *args, **kwargs): if 'bbox_inches' not in kwargs: kwargs['bbox_inches'] = 'tight' self.fig.savefig(*args, **kwargs) def plot_dendrograms(self, row_cluster, col_cluster, metric, method, row_linkage, col_linkage): # Plot the row dendrogram if row_cluster: self.dendrogram_row = dendrogram( self.data2d, metric=metric, method=method, label=False, axis=0, ax=self.ax_row_dendrogram, rotate=True, linkage=row_linkage) else: self.ax_row_dendrogram.set_xticks([]) self.ax_row_dendrogram.set_yticks([]) # PLot the column dendrogram if col_cluster: self.dendrogram_col = dendrogram( self.data2d, metric=metric, method=method, label=False, axis=1, ax=self.ax_col_dendrogram, linkage=col_linkage) else: self.ax_col_dendrogram.set_xticks([]) self.ax_col_dendrogram.set_yticks([]) despine(ax=self.ax_row_dendrogram, bottom=True, left=True) despine(ax=self.ax_col_dendrogram, bottom=True, left=True) def plot_colors(self, xind, yind, **kws): """Plots color labels between the dendrogram and the heatmap Parameters ---------- heatmap_kws : dict Keyword arguments heatmap """ # Remove any custom colormap and centering kws = kws.copy() kws.pop('cmap', None) kws.pop('center', None) kws.pop('vmin', None) kws.pop('vmax', None) kws.pop('xticklabels', None) kws.pop('yticklabels', None) if self.row_colors is not None: matrix, cmap = self.color_list_to_matrix_and_cmap( self.row_colors, yind, axis=0) heatmap(matrix, cmap=cmap, cbar=False, ax=self.ax_row_colors, xticklabels=False, yticklabels=False, **kws) else: despine(self.ax_row_colors, left=True, bottom=True) if self.col_colors is not None: matrix, cmap = self.color_list_to_matrix_and_cmap( self.col_colors, xind, axis=1) heatmap(matrix, cmap=cmap, cbar=False, ax=self.ax_col_colors, xticklabels=False, yticklabels=False, **kws) else: despine(self.ax_col_colors, left=True, bottom=True) def plot_matrix(self, colorbar_kws, xind, yind, **kws): self.data2d = self.data2d.iloc[yind, xind] self.mask = self.mask.iloc[yind, xind] # Try to reorganize specified tick labels, if provided xtl = kws.pop("xticklabels", True) try: xtl = np.asarray(xtl)[xind] except (TypeError, IndexError): pass ytl = kws.pop("yticklabels", True) try: ytl = np.asarray(ytl)[yind] except (TypeError, IndexError): pass heatmap(self.data2d, ax=self.ax_heatmap, cbar_ax=self.cax, cbar_kws=colorbar_kws, mask=self.mask, xticklabels=xtl, yticklabels=ytl, **kws) self.ax_heatmap.yaxis.set_ticks_position('right') self.ax_heatmap.yaxis.set_label_position('right') def plot(self, metric, method, colorbar_kws, row_cluster, col_cluster, row_linkage, col_linkage, **kws): colorbar_kws = {} if colorbar_kws is None else colorbar_kws self.plot_dendrograms(row_cluster, col_cluster, metric, method, row_linkage=row_linkage, col_linkage=col_linkage) try: xind = self.dendrogram_col.reordered_ind except AttributeError: xind = np.arange(self.data2d.shape[1]) try: yind = self.dendrogram_row.reordered_ind except AttributeError: yind = np.arange(self.data2d.shape[0]) self.plot_colors(xind, yind, **kws) self.plot_matrix(colorbar_kws, xind, yind, **kws) return self def clustermap(data, pivot_kws=None, method='average', metric='euclidean', z_score=None, standard_scale=None, figsize=None, cbar_kws=None, row_cluster=True, col_cluster=True, row_linkage=None, col_linkage=None, row_colors=None, col_colors=None, mask=None, **kwargs): """Plot a hierarchically clustered heatmap of a pandas DataFrame Parameters ---------- data: pandas.DataFrame Rectangular data for clustering. Cannot contain NAs. pivot_kws : dict, optional If `data` is a tidy dataframe, can provide keyword arguments for pivot to create a rectangular dataframe. method : str, optional Linkage method to use for calculating clusters. See scipy.cluster.hierarchy.linkage documentation for more information: http://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html metric : str, optional Distance metric to use for the data. See scipy.spatial.distance.pdist documentation for more options http://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.pdist.html z_score : int or None, optional Either 0 (rows) or 1 (columns). Whether or not to calculate z-scores for the rows or the columns. Z scores are: z = (x - mean)/std, so values in each row (column) will get the mean of the row (column) subtracted, then divided by the standard deviation of the row (column). This ensures that each row (column) has mean of 0 and variance of 1. standard_scale : int or None, optional Either 0 (rows) or 1 (columns). Whether or not to standardize that dimension, meaning for each row or column, subtract the minimum and divide each by its maximum. figsize: tuple of two ints, optional Size of the figure to create. cbar_kws : dict, optional Keyword arguments to pass to ``cbar_kws`` in ``heatmap``, e.g. to add a label to the colorbar. {row,col}_cluster : bool, optional If True, cluster the {rows, columns}. {row,col}_linkage : numpy.array, optional Precomputed linkage matrix for the rows or columns. See scipy.cluster.hierarchy.linkage for specific formats. {row,col}_colors : list-like, optional List of colors to label for either the rows or columns. Useful to evaluate whether samples within a group are clustered together. Can use nested lists for multiple color levels of labeling. mask : boolean array or DataFrame, optional If passed, data will not be shown in cells where ``mask`` is True. Cells with missing values are automatically masked. Only used for visualizing, not for calculating. kwargs : other keyword arguments All other keyword arguments are passed to ``sns.heatmap`` Returns ------- clustergrid : ClusterGrid A ClusterGrid instance. Notes ----- The returned object has a ``savefig`` method that should be used if you want to save the figure object without clipping the dendrograms. To access the reordered row indices, use: ``clustergrid.dendrogram_row.reordered_ind`` Column indices, use: ``clustergrid.dendrogram_col.reordered_ind`` Examples -------- Plot a clustered heatmap: .. plot:: :context: close-figs >>> import seaborn as sns; sns.set() >>> flights = sns.load_dataset("flights") >>> flights = flights.pivot("month", "year", "passengers") >>> g = sns.clustermap(flights) Don't cluster one of the axes: .. plot:: :context: close-figs >>> g = sns.clustermap(flights, col_cluster=False) Use a different colormap and add lines to separate the cells: .. plot:: :context: close-figs >>> cmap = sns.cubehelix_palette(as_cmap=True, rot=-.3, light=1) >>> g = sns.clustermap(flights, cmap=cmap, linewidths=.5) Use a different figure size: .. plot:: :context: close-figs >>> g = sns.clustermap(flights, cmap=cmap, figsize=(7, 5)) Standardize the data across the columns: .. plot:: :context: close-figs >>> g = sns.clustermap(flights, standard_scale=1) Normalize the data across the rows: .. plot:: :context: close-figs >>> g = sns.clustermap(flights, z_score=0) Use a different clustering method: .. plot:: :context: close-figs >>> g = sns.clustermap(flights, method="single", metric="cosine") Add colored labels on one of the axes: .. plot:: :context: close-figs >>> season_colors = (sns.color_palette("BuPu", 3) + ... sns.color_palette("RdPu", 3) + ... sns.color_palette("YlGn", 3) + ... sns.color_palette("OrRd", 3)) >>> g = sns.clustermap(flights, row_colors=season_colors) """ plotter = ClusterGrid(data, pivot_kws=pivot_kws, figsize=figsize, row_colors=row_colors, col_colors=col_colors, z_score=z_score, standard_scale=standard_scale, mask=mask) return plotter.plot(metric=metric, method=method, colorbar_kws=cbar_kws, row_cluster=row_cluster, col_cluster=col_cluster, row_linkage=row_linkage, col_linkage=col_linkage, **kwargs)
bsd-3-clause
i-namekawa/TopSideMonitor
plotting.py
1
37323
import os, sys, time from glob import glob import cv2 from pylab import * from mpl_toolkits.mplot3d import Axes3D from matplotlib.backends.backend_pdf import PdfPages matplotlib.rcParams['figure.facecolor'] = 'w' from scipy.signal import argrelextrema import scipy.stats as stats import scipy.io as sio from scipy import signal from xlwt import Workbook # specify these in mm to match your behavior chamber. CHMAMBER_LENGTH=235 WATER_HIGHT=40 # quick plot should also show xy_within and location_one_third etc # summary PDF: handle exception when a pickle file missing some fish in other pickle file ## these three taken from http://stackoverflow.com/a/18420730/566035 def strided_sliding_std_dev(data, radius=5): windowed = rolling_window(data, (2*radius, 2*radius)) shape = windowed.shape windowed = windowed.reshape(shape[0], shape[1], -1) return windowed.std(axis=-1) def rolling_window(a, window): """Takes a numpy array *a* and a sequence of (or single) *window* lengths and returns a view of *a* that represents a moving window.""" if not hasattr(window, '__iter__'): return rolling_window_lastaxis(a, window) for i, win in enumerate(window): if win > 1: a = a.swapaxes(i, -1) a = rolling_window_lastaxis(a, win) a = a.swapaxes(-2, i) return a def rolling_window_lastaxis(a, window): """Directly taken from Erik Rigtorp's post to numpy-discussion. <http://www.mail-archive.com/numpy-discussion@scipy.org/msg29450.html>""" if window < 1: raise ValueError, "`window` must be at least 1." if window > a.shape[-1]: raise ValueError, "`window` is too long." shape = a.shape[:-1] + (a.shape[-1] - window + 1, window) strides = a.strides + (a.strides[-1],) return np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides) ## stealing ends here... // def filterheadxy(headx,heady,thrs_denom=10): b, a = signal.butter(8, 0.125) dhy = np.abs(np.hstack((0, np.diff(heady,1)))) thrs = np.nanstd(dhy)/thrs_denom ind2remove = dhy>thrs headx[ind2remove] = np.nan heady[ind2remove] = np.nan headx = interp_nan(headx) heady = interp_nan(heady) headx = signal.filtfilt(b, a, headx, padlen=150) heady = signal.filtfilt(b, a, heady, padlen=150) return headx,heady def smoothRad(theta, thrs=np.pi/4*3): jumps = (np.diff(theta) > thrs).nonzero()[0] print 'jumps.size', jumps.size while jumps.size: # print '%d/%d' % (jumps[0], theta.size) theta[jumps+1] -= np.pi jumps = (np.diff(theta) > thrs).nonzero()[0] return theta def datadct2array(data, key1, key2): # put these in a MATLAB CELL trialN = len(data[key1][key2]) matchedUSnameP = np.zeros((trialN,), dtype=np.object) fnameP = np.zeros((trialN,), dtype=np.object) # others to append to a list eventsP = [] speed3DP = [] movingSTDP = [] d2inflowP = [] xP, yP, zP = [], [], [] XP, YP, ZP = [], [], [] ringpixelsP = [] peaks_withinP = [] swimdir_withinP = [] xy_withinP = [] location_one_thirdP = [] dtheta_shapeP = [] dtheta_velP = [] turns_shapeP = [] turns_velP = [] for n, dct in enumerate(data[key1][key2]): # MATLAB CELL matchedUSnameP[n] = dct['matchedUSname'] fnameP[n] = dct['fname'] # 2D array eventsP.append([ele if type(ele) is not list else ele[0] for ele in dct['events']]) speed3DP.append(dct['speed3D']) movingSTDP.append(dct['movingSTD']) d2inflowP.append(dct['d2inflow']) xP.append(dct['x']) yP.append(dct['y']) zP.append(dct['z']) XP.append(dct['X']) YP.append(dct['Y']) ZP.append(dct['Z']) ringpixelsP.append(dct['ringpixels']) peaks_withinP.append(dct['peaks_within']) swimdir_withinP.append(dct['swimdir_within']) xy_withinP.append(dct['xy_within']) location_one_thirdP.append(dct['location_one_third']) dtheta_shapeP.append(dct['dtheta_shape']) dtheta_velP.append(dct['dtheta_vel']) turns_shapeP.append(dct['turns_shape']) turns_velP.append(dct['turns_vel']) TVroi = np.array(dct['TVroi']) SVroi = np.array(dct['SVroi']) return matchedUSnameP, fnameP, np.array(eventsP), np.array(speed3DP), np.array(d2inflowP), \ np.array(xP), np.array(yP), np.array(zP), np.array(XP), np.array(YP), np.array(ZP), \ np.array(ringpixelsP), np.array(peaks_withinP), np.array(swimdir_withinP), \ np.array(xy_withinP), np.array(dtheta_shapeP), np.array(dtheta_velP), \ np.array(turns_shapeP), np.array(turns_velP), TVroi, SVroi def pickle2mat(fp, data=None): # fp : full path to pickle file # data : option to provide data to skip np.load(fp) if not data: data = np.load(fp) for key1 in data.keys(): for key2 in data[key1].keys(): matchedUSname, fname, events, speed3D, d2inflow, x, y, z, X, Y, Z, \ ringpixels, peaks_within, swimdir_within, xy_within, dtheta_shape, dtheta_vel, \ turns_shape, turns_vel, TVroi, SVroi = datadct2array(data, key1, key2) datadict = { 'matchedUSname' : matchedUSname, 'fname' : fname, 'events' : events, 'speed3D' : speed3D, 'd2inflow' : d2inflow, 'x' : x, 'y' : y, 'z' : z, 'X' : X, 'Y' : Y, 'Z' : Z, 'ringpixels' : ringpixels, 'peaks_within' : peaks_within, 'swimdir_within' : swimdir_within, 'xy_within' : xy_within, 'dtheta_shape' : dtheta_shape, 'dtheta_vel' : dtheta_vel, 'turns_shape' : turns_shape, 'turns_vel' : turns_vel, 'TVroi' : TVroi, 'SVroi' : SVroi, } outfp = '%s_%s_%s.mat' % (fp[:-7],key1,key2) sio.savemat(outfp, datadict, oned_as='row', do_compression=True) def interp_nan(x): ''' Replace nan by interporation http://stackoverflow.com/questions/6518811/interpolate-nan-values-in-a-numpy-array ''' ok = -np.isnan(x) if (ok == False).all(): return x else: xp = ok.ravel().nonzero()[0] fp = x[ok] _x = np.isnan(x).ravel().nonzero()[0] x[-ok] = np.interp(_x, xp, fp) return x def polytest(x,y,rx,ry,rw,rh,rang): points=cv2.ellipse2Poly( (rx,ry), axes=(rw/2,rh/2), angle=rang, arcStart=0, arcEnd=360, delta=3 ) return cv2.pointPolygonTest(np.array(points), (x,y), measureDist=1) def depthCorrection(z,x,TVx1,TVx2,SVy1,SVy2,SVy3): z0 = z - SVy1 x0 = x - TVx1 mid = (SVy2-SVy1)/2 adj = (z0 - mid) / (SVy2-SVy1) * (SVy2-SVy3) * (1-(x0)/float(TVx2-TVx1)) return z0 + adj + SVy1 # back to abs coord def putNp2xls(array, ws): for r, row in enumerate(array): for c, val in enumerate(row): ws.write(r, c, val) def drawLines(mi, ma, events, fps=30.0): CS, USs, preRange = events plot([CS-preRange, CS-preRange], [mi,ma], '--c') # 2 min prior odor plot([CS , CS ], [mi,ma], '--g', linewidth=2) # CS onset if USs: if len(USs) > 3: colors = 'r' * len(USs) else: colors = [_ for _ in ['r','b','c'][:len(USs)]] for c,us in zip(colors, USs): plot([us, us],[mi,ma], linestyle='--', color=c, linewidth=2) # US onset plot([USs[0]+preRange/2,USs[0]+preRange/2], [mi,ma], linestyle='--', color=c, linewidth=2) # end of US window xtck = np.arange(0, max(CS+preRange, max(USs)), 0.5*60*fps) # every 0.5 min tick else: xtck = np.arange(0, CS+preRange, 0.5*60*fps) # every 0.5 min tick xticks(xtck, xtck/fps/60) gca().xaxis.set_minor_locator(MultipleLocator(5*fps)) # 5 s minor ticks def approachevents(x,y,z, ringpolyTVArray, ringpolySVArray, fishlength=134, thrs=None): ''' fishlength: some old scrits may call this with fishlength thrs: multitrack GUI provides this by ringAppearochLevel spin control. can be an numpy array (to track water level change etc) ''' smoothedz = np.convolve(np.hanning(10)/np.hanning(10).sum(), z, 'same') peaks = argrelextrema(smoothedz, np.less)[0] # less because 0 is top in image. # now filter peaks by height. ringLevel = ringpolySVArray[:,1] if thrs is None: thrs = ringLevel+fishlength/2 if type(thrs) == int: # can be numpy array or int thrs = ringLevel.mean() + thrs peaks = peaks[ z[peaks] < thrs ] else: # numpy array should be ready to use peaks = peaks[ z[peaks] < thrs[peaks] ] # now filter out by TVringCenter peaks_within = get_withinring(ringpolyTVArray, peaks, x, y) return smoothedz, peaks_within def get_withinring(ringpolyTVArray, timepoints, x, y): rx = ringpolyTVArray[:,0].astype(np.int) ry = ringpolyTVArray[:,1].astype(np.int) rw = ringpolyTVArray[:,2].astype(np.int) rh = ringpolyTVArray[:,3].astype(np.int) rang = ringpolyTVArray[:,4].astype(np.int) # poly test peaks_within = [] for p in timepoints: points=cv2.ellipse2Poly( (rx[p],ry[p]), axes=(rw[p]/2,rh[p]/2), angle=rang[p], arcStart=0, arcEnd=360, delta=3 ) inout = cv2.pointPolygonTest(np.array(points), (x[p],y[p]), measureDist=1) if inout > 0: peaks_within.append(p) return peaks_within def location_ring(x,y,ringpolyTVArray): rx = ringpolyTVArray[:,0].astype(np.int) ry = ringpolyTVArray[:,1].astype(np.int) rw = ringpolyTVArray[:,2].astype(np.int) rh = ringpolyTVArray[:,3].astype(np.int) d2ringcenter = np.sqrt((x-rx)**2 + (y-ry)**2) # filter by radius 20% buffer in case the ring moves around indices = (d2ringcenter < 1.2*max(rw.max(), rh.max())).nonzero()[0] xy_within = get_withinring(ringpolyTVArray, indices, x, y) return xy_within def swimdir_analysis(x,y,z,ringpolyTVArray,ringpolySVArray,TVx1,TVy1,TVx2,TVy2,fps=30.0): # smoothing # z = np.convolve(np.hanning(16)/np.hanning(16).sum(), z, 'same') # two cameras have different zoom settings. So, distance per pixel is different. But, for # swim direction, it does not matter how much x,y are compressed relative to z. # ring z level from SV rz = ringpolySVArray[:,1].astype(np.int) # ring all other params from TV rx = ringpolyTVArray[:,0].astype(np.int) ry = ringpolyTVArray[:,1].astype(np.int) rw = ringpolyTVArray[:,2].astype(np.int) rh = ringpolyTVArray[:,3].astype(np.int) rang = ringpolyTVArray[:,4].astype(np.int) speed3D = np.sqrt( np.diff(x)**2 + np.diff(y)**2 + np.diff(z)**2 ) speed3D = np.hstack(([0], speed3D)) # line in 3D http://tutorial.math.lamar.edu/Classes/CalcIII/EqnsOfLines.aspx # x-x0 y-y0 z-z0 # ---- = ---- = ---- # a b c # solve them for z = rz. x0,y0,z0 are tvx, tvy, svy # x = (a * (rz-z)) / c + x0 dt = 3 # define slope as diff between current and dt frame before a = np.hstack( (np.ones(dt), x[dt:]-x[:-dt]) ) b = np.hstack( (np.ones(dt), y[dt:]-y[:-dt]) ) c = np.hstack( (np.ones(dt), z[dt:]-z[:-dt]) ) c[c==0] = np.nan # avoid zero division water_x = (a * (rz-z) / c) + x water_y = (b * (rz-z) / c) + y upwards = c<-2/30.0*fps # not accurate when c is small or negative xok = (TVx1 < water_x) & (water_x < TVx2) yok = (TVy1 < water_y) & (water_y < TVy2) filtered = upwards & xok & yok# & -np.isinf(water_x) & -np.isinf(water_y) water_x[-filtered] = np.nan water_y[-filtered] = np.nan # figure() # ax = subplot(111) # ax.imshow(npData['TVbg'], cmap=cm.gray) # clip out from TVx1,TVy1 # ax.plot(x-TVx1, y-TVy1, 'c') # ax.plot(water_x-TVx1, water_y-TVy1, 'r.') # xlim([0, TVx2-TVx1]); ylim([TVy2-TVy1, 0]) # draw(); show() SwimDir = [] for n in filtered.nonzero()[0]: inout = polytest(water_x[n],water_y[n],rx[n],ry[n],rw[n],rh[n],rang[n]) SwimDir.append((n, inout, speed3D[n])) # inout>0 are inside return SwimDir, water_x, water_y def plot_eachTr(events, x, y, z, inflowpos, ringpixels, peaks_within, swimdir_within=None, pp=None, _title=None, fps=30.0, inmm=False): CS, USs, preRange = events # preRange = 3600 2 min prior and 1 min after CS. +900 for 0.5 min if USs: xmin, xmax = CS-preRange-10*fps, USs[0]+preRange/2+10*fps else: xmin, xmax = CS-preRange-10*fps, CS+preRange/2+(23+10)*fps fig = figure(figsize=(12,8), facecolor='w') subplot(511) # Swimming speed speed3D = np.sqrt( np.diff(x)**2 + np.diff(y)**2 + np.diff(z)**2 ) drawLines(np.nanmin(speed3D), np.nanmax(speed3D), events, fps) # go behind plot(speed3D) movingSTD = np.append( np.zeros(fps*10), strided_sliding_std_dev(speed3D, fps*10) ) plot(movingSTD, linewidth=2) plot(np.ones_like(speed3D) * speed3D.std()*6, '-.', color='gray') ylim([-5, speed3D[xmin:xmax].max()]) xlim([xmin,xmax]); title(_title) if inmm: ylabel('Speed 3D (mm),\n6SD thr'); else: ylabel('Speed 3D, 6SD thr'); ax = subplot(512) # z level drawLines(z.min(), z.max(), events) plot(z, 'b') pkx = peaks_within.nonzero()[0] if inmm: plot(pkx, peaks_within[pkx]*z[xmin:xmax].max()*0.97, 'mo') if swimdir_within is not None: ___x = swimdir_within.nonzero()[0] plot(___x, swimdir_within[___x]*z[xmin:xmax].max()*0.96, 'g+') ylim([z[xmin:xmax].min()*0.95, z[xmin:xmax].max()]) xlim([xmin,xmax]); ylabel('Z (mm)') else: plot(pkx, peaks_within[pkx]*z[xmin:xmax].min()*0.97, 'mo') if swimdir_within is not None: ___x = swimdir_within.nonzero()[0] plot(___x, swimdir_within[___x]*z[xmin:xmax].min()*0.96, 'g+') ylim([z[xmin:xmax].min()*0.95, z[xmin:xmax].max()]) ax.invert_yaxis(); xlim([xmin,xmax]); ylabel('z') subplot(513) # x drawLines(x.min(), x.max(), events) plot(x, 'b') plot(y, 'g') xlim([xmin,xmax]); ylabel('x,y') subplot(514) # Distance to the inflow tube xin, yin, zin = inflowpos d2inflow = np.sqrt((x-xin) ** 2 + (y-yin) ** 2 + (z-zin) ** 2 ) drawLines(d2inflow.min(), d2inflow.max(), events) plot(d2inflow) ylim([d2inflow[xmin:xmax].min(), d2inflow[xmin:xmax].max()]) xlim([xmin,xmax]); ylabel('distance to\ninflow tube') subplot(515) # ringpixels: it seems i never considered TV x,y for this rpmax, rpmin = np.nanmax(ringpixels[xmin:xmax]), np.nanmin(ringpixels[xmin:xmax]) drawLines(rpmin, rpmax, events) plot(ringpixels) plot(pkx, peaks_within[pkx]*rpmax*1.06, 'mo') if swimdir_within is not None: plot(___x, swimdir_within[___x]*rpmax*1.15, 'g+') ylim([-100, rpmax*1.2]) xlim([xmin,xmax]); ylabel('ringpixels') tight_layout() if pp: fig.savefig(pp, format='pdf') rng = np.arange(CS-preRange, CS+preRange, dtype=np.int) return speed3D[rng], movingSTD[rng], d2inflow[rng], ringpixels[rng] def plot_turnrates(events, dthetasum_shape,dthetasum_vel,turns_shape,turns_vel, pp=None, _title=None, thrs=np.pi/4*(133.33333333333334/120), fps=30.0): CS, USs, preRange = events # preRange = 3600 2 min prior and 1 min after CS. +900 for 0.5 min if USs: xmin, xmax = CS-preRange-10*fps, USs[0]+preRange/2+10*fps else: xmin, xmax = CS-preRange-10*fps, CS+preRange/2+(23+10)*fps fig = figure(figsize=(12,8), facecolor='w') subplot(211) drawLines(dthetasum_shape.min(), dthetasum_shape.max(), events) plot(np.ones_like(dthetasum_shape)*thrs,'gray',linestyle='--') plot(-np.ones_like(dthetasum_shape)*thrs,'gray',linestyle='--') plot(dthetasum_shape) dmax = dthetasum_shape[xmin:xmax].max() plot(turns_shape, (0.5+dmax)*np.ones_like(turns_shape), 'o') temp = np.zeros_like(dthetasum_shape) temp[turns_shape] = 1 shape_cumsum = np.cumsum(temp) shape_cumsum -= shape_cumsum[xmin] plot( shape_cumsum / shape_cumsum[xmax] * (dmax-dthetasum_shape.min()) + dthetasum_shape.min()) xlim([xmin,xmax]); ylabel('Shape based'); title('Orientation change per 4 frames: ' + _title) ylim([dthetasum_shape[xmin:xmax].min()-1, dmax+1]) subplot(212) drawLines(dthetasum_vel.min(), dthetasum_vel.max(), events) plot(np.ones_like(dthetasum_vel)*thrs,'gray',linestyle='--') plot(-np.ones_like(dthetasum_vel)*thrs,'gray',linestyle='--') plot(dthetasum_vel) dmax = dthetasum_vel[xmin:xmax].max() plot(turns_vel, (0.5+dmax)*np.ones_like(turns_vel), 'o') temp = np.zeros_like(dthetasum_vel) temp[turns_vel] = 1 vel_cumsum = np.cumsum(temp) vel_cumsum -= vel_cumsum[xmin] plot( vel_cumsum / vel_cumsum[xmax] * (dmax-dthetasum_shape.min()) + dthetasum_shape.min()) ylim([dthetasum_vel[xmin:xmax].min()-1, dmax+1]) xlim([xmin,xmax]); ylabel('Velocity based') tight_layout() if pp: fig.savefig(pp, format='pdf') def trajectory(x, y, z, rng, ax, _xlim=[0,640], _ylim=[480,480+300], _zlim=[150,340], color='b', fps=30.0, ringpolygon=None): ax.plot(x[rng],y[rng],z[rng], color=color) ax.view_init(azim=-75, elev=-180+15) if ringpolygon: rx, ry, rz = ringpolygon ax.plot(rx, ry, rz, color='gray') ax.set_xlim(_xlim[0],_xlim[1]) ax.set_ylim(_ylim[0],_ylim[1]) ax.set_zlim(_zlim[0],_zlim[1]) title(("(%2.1f min to %2.1f min)" % (rng[0]/fps/60.0,(rng[-1]+1)/60.0/fps))) draw() def plotTrajectory(x, y, z, events, _xlim=None, _ylim=None, _zlim=None, fps=30.0, pp=None, ringpolygon=None): CS, USs, preRange = events rng1 = np.arange(CS-preRange, CS-preRange/2, dtype=int) rng2 = np.arange(CS-preRange/2, CS, dtype=int) if USs: rng3 = np.arange(CS, min(USs), dtype=int) rng4 = np.arange(min(USs), min(USs)+preRange/2, dtype=int) combined = np.hstack((rng1,rng2,rng3,rng4)) else: combined = np.hstack((rng1,rng2)) if _xlim is None: _xlim = map( int, ( x[combined].min(), x[combined].max() ) ) if _ylim is None: _ylim = map( int, ( y[combined].min(), y[combined].max() ) ) if _zlim is None: _zlim = map( int, ( z[combined].min(), z[combined].max() ) ) if ringpolygon: _zlim[0] = min( _zlim[0], int(ringpolygon[2][0]) ) fig3D = plt.figure(figsize=(12,8), facecolor='w') ax = fig3D.add_subplot(221, projection='3d'); trajectory(x,y,z,rng1,ax,_xlim,_ylim,_zlim,'c',fps,ringpolygon) ax = fig3D.add_subplot(222, projection='3d'); trajectory(x,y,z,rng2,ax,_xlim,_ylim,_zlim,'c',fps,ringpolygon) if USs: ax = fig3D.add_subplot(223, projection='3d'); trajectory(x,y,z,rng3,ax,_xlim,_ylim,_zlim,'g',fps,ringpolygon) ax = fig3D.add_subplot(224, projection='3d'); trajectory(x,y,z,rng4,ax,_xlim,_ylim,_zlim,'r',fps,ringpolygon) tight_layout() if pp: fig3D.savefig(pp, format='pdf') def add2DataAndPlot(fp, fish, data, createPDF): if createPDF: pp = PdfPages(fp[:-7]+'_'+fish+'.pdf') else: pp = None params = np.load(fp) fname = os.path.basename(fp).split('.')[0] + '.avi' dirname = os.path.dirname(fp) preRange = params[(fname, 'mog')]['preRange'] fps = params[(fname, 'mog')]['fps'] TVx1 = params[(fname, fish)]['TVx1'] TVy1 = params[(fname, fish)]['TVy1'] TVx2 = params[(fname, fish)]['TVx2'] TVy2 = params[(fname, fish)]['TVy2'] SVx1 = params[(fname, fish)]['SVx1'] SVx2 = params[(fname, fish)]['SVx2'] SVx3 = params[(fname, fish)]['SVx3'] SVy1 = params[(fname, fish)]['SVy1'] SVy2 = params[(fname, fish)]['SVy2'] SVy3 = params[(fname, fish)]['SVy3'] ringAppearochLevel = params[(fname, fish)]['ringAppearochLevel'] _npz = os.path.join(dirname, os.path.join('%s_%s.npz' % (fname[:-4], fish))) # if os.path.exists(_npz): npData = np.load(_npz) tvx = npData['TVtracking'][:,0] # x with nan tvy = npData['TVtracking'][:,1] # y headx = npData['TVtracking'][:,3] # headx heady = npData['TVtracking'][:,4] # heady svy = npData['SVtracking'][:,1] # z InflowTubeTVArray = npData['InflowTubeTVArray'] InflowTubeSVArray = npData['InflowTubeSVArray'] inflowpos = InflowTubeTVArray[:,0], InflowTubeTVArray[:,1], InflowTubeSVArray[:,1] ringpixels = npData['ringpixel'] ringpolyTVArray = npData['ringpolyTVArray'] ringpolySVArray = npData['ringpolySVArray'] TVbg = npData['TVbg'] print os.path.basename(_npz), 'loaded.' x,y,z = map(interp_nan, [tvx,tvy,svy]) # z level correction by depth (x) z = depthCorrection(z,x,TVx1,TVx2,SVy1,SVy2,SVy3) smoothedz, peaks_within = approachevents(x, y, z, ringpolyTVArray, ringpolySVArray, thrs=ringAppearochLevel) # convert to numpy array from list temp = np.zeros_like(x) temp[peaks_within] = 1 peaks_within = temp # normalize to mm longaxis = float(max((TVx2-TVx1), (TVy2-TVy1))) # before rotation H is applied they are orthogonal waterlevel = float(SVy2-SVy1) X = (x-TVx1) / longaxis * CHMAMBER_LENGTH Y = (TVy2-y) / longaxis * CHMAMBER_LENGTH Z = (SVy2-z) / waterlevel * WATER_HIGHT # bottom of chamber = 0, higher more positive inflowpos_mm = ((inflowpos[0]-TVx1) / longaxis * CHMAMBER_LENGTH, (TVy2-inflowpos[1]) / longaxis * CHMAMBER_LENGTH, (SVy2-inflowpos[2]) / waterlevel * WATER_HIGHT ) # do the swim direction analysis here swimdir, water_x, water_y = swimdir_analysis(x,y,z, ringpolyTVArray,ringpolySVArray,TVx1,TVy1,TVx2,TVy2,fps) # all of swimdir are within ROI (frame#, inout, speed) but not necessary within ring sdir = np.array(swimdir) withinRing = sdir[:,1]>0 # inout>0 are inside ring temp = np.zeros_like(x) temp[ sdir[withinRing,0].astype(int) ] = 1 swimdir_within = temp # location_ring xy_within = location_ring(x,y, ringpolyTVArray) temp = np.zeros_like(x) temp[xy_within] = 1 xy_within = temp # location_one_third if (TVx2-TVx1) > (TVy2-TVy1): if np.abs(np.arange(TVx1, longaxis+TVx1, longaxis/3) + longaxis/6 - inflowpos[0].mean()).argmin() == 2: location_one_third = x-TVx1 > longaxis/3*2 else: location_one_third = x < longaxis/3 else: if np.abs(np.arange(TVy1, longaxis+TVy1, longaxis/3) + longaxis/6 - inflowpos[1].mean()).argmin() == 2: location_one_third = y-TVy1 > longaxis/3*2 else: location_one_third = y < longaxis/3 # turn rate analysis (shape based) heady, headx = map(interp_nan, [heady, headx]) headx, heady = filterheadxy(headx, heady) dy = heady - y dx = headx - x theta_shape = np.arctan2(dy, dx) # velocity based cx, cy = filterheadxy(x.copy(), y.copy()) # centroid x,y vx = np.append(0, np.diff(cx)) vy = np.append(0, np.diff(cy)) theta_vel = np.arctan2(vy, vx) # prepare ringpolygon for trajectory plot rx, ry, rw, rh, rang = ringpolyTVArray.mean(axis=0).astype(int) # use mm ver above rz = ringpolySVArray.mean(axis=0)[1].astype(int) RX = (rx-TVx1) / longaxis * CHMAMBER_LENGTH RY = (TVy2-ry) / longaxis * CHMAMBER_LENGTH RW = rw / longaxis * CHMAMBER_LENGTH / 2 RH = rh / longaxis * CHMAMBER_LENGTH / 2 RZ = (SVy2-rz) / waterlevel * WATER_HIGHT points = cv2.ellipse2Poly( (RX.astype(int),RY.astype(int)), axes=(RW.astype(int),RH.astype(int)), angle=rang, arcStart=0, arcEnd=360, delta=3 ) ringpolygon = [points[:,0], points[:,1], np.ones(points.shape[0]) * RZ] eventTypeKeys = params[(fname, fish)]['EventData'].keys() CSs = [_ for _ in eventTypeKeys if _.startswith('CS')] USs = [_ for _ in eventTypeKeys if _.startswith('US')] # print CSs, USs # events for CS in CSs: CS_Timings = params[(fname, fish)]['EventData'][CS] CS_Timings.sort() # initialize when needed if CS not in data[fish].keys(): data[fish][CS] = [] # now look around for US after it within preRange for t in CS_Timings: tr = len(data[fish][CS])+1 rng = np.arange(t-preRange, t+preRange, dtype=np.int) matchedUSname = None for us in USs: us_Timings = params[(fname, fish)]['EventData'][us] matched = [_ for _ in us_Timings if t-preRange < _ < t+preRange] if matched: events = [t, matched, preRange] # ex. CS+ matchedUSname = us break else: continue _title = '(%s, %s) trial#%02d %s (%s)' % (CS, matchedUSname[0], tr, fname, fish) print _title, events _speed3D, _movingSTD, _d2inflow, _ringpixels = plot_eachTr(events, X, Y, Z, inflowpos_mm, ringpixels, peaks_within, swimdir_within, pp, _title, fps, inmm=True) # 3d trajectory _xlim = (0, CHMAMBER_LENGTH) _zlim = (RZ.max(),0) plotTrajectory(X, Y, Z, events, _xlim=_xlim, _zlim=_zlim, fps=fps, pp=pp, ringpolygon=ringpolygon) # turn rate analysis # shape based theta_shape[rng] = smoothRad(theta_shape[rng].copy(), thrs=np.pi/2) dtheta_shape = np.append(0, np.diff(theta_shape)) # full length kernel = np.ones(4) dthetasum_shape = np.convolve(dtheta_shape, kernel, 'same') # 4 frames = 1000/30.0*4 = 133.3 ms thrs = (np.pi / 2) * (133.33333333333334/120) # Braubach et al 2009 90 degree in 120 ms peaks_shape = argrelextrema(abs(dthetasum_shape), np.greater)[0] turns_shape = peaks_shape[ (abs(dthetasum_shape[peaks_shape]) > thrs).nonzero()[0] ] # velocity based theta_vel[rng] = smoothRad(theta_vel[rng].copy(), thrs=np.pi/2) dtheta_vel = np.append(0, np.diff(theta_vel)) dthetasum_vel = np.convolve(dtheta_vel, kernel, 'same') peaks_vel = argrelextrema(abs(dthetasum_vel), np.greater)[0] turns_vel = peaks_vel[ (abs(dthetasum_vel[peaks_vel]) > thrs).nonzero()[0] ] plot_turnrates(events, dthetasum_shape, dthetasum_vel, turns_shape, turns_vel, pp, _title, fps=fps) _temp = np.zeros_like(dtheta_shape) _temp[turns_shape] = 1 turns_shape_array = _temp _temp = np.zeros_like(dtheta_vel) _temp[turns_vel] = 1 turns_vel_array = _temp # plot swim direction analysis fig = figure(figsize=(12,8), facecolor='w') ax1 = subplot(211) ax1.imshow(TVbg, cmap=cm.gray) # TVbg is clip out of ROI ax1.plot(x[rng]-TVx1, y[rng]-TVy1, 'gray') ax1.plot(water_x[t-preRange:t]-TVx1, water_y[t-preRange:t]-TVy1, 'c.') if matched: ax1.plot( water_x[t:matched[0]]-TVx1, water_y[t:matched[0]]-TVy1, 'g.') ax1.plot( water_x[matched[0]:matched[0]+preRange/4]-TVx1, water_y[matched[0]:matched[0]+preRange/4]-TVy1, 'r.') xlim([0, TVx2-TVx1]); ylim([TVy2-TVy1, 0]) title(_title) ax2 = subplot(212) ax2.plot( swimdir_within ) ax2.plot( peaks_within*1.15-0.1, 'mo' ) if matched: xmin, xmax = t-preRange-10*fps, matched[0]+preRange/4 else: xmin, xmax = t-preRange-10*fps, t+preRange/2+10*fps gzcs = np.cumsum(swimdir_within) gzcs -= gzcs[xmin] ax2.plot( gzcs/gzcs[xmax] ) drawLines(0,1.2, events) ylim([0,1.2]) xlim([xmin, xmax]) ylabel('|: SwimDirection\no: approach events') data[fish][CS].append( { 'fname' : fname, 'x': x[rng], 'y': y[rng], 'z': z[rng], 'X': X[rng], 'Y': Y[rng], 'Z': Z[rng], # calibrate space (mm) 'speed3D': _speed3D, # calibrate space (mm) 'movingSTD' : _movingSTD, # calibrate space (mm) 'd2inflow': _d2inflow, # calibrate space (mm) 'ringpixels': _ringpixels, 'peaks_within': peaks_within[rng], 'xy_within': xy_within[rng], 'location_one_third' : location_one_third[rng], 'swimdir_within' : swimdir_within[rng], 'dtheta_shape': dtheta_shape[rng], 'dtheta_vel': dtheta_vel[rng], 'turns_shape': turns_shape_array[rng], # already +/- preRange 'turns_vel': turns_vel_array[rng], 'events' : events, 'matchedUSname' : matchedUSname, 'TVroi' : (TVx1,TVy1,TVx2,TVy2), 'SVroi' : (SVx1,SVy1,SVx2,SVy2), } ) if pp: fig.savefig(pp, format='pdf') close('all') # release memory ASAP! if pp: pp.close() def getPDFs(pickle_files, fishnames=None, createPDF=True): # type checking args if type(pickle_files) is str: pickle_files = [pickle_files] # convert to a list or set of fish names if type(fishnames) is str: fishnames = [fishnames] elif not fishnames: fishnames = set() # re-organize trials into a dict "data" data = {} # figure out trial number (sometime many trials in one files) for each fish # go through all pickle_files and use timestamps of file to sort events. timestamps = [] for fp in pickle_files: # collect ctime of pickled files fname = os.path.basename(fp).split('.')[0] + '.avi' timestamps.append( time.strptime(fname, "%b-%d-%Y_%H_%M_%S.avi") ) # look into the pickle and collect fish analyzed params = np.load(fp) # loading pickled file! if type(fishnames) is set: for fish in [fs for fl,fs in params.keys() if fl == fname and fs != 'mog']: fishnames.add(fish) timestamps = sorted(range(len(timestamps)), key=timestamps.__getitem__) # For each fish, go thru all pickled files for fish in fishnames: data[fish] = {} # now go thru the sorted for ind in timestamps: fp = pickle_files[ind] print 'processing #%d\n%s' % (ind, fp) add2DataAndPlot(fp, fish, data, createPDF) return data def plotTrials(data, fish, CSname, key, step, offset=0, pp=None): fig = figure(figsize=(12,8), facecolor='w') ax1 = fig.add_subplot(121) # raw trace ax2 = fig.add_subplot(222) # learning curve ax3 = fig.add_subplot(224) # bar plot preP, postP, postP2 = [], [], [] longestUS = 0 for n, measurement in enumerate(data[fish][CSname]): tr = n+1 CS, USs, preRange = measurement['events'] subplot(ax1) mi = -step*(tr-1) ma = mi + step drawLines(mi, ma, (preRange, [preRange+(USs[0]-CS)], preRange)) longestUS = max([us-CS+preRange*3/2 for us in USs]+[longestUS]) # 'measurement[key]': vector around the CS timing (+/-) preRange. i.e., preRange is the center ax1.plot(measurement[key]-step*(tr-1)+offset) title(CSname+': '+key) # cf. preRange = 3600 frames pre = measurement[key][:preRange].mean()+offset # 2 min window post = measurement[key][preRange:preRange+(USs[0]-CS)].mean()+offset # 23 s window post2 = measurement[key][preRange+(USs[0]-CS):preRange*3/2+(USs[0]-CS)].mean()+offset # 1 min window after US preP.append(pre) postP.append(post) postP2.append(post2) ax3.plot([1, 2, 3], [pre, post, post2],'o-') ax1.set_xlim([0,longestUS]) ax1.axis('off') subplot(ax2) x = range(1, tr+1) y = np.diff((preP,postP), axis=0).ravel() ax2.plot( x, y, 'ko-', linewidth=2 ) ax2.plot( x, np.zeros_like(x), '-.', linewidth=1, color='gray' ) # grid() slope, intercept, rvalue, pval, stderr = stats.stats.linregress(x,y) title('slope = zero? p-value = %f' % pval) ax2.set_xlabel("Trial#") ax2.set_xlim([0.5,tr+0.5]) ax2.set_ylabel('CS - pre') subplot(ax3) ax3.bar([0.6, 1.6, 2.6], [np.nanmean(preP), np.nanmean(postP), np.nanmean(postP2)], facecolor='none') t, pval = stats.ttest_rel(postP, preP) title('paired t p-value = %f' % pval) ax3.set_xticks([1,2,3]) ax3.set_xticklabels(['pre', CSname, measurement['matchedUSname']]) ax3.set_xlim([0.5,3.5]) ax3.set_ylabel('Raw mean values') tight_layout(2, h_pad=1, w_pad=1) if pp: fig.savefig(pp, format='pdf') close('all') return np.vstack((preP, postP, postP2)) def getSummary(data, dirname=None): for fish in data.keys(): for CSname in data[fish].keys(): if dirname: pp = PdfPages(os.path.join(dirname, '%s_for_%s.pdf' % (CSname,fish))) print 'generating %s_for_%s.pdf' % (CSname,fish) book = Workbook() sheet1 = book.add_sheet('speed3D') avgs = plotTrials(data, fish, CSname, 'speed3D', 30, pp=pp) putNp2xls(avgs, sheet1) sheet2 = book.add_sheet('d2inflow') avgs = plotTrials(data, fish, CSname, 'd2inflow', 200, pp=pp) putNp2xls(avgs, sheet2) # sheet3 = book.add_sheet('smoothedz') sheet3 = book.add_sheet('Z') # avgs = plotTrials(data, fish, CSname, 'smoothedz', 100, pp=pp) avgs = plotTrials(data, fish, CSname, 'Z', 30, pp=pp) putNp2xls(avgs, sheet3) sheet4 = book.add_sheet('ringpixels') avgs = plotTrials(data, fish, CSname, 'ringpixels', 1200, pp=pp) putNp2xls(avgs, sheet4) sheet5 = book.add_sheet('peaks_within') avgs = plotTrials(data, fish, CSname, 'peaks_within', 1.5, pp=pp) putNp2xls(avgs, sheet5) sheet6 = book.add_sheet('swimdir_within') avgs = plotTrials(data, fish, CSname, 'swimdir_within', 1.5, pp=pp) putNp2xls(avgs, sheet6) sheet7 = book.add_sheet('xy_within') avgs = plotTrials(data, fish, CSname, 'xy_within', 1.5, pp=pp) putNp2xls(avgs, sheet7) sheet8 = book.add_sheet('turns_shape') avgs = plotTrials(data, fish, CSname, 'turns_shape', 1.5, pp=pp) putNp2xls(avgs, sheet8) sheet9 = book.add_sheet('turns_vel') avgs = plotTrials(data, fish, CSname, 'turns_vel', 1.5, pp=pp) putNp2xls(avgs, sheet9) if dirname: pp.close() book.save(os.path.join(dirname, '%s_for_%s.xls' % (CSname,fish))) close('all') else: show() def add2Pickles(dirname, pickle_files): # dirname : folder to look for pickle files # pickle_files : output, a list to be concatenated. pattern = os.path.join(dirname, '*.pickle') temp = [_ for _ in glob(pattern) if not _.endswith('- Copy.pickle') and not os.path.basename(_).startswith('Summary')] pickle_files += temp if __name__ == '__main__': pickle_files = [] # small test data # add2Pickles('R:/Data/itoiori/behav/adult whitlock/conditioning/NeuroD/Aug4/test', pickle_files) # outputdir = 'R:/Data/itoiori/behav/adult whitlock/conditioning/NeuroD/Aug4/test' # show me what you got for pf in pickle_files: print pf fp = os.path.join(outputdir, 'Summary.pickle') createPDF = True # useful when plotting etc code updated if 1: # refresh analysis data = getPDFs(pickle_files, createPDF=createPDF) import cPickle as pickle with open(os.path.join(outputdir, 'Summary.pickle'), 'wb') as f: pickle.dump(data, f) else: # or reuse previous data = np.load(fp) getSummary(data, outputdir) pickle2mat(fp, data)
bsd-3-clause
RapidApplicationDevelopment/tensorflow
tensorflow/contrib/metrics/python/kernel_tests/histogram_ops_test.py
12
9744
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for histogram_ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf from tensorflow.contrib.metrics.python.ops import histogram_ops class Strict1dCumsumTest(tf.test.TestCase): """Test this private function.""" def test_empty_tensor_returns_empty(self): with self.test_session(): tensor = tf.constant([]) result = histogram_ops._strict_1d_cumsum(tensor, 0) expected = tf.constant([]) np.testing.assert_array_equal(expected.eval(), result.eval()) def test_length_1_tensor_works(self): with self.test_session(): tensor = tf.constant([3], dtype=tf.float32) result = histogram_ops._strict_1d_cumsum(tensor, 1) expected = tf.constant([3], dtype=tf.float32) np.testing.assert_array_equal(expected.eval(), result.eval()) def test_length_3_tensor_works(self): with self.test_session(): tensor = tf.constant([1, 2, 3], dtype=tf.float32) result = histogram_ops._strict_1d_cumsum(tensor, 3) expected = tf.constant([1, 3, 6], dtype=tf.float32) np.testing.assert_array_equal(expected.eval(), result.eval()) class AUCUsingHistogramTest(tf.test.TestCase): def setUp(self): self.rng = np.random.RandomState(0) def test_empty_labels_and_scores_gives_nan_auc(self): with self.test_session(): labels = tf.constant([], shape=[0], dtype=tf.bool) scores = tf.constant([], shape=[0], dtype=tf.float32) score_range = [0, 1.] auc, update_op = tf.contrib.metrics.auc_using_histogram(labels, scores, score_range) tf.local_variables_initializer().run() update_op.run() self.assertTrue(np.isnan(auc.eval())) def test_perfect_scores_gives_auc_1(self): self._check_auc(nbins=100, desired_auc=1.0, score_range=[0, 1.], num_records=50, frac_true=0.5, atol=0.05, num_updates=1) def test_terrible_scores_gives_auc_0(self): self._check_auc(nbins=100, desired_auc=0.0, score_range=[0, 1.], num_records=50, frac_true=0.5, atol=0.05, num_updates=1) def test_many_common_conditions(self): for nbins in [50]: for desired_auc in [0.3, 0.5, 0.8]: for score_range in [[-1, 1], [-10, 0]]: for frac_true in [0.3, 0.8]: # Tests pass with atol = 0.03. Moved up to 0.05 to avoid flakes. self._check_auc(nbins=nbins, desired_auc=desired_auc, score_range=score_range, num_records=100, frac_true=frac_true, atol=0.05, num_updates=50) def test_large_class_imbalance_still_ok(self): # With probability frac_true ** num_records, each batch contains only True # records. In this case, ~ 95%. # Tests pass with atol = 0.02. Increased to 0.05 to avoid flakes. self._check_auc(nbins=100, desired_auc=0.8, score_range=[-1, 1.], num_records=10, frac_true=0.995, atol=0.05, num_updates=1000) def test_super_accuracy_with_many_bins_and_records(self): # Test passes with atol = 0.0005. Increased atol to avoid flakes. self._check_auc(nbins=1000, desired_auc=0.75, score_range=[0, 1.], num_records=1000, frac_true=0.5, atol=0.005, num_updates=100) def _check_auc(self, nbins=100, desired_auc=0.75, score_range=None, num_records=50, frac_true=0.5, atol=0.05, num_updates=10): """Check auc accuracy against synthetic data. Args: nbins: nbins arg from contrib.metrics.auc_using_histogram. desired_auc: Number in [0, 1]. The desired auc for synthetic data. score_range: 2-tuple, (low, high), giving the range of the resultant scores. Defaults to [0, 1.]. num_records: Positive integer. The number of records to return. frac_true: Number in (0, 1). Expected fraction of resultant labels that will be True. This is just in expectation...more or less may actually be True. atol: Absolute tolerance for final AUC estimate. num_updates: Update internal histograms this many times, each with a new batch of synthetic data, before computing final AUC. Raises: AssertionError: If resultant AUC is not within atol of theoretical AUC from synthetic data. """ score_range = [0, 1.] or score_range with self.test_session(): labels = tf.placeholder(tf.bool, shape=[num_records]) scores = tf.placeholder(tf.float32, shape=[num_records]) auc, update_op = tf.contrib.metrics.auc_using_histogram(labels, scores, score_range, nbins=nbins) tf.local_variables_initializer().run() # Updates, then extract auc. for _ in range(num_updates): labels_a, scores_a = synthetic_data(desired_auc, score_range, num_records, self.rng, frac_true) update_op.run(feed_dict={labels: labels_a, scores: scores_a}) labels_a, scores_a = synthetic_data(desired_auc, score_range, num_records, self.rng, frac_true) # Fetch current auc, and verify that fetching again doesn't change it. auc_eval = auc.eval() self.assertAlmostEqual(auc_eval, auc.eval(), places=5) msg = ('nbins: %s, desired_auc: %s, score_range: %s, ' 'num_records: %s, frac_true: %s, num_updates: %s') % (nbins, desired_auc, score_range, num_records, frac_true, num_updates) np.testing.assert_allclose(desired_auc, auc_eval, atol=atol, err_msg=msg) def synthetic_data(desired_auc, score_range, num_records, rng, frac_true): """Create synthetic boolean_labels and scores with adjustable auc. Args: desired_auc: Number in [0, 1], the theoretical AUC of resultant data. score_range: 2-tuple, (low, high), giving the range of the resultant scores num_records: Positive integer. The number of records to return. rng: Initialized np.random.RandomState random number generator frac_true: Number in (0, 1). Expected fraction of resultant labels that will be True. This is just in expectation...more or less may actually be True. Returns: boolean_labels: np.array, dtype=bool. scores: np.array, dtype=np.float32 """ # We prove here why the method (below) for computing AUC works. Of course we # also checked this against sklearn.metrics.roc_auc_curve. # # First do this for score_range = [0, 1], then rescale. # WLOG assume AUC >= 0.5, otherwise we will solve for AUC >= 0.5 then swap # the labels. # So for AUC in [0, 1] we create False and True labels # and corresponding scores drawn from: # F ~ U[0, 1], T ~ U[x, 1] # We have, # AUC # = P[T > F] # = P[T > F | F < x] P[F < x] + P[T > F | F > x] P[F > x] # = (1 * x) + (0.5 * (1 - x)). # Inverting, we have: # x = 2 * AUC - 1, when AUC >= 0.5. assert 0 <= desired_auc <= 1 assert 0 < frac_true < 1 if desired_auc < 0.5: flip_labels = True desired_auc = 1 - desired_auc frac_true = 1 - frac_true else: flip_labels = False x = 2 * desired_auc - 1 labels = rng.binomial(1, frac_true, size=num_records).astype(bool) num_true = labels.sum() num_false = num_records - labels.sum() # Draw F ~ U[0, 1], and T ~ U[x, 1] false_scores = rng.rand(num_false) true_scores = x + rng.rand(num_true) * (1 - x) # Reshape [0, 1] to score_range. def reshape(scores): return score_range[0] + scores * (score_range[1] - score_range[0]) false_scores = reshape(false_scores) true_scores = reshape(true_scores) # Place into one array corresponding with the labels. scores = np.nan * np.ones(num_records, dtype=np.float32) scores[labels] = true_scores scores[~labels] = false_scores if flip_labels: labels = ~labels return labels, scores if __name__ == '__main__': tf.test.main()
apache-2.0
francisco-dlp/hyperspy
hyperspy/drawing/utils.py
1
57321
# -*- coding: utf-8 -*- # Copyright 2007-2016 The HyperSpy developers # # This file is part of HyperSpy. # # HyperSpy is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # HyperSpy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with HyperSpy. If not, see <http://www.gnu.org/licenses/>. import copy import itertools import textwrap from traits import trait_base import matplotlib.pyplot as plt import matplotlib as mpl from mpl_toolkits.axes_grid1 import make_axes_locatable from matplotlib.backend_bases import key_press_handler import warnings import numpy as np from distutils.version import LooseVersion import logging import hyperspy as hs _logger = logging.getLogger(__name__) def contrast_stretching(data, saturated_pixels): """Calculate bounds that leaves out a given percentage of the data. Parameters ---------- data: numpy array saturated_pixels: scalar, None The percentage of pixels that are left out of the bounds. For example, the low and high bounds of a value of 1 are the 0.5% and 99.5% percentiles. It must be in the [0, 100] range. If None, set the value to 0. Returns ------- vmin, vmax: scalar The low and high bounds Raises ------ ValueError if the value of `saturated_pixels` is out of the valid range. """ # Sanity check if saturated_pixels is None: saturated_pixels = 0 if not 0 <= saturated_pixels <= 100: raise ValueError( "saturated_pixels must be a scalar in the range[0, 100]") vmin = np.nanpercentile(data, saturated_pixels / 2.) vmax = np.nanpercentile(data, 100 - saturated_pixels / 2.) return vmin, vmax MPL_DIVERGING_COLORMAPS = [ "BrBG", "bwr", "coolwarm", "PiYG", "PRGn", "PuOr", "RdBu", "RdGy", "RdYIBu", "RdYIGn", "seismic", "Spectral", ] # Add reversed colormaps MPL_DIVERGING_COLORMAPS += [cmap + "_r" for cmap in MPL_DIVERGING_COLORMAPS] def centre_colormap_values(vmin, vmax): """Calculate vmin and vmax to set the colormap midpoint to zero. Parameters ---------- vmin, vmax : scalar The range of data to display. Returns ------- cvmin, cvmax : scalar The values to obtain a centre colormap. """ absmax = max(abs(vmin), abs(vmax)) return -absmax, absmax def create_figure(window_title=None, _on_figure_window_close=None, disable_xyscale_keys=False, **kwargs): """Create a matplotlib figure. This function adds the possibility to execute another function when the figure is closed and to easily set the window title. Any keyword argument is passed to the plt.figure function Parameters ---------- window_title : string _on_figure_window_close : function disable_xyscale_keys : bool, disable the `k`, `l` and `L` shortcuts which toggle the x or y axis between linear and log scale. Returns ------- fig : plt.figure """ fig = plt.figure(**kwargs) if window_title is not None: # remove non-alphanumeric characters to prevent file saving problems # This is a workaround for: # https://github.com/matplotlib/matplotlib/issues/9056 reserved_characters = r'<>"/\|?*' for c in reserved_characters: window_title = window_title.replace(c, '') window_title = window_title.replace('\n', ' ') window_title = window_title.replace(':', ' -') fig.canvas.set_window_title(window_title) if disable_xyscale_keys and hasattr(fig.canvas, 'toolbar'): # hack the `key_press_handler` to disable the `k`, `l`, `L` shortcuts manager = fig.canvas.manager fig.canvas.mpl_disconnect(manager.key_press_handler_id) manager.key_press_handler_id = manager.canvas.mpl_connect( 'key_press_event', lambda event: key_press_handler_custom(event, manager.canvas)) if _on_figure_window_close is not None: on_figure_window_close(fig, _on_figure_window_close) return fig def key_press_handler_custom(event, canvas): if event.key not in ['k', 'l', 'L']: key_press_handler(event, canvas, canvas.manager.toolbar) def on_figure_window_close(figure, function): """Connects a close figure signal to a given function. Parameters ---------- figure : mpl figure instance function : function """ def function_wrapper(evt): function() figure.canvas.mpl_connect('close_event', function_wrapper) def plot_RGB_map(im_list, normalization='single', dont_plot=False): """Plot 2 or 3 maps in RGB. Parameters ---------- im_list : list of Signal2D instances normalization : {'single', 'global'} dont_plot : bool Returns ------- array: RGB matrix """ # from widgets import cursors height, width = im_list[0].data.shape[:2] rgb = np.zeros((height, width, 3)) rgb[:, :, 0] = im_list[0].data.squeeze() rgb[:, :, 1] = im_list[1].data.squeeze() if len(im_list) == 3: rgb[:, :, 2] = im_list[2].data.squeeze() if normalization == 'single': for i in range(len(im_list)): rgb[:, :, i] /= rgb[:, :, i].max() elif normalization == 'global': rgb /= rgb.max() rgb = rgb.clip(0, rgb.max()) if not dont_plot: figure = plt.figure() ax = figure.add_subplot(111) ax.frameon = False ax.set_axis_off() ax.imshow(rgb, interpolation='nearest') # cursors.set_mpl_ax(ax) figure.canvas.draw_idle() else: return rgb def subplot_parameters(fig): """Returns a list of the subplot parameters of a mpl figure. Parameters ---------- fig : mpl figure Returns ------- tuple : (left, bottom, right, top, wspace, hspace) """ wspace = fig.subplotpars.wspace hspace = fig.subplotpars.hspace left = fig.subplotpars.left right = fig.subplotpars.right top = fig.subplotpars.top bottom = fig.subplotpars.bottom return left, bottom, right, top, wspace, hspace class ColorCycle: _color_cycle = [mpl.colors.colorConverter.to_rgba(color) for color in ('b', 'g', 'r', 'c', 'm', 'y', 'k')] def __init__(self): self.color_cycle = copy.copy(self._color_cycle) def __call__(self): if not self.color_cycle: self.color_cycle = copy.copy(self._color_cycle) return self.color_cycle.pop(0) def plot_signals(signal_list, sync=True, navigator="auto", navigator_list=None, **kwargs): """Plot several signals at the same time. Parameters ---------- signal_list : list of BaseSignal instances If sync is set to True, the signals must have the same navigation shape, but not necessarily the same signal shape. sync : True or False, default "True" If True: the signals will share navigation, all the signals must have the same navigation shape for this to work, but not necessarily the same signal shape. navigator : {"auto", None, "spectrum", "slider", BaseSignal}, default "auto" See signal.plot docstring for full description navigator_list : {List of navigator arguments, None}, default None Set different navigator options for the signals. Must use valid navigator arguments: "auto", None, "spectrum", "slider", or a hyperspy Signal. The list must have the same size as signal_list. If None, the argument specified in navigator will be used. **kwargs Any extra keyword arguments are passed to each signal `plot` method. Example ------- >>> s_cl = hs.load("coreloss.dm3") >>> s_ll = hs.load("lowloss.dm3") >>> hs.plot.plot_signals([s_cl, s_ll]) Specifying the navigator: >>> s_cl = hs.load("coreloss.dm3") >>> s_ll = hs.load("lowloss.dm3") >>> hs.plot.plot_signals([s_cl, s_ll], navigator="slider") Specifying the navigator for each signal: >>> s_cl = hs.load("coreloss.dm3") >>> s_ll = hs.load("lowloss.dm3") >>> s_edx = hs.load("edx.dm3") >>> s_adf = hs.load("adf.dm3") >>> hs.plot.plot_signals( [s_cl, s_ll, s_edx], navigator_list=["slider",None,s_adf]) """ import hyperspy.signal if navigator_list: if not (len(signal_list) == len(navigator_list)): raise ValueError( "signal_list and navigator_list must" " have the same size") if sync: axes_manager_list = [] for signal in signal_list: axes_manager_list.append(signal.axes_manager) if not navigator_list: navigator_list = [] if navigator is None: navigator_list.extend([None] * len(signal_list)) elif isinstance(navigator, hyperspy.signal.BaseSignal): navigator_list.append(navigator) navigator_list.extend([None] * (len(signal_list) - 1)) elif navigator == "slider": navigator_list.append("slider") navigator_list.extend([None] * (len(signal_list) - 1)) elif navigator == "spectrum": navigator_list.extend(["spectrum"] * len(signal_list)) elif navigator == "auto": navigator_list.extend(["auto"] * len(signal_list)) else: raise ValueError( "navigator must be one of \"spectrum\",\"auto\"," " \"slider\", None, a Signal instance") # Check to see if the spectra have the same navigational shapes temp_shape_first = axes_manager_list[0].navigation_shape for i, axes_manager in enumerate(axes_manager_list): temp_shape = axes_manager.navigation_shape if not (temp_shape_first == temp_shape): raise ValueError( "The spectra does not have the same navigation shape") axes_manager_list[i] = axes_manager.deepcopy() if i > 0: for axis0, axisn in zip(axes_manager_list[0].navigation_axes, axes_manager_list[i].navigation_axes): axes_manager_list[i]._axes[axisn.index_in_array] = axis0 del axes_manager for signal, navigator, axes_manager in zip(signal_list, navigator_list, axes_manager_list): signal.plot(axes_manager=axes_manager, navigator=navigator, **kwargs) # If sync is False else: if not navigator_list: navigator_list = [] navigator_list.extend([navigator] * len(signal_list)) for signal, navigator in zip(signal_list, navigator_list): signal.plot(navigator=navigator, **kwargs) def _make_heatmap_subplot(spectra): from hyperspy._signals.signal2d import Signal2D im = Signal2D(spectra.data, axes=spectra.axes_manager._get_axes_dicts()) im.metadata.General.title = spectra.metadata.General.title im.plot() return im._plot.signal_plot.ax def set_xaxis_lims(mpl_ax, hs_axis): """ Set the matplotlib axis limits to match that of a HyperSpy axis Parameters ---------- mpl_ax : :class:`matplotlib.axis.Axis` The ``matplotlib`` axis to change hs_axis : :class:`~hyperspy.axes.DataAxis` The data axis that contains the values that control the scaling """ x_axis_lower_lim = hs_axis.axis[0] x_axis_upper_lim = hs_axis.axis[-1] mpl_ax.set_xlim(x_axis_lower_lim, x_axis_upper_lim) def _make_overlap_plot(spectra, ax, color="blue", line_style='-'): if isinstance(color, str): color = [color] * len(spectra) if isinstance(line_style, str): line_style = [line_style] * len(spectra) for spectrum_index, (spectrum, color, line_style) in enumerate( zip(spectra, color, line_style)): x_axis = spectrum.axes_manager.signal_axes[0] spectrum = _transpose_if_required(spectrum, 1) ax.plot(x_axis.axis, spectrum.data, color=color, ls=line_style) set_xaxis_lims(ax, x_axis) _set_spectrum_xlabel(spectra if isinstance(spectra, hs.signals.BaseSignal) else spectra[-1], ax) ax.set_ylabel('Intensity') ax.autoscale(tight=True) def _make_cascade_subplot( spectra, ax, color="blue", line_style='-', padding=1): max_value = 0 for spectrum in spectra: spectrum_yrange = (np.nanmax(spectrum.data) - np.nanmin(spectrum.data)) if spectrum_yrange > max_value: max_value = spectrum_yrange if isinstance(color, str): color = [color] * len(spectra) if isinstance(line_style, str): line_style = [line_style] * len(spectra) for spectrum_index, (spectrum, color, line_style) in enumerate( zip(spectra, color, line_style)): x_axis = spectrum.axes_manager.signal_axes[0] spectrum = _transpose_if_required(spectrum, 1) data_to_plot = ((spectrum.data - spectrum.data.min()) / float(max_value) + spectrum_index * padding) ax.plot(x_axis.axis, data_to_plot, color=color, ls=line_style) set_xaxis_lims(ax, x_axis) _set_spectrum_xlabel(spectra if isinstance(spectra, hs.signals.BaseSignal) else spectra[-1], ax) ax.set_yticks([]) ax.autoscale(tight=True) def _plot_spectrum(spectrum, ax, color="blue", line_style='-'): x_axis = spectrum.axes_manager.signal_axes[0] ax.plot(x_axis.axis, spectrum.data, color=color, ls=line_style) set_xaxis_lims(ax, x_axis) def _set_spectrum_xlabel(spectrum, ax): x_axis = spectrum.axes_manager.signal_axes[0] ax.set_xlabel("%s (%s)" % (x_axis.name, x_axis.units)) def _transpose_if_required(signal, expected_dimension): # EDS profiles or maps have signal dimension = 0 and navigation dimension # 1 or 2. For convenience transpose the signal if possible if (signal.axes_manager.signal_dimension == 0 and signal.axes_manager.navigation_dimension == expected_dimension): return signal.T else: return signal def plot_images(images, cmap=None, no_nans=False, per_row=3, label='auto', labelwrap=30, suptitle=None, suptitle_fontsize=18, colorbar='multi', centre_colormap="auto", saturated_pixels=0, scalebar=None, scalebar_color='white', axes_decor='all', padding=None, tight_layout=False, aspect='auto', min_asp=0.1, namefrac_thresh=0.4, fig=None, vmin=None, vmax=None, *args, **kwargs): """Plot multiple images as sub-images in one figure. Extra keyword arguments are passed to `matplotlib.figure`. Parameters ---------- images : list of Signal2D or BaseSignal `images` should be a list of Signals to plot. For `BaseSignal` with navigation dimensions 2 and signal dimension 0, the signal will be tranposed to form a `Signal2D`. Multi-dimensional images will have each plane plotted as a separate image. If any signal shape is not suitable, a ValueError will be raised. cmap : matplotlib colormap, list, or ``'mpl_colors'``, *optional* The colormap used for the images, by default read from ``pyplot``. A list of colormaps can also be provided, and the images will cycle through them. Optionally, the value ``'mpl_colors'`` will cause the cmap to loop through the default ``matplotlib`` colors (to match with the default output of the :py:func:`~.drawing.utils.plot_spectra` method. Note: if using more than one colormap, using the ``'single'`` option for ``colorbar`` is disallowed. no_nans : bool, optional If True, set nans to zero for plotting. per_row : int, optional The number of plots in each row label : None, str, or list of str, optional Control the title labeling of the plotted images. If None, no titles will be shown. If 'auto' (default), function will try to determine suitable titles using Signal2D titles, falling back to the 'titles' option if no good short titles are detected. Works best if all images to be plotted have the same beginning to their titles. If 'titles', the title from each image's metadata.General.title will be used. If any other single str, images will be labeled in sequence using that str as a prefix. If a list of str, the list elements will be used to determine the labels (repeated, if necessary). labelwrap : int, optional integer specifying the number of characters that will be used on one line If the function returns an unexpected blank figure, lower this value to reduce overlap of the labels between each figure suptitle : str, optional Title to use at the top of the figure. If called with label='auto', this parameter will override the automatically determined title. suptitle_fontsize : int, optional Font size to use for super title at top of figure colorbar : {'multi', None, 'single'} Controls the type of colorbars that are plotted. If None, no colorbar is plotted. If 'multi' (default), individual colorbars are plotted for each (non-RGB) image If 'single', all (non-RGB) images are plotted on the same scale, and one colorbar is shown for all centre_colormap : {"auto", True, False} If True the centre of the color scheme is set to zero. This is specially useful when using diverging color schemes. If "auto" (default), diverging color schemes are automatically centred. saturated_pixels: None, scalar or list of scalar, optional, default: 0 If list of scalar, the length should match the number of images to show. If provide in the list, set the value to 0. The percentage of pixels that are left out of the bounds. For example, the low and high bounds of a value of 1 are the 0.5% and 99.5% percentiles. It must be in the [0, 100] range. scalebar : {None, 'all', list of ints}, optional If None (or False), no scalebars will be added to the images. If 'all', scalebars will be added to all images. If list of ints, scalebars will be added to each image specified. scalebar_color : str, optional A valid MPL color string; will be used as the scalebar color axes_decor : {'all', 'ticks', 'off', None}, optional Controls how the axes are displayed on each image; default is 'all' If 'all', both ticks and axis labels will be shown If 'ticks', no axis labels will be shown, but ticks/labels will If 'off', all decorations and frame will be disabled If None, no axis decorations will be shown, but ticks/frame will padding : None or dict, optional This parameter controls the spacing between images. If None, default options will be used Otherwise, supply a dictionary with the spacing options as keywords and desired values as values Values should be supplied as used in pyplot.subplots_adjust(), and can be: 'left', 'bottom', 'right', 'top', 'wspace' (width), and 'hspace' (height) tight_layout : bool, optional If true, hyperspy will attempt to improve image placement in figure using matplotlib's tight_layout If false, repositioning images inside the figure will be left as an exercise for the user. aspect : str or numeric, optional If 'auto', aspect ratio is auto determined, subject to min_asp. If 'square', image will be forced onto square display. If 'equal', aspect ratio of 1 will be enforced. If float (or int/long), given value will be used. min_asp : float, optional Minimum aspect ratio to be used when plotting images namefrac_thresh : float, optional Threshold to use for auto-labeling. This parameter controls how much of the titles must be the same for the auto-shortening of labels to activate. Can vary from 0 to 1. Smaller values encourage shortening of titles by auto-labeling, while larger values will require more overlap in titles before activing the auto-label code. fig : mpl figure, optional If set, the images will be plotted to an existing MPL figure vmin, vmax : scalar or list of scalar, optional, default: None If list of scalar, the length should match the number of images to show. A list of scalar is not compatible with a single colorbar. See vmin, vmax of matplotlib.imshow() for more details. *args, **kwargs, optional Additional arguments passed to matplotlib.imshow() Returns ------- axes_list : list a list of subplot axes that hold the images See Also -------- plot_spectra : Plotting of multiple spectra plot_signals : Plotting of multiple signals plot_histograms : Compare signal histograms Notes ----- `interpolation` is a useful parameter to provide as a keyword argument to control how the space between pixels is interpolated. A value of ``'nearest'`` will cause no interpolation between pixels. `tight_layout` is known to be quite brittle, so an option is provided to disable it. Turn this option off if output is not as expected, or try adjusting `label`, `labelwrap`, or `per_row` """ def __check_single_colorbar(cbar): if cbar == 'single': raise ValueError('Cannot use a single colorbar with multiple ' 'colormaps. Please check for compatible ' 'arguments.') from hyperspy.drawing.widgets import ScaleBar from hyperspy.misc import rgb_tools from hyperspy.signal import BaseSignal # Check that we have a hyperspy signal im = [images] if not isinstance(images, (list, tuple)) else images for image in im: if not isinstance(image, BaseSignal): raise ValueError("`images` must be a list of image signals or a " "multi-dimensional signal." " " + repr(type(images)) + " was given.") # For list of EDS maps, transpose the BaseSignal if isinstance(images, (list, tuple)): images = [_transpose_if_required(image, 2) for image in images] # If input is >= 1D signal (e.g. for multi-dimensional plotting), # copy it and put it in a list so labeling works out as (x,y) when plotting if isinstance(images, BaseSignal) and images.axes_manager.navigation_dimension > 0: images = [images._deepcopy_with_new_data(images.data)] n = 0 for i, sig in enumerate(images): if sig.axes_manager.signal_dimension != 2: raise ValueError("This method only plots signals that are images. " "The signal dimension must be equal to 2. " "The signal at position " + repr(i) + " was " + repr(sig) + ".") # increment n by the navigation size, or by 1 if the navigation size is # <= 0 n += (sig.axes_manager.navigation_size if sig.axes_manager.navigation_size > 0 else 1) # If no cmap given, get default colormap from pyplot: if cmap is None: cmap = [plt.get_cmap().name] elif cmap == 'mpl_colors': for n_color, c in enumerate(mpl.rcParams['axes.prop_cycle']): make_cmap(colors=['#000000', c['color']], name='mpl{}'.format(n_color)) cmap = ['mpl{}'.format(i) for i in range(len(mpl.rcParams['axes.prop_cycle']))] __check_single_colorbar(colorbar) # cmap is list, tuple, or something else iterable (but not string): elif hasattr(cmap, '__iter__') and not isinstance(cmap, str): try: cmap = [c.name for c in cmap] # convert colormap to string except AttributeError: cmap = [c for c in cmap] # c should be string if not colormap __check_single_colorbar(colorbar) elif isinstance(cmap, mpl.colors.Colormap): cmap = [cmap.name] # convert single colormap to list with string elif isinstance(cmap, str): cmap = [cmap] # cmap is single string, so make it a list else: # Didn't understand cmap input, so raise error raise ValueError('The provided cmap value was not understood. Please ' 'check input values.') # If any of the cmaps given are diverging, and auto-centering, set the # appropriate flag: if centre_colormap == "auto": centre_colormaps = [] for c in cmap: if c in MPL_DIVERGING_COLORMAPS: centre_colormaps.append(True) else: centre_colormaps.append(False) # if it was True, just convert to list elif centre_colormap: centre_colormaps = [True] # likewise for false elif not centre_colormap: centre_colormaps = [False] # finally, convert lists to cycle generators for adaptive length: centre_colormaps = itertools.cycle(centre_colormaps) cmap = itertools.cycle(cmap) def _check_arg(arg, default_value, arg_name): if isinstance(arg, list): if len(arg) != n: _logger.warning('The provided {} values are ignored because the ' 'length of the list does not match the number of ' 'images'.format(arg_name)) arg = [default_value] * n else: arg = [arg] * n return arg vmin = _check_arg(vmin, None, 'vmin') vmax = _check_arg(vmax, None, 'vmax') saturated_pixels = _check_arg(saturated_pixels, 0, 'saturated_pixels') # Sort out the labeling: div_num = 0 all_match = False shared_titles = False user_labels = False if label is None: pass elif label == 'auto': # Use some heuristics to try to get base string of similar titles label_list = [x.metadata.General.title for x in images] # Find the shortest common string between the image titles # and pull that out as the base title for the sequence of images # array in which to store arrays res = np.zeros((len(label_list), len(label_list[0]) + 1)) res[:, 0] = 1 # j iterates the strings for j in range(len(label_list)): # i iterates length of substring test for i in range(1, len(label_list[0]) + 1): # stores whether or not characters in title match res[j, i] = label_list[0][:i] in label_list[j] # sum up the results (1 is True, 0 is False) and create # a substring based on the minimum value (this will be # the "smallest common string" between all the titles if res.all(): basename = label_list[0] div_num = len(label_list[0]) all_match = True else: div_num = int(min(np.sum(res, 1))) basename = label_list[0][:div_num - 1] all_match = False # trim off any '(' or ' ' characters at end of basename if div_num > 1: while True: if basename[len(basename) - 1] == '(': basename = basename[:-1] elif basename[len(basename) - 1] == ' ': basename = basename[:-1] else: break # namefrac is ratio of length of basename to the image name # if it is high (e.g. over 0.5), we can assume that all images # share the same base if len(label_list[0]) > 0: namefrac = float(len(basename)) / len(label_list[0]) else: # If label_list[0] is empty, it means there was probably no # title set originally, so nothing to share namefrac = 0 if namefrac > namefrac_thresh: # there was a significant overlap of label beginnings shared_titles = True # only use new suptitle if one isn't specified already if suptitle is None: suptitle = basename else: # there was not much overlap, so default back to 'titles' mode shared_titles = False label = 'titles' div_num = 0 elif label == 'titles': # Set label_list to each image's pre-defined title label_list = [x.metadata.General.title for x in images] elif isinstance(label, str): # Set label_list to an indexed list, based off of label label_list = [label + " " + repr(num) for num in range(n)] elif isinstance(label, list) and all( isinstance(x, str) for x in label): label_list = label user_labels = True # If list of labels is longer than the number of images, just use the # first n elements if len(label_list) > n: del label_list[n:] if len(label_list) < n: label_list *= (n // len(label_list)) + 1 del label_list[n:] else: raise ValueError("Did not understand input of labels.") # Determine appropriate number of images per row rows = int(np.ceil(n / float(per_row))) if n < per_row: per_row = n # Set overall figure size and define figure (if not pre-existing) if fig is None: k = max(plt.rcParams['figure.figsize']) / max(per_row, rows) f = plt.figure(figsize=(tuple(k * i for i in (per_row, rows)))) else: f = fig # Initialize list to hold subplot axes axes_list = [] # Initialize list of rgb tags isrgb = [False] * len(images) # Check to see if there are any rgb images in list # and tag them using the isrgb list for i, img in enumerate(images): if rgb_tools.is_rgbx(img.data): isrgb[i] = True # Determine how many non-rgb Images there are non_rgb = list(itertools.compress(images, [not j for j in isrgb])) if len(non_rgb) == 0 and colorbar is not None: colorbar = None warnings.warn("Sorry, colorbar is not implemented for RGB images.") # Find global min and max values of all the non-rgb images for use with # 'single' scalebar if colorbar == 'single': # get a g_saturated_pixels from saturated_pixels if isinstance(saturated_pixels, list): g_saturated_pixels = min(np.array([v for v in saturated_pixels])) else: g_saturated_pixels = saturated_pixels # estimate a g_vmin and g_max from saturated_pixels g_vmin, g_vmax = contrast_stretching(np.concatenate( [i.data.flatten() for i in non_rgb]), g_saturated_pixels) # if vmin and vmax are provided, override g_min and g_max if isinstance(vmin, list): _logger.warning('vmin have to be a scalar to be compatible with a ' 'single colorbar') else: g_vmin = vmin if vmin is not None else g_vmin if isinstance(vmax, list): _logger.warning('vmax have to be a scalar to be compatible with a ' 'single colorbar') else: g_vmax = vmax if vmax is not None else g_vmax if next(centre_colormaps): g_vmin, g_vmax = centre_colormap_values(g_vmin, g_vmax) # Check if we need to add a scalebar for some of the images if isinstance(scalebar, list) and all(isinstance(x, int) for x in scalebar): scalelist = True else: scalelist = False idx = 0 ax_im_list = [0] * len(isrgb) # Replot: create a list to store references to the images replot_ims = [] # Loop through each image, adding subplot for each one for i, ims in enumerate(images): # Get handles for the signal axes and axes_manager axes_manager = ims.axes_manager if axes_manager.navigation_dimension > 0: ims = ims._deepcopy_with_new_data(ims.data) for j, im in enumerate(ims): ax = f.add_subplot(rows, per_row, idx + 1) axes_list.append(ax) data = im.data centre = next(centre_colormaps) # get next value for centreing # Enable RGB plotting if rgb_tools.is_rgbx(data): data = rgb_tools.rgbx2regular_array(data, plot_friendly=True) l_vmin, l_vmax = None, None else: data = im.data # Find min and max for contrast l_vmin, l_vmax = contrast_stretching( data, saturated_pixels[idx]) l_vmin = vmin[idx] if vmin[idx] is not None else l_vmin l_vmax = vmax[idx] if vmax[idx] is not None else l_vmax if centre: l_vmin, l_vmax = centre_colormap_values(l_vmin, l_vmax) # Remove NaNs (if requested) if no_nans: data = np.nan_to_num(data) # Get handles for the signal axes and axes_manager axes_manager = im.axes_manager axes = axes_manager.signal_axes # Set dimensions of images xaxis = axes[0] yaxis = axes[1] extent = ( xaxis.low_value, xaxis.high_value, yaxis.high_value, yaxis.low_value, ) if not isinstance(aspect, (int, float)) and aspect not in [ 'auto', 'square', 'equal']: _logger.warning("Did not understand aspect ratio input. " "Using 'auto' as default.") aspect = 'auto' if aspect == 'auto': if float(yaxis.size) / xaxis.size < min_asp: factor = min_asp * float(xaxis.size) / yaxis.size elif float(yaxis.size) / xaxis.size > min_asp ** -1: factor = min_asp ** -1 * float(xaxis.size) / yaxis.size else: factor = 1 asp = np.abs(factor * float(xaxis.scale) / yaxis.scale) elif aspect == 'square': asp = abs(extent[1] - extent[0]) / abs(extent[3] - extent[2]) elif aspect == 'equal': asp = 1 elif isinstance(aspect, (int, float)): asp = aspect if 'interpolation' not in kwargs.keys(): kwargs['interpolation'] = 'nearest' # Get colormap for this image: cm = next(cmap) # Plot image data, using vmin and vmax to set bounds, # or allowing them to be set automatically if using individual # colorbars if colorbar == 'single' and not isrgb[i]: axes_im = ax.imshow(data, cmap=cm, extent=extent, vmin=g_vmin, vmax=g_vmax, aspect=asp, *args, **kwargs) ax_im_list[i] = axes_im else: axes_im = ax.imshow(data, cmap=cm, extent=extent, vmin=l_vmin, vmax=l_vmax, aspect=asp, *args, **kwargs) ax_im_list[i] = axes_im # If an axis trait is undefined, shut off : if isinstance(xaxis.units, trait_base._Undefined) or \ isinstance(yaxis.units, trait_base._Undefined) or \ isinstance(xaxis.name, trait_base._Undefined) or \ isinstance(yaxis.name, trait_base._Undefined): if axes_decor == 'all': _logger.warning( 'Axes labels were requested, but one ' 'or both of the ' 'axes units and/or name are undefined. ' 'Axes decorations have been set to ' '\'ticks\' instead.') axes_decor = 'ticks' # If all traits are defined, set labels as appropriate: else: ax.set_xlabel(axes[0].name + " axis (" + axes[0].units + ")") ax.set_ylabel(axes[1].name + " axis (" + axes[1].units + ")") if label: if all_match: title = '' elif shared_titles: title = label_list[i][div_num - 1:] else: if len(ims) == n: # This is true if we are plotting just 1 # multi-dimensional Signal2D title = label_list[idx] elif user_labels: title = label_list[idx] else: title = label_list[i] if ims.axes_manager.navigation_size > 1 and not user_labels: title += " %s" % str(ims.axes_manager.indices) ax.set_title(textwrap.fill(title, labelwrap)) # Set axes decorations based on user input set_axes_decor(ax, axes_decor) # If using independent colorbars, add them if colorbar == 'multi' and not isrgb[i]: div = make_axes_locatable(ax) cax = div.append_axes("right", size="5%", pad=0.05) plt.colorbar(axes_im, cax=cax) # Add scalebars as necessary if (scalelist and idx in scalebar) or scalebar == 'all': ax.scalebar = ScaleBar( ax=ax, units=axes[0].units, color=scalebar_color, ) # Replot: store references to the images replot_ims.append(im) idx += 1 # If using a single colorbar, add it, and do tight_layout, ensuring that # a colorbar is only added based off of non-rgb Images: if colorbar == 'single': foundim = None for i in range(len(isrgb)): if (not isrgb[i]) and foundim is None: foundim = i if foundim is not None: f.subplots_adjust(right=0.8) cbar_ax = f.add_axes([0.9, 0.1, 0.03, 0.8]) f.colorbar(ax_im_list[foundim], cax=cbar_ax) if tight_layout: # tight_layout, leaving room for the colorbar plt.tight_layout(rect=[0, 0, 0.9, 1]) elif tight_layout: plt.tight_layout() elif tight_layout: plt.tight_layout() # Set top bounds for shared titles and add suptitle if suptitle: f.subplots_adjust(top=0.85) f.suptitle(suptitle, fontsize=suptitle_fontsize) # If we want to plot scalebars, loop through the list of axes and add them if scalebar is None or scalebar is False: # Do nothing if no scalebars are called for pass elif scalebar == 'all': # scalebars were taken care of in the plotting loop pass elif scalelist: # scalebars were taken care of in the plotting loop pass else: raise ValueError("Did not understand scalebar input. Must be None, " "\'all\', or list of ints.") # Adjust subplot spacing according to user's specification if padding is not None: plt.subplots_adjust(**padding) # Replot: connect function def on_dblclick(event): # On the event of a double click, replot the selected subplot if not event.inaxes: return if not event.dblclick: return subplots = [axi for axi in f.axes if isinstance(axi, mpl.axes.Subplot)] inx = list(subplots).index(event.inaxes) im = replot_ims[inx] # Use some of the info in the subplot cm = subplots[inx].images[0].get_cmap() clim = subplots[inx].images[0].get_clim() sbar = False if (scalelist and inx in scalebar) or scalebar == 'all': sbar = True im.plot(colorbar=bool(colorbar), vmin=clim[0], vmax=clim[1], no_nans=no_nans, aspect=asp, scalebar=sbar, scalebar_color=scalebar_color, cmap=cm) f.canvas.mpl_connect('button_press_event', on_dblclick) return axes_list def set_axes_decor(ax, axes_decor): if axes_decor == 'off': ax.axis('off') elif axes_decor == 'ticks': ax.set_xlabel('') ax.set_ylabel('') elif axes_decor == 'all': pass elif axes_decor is None: ax.set_xlabel('') ax.set_ylabel('') ax.set_xticklabels([]) ax.set_yticklabels([]) def make_cmap(colors, name='my_colormap', position=None, bit=False, register=True): """ Create a matplotlib colormap with customized colors, optionally registering it with matplotlib for simplified use. Adapted from Chris Slocum's code at: https://github.com/CSlocumWX/custom_colormap/blob/master/custom_colormaps.py and used under the terms of that code's BSD-3 license Parameters ---------- colors : iterable list of either tuples containing rgb values, or html strings Colors should be arranged so that the first color is the lowest value for the colorbar and the last is the highest. name : str name of colormap to use when registering with matplotlib position : None or iterable list containing the values (from [0,1]) that dictate the position of each color within the colormap. If None (default), the colors will be equally-spaced within the colorbar. bit : boolean True if RGB colors are given in 8-bit [0 to 255] or False if given in arithmetic basis [0 to 1] (default) register : boolean switch to control whether or not to register the custom colormap with matplotlib in order to enable use by just the name string """ def _html_color_to_rgb(color_string): """ convert #RRGGBB to an (R, G, B) tuple """ color_string = color_string.strip() if color_string[0] == '#': color_string = color_string[1:] if len(color_string) != 6: raise ValueError( "input #{} is not in #RRGGBB format".format(color_string)) r, g, b = color_string[:2], color_string[2:4], color_string[4:] r, g, b = [int(n, 16) / 255 for n in (r, g, b)] return r, g, b bit_rgb = np.linspace(0, 1, 256) if position is None: position = np.linspace(0, 1, len(colors)) else: if len(position) != len(colors): raise ValueError("position length must be the same as colors") elif position[0] != 0 or position[-1] != 1: raise ValueError("position must start with 0 and end with 1") cdict = {'red': [], 'green': [], 'blue': []} for pos, color in zip(position, colors): if isinstance(color, str): color = _html_color_to_rgb(color) elif bit: color = (bit_rgb[color[0]], bit_rgb[color[1]], bit_rgb[color[2]]) cdict['red'].append((pos, color[0], color[0])) cdict['green'].append((pos, color[1], color[1])) cdict['blue'].append((pos, color[2], color[2])) cmap = mpl.colors.LinearSegmentedColormap(name, cdict, 256) if register: mpl.cm.register_cmap(name, cmap) return cmap def plot_spectra( spectra, style='overlap', color=None, line_style=None, padding=1., legend=None, legend_picking=True, legend_loc='upper right', fig=None, ax=None, **kwargs): """Plot several spectra in the same figure. Extra keyword arguments are passed to `matplotlib.figure`. Parameters ---------- spectra : list of Signal1D or BaseSignal Ordered spectra list of signal to plot. If `style` is "cascade" or "mosaic" the spectra can have different size and axes. For `BaseSignal` with navigation dimensions 1 and signal dimension 0, the signal will be tranposed to form a `Signal1D`. style : {'overlap', 'cascade', 'mosaic', 'heatmap'} The style of the plot. color : matplotlib color or a list of them or `None` Sets the color of the lines of the plots (no action on 'heatmap'). If a list, if its length is less than the number of spectra to plot, the colors will be cycled. If `None`, use default matplotlib color cycle. line_style: matplotlib line style or a list of them or `None` Sets the line style of the plots (no action on 'heatmap'). The main line style are '-','--','steps','-.',':'. If a list, if its length is less than the number of spectra to plot, line_style will be cycled. If If `None`, use continuous lines, eg: ('-','--','steps','-.',':') padding : float, optional, default 0.1 Option for "cascade". 1 guarantees that there is not overlapping. However, in many cases a value between 0 and 1 can produce a tighter plot without overlapping. Negative values have the same effect but reverse the order of the spectra without reversing the order of the colors. legend: None or list of str or 'auto' If list of string, legend for "cascade" or title for "mosaic" is displayed. If 'auto', the title of each spectra (metadata.General.title) is used. legend_picking: bool If true, a spectrum can be toggle on and off by clicking on the legended line. legend_loc : str or int This parameter controls where the legend is placed on the figure; see the pyplot.legend docstring for valid values fig : matplotlib figure or None If None, a default figure will be created. Specifying fig will not work for the 'heatmap' style. ax : matplotlib ax (subplot) or None If None, a default ax will be created. Will not work for 'mosaic' or 'heatmap' style. **kwargs remaining keyword arguments are passed to matplotlib.figure() or matplotlib.subplots(). Has no effect on 'heatmap' style. Example ------- >>> s = hs.load("some_spectra") >>> hs.plot.plot_spectra(s, style='cascade', color='red', padding=0.5) To save the plot as a png-file >>> hs.plot.plot_spectra(s).figure.savefig("test.png") Returns ------- ax: matplotlib axes or list of matplotlib axes An array is returned when `style` is "mosaic". """ import hyperspy.signal def _reverse_legend(ax_, legend_loc_): """ Reverse the ordering of a matplotlib legend (to be more consistent with the default ordering of plots in the 'cascade' and 'overlap' styles Parameters ---------- ax_: matplotlib axes legend_loc_: str or int This parameter controls where the legend is placed on the figure; see the pyplot.legend docstring for valid values """ l = ax_.get_legend() labels = [lb.get_text() for lb in list(l.get_texts())] handles = l.legendHandles ax_.legend(handles[::-1], labels[::-1], loc=legend_loc_) # Before v1.3 default would read the value from prefereces. if style == "default": style = "overlap" if color is not None: if isinstance(color, str): color = itertools.cycle([color]) elif hasattr(color, "__iter__"): color = itertools.cycle(color) else: raise ValueError("Color must be None, a valid matplotlib color " "string or a list of valid matplotlib colors.") else: if LooseVersion(mpl.__version__) >= "1.5.3": color = itertools.cycle( plt.rcParams['axes.prop_cycle'].by_key()["color"]) else: color = itertools.cycle(plt.rcParams['axes.color_cycle']) if line_style is not None: if isinstance(line_style, str): line_style = itertools.cycle([line_style]) elif hasattr(line_style, "__iter__"): line_style = itertools.cycle(line_style) else: raise ValueError("line_style must be None, a valid matplotlib" " line_style string or a list of valid matplotlib" " line_style.") else: line_style = ['-'] * len(spectra) if legend is not None: if isinstance(legend, str): if legend == 'auto': legend = [spec.metadata.General.title for spec in spectra] else: raise ValueError("legend must be None, 'auto' or a list of" " string") elif hasattr(legend, "__iter__"): legend = itertools.cycle(legend) if style == 'overlap': if fig is None: fig = plt.figure(**kwargs) if ax is None: ax = fig.add_subplot(111) _make_overlap_plot(spectra, ax, color=color, line_style=line_style,) if legend is not None: ax.legend(legend, loc=legend_loc) _reverse_legend(ax, legend_loc) if legend_picking is True: animate_legend(fig=fig, ax=ax) elif style == 'cascade': if fig is None: fig = plt.figure(**kwargs) if ax is None: ax = fig.add_subplot(111) _make_cascade_subplot(spectra, ax, color=color, line_style=line_style, padding=padding) if legend is not None: plt.legend(legend, loc=legend_loc) _reverse_legend(ax, legend_loc) elif style == 'mosaic': default_fsize = plt.rcParams["figure.figsize"] figsize = (default_fsize[0], default_fsize[1] * len(spectra)) fig, subplots = plt.subplots( len(spectra), 1, figsize=figsize, **kwargs) if legend is None: legend = [legend] * len(spectra) for spectrum, ax, color, line_style, legend in zip( spectra, subplots, color, line_style, legend): spectrum = _transpose_if_required(spectrum, 1) _plot_spectrum(spectrum, ax, color=color, line_style=line_style) ax.set_ylabel('Intensity') if legend is not None: ax.set_title(legend) if not isinstance(spectra, hyperspy.signal.BaseSignal): _set_spectrum_xlabel(spectrum, ax) if isinstance(spectra, hyperspy.signal.BaseSignal): _set_spectrum_xlabel(spectrum, ax) fig.tight_layout() elif style == 'heatmap': if not isinstance(spectra, hyperspy.signal.BaseSignal): import hyperspy.utils spectra = [_transpose_if_required(spectrum, 1) for spectrum in spectra] spectra = hyperspy.utils.stack(spectra) with spectra.unfolded(): ax = _make_heatmap_subplot(spectra) ax.set_ylabel('Spectra') ax = ax if style != "mosaic" else subplots return ax def animate_legend(fig=None, ax=None): """Animate the legend of a figure. A spectrum can be toggle on and off by clicking on the legended line. Parameters ---------- fig: None | matplotlib.figure If None pick the current figure using "plt.gcf" ax: None | matplotlib.axes If None pick the current axes using "plt.gca". Note ---- Code inspired from legend_picking.py in the matplotlib gallery """ if fig is None: fig = plt.gcf() if ax is None: ax = plt.gca() lines = ax.lines[::-1] lined = dict() leg = ax.get_legend() for legline, origline in zip(leg.get_lines(), lines): legline.set_picker(5) # 5 pts tolerance lined[legline] = origline def onpick(event): # on the pick event, find the orig line corresponding to the # legend proxy line, and toggle the visibility legline = event.artist if legline.axes == ax: origline = lined[legline] vis = not origline.get_visible() origline.set_visible(vis) # Change the alpha on the line in the legend so we can see what lines # have been toggled if vis: legline.set_alpha(1.0) else: legline.set_alpha(0.2) fig.canvas.draw_idle() fig.canvas.mpl_connect('pick_event', onpick) def plot_histograms(signal_list, bins='freedman', range_bins=None, color=None, line_style=None, legend='auto', fig=None, **kwargs): """Plot the histogram of every signal in the list in the same figure. This function creates a histogram for each signal and plot the list with the `utils.plot.plot_spectra` function. Parameters ---------- signal_list : iterable Ordered spectra list to plot. If `style` is "cascade" or "mosaic" the spectra can have different size and axes. bins : int or list or str, optional If bins is a string, then it must be one of: 'knuth' : use Knuth's rule to determine bins 'scotts' : use Scott's rule to determine bins 'freedman' : use the Freedman-diaconis rule to determine bins 'blocks' : use bayesian blocks for dynamic bin widths range_bins : tuple or None, optional. the minimum and maximum range for the histogram. If not specified, it will be (x.min(), x.max()) color : valid matplotlib color or a list of them or `None`, optional. Sets the color of the lines of the plots. If a list, if its length is less than the number of spectra to plot, the colors will be cycled. If If `None`, use default matplotlib color cycle. line_style: valid matplotlib line style or a list of them or `None`, optional. The main line style are '-','--','steps','-.',':'. If a list, if its length is less than the number of spectra to plot, line_style will be cycled. If If `None`, use continuous lines, eg: ('-','--','steps','-.',':') legend: None or list of str or 'auto', optional. Display a legend. If 'auto', the title of each spectra (metadata.General.title) is used. legend_picking: bool, optional. If true, a spectrum can be toggle on and off by clicking on the legended line. fig : matplotlib figure or None, optional. If None, a default figure will be created. **kwargs other keyword arguments (weight and density) are described in np.histogram(). Example ------- Histograms of two random chi-square distributions >>> img = hs.signals.Signal2D(np.random.chisquare(1,[10,10,100])) >>> img2 = hs.signals.Signal2D(np.random.chisquare(2,[10,10,100])) >>> hs.plot.plot_histograms([img,img2],legend=['hist1','hist2']) Returns ------- ax: matplotlib axes or list of matplotlib axes An array is returned when `style` is "mosaic". """ hists = [] for obj in signal_list: hists.append(obj.get_histogram(bins=bins, range_bins=range_bins, **kwargs)) if line_style is None: line_style = 'steps' return plot_spectra(hists, style='overlap', color=color, line_style=line_style, legend=legend, fig=fig)
gpl-3.0
linegpe/FYS3150
Project4/expect_random_T1.py
1
3161
import numpy as np import matplotlib.pyplot as plt data1 = np.loadtxt("expect_random_T1.00.dat") data2 = np.loadtxt("expect_ordered_T1.00.dat") data3 = np.loadtxt("expect_random2_T2.40.dat") data4 = np.loadtxt("expect_ordered2_T2.40.dat") values1 = data1[0::1] values2 = data2[0::1] values3 = data3[0::1] values4 = data4[0::1] N1 = len(values1) x1 = np.linspace(0,N1,N1) N2 = len(values3) x2 = np.linspace(0,N2,N2) figure1 = plt.figure() labels = figure1.add_subplot(111) # Turn off axis lines and ticks of the big subplot labels.spines['top'].set_color('none') labels.spines['bottom'].set_color('none') labels.spines['left'].set_color('none') labels.spines['right'].set_color('none') labels.tick_params(labelcolor='w', top='off', bottom='off', left='off', right='off') plt.xlabel("Number of Monte Carlo cycles",fontsize=15) plt.ylabel("Mean energy per spin",fontsize=15) #figure1.yaxis.set_ticks_position(right) #figure1.ylabel.set_ticks_position('left') #figure1.yaxis.tick_right() fig1 = figure1.add_subplot(211) fig1.plot(x1,values1[:,0],label="Random initial spins, T=1") fig1.plot(x1,values2[:,0],label="Ordered initial spins, T=1") fig1.tick_params(axis='x', labelsize=15) #HOW TO PUT THIS ON THE RIGHT SIDE? fig1.tick_params(axis='y', labelsize=15) fig1.yaxis.tick_right() #plt.ylabel(r"$\langle E\rangle /L^2$",fontsize=17) #plt.xlabel("Number of Monte Carlo cycles",fontsize=15) plt.legend() plt.axis([0,N1,-3,0]) #plt.show() fig2 = figure1.add_subplot(212) fig2.plot(x2,values3[:,0],label="Random initial spins, T=2.4") fig2.plot(x2,values4[:,0],label="Ordered initial spins, T=2.4") fig2.tick_params(axis='x', labelsize=15) fig2.tick_params(axis='y', labelsize=15) fig2.yaxis.tick_right() #plt.ylabel(r"$\langle E\rangle /L^2$",fontsize=15) #plt.xlabel("Number of Monte Carlo cycles",fontsize=15) plt.legend() plt.axis([0,50000,-2,-0.4]) plt.show() figure2 = plt.figure() labels = figure2.add_subplot(111) labels.spines['top'].set_color('none') labels.spines['bottom'].set_color('none') labels.spines['left'].set_color('none') labels.spines['right'].set_color('none') labels.tick_params(labelcolor='w', top='off', bottom='off', left='off', right='off') plt.xlabel("Number of Monte Carlo cycles",fontsize=15) plt.ylabel("Absolute magnetization per spin",fontsize=15) fig1 = figure2.add_subplot(211) fig1.plot(x1,values1[:,1],label="Random initial spins, T=1") fig1.plot(x1,values2[:,1],label="Ordered initial spins, T=1") fig1.tick_params(axis='x', labelsize=15) fig1.tick_params(axis='y', labelsize=15) fig1.yaxis.tick_right() #fig2.ylabel(r"$abs(\langle M \rangle /L^2)$",fontsize=15) #fig2.xlabel("Number of Monte Carlo cycles",fontsize=15) plt.legend() plt.axis([0,N1,0.2,1.6]) #plt.show() fig2 = figure2.add_subplot(212) fig2.plot(x2,values3[:,1],label="Random initial spins, T=2.4") fig2.plot(x2,values4[:,1],label="Ordered initial spins, T=2.4") fig2.tick_params(axis='x', labelsize=15) fig2.tick_params(axis='y', labelsize=15) fig2.yaxis.tick_right() #plt.ylabel(r"$abs(\langle M\rangle / L^2)$",fontsize=15) #plt.xlabel("Number of Monte Carlo cycles",fontsize=15) plt.legend() #plt.axis([0,8e6,-0.1,1.4]) plt.show()
gpl-3.0
pelodelfuego/word2vec-toolbox
toolbox/mlLib/conceptPairFeature.py
1
4358
#!/usr/bin/env python # -*- coding: utf-8 -*- import __init__ import numpy as np from scipy.weave import inline from sklearn.ensemble import RandomForestClassifier import cpLib.concept as cp import utils.skUtils as sku # PROJECTION def projCosSim(c1, c2): v1 = c1.vect v2 = c2.vect dimCount = len(v1) arr = np.zeros(dimCount, 'f') code = """ for(int i = 0; i < dimCount; i++) { float norm_v1 = 0.0; float norm_v2 = 0.0; float dot_pdt = 0.0; for(int j = 0; j < dimCount; j++) { if(i != j) { dot_pdt += v1[j] * v2[j]; norm_v1 += v1[j] * v1[j]; norm_v2 += v2[j] * v2[j]; } } norm_v1 = sqrtf(norm_v1); norm_v2 = sqrtf(norm_v2); arr[i] = dot_pdt / norm_v1 / norm_v2; } return_val = 1; """ inline(code, ['v1', 'v2', 'dimCount', 'arr'], headers = ['<math.h>'], compiler = 'gcc') return arr def projEuclDist(c1, c2): v1 = c1.vect v2 = c2.vect dimCount = len(v1) arr = np.zeros(dimCount, 'f') code = """ for(int i = 0; i < dimCount; i++) { float dist = 0.0; for(int j = 0; j < dimCount; j++) { if(i != j) { dist += pow(v1[j] - v2[j], 2); } } arr[i] = sqrt(dist); } return_val = 1; """ inline(code, ['v1', 'v2', 'dimCount', 'arr'], headers = ['<math.h>'], compiler = 'gcc') return arr def projManaDist(c1, c2): v1 = c1.vect v2 = c2.vect dimCount = len(v1) arr = np.zeros(dimCount, 'f') code = """ for(int i = 0; i < dimCount; i++) { float dist = 0.0; for(int j = 0; j < dimCount; j++) { if(i != j) { dist += fabs(v1[i] - v2[i]); } } arr[i] = dist; } return_val = 1; """ inline(code, ['v1', 'v2', 'dimCount', 'arr'], headers = ['<math.h>'], compiler = 'gcc') return arr # COMMUTATIVE FEATURE def subCarth(conceptPair): return conceptPair[2].vect - conceptPair[0].vect def subPolar(conceptPair): return conceptPair[2].polarVect() - conceptPair[0].polarVect() def subAngular(conceptPair): return conceptPair[2].angularVect() - conceptPair[0].angularVect() def concatCarth(conceptPair): return np.concatenate((conceptPair[0].vect, conceptPair[2].vect)) def concatPolar(conceptPair): return np.concatenate((conceptPair[0].polarVect(), conceptPair[2].polarVect())) def concatAngular(conceptPair): return np.concatenate((conceptPair[0].angularVect(), conceptPair[2].angularVect())) # NON COMMUATIVE FEATURE # PROJECTION SIMILARITY def pCosSim(conceptPair): return projCosSim(conceptPair[0], conceptPair[2]) def pEuclDist(conceptPair): return projEuclDist(conceptPair[0], conceptPair[2]) def pManaDist(conceptPair): return projManaDist(conceptPair[0], conceptPair[2]) # PROJECTION DISSIMILARITY def _projectionDissimarilty(projectionMetric, globalMetric, conceptPair): projectedFeature = projectionMetric(conceptPair[0], conceptPair[2]) globalFeature = globalMetric(conceptPair[0], conceptPair[2]) return np.array([(globalFeature - v) for v in projectedFeature]) def pdCosSim(conceptPair): return _projectionDissimarilty(projCosSim, cp.cosSim, conceptPair) def pdEuclDist(conceptPair): return _projectionDissimarilty(projEuclDist, cp.euclDist, conceptPair) def pdManaDist(conceptPair): return _projectionDissimarilty(projManaDist, cp.manaDist, conceptPair) # CLF class ConceptPairClf(object): def __init__(self, clf, featureExtractionFct): self.clf = clf self.featureExtractionFct = featureExtractionFct def fit(self, X, y): self.clf.fit([self.featureExtractionFct(x) for x in X], y) self.classes_ = self.clf.classes_ def predict(self, X): return self.clf.predict([self.featureExtractionFct(x) for x in X]) def predict_proba(self, X): return self.clf.predict_proba([self.featureExtractionFct(x) for x in X])
gpl-3.0
pradyu1993/scikit-learn
sklearn/gaussian_process/gaussian_process.py
1
34415
#!/usr/bin/python # -*- coding: utf-8 -*- # Author: Vincent Dubourg <vincent.dubourg@gmail.com> # (mostly translation, see implementation details) # License: BSD style import numpy as np from scipy import linalg, optimize, rand from ..base import BaseEstimator, RegressorMixin from ..metrics.pairwise import manhattan_distances from ..utils import array2d, check_random_state from ..utils import deprecated from . import regression_models as regression from . import correlation_models as correlation MACHINE_EPSILON = np.finfo(np.double).eps if hasattr(linalg, 'solve_triangular'): # only in scipy since 0.9 solve_triangular = linalg.solve_triangular else: # slower, but works def solve_triangular(x, y, lower=True): return linalg.solve(x, y) def l1_cross_distances(X): """ Computes the nonzero componentwise L1 cross-distances between the vectors in X. Parameters ---------- X: array_like An array with shape (n_samples, n_features) Returns ------- D: array with shape (n_samples * (n_samples - 1) / 2, n_features) The array of componentwise L1 cross-distances. ij: arrays with shape (n_samples * (n_samples - 1) / 2, 2) The indices i and j of the vectors in X associated to the cross- distances in D: D[k] = np.abs(X[ij[k, 0]] - Y[ij[k, 1]]). """ X = array2d(X) n_samples, n_features = X.shape n_nonzero_cross_dist = n_samples * (n_samples - 1) / 2 ij = np.zeros((n_nonzero_cross_dist, 2), dtype=np.int) D = np.zeros((n_nonzero_cross_dist, n_features)) ll_1 = 0 for k in range(n_samples - 1): ll_0 = ll_1 ll_1 = ll_0 + n_samples - k - 1 ij[ll_0:ll_1, 0] = k ij[ll_0:ll_1, 1] = np.arange(k + 1, n_samples) D[ll_0:ll_1] = np.abs(X[k] - X[(k + 1):n_samples]) return D, ij.astype(np.int) class GaussianProcess(BaseEstimator, RegressorMixin): """The Gaussian Process model class. Parameters ---------- regr : string or callable, optional A regression function returning an array of outputs of the linear regression functional basis. The number of observations n_samples should be greater than the size p of this basis. Default assumes a simple constant regression trend. Available built-in regression models are:: 'constant', 'linear', 'quadratic' corr : string or callable, optional A stationary autocorrelation function returning the autocorrelation between two points x and x'. Default assumes a squared-exponential autocorrelation model. Built-in correlation models are:: 'absolute_exponential', 'squared_exponential', 'generalized_exponential', 'cubic', 'linear' beta0 : double array_like, optional The regression weight vector to perform Ordinary Kriging (OK). Default assumes Universal Kriging (UK) so that the vector beta of regression weights is estimated using the maximum likelihood principle. storage_mode : string, optional A string specifying whether the Cholesky decomposition of the correlation matrix should be stored in the class (storage_mode = 'full') or not (storage_mode = 'light'). Default assumes storage_mode = 'full', so that the Cholesky decomposition of the correlation matrix is stored. This might be a useful parameter when one is not interested in the MSE and only plan to estimate the BLUP, for which the correlation matrix is not required. verbose : boolean, optional A boolean specifying the verbose level. Default is verbose = False. theta0 : double array_like, optional An array with shape (n_features, ) or (1, ). The parameters in the autocorrelation model. If thetaL and thetaU are also specified, theta0 is considered as the starting point for the maximum likelihood rstimation of the best set of parameters. Default assumes isotropic autocorrelation model with theta0 = 1e-1. thetaL : double array_like, optional An array with shape matching theta0's. Lower bound on the autocorrelation parameters for maximum likelihood estimation. Default is None, so that it skips maximum likelihood estimation and it uses theta0. thetaU : double array_like, optional An array with shape matching theta0's. Upper bound on the autocorrelation parameters for maximum likelihood estimation. Default is None, so that it skips maximum likelihood estimation and it uses theta0. normalize : boolean, optional Input X and observations y are centered and reduced wrt means and standard deviations estimated from the n_samples observations provided. Default is normalize = True so that data is normalized to ease maximum likelihood estimation. nugget : double or ndarray, optional Introduce a nugget effect to allow smooth predictions from noisy data. If nugget is an ndarray, it must be the same length as the number of data points used for the fit. The nugget is added to the diagonal of the assumed training covariance; in this way it acts as a Tikhonov regularization in the problem. In the special case of the squared exponential correlation function, the nugget mathematically represents the variance of the input values. Default assumes a nugget close to machine precision for the sake of robustness (nugget = 10. * MACHINE_EPSILON). optimizer : string, optional A string specifying the optimization algorithm to be used. Default uses 'fmin_cobyla' algorithm from scipy.optimize. Available optimizers are:: 'fmin_cobyla', 'Welch' 'Welch' optimizer is dued to Welch et al., see reference [WBSWM1992]_. It consists in iterating over several one-dimensional optimizations instead of running one single multi-dimensional optimization. random_start : int, optional The number of times the Maximum Likelihood Estimation should be performed from a random starting point. The first MLE always uses the specified starting point (theta0), the next starting points are picked at random according to an exponential distribution (log-uniform on [thetaL, thetaU]). Default does not use random starting point (random_start = 1). random_state: integer or numpy.RandomState, optional The generator used to shuffle the sequence of coordinates of theta in the Welch optimizer. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. Attributes ---------- `theta_`: array Specified theta OR the best set of autocorrelation parameters (the \ sought maximizer of the reduced likelihood function). `reduced_likelihood_function_value_`: array The optimal reduced likelihood function value. Examples -------- >>> import numpy as np >>> from sklearn.gaussian_process import GaussianProcess >>> X = np.array([[1., 3., 5., 6., 7., 8.]]).T >>> y = (X * np.sin(X)).ravel() >>> gp = GaussianProcess(theta0=0.1, thetaL=.001, thetaU=1.) >>> gp.fit(X, y) # doctest: +ELLIPSIS GaussianProcess(beta0=None... ... Notes ----- The presentation implementation is based on a translation of the DACE Matlab toolbox, see reference [NLNS2002]_. References ---------- .. [NLNS2002] `H.B. Nielsen, S.N. Lophaven, H. B. Nielsen and J. Sondergaard. DACE - A MATLAB Kriging Toolbox.` (2002) http://www2.imm.dtu.dk/~hbn/dace/dace.pdf .. [WBSWM1992] `W.J. Welch, R.J. Buck, J. Sacks, H.P. Wynn, T.J. Mitchell, and M.D. Morris (1992). Screening, predicting, and computer experiments. Technometrics, 34(1) 15--25.` http://www.jstor.org/pss/1269548 """ _regression_types = { 'constant': regression.constant, 'linear': regression.linear, 'quadratic': regression.quadratic} _correlation_types = { 'absolute_exponential': correlation.absolute_exponential, 'squared_exponential': correlation.squared_exponential, 'generalized_exponential': correlation.generalized_exponential, 'cubic': correlation.cubic, 'linear': correlation.linear} _optimizer_types = [ 'fmin_cobyla', 'Welch'] def __init__(self, regr='constant', corr='squared_exponential', beta0=None, storage_mode='full', verbose=False, theta0=1e-1, thetaL=None, thetaU=None, optimizer='fmin_cobyla', random_start=1, normalize=True, nugget=10. * MACHINE_EPSILON, random_state=None): self.regr = regr self.corr = corr self.beta0 = beta0 self.storage_mode = storage_mode self.verbose = verbose self.theta0 = theta0 self.thetaL = thetaL self.thetaU = thetaU self.normalize = normalize self.nugget = nugget self.optimizer = optimizer self.random_start = random_start self.random_state = random_state # Run input checks self._check_params() def fit(self, X, y): """ The Gaussian Process model fitting method. Parameters ---------- X : double array_like An array with shape (n_samples, n_features) with the input at which observations were made. y : double array_like An array with shape (n_samples, ) with the observations of the scalar output to be predicted. Returns ------- gp : self A fitted Gaussian Process model object awaiting data to perform predictions. """ self.random_state = check_random_state(self.random_state) # Force data to 2D numpy.array X = array2d(X) y = np.asarray(y).ravel()[:, np.newaxis] # Check shapes of DOE & observations n_samples_X, n_features = X.shape n_samples_y = y.shape[0] if n_samples_X != n_samples_y: raise ValueError("X and y must have the same number of rows.") else: n_samples = n_samples_X # Run input checks self._check_params(n_samples) # Normalize data or don't if self.normalize: X_mean = np.mean(X, axis=0) X_std = np.std(X, axis=0) y_mean = np.mean(y, axis=0) y_std = np.std(y, axis=0) X_std[X_std == 0.] = 1. y_std[y_std == 0.] = 1. # center and scale X if necessary X = (X - X_mean) / X_std y = (y - y_mean) / y_std else: X_mean = np.zeros(1) X_std = np.ones(1) y_mean = np.zeros(1) y_std = np.ones(1) # Calculate matrix of distances D between samples D, ij = l1_cross_distances(X) if np.min(np.sum(D, axis=1)) == 0. \ and self.corr != correlation.pure_nugget: raise Exception("Multiple input features cannot have the same" " value") # Regression matrix and parameters F = self.regr(X) n_samples_F = F.shape[0] if F.ndim > 1: p = F.shape[1] else: p = 1 if n_samples_F != n_samples: raise Exception("Number of rows in F and X do not match. Most " + "likely something is going wrong with the " + "regression model.") if p > n_samples_F: raise Exception(("Ordinary least squares problem is undetermined " + "n_samples=%d must be greater than the " + "regression model size p=%d.") % (n_samples, p)) if self.beta0 is not None: if self.beta0.shape[0] != p: raise Exception("Shapes of beta0 and F do not match.") # Set attributes self.X = X self.y = y self.D = D self.ij = ij self.F = F self.X_mean, self.X_std = X_mean, X_std self.y_mean, self.y_std = y_mean, y_std # Determine Gaussian Process model parameters if self.thetaL is not None and self.thetaU is not None: # Maximum Likelihood Estimation of the parameters if self.verbose: print("Performing Maximum Likelihood Estimation of the " + "autocorrelation parameters...") self.theta_, self.reduced_likelihood_function_value_, par = \ self._arg_max_reduced_likelihood_function() if np.isinf(self.reduced_likelihood_function_value_): raise Exception("Bad parameter region. " + "Try increasing upper bound") else: # Given parameters if self.verbose: print("Given autocorrelation parameters. " + "Computing Gaussian Process model parameters...") self.theta_ = self.theta0 self.reduced_likelihood_function_value_, par = \ self.reduced_likelihood_function() if np.isinf(self.reduced_likelihood_function_value_): raise Exception("Bad point. Try increasing theta0.") self.beta = par['beta'] self.gamma = par['gamma'] self.sigma2 = par['sigma2'] self.C = par['C'] self.Ft = par['Ft'] self.G = par['G'] if self.storage_mode == 'light': # Delete heavy data (it will be computed again if required) # (it is required only when MSE is wanted in self.predict) if self.verbose: print("Light storage mode specified. " + "Flushing autocorrelation matrix...") self.D = None self.ij = None self.F = None self.C = None self.Ft = None self.G = None return self def predict(self, X, eval_MSE=False, batch_size=None): """ This function evaluates the Gaussian Process model at x. Parameters ---------- X : array_like An array with shape (n_eval, n_features) giving the point(s) at which the prediction(s) should be made. eval_MSE : boolean, optional A boolean specifying whether the Mean Squared Error should be evaluated or not. Default assumes evalMSE = False and evaluates only the BLUP (mean prediction). batch_size : integer, optional An integer giving the maximum number of points that can be evaluated simulatneously (depending on the available memory). Default is None so that all given points are evaluated at the same time. Returns ------- y : array_like An array with shape (n_eval, ) with the Best Linear Unbiased Prediction at x. MSE : array_like, optional (if eval_MSE == True) An array with shape (n_eval, ) with the Mean Squared Error at x. """ # Check input shapes X = array2d(X) n_eval, n_features_X = X.shape n_samples, n_features = self.X.shape # Run input checks self._check_params(n_samples) if n_features_X != n_features: raise ValueError(("The number of features in X (X.shape[1] = %d) " + "should match the sample size used for fit() " + "which is %d.") % (n_features_X, n_features)) if batch_size is None: # No memory management # (evaluates all given points in a single batch run) # Normalize input X = (X - self.X_mean) / self.X_std # Initialize output y = np.zeros(n_eval) if eval_MSE: MSE = np.zeros(n_eval) # Get pairwise componentwise L1-distances to the input training set dx = manhattan_distances(X, Y=self.X, sum_over_features=False) # Get regression function and correlation f = self.regr(X) r = self.corr(self.theta_, dx).reshape(n_eval, n_samples) # Scaled predictor y_ = np.dot(f, self.beta) + np.dot(r, self.gamma) # Predictor y = (self.y_mean + self.y_std * y_).ravel() # Mean Squared Error if eval_MSE: C = self.C if C is None: # Light storage mode (need to recompute C, F, Ft and G) if self.verbose: print("This GaussianProcess used 'light' storage mode " + "at instanciation. Need to recompute " + "autocorrelation matrix...") reduced_likelihood_function_value, par = \ self.reduced_likelihood_function() self.C = par['C'] self.Ft = par['Ft'] self.G = par['G'] rt = solve_triangular(self.C, r.T, lower=True) if self.beta0 is None: # Universal Kriging u = solve_triangular(self.G.T, np.dot(self.Ft.T, rt) - f.T) else: # Ordinary Kriging u = np.zeros(y.shape) MSE = self.sigma2 * (1. - (rt ** 2.).sum(axis=0) + (u ** 2.).sum(axis=0)) # Mean Squared Error might be slightly negative depending on # machine precision: force to zero! MSE[MSE < 0.] = 0. return y, MSE else: return y else: # Memory management if type(batch_size) is not int or batch_size <= 0: raise Exception("batch_size must be a positive integer") if eval_MSE: y, MSE = np.zeros(n_eval), np.zeros(n_eval) for k in range(max(1, n_eval / batch_size)): batch_from = k * batch_size batch_to = min([(k + 1) * batch_size + 1, n_eval + 1]) y[batch_from:batch_to], MSE[batch_from:batch_to] = \ self.predict(X[batch_from:batch_to], eval_MSE=eval_MSE, batch_size=None) return y, MSE else: y = np.zeros(n_eval) for k in range(max(1, n_eval / batch_size)): batch_from = k * batch_size batch_to = min([(k + 1) * batch_size + 1, n_eval + 1]) y[batch_from:batch_to] = \ self.predict(X[batch_from:batch_to], eval_MSE=eval_MSE, batch_size=None) return y def reduced_likelihood_function(self, theta=None): """ This function determines the BLUP parameters and evaluates the reduced likelihood function for the given autocorrelation parameters theta. Maximizing this function wrt the autocorrelation parameters theta is equivalent to maximizing the likelihood of the assumed joint Gaussian distribution of the observations y evaluated onto the design of experiments X. Parameters ---------- theta : array_like, optional An array containing the autocorrelation parameters at which the Gaussian Process model parameters should be determined. Default uses the built-in autocorrelation parameters (ie ``theta = self.theta_``). Returns ------- reduced_likelihood_function_value : double The value of the reduced likelihood function associated to the given autocorrelation parameters theta. par : dict A dictionary containing the requested Gaussian Process model parameters: sigma2 Gaussian Process variance. beta Generalized least-squares regression weights for Universal Kriging or given beta0 for Ordinary Kriging. gamma Gaussian Process weights. C Cholesky decomposition of the correlation matrix [R]. Ft Solution of the linear equation system : [R] x Ft = F G QR decomposition of the matrix Ft. """ if theta is None: # Use built-in autocorrelation parameters theta = self.theta_ # Initialize output reduced_likelihood_function_value = - np.inf par = {} # Retrieve data n_samples = self.X.shape[0] D = self.D ij = self.ij F = self.F if D is None: # Light storage mode (need to recompute D, ij and F) D, ij = l1_cross_distances(self.X) if np.min(np.sum(D, axis=1)) == 0. \ and self.corr != correlation.pure_nugget: raise Exception("Multiple X are not allowed") F = self.regr(self.X) # Set up R r = self.corr(theta, D) R = np.eye(n_samples) * (1. + self.nugget) R[ij[:, 0], ij[:, 1]] = r R[ij[:, 1], ij[:, 0]] = r # Cholesky decomposition of R try: C = linalg.cholesky(R, lower=True) except linalg.LinAlgError: return reduced_likelihood_function_value, par # Get generalized least squares solution Ft = solve_triangular(C, F, lower=True) try: Q, G = linalg.qr(Ft, econ=True) except: #/usr/lib/python2.6/dist-packages/scipy/linalg/decomp.py:1177: # DeprecationWarning: qr econ argument will be removed after scipy # 0.7. The economy transform will then be available through the # mode='economic' argument. Q, G = linalg.qr(Ft, mode='economic') pass sv = linalg.svd(G, compute_uv=False) rcondG = sv[-1] / sv[0] if rcondG < 1e-10: # Check F sv = linalg.svd(F, compute_uv=False) condF = sv[0] / sv[-1] if condF > 1e15: raise Exception("F is too ill conditioned. Poor combination " + "of regression model and observations.") else: # Ft is too ill conditioned, get out (try different theta) return reduced_likelihood_function_value, par Yt = solve_triangular(C, self.y, lower=True) if self.beta0 is None: # Universal Kriging beta = solve_triangular(G, np.dot(Q.T, Yt)) else: # Ordinary Kriging beta = np.array(self.beta0) rho = Yt - np.dot(Ft, beta) sigma2 = (rho ** 2.).sum(axis=0) / n_samples # The determinant of R is equal to the squared product of the diagonal # elements of its Cholesky decomposition C detR = (np.diag(C) ** (2. / n_samples)).prod() # Compute/Organize output reduced_likelihood_function_value = - sigma2.sum() * detR par['sigma2'] = sigma2 * self.y_std ** 2. par['beta'] = beta par['gamma'] = solve_triangular(C.T, rho) par['C'] = C par['Ft'] = Ft par['G'] = G return reduced_likelihood_function_value, par @deprecated("to be removed in 0.14, access ``self.theta_`` etc. directly " " after fit.") def arg_max_reduced_likelihood_function(self): return self._arg_max_reduced_likelihood_function() @property @deprecated('``theta`` is deprecated and will be removed in 0.14, ' 'please use ``theta_`` instead.') def theta(self): return self.theta_ @property @deprecated("``reduced_likelihood_function_value`` is deprecated and will" "be removed in 0.14, please use " "``reduced_likelihood_function_value_`` instead.") def reduced_likelihood_function_value(self): return self.reduced_likelihood_function_value_ def _arg_max_reduced_likelihood_function(self): """ This function estimates the autocorrelation parameters theta as the maximizer of the reduced likelihood function. (Minimization of the opposite reduced likelihood function is used for convenience) Parameters ---------- self : All parameters are stored in the Gaussian Process model object. Returns ------- optimal_theta : array_like The best set of autocorrelation parameters (the sought maximizer of the reduced likelihood function). optimal_reduced_likelihood_function_value : double The optimal reduced likelihood function value. optimal_par : dict The BLUP parameters associated to thetaOpt. """ # Initialize output best_optimal_theta = [] best_optimal_rlf_value = [] best_optimal_par = [] if self.verbose: print "The chosen optimizer is: " + str(self.optimizer) if self.random_start > 1: print str(self.random_start) + " random starts are required." percent_completed = 0. # Force optimizer to fmin_cobyla if the model is meant to be isotropic if self.optimizer == 'Welch' and self.theta0.size == 1: self.optimizer = 'fmin_cobyla' if self.optimizer == 'fmin_cobyla': def minus_reduced_likelihood_function(log10t): return - self.reduced_likelihood_function(theta=10. ** log10t)[0] constraints = [] for i in range(self.theta0.size): constraints.append(lambda log10t: \ log10t[i] - np.log10(self.thetaL[0, i])) constraints.append(lambda log10t: \ np.log10(self.thetaU[0, i]) - log10t[i]) for k in range(self.random_start): if k == 0: # Use specified starting point as first guess theta0 = self.theta0 else: # Generate a random starting point log10-uniformly # distributed between bounds log10theta0 = np.log10(self.thetaL) \ + rand(self.theta0.size).reshape(self.theta0.shape) \ * np.log10(self.thetaU / self.thetaL) theta0 = 10. ** log10theta0 # Run Cobyla try: log10_optimal_theta = \ optimize.fmin_cobyla(minus_reduced_likelihood_function, np.log10(theta0), constraints, iprint=0) except ValueError as ve: print("Optimization failed. Try increasing the ``nugget``") raise ve optimal_theta = 10. ** log10_optimal_theta optimal_minus_rlf_value, optimal_par = \ self.reduced_likelihood_function(theta=optimal_theta) optimal_rlf_value = - optimal_minus_rlf_value # Compare the new optimizer to the best previous one if k > 0: if optimal_rlf_value > best_optimal_rlf_value: best_optimal_rlf_value = optimal_rlf_value best_optimal_par = optimal_par best_optimal_theta = optimal_theta else: best_optimal_rlf_value = optimal_rlf_value best_optimal_par = optimal_par best_optimal_theta = optimal_theta if self.verbose and self.random_start > 1: if (20 * k) / self.random_start > percent_completed: percent_completed = (20 * k) / self.random_start print "%s completed" % (5 * percent_completed) optimal_rlf_value = best_optimal_rlf_value optimal_par = best_optimal_par optimal_theta = best_optimal_theta elif self.optimizer == 'Welch': # Backup of the given atrributes theta0, thetaL, thetaU = self.theta0, self.thetaL, self.thetaU corr = self.corr verbose = self.verbose # This will iterate over fmin_cobyla optimizer self.optimizer = 'fmin_cobyla' self.verbose = False # Initialize under isotropy assumption if verbose: print("Initialize under isotropy assumption...") self.theta0 = array2d(self.theta0.min()) self.thetaL = array2d(self.thetaL.min()) self.thetaU = array2d(self.thetaU.max()) theta_iso, optimal_rlf_value_iso, par_iso = \ self._arg_max_reduced_likelihood_function() optimal_theta = theta_iso + np.zeros(theta0.shape) # Iterate over all dimensions of theta allowing for anisotropy if verbose: print("Now improving allowing for anisotropy...") for i in self.random_state.permutation(theta0.size): if verbose: print "Proceeding along dimension %d..." % (i + 1) self.theta0 = array2d(theta_iso) self.thetaL = array2d(thetaL[0, i]) self.thetaU = array2d(thetaU[0, i]) def corr_cut(t, d): return corr(array2d(np.hstack([ optimal_theta[0][0:i], t[0], optimal_theta[0][(i + 1)::]])), d) self.corr = corr_cut optimal_theta[0, i], optimal_rlf_value, optimal_par = \ self._arg_max_reduced_likelihood_function() # Restore the given atrributes self.theta0, self.thetaL, self.thetaU = theta0, thetaL, thetaU self.corr = corr self.optimizer = 'Welch' self.verbose = verbose else: raise NotImplementedError(("This optimizer ('%s') is not " + "implemented yet. Please contribute!") % self.optimizer) return optimal_theta, optimal_rlf_value, optimal_par def _check_params(self, n_samples=None): # Check regression model if not callable(self.regr): if self.regr in self._regression_types: self.regr = self._regression_types[self.regr] else: raise ValueError(("regr should be one of %s or callable, " + "%s was given.") % (self._regression_types.keys(), self.regr)) # Check regression weights if given (Ordinary Kriging) if self.beta0 is not None: self.beta0 = array2d(self.beta0) if self.beta0.shape[1] != 1: # Force to column vector self.beta0 = self.beta0.T # Check correlation model if not callable(self.corr): if self.corr in self._correlation_types: self.corr = self._correlation_types[self.corr] else: raise ValueError(("corr should be one of %s or callable, " + "%s was given.") % (self._correlation_types.keys(), self.corr)) # Check storage mode if self.storage_mode != 'full' and self.storage_mode != 'light': raise ValueError("Storage mode should either be 'full' or " + "'light', %s was given." % self.storage_mode) # Check correlation parameters self.theta0 = array2d(self.theta0) lth = self.theta0.size if self.thetaL is not None and self.thetaU is not None: self.thetaL = array2d(self.thetaL) self.thetaU = array2d(self.thetaU) if self.thetaL.size != lth or self.thetaU.size != lth: raise ValueError("theta0, thetaL and thetaU must have the " + "same length.") if np.any(self.thetaL <= 0) or np.any(self.thetaU < self.thetaL): raise ValueError("The bounds must satisfy O < thetaL <= " + "thetaU.") elif self.thetaL is None and self.thetaU is None: if np.any(self.theta0 <= 0): raise ValueError("theta0 must be strictly positive.") elif self.thetaL is None or self.thetaU is None: raise ValueError("thetaL and thetaU should either be both or " + "neither specified.") # Force verbose type to bool self.verbose = bool(self.verbose) # Force normalize type to bool self.normalize = bool(self.normalize) # Check nugget value self.nugget = np.asarray(self.nugget) if np.any(self.nugget) < 0.: raise ValueError("nugget must be positive or zero.") if (n_samples is not None and self.nugget.shape not in [(), (n_samples,)]): raise ValueError("nugget must be either a scalar " "or array of length n_samples.") # Check optimizer if not self.optimizer in self._optimizer_types: raise ValueError("optimizer should be one of %s" % self._optimizer_types) # Force random_start type to int self.random_start = int(self.random_start)
bsd-3-clause
bdh1011/wau
venv/lib/python2.7/site-packages/pandas/core/internals.py
1
151884
import copy import itertools import re import operator from datetime import datetime, timedelta from collections import defaultdict import numpy as np from pandas.core.base import PandasObject from pandas.core.common import (_possibly_downcast_to_dtype, isnull, _NS_DTYPE, _TD_DTYPE, ABCSeries, is_list_like, ABCSparseSeries, _infer_dtype_from_scalar, is_null_datelike_scalar, _maybe_promote, is_timedelta64_dtype, is_datetime64_dtype, array_equivalent, _maybe_convert_string_to_object, is_categorical) from pandas.core.index import Index, MultiIndex, _ensure_index from pandas.core.indexing import maybe_convert_indices, length_of_indexer from pandas.core.categorical import Categorical, maybe_to_categorical import pandas.core.common as com from pandas.sparse.array import _maybe_to_sparse, SparseArray import pandas.lib as lib import pandas.tslib as tslib import pandas.computation.expressions as expressions from pandas.util.decorators import cache_readonly from pandas.tslib import Timestamp, Timedelta from pandas import compat from pandas.compat import range, map, zip, u from pandas.tseries.timedeltas import _coerce_scalar_to_timedelta_type from pandas.lib import BlockPlacement class Block(PandasObject): """ Canonical n-dimensional unit of homogeneous dtype contained in a pandas data structure Index-ignorant; let the container take care of that """ __slots__ = ['_mgr_locs', 'values', 'ndim'] is_numeric = False is_float = False is_integer = False is_complex = False is_datetime = False is_timedelta = False is_bool = False is_object = False is_categorical = False is_sparse = False _can_hold_na = False _downcast_dtype = None _can_consolidate = True _verify_integrity = True _validate_ndim = True _ftype = 'dense' _holder = None def __init__(self, values, placement, ndim=None, fastpath=False): if ndim is None: ndim = values.ndim elif values.ndim != ndim: raise ValueError('Wrong number of dimensions') self.ndim = ndim self.mgr_locs = placement self.values = values if len(self.mgr_locs) != len(self.values): raise ValueError('Wrong number of items passed %d,' ' placement implies %d' % ( len(self.values), len(self.mgr_locs))) @property def _consolidate_key(self): return (self._can_consolidate, self.dtype.name) @property def _is_single_block(self): return self.ndim == 1 @property def is_view(self): """ return a boolean if I am possibly a view """ return self.values.base is not None @property def is_datelike(self): """ return True if I am a non-datelike """ return self.is_datetime or self.is_timedelta def is_categorical_astype(self, dtype): """ validate that we have a astypeable to categorical, returns a boolean if we are a categorical """ if com.is_categorical_dtype(dtype): if dtype == com.CategoricalDtype(): return True # this is a pd.Categorical, but is not # a valid type for astypeing raise TypeError("invalid type {0} for astype".format(dtype)) return False def to_dense(self): return self.values.view() @property def fill_value(self): return np.nan @property def mgr_locs(self): return self._mgr_locs @property def array_dtype(self): """ the dtype to return if I want to construct this block as an array """ return self.dtype def make_block_same_class(self, values, placement, copy=False, fastpath=True, **kwargs): """ Wrap given values in a block of same type as self. `kwargs` are used in SparseBlock override. """ if copy: values = values.copy() return make_block(values, placement, klass=self.__class__, fastpath=fastpath, **kwargs) @mgr_locs.setter def mgr_locs(self, new_mgr_locs): if not isinstance(new_mgr_locs, BlockPlacement): new_mgr_locs = BlockPlacement(new_mgr_locs) self._mgr_locs = new_mgr_locs def __unicode__(self): # don't want to print out all of the items here name = com.pprint_thing(self.__class__.__name__) if self._is_single_block: result = '%s: %s dtype: %s' % ( name, len(self), self.dtype) else: shape = ' x '.join([com.pprint_thing(s) for s in self.shape]) result = '%s: %s, %s, dtype: %s' % ( name, com.pprint_thing(self.mgr_locs.indexer), shape, self.dtype) return result def __len__(self): return len(self.values) def __getstate__(self): return self.mgr_locs.indexer, self.values def __setstate__(self, state): self.mgr_locs = BlockPlacement(state[0]) self.values = state[1] self.ndim = self.values.ndim def _slice(self, slicer): """ return a slice of my values """ return self.values[slicer] def reshape_nd(self, labels, shape, ref_items): """ Parameters ---------- labels : list of new axis labels shape : new shape ref_items : new ref_items return a new block that is transformed to a nd block """ return _block2d_to_blocknd( values=self.get_values().T, placement=self.mgr_locs, shape=shape, labels=labels, ref_items=ref_items) def getitem_block(self, slicer, new_mgr_locs=None): """ Perform __getitem__-like, return result as block. As of now, only supports slices that preserve dimensionality. """ if new_mgr_locs is None: if isinstance(slicer, tuple): axis0_slicer = slicer[0] else: axis0_slicer = slicer new_mgr_locs = self.mgr_locs[axis0_slicer] new_values = self._slice(slicer) if self._validate_ndim and new_values.ndim != self.ndim: raise ValueError("Only same dim slicing is allowed") return self.make_block_same_class(new_values, new_mgr_locs) @property def shape(self): return self.values.shape @property def itemsize(self): return self.values.itemsize @property def dtype(self): return self.values.dtype @property def ftype(self): return "%s:%s" % (self.dtype, self._ftype) def merge(self, other): return _merge_blocks([self, other]) def reindex_axis(self, indexer, method=None, axis=1, fill_value=None, limit=None, mask_info=None): """ Reindex using pre-computed indexer information """ if axis < 1: raise AssertionError('axis must be at least 1, got %d' % axis) if fill_value is None: fill_value = self.fill_value new_values = com.take_nd(self.values, indexer, axis, fill_value=fill_value, mask_info=mask_info) return make_block(new_values, ndim=self.ndim, fastpath=True, placement=self.mgr_locs) def get(self, item): loc = self.items.get_loc(item) return self.values[loc] def iget(self, i): return self.values[i] def set(self, locs, values, check=False): """ Modify Block in-place with new item value Returns ------- None """ self.values[locs] = values def delete(self, loc): """ Delete given loc(-s) from block in-place. """ self.values = np.delete(self.values, loc, 0) self.mgr_locs = self.mgr_locs.delete(loc) def apply(self, func, **kwargs): """ apply the function to my values; return a block if we are not one """ result = func(self.values, **kwargs) if not isinstance(result, Block): result = make_block(values=_block_shape(result), placement=self.mgr_locs,) return result def fillna(self, value, limit=None, inplace=False, downcast=None): if not self._can_hold_na: if inplace: return [self] else: return [self.copy()] mask = isnull(self.values) if limit is not None: if self.ndim > 2: raise NotImplementedError("number of dimensions for 'fillna' " "is currently limited to 2") mask[mask.cumsum(self.ndim-1) > limit] = False value = self._try_fill(value) blocks = self.putmask(mask, value, inplace=inplace) return self._maybe_downcast(blocks, downcast) def _maybe_downcast(self, blocks, downcast=None): # no need to downcast our float # unless indicated if downcast is None and self.is_float: return blocks elif downcast is None and (self.is_timedelta or self.is_datetime): return blocks result_blocks = [] for b in blocks: result_blocks.extend(b.downcast(downcast)) return result_blocks def downcast(self, dtypes=None): """ try to downcast each item to the dict of dtypes if present """ # turn it off completely if dtypes is False: return [self] values = self.values # single block handling if self._is_single_block: # try to cast all non-floats here if dtypes is None: dtypes = 'infer' nv = _possibly_downcast_to_dtype(values, dtypes) return [make_block(nv, ndim=self.ndim, fastpath=True, placement=self.mgr_locs)] # ndim > 1 if dtypes is None: return [self] if not (dtypes == 'infer' or isinstance(dtypes, dict)): raise ValueError("downcast must have a dictionary or 'infer' as " "its argument") # item-by-item # this is expensive as it splits the blocks items-by-item blocks = [] for i, rl in enumerate(self.mgr_locs): if dtypes == 'infer': dtype = 'infer' else: raise AssertionError("dtypes as dict is not supported yet") dtype = dtypes.get(item, self._downcast_dtype) if dtype is None: nv = _block_shape(values[i], ndim=self.ndim) else: nv = _possibly_downcast_to_dtype(values[i], dtype) nv = _block_shape(nv, ndim=self.ndim) blocks.append(make_block(nv, ndim=self.ndim, fastpath=True, placement=[rl])) return blocks def astype(self, dtype, copy=False, raise_on_error=True, values=None, **kwargs): return self._astype(dtype, copy=copy, raise_on_error=raise_on_error, values=values, **kwargs) def _astype(self, dtype, copy=False, raise_on_error=True, values=None, klass=None, **kwargs): """ Coerce to the new type (if copy=True, return a new copy) raise on an except if raise == True """ # may need to convert to categorical # this is only called for non-categoricals if self.is_categorical_astype(dtype): return make_block(Categorical(self.values, **kwargs), ndim=self.ndim, placement=self.mgr_locs) # astype processing dtype = np.dtype(dtype) if self.dtype == dtype: if copy: return self.copy() return self if klass is None: if dtype == np.object_: klass = ObjectBlock try: # force the copy here if values is None: # _astype_nansafe works fine with 1-d only values = com._astype_nansafe(self.values.ravel(), dtype, copy=True) values = values.reshape(self.values.shape) newb = make_block(values, ndim=self.ndim, placement=self.mgr_locs, fastpath=True, dtype=dtype, klass=klass) except: if raise_on_error is True: raise newb = self.copy() if copy else self if newb.is_numeric and self.is_numeric: if newb.shape != self.shape: raise TypeError("cannot set astype for copy = [%s] for dtype " "(%s [%s]) with smaller itemsize that current " "(%s [%s])" % (copy, self.dtype.name, self.itemsize, newb.dtype.name, newb.itemsize)) return newb def convert(self, copy=True, **kwargs): """ attempt to coerce any object types to better types return a copy of the block (if copy = True) by definition we are not an ObjectBlock here! """ return [self.copy()] if copy else [self] def _can_hold_element(self, value): raise NotImplementedError() def _try_cast(self, value): raise NotImplementedError() def _try_cast_result(self, result, dtype=None): """ try to cast the result to our original type, we may have roundtripped thru object in the mean-time """ if dtype is None: dtype = self.dtype if self.is_integer or self.is_bool or self.is_datetime: pass elif self.is_float and result.dtype == self.dtype: # protect against a bool/object showing up here if isinstance(dtype, compat.string_types) and dtype == 'infer': return result if not isinstance(dtype, type): dtype = dtype.type if issubclass(dtype, (np.bool_, np.object_)): if issubclass(dtype, np.bool_): if isnull(result).all(): return result.astype(np.bool_) else: result = result.astype(np.object_) result[result == 1] = True result[result == 0] = False return result else: return result.astype(np.object_) return result # may need to change the dtype here return _possibly_downcast_to_dtype(result, dtype) def _try_operate(self, values): """ return a version to operate on as the input """ return values def _try_coerce_args(self, values, other): """ provide coercion to our input arguments """ return values, other def _try_coerce_result(self, result): """ reverse of try_coerce_args """ return result def _try_coerce_and_cast_result(self, result, dtype=None): result = self._try_coerce_result(result) result = self._try_cast_result(result, dtype=dtype) return result def _try_fill(self, value): return value def to_native_types(self, slicer=None, na_rep='', quoting=None, **kwargs): """ convert to our native types format, slicing if desired """ values = self.values if slicer is not None: values = values[:, slicer] mask = isnull(values) if not self.is_object and not quoting: values = values.astype(str) else: values = np.array(values, dtype='object') values[mask] = na_rep return values # block actions #### def copy(self, deep=True): values = self.values if deep: values = values.copy() return make_block(values, ndim=self.ndim, klass=self.__class__, fastpath=True, placement=self.mgr_locs) def replace(self, to_replace, value, inplace=False, filter=None, regex=False): """ replace the to_replace value with value, possible to create new blocks here this is just a call to putmask. regex is not used here. It is used in ObjectBlocks. It is here for API compatibility.""" mask = com.mask_missing(self.values, to_replace) if filter is not None: filtered_out = ~self.mgr_locs.isin(filter) mask[filtered_out.nonzero()[0]] = False if not mask.any(): if inplace: return [self] return [self.copy()] return self.putmask(mask, value, inplace=inplace) def setitem(self, indexer, value): """ set the value inplace; return a new block (of a possibly different dtype) indexer is a direct slice/positional indexer; value must be a compatible shape """ # coerce None values, if appropriate if value is None: if self.is_numeric: value = np.nan # coerce args values, value = self._try_coerce_args(self.values, value) arr_value = np.array(value) # cast the values to a type that can hold nan (if necessary) if not self._can_hold_element(value): dtype, _ = com._maybe_promote(arr_value.dtype) values = values.astype(dtype) transf = (lambda x: x.T) if self.ndim == 2 else (lambda x: x) values = transf(values) l = len(values) # length checking # boolean with truth values == len of the value is ok too if isinstance(indexer, (np.ndarray, list)): if is_list_like(value) and len(indexer) != len(value): if not (isinstance(indexer, np.ndarray) and indexer.dtype == np.bool_ and len(indexer[indexer]) == len(value)): raise ValueError("cannot set using a list-like indexer " "with a different length than the value") # slice elif isinstance(indexer, slice): if is_list_like(value) and l: if len(value) != length_of_indexer(indexer, values): raise ValueError("cannot set using a slice indexer with a " "different length than the value") try: def _is_scalar_indexer(indexer): # return True if we are all scalar indexers if arr_value.ndim == 1: if not isinstance(indexer, tuple): indexer = tuple([indexer]) return all([ np.isscalar(idx) for idx in indexer ]) return False def _is_empty_indexer(indexer): # return a boolean if we have an empty indexer if arr_value.ndim == 1: if not isinstance(indexer, tuple): indexer = tuple([indexer]) return any(isinstance(idx, np.ndarray) and len(idx) == 0 for idx in indexer) return False # empty indexers # 8669 (empty) if _is_empty_indexer(indexer): pass # setting a single element for each dim and with a rhs that could be say a list # GH 6043 elif _is_scalar_indexer(indexer): values[indexer] = value # if we are an exact match (ex-broadcasting), # then use the resultant dtype elif len(arr_value.shape) and arr_value.shape[0] == values.shape[0] and np.prod(arr_value.shape) == np.prod(values.shape): values[indexer] = value values = values.astype(arr_value.dtype) # set else: values[indexer] = value # coerce and try to infer the dtypes of the result if np.isscalar(value): dtype, _ = _infer_dtype_from_scalar(value) else: dtype = 'infer' values = self._try_coerce_and_cast_result(values, dtype) block = make_block(transf(values), ndim=self.ndim, placement=self.mgr_locs, fastpath=True) # may have to soft convert_objects here if block.is_object and not self.is_object: block = block.convert(convert_numeric=False) return block except (ValueError, TypeError) as detail: raise except Exception as detail: pass return [self] def putmask(self, mask, new, align=True, inplace=False): """ putmask the data to the block; it is possible that we may create a new dtype of block return the resulting block(s) Parameters ---------- mask : the condition to respect new : a ndarray/object align : boolean, perform alignment on other/cond, default is True inplace : perform inplace modification, default is False Returns ------- a new block(s), the result of the putmask """ new_values = self.values if inplace else self.values.copy() # may need to align the new if hasattr(new, 'reindex_axis'): new = new.values.T # may need to align the mask if hasattr(mask, 'reindex_axis'): mask = mask.values.T # if we are passed a scalar None, convert it here if not is_list_like(new) and isnull(new) and not self.is_object: new = self.fill_value if self._can_hold_element(new): new = self._try_cast(new) # pseudo-broadcast if isinstance(new, np.ndarray) and new.ndim == self.ndim - 1: new = np.repeat(new, self.shape[-1]).reshape(self.shape) np.putmask(new_values, mask, new) # maybe upcast me elif mask.any(): # need to go column by column new_blocks = [] if self.ndim > 1: for i, ref_loc in enumerate(self.mgr_locs): m = mask[i] v = new_values[i] # need a new block if m.any(): n = new[i] if isinstance( new, np.ndarray) else np.array(new) # type of the new block dtype, _ = com._maybe_promote(n.dtype) # we need to exiplicty astype here to make a copy n = n.astype(dtype) nv = _putmask_smart(v, m, n) else: nv = v if inplace else v.copy() # Put back the dimension that was taken from it and make # a block out of the result. block = make_block(values=nv[np.newaxis], placement=[ref_loc], fastpath=True) new_blocks.append(block) else: nv = _putmask_smart(new_values, mask, new) new_blocks.append(make_block(values=nv, placement=self.mgr_locs, fastpath=True)) return new_blocks if inplace: return [self] return [make_block(new_values, placement=self.mgr_locs, fastpath=True)] def interpolate(self, method='pad', axis=0, index=None, values=None, inplace=False, limit=None, fill_value=None, coerce=False, downcast=None, **kwargs): def check_int_bool(self, inplace): # Only FloatBlocks will contain NaNs. # timedelta subclasses IntBlock if (self.is_bool or self.is_integer) and not self.is_timedelta: if inplace: return self else: return self.copy() # a fill na type method try: m = com._clean_fill_method(method) except: m = None if m is not None: r = check_int_bool(self, inplace) if r is not None: return r return self._interpolate_with_fill(method=m, axis=axis, inplace=inplace, limit=limit, fill_value=fill_value, coerce=coerce, downcast=downcast) # try an interp method try: m = com._clean_interp_method(method, **kwargs) except: m = None if m is not None: r = check_int_bool(self, inplace) if r is not None: return r return self._interpolate(method=m, index=index, values=values, axis=axis, limit=limit, fill_value=fill_value, inplace=inplace, downcast=downcast, **kwargs) raise ValueError("invalid method '{0}' to interpolate.".format(method)) def _interpolate_with_fill(self, method='pad', axis=0, inplace=False, limit=None, fill_value=None, coerce=False, downcast=None): """ fillna but using the interpolate machinery """ # if we are coercing, then don't force the conversion # if the block can't hold the type if coerce: if not self._can_hold_na: if inplace: return [self] else: return [self.copy()] fill_value = self._try_fill(fill_value) values = self.values if inplace else self.values.copy() values = self._try_operate(values) values = com.interpolate_2d(values, method=method, axis=axis, limit=limit, fill_value=fill_value, dtype=self.dtype) values = self._try_coerce_result(values) blocks = [make_block(values, ndim=self.ndim, klass=self.__class__, fastpath=True, placement=self.mgr_locs)] return self._maybe_downcast(blocks, downcast) def _interpolate(self, method=None, index=None, values=None, fill_value=None, axis=0, limit=None, inplace=False, downcast=None, **kwargs): """ interpolate using scipy wrappers """ data = self.values if inplace else self.values.copy() # only deal with floats if not self.is_float: if not self.is_integer: return self data = data.astype(np.float64) if fill_value is None: fill_value = self.fill_value if method in ('krogh', 'piecewise_polynomial', 'pchip'): if not index.is_monotonic: raise ValueError("{0} interpolation requires that the " "index be monotonic.".format(method)) # process 1-d slices in the axis direction def func(x): # process a 1-d slice, returning it # should the axis argument be handled below in apply_along_axis? # i.e. not an arg to com.interpolate_1d return com.interpolate_1d(index, x, method=method, limit=limit, fill_value=fill_value, bounds_error=False, **kwargs) # interp each column independently interp_values = np.apply_along_axis(func, axis, data) blocks = [make_block(interp_values, ndim=self.ndim, klass=self.__class__, fastpath=True, placement=self.mgr_locs)] return self._maybe_downcast(blocks, downcast) def take_nd(self, indexer, axis, new_mgr_locs=None, fill_tuple=None): """ Take values according to indexer and return them as a block.bb """ if fill_tuple is None: fill_value = self.fill_value new_values = com.take_nd(self.get_values(), indexer, axis=axis, allow_fill=False) else: fill_value = fill_tuple[0] new_values = com.take_nd(self.get_values(), indexer, axis=axis, allow_fill=True, fill_value=fill_value) if new_mgr_locs is None: if axis == 0: slc = lib.indexer_as_slice(indexer) if slc is not None: new_mgr_locs = self.mgr_locs[slc] else: new_mgr_locs = self.mgr_locs[indexer] else: new_mgr_locs = self.mgr_locs if new_values.dtype != self.dtype: return make_block(new_values, new_mgr_locs) else: return self.make_block_same_class(new_values, new_mgr_locs) def get_values(self, dtype=None): return self.values def diff(self, n, axis=1): """ return block for the diff of the values """ new_values = com.diff(self.values, n, axis=axis) return [make_block(values=new_values, ndim=self.ndim, fastpath=True, placement=self.mgr_locs)] def shift(self, periods, axis=0): """ shift the block by periods, possibly upcast """ # convert integer to float if necessary. need to do a lot more than # that, handle boolean etc also new_values, fill_value = com._maybe_upcast(self.values) # make sure array sent to np.roll is c_contiguous f_ordered = new_values.flags.f_contiguous if f_ordered: new_values = new_values.T axis = new_values.ndim - axis - 1 if np.prod(new_values.shape): new_values = np.roll(new_values, com._ensure_platform_int(periods), axis=axis) axis_indexer = [ slice(None) ] * self.ndim if periods > 0: axis_indexer[axis] = slice(None,periods) else: axis_indexer[axis] = slice(periods,None) new_values[tuple(axis_indexer)] = fill_value # restore original order if f_ordered: new_values = new_values.T return [make_block(new_values, ndim=self.ndim, fastpath=True, placement=self.mgr_locs)] def eval(self, func, other, raise_on_error=True, try_cast=False): """ evaluate the block; return result block from the result Parameters ---------- func : how to combine self, other other : a ndarray/object raise_on_error : if True, raise when I can't perform the function, False by default (and just return the data that we had coming in) Returns ------- a new block, the result of the func """ values = self.values if hasattr(other, 'reindex_axis'): other = other.values # make sure that we can broadcast is_transposed = False if hasattr(other, 'ndim') and hasattr(values, 'ndim'): if values.ndim != other.ndim: is_transposed = True else: if values.shape == other.shape[::-1]: is_transposed = True elif values.shape[0] == other.shape[-1]: is_transposed = True else: # this is a broadcast error heree raise ValueError("cannot broadcast shape [%s] with block " "values [%s]" % (values.T.shape, other.shape)) transf = (lambda x: x.T) if is_transposed else (lambda x: x) # coerce/transpose the args if needed values, other = self._try_coerce_args(transf(values), other) # get the result, may need to transpose the other def get_result(other): return self._try_coerce_result(func(values, other)) # error handler if we have an issue operating with the function def handle_error(): if raise_on_error: raise TypeError('Could not operate %s with block values %s' % (repr(other), str(detail))) else: # return the values result = np.empty(values.shape, dtype='O') result.fill(np.nan) return result # get the result try: result = get_result(other) # if we have an invalid shape/broadcast error # GH4576, so raise instead of allowing to pass through except ValueError as detail: raise except Exception as detail: result = handle_error() # technically a broadcast error in numpy can 'work' by returning a # boolean False if not isinstance(result, np.ndarray): if not isinstance(result, np.ndarray): # differentiate between an invalid ndarray-ndarray comparison # and an invalid type comparison if isinstance(values, np.ndarray) and is_list_like(other): raise ValueError('Invalid broadcasting comparison [%s] ' 'with block values' % repr(other)) raise TypeError('Could not compare [%s] with block values' % repr(other)) # transpose if needed result = transf(result) # try to cast if requested if try_cast: result = self._try_cast_result(result) return [make_block(result, ndim=self.ndim, fastpath=True, placement=self.mgr_locs)] def where(self, other, cond, align=True, raise_on_error=True, try_cast=False): """ evaluate the block; return result block(s) from the result Parameters ---------- other : a ndarray/object cond : the condition to respect align : boolean, perform alignment on other/cond raise_on_error : if True, raise when I can't perform the function, False by default (and just return the data that we had coming in) Returns ------- a new block(s), the result of the func """ values = self.values # see if we can align other if hasattr(other, 'reindex_axis'): other = other.values # make sure that we can broadcast is_transposed = False if hasattr(other, 'ndim') and hasattr(values, 'ndim'): if values.ndim != other.ndim or values.shape == other.shape[::-1]: # if its symmetric are ok, no reshaping needed (GH 7506) if (values.shape[0] == np.array(values.shape)).all(): pass # pseodo broadcast (its a 2d vs 1d say and where needs it in a # specific direction) elif (other.ndim >= 1 and values.ndim - 1 == other.ndim and values.shape[0] != other.shape[0]): other = _block_shape(other).T else: values = values.T is_transposed = True # see if we can align cond if not hasattr(cond, 'shape'): raise ValueError( "where must have a condition that is ndarray like") if hasattr(cond, 'reindex_axis'): cond = cond.values # may need to undo transpose of values if hasattr(values, 'ndim'): if values.ndim != cond.ndim or values.shape == cond.shape[::-1]: values = values.T is_transposed = not is_transposed other = _maybe_convert_string_to_object(other) # our where function def func(c, v, o): if c.ravel().all(): return v v, o = self._try_coerce_args(v, o) try: return self._try_coerce_result( expressions.where(c, v, o, raise_on_error=True) ) except Exception as detail: if raise_on_error: raise TypeError('Could not operate [%s] with block values ' '[%s]' % (repr(o), str(detail))) else: # return the values result = np.empty(v.shape, dtype='float64') result.fill(np.nan) return result # see if we can operate on the entire block, or need item-by-item # or if we are a single block (ndim == 1) result = func(cond, values, other) if self._can_hold_na or self.ndim == 1: if not isinstance(result, np.ndarray): raise TypeError('Could not compare [%s] with block values' % repr(other)) if is_transposed: result = result.T # try to cast if requested if try_cast: result = self._try_cast_result(result) return make_block(result, ndim=self.ndim, placement=self.mgr_locs) # might need to separate out blocks axis = cond.ndim - 1 cond = cond.swapaxes(axis, 0) mask = np.array([cond[i].all() for i in range(cond.shape[0])], dtype=bool) result_blocks = [] for m in [mask, ~mask]: if m.any(): r = self._try_cast_result( result.take(m.nonzero()[0], axis=axis)) result_blocks.append(make_block(r.T, placement=self.mgr_locs[m])) return result_blocks def equals(self, other): if self.dtype != other.dtype or self.shape != other.shape: return False return array_equivalent(self.values, other.values) class NonConsolidatableMixIn(object): """ hold methods for the nonconsolidatable blocks """ _can_consolidate = False _verify_integrity = False _validate_ndim = False _holder = None def __init__(self, values, placement, ndim=None, fastpath=False,): # Placement must be converted to BlockPlacement via property setter # before ndim logic, because placement may be a slice which doesn't # have a length. self.mgr_locs = placement # kludgetastic if ndim is None: if len(self.mgr_locs) != 1: ndim = 1 else: ndim = 2 self.ndim = ndim if not isinstance(values, self._holder): raise TypeError("values must be {0}".format(self._holder.__name__)) self.values = values def get_values(self, dtype=None): """ need to to_dense myself (and always return a ndim sized object) """ values = self.values.to_dense() if values.ndim == self.ndim - 1: values = values.reshape((1,) + values.shape) return values def iget(self, col): if self.ndim == 2 and isinstance(col, tuple): col, loc = col if col != 0: raise IndexError("{0} only contains one item".format(self)) return self.values[loc] else: if col != 0: raise IndexError("{0} only contains one item".format(self)) return self.values def should_store(self, value): return isinstance(value, self._holder) def set(self, locs, values, check=False): assert locs.tolist() == [0] self.values = values def get(self, item): if self.ndim == 1: loc = self.items.get_loc(item) return self.values[loc] else: return self.values def _slice(self, slicer): """ return a slice of my values (but densify first) """ return self.get_values()[slicer] def _try_cast_result(self, result, dtype=None): return result class NumericBlock(Block): __slots__ = () is_numeric = True _can_hold_na = True class FloatOrComplexBlock(NumericBlock): __slots__ = () def equals(self, other): if self.dtype != other.dtype or self.shape != other.shape: return False left, right = self.values, other.values return ((left == right) | (np.isnan(left) & np.isnan(right))).all() class FloatBlock(FloatOrComplexBlock): __slots__ = () is_float = True _downcast_dtype = 'int64' def _can_hold_element(self, element): if is_list_like(element): element = np.array(element) tipo = element.dtype.type return issubclass(tipo, (np.floating, np.integer)) and not issubclass( tipo, (np.datetime64, np.timedelta64)) return isinstance(element, (float, int, np.float_, np.int_)) and not isinstance( element, (bool, np.bool_, datetime, timedelta, np.datetime64, np.timedelta64)) def _try_cast(self, element): try: return float(element) except: # pragma: no cover return element def to_native_types(self, slicer=None, na_rep='', float_format=None, decimal='.', quoting=None, **kwargs): """ convert to our native types format, slicing if desired """ values = self.values if slicer is not None: values = values[:, slicer] mask = isnull(values) formatter = None if float_format and decimal != '.': formatter = lambda v : (float_format % v).replace('.',decimal,1) elif decimal != '.': formatter = lambda v : ('%g' % v).replace('.',decimal,1) elif float_format: formatter = lambda v : float_format % v if formatter is None and not quoting: values = values.astype(str) else: values = np.array(values, dtype='object') values[mask] = na_rep if formatter: imask = (~mask).ravel() values.flat[imask] = np.array( [formatter(val) for val in values.ravel()[imask]]) return values def should_store(self, value): # when inserting a column should not coerce integers to floats # unnecessarily return (issubclass(value.dtype.type, np.floating) and value.dtype == self.dtype) class ComplexBlock(FloatOrComplexBlock): __slots__ = () is_complex = True def _can_hold_element(self, element): if is_list_like(element): element = np.array(element) return issubclass(element.dtype.type, (np.floating, np.integer, np.complexfloating)) return (isinstance(element, (float, int, complex, np.float_, np.int_)) and not isinstance(bool, np.bool_)) def _try_cast(self, element): try: return complex(element) except: # pragma: no cover return element def should_store(self, value): return issubclass(value.dtype.type, np.complexfloating) class IntBlock(NumericBlock): __slots__ = () is_integer = True _can_hold_na = False def _can_hold_element(self, element): if is_list_like(element): element = np.array(element) tipo = element.dtype.type return issubclass(tipo, np.integer) and not issubclass(tipo, (np.datetime64, np.timedelta64)) return com.is_integer(element) def _try_cast(self, element): try: return int(element) except: # pragma: no cover return element def should_store(self, value): return com.is_integer_dtype(value) and value.dtype == self.dtype class TimeDeltaBlock(IntBlock): __slots__ = () is_timedelta = True _can_hold_na = True is_numeric = False @property def fill_value(self): return tslib.iNaT def _try_fill(self, value): """ if we are a NaT, return the actual fill value """ if isinstance(value, type(tslib.NaT)) or np.array(isnull(value)).all(): value = tslib.iNaT elif isinstance(value, Timedelta): value = value.value elif isinstance(value, np.timedelta64): pass elif com.is_integer(value): # coerce to seconds of timedelta value = np.timedelta64(int(value * 1e9)) elif isinstance(value, timedelta): value = np.timedelta64(value) return value def _try_coerce_args(self, values, other): """ Coerce values and other to float64, with null values converted to NaN. values is always ndarray-like, other may not be """ def masker(v): mask = isnull(v) v = v.astype('float64') v[mask] = np.nan return v values = masker(values) if is_null_datelike_scalar(other): other = np.nan elif isinstance(other, (np.timedelta64, Timedelta, timedelta)): other = _coerce_scalar_to_timedelta_type(other, unit='s', box=False).item() if other == tslib.iNaT: other = np.nan elif lib.isscalar(other): other = np.float64(other) else: other = masker(other) return values, other def _try_operate(self, values): """ return a version to operate on """ return values.view('i8') def _try_coerce_result(self, result): """ reverse of try_coerce_args / try_operate """ if isinstance(result, np.ndarray): mask = isnull(result) if result.dtype.kind in ['i', 'f', 'O']: result = result.astype('m8[ns]') result[mask] = tslib.iNaT elif isinstance(result, np.integer): result = lib.Timedelta(result) return result def should_store(self, value): return issubclass(value.dtype.type, np.timedelta64) def to_native_types(self, slicer=None, na_rep=None, quoting=None, **kwargs): """ convert to our native types format, slicing if desired """ values = self.values if slicer is not None: values = values[:, slicer] mask = isnull(values) rvalues = np.empty(values.shape, dtype=object) if na_rep is None: na_rep = 'NaT' rvalues[mask] = na_rep imask = (~mask).ravel() #### FIXME #### # should use the core.format.Timedelta64Formatter here # to figure what format to pass to the Timedelta # e.g. to not show the decimals say rvalues.flat[imask] = np.array([Timedelta(val)._repr_base(format='all') for val in values.ravel()[imask]], dtype=object) return rvalues def get_values(self, dtype=None): # return object dtypes as Timedelta if dtype == object: return lib.map_infer(self.values.ravel(), lib.Timedelta ).reshape(self.values.shape) return self.values class BoolBlock(NumericBlock): __slots__ = () is_bool = True _can_hold_na = False def _can_hold_element(self, element): if is_list_like(element): element = np.array(element) return issubclass(element.dtype.type, np.integer) return isinstance(element, (int, bool)) def _try_cast(self, element): try: return bool(element) except: # pragma: no cover return element def should_store(self, value): return issubclass(value.dtype.type, np.bool_) def replace(self, to_replace, value, inplace=False, filter=None, regex=False): to_replace_values = np.atleast_1d(to_replace) if not np.can_cast(to_replace_values, bool): return self return super(BoolBlock, self).replace(to_replace, value, inplace=inplace, filter=filter, regex=regex) class ObjectBlock(Block): __slots__ = () is_object = True _can_hold_na = True def __init__(self, values, ndim=2, fastpath=False, placement=None): if issubclass(values.dtype.type, compat.string_types): values = np.array(values, dtype=object) super(ObjectBlock, self).__init__(values, ndim=ndim, fastpath=fastpath, placement=placement) @property def is_bool(self): """ we can be a bool if we have only bool values but are of type object """ return lib.is_bool_array(self.values.ravel()) def convert(self, convert_dates=True, convert_numeric=True, convert_timedeltas=True, copy=True, by_item=True): """ attempt to coerce any object types to better types return a copy of the block (if copy = True) by definition we ARE an ObjectBlock!!!!! can return multiple blocks! """ # attempt to create new type blocks blocks = [] if by_item and not self._is_single_block: for i, rl in enumerate(self.mgr_locs): values = self.iget(i) values = com._possibly_convert_objects( values.ravel(), convert_dates=convert_dates, convert_numeric=convert_numeric, convert_timedeltas=convert_timedeltas, ).reshape(values.shape) values = _block_shape(values, ndim=self.ndim) newb = make_block(values, ndim=self.ndim, placement=[rl]) blocks.append(newb) else: values = com._possibly_convert_objects( self.values.ravel(), convert_dates=convert_dates, convert_numeric=convert_numeric ).reshape(self.values.shape) blocks.append(make_block(values, ndim=self.ndim, placement=self.mgr_locs)) return blocks def set(self, locs, values, check=False): """ Modify Block in-place with new item value Returns ------- None """ # GH6026 if check: try: if (self.values[locs] == values).all(): return except: pass try: self.values[locs] = values except (ValueError): # broadcasting error # see GH6171 new_shape = list(values.shape) new_shape[0] = len(self.items) self.values = np.empty(tuple(new_shape),dtype=self.dtype) self.values.fill(np.nan) self.values[locs] = values def _maybe_downcast(self, blocks, downcast=None): if downcast is not None: return blocks # split and convert the blocks result_blocks = [] for blk in blocks: result_blocks.extend(blk.convert(convert_dates=True, convert_numeric=False)) return result_blocks def _can_hold_element(self, element): return True def _try_cast(self, element): return element def should_store(self, value): return not (issubclass(value.dtype.type, (np.integer, np.floating, np.complexfloating, np.datetime64, np.bool_)) or com.is_categorical_dtype(value)) def replace(self, to_replace, value, inplace=False, filter=None, regex=False): blk = [self] to_rep_is_list = com.is_list_like(to_replace) value_is_list = com.is_list_like(value) both_lists = to_rep_is_list and value_is_list either_list = to_rep_is_list or value_is_list if not either_list and com.is_re(to_replace): blk[0], = blk[0]._replace_single(to_replace, value, inplace=inplace, filter=filter, regex=True) elif not (either_list or regex): blk = super(ObjectBlock, self).replace(to_replace, value, inplace=inplace, filter=filter, regex=regex) elif both_lists: for to_rep, v in zip(to_replace, value): blk[0], = blk[0]._replace_single(to_rep, v, inplace=inplace, filter=filter, regex=regex) elif to_rep_is_list and regex: for to_rep in to_replace: blk[0], = blk[0]._replace_single(to_rep, value, inplace=inplace, filter=filter, regex=regex) else: blk[0], = blk[0]._replace_single(to_replace, value, inplace=inplace, filter=filter, regex=regex) return blk def _replace_single(self, to_replace, value, inplace=False, filter=None, regex=False): # to_replace is regex compilable to_rep_re = regex and com.is_re_compilable(to_replace) # regex is regex compilable regex_re = com.is_re_compilable(regex) # only one will survive if to_rep_re and regex_re: raise AssertionError('only one of to_replace and regex can be ' 'regex compilable') # if regex was passed as something that can be a regex (rather than a # boolean) if regex_re: to_replace = regex regex = regex_re or to_rep_re # try to get the pattern attribute (compiled re) or it's a string try: pattern = to_replace.pattern except AttributeError: pattern = to_replace # if the pattern is not empty and to_replace is either a string or a # regex if regex and pattern: rx = re.compile(to_replace) else: # if the thing to replace is not a string or compiled regex call # the superclass method -> to_replace is some kind of object result = super(ObjectBlock, self).replace(to_replace, value, inplace=inplace, filter=filter, regex=regex) if not isinstance(result, list): result = [result] return result new_values = self.values if inplace else self.values.copy() # deal with replacing values with objects (strings) that match but # whose replacement is not a string (numeric, nan, object) if isnull(value) or not isinstance(value, compat.string_types): def re_replacer(s): try: return value if rx.search(s) is not None else s except TypeError: return s else: # value is guaranteed to be a string here, s can be either a string # or null if it's null it gets returned def re_replacer(s): try: return rx.sub(value, s) except TypeError: return s f = np.vectorize(re_replacer, otypes=[self.dtype]) if filter is None: filt = slice(None) else: filt = self.mgr_locs.isin(filter).nonzero()[0] new_values[filt] = f(new_values[filt]) return [self if inplace else make_block(new_values, fastpath=True, placement=self.mgr_locs)] class CategoricalBlock(NonConsolidatableMixIn, ObjectBlock): __slots__ = () is_categorical = True _can_hold_na = True _holder = Categorical def __init__(self, values, placement, fastpath=False, **kwargs): # coerce to categorical if we can super(CategoricalBlock, self).__init__(maybe_to_categorical(values), fastpath=True, placement=placement, **kwargs) @property def is_view(self): """ I am never a view """ return False def to_dense(self): return self.values.to_dense().view() @property def shape(self): return (len(self.mgr_locs), len(self.values)) @property def array_dtype(self): """ the dtype to return if I want to construct this block as an array """ return np.object_ def _slice(self, slicer): """ return a slice of my values """ # slice the category # return same dims as we currently have return self.values._slice(slicer) def fillna(self, value, limit=None, inplace=False, downcast=None): # we may need to upcast our fill to match our dtype if limit is not None: raise NotImplementedError("specifying a limit for 'fillna' has " "not been implemented yet") values = self.values if inplace else self.values.copy() return [self.make_block_same_class(values=values.fillna(value=value, limit=limit), placement=self.mgr_locs)] def interpolate(self, method='pad', axis=0, inplace=False, limit=None, fill_value=None, **kwargs): values = self.values if inplace else self.values.copy() return self.make_block_same_class(values=values.fillna(fill_value=fill_value, method=method, limit=limit), placement=self.mgr_locs) def take_nd(self, indexer, axis=0, new_mgr_locs=None, fill_tuple=None): """ Take values according to indexer and return them as a block.bb """ if fill_tuple is None: fill_value = None else: fill_value = fill_tuple[0] # axis doesn't matter; we are really a single-dim object # but are passed the axis depending on the calling routing # if its REALLY axis 0, then this will be a reindex and not a take new_values = self.values.take_nd(indexer, fill_value=fill_value) # if we are a 1-dim object, then always place at 0 if self.ndim == 1: new_mgr_locs = [0] else: if new_mgr_locs is None: new_mgr_locs = self.mgr_locs return self.make_block_same_class(new_values, new_mgr_locs) def putmask(self, mask, new, align=True, inplace=False): """ putmask the data to the block; it is possible that we may create a new dtype of block return the resulting block(s) Parameters ---------- mask : the condition to respect new : a ndarray/object align : boolean, perform alignment on other/cond, default is True inplace : perform inplace modification, default is False Returns ------- a new block(s), the result of the putmask """ new_values = self.values if inplace else self.values.copy() new_values[mask] = new return [self.make_block_same_class(values=new_values, placement=self.mgr_locs)] def _astype(self, dtype, copy=False, raise_on_error=True, values=None, klass=None): """ Coerce to the new type (if copy=True, return a new copy) raise on an except if raise == True """ if self.is_categorical_astype(dtype): values = self.values else: values = np.asarray(self.values).astype(dtype, copy=False) if copy: values = values.copy() return make_block(values, ndim=self.ndim, placement=self.mgr_locs) def to_native_types(self, slicer=None, na_rep='', quoting=None, **kwargs): """ convert to our native types format, slicing if desired """ values = self.values if slicer is not None: # Categorical is always one dimension values = values[slicer] mask = isnull(values) values = np.array(values, dtype='object') values[mask] = na_rep # we are expected to return a 2-d ndarray return values.reshape(1,len(values)) class DatetimeBlock(Block): __slots__ = () is_datetime = True _can_hold_na = True def __init__(self, values, placement, fastpath=False, **kwargs): if values.dtype != _NS_DTYPE: values = tslib.cast_to_nanoseconds(values) super(DatetimeBlock, self).__init__(values, fastpath=True, placement=placement, **kwargs) def _can_hold_element(self, element): if is_list_like(element): element = np.array(element) return element.dtype == _NS_DTYPE or element.dtype == np.int64 return (com.is_integer(element) or isinstance(element, datetime) or isnull(element)) def _try_cast(self, element): try: return int(element) except: return element def _try_operate(self, values): """ return a version to operate on """ return values.view('i8') def _try_coerce_args(self, values, other): """ Coerce values and other to dtype 'i8'. NaN and NaT convert to the smallest i8, and will correctly round-trip to NaT if converted back in _try_coerce_result. values is always ndarray-like, other may not be """ values = values.view('i8') if is_null_datelike_scalar(other): other = tslib.iNaT elif isinstance(other, datetime): other = lib.Timestamp(other).asm8.view('i8') elif hasattr(other, 'dtype') and com.is_integer_dtype(other): other = other.view('i8') else: other = np.array(other, dtype='i8') return values, other def _try_coerce_result(self, result): """ reverse of try_coerce_args """ if isinstance(result, np.ndarray): if result.dtype.kind in ['i', 'f', 'O']: result = result.astype('M8[ns]') elif isinstance(result, (np.integer, np.datetime64)): result = lib.Timestamp(result) return result @property def fill_value(self): return tslib.iNaT def _try_fill(self, value): """ if we are a NaT, return the actual fill value """ if isinstance(value, type(tslib.NaT)) or np.array(isnull(value)).all(): value = tslib.iNaT return value def fillna(self, value, limit=None, inplace=False, downcast=None): # straight putmask here values = self.values if inplace else self.values.copy() mask = isnull(self.values) value = self._try_fill(value) if limit is not None: if self.ndim > 2: raise NotImplementedError("number of dimensions for 'fillna' " "is currently limited to 2") mask[mask.cumsum(self.ndim-1)>limit]=False np.putmask(values, mask, value) return [self if inplace else make_block(values, fastpath=True, placement=self.mgr_locs)] def to_native_types(self, slicer=None, na_rep=None, date_format=None, quoting=None, **kwargs): """ convert to our native types format, slicing if desired """ values = self.values if slicer is not None: values = values[:, slicer] from pandas.core.format import _get_format_datetime64_from_values format = _get_format_datetime64_from_values(values, date_format) result = tslib.format_array_from_datetime(values.view('i8').ravel(), tz=None, format=format, na_rep=na_rep).reshape(values.shape) return result def should_store(self, value): return issubclass(value.dtype.type, np.datetime64) def set(self, locs, values, check=False): """ Modify Block in-place with new item value Returns ------- None """ if values.dtype != _NS_DTYPE: # Workaround for numpy 1.6 bug values = tslib.cast_to_nanoseconds(values) self.values[locs] = values def get_values(self, dtype=None): # return object dtype as Timestamps if dtype == object: return lib.map_infer(self.values.ravel(), lib.Timestamp)\ .reshape(self.values.shape) return self.values class SparseBlock(NonConsolidatableMixIn, Block): """ implement as a list of sparse arrays of the same dtype """ __slots__ = () is_sparse = True is_numeric = True _can_hold_na = True _ftype = 'sparse' _holder = SparseArray @property def shape(self): return (len(self.mgr_locs), self.sp_index.length) @property def itemsize(self): return self.dtype.itemsize @property def fill_value(self): #return np.nan return self.values.fill_value @fill_value.setter def fill_value(self, v): # we may need to upcast our fill to match our dtype if issubclass(self.dtype.type, np.floating): v = float(v) self.values.fill_value = v @property def sp_values(self): return self.values.sp_values @sp_values.setter def sp_values(self, v): # reset the sparse values self.values = SparseArray(v, sparse_index=self.sp_index, kind=self.kind, dtype=v.dtype, fill_value=self.values.fill_value, copy=False) @property def sp_index(self): return self.values.sp_index @property def kind(self): return self.values.kind def __len__(self): try: return self.sp_index.length except: return 0 def copy(self, deep=True): return self.make_block_same_class(values=self.values, sparse_index=self.sp_index, kind=self.kind, copy=deep, placement=self.mgr_locs) def make_block_same_class(self, values, placement, sparse_index=None, kind=None, dtype=None, fill_value=None, copy=False, fastpath=True): """ return a new block """ if dtype is None: dtype = self.dtype if fill_value is None: fill_value = self.values.fill_value # if not isinstance(values, SparseArray) and values.ndim != self.ndim: # raise ValueError("ndim mismatch") if values.ndim == 2: nitems = values.shape[0] if nitems == 0: # kludgy, but SparseBlocks cannot handle slices, where the # output is 0-item, so let's convert it to a dense block: it # won't take space since there's 0 items, plus it will preserve # the dtype. return make_block(np.empty(values.shape, dtype=dtype), placement, fastpath=True,) elif nitems > 1: raise ValueError("Only 1-item 2d sparse blocks are supported") else: values = values.reshape(values.shape[1]) new_values = SparseArray(values, sparse_index=sparse_index, kind=kind or self.kind, dtype=dtype, fill_value=fill_value, copy=copy) return make_block(new_values, ndim=self.ndim, fastpath=fastpath, placement=placement) def interpolate(self, method='pad', axis=0, inplace=False, limit=None, fill_value=None, **kwargs): values = com.interpolate_2d( self.values.to_dense(), method, axis, limit, fill_value) return self.make_block_same_class(values=values, placement=self.mgr_locs) def fillna(self, value, limit=None, inplace=False, downcast=None): # we may need to upcast our fill to match our dtype if limit is not None: raise NotImplementedError("specifying a limit for 'fillna' has " "not been implemented yet") if issubclass(self.dtype.type, np.floating): value = float(value) values = self.values if inplace else self.values.copy() return [self.make_block_same_class(values=values.get_values(value), fill_value=value, placement=self.mgr_locs)] def shift(self, periods, axis=0): """ shift the block by periods """ N = len(self.values.T) indexer = np.zeros(N, dtype=int) if periods > 0: indexer[periods:] = np.arange(N - periods) else: indexer[:periods] = np.arange(-periods, N) new_values = self.values.to_dense().take(indexer) # convert integer to float if necessary. need to do a lot more than # that, handle boolean etc also new_values, fill_value = com._maybe_upcast(new_values) if periods > 0: new_values[:periods] = fill_value else: new_values[periods:] = fill_value return [self.make_block_same_class(new_values, placement=self.mgr_locs)] def reindex_axis(self, indexer, method=None, axis=1, fill_value=None, limit=None, mask_info=None): """ Reindex using pre-computed indexer information """ if axis < 1: raise AssertionError('axis must be at least 1, got %d' % axis) # taking on the 0th axis always here if fill_value is None: fill_value = self.fill_value return self.make_block_same_class(self.values.take(indexer), fill_value=fill_value, placement=self.mgr_locs) def sparse_reindex(self, new_index): """ sparse reindex and return a new block current reindex only works for float64 dtype! """ values = self.values values = values.sp_index.to_int_index().reindex( values.sp_values.astype('float64'), values.fill_value, new_index) return self.make_block_same_class(values, sparse_index=new_index, placement=self.mgr_locs) def make_block(values, placement, klass=None, ndim=None, dtype=None, fastpath=False): if klass is None: dtype = dtype or values.dtype vtype = dtype.type if isinstance(values, SparseArray): klass = SparseBlock elif issubclass(vtype, np.floating): klass = FloatBlock elif (issubclass(vtype, np.integer) and issubclass(vtype, np.timedelta64)): klass = TimeDeltaBlock elif (issubclass(vtype, np.integer) and not issubclass(vtype, np.datetime64)): klass = IntBlock elif dtype == np.bool_: klass = BoolBlock elif issubclass(vtype, np.datetime64): klass = DatetimeBlock elif issubclass(vtype, np.complexfloating): klass = ComplexBlock elif is_categorical(values): klass = CategoricalBlock else: klass = ObjectBlock return klass(values, ndim=ndim, fastpath=fastpath, placement=placement) # TODO: flexible with index=None and/or items=None class BlockManager(PandasObject): """ Core internal data structure to implement DataFrame Manage a bunch of labeled 2D mixed-type ndarrays. Essentially it's a lightweight blocked set of labeled data to be manipulated by the DataFrame public API class Attributes ---------- shape ndim axes values items Methods ------- set_axis(axis, new_labels) copy(deep=True) get_dtype_counts get_ftype_counts get_dtypes get_ftypes apply(func, axes, block_filter_fn) get_bool_data get_numeric_data get_slice(slice_like, axis) get(label) iget(loc) get_scalar(label_tup) take(indexer, axis) reindex_axis(new_labels, axis) reindex_indexer(new_labels, indexer, axis) delete(label) insert(loc, label, value) set(label, value) Parameters ---------- Notes ----- This is *not* a public API class """ __slots__ = ['axes', 'blocks', '_ndim', '_shape', '_known_consolidated', '_is_consolidated', '_blknos', '_blklocs'] def __init__(self, blocks, axes, do_integrity_check=True, fastpath=True): self.axes = [_ensure_index(ax) for ax in axes] self.blocks = tuple(blocks) for block in blocks: if block.is_sparse: if len(block.mgr_locs) != 1: raise AssertionError("Sparse block refers to multiple items") else: if self.ndim != block.ndim: raise AssertionError(('Number of Block dimensions (%d) must ' 'equal number of axes (%d)') % (block.ndim, self.ndim)) if do_integrity_check: self._verify_integrity() self._consolidate_check() self._rebuild_blknos_and_blklocs() def make_empty(self, axes=None): """ return an empty BlockManager with the items axis of len 0 """ if axes is None: axes = [_ensure_index([])] + [ _ensure_index(a) for a in self.axes[1:] ] # preserve dtype if possible if self.ndim == 1: blocks = np.array([], dtype=self.array_dtype) else: blocks = [] return self.__class__(blocks, axes) def __nonzero__(self): return True # Python3 compat __bool__ = __nonzero__ @property def shape(self): return tuple(len(ax) for ax in self.axes) @property def ndim(self): return len(self.axes) def set_axis(self, axis, new_labels): new_labels = _ensure_index(new_labels) old_len = len(self.axes[axis]) new_len = len(new_labels) if new_len != old_len: raise ValueError('Length mismatch: Expected axis has %d elements, ' 'new values have %d elements' % (old_len, new_len)) self.axes[axis] = new_labels def rename_axis(self, mapper, axis, copy=True): """ Rename one of axes. Parameters ---------- mapper : unary callable axis : int copy : boolean, default True """ obj = self.copy(deep=copy) obj.set_axis(axis, _transform_index(self.axes[axis], mapper)) return obj def add_prefix(self, prefix): f = (str(prefix) + '%s').__mod__ return self.rename_axis(f, axis=0) def add_suffix(self, suffix): f = ('%s' + str(suffix)).__mod__ return self.rename_axis(f, axis=0) @property def _is_single_block(self): if self.ndim == 1: return True if len(self.blocks) != 1: return False blk = self.blocks[0] return (blk.mgr_locs.is_slice_like and blk.mgr_locs.as_slice == slice(0, len(self), 1)) def _rebuild_blknos_and_blklocs(self): """ Update mgr._blknos / mgr._blklocs. """ new_blknos = np.empty(self.shape[0], dtype=np.int64) new_blklocs = np.empty(self.shape[0], dtype=np.int64) new_blknos.fill(-1) new_blklocs.fill(-1) for blkno, blk in enumerate(self.blocks): rl = blk.mgr_locs new_blknos[rl.indexer] = blkno new_blklocs[rl.indexer] = np.arange(len(rl)) if (new_blknos == -1).any(): raise AssertionError("Gaps in blk ref_locs") self._blknos = new_blknos self._blklocs = new_blklocs # make items read only for now def _get_items(self): return self.axes[0] items = property(fget=_get_items) def _get_counts(self, f): """ return a dict of the counts of the function in BlockManager """ self._consolidate_inplace() counts = dict() for b in self.blocks: v = f(b) counts[v] = counts.get(v, 0) + b.shape[0] return counts def get_dtype_counts(self): return self._get_counts(lambda b: b.dtype.name) def get_ftype_counts(self): return self._get_counts(lambda b: b.ftype) def get_dtypes(self): dtypes = np.array([blk.dtype for blk in self.blocks]) return com.take_1d(dtypes, self._blknos, allow_fill=False) def get_ftypes(self): ftypes = np.array([blk.ftype for blk in self.blocks]) return com.take_1d(ftypes, self._blknos, allow_fill=False) def __getstate__(self): block_values = [b.values for b in self.blocks] block_items = [self.items[b.mgr_locs.indexer] for b in self.blocks] axes_array = [ax for ax in self.axes] extra_state = { '0.14.1': { 'axes': axes_array, 'blocks': [dict(values=b.values, mgr_locs=b.mgr_locs.indexer) for b in self.blocks] } } # First three elements of the state are to maintain forward # compatibility with 0.13.1. return axes_array, block_values, block_items, extra_state def __setstate__(self, state): def unpickle_block(values, mgr_locs): # numpy < 1.7 pickle compat if values.dtype == 'M8[us]': values = values.astype('M8[ns]') return make_block(values, placement=mgr_locs) if (isinstance(state, tuple) and len(state) >= 4 and '0.14.1' in state[3]): state = state[3]['0.14.1'] self.axes = [_ensure_index(ax) for ax in state['axes']] self.blocks = tuple( unpickle_block(b['values'], b['mgr_locs']) for b in state['blocks']) else: # discard anything after 3rd, support beta pickling format for a # little while longer ax_arrays, bvalues, bitems = state[:3] self.axes = [_ensure_index(ax) for ax in ax_arrays] if len(bitems) == 1 and self.axes[0].equals(bitems[0]): # This is a workaround for pre-0.14.1 pickles that didn't # support unpickling multi-block frames/panels with non-unique # columns/items, because given a manager with items ["a", "b", # "a"] there's no way of knowing which block's "a" is where. # # Single-block case can be supported under the assumption that # block items corresponded to manager items 1-to-1. all_mgr_locs = [slice(0, len(bitems[0]))] else: all_mgr_locs = [self.axes[0].get_indexer(blk_items) for blk_items in bitems] self.blocks = tuple( unpickle_block(values, mgr_locs) for values, mgr_locs in zip(bvalues, all_mgr_locs)) self._post_setstate() def _post_setstate(self): self._is_consolidated = False self._known_consolidated = False self._rebuild_blknos_and_blklocs() def __len__(self): return len(self.items) def __unicode__(self): output = com.pprint_thing(self.__class__.__name__) for i, ax in enumerate(self.axes): if i == 0: output += u('\nItems: %s') % ax else: output += u('\nAxis %d: %s') % (i, ax) for block in self.blocks: output += u('\n%s') % com.pprint_thing(block) return output def _verify_integrity(self): mgr_shape = self.shape tot_items = sum(len(x.mgr_locs) for x in self.blocks) for block in self.blocks: if not block.is_sparse and block.shape[1:] != mgr_shape[1:]: construction_error(tot_items, block.shape[1:], self.axes) if len(self.items) != tot_items: raise AssertionError('Number of manager items must equal union of ' 'block items\n# manager items: {0}, # ' 'tot_items: {1}'.format(len(self.items), tot_items)) def apply(self, f, axes=None, filter=None, do_integrity_check=False, **kwargs): """ iterate over the blocks, collect and create a new block manager Parameters ---------- f : the callable or function name to operate on at the block level axes : optional (if not supplied, use self.axes) filter : list, if supplied, only call the block if the filter is in the block do_integrity_check : boolean, default False. Do the block manager integrity check Returns ------- Block Manager (new object) """ result_blocks = [] # filter kwarg is used in replace-* family of methods if filter is not None: filter_locs = set(self.items.get_indexer_for(filter)) if len(filter_locs) == len(self.items): # All items are included, as if there were no filtering filter = None else: kwargs['filter'] = filter_locs if f == 'where' and kwargs.get('align', True): align_copy = True align_keys = ['other', 'cond'] elif f == 'putmask' and kwargs.get('align', True): align_copy = False align_keys = ['new', 'mask'] elif f == 'eval': align_copy = False align_keys = ['other'] elif f == 'fillna': # fillna internally does putmask, maybe it's better to do this # at mgr, not block level? align_copy = False align_keys = ['value'] else: align_keys = [] aligned_args = dict((k, kwargs[k]) for k in align_keys if hasattr(kwargs[k], 'reindex_axis')) for b in self.blocks: if filter is not None: if not b.mgr_locs.isin(filter_locs).any(): result_blocks.append(b) continue if aligned_args: b_items = self.items[b.mgr_locs.indexer] for k, obj in aligned_args.items(): axis = getattr(obj, '_info_axis_number', 0) kwargs[k] = obj.reindex_axis(b_items, axis=axis, copy=align_copy) applied = getattr(b, f)(**kwargs) if isinstance(applied, list): result_blocks.extend(applied) else: result_blocks.append(applied) if len(result_blocks) == 0: return self.make_empty(axes or self.axes) bm = self.__class__(result_blocks, axes or self.axes, do_integrity_check=do_integrity_check) bm._consolidate_inplace() return bm def isnull(self, **kwargs): return self.apply('apply', **kwargs) def where(self, **kwargs): return self.apply('where', **kwargs) def eval(self, **kwargs): return self.apply('eval', **kwargs) def setitem(self, **kwargs): return self.apply('setitem', **kwargs) def putmask(self, **kwargs): return self.apply('putmask', **kwargs) def diff(self, **kwargs): return self.apply('diff', **kwargs) def interpolate(self, **kwargs): return self.apply('interpolate', **kwargs) def shift(self, **kwargs): return self.apply('shift', **kwargs) def fillna(self, **kwargs): return self.apply('fillna', **kwargs) def downcast(self, **kwargs): return self.apply('downcast', **kwargs) def astype(self, dtype, **kwargs): return self.apply('astype', dtype=dtype, **kwargs) def convert(self, **kwargs): return self.apply('convert', **kwargs) def replace(self, **kwargs): return self.apply('replace', **kwargs) def replace_list(self, src_list, dest_list, inplace=False, regex=False): """ do a list replace """ # figure out our mask a-priori to avoid repeated replacements values = self.as_matrix() def comp(s): if isnull(s): return isnull(values) return _possibly_compare(values, getattr(s, 'asm8', s), operator.eq) masks = [comp(s) for i, s in enumerate(src_list)] result_blocks = [] for blk in self.blocks: # its possible to get multiple result blocks here # replace ALWAYS will return a list rb = [blk if inplace else blk.copy()] for i, (s, d) in enumerate(zip(src_list, dest_list)): new_rb = [] for b in rb: if b.dtype == np.object_: result = b.replace(s, d, inplace=inplace, regex=regex) if isinstance(result, list): new_rb.extend(result) else: new_rb.append(result) else: # get our mask for this element, sized to this # particular block m = masks[i][b.mgr_locs.indexer] if m.any(): new_rb.extend(b.putmask(m, d, inplace=True)) else: new_rb.append(b) rb = new_rb result_blocks.extend(rb) bm = self.__class__(result_blocks, self.axes) bm._consolidate_inplace() return bm def reshape_nd(self, axes, **kwargs): """ a 2d-nd reshape operation on a BlockManager """ return self.apply('reshape_nd', axes=axes, **kwargs) def is_consolidated(self): """ Return True if more than one block with the same dtype """ if not self._known_consolidated: self._consolidate_check() return self._is_consolidated def _consolidate_check(self): ftypes = [blk.ftype for blk in self.blocks] self._is_consolidated = len(ftypes) == len(set(ftypes)) self._known_consolidated = True @property def is_mixed_type(self): # Warning, consolidation needs to get checked upstairs self._consolidate_inplace() return len(self.blocks) > 1 @property def is_numeric_mixed_type(self): # Warning, consolidation needs to get checked upstairs self._consolidate_inplace() return all([block.is_numeric for block in self.blocks]) @property def is_datelike_mixed_type(self): # Warning, consolidation needs to get checked upstairs self._consolidate_inplace() return any([block.is_datelike for block in self.blocks]) @property def is_view(self): """ return a boolean if we are a single block and are a view """ if len(self.blocks) == 1: return self.blocks[0].is_view # It is technically possible to figure out which blocks are views # e.g. [ b.values.base is not None for b in self.blocks ] # but then we have the case of possibly some blocks being a view # and some blocks not. setting in theory is possible on the non-view # blocks w/o causing a SettingWithCopy raise/warn. But this is a bit # complicated return False def get_bool_data(self, copy=False): """ Parameters ---------- copy : boolean, default False Whether to copy the blocks """ self._consolidate_inplace() return self.combine([b for b in self.blocks if b.is_bool], copy) def get_numeric_data(self, copy=False): """ Parameters ---------- copy : boolean, default False Whether to copy the blocks """ self._consolidate_inplace() return self.combine([b for b in self.blocks if b.is_numeric], copy) def combine(self, blocks, copy=True): """ return a new manager with the blocks """ if len(blocks) == 0: return self.make_empty() # FIXME: optimization potential indexer = np.sort(np.concatenate([b.mgr_locs.as_array for b in blocks])) inv_indexer = lib.get_reverse_indexer(indexer, self.shape[0]) new_items = self.items.take(indexer) new_blocks = [] for b in blocks: b = b.copy(deep=copy) b.mgr_locs = com.take_1d(inv_indexer, b.mgr_locs.as_array, axis=0, allow_fill=False) new_blocks.append(b) new_axes = list(self.axes) new_axes[0] = new_items return self.__class__(new_blocks, new_axes, do_integrity_check=False) def get_slice(self, slobj, axis=0): if axis >= self.ndim: raise IndexError("Requested axis not found in manager") if axis == 0: new_blocks = self._slice_take_blocks_ax0(slobj) else: slicer = [slice(None)] * (axis + 1) slicer[axis] = slobj slicer = tuple(slicer) new_blocks = [blk.getitem_block(slicer) for blk in self.blocks] new_axes = list(self.axes) new_axes[axis] = new_axes[axis][slobj] bm = self.__class__(new_blocks, new_axes, do_integrity_check=False, fastpath=True) bm._consolidate_inplace() return bm def __contains__(self, item): return item in self.items @property def nblocks(self): return len(self.blocks) def copy(self, deep=True): """ Make deep or shallow copy of BlockManager Parameters ---------- deep : boolean o rstring, default True If False, return shallow copy (do not copy data) If 'all', copy data and a deep copy of the index Returns ------- copy : BlockManager """ # this preserves the notion of view copying of axes if deep: if deep == 'all': copy = lambda ax: ax.copy(deep=True) else: copy = lambda ax: ax.view() new_axes = [ copy(ax) for ax in self.axes] else: new_axes = list(self.axes) return self.apply('copy', axes=new_axes, deep=deep, do_integrity_check=False) def as_matrix(self, items=None): if len(self.blocks) == 0: return np.empty(self.shape, dtype=float) if items is not None: mgr = self.reindex_axis(items, axis=0) else: mgr = self if self._is_single_block or not self.is_mixed_type: return mgr.blocks[0].get_values() else: return mgr._interleave() def _interleave(self): """ Return ndarray from blocks with specified item order Items must be contained in the blocks """ dtype = _interleaved_dtype(self.blocks) result = np.empty(self.shape, dtype=dtype) if result.shape[0] == 0: # Workaround for numpy 1.7 bug: # # >>> a = np.empty((0,10)) # >>> a[slice(0,0)] # array([], shape=(0, 10), dtype=float64) # >>> a[[]] # Traceback (most recent call last): # File "<stdin>", line 1, in <module> # IndexError: index 0 is out of bounds for axis 0 with size 0 return result itemmask = np.zeros(self.shape[0]) for blk in self.blocks: rl = blk.mgr_locs result[rl.indexer] = blk.get_values(dtype) itemmask[rl.indexer] = 1 if not itemmask.all(): raise AssertionError('Some items were not contained in blocks') return result def xs(self, key, axis=1, copy=True, takeable=False): if axis < 1: raise AssertionError('Can only take xs across axis >= 1, got %d' % axis) # take by position if takeable: loc = key else: loc = self.axes[axis].get_loc(key) slicer = [slice(None, None) for _ in range(self.ndim)] slicer[axis] = loc slicer = tuple(slicer) new_axes = list(self.axes) # could be an array indexer! if isinstance(loc, (slice, np.ndarray)): new_axes[axis] = new_axes[axis][loc] else: new_axes.pop(axis) new_blocks = [] if len(self.blocks) > 1: # we must copy here as we are mixed type for blk in self.blocks: newb = make_block(values=blk.values[slicer], klass=blk.__class__, fastpath=True, placement=blk.mgr_locs) new_blocks.append(newb) elif len(self.blocks) == 1: block = self.blocks[0] vals = block.values[slicer] if copy: vals = vals.copy() new_blocks = [make_block(values=vals, placement=block.mgr_locs, klass=block.__class__, fastpath=True,)] return self.__class__(new_blocks, new_axes) def fast_xs(self, loc): """ get a cross sectional for a given location in the items ; handle dups return the result, is *could* be a view in the case of a single block """ if len(self.blocks) == 1: return self.blocks[0].values[:, loc] items = self.items # non-unique (GH4726) if not items.is_unique: result = self._interleave() if self.ndim == 2: result = result.T return result[loc] # unique dtype = _interleaved_dtype(self.blocks) n = len(items) result = np.empty(n, dtype=dtype) for blk in self.blocks: # Such assignment may incorrectly coerce NaT to None # result[blk.mgr_locs] = blk._slice((slice(None), loc)) for i, rl in enumerate(blk.mgr_locs): result[rl] = blk._try_coerce_result(blk.iget((i, loc))) return result def consolidate(self): """ Join together blocks having same dtype Returns ------- y : BlockManager """ if self.is_consolidated(): return self bm = self.__class__(self.blocks, self.axes) bm._is_consolidated = False bm._consolidate_inplace() return bm def _consolidate_inplace(self): if not self.is_consolidated(): self.blocks = tuple(_consolidate(self.blocks)) self._is_consolidated = True self._known_consolidated = True self._rebuild_blknos_and_blklocs() def get(self, item, fastpath=True): """ Return values for selected item (ndarray or BlockManager). """ if self.items.is_unique: if not isnull(item): loc = self.items.get_loc(item) else: indexer = np.arange(len(self.items))[isnull(self.items)] # allow a single nan location indexer if not np.isscalar(indexer): if len(indexer) == 1: loc = indexer.item() else: raise ValueError("cannot label index with a null key") return self.iget(loc, fastpath=fastpath) else: if isnull(item): raise ValueError("cannot label index with a null key") indexer = self.items.get_indexer_for([item]) return self.reindex_indexer(new_axis=self.items[indexer], indexer=indexer, axis=0, allow_dups=True) def iget(self, i, fastpath=True): """ Return the data as a SingleBlockManager if fastpath=True and possible Otherwise return as a ndarray """ block = self.blocks[self._blknos[i]] values = block.iget(self._blklocs[i]) if not fastpath or block.is_sparse or values.ndim != 1: return values # fastpath shortcut for select a single-dim from a 2-dim BM return SingleBlockManager([ block.make_block_same_class(values, placement=slice(0, len(values)), ndim=1, fastpath=True) ], self.axes[1]) def get_scalar(self, tup): """ Retrieve single item """ full_loc = list(ax.get_loc(x) for ax, x in zip(self.axes, tup)) blk = self.blocks[self._blknos[full_loc[0]]] full_loc[0] = self._blklocs[full_loc[0]] # FIXME: this may return non-upcasted types? return blk.values[tuple(full_loc)] def delete(self, item): """ Delete selected item (items if non-unique) in-place. """ indexer = self.items.get_loc(item) is_deleted = np.zeros(self.shape[0], dtype=np.bool_) is_deleted[indexer] = True ref_loc_offset = -is_deleted.cumsum() is_blk_deleted = [False] * len(self.blocks) if isinstance(indexer, int): affected_start = indexer else: affected_start = is_deleted.nonzero()[0][0] for blkno, _ in _fast_count_smallints(self._blknos[affected_start:]): blk = self.blocks[blkno] bml = blk.mgr_locs blk_del = is_deleted[bml.indexer].nonzero()[0] if len(blk_del) == len(bml): is_blk_deleted[blkno] = True continue elif len(blk_del) != 0: blk.delete(blk_del) bml = blk.mgr_locs blk.mgr_locs = bml.add(ref_loc_offset[bml.indexer]) # FIXME: use Index.delete as soon as it uses fastpath=True self.axes[0] = self.items[~is_deleted] self.blocks = tuple(b for blkno, b in enumerate(self.blocks) if not is_blk_deleted[blkno]) self._shape = None self._rebuild_blknos_and_blklocs() def set(self, item, value, check=False): """ Set new item in-place. Does not consolidate. Adds new Block if not contained in the current set of items if check, then validate that we are not setting the same data in-place """ # FIXME: refactor, clearly separate broadcasting & zip-like assignment # can prob also fix the various if tests for sparse/categorical value_is_sparse = isinstance(value, SparseArray) value_is_cat = is_categorical(value) value_is_nonconsolidatable = value_is_sparse or value_is_cat if value_is_sparse: # sparse assert self.ndim == 2 def value_getitem(placement): return value elif value_is_cat: # categorical def value_getitem(placement): return value else: if value.ndim == self.ndim - 1: value = value.reshape((1,) + value.shape) def value_getitem(placement): return value else: def value_getitem(placement): return value[placement.indexer] if value.shape[1:] != self.shape[1:]: raise AssertionError('Shape of new values must be compatible ' 'with manager shape') try: loc = self.items.get_loc(item) except KeyError: # This item wasn't present, just insert at end self.insert(len(self.items), item, value) return if isinstance(loc, int): loc = [loc] blknos = self._blknos[loc] blklocs = self._blklocs[loc].copy() unfit_mgr_locs = [] unfit_val_locs = [] removed_blknos = [] for blkno, val_locs in _get_blkno_placements(blknos, len(self.blocks), group=True): blk = self.blocks[blkno] blk_locs = blklocs[val_locs.indexer] if blk.should_store(value): blk.set(blk_locs, value_getitem(val_locs), check=check) else: unfit_mgr_locs.append(blk.mgr_locs.as_array[blk_locs]) unfit_val_locs.append(val_locs) # If all block items are unfit, schedule the block for removal. if len(val_locs) == len(blk.mgr_locs): removed_blknos.append(blkno) else: self._blklocs[blk.mgr_locs.indexer] = -1 blk.delete(blk_locs) self._blklocs[blk.mgr_locs.indexer] = np.arange(len(blk)) if len(removed_blknos): # Remove blocks & update blknos accordingly is_deleted = np.zeros(self.nblocks, dtype=np.bool_) is_deleted[removed_blknos] = True new_blknos = np.empty(self.nblocks, dtype=np.int64) new_blknos.fill(-1) new_blknos[~is_deleted] = np.arange(self.nblocks - len(removed_blknos)) self._blknos = com.take_1d(new_blknos, self._blknos, axis=0, allow_fill=False) self.blocks = tuple(blk for i, blk in enumerate(self.blocks) if i not in set(removed_blknos)) if unfit_val_locs: unfit_mgr_locs = np.concatenate(unfit_mgr_locs) unfit_count = len(unfit_mgr_locs) new_blocks = [] if value_is_nonconsolidatable: # This code (ab-)uses the fact that sparse blocks contain only # one item. new_blocks.extend( make_block(values=value.copy(), ndim=self.ndim, placement=slice(mgr_loc, mgr_loc + 1)) for mgr_loc in unfit_mgr_locs) self._blknos[unfit_mgr_locs] = (np.arange(unfit_count) + len(self.blocks)) self._blklocs[unfit_mgr_locs] = 0 else: # unfit_val_locs contains BlockPlacement objects unfit_val_items = unfit_val_locs[0].append(unfit_val_locs[1:]) new_blocks.append( make_block(values=value_getitem(unfit_val_items), ndim=self.ndim, placement=unfit_mgr_locs)) self._blknos[unfit_mgr_locs] = len(self.blocks) self._blklocs[unfit_mgr_locs] = np.arange(unfit_count) self.blocks += tuple(new_blocks) # Newly created block's dtype may already be present. self._known_consolidated = False def insert(self, loc, item, value, allow_duplicates=False): """ Insert item at selected position. Parameters ---------- loc : int item : hashable value : array_like allow_duplicates: bool If False, trying to insert non-unique item will raise """ if not allow_duplicates and item in self.items: # Should this be a different kind of error?? raise ValueError('cannot insert %s, already exists' % item) if not isinstance(loc, int): raise TypeError("loc must be int") block = make_block(values=value, ndim=self.ndim, placement=slice(loc, loc+1)) for blkno, count in _fast_count_smallints(self._blknos[loc:]): blk = self.blocks[blkno] if count == len(blk.mgr_locs): blk.mgr_locs = blk.mgr_locs.add(1) else: new_mgr_locs = blk.mgr_locs.as_array.copy() new_mgr_locs[new_mgr_locs >= loc] += 1 blk.mgr_locs = new_mgr_locs if loc == self._blklocs.shape[0]: # np.append is a lot faster (at least in numpy 1.7.1), let's use it # if we can. self._blklocs = np.append(self._blklocs, 0) self._blknos = np.append(self._blknos, len(self.blocks)) else: self._blklocs = np.insert(self._blklocs, loc, 0) self._blknos = np.insert(self._blknos, loc, len(self.blocks)) self.axes[0] = self.items.insert(loc, item) self.blocks += (block,) self._shape = None self._known_consolidated = False if len(self.blocks) > 100: self._consolidate_inplace() def reindex_axis(self, new_index, axis, method=None, limit=None, fill_value=None, copy=True): """ Conform block manager to new index. """ new_index = _ensure_index(new_index) new_index, indexer = self.axes[axis].reindex( new_index, method=method, limit=limit) return self.reindex_indexer(new_index, indexer, axis=axis, fill_value=fill_value, copy=copy) def reindex_indexer(self, new_axis, indexer, axis, fill_value=None, allow_dups=False, copy=True): """ Parameters ---------- new_axis : Index indexer : ndarray of int64 or None axis : int fill_value : object allow_dups : bool pandas-indexer with -1's only. """ if indexer is None: if new_axis is self.axes[axis] and not copy: return self result = self.copy(deep=copy) result.axes = list(self.axes) result.axes[axis] = new_axis return result self._consolidate_inplace() # some axes don't allow reindexing with dups if not allow_dups: self.axes[axis]._can_reindex(indexer) if axis >= self.ndim: raise IndexError("Requested axis not found in manager") if axis == 0: new_blocks = self._slice_take_blocks_ax0( indexer, fill_tuple=(fill_value,)) else: new_blocks = [blk.take_nd(indexer, axis=axis, fill_tuple=(fill_value if fill_value is not None else blk.fill_value,)) for blk in self.blocks] new_axes = list(self.axes) new_axes[axis] = new_axis return self.__class__(new_blocks, new_axes) def _slice_take_blocks_ax0(self, slice_or_indexer, fill_tuple=None): """ Slice/take blocks along axis=0. Overloaded for SingleBlock Returns ------- new_blocks : list of Block """ allow_fill = fill_tuple is not None sl_type, slobj, sllen = _preprocess_slice_or_indexer( slice_or_indexer, self.shape[0], allow_fill=allow_fill) if self._is_single_block: blk = self.blocks[0] if sl_type in ('slice', 'mask'): return [blk.getitem_block(slobj, new_mgr_locs=slice(0, sllen))] elif not allow_fill or self.ndim == 1: if allow_fill and fill_tuple[0] is None: _, fill_value = com._maybe_promote(blk.dtype) fill_tuple = (fill_value,) return [blk.take_nd(slobj, axis=0, new_mgr_locs=slice(0, sllen), fill_tuple=fill_tuple)] if sl_type in ('slice', 'mask'): blknos = self._blknos[slobj] blklocs = self._blklocs[slobj] else: blknos = com.take_1d(self._blknos, slobj, fill_value=-1, allow_fill=allow_fill) blklocs = com.take_1d(self._blklocs, slobj, fill_value=-1, allow_fill=allow_fill) # When filling blknos, make sure blknos is updated before appending to # blocks list, that way new blkno is exactly len(blocks). # # FIXME: mgr_groupby_blknos must return mgr_locs in ascending order, # pytables serialization will break otherwise. blocks = [] for blkno, mgr_locs in _get_blkno_placements(blknos, len(self.blocks), group=True): if blkno == -1: # If we've got here, fill_tuple was not None. fill_value = fill_tuple[0] blocks.append(self._make_na_block( placement=mgr_locs, fill_value=fill_value)) else: blk = self.blocks[blkno] # Otherwise, slicing along items axis is necessary. if not blk._can_consolidate: # A non-consolidatable block, it's easy, because there's only one item # and each mgr loc is a copy of that single item. for mgr_loc in mgr_locs: newblk = blk.copy(deep=True) newblk.mgr_locs = slice(mgr_loc, mgr_loc + 1) blocks.append(newblk) else: blocks.append(blk.take_nd( blklocs[mgr_locs.indexer], axis=0, new_mgr_locs=mgr_locs, fill_tuple=None)) return blocks def _make_na_block(self, placement, fill_value=None): # TODO: infer dtypes other than float64 from fill_value if fill_value is None: fill_value = np.nan block_shape = list(self.shape) block_shape[0] = len(placement) dtype, fill_value = com._infer_dtype_from_scalar(fill_value) block_values = np.empty(block_shape, dtype=dtype) block_values.fill(fill_value) return make_block(block_values, placement=placement) def take(self, indexer, axis=1, verify=True, convert=True): """ Take items along any axis. """ self._consolidate_inplace() indexer = np.arange(indexer.start, indexer.stop, indexer.step, dtype='int64') if isinstance(indexer, slice) \ else np.asanyarray(indexer, dtype='int64') n = self.shape[axis] if convert: indexer = maybe_convert_indices(indexer, n) if verify: if ((indexer == -1) | (indexer >= n)).any(): raise Exception('Indices must be nonzero and less than ' 'the axis length') new_labels = self.axes[axis].take(indexer) return self.reindex_indexer(new_axis=new_labels, indexer=indexer, axis=axis, allow_dups=True) def merge(self, other, lsuffix='', rsuffix=''): if not self._is_indexed_like(other): raise AssertionError('Must have same axes to merge managers') l, r = items_overlap_with_suffix(left=self.items, lsuffix=lsuffix, right=other.items, rsuffix=rsuffix) new_items = _concat_indexes([l, r]) new_blocks = [blk.copy(deep=False) for blk in self.blocks] offset = self.shape[0] for blk in other.blocks: blk = blk.copy(deep=False) blk.mgr_locs = blk.mgr_locs.add(offset) new_blocks.append(blk) new_axes = list(self.axes) new_axes[0] = new_items return self.__class__(_consolidate(new_blocks), new_axes) def _is_indexed_like(self, other): """ Check all axes except items """ if self.ndim != other.ndim: raise AssertionError(('Number of dimensions must agree ' 'got %d and %d') % (self.ndim, other.ndim)) for ax, oax in zip(self.axes[1:], other.axes[1:]): if not ax.equals(oax): return False return True def equals(self, other): self_axes, other_axes = self.axes, other.axes if len(self_axes) != len(other_axes): return False if not all (ax1.equals(ax2) for ax1, ax2 in zip(self_axes, other_axes)): return False self._consolidate_inplace() other._consolidate_inplace() if len(self.blocks) != len(other.blocks): return False # canonicalize block order, using a tuple combining the type # name and then mgr_locs because there might be unconsolidated # blocks (say, Categorical) which can only be distinguished by # the iteration order def canonicalize(block): return (block.dtype.name, block.mgr_locs.as_array.tolist()) self_blocks = sorted(self.blocks, key=canonicalize) other_blocks = sorted(other.blocks, key=canonicalize) return all(block.equals(oblock) for block, oblock in zip(self_blocks, other_blocks)) class SingleBlockManager(BlockManager): """ manage a single block with """ ndim = 1 _is_consolidated = True _known_consolidated = True __slots__ = () def __init__(self, block, axis, do_integrity_check=False, fastpath=False): if isinstance(axis, list): if len(axis) != 1: raise ValueError( "cannot create SingleBlockManager with more than 1 axis") axis = axis[0] # passed from constructor, single block, single axis if fastpath: self.axes = [axis] if isinstance(block, list): # empty block if len(block) == 0: block = [np.array([])] elif len(block) != 1: raise ValueError('Cannot create SingleBlockManager with ' 'more than 1 block') block = block[0] else: self.axes = [_ensure_index(axis)] # create the block here if isinstance(block, list): # provide consolidation to the interleaved_dtype if len(block) > 1: dtype = _interleaved_dtype(block) block = [b.astype(dtype) for b in block] block = _consolidate(block) if len(block) != 1: raise ValueError('Cannot create SingleBlockManager with ' 'more than 1 block') block = block[0] if not isinstance(block, Block): block = make_block(block, placement=slice(0, len(axis)), ndim=1, fastpath=True) self.blocks = [block] def _post_setstate(self): pass @property def _block(self): return self.blocks[0] @property def _values(self): return self._block.values def reindex(self, new_axis, indexer=None, method=None, fill_value=None, limit=None, copy=True): # if we are the same and don't copy, just return if self.index.equals(new_axis): if copy: return self.copy(deep=True) else: return self values = self._block.get_values() if indexer is None: indexer = self.items.get_indexer_for(new_axis) if fill_value is None: # FIXME: is fill_value used correctly in sparse blocks? if not self._block.is_sparse: fill_value = self._block.fill_value else: fill_value = np.nan new_values = com.take_1d(values, indexer, fill_value=fill_value) # fill if needed if method is not None or limit is not None: new_values = com.interpolate_2d(new_values, method=method, limit=limit, fill_value=fill_value) if self._block.is_sparse: make_block = self._block.make_block_same_class block = make_block(new_values, copy=copy, placement=slice(0, len(new_axis))) mgr = SingleBlockManager(block, new_axis) mgr._consolidate_inplace() return mgr def get_slice(self, slobj, axis=0): if axis >= self.ndim: raise IndexError("Requested axis not found in manager") return self.__class__(self._block._slice(slobj), self.index[slobj], fastpath=True) @property def index(self): return self.axes[0] def convert(self, **kwargs): """ convert the whole block as one """ kwargs['by_item'] = False return self.apply('convert', **kwargs) @property def dtype(self): return self._values.dtype @property def array_dtype(self): return self._block.array_dtype @property def ftype(self): return self._block.ftype def get_dtype_counts(self): return {self.dtype.name: 1} def get_ftype_counts(self): return {self.ftype: 1} def get_dtypes(self): return np.array([self._block.dtype]) def get_ftypes(self): return np.array([self._block.ftype]) @property def values(self): return self._values.view() def get_values(self): """ return a dense type view """ return np.array(self._block.to_dense(),copy=False) @property def itemsize(self): return self._values.itemsize @property def _can_hold_na(self): return self._block._can_hold_na def is_consolidated(self): return True def _consolidate_check(self): pass def _consolidate_inplace(self): pass def delete(self, item): """ Delete single item from SingleBlockManager. Ensures that self.blocks doesn't become empty. """ loc = self.items.get_loc(item) self._block.delete(loc) self.axes[0] = self.axes[0].delete(loc) def fast_xs(self, loc): """ fast path for getting a cross-section return a view of the data """ return self._block.values[loc] def construction_error(tot_items, block_shape, axes, e=None): """ raise a helpful message about our construction """ passed = tuple(map(int, [tot_items] + list(block_shape))) implied = tuple(map(int, [len(ax) for ax in axes])) if passed == implied and e is not None: raise e raise ValueError("Shape of passed values is {0}, indices imply {1}".format( passed,implied)) def create_block_manager_from_blocks(blocks, axes): try: if len(blocks) == 1 and not isinstance(blocks[0], Block): # if blocks[0] is of length 0, return empty blocks if not len(blocks[0]): blocks = [] else: # It's OK if a single block is passed as values, its placement is # basically "all items", but if there're many, don't bother # converting, it's an error anyway. blocks = [make_block(values=blocks[0], placement=slice(0, len(axes[0])))] mgr = BlockManager(blocks, axes) mgr._consolidate_inplace() return mgr except (ValueError) as e: blocks = [getattr(b, 'values', b) for b in blocks] tot_items = sum(b.shape[0] for b in blocks) construction_error(tot_items, blocks[0].shape[1:], axes, e) def create_block_manager_from_arrays(arrays, names, axes): try: blocks = form_blocks(arrays, names, axes) mgr = BlockManager(blocks, axes) mgr._consolidate_inplace() return mgr except (ValueError) as e: construction_error(len(arrays), arrays[0].shape, axes, e) def form_blocks(arrays, names, axes): # put "leftover" items in float bucket, where else? # generalize? float_items = [] complex_items = [] int_items = [] bool_items = [] object_items = [] sparse_items = [] datetime_items = [] cat_items = [] extra_locs = [] names_idx = Index(names) if names_idx.equals(axes[0]): names_indexer = np.arange(len(names_idx)) else: assert names_idx.intersection(axes[0]).is_unique names_indexer = names_idx.get_indexer_for(axes[0]) for i, name_idx in enumerate(names_indexer): if name_idx == -1: extra_locs.append(i) continue k = names[name_idx] v = arrays[name_idx] if isinstance(v, (SparseArray, ABCSparseSeries)): sparse_items.append((i, k, v)) elif issubclass(v.dtype.type, np.floating): float_items.append((i, k, v)) elif issubclass(v.dtype.type, np.complexfloating): complex_items.append((i, k, v)) elif issubclass(v.dtype.type, np.datetime64): if v.dtype != _NS_DTYPE: v = tslib.cast_to_nanoseconds(v) if hasattr(v, 'tz') and v.tz is not None: object_items.append((i, k, v)) else: datetime_items.append((i, k, v)) elif issubclass(v.dtype.type, np.integer): if v.dtype == np.uint64: # HACK #2355 definite overflow if (v > 2 ** 63 - 1).any(): object_items.append((i, k, v)) continue int_items.append((i, k, v)) elif v.dtype == np.bool_: bool_items.append((i, k, v)) elif is_categorical(v): cat_items.append((i, k, v)) else: object_items.append((i, k, v)) blocks = [] if len(float_items): float_blocks = _multi_blockify(float_items) blocks.extend(float_blocks) if len(complex_items): complex_blocks = _simple_blockify( complex_items, np.complex128) blocks.extend(complex_blocks) if len(int_items): int_blocks = _multi_blockify(int_items) blocks.extend(int_blocks) if len(datetime_items): datetime_blocks = _simple_blockify( datetime_items, _NS_DTYPE) blocks.extend(datetime_blocks) if len(bool_items): bool_blocks = _simple_blockify( bool_items, np.bool_) blocks.extend(bool_blocks) if len(object_items) > 0: object_blocks = _simple_blockify( object_items, np.object_) blocks.extend(object_blocks) if len(sparse_items) > 0: sparse_blocks = _sparse_blockify(sparse_items) blocks.extend(sparse_blocks) if len(cat_items) > 0: cat_blocks = [ make_block(array, klass=CategoricalBlock, fastpath=True, placement=[i] ) for i, names, array in cat_items ] blocks.extend(cat_blocks) if len(extra_locs): shape = (len(extra_locs),) + tuple(len(x) for x in axes[1:]) # empty items -> dtype object block_values = np.empty(shape, dtype=object) block_values.fill(np.nan) na_block = make_block(block_values, placement=extra_locs) blocks.append(na_block) return blocks def _simple_blockify(tuples, dtype): """ return a single array of a block that has a single dtype; if dtype is not None, coerce to this dtype """ values, placement = _stack_arrays(tuples, dtype) # CHECK DTYPE? if dtype is not None and values.dtype != dtype: # pragma: no cover values = values.astype(dtype) block = make_block(values, placement=placement) return [block] def _multi_blockify(tuples, dtype=None): """ return an array of blocks that potentially have different dtypes """ # group by dtype grouper = itertools.groupby(tuples, lambda x: x[2].dtype) new_blocks = [] for dtype, tup_block in grouper: values, placement = _stack_arrays( list(tup_block), dtype) block = make_block(values, placement=placement) new_blocks.append(block) return new_blocks def _sparse_blockify(tuples, dtype=None): """ return an array of blocks that potentially have different dtypes (and are sparse) """ new_blocks = [] for i, names, array in tuples: array = _maybe_to_sparse(array) block = make_block( array, klass=SparseBlock, fastpath=True, placement=[i]) new_blocks.append(block) return new_blocks def _stack_arrays(tuples, dtype): # fml def _asarray_compat(x): if isinstance(x, ABCSeries): return x.values else: return np.asarray(x) def _shape_compat(x): if isinstance(x, ABCSeries): return len(x), else: return x.shape placement, names, arrays = zip(*tuples) first = arrays[0] shape = (len(arrays),) + _shape_compat(first) stacked = np.empty(shape, dtype=dtype) for i, arr in enumerate(arrays): stacked[i] = _asarray_compat(arr) return stacked, placement def _interleaved_dtype(blocks): if not len(blocks): return None counts = defaultdict(lambda: []) for x in blocks: counts[type(x)].append(x) def _lcd_dtype(l): """ find the lowest dtype that can accomodate the given types """ m = l[0].dtype for x in l[1:]: if x.dtype.itemsize > m.itemsize: m = x.dtype return m have_int = len(counts[IntBlock]) > 0 have_bool = len(counts[BoolBlock]) > 0 have_object = len(counts[ObjectBlock]) > 0 have_float = len(counts[FloatBlock]) > 0 have_complex = len(counts[ComplexBlock]) > 0 have_dt64 = len(counts[DatetimeBlock]) > 0 have_td64 = len(counts[TimeDeltaBlock]) > 0 have_cat = len(counts[CategoricalBlock]) > 0 have_sparse = len(counts[SparseBlock]) > 0 have_numeric = have_float or have_complex or have_int has_non_numeric = have_dt64 or have_td64 or have_cat if (have_object or (have_bool and (have_numeric or have_dt64 or have_td64)) or (have_numeric and has_non_numeric) or have_cat or have_dt64 or have_td64): return np.dtype(object) elif have_bool: return np.dtype(bool) elif have_int and not have_float and not have_complex: # if we are mixing unsigned and signed, then return # the next biggest int type (if we can) lcd = _lcd_dtype(counts[IntBlock]) kinds = set([i.dtype.kind for i in counts[IntBlock]]) if len(kinds) == 1: return lcd if lcd == 'uint64' or lcd == 'int64': return np.dtype('int64') # return 1 bigger on the itemsize if unsinged if lcd.kind == 'u': return np.dtype('int%s' % (lcd.itemsize * 8 * 2)) return lcd elif have_complex: return np.dtype('c16') else: return _lcd_dtype(counts[FloatBlock] + counts[SparseBlock]) def _consolidate(blocks): """ Merge blocks having same dtype, exclude non-consolidating blocks """ # sort by _can_consolidate, dtype gkey = lambda x: x._consolidate_key grouper = itertools.groupby(sorted(blocks, key=gkey), gkey) new_blocks = [] for (_can_consolidate, dtype), group_blocks in grouper: merged_blocks = _merge_blocks(list(group_blocks), dtype=dtype, _can_consolidate=_can_consolidate) if isinstance(merged_blocks, list): new_blocks.extend(merged_blocks) else: new_blocks.append(merged_blocks) return new_blocks def _merge_blocks(blocks, dtype=None, _can_consolidate=True): if len(blocks) == 1: return blocks[0] if _can_consolidate: if dtype is None: if len(set([b.dtype for b in blocks])) != 1: raise AssertionError("_merge_blocks are invalid!") dtype = blocks[0].dtype # FIXME: optimization potential in case all mgrs contain slices and # combination of those slices is a slice, too. new_mgr_locs = np.concatenate([b.mgr_locs.as_array for b in blocks]) new_values = _vstack([b.values for b in blocks], dtype) argsort = np.argsort(new_mgr_locs) new_values = new_values[argsort] new_mgr_locs = new_mgr_locs[argsort] return make_block(new_values, fastpath=True, placement=new_mgr_locs) # no merge return blocks def _block_shape(values, ndim=1, shape=None): """ guarantee the shape of the values to be at least 1 d """ if values.ndim <= ndim: if shape is None: shape = values.shape values = values.reshape(tuple((1,) + shape)) return values def _vstack(to_stack, dtype): # work around NumPy 1.6 bug if dtype == _NS_DTYPE or dtype == _TD_DTYPE: new_values = np.vstack([x.view('i8') for x in to_stack]) return new_values.view(dtype) else: return np.vstack(to_stack) def _possibly_compare(a, b, op): res = op(a, b) is_a_array = isinstance(a, np.ndarray) is_b_array = isinstance(b, np.ndarray) if np.isscalar(res) and (is_a_array or is_b_array): type_names = [type(a).__name__, type(b).__name__] if is_a_array: type_names[0] = 'ndarray(dtype=%s)' % a.dtype if is_b_array: type_names[1] = 'ndarray(dtype=%s)' % b.dtype raise TypeError("Cannot compare types %r and %r" % tuple(type_names)) return res def _concat_indexes(indexes): return indexes[0].append(indexes[1:]) def _block2d_to_blocknd(values, placement, shape, labels, ref_items): """ pivot to the labels shape """ from pandas.core.internals import make_block panel_shape = (len(placement),) + shape # TODO: lexsort depth needs to be 2!! # Create observation selection vector using major and minor # labels, for converting to panel format. selector = _factor_indexer(shape[1:], labels) mask = np.zeros(np.prod(shape), dtype=bool) mask.put(selector, True) if mask.all(): pvalues = np.empty(panel_shape, dtype=values.dtype) else: dtype, fill_value = _maybe_promote(values.dtype) pvalues = np.empty(panel_shape, dtype=dtype) pvalues.fill(fill_value) values = values for i in range(len(placement)): pvalues[i].flat[mask] = values[:, i] return make_block(pvalues, placement=placement) def _factor_indexer(shape, labels): """ given a tuple of shape and a list of Categorical labels, return the expanded label indexer """ mult = np.array(shape)[::-1].cumprod()[::-1] return com._ensure_platform_int( np.sum(np.array(labels).T * np.append(mult, [1]), axis=1).T) def _get_blkno_placements(blknos, blk_count, group=True): """ Parameters ---------- blknos : array of int64 blk_count : int group : bool Returns ------- iterator yield (BlockPlacement, blkno) """ blknos = com._ensure_int64(blknos) # FIXME: blk_count is unused, but it may avoid the use of dicts in cython for blkno, indexer in lib.get_blkno_indexers(blknos, group): yield blkno, BlockPlacement(indexer) def items_overlap_with_suffix(left, lsuffix, right, rsuffix): """ If two indices overlap, add suffixes to overlapping entries. If corresponding suffix is empty, the entry is simply converted to string. """ to_rename = left.intersection(right) if len(to_rename) == 0: return left, right else: if not lsuffix and not rsuffix: raise ValueError('columns overlap but no suffix specified: %s' % to_rename) def lrenamer(x): if x in to_rename: return '%s%s' % (x, lsuffix) return x def rrenamer(x): if x in to_rename: return '%s%s' % (x, rsuffix) return x return (_transform_index(left, lrenamer), _transform_index(right, rrenamer)) def _transform_index(index, func): """ Apply function to all values found in index. This includes transforming multiindex entries separately. """ if isinstance(index, MultiIndex): items = [tuple(func(y) for y in x) for x in index] return MultiIndex.from_tuples(items, names=index.names) else: items = [func(x) for x in index] return Index(items, name=index.name) def _putmask_smart(v, m, n): """ Return a new block, try to preserve dtype if possible. Parameters ---------- v : `values`, updated in-place (array like) m : `mask`, applies to both sides (array like) n : `new values` either scalar or an array like aligned with `values` """ # n should be the length of the mask or a scalar here if not is_list_like(n): n = np.array([n] * len(m)) elif isinstance(n, np.ndarray) and n.ndim == 0: # numpy scalar n = np.repeat(np.array(n, ndmin=1), len(m)) # see if we are only masking values that if putted # will work in the current dtype try: nn = n[m] nn_at = nn.astype(v.dtype) comp = (nn == nn_at) if is_list_like(comp) and comp.all(): nv = v.copy() nv[m] = nn_at return nv except (ValueError, IndexError, TypeError): pass # change the dtype dtype, _ = com._maybe_promote(n.dtype) nv = v.astype(dtype) try: nv[m] = n[m] except ValueError: idx, = np.where(np.squeeze(m)) for mask_index, new_val in zip(idx, n[m]): nv[mask_index] = new_val return nv def concatenate_block_managers(mgrs_indexers, axes, concat_axis, copy): """ Concatenate block managers into one. Parameters ---------- mgrs_indexers : list of (BlockManager, {axis: indexer,...}) tuples axes : list of Index concat_axis : int copy : bool """ concat_plan = combine_concat_plans([get_mgr_concatenation_plan(mgr, indexers) for mgr, indexers in mgrs_indexers], concat_axis) blocks = [make_block(concatenate_join_units(join_units, concat_axis, copy=copy), placement=placement) for placement, join_units in concat_plan] return BlockManager(blocks, axes) def get_empty_dtype_and_na(join_units): """ Return dtype and N/A values to use when concatenating specified units. Returned N/A value may be None which means there was no casting involved. Returns ------- dtype na """ if len(join_units) == 1: blk = join_units[0].block if blk is None: return np.float64, np.nan has_none_blocks = False dtypes = [None] * len(join_units) for i, unit in enumerate(join_units): if unit.block is None: has_none_blocks = True else: dtypes[i] = unit.dtype # dtypes = set() upcast_classes = set() null_upcast_classes = set() for dtype, unit in zip(dtypes, join_units): if dtype is None: continue if com.is_categorical_dtype(dtype): upcast_cls = 'category' elif issubclass(dtype.type, np.bool_): upcast_cls = 'bool' elif issubclass(dtype.type, np.object_): upcast_cls = 'object' elif is_datetime64_dtype(dtype): upcast_cls = 'datetime' elif is_timedelta64_dtype(dtype): upcast_cls = 'timedelta' else: upcast_cls = 'float' # Null blocks should not influence upcast class selection, unless there # are only null blocks, when same upcasting rules must be applied to # null upcast classes. if unit.is_null: null_upcast_classes.add(upcast_cls) else: upcast_classes.add(upcast_cls) if not upcast_classes: upcast_classes = null_upcast_classes # create the result if 'object' in upcast_classes: return np.dtype(np.object_), np.nan elif 'bool' in upcast_classes: if has_none_blocks: return np.dtype(np.object_), np.nan else: return np.dtype(np.bool_), None elif 'category' in upcast_classes: return com.CategoricalDtype(), np.nan elif 'float' in upcast_classes: return np.dtype(np.float64), np.nan elif 'datetime' in upcast_classes: return np.dtype('M8[ns]'), tslib.iNaT elif 'timedelta' in upcast_classes: return np.dtype('m8[ns]'), tslib.iNaT else: # pragma raise AssertionError("invalid dtype determination in get_concat_dtype") def concatenate_join_units(join_units, concat_axis, copy): """ Concatenate values from several join units along selected axis. """ if concat_axis == 0 and len(join_units) > 1: # Concatenating join units along ax0 is handled in _merge_blocks. raise AssertionError("Concatenating join units along axis0") empty_dtype, upcasted_na = get_empty_dtype_and_na(join_units) to_concat = [ju.get_reindexed_values(empty_dtype=empty_dtype, upcasted_na=upcasted_na) for ju in join_units] if len(to_concat) == 1: # Only one block, nothing to concatenate. concat_values = to_concat[0] if copy and concat_values.base is not None: concat_values = concat_values.copy() else: concat_values = com._concat_compat(to_concat, axis=concat_axis) return concat_values def get_mgr_concatenation_plan(mgr, indexers): """ Construct concatenation plan for given block manager and indexers. Parameters ---------- mgr : BlockManager indexers : dict of {axis: indexer} Returns ------- plan : list of (BlockPlacement, JoinUnit) tuples """ # Calculate post-reindex shape , save for item axis which will be separate # for each block anyway. mgr_shape = list(mgr.shape) for ax, indexer in indexers.items(): mgr_shape[ax] = len(indexer) mgr_shape = tuple(mgr_shape) if 0 in indexers: ax0_indexer = indexers.pop(0) blknos = com.take_1d(mgr._blknos, ax0_indexer, fill_value=-1) blklocs = com.take_1d(mgr._blklocs, ax0_indexer, fill_value=-1) else: if mgr._is_single_block: blk = mgr.blocks[0] return [(blk.mgr_locs, JoinUnit(blk, mgr_shape, indexers))] ax0_indexer = None blknos = mgr._blknos blklocs = mgr._blklocs plan = [] for blkno, placements in _get_blkno_placements(blknos, len(mgr.blocks), group=False): assert placements.is_slice_like join_unit_indexers = indexers.copy() shape = list(mgr_shape) shape[0] = len(placements) shape = tuple(shape) if blkno == -1: unit = JoinUnit(None, shape) else: blk = mgr.blocks[blkno] ax0_blk_indexer = blklocs[placements.indexer] unit_no_ax0_reindexing = ( len(placements) == len(blk.mgr_locs) and # Fastpath detection of join unit not needing to reindex its # block: no ax0 reindexing took place and block placement was # sequential before. ((ax0_indexer is None and blk.mgr_locs.is_slice_like and blk.mgr_locs.as_slice.step == 1) or # Slow-ish detection: all indexer locs are sequential (and # length match is checked above). (np.diff(ax0_blk_indexer) == 1).all())) # Omit indexer if no item reindexing is required. if unit_no_ax0_reindexing: join_unit_indexers.pop(0, None) else: join_unit_indexers[0] = ax0_blk_indexer unit = JoinUnit(blk, shape, join_unit_indexers) plan.append((placements, unit)) return plan def combine_concat_plans(plans, concat_axis): """ Combine multiple concatenation plans into one. existing_plan is updated in-place. """ if len(plans) == 1: for p in plans[0]: yield p[0], [p[1]] elif concat_axis == 0: offset = 0 for plan in plans: last_plc = None for plc, unit in plan: yield plc.add(offset), [unit] last_plc = plc if last_plc is not None: offset += last_plc.as_slice.stop else: num_ended = [0] def _next_or_none(seq): retval = next(seq, None) if retval is None: num_ended[0] += 1 return retval plans = list(map(iter, plans)) next_items = list(map(_next_or_none, plans)) while num_ended[0] != len(next_items): if num_ended[0] > 0: raise ValueError("Plan shapes are not aligned") placements, units = zip(*next_items) lengths = list(map(len, placements)) min_len, max_len = min(lengths), max(lengths) if min_len == max_len: yield placements[0], units next_items[:] = map(_next_or_none, plans) else: yielded_placement = None yielded_units = [None] * len(next_items) for i, (plc, unit) in enumerate(next_items): yielded_units[i] = unit if len(plc) > min_len: # trim_join_unit updates unit in place, so only # placement needs to be sliced to skip min_len. next_items[i] = (plc[min_len:], trim_join_unit(unit, min_len)) else: yielded_placement = plc next_items[i] = _next_or_none(plans[i]) yield yielded_placement, yielded_units def trim_join_unit(join_unit, length): """ Reduce join_unit's shape along item axis to length. Extra items that didn't fit are returned as a separate block. """ if 0 not in join_unit.indexers: extra_indexers = join_unit.indexers if join_unit.block is None: extra_block = None else: extra_block = join_unit.block.getitem_block(slice(length, None)) join_unit.block = join_unit.block.getitem_block(slice(length)) else: extra_block = join_unit.block extra_indexers = copy.copy(join_unit.indexers) extra_indexers[0] = extra_indexers[0][length:] join_unit.indexers[0] = join_unit.indexers[0][:length] extra_shape = (join_unit.shape[0] - length,) + join_unit.shape[1:] join_unit.shape = (length,) + join_unit.shape[1:] return JoinUnit(block=extra_block, indexers=extra_indexers, shape=extra_shape) class JoinUnit(object): def __init__(self, block, shape, indexers={}): # Passing shape explicitly is required for cases when block is None. self.block = block self.indexers = indexers self.shape = shape def __repr__(self): return '%s(%r, %s)' % (self.__class__.__name__, self.block, self.indexers) @cache_readonly def needs_filling(self): for indexer in self.indexers.values(): # FIXME: cache results of indexer == -1 checks. if (indexer == -1).any(): return True return False @cache_readonly def dtype(self): if self.block is None: raise AssertionError("Block is None, no dtype") if not self.needs_filling: return self.block.dtype else: return com._get_dtype(com._maybe_promote(self.block.dtype, self.block.fill_value)[0]) return self._dtype @cache_readonly def is_null(self): if self.block is None: return True if not self.block._can_hold_na: return False # Usually it's enough to check but a small fraction of values to see if # a block is NOT null, chunks should help in such cases. 1000 value # was chosen rather arbitrarily. values_flat = self.block.values.ravel() total_len = values_flat.shape[0] chunk_len = max(total_len // 40, 1000) for i in range(0, total_len, chunk_len): if not isnull(values_flat[i: i + chunk_len]).all(): return False return True @cache_readonly def needs_block_conversion(self): """ we might need to convert the joined values to a suitable block repr """ block = self.block return block is not None and (block.is_sparse or block.is_categorical) def get_reindexed_values(self, empty_dtype, upcasted_na): if upcasted_na is None: # No upcasting is necessary fill_value = self.block.fill_value values = self.block.get_values() else: fill_value = upcasted_na if self.is_null and not getattr(self.block,'is_categorical',None): missing_arr = np.empty(self.shape, dtype=empty_dtype) if np.prod(self.shape): # NumPy 1.6 workaround: this statement gets strange if all # blocks are of same dtype and some of them are empty: # empty one are considered "null" so they must be filled, # but no dtype upcasting happens and the dtype may not # allow NaNs. # # In general, no one should get hurt when one tries to put # incorrect values into empty array, but numpy 1.6 is # strict about that. missing_arr.fill(fill_value) return missing_arr if not self.indexers: if self.block.is_categorical: # preserve the categoricals for validation in _concat_compat return self.block.values elif self.block.is_sparse: # preserve the sparse array for validation in _concat_compat return self.block.values if self.block.is_bool: # External code requested filling/upcasting, bool values must # be upcasted to object to avoid being upcasted to numeric. values = self.block.astype(np.object_).values else: # No dtype upcasting is done here, it will be performed during # concatenation itself. values = self.block.get_values() if not self.indexers: # If there's no indexing to be done, we want to signal outside # code that this array must be copied explicitly. This is done # by returning a view and checking `retval.base`. values = values.view() else: for ax, indexer in self.indexers.items(): values = com.take_nd(values, indexer, axis=ax, fill_value=fill_value) return values def _fast_count_smallints(arr): """Faster version of set(arr) for sequences of small numbers.""" if len(arr) == 0: # Handle empty arr case separately: numpy 1.6 chokes on that. return np.empty((0, 2), dtype=arr.dtype) else: counts = np.bincount(arr.astype(np.int_)) nz = counts.nonzero()[0] return np.c_[nz, counts[nz]] def _preprocess_slice_or_indexer(slice_or_indexer, length, allow_fill): if isinstance(slice_or_indexer, slice): return 'slice', slice_or_indexer, lib.slice_len(slice_or_indexer, length) elif (isinstance(slice_or_indexer, np.ndarray) and slice_or_indexer.dtype == np.bool_): return 'mask', slice_or_indexer, slice_or_indexer.sum() else: indexer = np.asanyarray(slice_or_indexer, dtype=np.int64) if not allow_fill: indexer = maybe_convert_indices(indexer, length) return 'fancy', indexer, len(indexer)
mit
AlexRobson/scikit-learn
sklearn/cluster/setup.py
263
1449
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr> # License: BSD 3 clause import os from os.path import join import numpy from sklearn._build_utils import get_blas_info def configuration(parent_package='', top_path=None): from numpy.distutils.misc_util import Configuration cblas_libs, blas_info = get_blas_info() libraries = [] if os.name == 'posix': cblas_libs.append('m') libraries.append('m') config = Configuration('cluster', parent_package, top_path) config.add_extension('_dbscan_inner', sources=['_dbscan_inner.cpp'], include_dirs=[numpy.get_include()], language="c++") config.add_extension('_hierarchical', sources=['_hierarchical.cpp'], language="c++", include_dirs=[numpy.get_include()], libraries=libraries) config.add_extension( '_k_means', libraries=cblas_libs, sources=['_k_means.c'], include_dirs=[join('..', 'src', 'cblas'), numpy.get_include(), blas_info.pop('include_dirs', [])], extra_compile_args=blas_info.pop('extra_compile_args', []), **blas_info ) return config if __name__ == '__main__': from numpy.distutils.core import setup setup(**configuration(top_path='').todict())
bsd-3-clause
abimannans/scikit-learn
examples/tree/plot_tree_regression_multioutput.py
206
1800
""" =================================================================== Multi-output Decision Tree Regression =================================================================== An example to illustrate multi-output regression with decision tree. The :ref:`decision trees <tree>` is used to predict simultaneously the noisy x and y observations of a circle given a single underlying feature. As a result, it learns local linear regressions approximating the circle. We can see that if the maximum depth of the tree (controlled by the `max_depth` parameter) is set too high, the decision trees learn too fine details of the training data and learn from the noise, i.e. they overfit. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.tree import DecisionTreeRegressor # Create a random dataset rng = np.random.RandomState(1) X = np.sort(200 * rng.rand(100, 1) - 100, axis=0) y = np.array([np.pi * np.sin(X).ravel(), np.pi * np.cos(X).ravel()]).T y[::5, :] += (0.5 - rng.rand(20, 2)) # Fit regression model regr_1 = DecisionTreeRegressor(max_depth=2) regr_2 = DecisionTreeRegressor(max_depth=5) regr_3 = DecisionTreeRegressor(max_depth=8) regr_1.fit(X, y) regr_2.fit(X, y) regr_3.fit(X, y) # Predict X_test = np.arange(-100.0, 100.0, 0.01)[:, np.newaxis] y_1 = regr_1.predict(X_test) y_2 = regr_2.predict(X_test) y_3 = regr_3.predict(X_test) # Plot the results plt.figure() plt.scatter(y[:, 0], y[:, 1], c="k", label="data") plt.scatter(y_1[:, 0], y_1[:, 1], c="g", label="max_depth=2") plt.scatter(y_2[:, 0], y_2[:, 1], c="r", label="max_depth=5") plt.scatter(y_3[:, 0], y_3[:, 1], c="b", label="max_depth=8") plt.xlim([-6, 6]) plt.ylim([-6, 6]) plt.xlabel("data") plt.ylabel("target") plt.title("Multi-output Decision Tree Regression") plt.legend() plt.show()
bsd-3-clause
laszlocsomor/tensorflow
tensorflow/examples/learn/text_classification_character_rnn.py
8
4104
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Example of recurrent neural networks over characters for DBpedia dataset. This model is similar to one described in this paper: "Character-level Convolutional Networks for Text Classification" http://arxiv.org/abs/1509.01626 and is somewhat alternative to the Lua code from here: https://github.com/zhangxiangxiao/Crepe """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import sys import numpy as np import pandas import tensorflow as tf FLAGS = None MAX_DOCUMENT_LENGTH = 100 HIDDEN_SIZE = 20 MAX_LABEL = 15 CHARS_FEATURE = 'chars' # Name of the input character feature. def char_rnn_model(features, labels, mode): """Character level recurrent neural network model to predict classes.""" byte_vectors = tf.one_hot(features[CHARS_FEATURE], 256, 1., 0.) byte_list = tf.unstack(byte_vectors, axis=1) cell = tf.nn.rnn_cell.GRUCell(HIDDEN_SIZE) _, encoding = tf.nn.static_rnn(cell, byte_list, dtype=tf.float32) logits = tf.layers.dense(encoding, MAX_LABEL, activation=None) predicted_classes = tf.argmax(logits, 1) if mode == tf.estimator.ModeKeys.PREDICT: return tf.estimator.EstimatorSpec( mode=mode, predictions={ 'class': predicted_classes, 'prob': tf.nn.softmax(logits) }) onehot_labels = tf.one_hot(labels, MAX_LABEL, 1, 0) loss = tf.losses.softmax_cross_entropy( onehot_labels=onehot_labels, logits=logits) if mode == tf.estimator.ModeKeys.TRAIN: optimizer = tf.train.AdamOptimizer(learning_rate=0.01) train_op = optimizer.minimize(loss, global_step=tf.train.get_global_step()) return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op) eval_metric_ops = { 'accuracy': tf.metrics.accuracy( labels=labels, predictions=predicted_classes) } return tf.estimator.EstimatorSpec( mode=mode, loss=loss, eval_metric_ops=eval_metric_ops) def main(unused_argv): # Prepare training and testing data dbpedia = tf.contrib.learn.datasets.load_dataset( 'dbpedia', test_with_fake_data=FLAGS.test_with_fake_data) x_train = pandas.DataFrame(dbpedia.train.data)[1] y_train = pandas.Series(dbpedia.train.target) x_test = pandas.DataFrame(dbpedia.test.data)[1] y_test = pandas.Series(dbpedia.test.target) # Process vocabulary char_processor = tf.contrib.learn.preprocessing.ByteProcessor( MAX_DOCUMENT_LENGTH) x_train = np.array(list(char_processor.fit_transform(x_train))) x_test = np.array(list(char_processor.transform(x_test))) # Build model classifier = tf.estimator.Estimator(model_fn=char_rnn_model) # Train. train_input_fn = tf.estimator.inputs.numpy_input_fn( x={CHARS_FEATURE: x_train}, y=y_train, batch_size=128, num_epochs=None, shuffle=True) classifier.train(input_fn=train_input_fn, steps=100) # Eval. test_input_fn = tf.estimator.inputs.numpy_input_fn( x={CHARS_FEATURE: x_test}, y=y_test, num_epochs=1, shuffle=False) scores = classifier.evaluate(input_fn=test_input_fn) print('Accuracy: {0:f}'.format(scores['accuracy'])) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--test_with_fake_data', default=False, help='Test the example code with fake data.', action='store_true') FLAGS, unparsed = parser.parse_known_args() tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
apache-2.0
BigDataforYou/movie_recommendation_workshop_1
big_data_4_you_demo_1/venv/lib/python2.7/site-packages/pandas/tests/test_panelnd.py
2
3445
# -*- coding: utf-8 -*- import nose from pandas.core import panelnd from pandas.core.panel import Panel from pandas.util.testing import assert_panel_equal import pandas.util.testing as tm class TestPanelnd(tm.TestCase): def setUp(self): pass def test_4d_construction(self): # create a 4D Panel4D = panelnd.create_nd_panel_factory( klass_name='Panel4D', orders=['labels', 'items', 'major_axis', 'minor_axis'], slices={'items': 'items', 'major_axis': 'major_axis', 'minor_axis': 'minor_axis'}, slicer=Panel, aliases={'major': 'major_axis', 'minor': 'minor_axis'}, stat_axis=2) p4d = Panel4D(dict(L1=tm.makePanel(), L2=tm.makePanel())) # noqa def test_4d_construction_alt(self): # create a 4D Panel4D = panelnd.create_nd_panel_factory( klass_name='Panel4D', orders=['labels', 'items', 'major_axis', 'minor_axis'], slices={'items': 'items', 'major_axis': 'major_axis', 'minor_axis': 'minor_axis'}, slicer='Panel', aliases={'major': 'major_axis', 'minor': 'minor_axis'}, stat_axis=2) p4d = Panel4D(dict(L1=tm.makePanel(), L2=tm.makePanel())) # noqa def test_4d_construction_error(self): # create a 4D self.assertRaises(Exception, panelnd.create_nd_panel_factory, klass_name='Panel4D', orders=['labels', 'items', 'major_axis', 'minor_axis'], slices={'items': 'items', 'major_axis': 'major_axis', 'minor_axis': 'minor_axis'}, slicer='foo', aliases={'major': 'major_axis', 'minor': 'minor_axis'}, stat_axis=2) def test_5d_construction(self): # create a 4D Panel4D = panelnd.create_nd_panel_factory( klass_name='Panel4D', orders=['labels1', 'items', 'major_axis', 'minor_axis'], slices={'items': 'items', 'major_axis': 'major_axis', 'minor_axis': 'minor_axis'}, slicer=Panel, aliases={'major': 'major_axis', 'minor': 'minor_axis'}, stat_axis=2) p4d = Panel4D(dict(L1=tm.makePanel(), L2=tm.makePanel())) # create a 5D Panel5D = panelnd.create_nd_panel_factory( klass_name='Panel5D', orders=['cool1', 'labels1', 'items', 'major_axis', 'minor_axis'], slices={'labels1': 'labels1', 'items': 'items', 'major_axis': 'major_axis', 'minor_axis': 'minor_axis'}, slicer=Panel4D, aliases={'major': 'major_axis', 'minor': 'minor_axis'}, stat_axis=2) p5d = Panel5D(dict(C1=p4d)) # slice back to 4d results = p5d.ix['C1', :, :, 0:3, :] expected = p4d.ix[:, :, 0:3, :] assert_panel_equal(results['L1'], expected['L1']) # test a transpose # results = p5d.transpose(1,2,3,4,0) # expected = if __name__ == '__main__': nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'], exit=False)
mit
MartinSavc/scikit-learn
sklearn/neighbors/classification.py
132
14388
"""Nearest Neighbor Classification""" # Authors: Jake Vanderplas <vanderplas@astro.washington.edu> # Fabian Pedregosa <fabian.pedregosa@inria.fr> # Alexandre Gramfort <alexandre.gramfort@inria.fr> # Sparseness support by Lars Buitinck <L.J.Buitinck@uva.nl> # Multi-output support by Arnaud Joly <a.joly@ulg.ac.be> # # License: BSD 3 clause (C) INRIA, University of Amsterdam import numpy as np from scipy import stats from ..utils.extmath import weighted_mode from .base import \ _check_weights, _get_weights, \ NeighborsBase, KNeighborsMixin,\ RadiusNeighborsMixin, SupervisedIntegerMixin from ..base import ClassifierMixin from ..utils import check_array class KNeighborsClassifier(NeighborsBase, KNeighborsMixin, SupervisedIntegerMixin, ClassifierMixin): """Classifier implementing the k-nearest neighbors vote. Read more in the :ref:`User Guide <classification>`. Parameters ---------- n_neighbors : int, optional (default = 5) Number of neighbors to use by default for :meth:`k_neighbors` queries. weights : str or callable weight function used in prediction. Possible values: - 'uniform' : uniform weights. All points in each neighborhood are weighted equally. - 'distance' : weight points by the inverse of their distance. in this case, closer neighbors of a query point will have a greater influence than neighbors which are further away. - [callable] : a user-defined function which accepts an array of distances, and returns an array of the same shape containing the weights. Uniform weights are used by default. algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional Algorithm used to compute the nearest neighbors: - 'ball_tree' will use :class:`BallTree` - 'kd_tree' will use :class:`KDTree` - 'brute' will use a brute-force search. - 'auto' will attempt to decide the most appropriate algorithm based on the values passed to :meth:`fit` method. Note: fitting on sparse input will override the setting of this parameter, using brute force. leaf_size : int, optional (default = 30) Leaf size passed to BallTree or KDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. metric : string or DistanceMetric object (default = 'minkowski') the distance metric to use for the tree. The default metric is minkowski, and with p=2 is equivalent to the standard Euclidean metric. See the documentation of the DistanceMetric class for a list of available metrics. p : integer, optional (default = 2) Power parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric_params : dict, optional (default = None) Additional keyword arguments for the metric function. n_jobs : int, optional (default = 1) The number of parallel jobs to run for neighbors search. If ``-1``, then the number of jobs is set to the number of CPU cores. Doesn't affect :meth:`fit` method. Examples -------- >>> X = [[0], [1], [2], [3]] >>> y = [0, 0, 1, 1] >>> from sklearn.neighbors import KNeighborsClassifier >>> neigh = KNeighborsClassifier(n_neighbors=3) >>> neigh.fit(X, y) # doctest: +ELLIPSIS KNeighborsClassifier(...) >>> print(neigh.predict([[1.1]])) [0] >>> print(neigh.predict_proba([[0.9]])) [[ 0.66666667 0.33333333]] See also -------- RadiusNeighborsClassifier KNeighborsRegressor RadiusNeighborsRegressor NearestNeighbors Notes ----- See :ref:`Nearest Neighbors <neighbors>` in the online documentation for a discussion of the choice of ``algorithm`` and ``leaf_size``. .. warning:: Regarding the Nearest Neighbors algorithms, if it is found that two neighbors, neighbor `k+1` and `k`, have identical distances but but different labels, the results will depend on the ordering of the training data. http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm """ def __init__(self, n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, n_jobs=1, **kwargs): self._init_params(n_neighbors=n_neighbors, algorithm=algorithm, leaf_size=leaf_size, metric=metric, p=p, metric_params=metric_params, n_jobs=n_jobs, **kwargs) self.weights = _check_weights(weights) def predict(self, X): """Predict the class labels for the provided data Parameters ---------- X : array-like, shape (n_query, n_features), \ or (n_query, n_indexed) if metric == 'precomputed' Test samples. Returns ------- y : array of shape [n_samples] or [n_samples, n_outputs] Class labels for each data sample. """ X = check_array(X, accept_sparse='csr') neigh_dist, neigh_ind = self.kneighbors(X) classes_ = self.classes_ _y = self._y if not self.outputs_2d_: _y = self._y.reshape((-1, 1)) classes_ = [self.classes_] n_outputs = len(classes_) n_samples = X.shape[0] weights = _get_weights(neigh_dist, self.weights) y_pred = np.empty((n_samples, n_outputs), dtype=classes_[0].dtype) for k, classes_k in enumerate(classes_): if weights is None: mode, _ = stats.mode(_y[neigh_ind, k], axis=1) else: mode, _ = weighted_mode(_y[neigh_ind, k], weights, axis=1) mode = np.asarray(mode.ravel(), dtype=np.intp) y_pred[:, k] = classes_k.take(mode) if not self.outputs_2d_: y_pred = y_pred.ravel() return y_pred def predict_proba(self, X): """Return probability estimates for the test data X. Parameters ---------- X : array-like, shape (n_query, n_features), \ or (n_query, n_indexed) if metric == 'precomputed' Test samples. Returns ------- p : array of shape = [n_samples, n_classes], or a list of n_outputs of such arrays if n_outputs > 1. The class probabilities of the input samples. Classes are ordered by lexicographic order. """ X = check_array(X, accept_sparse='csr') neigh_dist, neigh_ind = self.kneighbors(X) classes_ = self.classes_ _y = self._y if not self.outputs_2d_: _y = self._y.reshape((-1, 1)) classes_ = [self.classes_] n_samples = X.shape[0] weights = _get_weights(neigh_dist, self.weights) if weights is None: weights = np.ones_like(neigh_ind) all_rows = np.arange(X.shape[0]) probabilities = [] for k, classes_k in enumerate(classes_): pred_labels = _y[:, k][neigh_ind] proba_k = np.zeros((n_samples, classes_k.size)) # a simple ':' index doesn't work right for i, idx in enumerate(pred_labels.T): # loop is O(n_neighbors) proba_k[all_rows, idx] += weights[:, i] # normalize 'votes' into real [0,1] probabilities normalizer = proba_k.sum(axis=1)[:, np.newaxis] normalizer[normalizer == 0.0] = 1.0 proba_k /= normalizer probabilities.append(proba_k) if not self.outputs_2d_: probabilities = probabilities[0] return probabilities class RadiusNeighborsClassifier(NeighborsBase, RadiusNeighborsMixin, SupervisedIntegerMixin, ClassifierMixin): """Classifier implementing a vote among neighbors within a given radius Read more in the :ref:`User Guide <classification>`. Parameters ---------- radius : float, optional (default = 1.0) Range of parameter space to use by default for :meth`radius_neighbors` queries. weights : str or callable weight function used in prediction. Possible values: - 'uniform' : uniform weights. All points in each neighborhood are weighted equally. - 'distance' : weight points by the inverse of their distance. in this case, closer neighbors of a query point will have a greater influence than neighbors which are further away. - [callable] : a user-defined function which accepts an array of distances, and returns an array of the same shape containing the weights. Uniform weights are used by default. algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional Algorithm used to compute the nearest neighbors: - 'ball_tree' will use :class:`BallTree` - 'kd_tree' will use :class:`KDtree` - 'brute' will use a brute-force search. - 'auto' will attempt to decide the most appropriate algorithm based on the values passed to :meth:`fit` method. Note: fitting on sparse input will override the setting of this parameter, using brute force. leaf_size : int, optional (default = 30) Leaf size passed to BallTree or KDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. metric : string or DistanceMetric object (default='minkowski') the distance metric to use for the tree. The default metric is minkowski, and with p=2 is equivalent to the standard Euclidean metric. See the documentation of the DistanceMetric class for a list of available metrics. p : integer, optional (default = 2) Power parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. outlier_label : int, optional (default = None) Label, which is given for outlier samples (samples with no neighbors on given radius). If set to None, ValueError is raised, when outlier is detected. metric_params : dict, optional (default = None) Additional keyword arguments for the metric function. Examples -------- >>> X = [[0], [1], [2], [3]] >>> y = [0, 0, 1, 1] >>> from sklearn.neighbors import RadiusNeighborsClassifier >>> neigh = RadiusNeighborsClassifier(radius=1.0) >>> neigh.fit(X, y) # doctest: +ELLIPSIS RadiusNeighborsClassifier(...) >>> print(neigh.predict([[1.5]])) [0] See also -------- KNeighborsClassifier RadiusNeighborsRegressor KNeighborsRegressor NearestNeighbors Notes ----- See :ref:`Nearest Neighbors <neighbors>` in the online documentation for a discussion of the choice of ``algorithm`` and ``leaf_size``. http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm """ def __init__(self, radius=1.0, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', outlier_label=None, metric_params=None, **kwargs): self._init_params(radius=radius, algorithm=algorithm, leaf_size=leaf_size, metric=metric, p=p, metric_params=metric_params, **kwargs) self.weights = _check_weights(weights) self.outlier_label = outlier_label def predict(self, X): """Predict the class labels for the provided data Parameters ---------- X : array-like, shape (n_query, n_features), \ or (n_query, n_indexed) if metric == 'precomputed' Test samples. Returns ------- y : array of shape [n_samples] or [n_samples, n_outputs] Class labels for each data sample. """ X = check_array(X, accept_sparse='csr') n_samples = X.shape[0] neigh_dist, neigh_ind = self.radius_neighbors(X) inliers = [i for i, nind in enumerate(neigh_ind) if len(nind) != 0] outliers = [i for i, nind in enumerate(neigh_ind) if len(nind) == 0] classes_ = self.classes_ _y = self._y if not self.outputs_2d_: _y = self._y.reshape((-1, 1)) classes_ = [self.classes_] n_outputs = len(classes_) if self.outlier_label is not None: neigh_dist[outliers] = 1e-6 elif outliers: raise ValueError('No neighbors found for test samples %r, ' 'you can try using larger radius, ' 'give a label for outliers, ' 'or consider removing them from your dataset.' % outliers) weights = _get_weights(neigh_dist, self.weights) y_pred = np.empty((n_samples, n_outputs), dtype=classes_[0].dtype) for k, classes_k in enumerate(classes_): pred_labels = np.array([_y[ind, k] for ind in neigh_ind], dtype=object) if weights is None: mode = np.array([stats.mode(pl)[0] for pl in pred_labels[inliers]], dtype=np.int) else: mode = np.array([weighted_mode(pl, w)[0] for (pl, w) in zip(pred_labels[inliers], weights)], dtype=np.int) mode = mode.ravel() y_pred[inliers, k] = classes_k.take(mode) if outliers: y_pred[outliers, :] = self.outlier_label if not self.outputs_2d_: y_pred = y_pred.ravel() return y_pred
bsd-3-clause
nesterione/scikit-learn
doc/datasets/mldata_fixture.py
367
1183
"""Fixture module to skip the datasets loading when offline Mock urllib2 access to mldata.org and create a temporary data folder. """ from os import makedirs from os.path import join import numpy as np import tempfile import shutil from sklearn import datasets from sklearn.utils.testing import install_mldata_mock from sklearn.utils.testing import uninstall_mldata_mock def globs(globs): # Create a temporary folder for the data fetcher global custom_data_home custom_data_home = tempfile.mkdtemp() makedirs(join(custom_data_home, 'mldata')) globs['custom_data_home'] = custom_data_home return globs def setup_module(): # setup mock urllib2 module to avoid downloading from mldata.org install_mldata_mock({ 'mnist-original': { 'data': np.empty((70000, 784)), 'label': np.repeat(np.arange(10, dtype='d'), 7000), }, 'iris': { 'data': np.empty((150, 4)), }, 'datasets-uci-iris': { 'double0': np.empty((150, 4)), 'class': np.empty((150,)), }, }) def teardown_module(): uninstall_mldata_mock() shutil.rmtree(custom_data_home)
bsd-3-clause
chvogl/tardis
tardis/io/config_reader.py
1
40145
# Module to read the rather complex config data import logging import os import pprint from astropy import constants, units as u import numpy as np import pandas as pd import yaml import tardis from tardis.io.model_reader import read_density_file, \ calculate_density_after_time, read_abundances_file from tardis.io.config_validator import ConfigurationValidator from tardis import atomic from tardis.util import species_string_to_tuple, parse_quantity, \ element_symbol2atomic_number import copy pp = pprint.PrettyPrinter(indent=4) logger = logging.getLogger(__name__) data_dir = os.path.join(tardis.__path__[0], 'data') default_config_definition_file = os.path.join(data_dir, 'tardis_config_definition.yml') #File parsers for different file formats: density_structure_fileparser = {} inv_ni56_efolding_time = 1 / (8.8 * u.day) inv_co56_efolding_time = 1 / (113.7 * u.day) inv_cr48_efolding_time = 1 / (1.29602 * u.day) inv_v48_efolding_time = 1 / (23.0442 * u.day) inv_fe52_efolding_time = 1 / (0.497429 * u.day) inv_mn52_efolding_time = 1 / (0.0211395 * u.day) class ConfigurationError(ValueError): pass def parse_quantity_linspace(quantity_linspace_dictionary, add_one=True): """ parse a dictionary of the following kind {'start': 5000 km/s, 'stop': 10000 km/s, 'num': 1000} Parameters ---------- quantity_linspace_dictionary: ~dict add_one: boolean, default: True Returns ------- ~np.array """ start = parse_quantity(quantity_linspace_dictionary['start']) stop = parse_quantity(quantity_linspace_dictionary['stop']) try: stop = stop.to(start.unit) except u.UnitsError: raise ConfigurationError('"start" and "stop" keyword must be compatible quantities') num = quantity_linspace_dictionary['num'] if add_one: num += 1 return np.linspace(start.value, stop.value, num=num) * start.unit def parse_spectral_bin(spectral_bin_boundary_1, spectral_bin_boundary_2): spectral_bin_boundary_1 = parse_quantity(spectral_bin_boundary_1).to('Angstrom', u.spectral()) spectral_bin_boundary_2 = parse_quantity(spectral_bin_boundary_2).to('Angstrom', u.spectral()) spectrum_start_wavelength = min(spectral_bin_boundary_1, spectral_bin_boundary_2) spectrum_end_wavelength = max(spectral_bin_boundary_1, spectral_bin_boundary_2) return spectrum_start_wavelength, spectrum_end_wavelength def calculate_exponential_density(velocities, v_0, rho0): """ This function computes the exponential density profile. :math:`\\rho = \\rho_0 \\times \\exp \\left( -\\frac{v}{v_0} \\right)` Parameters ---------- velocities : ~astropy.Quantity Array like velocity profile velocity_0 : ~astropy.Quantity reference velocity rho0 : ~astropy.Quantity reference density Returns ------- densities : ~astropy.Quantity """ densities = rho0 * np.exp(-(velocities / v_0)) return densities def calculate_power_law_density(velocities, velocity_0, rho_0, exponent): """ This function computes a descret exponential density profile. :math:`\\rho = \\rho_0 \\times \\left( \\frac{v}{v_0} \\right)^n` Parameters ---------- velocities : ~astropy.Quantity Array like velocity profile velocity_0 : ~astropy.Quantity reference velocity rho0 : ~astropy.Quantity reference density exponent : ~float exponent used in the powerlaw Returns ------- densities : ~astropy.Quantity """ densities = rho_0 * np.power((velocities / velocity_0), exponent) return densities def parse_model_file_section(model_setup_file_dict, time_explosion): def parse_artis_model_setup_files(model_file_section_dict, time_explosion): ###### Reading the structure part of the ARTIS file pair structure_fname = model_file_section_dict['structure_fname'] for i, line in enumerate(file(structure_fname)): if i == 0: no_of_shells = np.int64(line.strip()) elif i == 1: time_of_model = u.Quantity(float(line.strip()), 'day').to('s') elif i == 2: break artis_model_columns = ['velocities', 'mean_densities_0', 'ni56_fraction', 'co56_fraction', 'fe52_fraction', 'cr48_fraction'] artis_model = np.recfromtxt(structure_fname, skip_header=2, usecols=(1, 2, 4, 5, 6, 7), unpack=True, dtype=[(item, np.float64) for item in artis_model_columns]) #converting densities from log(g/cm^3) to g/cm^3 and stretching it to the current ti velocities = u.Quantity(np.append([0], artis_model['velocities']), 'km/s').to('cm/s') mean_densities_0 = u.Quantity(10 ** artis_model['mean_densities_0'], 'g/cm^3') mean_densities = calculate_density_after_time(mean_densities_0, time_of_model, time_explosion) #Verifying information if len(mean_densities) == no_of_shells: logger.debug('Verified ARTIS model structure file %s (no_of_shells=length of dataset)', structure_fname) else: raise ConfigurationError( 'Error in ARTIS file %s - Number of shells not the same as dataset length' % structure_fname) v_inner = velocities[:-1] v_outer = velocities[1:] volumes = (4 * np.pi / 3) * (time_of_model ** 3) * ( v_outer ** 3 - v_inner ** 3) masses = (volumes * mean_densities_0 / constants.M_sun).to(1) logger.info('Read ARTIS configuration file %s - found %d zones with total mass %g Msun', structure_fname, no_of_shells, sum(masses.value)) if 'v_lowest' in model_file_section_dict: v_lowest = parse_quantity(model_file_section_dict['v_lowest']).to('cm/s').value min_shell = v_inner.value.searchsorted(v_lowest) else: min_shell = 1 if 'v_highest' in model_file_section_dict: v_highest = parse_quantity(model_file_section_dict['v_highest']).to('cm/s').value max_shell = v_outer.value.searchsorted(v_highest) else: max_shell = no_of_shells artis_model = artis_model[min_shell:max_shell] v_inner = v_inner[min_shell:max_shell] v_outer = v_outer[min_shell:max_shell] mean_densities = mean_densities[min_shell:max_shell] ###### Reading the abundance part of the ARTIS file pair abundances_fname = model_file_section_dict['abundances_fname'] abundances = pd.DataFrame(np.loadtxt(abundances_fname)[min_shell:max_shell, 1:].transpose(), index=np.arange(1, 31)) ni_stable = abundances.ix[28] - artis_model['ni56_fraction'] co_stable = abundances.ix[27] - artis_model['co56_fraction'] fe_stable = abundances.ix[26] - artis_model['fe52_fraction'] mn_stable = abundances.ix[25] - 0.0 cr_stable = abundances.ix[24] - artis_model['cr48_fraction'] v_stable = abundances.ix[23] - 0.0 ti_stable = abundances.ix[22] - 0.0 abundances.ix[28] = ni_stable abundances.ix[28] += artis_model['ni56_fraction'] * np.exp( -(time_explosion * inv_ni56_efolding_time).to(1).value) abundances.ix[27] = co_stable abundances.ix[27] += artis_model['co56_fraction'] * np.exp( -(time_explosion * inv_co56_efolding_time).to(1).value) abundances.ix[27] += (inv_ni56_efolding_time * artis_model['ni56_fraction'] / (inv_ni56_efolding_time - inv_co56_efolding_time)) * \ (np.exp(-(inv_co56_efolding_time * time_explosion).to(1).value) - np.exp( -(inv_ni56_efolding_time * time_explosion).to(1).value)) abundances.ix[26] = fe_stable abundances.ix[26] += artis_model['fe52_fraction'] * np.exp( -(time_explosion * inv_fe52_efolding_time).to(1).value) abundances.ix[26] += ((artis_model['co56_fraction'] * inv_ni56_efolding_time - artis_model['co56_fraction'] * inv_co56_efolding_time + artis_model['ni56_fraction'] * inv_ni56_efolding_time - artis_model['ni56_fraction'] * inv_co56_efolding_time - artis_model['co56_fraction'] * inv_ni56_efolding_time * np.exp( -(inv_co56_efolding_time * time_explosion).to(1).value) + artis_model['co56_fraction'] * inv_co56_efolding_time * np.exp( -(inv_co56_efolding_time * time_explosion).to(1).value) - artis_model['ni56_fraction'] * inv_ni56_efolding_time * np.exp( -(inv_co56_efolding_time * time_explosion).to(1).value) + artis_model['ni56_fraction'] * inv_co56_efolding_time * np.exp( -(inv_ni56_efolding_time * time_explosion).to(1).value)) / (inv_ni56_efolding_time - inv_co56_efolding_time)) abundances.ix[25] = mn_stable abundances.ix[25] += (inv_fe52_efolding_time * artis_model['fe52_fraction'] / (inv_fe52_efolding_time - inv_mn52_efolding_time)) * \ (np.exp(-(inv_mn52_efolding_time * time_explosion).to(1).value) - np.exp( -(inv_fe52_efolding_time * time_explosion).to(1).value)) abundances.ix[24] = cr_stable abundances.ix[24] += artis_model['cr48_fraction'] * np.exp( -(time_explosion * inv_cr48_efolding_time).to(1).value) abundances.ix[24] += ((artis_model['fe52_fraction'] * inv_fe52_efolding_time - artis_model['fe52_fraction'] * inv_mn52_efolding_time - artis_model['fe52_fraction'] * inv_fe52_efolding_time * np.exp( -(inv_mn52_efolding_time * time_explosion).to(1).value) + artis_model['fe52_fraction'] * inv_mn52_efolding_time * np.exp( -(inv_fe52_efolding_time * time_explosion).to(1).value)) / (inv_fe52_efolding_time - inv_mn52_efolding_time)) abundances.ix[23] = v_stable abundances.ix[23] += (inv_cr48_efolding_time * artis_model['cr48_fraction'] / (inv_cr48_efolding_time - inv_v48_efolding_time)) * \ (np.exp(-(inv_v48_efolding_time * time_explosion).to(1).value) - np.exp( -(inv_cr48_efolding_time * time_explosion).to(1).value)) abundances.ix[22] = ti_stable abundances.ix[22] += ((artis_model['cr48_fraction'] * inv_cr48_efolding_time - artis_model['cr48_fraction'] * inv_v48_efolding_time - artis_model['cr48_fraction'] * inv_cr48_efolding_time * np.exp( -(inv_v48_efolding_time * time_explosion).to(1).value) + artis_model['cr48_fraction'] * inv_v48_efolding_time * np.exp( -(inv_cr48_efolding_time * time_explosion).to(1).value)) / (inv_cr48_efolding_time - inv_v48_efolding_time)) if 'split_shells' in model_file_section_dict: split_shells = int(model_file_section_dict['split_shells']) else: split_shells = 1 if split_shells > 1: logger.info('Increasing the number of shells by a factor of %s' % split_shells) no_of_shells = len(v_inner) velocities = np.linspace(v_inner[0], v_outer[-1], no_of_shells * split_shells + 1) v_inner = velocities[:-1] v_outer = velocities[1:] old_mean_densities = mean_densities mean_densities = np.empty(no_of_shells * split_shells) * old_mean_densities.unit new_abundance_data = np.empty((abundances.values.shape[0], no_of_shells * split_shells)) for i in xrange(split_shells): mean_densities[i::split_shells] = old_mean_densities new_abundance_data[:, i::split_shells] = abundances.values abundances = pd.DataFrame(new_abundance_data, index=abundances.index) #def parser_simple_ascii_model return v_inner, v_outer, mean_densities, abundances model_file_section_parser = {} model_file_section_parser['artis'] = parse_artis_model_setup_files try: parser = model_file_section_parser[model_setup_file_dict['type']] except KeyError: raise ConfigurationError('In abundance file section only types %s are allowed (supplied %s) ' % (model_file_section_parser.keys(), model_file_section_parser['type'])) return parser(model_setup_file_dict, time_explosion) def parse_density_file_section(density_file_dict, time_explosion): density_file_parser = {} def parse_artis_density(density_file_dict, time_explosion): density_file = density_file_dict['name'] for i, line in enumerate(file(density_file)): if i == 0: no_of_shells = np.int64(line.strip()) elif i == 1: time_of_model = u.Quantity(float(line.strip()), 'day').to('s') elif i == 2: break velocities, mean_densities_0 = np.recfromtxt(density_file, skip_header=2, usecols=(1, 2), unpack=True) #converting densities from log(g/cm^3) to g/cm^3 and stretching it to the current ti velocities = u.Quantity(np.append([0], velocities), 'km/s').to('cm/s') mean_densities_0 = u.Quantity(10 ** mean_densities_0, 'g/cm^3') mean_densities = calculate_density_after_time(mean_densities_0, time_of_model, time_explosion) #Verifying information if len(mean_densities) == no_of_shells: logger.debug('Verified ARTIS file %s (no_of_shells=length of dataset)', density_file) else: raise ConfigurationError( 'Error in ARTIS file %s - Number of shells not the same as dataset length' % density_file) min_shell = 1 max_shell = no_of_shells v_inner = velocities[:-1] v_outer = velocities[1:] volumes = (4 * np.pi / 3) * (time_of_model ** 3) * ( v_outer ** 3 - v_inner ** 3) masses = (volumes * mean_densities_0 / constants.M_sun).to(1) logger.info('Read ARTIS configuration file %s - found %d zones with total mass %g Msun', density_file, no_of_shells, sum(masses.value)) if 'v_lowest' in density_file_dict: v_lowest = parse_quantity(density_file_dict['v_lowest']).to('cm/s').value min_shell = v_inner.value.searchsorted(v_lowest) else: min_shell = 1 if 'v_highest' in density_file_dict: v_highest = parse_quantity(density_file_dict['v_highest']).to('cm/s').value max_shell = v_outer.value.searchsorted(v_highest) else: max_shell = no_of_shells v_inner = v_inner[min_shell:max_shell] v_outer = v_outer[min_shell:max_shell] mean_densities = mean_densities[min_shell:max_shell] return v_inner, v_outer, mean_densities, min_shell, max_shell density_file_parser['artis'] = parse_artis_density try: parser = density_file_parser[density_file_dict['type']] except KeyError: raise ConfigurationError('In abundance file section only types %s are allowed (supplied %s) ' % (density_file_parser.keys(), density_file_dict['type'])) return parser(density_file_dict, time_explosion) def parse_density_section(density_dict, v_inner, v_outer, time_explosion): density_parser = {} #Parse density uniform def parse_uniform(density_dict, v_inner, v_outer, time_explosion): no_of_shells = len(v_inner) return density_dict['value'].to('g cm^-3') * np.ones(no_of_shells) density_parser['uniform'] = parse_uniform #Parse density branch85 w7 def parse_branch85(density_dict, v_inner, v_outer, time_explosion): velocities = 0.5 * (v_inner + v_outer) densities = calculate_power_law_density(velocities, density_dict['w7_v_0'], density_dict['w7_rho_0'], -7) densities = calculate_density_after_time(densities, density_dict['w7_time_0'], time_explosion) return densities density_parser['branch85_w7'] = parse_branch85 def parse_power_law(density_dict, v_inner, v_outer, time_explosion): time_0 = density_dict.pop('time_0') rho_0 = density_dict.pop('rho_0') v_0 = density_dict.pop('v_0') exponent = density_dict.pop('exponent') velocities = 0.5 * (v_inner + v_outer) densities = calculate_power_law_density(velocities, v_0, rho_0, exponent) densities = calculate_density_after_time(densities, time_0, time_explosion) return densities density_parser['power_law'] = parse_power_law def parse_exponential(density_dict, v_inner, v_outer, time_explosion): time_0 = density_dict.pop('time_0') rho_0 = density_dict.pop('rho_0') v_0 = density_dict.pop('v_0') velocities = 0.5 * (v_inner + v_outer) densities = calculate_exponential_density(velocities, v_0, rho_0) densities = calculate_density_after_time(densities, time_0, time_explosion) return densities density_parser['exponential'] = parse_exponential try: parser = density_parser[density_dict['type']] except KeyError: raise ConfigurationError('In density section only types %s are allowed (supplied %s) ' % (density_parser.keys(), density_dict['type'])) return parser(density_dict, v_inner, v_outer, time_explosion) def parse_abundance_file_section(abundance_file_dict, abundances, min_shell, max_shell): abundance_file_parser = {} def parse_artis(abundance_file_dict, abundances, min_shell, max_shell): #### ---- debug ---- time_of_model = 0.0 #### fname = abundance_file_dict['name'] max_atom = 30 logger.info("Parsing ARTIS Abundance section from shell %d to %d", min_shell, max_shell) abundances.values[:max_atom, :] = np.loadtxt(fname)[min_shell:max_shell, 1:].transpose() return abundances abundance_file_parser['artis'] = parse_artis try: parser = abundance_file_parser[abundance_file_dict['type']] except KeyError: raise ConfigurationError('In abundance file section only types %s are allowed (supplied %s) ' % (abundance_file_parser.keys(), abundance_file_dict['type'])) return parser(abundance_file_dict, abundances, min_shell, max_shell) def parse_supernova_section(supernova_dict): """ Parse the supernova section Parameters ---------- supernova_dict: dict YAML parsed supernova dict Returns ------- config_dict: dict """ config_dict = {} #parse luminosity luminosity_value, luminosity_unit = supernova_dict['luminosity_requested'].strip().split() if luminosity_unit == 'log_lsun': config_dict['luminosity_requested'] = 10 ** ( float(luminosity_value) + np.log10(constants.L_sun.cgs.value)) * u.erg / u.s else: config_dict['luminosity_requested'] = (float(luminosity_value) * u.Unit(luminosity_unit)).to('erg/s') config_dict['time_explosion'] = parse_quantity(supernova_dict['time_explosion']).to('s') if 'distance' in supernova_dict: config_dict['distance'] = parse_quantity(supernova_dict['distance']) else: config_dict['distance'] = None if 'luminosity_wavelength_start' in supernova_dict: config_dict['luminosity_nu_end'] = parse_quantity(supernova_dict['luminosity_wavelength_start']). \ to('Hz', u.spectral()) else: config_dict['luminosity_nu_end'] = np.inf * u.Hz if 'luminosity_wavelength_end' in supernova_dict: config_dict['luminosity_nu_start'] = parse_quantity(supernova_dict['luminosity_wavelength_end']). \ to('Hz', u.spectral()) else: config_dict['luminosity_nu_start'] = 0.0 * u.Hz return config_dict def parse_spectrum_list2dict(spectrum_list): """ Parse the spectrum list [start, stop, num] to a list """ if spectrum_list[0].unit.physical_type != 'length' and \ spectrum_list[1].unit.physical_type != 'length': raise ValueError('start and end of spectrum need to be a length') spectrum_config_dict = {} spectrum_config_dict['start'] = spectrum_list[0] spectrum_config_dict['end'] = spectrum_list[1] spectrum_config_dict['bins'] = spectrum_list[2] spectrum_frequency = np.linspace( spectrum_config_dict['end'].to('Hz', u.spectral()), spectrum_config_dict['start'].to('Hz', u.spectral()), num=spectrum_config_dict['bins'] + 1) spectrum_config_dict['frequency'] = spectrum_frequency return spectrum_config_dict def parse_convergence_section(convergence_section_dict): """ Parse the convergence section dictionary Parameters ---------- convergence_section_dict: ~dict dictionary """ convergence_parameters = ['damping_constant', 'threshold', 'fraction', 'hold_iterations'] for convergence_variable in ['t_inner', 't_rad', 'w']: if convergence_variable not in convergence_section_dict: convergence_section_dict[convergence_variable] = {} convergence_variable_section = convergence_section_dict[convergence_variable] for param in convergence_parameters: if convergence_variable_section.get(param, None) is None: if param in convergence_section_dict: convergence_section_dict[convergence_variable][param] = ( convergence_section_dict[param]) return convergence_section_dict def calculate_w7_branch85_densities(velocities, time_explosion, time_0=19.9999584, density_coefficient=3e29): """ Generated densities from the fit to W7 in Branch 85 page 620 (citation missing) Parameters ---------- velocities : `~numpy.ndarray` velocities in cm/s time_explosion : `float` time since explosion needed to descale density with expansion time_0 : `float` time in seconds of the w7 model - default 19.999, no reason to change density_coefficient : `float` coefficient for the polynomial - obtained by fitting to W7, no reason to change """ densities = density_coefficient * (velocities * 1e-5) ** -7 densities = calculate_density_after_time(densities, time_0, time_explosion) return densities[1:] class ConfigurationNameSpace(dict): """ The configuration name space class allows to wrap a dictionary and adds utility functions for easy access. Accesses like a.b.c are then possible Code from http://goo.gl/KIaq8I Parameters ---------- config_dict: ~dict configuration dictionary Returns ------- config_ns: ConfigurationNameSpace """ @classmethod def from_yaml(cls, fname): """ Read a configuration from a YAML file Parameters ---------- fname: str filename or path """ try: yaml_dict = yaml.load(file(fname)) except IOError as e: logger.critical('No config file named: %s', fname) raise e return cls.from_config_dict(yaml_dict) @classmethod def from_config_dict(cls, config_dict, config_definition_file=None): """ Validating a config file. Parameters ---------- config_dict : ~dict dictionary of a raw unvalidated config file Returns ------- `tardis.config_reader.Configuration` """ if config_definition_file is None: config_definition_file = default_config_definition_file config_definition = yaml.load(open(config_definition_file)) return cls(ConfigurationValidator(config_definition, config_dict).get_config()) marker = object() def __init__(self, value=None): if value is None: pass elif isinstance(value, dict): for key in value: self.__setitem__(key, value[key]) else: raise TypeError, 'expected dict' def __setitem__(self, key, value): if isinstance(value, dict) and not isinstance(value, ConfigurationNameSpace): value = ConfigurationNameSpace(value) if key in self and hasattr(self[key], 'unit'): value = u.Quantity(value, self[key].unit) dict.__setitem__(self, key, value) def __getitem__(self, key): return super(ConfigurationNameSpace, self).__getitem__(key) def __getattr__(self, item): if item in self: return self[item] else: super(ConfigurationNameSpace, self).__getattribute__(item) __setattr__ = __setitem__ def __dir__(self): return self.keys() def get_config_item(self, config_item_string): """ Get configuration items using a string of type 'a.b.param' Parameters ---------- config_item_string: ~str string of shape 'section1.sectionb.param1' """ config_item_path = config_item_string.split('.') if len(config_item_path) == 1: config_item = config_item_path[0] if config_item.startswith('item'): return self[config_item_path[0]] else: return self[config_item] elif len(config_item_path) == 2 and\ config_item_path[1].startswith('item'): return self[config_item_path[0]][ int(config_item_path[1].replace('item', ''))] else: return self[config_item_path[0]].get_config_item( '.'.join(config_item_path[1:])) def set_config_item(self, config_item_string, value): """ set configuration items using a string of type 'a.b.param' Parameters ---------- config_item_string: ~str string of shape 'section1.sectionb.param1' value: value to set the parameter with it """ config_item_path = config_item_string.split('.') if len(config_item_path) == 1: self[config_item_path[0]] = value elif len(config_item_path) == 2 and \ config_item_path[1].startswith('item'): current_value = self[config_item_path[0]][ int(config_item_path[1].replace('item', ''))] if hasattr(current_value, 'unit'): self[config_item_path[0]][ int(config_item_path[1].replace('item', ''))] =\ u.Quantity(value, current_value.unit) else: self[config_item_path[0]][ int(config_item_path[1].replace('item', ''))] = value else: self[config_item_path[0]].set_config_item( '.'.join(config_item_path[1:]), value) def deepcopy(self): return ConfigurationNameSpace(copy.deepcopy(dict(self))) class Configuration(ConfigurationNameSpace): """ Tardis configuration class """ @classmethod def from_yaml(cls, fname, test_parser=False): try: yaml_dict = yaml.load(open(fname)) except IOError as e: logger.critical('No config file named: %s', fname) raise e tardis_config_version = yaml_dict.get('tardis_config_version', None) if tardis_config_version != 'v1.0': raise ConfigurationError('Currently only tardis_config_version v1.0 supported') return cls.from_config_dict(yaml_dict, test_parser=test_parser) @classmethod def from_config_dict(cls, config_dict, atom_data=None, test_parser=False, config_definition_file=None, validate=True): """ Validating and subsequently parsing a config file. Parameters ---------- config_dict : ~dict dictionary of a raw unvalidated config file atom_data: ~tardis.atomic.AtomData atom data object. if `None` will be tried to be read from atom data file path in the config_dict [default=None] test_parser: ~bool switch on to ignore a working atom_data, mainly useful for testing this reader config_definition_file: ~str path to config definition file, if `None` will be set to the default in the `data` directory that ships with TARDIS validate: ~bool Turn validation on or off. Returns ------- `tardis.config_reader.Configuration` """ if config_definition_file is None: config_definition_file = default_config_definition_file config_definition = yaml.load(open(config_definition_file)) if validate: validated_config_dict = ConfigurationValidator(config_definition, config_dict).get_config() else: validated_config_dict = config_dict #First let's see if we can find an atom_db anywhere: if test_parser: atom_data = None elif 'atom_data' in validated_config_dict.keys(): atom_data_fname = validated_config_dict['atom_data'] validated_config_dict['atom_data_fname'] = atom_data_fname else: raise ConfigurationError('No atom_data key found in config or command line') if atom_data is None and not test_parser: logger.info('Reading Atomic Data from %s', atom_data_fname) atom_data = atomic.AtomData.from_hdf5(atom_data_fname) else: atom_data = atom_data #Parsing supernova dictionary validated_config_dict['supernova']['luminosity_nu_start'] = \ validated_config_dict['supernova']['luminosity_wavelength_end'].to( u.Hz, u.spectral()) try: validated_config_dict['supernova']['luminosity_nu_end'] = \ (validated_config_dict['supernova'] ['luminosity_wavelength_start'].to(u.Hz, u.spectral())) except ZeroDivisionError: validated_config_dict['supernova']['luminosity_nu_end'] = ( np.inf * u.Hz) validated_config_dict['supernova']['time_explosion'] = ( validated_config_dict['supernova']['time_explosion'].cgs) validated_config_dict['supernova']['luminosity_requested'] = ( validated_config_dict['supernova']['luminosity_requested'].cgs) #Parsing the model section model_section = validated_config_dict['model'] v_inner = None v_outer = None mean_densities = None abundances = None structure_section = model_section['structure'] if structure_section['type'] == 'specific': start, stop, num = model_section['structure']['velocity'] num += 1 velocities = np.linspace(start, stop, num) v_inner, v_outer = velocities[:-1], velocities[1:] mean_densities = parse_density_section( model_section['structure']['density'], v_inner, v_outer, validated_config_dict['supernova']['time_explosion']).cgs elif structure_section['type'] == 'file': v_inner, v_outer, mean_densities, inner_boundary_index, \ outer_boundary_index = read_density_file( structure_section['filename'], structure_section['filetype'], validated_config_dict['supernova']['time_explosion'], structure_section['v_inner_boundary'], structure_section['v_outer_boundary']) r_inner = validated_config_dict['supernova']['time_explosion'] * v_inner r_outer = validated_config_dict['supernova']['time_explosion'] * v_outer r_middle = 0.5 * (r_inner + r_outer) structure_validated_config_dict = {} structure_section['v_inner'] = v_inner.cgs structure_section['v_outer'] = v_outer.cgs structure_section['mean_densities'] = mean_densities.cgs no_of_shells = len(v_inner) structure_section['no_of_shells'] = no_of_shells structure_section['r_inner'] = r_inner.cgs structure_section['r_outer'] = r_outer.cgs structure_section['r_middle'] = r_middle.cgs structure_section['volumes'] = ((4. / 3) * np.pi * \ (r_outer ** 3 - r_inner ** 3)).cgs #### TODO the following is legacy code and should be removed validated_config_dict['structure'] = \ validated_config_dict['model']['structure'] # ^^^^^^^^^^^^^^^^ abundances_section = model_section['abundances'] if abundances_section['type'] == 'uniform': abundances = pd.DataFrame(columns=np.arange(no_of_shells), index=pd.Index(np.arange(1, 120), name='atomic_number'), dtype=np.float64) for element_symbol_string in abundances_section: if element_symbol_string == 'type': continue z = element_symbol2atomic_number(element_symbol_string) abundances.ix[z] = float(abundances_section[element_symbol_string]) elif abundances_section['type'] == 'file': index, abundances = read_abundances_file(abundances_section['filename'], abundances_section['filetype'], inner_boundary_index, outer_boundary_index) if len(index) != no_of_shells: raise ConfigurationError('The abundance file specified has not the same number of cells' 'as the specified density profile') abundances = abundances.replace(np.nan, 0.0) abundances = abundances[abundances.sum(axis=1) > 0] norm_factor = abundances.sum(axis=0) if np.any(np.abs(norm_factor - 1) > 1e-12): logger.warning("Abundances have not been normalized to 1. - normalizing") abundances /= norm_factor validated_config_dict['abundances'] = abundances ########### DOING PLASMA SECTION ############### plasma_section = validated_config_dict['plasma'] if plasma_section['initial_t_inner'] < 0.0 * u.K: luminosity_requested = validated_config_dict['supernova']['luminosity_requested'] plasma_section['t_inner'] = ((luminosity_requested / (4 * np.pi * r_inner[0] ** 2 * constants.sigma_sb)) ** .25).to('K') logger.info('"initial_t_inner" is not specified in the plasma ' 'section - initializing to %s with given luminosity', plasma_section['t_inner']) else: plasma_section['t_inner'] = plasma_section['initial_t_inner'] plasma_section['t_rads'] = np.ones(no_of_shells) * \ plasma_section['initial_t_rad'] if plasma_section['disable_electron_scattering'] is False: logger.debug("Electron scattering switched on") validated_config_dict['montecarlo']['sigma_thomson'] = 6.652486e-25 / (u.cm ** 2) else: logger.warn('Disabling electron scattering - this is not physical') validated_config_dict['montecarlo']['sigma_thomson'] = 1e-200 / (u.cm ** 2) ##### NLTE subsection of Plasma start nlte_validated_config_dict = {} nlte_species = [] nlte_section = plasma_section['nlte'] nlte_species_list = nlte_section.pop('species') for species_string in nlte_species_list: nlte_species.append(species_string_to_tuple(species_string)) nlte_validated_config_dict['species'] = nlte_species nlte_validated_config_dict['species_string'] = nlte_species_list nlte_validated_config_dict.update(nlte_section) if 'coronal_approximation' not in nlte_section: logger.debug('NLTE "coronal_approximation" not specified in NLTE section - defaulting to False') nlte_validated_config_dict['coronal_approximation'] = False if 'classical_nebular' not in nlte_section: logger.debug('NLTE "classical_nebular" not specified in NLTE section - defaulting to False') nlte_validated_config_dict['classical_nebular'] = False elif nlte_section: #checks that the dictionary is not empty logger.warn('No "species" given - ignoring other NLTE options given:\n%s', pp.pformat(nlte_section)) if not nlte_validated_config_dict: nlte_validated_config_dict['species'] = [] plasma_section['nlte'] = nlte_validated_config_dict #^^^^^^^^^^^^^^ End of Plasma Section ##### Monte Carlo Section montecarlo_section = validated_config_dict['montecarlo'] if montecarlo_section['last_no_of_packets'] < 0: montecarlo_section['last_no_of_packets'] = \ montecarlo_section['no_of_packets'] default_convergence_section = {'type': 'damped', 'lock_t_inner_cycles': 1, 't_inner_update_exponent': -0.5, 'damping_constant': 0.5} if montecarlo_section['convergence_strategy'] is None: logger.warning('No convergence criteria selected - ' 'just damping by 0.5 for w, t_rad and t_inner') montecarlo_section['convergence_strategy'] = ( parse_convergence_section(default_convergence_section)) else: montecarlo_section['convergence_strategy'] = ( parse_convergence_section( montecarlo_section['convergence_strategy'])) black_body_section = montecarlo_section['black_body_sampling'] montecarlo_section['black_body_sampling'] = {} montecarlo_section['black_body_sampling']['start'] = \ black_body_section[0] montecarlo_section['black_body_sampling']['end'] = \ black_body_section[1] montecarlo_section['black_body_sampling']['samples'] = \ black_body_section[2] ###### END of convergence section reading validated_config_dict['spectrum'] = parse_spectrum_list2dict( validated_config_dict['spectrum']) return cls(validated_config_dict, atom_data) def __init__(self, config_dict, atom_data): super(Configuration, self).__init__(config_dict) self.atom_data = atom_data selected_atomic_numbers = self.abundances.index if atom_data is not None: self.number_densities = (self.abundances * self.structure.mean_densities.to('g/cm^3').value) self.number_densities = self.number_densities.div(self.atom_data.atom_data.mass.ix[selected_atomic_numbers], axis=0) else: logger.critical('atom_data is None, only sensible for testing the parser')
bsd-3-clause
ueshin/apache-spark
python/pyspark/sql/context.py
15
23877
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import sys import warnings from pyspark import since, _NoValue from pyspark.sql.session import _monkey_patch_RDD, SparkSession from pyspark.sql.dataframe import DataFrame from pyspark.sql.readwriter import DataFrameReader from pyspark.sql.streaming import DataStreamReader from pyspark.sql.udf import UDFRegistration # noqa: F401 from pyspark.sql.utils import install_exception_handler __all__ = ["SQLContext", "HiveContext"] class SQLContext(object): """The entry point for working with structured data (rows and columns) in Spark, in Spark 1.x. As of Spark 2.0, this is replaced by :class:`SparkSession`. However, we are keeping the class here for backward compatibility. A SQLContext can be used create :class:`DataFrame`, register :class:`DataFrame` as tables, execute SQL over tables, cache tables, and read parquet files. .. deprecated:: 3.0.0 Use :func:`SparkSession.builder.getOrCreate()` instead. Parameters ---------- sparkContext : :class:`SparkContext` The :class:`SparkContext` backing this SQLContext. sparkSession : :class:`SparkSession` The :class:`SparkSession` around which this SQLContext wraps. jsqlContext : optional An optional JVM Scala SQLContext. If set, we do not instantiate a new SQLContext in the JVM, instead we make all calls to this object. This is only for internal. Examples -------- >>> from datetime import datetime >>> from pyspark.sql import Row >>> sqlContext = SQLContext(sc) >>> allTypes = sc.parallelize([Row(i=1, s="string", d=1.0, l=1, ... b=True, list=[1, 2, 3], dict={"s": 0}, row=Row(a=1), ... time=datetime(2014, 8, 1, 14, 1, 5))]) >>> df = allTypes.toDF() >>> df.createOrReplaceTempView("allTypes") >>> sqlContext.sql('select i+1, d+1, not b, list[1], dict["s"], time, row.a ' ... 'from allTypes where b and i > 0').collect() [Row((i + 1)=2, (d + 1)=2.0, (NOT b)=False, list[1]=2, \ dict[s]=0, time=datetime.datetime(2014, 8, 1, 14, 1, 5), a=1)] >>> df.rdd.map(lambda x: (x.i, x.s, x.d, x.l, x.b, x.time, x.row.a, x.list)).collect() [(1, 'string', 1.0, 1, True, datetime.datetime(2014, 8, 1, 14, 1, 5), 1, [1, 2, 3])] """ _instantiatedContext = None def __init__(self, sparkContext, sparkSession=None, jsqlContext=None): if sparkSession is None: warnings.warn( "Deprecated in 3.0.0. Use SparkSession.builder.getOrCreate() instead.", FutureWarning ) self._sc = sparkContext self._jsc = self._sc._jsc self._jvm = self._sc._jvm if sparkSession is None: sparkSession = SparkSession.builder.getOrCreate() if jsqlContext is None: jsqlContext = sparkSession._jwrapped self.sparkSession = sparkSession self._jsqlContext = jsqlContext _monkey_patch_RDD(self.sparkSession) install_exception_handler() if (SQLContext._instantiatedContext is None or SQLContext._instantiatedContext._sc._jsc is None): SQLContext._instantiatedContext = self @property def _ssql_ctx(self): """Accessor for the JVM Spark SQL context. Subclasses can override this property to provide their own JVM Contexts. """ return self._jsqlContext @property def _conf(self): """Accessor for the JVM SQL-specific configurations""" return self.sparkSession._jsparkSession.sessionState().conf() @classmethod def getOrCreate(cls, sc): """ Get the existing SQLContext or create a new one with given SparkContext. .. versionadded:: 1.6.0 .. deprecated:: 3.0.0 Use :func:`SparkSession.builder.getOrCreate()` instead. Parameters ---------- sc : :class:`SparkContext` """ warnings.warn( "Deprecated in 3.0.0. Use SparkSession.builder.getOrCreate() instead.", FutureWarning ) if (cls._instantiatedContext is None or SQLContext._instantiatedContext._sc._jsc is None): jsqlContext = sc._jvm.SparkSession.builder().sparkContext( sc._jsc.sc()).getOrCreate().sqlContext() sparkSession = SparkSession(sc, jsqlContext.sparkSession()) cls(sc, sparkSession, jsqlContext) return cls._instantiatedContext def newSession(self): """ Returns a new SQLContext as new session, that has separate SQLConf, registered temporary views and UDFs, but shared SparkContext and table cache. .. versionadded:: 1.6.0 """ return self.__class__(self._sc, self.sparkSession.newSession()) def setConf(self, key, value): """Sets the given Spark SQL configuration property. .. versionadded:: 1.3.0 """ self.sparkSession.conf.set(key, value) def getConf(self, key, defaultValue=_NoValue): """Returns the value of Spark SQL configuration property for the given key. If the key is not set and defaultValue is set, return defaultValue. If the key is not set and defaultValue is not set, return the system default value. .. versionadded:: 1.3.0 Examples -------- >>> sqlContext.getConf("spark.sql.shuffle.partitions") '200' >>> sqlContext.getConf("spark.sql.shuffle.partitions", "10") '10' >>> sqlContext.setConf("spark.sql.shuffle.partitions", "50") >>> sqlContext.getConf("spark.sql.shuffle.partitions", "10") '50' """ return self.sparkSession.conf.get(key, defaultValue) @property def udf(self): """Returns a :class:`UDFRegistration` for UDF registration. .. versionadded:: 1.3.1 Returns ------- :class:`UDFRegistration` """ return self.sparkSession.udf def range(self, start, end=None, step=1, numPartitions=None): """ Create a :class:`DataFrame` with single :class:`pyspark.sql.types.LongType` column named ``id``, containing elements in a range from ``start`` to ``end`` (exclusive) with step value ``step``. .. versionadded:: 1.4.0 Parameters ---------- start : int the start value end : int, optional the end value (exclusive) step : int, optional the incremental step (default: 1) numPartitions : int, optional the number of partitions of the DataFrame Returns ------- :class:`DataFrame` Examples -------- >>> sqlContext.range(1, 7, 2).collect() [Row(id=1), Row(id=3), Row(id=5)] If only one argument is specified, it will be used as the end value. >>> sqlContext.range(3).collect() [Row(id=0), Row(id=1), Row(id=2)] """ return self.sparkSession.range(start, end, step, numPartitions) def registerFunction(self, name, f, returnType=None): """An alias for :func:`spark.udf.register`. See :meth:`pyspark.sql.UDFRegistration.register`. .. versionadded:: 1.2.0 .. deprecated:: 2.3.0 Use :func:`spark.udf.register` instead. """ warnings.warn( "Deprecated in 2.3.0. Use spark.udf.register instead.", FutureWarning ) return self.sparkSession.udf.register(name, f, returnType) def registerJavaFunction(self, name, javaClassName, returnType=None): """An alias for :func:`spark.udf.registerJavaFunction`. See :meth:`pyspark.sql.UDFRegistration.registerJavaFunction`. .. versionadded:: 2.1.0 .. deprecated:: 2.3.0 Use :func:`spark.udf.registerJavaFunction` instead. """ warnings.warn( "Deprecated in 2.3.0. Use spark.udf.registerJavaFunction instead.", FutureWarning ) return self.sparkSession.udf.registerJavaFunction(name, javaClassName, returnType) # TODO(andrew): delete this once we refactor things to take in SparkSession def _inferSchema(self, rdd, samplingRatio=None): """ Infer schema from an RDD of Row or tuple. Parameters ---------- rdd : :class:`RDD` an RDD of Row or tuple samplingRatio : float, optional sampling ratio, or no sampling (default) Returns ------- :class:`pyspark.sql.types.StructType` """ return self.sparkSession._inferSchema(rdd, samplingRatio) def createDataFrame(self, data, schema=None, samplingRatio=None, verifySchema=True): """ Creates a :class:`DataFrame` from an :class:`RDD`, a list or a :class:`pandas.DataFrame`. When ``schema`` is a list of column names, the type of each column will be inferred from ``data``. When ``schema`` is ``None``, it will try to infer the schema (column names and types) from ``data``, which should be an RDD of :class:`Row`, or :class:`namedtuple`, or :class:`dict`. When ``schema`` is :class:`pyspark.sql.types.DataType` or a datatype string it must match the real data, or an exception will be thrown at runtime. If the given schema is not :class:`pyspark.sql.types.StructType`, it will be wrapped into a :class:`pyspark.sql.types.StructType` as its only field, and the field name will be "value", each record will also be wrapped into a tuple, which can be converted to row later. If schema inference is needed, ``samplingRatio`` is used to determined the ratio of rows used for schema inference. The first row will be used if ``samplingRatio`` is ``None``. .. versionadded:: 1.3.0 .. versionchanged:: 2.0.0 The ``schema`` parameter can be a :class:`pyspark.sql.types.DataType` or a datatype string after 2.0. If it's not a :class:`pyspark.sql.types.StructType`, it will be wrapped into a :class:`pyspark.sql.types.StructType` and each record will also be wrapped into a tuple. .. versionchanged:: 2.1.0 Added verifySchema. Parameters ---------- data : :class:`RDD` or iterable an RDD of any kind of SQL data representation (:class:`Row`, :class:`tuple`, ``int``, ``boolean``, etc.), or :class:`list`, or :class:`pandas.DataFrame`. schema : :class:`pyspark.sql.types.DataType`, str or list, optional a :class:`pyspark.sql.types.DataType` or a datatype string or a list of column names, default is None. The data type string format equals to :class:`pyspark.sql.types.DataType.simpleString`, except that top level struct type can omit the ``struct<>`` and atomic types use ``typeName()`` as their format, e.g. use ``byte`` instead of ``tinyint`` for :class:`pyspark.sql.types.ByteType`. We can also use ``int`` as a short name for :class:`pyspark.sql.types.IntegerType`. samplingRatio : float, optional the sample ratio of rows used for inferring verifySchema : bool, optional verify data types of every row against schema. Enabled by default. Returns ------- :class:`DataFrame` Examples -------- >>> l = [('Alice', 1)] >>> sqlContext.createDataFrame(l).collect() [Row(_1='Alice', _2=1)] >>> sqlContext.createDataFrame(l, ['name', 'age']).collect() [Row(name='Alice', age=1)] >>> d = [{'name': 'Alice', 'age': 1}] >>> sqlContext.createDataFrame(d).collect() [Row(age=1, name='Alice')] >>> rdd = sc.parallelize(l) >>> sqlContext.createDataFrame(rdd).collect() [Row(_1='Alice', _2=1)] >>> df = sqlContext.createDataFrame(rdd, ['name', 'age']) >>> df.collect() [Row(name='Alice', age=1)] >>> from pyspark.sql import Row >>> Person = Row('name', 'age') >>> person = rdd.map(lambda r: Person(*r)) >>> df2 = sqlContext.createDataFrame(person) >>> df2.collect() [Row(name='Alice', age=1)] >>> from pyspark.sql.types import * >>> schema = StructType([ ... StructField("name", StringType(), True), ... StructField("age", IntegerType(), True)]) >>> df3 = sqlContext.createDataFrame(rdd, schema) >>> df3.collect() [Row(name='Alice', age=1)] >>> sqlContext.createDataFrame(df.toPandas()).collect() # doctest: +SKIP [Row(name='Alice', age=1)] >>> sqlContext.createDataFrame(pandas.DataFrame([[1, 2]])).collect() # doctest: +SKIP [Row(0=1, 1=2)] >>> sqlContext.createDataFrame(rdd, "a: string, b: int").collect() [Row(a='Alice', b=1)] >>> rdd = rdd.map(lambda row: row[1]) >>> sqlContext.createDataFrame(rdd, "int").collect() [Row(value=1)] >>> sqlContext.createDataFrame(rdd, "boolean").collect() # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... Py4JJavaError: ... """ return self.sparkSession.createDataFrame(data, schema, samplingRatio, verifySchema) def registerDataFrameAsTable(self, df, tableName): """Registers the given :class:`DataFrame` as a temporary table in the catalog. Temporary tables exist only during the lifetime of this instance of :class:`SQLContext`. .. versionadded:: 1.3.0 Examples -------- >>> sqlContext.registerDataFrameAsTable(df, "table1") """ df.createOrReplaceTempView(tableName) def dropTempTable(self, tableName): """ Remove the temporary table from catalog. .. versionadded:: 1.6.0 Examples -------- >>> sqlContext.registerDataFrameAsTable(df, "table1") >>> sqlContext.dropTempTable("table1") """ self.sparkSession.catalog.dropTempView(tableName) def createExternalTable(self, tableName, path=None, source=None, schema=None, **options): """Creates an external table based on the dataset in a data source. It returns the DataFrame associated with the external table. The data source is specified by the ``source`` and a set of ``options``. If ``source`` is not specified, the default data source configured by ``spark.sql.sources.default`` will be used. Optionally, a schema can be provided as the schema of the returned :class:`DataFrame` and created external table. .. versionadded:: 1.3.0 Returns ------- :class:`DataFrame` """ return self.sparkSession.catalog.createExternalTable( tableName, path, source, schema, **options) def sql(self, sqlQuery): """Returns a :class:`DataFrame` representing the result of the given query. .. versionadded:: 1.0.0 Returns ------- :class:`DataFrame` Examples -------- >>> sqlContext.registerDataFrameAsTable(df, "table1") >>> df2 = sqlContext.sql("SELECT field1 AS f1, field2 as f2 from table1") >>> df2.collect() [Row(f1=1, f2='row1'), Row(f1=2, f2='row2'), Row(f1=3, f2='row3')] """ return self.sparkSession.sql(sqlQuery) def table(self, tableName): """Returns the specified table or view as a :class:`DataFrame`. .. versionadded:: 1.0.0 Returns ------- :class:`DataFrame` Examples -------- >>> sqlContext.registerDataFrameAsTable(df, "table1") >>> df2 = sqlContext.table("table1") >>> sorted(df.collect()) == sorted(df2.collect()) True """ return self.sparkSession.table(tableName) def tables(self, dbName=None): """Returns a :class:`DataFrame` containing names of tables in the given database. If ``dbName`` is not specified, the current database will be used. The returned DataFrame has two columns: ``tableName`` and ``isTemporary`` (a column with :class:`BooleanType` indicating if a table is a temporary one or not). .. versionadded:: 1.3.0 Parameters ---------- dbName: str, optional name of the database to use. Returns ------- :class:`DataFrame` Examples -------- >>> sqlContext.registerDataFrameAsTable(df, "table1") >>> df2 = sqlContext.tables() >>> df2.filter("tableName = 'table1'").first() Row(namespace='', tableName='table1', isTemporary=True) """ if dbName is None: return DataFrame(self._ssql_ctx.tables(), self) else: return DataFrame(self._ssql_ctx.tables(dbName), self) def tableNames(self, dbName=None): """Returns a list of names of tables in the database ``dbName``. .. versionadded:: 1.3.0 Parameters ---------- dbName: str name of the database to use. Default to the current database. Returns ------- list list of table names, in string >>> sqlContext.registerDataFrameAsTable(df, "table1") >>> "table1" in sqlContext.tableNames() True >>> "table1" in sqlContext.tableNames("default") True """ if dbName is None: return [name for name in self._ssql_ctx.tableNames()] else: return [name for name in self._ssql_ctx.tableNames(dbName)] @since(1.0) def cacheTable(self, tableName): """Caches the specified table in-memory.""" self._ssql_ctx.cacheTable(tableName) @since(1.0) def uncacheTable(self, tableName): """Removes the specified table from the in-memory cache.""" self._ssql_ctx.uncacheTable(tableName) @since(1.3) def clearCache(self): """Removes all cached tables from the in-memory cache. """ self._ssql_ctx.clearCache() @property def read(self): """ Returns a :class:`DataFrameReader` that can be used to read data in as a :class:`DataFrame`. .. versionadded:: 1.4.0 Returns ------- :class:`DataFrameReader` """ return DataFrameReader(self) @property def readStream(self): """ Returns a :class:`DataStreamReader` that can be used to read data streams as a streaming :class:`DataFrame`. .. versionadded:: 2.0.0 Notes ----- This API is evolving. Returns ------- :class:`DataStreamReader` >>> text_sdf = sqlContext.readStream.text(tempfile.mkdtemp()) >>> text_sdf.isStreaming True """ return DataStreamReader(self) @property def streams(self): """Returns a :class:`StreamingQueryManager` that allows managing all the :class:`StreamingQuery` StreamingQueries active on `this` context. .. versionadded:: 2.0.0 Notes ----- This API is evolving. """ from pyspark.sql.streaming import StreamingQueryManager return StreamingQueryManager(self._ssql_ctx.streams()) class HiveContext(SQLContext): """A variant of Spark SQL that integrates with data stored in Hive. Configuration for Hive is read from ``hive-site.xml`` on the classpath. It supports running both SQL and HiveQL commands. .. deprecated:: 2.0.0 Use SparkSession.builder.enableHiveSupport().getOrCreate(). Parameters ---------- sparkContext : :class:`SparkContext` The SparkContext to wrap. jhiveContext : optional An optional JVM Scala HiveContext. If set, we do not instantiate a new :class:`HiveContext` in the JVM, instead we make all calls to this object. This is only for internal use. """ def __init__(self, sparkContext, jhiveContext=None): warnings.warn( "HiveContext is deprecated in Spark 2.0.0. Please use " + "SparkSession.builder.enableHiveSupport().getOrCreate() instead.", FutureWarning ) if jhiveContext is None: sparkContext._conf.set("spark.sql.catalogImplementation", "hive") sparkSession = SparkSession.builder._sparkContext(sparkContext).getOrCreate() else: sparkSession = SparkSession(sparkContext, jhiveContext.sparkSession()) SQLContext.__init__(self, sparkContext, sparkSession, jhiveContext) @classmethod def _createForTesting(cls, sparkContext): """(Internal use only) Create a new HiveContext for testing. All test code that touches HiveContext *must* go through this method. Otherwise, you may end up launching multiple derby instances and encounter with incredibly confusing error messages. """ jsc = sparkContext._jsc.sc() jtestHive = sparkContext._jvm.org.apache.spark.sql.hive.test.TestHiveContext(jsc, False) return cls(sparkContext, jtestHive) def refreshTable(self, tableName): """Invalidate and refresh all the cached the metadata of the given table. For performance reasons, Spark SQL or the external data source library it uses might cache certain metadata about a table, such as the location of blocks. When those change outside of Spark SQL, users should call this function to invalidate the cache. """ self._ssql_ctx.refreshTable(tableName) def _test(): import os import doctest import tempfile from pyspark.context import SparkContext from pyspark.sql import Row, SQLContext import pyspark.sql.context os.chdir(os.environ["SPARK_HOME"]) globs = pyspark.sql.context.__dict__.copy() sc = SparkContext('local[4]', 'PythonTest') globs['tempfile'] = tempfile globs['os'] = os globs['sc'] = sc globs['sqlContext'] = SQLContext(sc) globs['rdd'] = rdd = sc.parallelize( [Row(field1=1, field2="row1"), Row(field1=2, field2="row2"), Row(field1=3, field2="row3")] ) globs['df'] = rdd.toDF() jsonStrings = [ '{"field1": 1, "field2": "row1", "field3":{"field4":11}}', '{"field1" : 2, "field3":{"field4":22, "field5": [10, 11]},"field6":[{"field7": "row2"}]}', '{"field1" : null, "field2": "row3", "field3":{"field4":33, "field5": []}}' ] globs['jsonStrings'] = jsonStrings globs['json'] = sc.parallelize(jsonStrings) (failure_count, test_count) = doctest.testmod( pyspark.sql.context, globs=globs, optionflags=doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE) globs['sc'].stop() if failure_count: sys.exit(-1) if __name__ == "__main__": _test()
apache-2.0
darshanthaker/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/_cm.py
70
375423
""" Color data and pre-defined cmap objects. This is a helper for cm.py, originally part of that file. Separating the data (this file) from cm.py makes both easier to deal with. Objects visible in cm.py are the individual cmap objects ('autumn', etc.) and a dictionary, 'datad', including all of these objects. """ import matplotlib as mpl import matplotlib.colors as colors LUTSIZE = mpl.rcParams['image.lut'] _binary_data = { 'red' : ((0., 1., 1.), (1., 0., 0.)), 'green': ((0., 1., 1.), (1., 0., 0.)), 'blue' : ((0., 1., 1.), (1., 0., 0.)) } _bone_data = {'red': ((0., 0., 0.),(1.0, 1.0, 1.0)), 'green': ((0., 0., 0.),(1.0, 1.0, 1.0)), 'blue': ((0., 0., 0.),(1.0, 1.0, 1.0))} _autumn_data = {'red': ((0., 1.0, 1.0),(1.0, 1.0, 1.0)), 'green': ((0., 0., 0.),(1.0, 1.0, 1.0)), 'blue': ((0., 0., 0.),(1.0, 0., 0.))} _bone_data = {'red': ((0., 0., 0.),(0.746032, 0.652778, 0.652778),(1.0, 1.0, 1.0)), 'green': ((0., 0., 0.),(0.365079, 0.319444, 0.319444), (0.746032, 0.777778, 0.777778),(1.0, 1.0, 1.0)), 'blue': ((0., 0., 0.),(0.365079, 0.444444, 0.444444),(1.0, 1.0, 1.0))} _cool_data = {'red': ((0., 0., 0.), (1.0, 1.0, 1.0)), 'green': ((0., 1., 1.), (1.0, 0., 0.)), 'blue': ((0., 1., 1.), (1.0, 1., 1.))} _copper_data = {'red': ((0., 0., 0.),(0.809524, 1.000000, 1.000000),(1.0, 1.0, 1.0)), 'green': ((0., 0., 0.),(1.0, 0.7812, 0.7812)), 'blue': ((0., 0., 0.),(1.0, 0.4975, 0.4975))} _flag_data = {'red': ((0., 1., 1.),(0.015873, 1.000000, 1.000000), (0.031746, 0.000000, 0.000000),(0.047619, 0.000000, 0.000000), (0.063492, 1.000000, 1.000000),(0.079365, 1.000000, 1.000000), (0.095238, 0.000000, 0.000000),(0.111111, 0.000000, 0.000000), (0.126984, 1.000000, 1.000000),(0.142857, 1.000000, 1.000000), (0.158730, 0.000000, 0.000000),(0.174603, 0.000000, 0.000000), (0.190476, 1.000000, 1.000000),(0.206349, 1.000000, 1.000000), (0.222222, 0.000000, 0.000000),(0.238095, 0.000000, 0.000000), (0.253968, 1.000000, 1.000000),(0.269841, 1.000000, 1.000000), (0.285714, 0.000000, 0.000000),(0.301587, 0.000000, 0.000000), (0.317460, 1.000000, 1.000000),(0.333333, 1.000000, 1.000000), (0.349206, 0.000000, 0.000000),(0.365079, 0.000000, 0.000000), (0.380952, 1.000000, 1.000000),(0.396825, 1.000000, 1.000000), (0.412698, 0.000000, 0.000000),(0.428571, 0.000000, 0.000000), (0.444444, 1.000000, 1.000000),(0.460317, 1.000000, 1.000000), (0.476190, 0.000000, 0.000000),(0.492063, 0.000000, 0.000000), (0.507937, 1.000000, 1.000000),(0.523810, 1.000000, 1.000000), (0.539683, 0.000000, 0.000000),(0.555556, 0.000000, 0.000000), (0.571429, 1.000000, 1.000000),(0.587302, 1.000000, 1.000000), (0.603175, 0.000000, 0.000000),(0.619048, 0.000000, 0.000000), (0.634921, 1.000000, 1.000000),(0.650794, 1.000000, 1.000000), (0.666667, 0.000000, 0.000000),(0.682540, 0.000000, 0.000000), (0.698413, 1.000000, 1.000000),(0.714286, 1.000000, 1.000000), (0.730159, 0.000000, 0.000000),(0.746032, 0.000000, 0.000000), (0.761905, 1.000000, 1.000000),(0.777778, 1.000000, 1.000000), (0.793651, 0.000000, 0.000000),(0.809524, 0.000000, 0.000000), (0.825397, 1.000000, 1.000000),(0.841270, 1.000000, 1.000000), (0.857143, 0.000000, 0.000000),(0.873016, 0.000000, 0.000000), (0.888889, 1.000000, 1.000000),(0.904762, 1.000000, 1.000000), (0.920635, 0.000000, 0.000000),(0.936508, 0.000000, 0.000000), (0.952381, 1.000000, 1.000000),(0.968254, 1.000000, 1.000000), (0.984127, 0.000000, 0.000000),(1.0, 0., 0.)), 'green': ((0., 0., 0.),(0.015873, 1.000000, 1.000000), (0.031746, 0.000000, 0.000000),(0.063492, 0.000000, 0.000000), (0.079365, 1.000000, 1.000000),(0.095238, 0.000000, 0.000000), (0.126984, 0.000000, 0.000000),(0.142857, 1.000000, 1.000000), (0.158730, 0.000000, 0.000000),(0.190476, 0.000000, 0.000000), (0.206349, 1.000000, 1.000000),(0.222222, 0.000000, 0.000000), (0.253968, 0.000000, 0.000000),(0.269841, 1.000000, 1.000000), (0.285714, 0.000000, 0.000000),(0.317460, 0.000000, 0.000000), (0.333333, 1.000000, 1.000000),(0.349206, 0.000000, 0.000000), (0.380952, 0.000000, 0.000000),(0.396825, 1.000000, 1.000000), (0.412698, 0.000000, 0.000000),(0.444444, 0.000000, 0.000000), (0.460317, 1.000000, 1.000000),(0.476190, 0.000000, 0.000000), (0.507937, 0.000000, 0.000000),(0.523810, 1.000000, 1.000000), (0.539683, 0.000000, 0.000000),(0.571429, 0.000000, 0.000000), (0.587302, 1.000000, 1.000000),(0.603175, 0.000000, 0.000000), (0.634921, 0.000000, 0.000000),(0.650794, 1.000000, 1.000000), (0.666667, 0.000000, 0.000000),(0.698413, 0.000000, 0.000000), (0.714286, 1.000000, 1.000000),(0.730159, 0.000000, 0.000000), (0.761905, 0.000000, 0.000000),(0.777778, 1.000000, 1.000000), (0.793651, 0.000000, 0.000000),(0.825397, 0.000000, 0.000000), (0.841270, 1.000000, 1.000000),(0.857143, 0.000000, 0.000000), (0.888889, 0.000000, 0.000000),(0.904762, 1.000000, 1.000000), (0.920635, 0.000000, 0.000000),(0.952381, 0.000000, 0.000000), (0.968254, 1.000000, 1.000000),(0.984127, 0.000000, 0.000000), (1.0, 0., 0.)), 'blue': ((0., 0., 0.),(0.015873, 1.000000, 1.000000), (0.031746, 1.000000, 1.000000),(0.047619, 0.000000, 0.000000), (0.063492, 0.000000, 0.000000),(0.079365, 1.000000, 1.000000), (0.095238, 1.000000, 1.000000),(0.111111, 0.000000, 0.000000), (0.126984, 0.000000, 0.000000),(0.142857, 1.000000, 1.000000), (0.158730, 1.000000, 1.000000),(0.174603, 0.000000, 0.000000), (0.190476, 0.000000, 0.000000),(0.206349, 1.000000, 1.000000), (0.222222, 1.000000, 1.000000),(0.238095, 0.000000, 0.000000), (0.253968, 0.000000, 0.000000),(0.269841, 1.000000, 1.000000), (0.285714, 1.000000, 1.000000),(0.301587, 0.000000, 0.000000), (0.317460, 0.000000, 0.000000),(0.333333, 1.000000, 1.000000), (0.349206, 1.000000, 1.000000),(0.365079, 0.000000, 0.000000), (0.380952, 0.000000, 0.000000),(0.396825, 1.000000, 1.000000), (0.412698, 1.000000, 1.000000),(0.428571, 0.000000, 0.000000), (0.444444, 0.000000, 0.000000),(0.460317, 1.000000, 1.000000), (0.476190, 1.000000, 1.000000),(0.492063, 0.000000, 0.000000), (0.507937, 0.000000, 0.000000),(0.523810, 1.000000, 1.000000), (0.539683, 1.000000, 1.000000),(0.555556, 0.000000, 0.000000), (0.571429, 0.000000, 0.000000),(0.587302, 1.000000, 1.000000), (0.603175, 1.000000, 1.000000),(0.619048, 0.000000, 0.000000), (0.634921, 0.000000, 0.000000),(0.650794, 1.000000, 1.000000), (0.666667, 1.000000, 1.000000),(0.682540, 0.000000, 0.000000), (0.698413, 0.000000, 0.000000),(0.714286, 1.000000, 1.000000), (0.730159, 1.000000, 1.000000),(0.746032, 0.000000, 0.000000), (0.761905, 0.000000, 0.000000),(0.777778, 1.000000, 1.000000), (0.793651, 1.000000, 1.000000),(0.809524, 0.000000, 0.000000), (0.825397, 0.000000, 0.000000),(0.841270, 1.000000, 1.000000), (0.857143, 1.000000, 1.000000),(0.873016, 0.000000, 0.000000), (0.888889, 0.000000, 0.000000),(0.904762, 1.000000, 1.000000), (0.920635, 1.000000, 1.000000),(0.936508, 0.000000, 0.000000), (0.952381, 0.000000, 0.000000),(0.968254, 1.000000, 1.000000), (0.984127, 1.000000, 1.000000),(1.0, 0., 0.))} _gray_data = {'red': ((0., 0, 0), (1., 1, 1)), 'green': ((0., 0, 0), (1., 1, 1)), 'blue': ((0., 0, 0), (1., 1, 1))} _hot_data = {'red': ((0., 0.0416, 0.0416),(0.365079, 1.000000, 1.000000),(1.0, 1.0, 1.0)), 'green': ((0., 0., 0.),(0.365079, 0.000000, 0.000000), (0.746032, 1.000000, 1.000000),(1.0, 1.0, 1.0)), 'blue': ((0., 0., 0.),(0.746032, 0.000000, 0.000000),(1.0, 1.0, 1.0))} _hsv_data = {'red': ((0., 1., 1.),(0.158730, 1.000000, 1.000000), (0.174603, 0.968750, 0.968750),(0.333333, 0.031250, 0.031250), (0.349206, 0.000000, 0.000000),(0.666667, 0.000000, 0.000000), (0.682540, 0.031250, 0.031250),(0.841270, 0.968750, 0.968750), (0.857143, 1.000000, 1.000000),(1.0, 1.0, 1.0)), 'green': ((0., 0., 0.),(0.158730, 0.937500, 0.937500), (0.174603, 1.000000, 1.000000),(0.507937, 1.000000, 1.000000), (0.666667, 0.062500, 0.062500),(0.682540, 0.000000, 0.000000), (1.0, 0., 0.)), 'blue': ((0., 0., 0.),(0.333333, 0.000000, 0.000000), (0.349206, 0.062500, 0.062500),(0.507937, 1.000000, 1.000000), (0.841270, 1.000000, 1.000000),(0.857143, 0.937500, 0.937500), (1.0, 0.09375, 0.09375))} _jet_data = {'red': ((0., 0, 0), (0.35, 0, 0), (0.66, 1, 1), (0.89,1, 1), (1, 0.5, 0.5)), 'green': ((0., 0, 0), (0.125,0, 0), (0.375,1, 1), (0.64,1, 1), (0.91,0,0), (1, 0, 0)), 'blue': ((0., 0.5, 0.5), (0.11, 1, 1), (0.34, 1, 1), (0.65,0, 0), (1, 0, 0))} _pink_data = {'red': ((0., 0.1178, 0.1178),(0.015873, 0.195857, 0.195857), (0.031746, 0.250661, 0.250661),(0.047619, 0.295468, 0.295468), (0.063492, 0.334324, 0.334324),(0.079365, 0.369112, 0.369112), (0.095238, 0.400892, 0.400892),(0.111111, 0.430331, 0.430331), (0.126984, 0.457882, 0.457882),(0.142857, 0.483867, 0.483867), (0.158730, 0.508525, 0.508525),(0.174603, 0.532042, 0.532042), (0.190476, 0.554563, 0.554563),(0.206349, 0.576204, 0.576204), (0.222222, 0.597061, 0.597061),(0.238095, 0.617213, 0.617213), (0.253968, 0.636729, 0.636729),(0.269841, 0.655663, 0.655663), (0.285714, 0.674066, 0.674066),(0.301587, 0.691980, 0.691980), (0.317460, 0.709441, 0.709441),(0.333333, 0.726483, 0.726483), (0.349206, 0.743134, 0.743134),(0.365079, 0.759421, 0.759421), (0.380952, 0.766356, 0.766356),(0.396825, 0.773229, 0.773229), (0.412698, 0.780042, 0.780042),(0.428571, 0.786796, 0.786796), (0.444444, 0.793492, 0.793492),(0.460317, 0.800132, 0.800132), (0.476190, 0.806718, 0.806718),(0.492063, 0.813250, 0.813250), (0.507937, 0.819730, 0.819730),(0.523810, 0.826160, 0.826160), (0.539683, 0.832539, 0.832539),(0.555556, 0.838870, 0.838870), (0.571429, 0.845154, 0.845154),(0.587302, 0.851392, 0.851392), (0.603175, 0.857584, 0.857584),(0.619048, 0.863731, 0.863731), (0.634921, 0.869835, 0.869835),(0.650794, 0.875897, 0.875897), (0.666667, 0.881917, 0.881917),(0.682540, 0.887896, 0.887896), (0.698413, 0.893835, 0.893835),(0.714286, 0.899735, 0.899735), (0.730159, 0.905597, 0.905597),(0.746032, 0.911421, 0.911421), (0.761905, 0.917208, 0.917208),(0.777778, 0.922958, 0.922958), (0.793651, 0.928673, 0.928673),(0.809524, 0.934353, 0.934353), (0.825397, 0.939999, 0.939999),(0.841270, 0.945611, 0.945611), (0.857143, 0.951190, 0.951190),(0.873016, 0.956736, 0.956736), (0.888889, 0.962250, 0.962250),(0.904762, 0.967733, 0.967733), (0.920635, 0.973185, 0.973185),(0.936508, 0.978607, 0.978607), (0.952381, 0.983999, 0.983999),(0.968254, 0.989361, 0.989361), (0.984127, 0.994695, 0.994695),(1.0, 1.0, 1.0)), 'green': ((0., 0., 0.),(0.015873, 0.102869, 0.102869), (0.031746, 0.145479, 0.145479),(0.047619, 0.178174, 0.178174), (0.063492, 0.205738, 0.205738),(0.079365, 0.230022, 0.230022), (0.095238, 0.251976, 0.251976),(0.111111, 0.272166, 0.272166), (0.126984, 0.290957, 0.290957),(0.142857, 0.308607, 0.308607), (0.158730, 0.325300, 0.325300),(0.174603, 0.341178, 0.341178), (0.190476, 0.356348, 0.356348),(0.206349, 0.370899, 0.370899), (0.222222, 0.384900, 0.384900),(0.238095, 0.398410, 0.398410), (0.253968, 0.411476, 0.411476),(0.269841, 0.424139, 0.424139), (0.285714, 0.436436, 0.436436),(0.301587, 0.448395, 0.448395), (0.317460, 0.460044, 0.460044),(0.333333, 0.471405, 0.471405), (0.349206, 0.482498, 0.482498),(0.365079, 0.493342, 0.493342), (0.380952, 0.517549, 0.517549),(0.396825, 0.540674, 0.540674), (0.412698, 0.562849, 0.562849),(0.428571, 0.584183, 0.584183), (0.444444, 0.604765, 0.604765),(0.460317, 0.624669, 0.624669), (0.476190, 0.643958, 0.643958),(0.492063, 0.662687, 0.662687), (0.507937, 0.680900, 0.680900),(0.523810, 0.698638, 0.698638), (0.539683, 0.715937, 0.715937),(0.555556, 0.732828, 0.732828), (0.571429, 0.749338, 0.749338),(0.587302, 0.765493, 0.765493), (0.603175, 0.781313, 0.781313),(0.619048, 0.796819, 0.796819), (0.634921, 0.812029, 0.812029),(0.650794, 0.826960, 0.826960), (0.666667, 0.841625, 0.841625),(0.682540, 0.856040, 0.856040), (0.698413, 0.870216, 0.870216),(0.714286, 0.884164, 0.884164), (0.730159, 0.897896, 0.897896),(0.746032, 0.911421, 0.911421), (0.761905, 0.917208, 0.917208),(0.777778, 0.922958, 0.922958), (0.793651, 0.928673, 0.928673),(0.809524, 0.934353, 0.934353), (0.825397, 0.939999, 0.939999),(0.841270, 0.945611, 0.945611), (0.857143, 0.951190, 0.951190),(0.873016, 0.956736, 0.956736), (0.888889, 0.962250, 0.962250),(0.904762, 0.967733, 0.967733), (0.920635, 0.973185, 0.973185),(0.936508, 0.978607, 0.978607), (0.952381, 0.983999, 0.983999),(0.968254, 0.989361, 0.989361), (0.984127, 0.994695, 0.994695),(1.0, 1.0, 1.0)), 'blue': ((0., 0., 0.),(0.015873, 0.102869, 0.102869), (0.031746, 0.145479, 0.145479),(0.047619, 0.178174, 0.178174), (0.063492, 0.205738, 0.205738),(0.079365, 0.230022, 0.230022), (0.095238, 0.251976, 0.251976),(0.111111, 0.272166, 0.272166), (0.126984, 0.290957, 0.290957),(0.142857, 0.308607, 0.308607), (0.158730, 0.325300, 0.325300),(0.174603, 0.341178, 0.341178), (0.190476, 0.356348, 0.356348),(0.206349, 0.370899, 0.370899), (0.222222, 0.384900, 0.384900),(0.238095, 0.398410, 0.398410), (0.253968, 0.411476, 0.411476),(0.269841, 0.424139, 0.424139), (0.285714, 0.436436, 0.436436),(0.301587, 0.448395, 0.448395), (0.317460, 0.460044, 0.460044),(0.333333, 0.471405, 0.471405), (0.349206, 0.482498, 0.482498),(0.365079, 0.493342, 0.493342), (0.380952, 0.503953, 0.503953),(0.396825, 0.514344, 0.514344), (0.412698, 0.524531, 0.524531),(0.428571, 0.534522, 0.534522), (0.444444, 0.544331, 0.544331),(0.460317, 0.553966, 0.553966), (0.476190, 0.563436, 0.563436),(0.492063, 0.572750, 0.572750), (0.507937, 0.581914, 0.581914),(0.523810, 0.590937, 0.590937), (0.539683, 0.599824, 0.599824),(0.555556, 0.608581, 0.608581), (0.571429, 0.617213, 0.617213),(0.587302, 0.625727, 0.625727), (0.603175, 0.634126, 0.634126),(0.619048, 0.642416, 0.642416), (0.634921, 0.650600, 0.650600),(0.650794, 0.658682, 0.658682), (0.666667, 0.666667, 0.666667),(0.682540, 0.674556, 0.674556), (0.698413, 0.682355, 0.682355),(0.714286, 0.690066, 0.690066), (0.730159, 0.697691, 0.697691),(0.746032, 0.705234, 0.705234), (0.761905, 0.727166, 0.727166),(0.777778, 0.748455, 0.748455), (0.793651, 0.769156, 0.769156),(0.809524, 0.789314, 0.789314), (0.825397, 0.808969, 0.808969),(0.841270, 0.828159, 0.828159), (0.857143, 0.846913, 0.846913),(0.873016, 0.865261, 0.865261), (0.888889, 0.883229, 0.883229),(0.904762, 0.900837, 0.900837), (0.920635, 0.918109, 0.918109),(0.936508, 0.935061, 0.935061), (0.952381, 0.951711, 0.951711),(0.968254, 0.968075, 0.968075), (0.984127, 0.984167, 0.984167),(1.0, 1.0, 1.0))} _prism_data = {'red': ((0., 1., 1.),(0.031746, 1.000000, 1.000000), (0.047619, 0.000000, 0.000000),(0.063492, 0.000000, 0.000000), (0.079365, 0.666667, 0.666667),(0.095238, 1.000000, 1.000000), (0.126984, 1.000000, 1.000000),(0.142857, 0.000000, 0.000000), (0.158730, 0.000000, 0.000000),(0.174603, 0.666667, 0.666667), (0.190476, 1.000000, 1.000000),(0.222222, 1.000000, 1.000000), (0.238095, 0.000000, 0.000000),(0.253968, 0.000000, 0.000000), (0.269841, 0.666667, 0.666667),(0.285714, 1.000000, 1.000000), (0.317460, 1.000000, 1.000000),(0.333333, 0.000000, 0.000000), (0.349206, 0.000000, 0.000000),(0.365079, 0.666667, 0.666667), (0.380952, 1.000000, 1.000000),(0.412698, 1.000000, 1.000000), (0.428571, 0.000000, 0.000000),(0.444444, 0.000000, 0.000000), (0.460317, 0.666667, 0.666667),(0.476190, 1.000000, 1.000000), (0.507937, 1.000000, 1.000000),(0.523810, 0.000000, 0.000000), (0.539683, 0.000000, 0.000000),(0.555556, 0.666667, 0.666667), (0.571429, 1.000000, 1.000000),(0.603175, 1.000000, 1.000000), (0.619048, 0.000000, 0.000000),(0.634921, 0.000000, 0.000000), (0.650794, 0.666667, 0.666667),(0.666667, 1.000000, 1.000000), (0.698413, 1.000000, 1.000000),(0.714286, 0.000000, 0.000000), (0.730159, 0.000000, 0.000000),(0.746032, 0.666667, 0.666667), (0.761905, 1.000000, 1.000000),(0.793651, 1.000000, 1.000000), (0.809524, 0.000000, 0.000000),(0.825397, 0.000000, 0.000000), (0.841270, 0.666667, 0.666667),(0.857143, 1.000000, 1.000000), (0.888889, 1.000000, 1.000000),(0.904762, 0.000000, 0.000000), (0.920635, 0.000000, 0.000000),(0.936508, 0.666667, 0.666667), (0.952381, 1.000000, 1.000000),(0.984127, 1.000000, 1.000000), (1.0, 0.0, 0.0)), 'green': ((0., 0., 0.),(0.031746, 1.000000, 1.000000), (0.047619, 1.000000, 1.000000),(0.063492, 0.000000, 0.000000), (0.095238, 0.000000, 0.000000),(0.126984, 1.000000, 1.000000), (0.142857, 1.000000, 1.000000),(0.158730, 0.000000, 0.000000), (0.190476, 0.000000, 0.000000),(0.222222, 1.000000, 1.000000), (0.238095, 1.000000, 1.000000),(0.253968, 0.000000, 0.000000), (0.285714, 0.000000, 0.000000),(0.317460, 1.000000, 1.000000), (0.333333, 1.000000, 1.000000),(0.349206, 0.000000, 0.000000), (0.380952, 0.000000, 0.000000),(0.412698, 1.000000, 1.000000), (0.428571, 1.000000, 1.000000),(0.444444, 0.000000, 0.000000), (0.476190, 0.000000, 0.000000),(0.507937, 1.000000, 1.000000), (0.523810, 1.000000, 1.000000),(0.539683, 0.000000, 0.000000), (0.571429, 0.000000, 0.000000),(0.603175, 1.000000, 1.000000), (0.619048, 1.000000, 1.000000),(0.634921, 0.000000, 0.000000), (0.666667, 0.000000, 0.000000),(0.698413, 1.000000, 1.000000), (0.714286, 1.000000, 1.000000),(0.730159, 0.000000, 0.000000), (0.761905, 0.000000, 0.000000),(0.793651, 1.000000, 1.000000), (0.809524, 1.000000, 1.000000),(0.825397, 0.000000, 0.000000), (0.857143, 0.000000, 0.000000),(0.888889, 1.000000, 1.000000), (0.904762, 1.000000, 1.000000),(0.920635, 0.000000, 0.000000), (0.952381, 0.000000, 0.000000),(0.984127, 1.000000, 1.000000), (1.0, 1.0, 1.0)), 'blue': ((0., 0., 0.),(0.047619, 0.000000, 0.000000), (0.063492, 1.000000, 1.000000),(0.079365, 1.000000, 1.000000), (0.095238, 0.000000, 0.000000),(0.142857, 0.000000, 0.000000), (0.158730, 1.000000, 1.000000),(0.174603, 1.000000, 1.000000), (0.190476, 0.000000, 0.000000),(0.238095, 0.000000, 0.000000), (0.253968, 1.000000, 1.000000),(0.269841, 1.000000, 1.000000), (0.285714, 0.000000, 0.000000),(0.333333, 0.000000, 0.000000), (0.349206, 1.000000, 1.000000),(0.365079, 1.000000, 1.000000), (0.380952, 0.000000, 0.000000),(0.428571, 0.000000, 0.000000), (0.444444, 1.000000, 1.000000),(0.460317, 1.000000, 1.000000), (0.476190, 0.000000, 0.000000),(0.523810, 0.000000, 0.000000), (0.539683, 1.000000, 1.000000),(0.555556, 1.000000, 1.000000), (0.571429, 0.000000, 0.000000),(0.619048, 0.000000, 0.000000), (0.634921, 1.000000, 1.000000),(0.650794, 1.000000, 1.000000), (0.666667, 0.000000, 0.000000),(0.714286, 0.000000, 0.000000), (0.730159, 1.000000, 1.000000),(0.746032, 1.000000, 1.000000), (0.761905, 0.000000, 0.000000),(0.809524, 0.000000, 0.000000), (0.825397, 1.000000, 1.000000),(0.841270, 1.000000, 1.000000), (0.857143, 0.000000, 0.000000),(0.904762, 0.000000, 0.000000), (0.920635, 1.000000, 1.000000),(0.936508, 1.000000, 1.000000), (0.952381, 0.000000, 0.000000),(1.0, 0.0, 0.0))} _spring_data = {'red': ((0., 1., 1.),(1.0, 1.0, 1.0)), 'green': ((0., 0., 0.),(1.0, 1.0, 1.0)), 'blue': ((0., 1., 1.),(1.0, 0.0, 0.0))} _summer_data = {'red': ((0., 0., 0.),(1.0, 1.0, 1.0)), 'green': ((0., 0.5, 0.5),(1.0, 1.0, 1.0)), 'blue': ((0., 0.4, 0.4),(1.0, 0.4, 0.4))} _winter_data = {'red': ((0., 0., 0.),(1.0, 0.0, 0.0)), 'green': ((0., 0., 0.),(1.0, 1.0, 1.0)), 'blue': ((0., 1., 1.),(1.0, 0.5, 0.5))} _spectral_data = {'red': [(0.0, 0.0, 0.0), (0.05, 0.4667, 0.4667), (0.10, 0.5333, 0.5333), (0.15, 0.0, 0.0), (0.20, 0.0, 0.0), (0.25, 0.0, 0.0), (0.30, 0.0, 0.0), (0.35, 0.0, 0.0), (0.40, 0.0, 0.0), (0.45, 0.0, 0.0), (0.50, 0.0, 0.0), (0.55, 0.0, 0.0), (0.60, 0.0, 0.0), (0.65, 0.7333, 0.7333), (0.70, 0.9333, 0.9333), (0.75, 1.0, 1.0), (0.80, 1.0, 1.0), (0.85, 1.0, 1.0), (0.90, 0.8667, 0.8667), (0.95, 0.80, 0.80), (1.0, 0.80, 0.80)], 'green': [(0.0, 0.0, 0.0), (0.05, 0.0, 0.0), (0.10, 0.0, 0.0), (0.15, 0.0, 0.0), (0.20, 0.0, 0.0), (0.25, 0.4667, 0.4667), (0.30, 0.6000, 0.6000), (0.35, 0.6667, 0.6667), (0.40, 0.6667, 0.6667), (0.45, 0.6000, 0.6000), (0.50, 0.7333, 0.7333), (0.55, 0.8667, 0.8667), (0.60, 1.0, 1.0), (0.65, 1.0, 1.0), (0.70, 0.9333, 0.9333), (0.75, 0.8000, 0.8000), (0.80, 0.6000, 0.6000), (0.85, 0.0, 0.0), (0.90, 0.0, 0.0), (0.95, 0.0, 0.0), (1.0, 0.80, 0.80)], 'blue': [(0.0, 0.0, 0.0), (0.05, 0.5333, 0.5333), (0.10, 0.6000, 0.6000), (0.15, 0.6667, 0.6667), (0.20, 0.8667, 0.8667), (0.25, 0.8667, 0.8667), (0.30, 0.8667, 0.8667), (0.35, 0.6667, 0.6667), (0.40, 0.5333, 0.5333), (0.45, 0.0, 0.0), (0.5, 0.0, 0.0), (0.55, 0.0, 0.0), (0.60, 0.0, 0.0), (0.65, 0.0, 0.0), (0.70, 0.0, 0.0), (0.75, 0.0, 0.0), (0.80, 0.0, 0.0), (0.85, 0.0, 0.0), (0.90, 0.0, 0.0), (0.95, 0.0, 0.0), (1.0, 0.80, 0.80)]} autumn = colors.LinearSegmentedColormap('autumn', _autumn_data, LUTSIZE) bone = colors.LinearSegmentedColormap('bone ', _bone_data, LUTSIZE) binary = colors.LinearSegmentedColormap('binary ', _binary_data, LUTSIZE) cool = colors.LinearSegmentedColormap('cool', _cool_data, LUTSIZE) copper = colors.LinearSegmentedColormap('copper', _copper_data, LUTSIZE) flag = colors.LinearSegmentedColormap('flag', _flag_data, LUTSIZE) gray = colors.LinearSegmentedColormap('gray', _gray_data, LUTSIZE) hot = colors.LinearSegmentedColormap('hot', _hot_data, LUTSIZE) hsv = colors.LinearSegmentedColormap('hsv', _hsv_data, LUTSIZE) jet = colors.LinearSegmentedColormap('jet', _jet_data, LUTSIZE) pink = colors.LinearSegmentedColormap('pink', _pink_data, LUTSIZE) prism = colors.LinearSegmentedColormap('prism', _prism_data, LUTSIZE) spring = colors.LinearSegmentedColormap('spring', _spring_data, LUTSIZE) summer = colors.LinearSegmentedColormap('summer', _summer_data, LUTSIZE) winter = colors.LinearSegmentedColormap('winter', _winter_data, LUTSIZE) spectral = colors.LinearSegmentedColormap('spectral', _spectral_data, LUTSIZE) datad = { 'autumn': _autumn_data, 'bone': _bone_data, 'binary': _binary_data, 'cool': _cool_data, 'copper': _copper_data, 'flag': _flag_data, 'gray' : _gray_data, 'hot': _hot_data, 'hsv': _hsv_data, 'jet' : _jet_data, 'pink': _pink_data, 'prism': _prism_data, 'spring': _spring_data, 'summer': _summer_data, 'winter': _winter_data, 'spectral': _spectral_data } # 34 colormaps based on color specifications and designs # developed by Cynthia Brewer (http://colorbrewer.org). # The ColorBrewer palettes have been included under the terms # of an Apache-stype license (for details, see the file # LICENSE_COLORBREWER in the license directory of the matplotlib # source distribution). _Accent_data = {'blue': [(0.0, 0.49803921580314636, 0.49803921580314636), (0.14285714285714285, 0.83137255907058716, 0.83137255907058716), (0.2857142857142857, 0.52549022436141968, 0.52549022436141968), (0.42857142857142855, 0.60000002384185791, 0.60000002384185791), (0.5714285714285714, 0.69019609689712524, 0.69019609689712524), (0.7142857142857143, 0.49803921580314636, 0.49803921580314636), (0.8571428571428571, 0.090196080505847931, 0.090196080505847931), (1.0, 0.40000000596046448, 0.40000000596046448)], 'green': [(0.0, 0.78823530673980713, 0.78823530673980713), (0.14285714285714285, 0.68235296010971069, 0.68235296010971069), (0.2857142857142857, 0.75294119119644165, 0.75294119119644165), (0.42857142857142855, 1.0, 1.0), (0.5714285714285714, 0.42352941632270813, 0.42352941632270813), (0.7142857142857143, 0.0078431377187371254, 0.0078431377187371254), (0.8571428571428571, 0.35686275362968445, 0.35686275362968445), (1.0, 0.40000000596046448, 0.40000000596046448)], 'red': [(0.0, 0.49803921580314636, 0.49803921580314636), (0.14285714285714285, 0.7450980544090271, 0.7450980544090271), (0.2857142857142857, 0.99215686321258545, 0.99215686321258545), (0.42857142857142855, 1.0, 1.0), (0.5714285714285714, 0.21960784494876862, 0.21960784494876862), (0.7142857142857143, 0.94117647409439087, 0.94117647409439087), (0.8571428571428571, 0.74901962280273438, 0.74901962280273438), (1.0, 0.40000000596046448, 0.40000000596046448)]} _Blues_data = {'blue': [(0.0, 1.0, 1.0), (0.125, 0.9686274528503418, 0.9686274528503418), (0.25, 0.93725490570068359, 0.93725490570068359), (0.375, 0.88235294818878174, 0.88235294818878174), (0.5, 0.83921569585800171, 0.83921569585800171), (0.625, 0.7764706015586853, 0.7764706015586853), (0.75, 0.70980393886566162, 0.70980393886566162), (0.875, 0.61176472902297974, 0.61176472902297974), (1.0, 0.41960784792900085, 0.41960784792900085)], 'green': [(0.0, 0.9843137264251709, 0.9843137264251709), (0.125, 0.92156863212585449, 0.92156863212585449), (0.25, 0.85882353782653809, 0.85882353782653809), (0.375, 0.7921568751335144, 0.7921568751335144), (0.5, 0.68235296010971069, 0.68235296010971069), (0.625, 0.57254904508590698, 0.57254904508590698), (0.75, 0.44313725829124451, 0.44313725829124451), (0.875, 0.31764706969261169, 0.31764706969261169), (1.0, 0.18823529779911041, 0.18823529779911041)], 'red': [(0.0, 0.9686274528503418, 0.9686274528503418), (0.125, 0.87058824300765991, 0.87058824300765991), (0.25, 0.7764706015586853, 0.7764706015586853), (0.375, 0.61960786581039429, 0.61960786581039429), (0.5, 0.41960784792900085, 0.41960784792900085), (0.625, 0.25882354378700256, 0.25882354378700256), (0.75, 0.12941177189350128, 0.12941177189350128), (0.875, 0.031372550874948502, 0.031372550874948502), (1.0, 0.031372550874948502, 0.031372550874948502)]} _BrBG_data = {'blue': [(0.0, 0.019607843831181526, 0.019607843831181526), (0.10000000000000001, 0.039215687662363052, 0.039215687662363052), (0.20000000000000001, 0.17647059261798859, 0.17647059261798859), (0.29999999999999999, 0.49019607901573181, 0.49019607901573181), (0.40000000000000002, 0.76470589637756348, 0.76470589637756348), (0.5, 0.96078431606292725, 0.96078431606292725), (0.59999999999999998, 0.89803922176361084, 0.89803922176361084), (0.69999999999999996, 0.75686275959014893, 0.75686275959014893), (0.80000000000000004, 0.56078433990478516, 0.56078433990478516), (0.90000000000000002, 0.36862745881080627, 0.36862745881080627), (1.0, 0.18823529779911041, 0.18823529779911041)], 'green': [(0.0, 0.18823529779911041, 0.18823529779911041), (0.10000000000000001, 0.31764706969261169, 0.31764706969261169), (0.20000000000000001, 0.5058823823928833, 0.5058823823928833), (0.29999999999999999, 0.7607843279838562, 0.7607843279838562), (0.40000000000000002, 0.90980392694473267, 0.90980392694473267), (0.5, 0.96078431606292725, 0.96078431606292725), (0.59999999999999998, 0.91764706373214722, 0.91764706373214722), (0.69999999999999996, 0.80392158031463623, 0.80392158031463623), (0.80000000000000004, 0.59215688705444336, 0.59215688705444336), (0.90000000000000002, 0.40000000596046448, 0.40000000596046448), (1.0, 0.23529411852359772, 0.23529411852359772)], 'red': [(0.0, 0.32941177487373352, 0.32941177487373352), (0.10000000000000001, 0.54901963472366333, 0.54901963472366333), (0.20000000000000001, 0.74901962280273438, 0.74901962280273438), (0.29999999999999999, 0.87450981140136719, 0.87450981140136719), (0.40000000000000002, 0.96470588445663452, 0.96470588445663452), (0.5, 0.96078431606292725, 0.96078431606292725), (0.59999999999999998, 0.78039216995239258, 0.78039216995239258), (0.69999999999999996, 0.50196081399917603, 0.50196081399917603), (0.80000000000000004, 0.20784313976764679, 0.20784313976764679), (0.90000000000000002, 0.0039215688593685627, 0.0039215688593685627), (1.0, 0.0, 0.0)]} _BuGn_data = {'blue': [(0.0, 0.99215686321258545, 0.99215686321258545), (0.125, 0.97647058963775635, 0.97647058963775635), (0.25, 0.90196079015731812, 0.90196079015731812), (0.375, 0.78823530673980713, 0.78823530673980713), (0.5, 0.64313727617263794, 0.64313727617263794), (0.625, 0.46274510025978088, 0.46274510025978088), (0.75, 0.27058824896812439, 0.27058824896812439), (0.875, 0.17254902422428131, 0.17254902422428131), (1.0, 0.10588235408067703, 0.10588235408067703)], 'green': [(0.0, 0.98823529481887817, 0.98823529481887817), (0.125, 0.96078431606292725, 0.96078431606292725), (0.25, 0.92549020051956177, 0.92549020051956177), (0.375, 0.84705883264541626, 0.84705883264541626), (0.5, 0.7607843279838562, 0.7607843279838562), (0.625, 0.68235296010971069, 0.68235296010971069), (0.75, 0.54509806632995605, 0.54509806632995605), (0.875, 0.42745098471641541, 0.42745098471641541), (1.0, 0.26666668057441711, 0.26666668057441711)], 'red': [(0.0, 0.9686274528503418, 0.9686274528503418), (0.125, 0.89803922176361084, 0.89803922176361084), (0.25, 0.80000001192092896, 0.80000001192092896), (0.375, 0.60000002384185791, 0.60000002384185791), (0.5, 0.40000000596046448, 0.40000000596046448), (0.625, 0.25490197539329529, 0.25490197539329529), (0.75, 0.13725490868091583, 0.13725490868091583), (0.875, 0.0, 0.0), (1.0, 0.0, 0.0)]} _BuPu_data = {'blue': [(0.0, 0.99215686321258545, 0.99215686321258545), (0.125, 0.95686274766921997, 0.95686274766921997), (0.25, 0.90196079015731812, 0.90196079015731812), (0.375, 0.85490196943283081, 0.85490196943283081), (0.5, 0.7764706015586853, 0.7764706015586853), (0.625, 0.69411766529083252, 0.69411766529083252), (0.75, 0.61568629741668701, 0.61568629741668701), (0.875, 0.48627451062202454, 0.48627451062202454), (1.0, 0.29411765933036804, 0.29411765933036804)], 'green': [(0.0, 0.98823529481887817, 0.98823529481887817), (0.125, 0.92549020051956177, 0.92549020051956177), (0.25, 0.82745099067687988, 0.82745099067687988), (0.375, 0.73725491762161255, 0.73725491762161255), (0.5, 0.58823531866073608, 0.58823531866073608), (0.625, 0.41960784792900085, 0.41960784792900085), (0.75, 0.25490197539329529, 0.25490197539329529), (0.875, 0.058823529630899429, 0.058823529630899429), (1.0, 0.0, 0.0)], 'red': [(0.0, 0.9686274528503418, 0.9686274528503418), (0.125, 0.87843137979507446, 0.87843137979507446), (0.25, 0.74901962280273438, 0.74901962280273438), (0.375, 0.61960786581039429, 0.61960786581039429), (0.5, 0.54901963472366333, 0.54901963472366333), (0.625, 0.54901963472366333, 0.54901963472366333), (0.75, 0.53333336114883423, 0.53333336114883423), (0.875, 0.5058823823928833, 0.5058823823928833), (1.0, 0.30196079611778259, 0.30196079611778259)]} _Dark2_data = {'blue': [(0.0, 0.46666666865348816, 0.46666666865348816), (0.14285714285714285, 0.0078431377187371254, 0.0078431377187371254), (0.2857142857142857, 0.70196080207824707, 0.70196080207824707), (0.42857142857142855, 0.54117649793624878, 0.54117649793624878), (0.5714285714285714, 0.11764705926179886, 0.11764705926179886), (0.7142857142857143, 0.0078431377187371254, 0.0078431377187371254), (0.8571428571428571, 0.11372549086809158, 0.11372549086809158), (1.0, 0.40000000596046448, 0.40000000596046448)], 'green': [(0.0, 0.61960786581039429, 0.61960786581039429), (0.14285714285714285, 0.37254902720451355, 0.37254902720451355), (0.2857142857142857, 0.43921568989753723, 0.43921568989753723), (0.42857142857142855, 0.16078431904315948, 0.16078431904315948), (0.5714285714285714, 0.65098041296005249, 0.65098041296005249), (0.7142857142857143, 0.67058825492858887, 0.67058825492858887), (0.8571428571428571, 0.46274510025978088, 0.46274510025978088), (1.0, 0.40000000596046448, 0.40000000596046448)], 'red': [(0.0, 0.10588235408067703, 0.10588235408067703), (0.14285714285714285, 0.85098040103912354, 0.85098040103912354), (0.2857142857142857, 0.45882353186607361, 0.45882353186607361), (0.42857142857142855, 0.90588235855102539, 0.90588235855102539), (0.5714285714285714, 0.40000000596046448, 0.40000000596046448), (0.7142857142857143, 0.90196079015731812, 0.90196079015731812), (0.8571428571428571, 0.65098041296005249, 0.65098041296005249), (1.0, 0.40000000596046448, 0.40000000596046448)]} _GnBu_data = {'blue': [(0.0, 0.94117647409439087, 0.94117647409439087), (0.125, 0.85882353782653809, 0.85882353782653809), (0.25, 0.77254903316497803, 0.77254903316497803), (0.375, 0.70980393886566162, 0.70980393886566162), (0.5, 0.76862746477127075, 0.76862746477127075), (0.625, 0.82745099067687988, 0.82745099067687988), (0.75, 0.7450980544090271, 0.7450980544090271), (0.875, 0.67450982332229614, 0.67450982332229614), (1.0, 0.5058823823928833, 0.5058823823928833)], 'green': [(0.0, 0.98823529481887817, 0.98823529481887817), (0.125, 0.9529411792755127, 0.9529411792755127), (0.25, 0.92156863212585449, 0.92156863212585449), (0.375, 0.86666667461395264, 0.86666667461395264), (0.5, 0.80000001192092896, 0.80000001192092896), (0.625, 0.70196080207824707, 0.70196080207824707), (0.75, 0.54901963472366333, 0.54901963472366333), (0.875, 0.40784314274787903, 0.40784314274787903), (1.0, 0.25098040699958801, 0.25098040699958801)], 'red': [(0.0, 0.9686274528503418, 0.9686274528503418), (0.125, 0.87843137979507446, 0.87843137979507446), (0.25, 0.80000001192092896, 0.80000001192092896), (0.375, 0.65882354974746704, 0.65882354974746704), (0.5, 0.48235294222831726, 0.48235294222831726), (0.625, 0.30588236451148987, 0.30588236451148987), (0.75, 0.16862745583057404, 0.16862745583057404), (0.875, 0.031372550874948502, 0.031372550874948502), (1.0, 0.031372550874948502, 0.031372550874948502)]} _Greens_data = {'blue': [(0.0, 0.96078431606292725, 0.96078431606292725), (0.125, 0.87843137979507446, 0.87843137979507446), (0.25, 0.75294119119644165, 0.75294119119644165), (0.375, 0.60784316062927246, 0.60784316062927246), (0.5, 0.46274510025978088, 0.46274510025978088), (0.625, 0.364705890417099, 0.364705890417099), (0.75, 0.27058824896812439, 0.27058824896812439), (0.875, 0.17254902422428131, 0.17254902422428131), (1.0, 0.10588235408067703, 0.10588235408067703)], 'green': [(0.0, 0.98823529481887817, 0.98823529481887817), (0.125, 0.96078431606292725, 0.96078431606292725), (0.25, 0.91372549533843994, 0.91372549533843994), (0.375, 0.85098040103912354, 0.85098040103912354), (0.5, 0.76862746477127075, 0.76862746477127075), (0.625, 0.67058825492858887, 0.67058825492858887), (0.75, 0.54509806632995605, 0.54509806632995605), (0.875, 0.42745098471641541, 0.42745098471641541), (1.0, 0.26666668057441711, 0.26666668057441711)], 'red': [(0.0, 0.9686274528503418, 0.9686274528503418), (0.125, 0.89803922176361084, 0.89803922176361084), (0.25, 0.78039216995239258, 0.78039216995239258), (0.375, 0.63137257099151611, 0.63137257099151611), (0.5, 0.45490196347236633, 0.45490196347236633), (0.625, 0.25490197539329529, 0.25490197539329529), (0.75, 0.13725490868091583, 0.13725490868091583), (0.875, 0.0, 0.0), (1.0, 0.0, 0.0)]} _Greys_data = {'blue': [(0.0, 1.0, 1.0), (0.125, 0.94117647409439087, 0.94117647409439087), (0.25, 0.85098040103912354, 0.85098040103912354), (0.375, 0.74117648601531982, 0.74117648601531982), (0.5, 0.58823531866073608, 0.58823531866073608), (0.625, 0.45098039507865906, 0.45098039507865906), (0.75, 0.32156863808631897, 0.32156863808631897), (0.875, 0.14509804546833038, 0.14509804546833038), (1.0, 0.0, 0.0)], 'green': [(0.0, 1.0, 1.0), (0.125, 0.94117647409439087, 0.94117647409439087), (0.25, 0.85098040103912354, 0.85098040103912354), (0.375, 0.74117648601531982, 0.74117648601531982), (0.5, 0.58823531866073608, 0.58823531866073608), (0.625, 0.45098039507865906, 0.45098039507865906), (0.75, 0.32156863808631897, 0.32156863808631897), (0.875, 0.14509804546833038, 0.14509804546833038), (1.0, 0.0, 0.0)], 'red': [(0.0, 1.0, 1.0), (0.125, 0.94117647409439087, 0.94117647409439087), (0.25, 0.85098040103912354, 0.85098040103912354), (0.375, 0.74117648601531982, 0.74117648601531982), (0.5, 0.58823531866073608, 0.58823531866073608), (0.625, 0.45098039507865906, 0.45098039507865906), (0.75, 0.32156863808631897, 0.32156863808631897), (0.875, 0.14509804546833038, 0.14509804546833038), (1.0, 0.0, 0.0)]} _Oranges_data = {'blue': [(0.0, 0.92156863212585449, 0.92156863212585449), (0.125, 0.80784314870834351, 0.80784314870834351), (0.25, 0.63529413938522339, 0.63529413938522339), (0.375, 0.41960784792900085, 0.41960784792900085), (0.5, 0.23529411852359772, 0.23529411852359772), (0.625, 0.074509806931018829, 0.074509806931018829), (0.75, 0.0039215688593685627, 0.0039215688593685627), (0.875, 0.011764706112444401, 0.011764706112444401), (1.0, 0.015686275437474251, 0.015686275437474251)], 'green': [(0.0, 0.96078431606292725, 0.96078431606292725), (0.125, 0.90196079015731812, 0.90196079015731812), (0.25, 0.81568628549575806, 0.81568628549575806), (0.375, 0.68235296010971069, 0.68235296010971069), (0.5, 0.55294120311737061, 0.55294120311737061), (0.625, 0.4117647111415863, 0.4117647111415863), (0.75, 0.28235295414924622, 0.28235295414924622), (0.875, 0.21176470816135406, 0.21176470816135406), (1.0, 0.15294118225574493, 0.15294118225574493)], 'red': [(0.0, 1.0, 1.0), (0.125, 0.99607843160629272, 0.99607843160629272), (0.25, 0.99215686321258545, 0.99215686321258545), (0.375, 0.99215686321258545, 0.99215686321258545), (0.5, 0.99215686321258545, 0.99215686321258545), (0.625, 0.94509804248809814, 0.94509804248809814), (0.75, 0.85098040103912354, 0.85098040103912354), (0.875, 0.65098041296005249, 0.65098041296005249), (1.0, 0.49803921580314636, 0.49803921580314636)]} _OrRd_data = {'blue': [(0.0, 0.92549020051956177, 0.92549020051956177), (0.125, 0.78431373834609985, 0.78431373834609985), (0.25, 0.61960786581039429, 0.61960786581039429), (0.375, 0.51764708757400513, 0.51764708757400513), (0.5, 0.3490196168422699, 0.3490196168422699), (0.625, 0.28235295414924622, 0.28235295414924622), (0.75, 0.12156862765550613, 0.12156862765550613), (0.875, 0.0, 0.0), (1.0, 0.0, 0.0)], 'green': [(0.0, 0.9686274528503418, 0.9686274528503418), (0.125, 0.90980392694473267, 0.90980392694473267), (0.25, 0.83137255907058716, 0.83137255907058716), (0.375, 0.73333334922790527, 0.73333334922790527), (0.5, 0.55294120311737061, 0.55294120311737061), (0.625, 0.3960784375667572, 0.3960784375667572), (0.75, 0.18823529779911041, 0.18823529779911041), (0.875, 0.0, 0.0), (1.0, 0.0, 0.0)], 'red': [(0.0, 1.0, 1.0), (0.125, 0.99607843160629272, 0.99607843160629272), (0.25, 0.99215686321258545, 0.99215686321258545), (0.375, 0.99215686321258545, 0.99215686321258545), (0.5, 0.98823529481887817, 0.98823529481887817), (0.625, 0.93725490570068359, 0.93725490570068359), (0.75, 0.84313726425170898, 0.84313726425170898), (0.875, 0.70196080207824707, 0.70196080207824707), (1.0, 0.49803921580314636, 0.49803921580314636)]} _Paired_data = {'blue': [(0.0, 0.89019608497619629, 0.89019608497619629), (0.090909090909090912, 0.70588237047195435, 0.70588237047195435), (0.18181818181818182, 0.54117649793624878, 0.54117649793624878), (0.27272727272727271, 0.17254902422428131, 0.17254902422428131), (0.36363636363636365, 0.60000002384185791, 0.60000002384185791), (0.45454545454545453, 0.10980392247438431, 0.10980392247438431), (0.54545454545454541, 0.43529412150382996, 0.43529412150382996), (0.63636363636363635, 0.0, 0.0), (0.72727272727272729, 0.83921569585800171, 0.83921569585800171), (0.81818181818181823, 0.60392159223556519, 0.60392159223556519), (0.90909090909090906, 0.60000002384185791, 0.60000002384185791), (1.0, 0.15686275064945221, 0.15686275064945221)], 'green': [(0.0, 0.80784314870834351, 0.80784314870834351), (0.090909090909090912, 0.47058823704719543, 0.47058823704719543), (0.18181818181818182, 0.87450981140136719, 0.87450981140136719), (0.27272727272727271, 0.62745100259780884, 0.62745100259780884), (0.36363636363636365, 0.60392159223556519, 0.60392159223556519), (0.45454545454545453, 0.10196078568696976, 0.10196078568696976), (0.54545454545454541, 0.74901962280273438, 0.74901962280273438), (0.63636363636363635, 0.49803921580314636, 0.49803921580314636), (0.72727272727272729, 0.69803923368453979, 0.69803923368453979), (0.81818181818181823, 0.23921568691730499, 0.23921568691730499), (0.90909090909090906, 1.0, 1.0), (1.0, 0.3490196168422699, 0.3490196168422699)], 'red': [(0.0, 0.65098041296005249, 0.65098041296005249), (0.090909090909090912, 0.12156862765550613, 0.12156862765550613), (0.18181818181818182, 0.69803923368453979, 0.69803923368453979), (0.27272727272727271, 0.20000000298023224, 0.20000000298023224), (0.36363636363636365, 0.9843137264251709, 0.9843137264251709), (0.45454545454545453, 0.89019608497619629, 0.89019608497619629), (0.54545454545454541, 0.99215686321258545, 0.99215686321258545), (0.63636363636363635, 1.0, 1.0), (0.72727272727272729, 0.7921568751335144, 0.7921568751335144), (0.81818181818181823, 0.41568627953529358, 0.41568627953529358), (0.90909090909090906, 1.0, 1.0), (1.0, 0.69411766529083252, 0.69411766529083252)]} _Pastel1_data = {'blue': [(0.0, 0.68235296010971069, 0.68235296010971069), (0.125, 0.89019608497619629, 0.89019608497619629), (0.25, 0.77254903316497803, 0.77254903316497803), (0.375, 0.89411765336990356, 0.89411765336990356), (0.5, 0.65098041296005249, 0.65098041296005249), (0.625, 0.80000001192092896, 0.80000001192092896), (0.75, 0.74117648601531982, 0.74117648601531982), (0.875, 0.92549020051956177, 0.92549020051956177), (1.0, 0.94901961088180542, 0.94901961088180542)], 'green': [(0.0, 0.70588237047195435, 0.70588237047195435), (0.125, 0.80392158031463623, 0.80392158031463623), (0.25, 0.92156863212585449, 0.92156863212585449), (0.375, 0.79607844352722168, 0.79607844352722168), (0.5, 0.85098040103912354, 0.85098040103912354), (0.625, 1.0, 1.0), (0.75, 0.84705883264541626, 0.84705883264541626), (0.875, 0.85490196943283081, 0.85490196943283081), (1.0, 0.94901961088180542, 0.94901961088180542)], 'red': [(0.0, 0.9843137264251709, 0.9843137264251709), (0.125, 0.70196080207824707, 0.70196080207824707), (0.25, 0.80000001192092896, 0.80000001192092896), (0.375, 0.87058824300765991, 0.87058824300765991), (0.5, 0.99607843160629272, 0.99607843160629272), (0.625, 1.0, 1.0), (0.75, 0.89803922176361084, 0.89803922176361084), (0.875, 0.99215686321258545, 0.99215686321258545), (1.0, 0.94901961088180542, 0.94901961088180542)]} _Pastel2_data = {'blue': [(0.0, 0.80392158031463623, 0.80392158031463623), (0.14285714285714285, 0.67450982332229614, 0.67450982332229614), (0.2857142857142857, 0.90980392694473267, 0.90980392694473267), (0.42857142857142855, 0.89411765336990356, 0.89411765336990356), (0.5714285714285714, 0.78823530673980713, 0.78823530673980713), (0.7142857142857143, 0.68235296010971069, 0.68235296010971069), (0.8571428571428571, 0.80000001192092896, 0.80000001192092896), (1.0, 0.80000001192092896, 0.80000001192092896)], 'green': [(0.0, 0.88627451658248901, 0.88627451658248901), (0.14285714285714285, 0.80392158031463623, 0.80392158031463623), (0.2857142857142857, 0.83529412746429443, 0.83529412746429443), (0.42857142857142855, 0.7921568751335144, 0.7921568751335144), (0.5714285714285714, 0.96078431606292725, 0.96078431606292725), (0.7142857142857143, 0.94901961088180542, 0.94901961088180542), (0.8571428571428571, 0.88627451658248901, 0.88627451658248901), (1.0, 0.80000001192092896, 0.80000001192092896)], 'red': [(0.0, 0.70196080207824707, 0.70196080207824707), (0.14285714285714285, 0.99215686321258545, 0.99215686321258545), (0.2857142857142857, 0.79607844352722168, 0.79607844352722168), (0.42857142857142855, 0.95686274766921997, 0.95686274766921997), (0.5714285714285714, 0.90196079015731812, 0.90196079015731812), (0.7142857142857143, 1.0, 1.0), (0.8571428571428571, 0.94509804248809814, 0.94509804248809814), (1.0, 0.80000001192092896, 0.80000001192092896)]} _PiYG_data = {'blue': [(0.0, 0.32156863808631897, 0.32156863808631897), (0.10000000000000001, 0.49019607901573181, 0.49019607901573181), (0.20000000000000001, 0.68235296010971069, 0.68235296010971069), (0.29999999999999999, 0.85490196943283081, 0.85490196943283081), (0.40000000000000002, 0.93725490570068359, 0.93725490570068359), (0.5, 0.9686274528503418, 0.9686274528503418), (0.59999999999999998, 0.81568628549575806, 0.81568628549575806), (0.69999999999999996, 0.52549022436141968, 0.52549022436141968), (0.80000000000000004, 0.25490197539329529, 0.25490197539329529), (0.90000000000000002, 0.12941177189350128, 0.12941177189350128), (1.0, 0.098039217293262482, 0.098039217293262482)], 'green': [(0.0, 0.0039215688593685627, 0.0039215688593685627), (0.10000000000000001, 0.10588235408067703, 0.10588235408067703), (0.20000000000000001, 0.46666666865348816, 0.46666666865348816), (0.29999999999999999, 0.7137255072593689, 0.7137255072593689), (0.40000000000000002, 0.87843137979507446, 0.87843137979507446), (0.5, 0.9686274528503418, 0.9686274528503418), (0.59999999999999998, 0.96078431606292725, 0.96078431606292725), (0.69999999999999996, 0.88235294818878174, 0.88235294818878174), (0.80000000000000004, 0.73725491762161255, 0.73725491762161255), (0.90000000000000002, 0.57254904508590698, 0.57254904508590698), (1.0, 0.39215686917304993, 0.39215686917304993)], 'red': [(0.0, 0.55686277151107788, 0.55686277151107788), (0.10000000000000001, 0.77254903316497803, 0.77254903316497803), (0.20000000000000001, 0.87058824300765991, 0.87058824300765991), (0.29999999999999999, 0.94509804248809814, 0.94509804248809814), (0.40000000000000002, 0.99215686321258545, 0.99215686321258545), (0.5, 0.9686274528503418, 0.9686274528503418), (0.59999999999999998, 0.90196079015731812, 0.90196079015731812), (0.69999999999999996, 0.72156864404678345, 0.72156864404678345), (0.80000000000000004, 0.49803921580314636, 0.49803921580314636), (0.90000000000000002, 0.30196079611778259, 0.30196079611778259), (1.0, 0.15294118225574493, 0.15294118225574493)]} _PRGn_data = {'blue': [(0.0, 0.29411765933036804, 0.29411765933036804), (0.10000000000000001, 0.51372551918029785, 0.51372551918029785), (0.20000000000000001, 0.67058825492858887, 0.67058825492858887), (0.29999999999999999, 0.81176471710205078, 0.81176471710205078), (0.40000000000000002, 0.90980392694473267, 0.90980392694473267), (0.5, 0.9686274528503418, 0.9686274528503418), (0.59999999999999998, 0.82745099067687988, 0.82745099067687988), (0.69999999999999996, 0.62745100259780884, 0.62745100259780884), (0.80000000000000004, 0.3803921639919281, 0.3803921639919281), (0.90000000000000002, 0.21568627655506134, 0.21568627655506134), (1.0, 0.10588235408067703, 0.10588235408067703)], 'green': [(0.0, 0.0, 0.0), (0.10000000000000001, 0.16470588743686676, 0.16470588743686676), (0.20000000000000001, 0.43921568989753723, 0.43921568989753723), (0.29999999999999999, 0.64705884456634521, 0.64705884456634521), (0.40000000000000002, 0.83137255907058716, 0.83137255907058716), (0.5, 0.9686274528503418, 0.9686274528503418), (0.59999999999999998, 0.94117647409439087, 0.94117647409439087), (0.69999999999999996, 0.85882353782653809, 0.85882353782653809), (0.80000000000000004, 0.68235296010971069, 0.68235296010971069), (0.90000000000000002, 0.47058823704719543, 0.47058823704719543), (1.0, 0.26666668057441711, 0.26666668057441711)], 'red': [(0.0, 0.25098040699958801, 0.25098040699958801), (0.10000000000000001, 0.46274510025978088, 0.46274510025978088), (0.20000000000000001, 0.60000002384185791, 0.60000002384185791), (0.29999999999999999, 0.7607843279838562, 0.7607843279838562), (0.40000000000000002, 0.90588235855102539, 0.90588235855102539), (0.5, 0.9686274528503418, 0.9686274528503418), (0.59999999999999998, 0.85098040103912354, 0.85098040103912354), (0.69999999999999996, 0.65098041296005249, 0.65098041296005249), (0.80000000000000004, 0.35294118523597717, 0.35294118523597717), (0.90000000000000002, 0.10588235408067703, 0.10588235408067703), (1.0, 0.0, 0.0)]} _PuBu_data = {'blue': [(0.0, 0.9843137264251709, 0.9843137264251709), (0.125, 0.94901961088180542, 0.94901961088180542), (0.25, 0.90196079015731812, 0.90196079015731812), (0.375, 0.85882353782653809, 0.85882353782653809), (0.5, 0.81176471710205078, 0.81176471710205078), (0.625, 0.75294119119644165, 0.75294119119644165), (0.75, 0.69019609689712524, 0.69019609689712524), (0.875, 0.55294120311737061, 0.55294120311737061), (1.0, 0.34509804844856262, 0.34509804844856262)], 'green': [(0.0, 0.9686274528503418, 0.9686274528503418), (0.125, 0.90588235855102539, 0.90588235855102539), (0.25, 0.81960785388946533, 0.81960785388946533), (0.375, 0.74117648601531982, 0.74117648601531982), (0.5, 0.66274511814117432, 0.66274511814117432), (0.625, 0.56470590829849243, 0.56470590829849243), (0.75, 0.43921568989753723, 0.43921568989753723), (0.875, 0.35294118523597717, 0.35294118523597717), (1.0, 0.21960784494876862, 0.21960784494876862)], 'red': [(0.0, 1.0, 1.0), (0.125, 0.92549020051956177, 0.92549020051956177), (0.25, 0.81568628549575806, 0.81568628549575806), (0.375, 0.65098041296005249, 0.65098041296005249), (0.5, 0.45490196347236633, 0.45490196347236633), (0.625, 0.21176470816135406, 0.21176470816135406), (0.75, 0.019607843831181526, 0.019607843831181526), (0.875, 0.015686275437474251, 0.015686275437474251), (1.0, 0.0078431377187371254, 0.0078431377187371254)]} _PuBuGn_data = {'blue': [(0.0, 0.9843137264251709, 0.9843137264251709), (0.125, 0.94117647409439087, 0.94117647409439087), (0.25, 0.90196079015731812, 0.90196079015731812), (0.375, 0.85882353782653809, 0.85882353782653809), (0.5, 0.81176471710205078, 0.81176471710205078), (0.625, 0.75294119119644165, 0.75294119119644165), (0.75, 0.54117649793624878, 0.54117649793624878), (0.875, 0.3490196168422699, 0.3490196168422699), (1.0, 0.21176470816135406, 0.21176470816135406)], 'green': [(0.0, 0.9686274528503418, 0.9686274528503418), (0.125, 0.88627451658248901, 0.88627451658248901), (0.25, 0.81960785388946533, 0.81960785388946533), (0.375, 0.74117648601531982, 0.74117648601531982), (0.5, 0.66274511814117432, 0.66274511814117432), (0.625, 0.56470590829849243, 0.56470590829849243), (0.75, 0.5058823823928833, 0.5058823823928833), (0.875, 0.42352941632270813, 0.42352941632270813), (1.0, 0.27450981736183167, 0.27450981736183167)], 'red': [(0.0, 1.0, 1.0), (0.125, 0.92549020051956177, 0.92549020051956177), (0.25, 0.81568628549575806, 0.81568628549575806), (0.375, 0.65098041296005249, 0.65098041296005249), (0.5, 0.40392157435417175, 0.40392157435417175), (0.625, 0.21176470816135406, 0.21176470816135406), (0.75, 0.0078431377187371254, 0.0078431377187371254), (0.875, 0.0039215688593685627, 0.0039215688593685627), (1.0, 0.0039215688593685627, 0.0039215688593685627)]} _PuOr_data = {'blue': [(0.0, 0.031372550874948502, 0.031372550874948502), (0.10000000000000001, 0.023529412224888802, 0.023529412224888802), (0.20000000000000001, 0.078431375324726105, 0.078431375324726105), (0.29999999999999999, 0.38823530077934265, 0.38823530077934265), (0.40000000000000002, 0.7137255072593689, 0.7137255072593689), (0.5, 0.9686274528503418, 0.9686274528503418), (0.59999999999999998, 0.92156863212585449, 0.92156863212585449), (0.69999999999999996, 0.82352942228317261, 0.82352942228317261), (0.80000000000000004, 0.67450982332229614, 0.67450982332229614), (0.90000000000000002, 0.53333336114883423, 0.53333336114883423), (1.0, 0.29411765933036804, 0.29411765933036804)], 'green': [(0.0, 0.23137255012989044, 0.23137255012989044), (0.10000000000000001, 0.34509804844856262, 0.34509804844856262), (0.20000000000000001, 0.50980395078659058, 0.50980395078659058), (0.29999999999999999, 0.72156864404678345, 0.72156864404678345), (0.40000000000000002, 0.87843137979507446, 0.87843137979507446), (0.5, 0.9686274528503418, 0.9686274528503418), (0.59999999999999998, 0.85490196943283081, 0.85490196943283081), (0.69999999999999996, 0.67058825492858887, 0.67058825492858887), (0.80000000000000004, 0.45098039507865906, 0.45098039507865906), (0.90000000000000002, 0.15294118225574493, 0.15294118225574493), (1.0, 0.0, 0.0)], 'red': [(0.0, 0.49803921580314636, 0.49803921580314636), (0.10000000000000001, 0.70196080207824707, 0.70196080207824707), (0.20000000000000001, 0.87843137979507446, 0.87843137979507446), (0.29999999999999999, 0.99215686321258545, 0.99215686321258545), (0.40000000000000002, 0.99607843160629272, 0.99607843160629272), (0.5, 0.9686274528503418, 0.9686274528503418), (0.59999999999999998, 0.84705883264541626, 0.84705883264541626), (0.69999999999999996, 0.69803923368453979, 0.69803923368453979), (0.80000000000000004, 0.50196081399917603, 0.50196081399917603), (0.90000000000000002, 0.32941177487373352, 0.32941177487373352), (1.0, 0.17647059261798859, 0.17647059261798859)]} _PuRd_data = {'blue': [(0.0, 0.97647058963775635, 0.97647058963775635), (0.125, 0.93725490570068359, 0.93725490570068359), (0.25, 0.85490196943283081, 0.85490196943283081), (0.375, 0.78039216995239258, 0.78039216995239258), (0.5, 0.69019609689712524, 0.69019609689712524), (0.625, 0.54117649793624878, 0.54117649793624878), (0.75, 0.33725491166114807, 0.33725491166114807), (0.875, 0.26274511218070984, 0.26274511218070984), (1.0, 0.12156862765550613, 0.12156862765550613)], 'green': [(0.0, 0.95686274766921997, 0.95686274766921997), (0.125, 0.88235294818878174, 0.88235294818878174), (0.25, 0.72549021244049072, 0.72549021244049072), (0.375, 0.58039218187332153, 0.58039218187332153), (0.5, 0.3960784375667572, 0.3960784375667572), (0.625, 0.16078431904315948, 0.16078431904315948), (0.75, 0.070588238537311554, 0.070588238537311554), (0.875, 0.0, 0.0), (1.0, 0.0, 0.0)], 'red': [(0.0, 0.9686274528503418, 0.9686274528503418), (0.125, 0.90588235855102539, 0.90588235855102539), (0.25, 0.83137255907058716, 0.83137255907058716), (0.375, 0.78823530673980713, 0.78823530673980713), (0.5, 0.87450981140136719, 0.87450981140136719), (0.625, 0.90588235855102539, 0.90588235855102539), (0.75, 0.80784314870834351, 0.80784314870834351), (0.875, 0.59607845544815063, 0.59607845544815063), (1.0, 0.40392157435417175, 0.40392157435417175)]} _Purples_data = {'blue': [(0.0, 0.99215686321258545, 0.99215686321258545), (0.125, 0.96078431606292725, 0.96078431606292725), (0.25, 0.92156863212585449, 0.92156863212585449), (0.375, 0.86274510622024536, 0.86274510622024536), (0.5, 0.78431373834609985, 0.78431373834609985), (0.625, 0.729411780834198, 0.729411780834198), (0.75, 0.63921570777893066, 0.63921570777893066), (0.875, 0.56078433990478516, 0.56078433990478516), (1.0, 0.49019607901573181, 0.49019607901573181)], 'green': [(0.0, 0.9843137264251709, 0.9843137264251709), (0.125, 0.92941176891326904, 0.92941176891326904), (0.25, 0.85490196943283081, 0.85490196943283081), (0.375, 0.74117648601531982, 0.74117648601531982), (0.5, 0.60392159223556519, 0.60392159223556519), (0.625, 0.49019607901573181, 0.49019607901573181), (0.75, 0.31764706969261169, 0.31764706969261169), (0.875, 0.15294118225574493, 0.15294118225574493), (1.0, 0.0, 0.0)], 'red': [(0.0, 0.98823529481887817, 0.98823529481887817), (0.125, 0.93725490570068359, 0.93725490570068359), (0.25, 0.85490196943283081, 0.85490196943283081), (0.375, 0.73725491762161255, 0.73725491762161255), (0.5, 0.61960786581039429, 0.61960786581039429), (0.625, 0.50196081399917603, 0.50196081399917603), (0.75, 0.41568627953529358, 0.41568627953529358), (0.875, 0.32941177487373352, 0.32941177487373352), (1.0, 0.24705882370471954, 0.24705882370471954)]} _RdBu_data = {'blue': [(0.0, 0.12156862765550613, 0.12156862765550613), (0.10000000000000001, 0.16862745583057404, 0.16862745583057404), (0.20000000000000001, 0.30196079611778259, 0.30196079611778259), (0.29999999999999999, 0.50980395078659058, 0.50980395078659058), (0.40000000000000002, 0.78039216995239258, 0.78039216995239258), (0.5, 0.9686274528503418, 0.9686274528503418), (0.59999999999999998, 0.94117647409439087, 0.94117647409439087), (0.69999999999999996, 0.87058824300765991, 0.87058824300765991), (0.80000000000000004, 0.76470589637756348, 0.76470589637756348), (0.90000000000000002, 0.67450982332229614, 0.67450982332229614), (1.0, 0.3803921639919281, 0.3803921639919281)], 'green': [(0.0, 0.0, 0.0), (0.10000000000000001, 0.094117648899555206, 0.094117648899555206), (0.20000000000000001, 0.37647059559822083, 0.37647059559822083), (0.29999999999999999, 0.64705884456634521, 0.64705884456634521), (0.40000000000000002, 0.85882353782653809, 0.85882353782653809), (0.5, 0.9686274528503418, 0.9686274528503418), (0.59999999999999998, 0.89803922176361084, 0.89803922176361084), (0.69999999999999996, 0.77254903316497803, 0.77254903316497803), (0.80000000000000004, 0.57647061347961426, 0.57647061347961426), (0.90000000000000002, 0.40000000596046448, 0.40000000596046448), (1.0, 0.18823529779911041, 0.18823529779911041)], 'red': [(0.0, 0.40392157435417175, 0.40392157435417175), (0.10000000000000001, 0.69803923368453979, 0.69803923368453979), (0.20000000000000001, 0.83921569585800171, 0.83921569585800171), (0.29999999999999999, 0.95686274766921997, 0.95686274766921997), (0.40000000000000002, 0.99215686321258545, 0.99215686321258545), (0.5, 0.9686274528503418, 0.9686274528503418), (0.59999999999999998, 0.81960785388946533, 0.81960785388946533), (0.69999999999999996, 0.57254904508590698, 0.57254904508590698), (0.80000000000000004, 0.26274511218070984, 0.26274511218070984), (0.90000000000000002, 0.12941177189350128, 0.12941177189350128), (1.0, 0.019607843831181526, 0.019607843831181526)]} _RdGy_data = {'blue': [(0.0, 0.12156862765550613, 0.12156862765550613), (0.10000000000000001, 0.16862745583057404, 0.16862745583057404), (0.20000000000000001, 0.30196079611778259, 0.30196079611778259), (0.29999999999999999, 0.50980395078659058, 0.50980395078659058), (0.40000000000000002, 0.78039216995239258, 0.78039216995239258), (0.5, 1.0, 1.0), (0.59999999999999998, 0.87843137979507446, 0.87843137979507446), (0.69999999999999996, 0.729411780834198, 0.729411780834198), (0.80000000000000004, 0.52941179275512695, 0.52941179275512695), (0.90000000000000002, 0.30196079611778259, 0.30196079611778259), (1.0, 0.10196078568696976, 0.10196078568696976)], 'green': [(0.0, 0.0, 0.0), (0.10000000000000001, 0.094117648899555206, 0.094117648899555206), (0.20000000000000001, 0.37647059559822083, 0.37647059559822083), (0.29999999999999999, 0.64705884456634521, 0.64705884456634521), (0.40000000000000002, 0.85882353782653809, 0.85882353782653809), (0.5, 1.0, 1.0), (0.59999999999999998, 0.87843137979507446, 0.87843137979507446), (0.69999999999999996, 0.729411780834198, 0.729411780834198), (0.80000000000000004, 0.52941179275512695, 0.52941179275512695), (0.90000000000000002, 0.30196079611778259, 0.30196079611778259), (1.0, 0.10196078568696976, 0.10196078568696976)], 'red': [(0.0, 0.40392157435417175, 0.40392157435417175), (0.10000000000000001, 0.69803923368453979, 0.69803923368453979), (0.20000000000000001, 0.83921569585800171, 0.83921569585800171), (0.29999999999999999, 0.95686274766921997, 0.95686274766921997), (0.40000000000000002, 0.99215686321258545, 0.99215686321258545), (0.5, 1.0, 1.0), (0.59999999999999998, 0.87843137979507446, 0.87843137979507446), (0.69999999999999996, 0.729411780834198, 0.729411780834198), (0.80000000000000004, 0.52941179275512695, 0.52941179275512695), (0.90000000000000002, 0.30196079611778259, 0.30196079611778259), (1.0, 0.10196078568696976, 0.10196078568696976)]} _RdPu_data = {'blue': [(0.0, 0.9529411792755127, 0.9529411792755127), (0.125, 0.86666667461395264, 0.86666667461395264), (0.25, 0.75294119119644165, 0.75294119119644165), (0.375, 0.70980393886566162, 0.70980393886566162), (0.5, 0.63137257099151611, 0.63137257099151611), (0.625, 0.59215688705444336, 0.59215688705444336), (0.75, 0.49411764740943909, 0.49411764740943909), (0.875, 0.46666666865348816, 0.46666666865348816), (1.0, 0.41568627953529358, 0.41568627953529358)], 'green': [(0.0, 0.9686274528503418, 0.9686274528503418), (0.125, 0.87843137979507446, 0.87843137979507446), (0.25, 0.77254903316497803, 0.77254903316497803), (0.375, 0.62352943420410156, 0.62352943420410156), (0.5, 0.40784314274787903, 0.40784314274787903), (0.625, 0.20392157137393951, 0.20392157137393951), (0.75, 0.0039215688593685627, 0.0039215688593685627), (0.875, 0.0039215688593685627, 0.0039215688593685627), (1.0, 0.0, 0.0)], 'red': [(0.0, 1.0, 1.0), (0.125, 0.99215686321258545, 0.99215686321258545), (0.25, 0.98823529481887817, 0.98823529481887817), (0.375, 0.98039215803146362, 0.98039215803146362), (0.5, 0.9686274528503418, 0.9686274528503418), (0.625, 0.86666667461395264, 0.86666667461395264), (0.75, 0.68235296010971069, 0.68235296010971069), (0.875, 0.47843137383460999, 0.47843137383460999), (1.0, 0.28627452254295349, 0.28627452254295349)]} _RdYlBu_data = {'blue': [(0.0, 0.14901961386203766, 0.14901961386203766), (0.10000000149011612, 0.15294118225574493, 0.15294118225574493), (0.20000000298023224, 0.26274511218070984, 0.26274511218070984), (0.30000001192092896, 0.3803921639919281, 0.3803921639919281), (0.40000000596046448, 0.56470590829849243, 0.56470590829849243), (0.5, 0.74901962280273438, 0.74901962280273438), (0.60000002384185791, 0.97254902124404907, 0.97254902124404907), (0.69999998807907104, 0.91372549533843994, 0.91372549533843994), (0.80000001192092896, 0.81960785388946533, 0.81960785388946533), (0.89999997615814209, 0.70588237047195435, 0.70588237047195435), (1.0, 0.58431375026702881, 0.58431375026702881)], 'green': [(0.0, 0.0, 0.0), (0.10000000149011612, 0.18823529779911041, 0.18823529779911041), (0.20000000298023224, 0.42745098471641541, 0.42745098471641541), (0.30000001192092896, 0.68235296010971069, 0.68235296010971069), (0.40000000596046448, 0.87843137979507446, 0.87843137979507446), (0.5, 1.0, 1.0), (0.60000002384185791, 0.9529411792755127, 0.9529411792755127), (0.69999998807907104, 0.85098040103912354, 0.85098040103912354), (0.80000001192092896, 0.67843139171600342, 0.67843139171600342), (0.89999997615814209, 0.45882353186607361, 0.45882353186607361), (1.0, 0.21176470816135406, 0.21176470816135406)], 'red': [(0.0, 0.64705884456634521, 0.64705884456634521), (0.10000000149011612, 0.84313726425170898, 0.84313726425170898), (0.20000000298023224, 0.95686274766921997, 0.95686274766921997), (0.30000001192092896, 0.99215686321258545, 0.99215686321258545), (0.40000000596046448, 0.99607843160629272, 0.99607843160629272), (0.5, 1.0, 1.0), (0.60000002384185791, 0.87843137979507446, 0.87843137979507446), (0.69999998807907104, 0.67058825492858887, 0.67058825492858887), (0.80000001192092896, 0.45490196347236633, 0.45490196347236633), (0.89999997615814209, 0.27058824896812439, 0.27058824896812439), (1.0, 0.19215686619281769, 0.19215686619281769)]} _RdYlGn_data = {'blue': [(0.0, 0.14901961386203766, 0.14901961386203766), (0.10000000000000001, 0.15294118225574493, 0.15294118225574493), (0.20000000000000001, 0.26274511218070984, 0.26274511218070984), (0.29999999999999999, 0.3803921639919281, 0.3803921639919281), (0.40000000000000002, 0.54509806632995605, 0.54509806632995605), (0.5, 0.74901962280273438, 0.74901962280273438), (0.59999999999999998, 0.54509806632995605, 0.54509806632995605), (0.69999999999999996, 0.41568627953529358, 0.41568627953529358), (0.80000000000000004, 0.38823530077934265, 0.38823530077934265), (0.90000000000000002, 0.31372550129890442, 0.31372550129890442), (1.0, 0.21568627655506134, 0.21568627655506134)], 'green': [(0.0, 0.0, 0.0), (0.10000000000000001, 0.18823529779911041, 0.18823529779911041), (0.20000000000000001, 0.42745098471641541, 0.42745098471641541), (0.29999999999999999, 0.68235296010971069, 0.68235296010971069), (0.40000000000000002, 0.87843137979507446, 0.87843137979507446), (0.5, 1.0, 1.0), (0.59999999999999998, 0.93725490570068359, 0.93725490570068359), (0.69999999999999996, 0.85098040103912354, 0.85098040103912354), (0.80000000000000004, 0.74117648601531982, 0.74117648601531982), (0.90000000000000002, 0.59607845544815063, 0.59607845544815063), (1.0, 0.40784314274787903, 0.40784314274787903)], 'red': [(0.0, 0.64705884456634521, 0.64705884456634521), (0.10000000000000001, 0.84313726425170898, 0.84313726425170898), (0.20000000000000001, 0.95686274766921997, 0.95686274766921997), (0.29999999999999999, 0.99215686321258545, 0.99215686321258545), (0.40000000000000002, 0.99607843160629272, 0.99607843160629272), (0.5, 1.0, 1.0), (0.59999999999999998, 0.85098040103912354, 0.85098040103912354), (0.69999999999999996, 0.65098041296005249, 0.65098041296005249), (0.80000000000000004, 0.40000000596046448, 0.40000000596046448), (0.90000000000000002, 0.10196078568696976, 0.10196078568696976), (1.0, 0.0, 0.0)]} _Reds_data = {'blue': [(0.0, 0.94117647409439087, 0.94117647409439087), (0.125, 0.82352942228317261, 0.82352942228317261), (0.25, 0.63137257099151611, 0.63137257099151611), (0.375, 0.44705882668495178, 0.44705882668495178), (0.5, 0.29019609093666077, 0.29019609093666077), (0.625, 0.17254902422428131, 0.17254902422428131), (0.75, 0.11372549086809158, 0.11372549086809158), (0.875, 0.08235294371843338, 0.08235294371843338), (1.0, 0.050980392843484879, 0.050980392843484879)], 'green': [(0.0, 0.96078431606292725, 0.96078431606292725), (0.125, 0.87843137979507446, 0.87843137979507446), (0.25, 0.73333334922790527, 0.73333334922790527), (0.375, 0.57254904508590698, 0.57254904508590698), (0.5, 0.41568627953529358, 0.41568627953529358), (0.625, 0.23137255012989044, 0.23137255012989044), (0.75, 0.094117648899555206, 0.094117648899555206), (0.875, 0.058823529630899429, 0.058823529630899429), (1.0, 0.0, 0.0)], 'red': [(0.0, 1.0, 1.0), (0.125, 0.99607843160629272, 0.99607843160629272), (0.25, 0.98823529481887817, 0.98823529481887817), (0.375, 0.98823529481887817, 0.98823529481887817), (0.5, 0.9843137264251709, 0.9843137264251709), (0.625, 0.93725490570068359, 0.93725490570068359), (0.75, 0.79607844352722168, 0.79607844352722168), (0.875, 0.64705884456634521, 0.64705884456634521), (1.0, 0.40392157435417175, 0.40392157435417175)]} _Set1_data = {'blue': [(0.0, 0.10980392247438431, 0.10980392247438431), (0.125, 0.72156864404678345, 0.72156864404678345), (0.25, 0.29019609093666077, 0.29019609093666077), (0.375, 0.63921570777893066, 0.63921570777893066), (0.5, 0.0, 0.0), (0.625, 0.20000000298023224, 0.20000000298023224), (0.75, 0.15686275064945221, 0.15686275064945221), (0.875, 0.74901962280273438, 0.74901962280273438), (1.0, 0.60000002384185791, 0.60000002384185791)], 'green': [(0.0, 0.10196078568696976, 0.10196078568696976), (0.125, 0.49411764740943909, 0.49411764740943909), (0.25, 0.68627452850341797, 0.68627452850341797), (0.375, 0.30588236451148987, 0.30588236451148987), (0.5, 0.49803921580314636, 0.49803921580314636), (0.625, 1.0, 1.0), (0.75, 0.33725491166114807, 0.33725491166114807), (0.875, 0.5058823823928833, 0.5058823823928833), (1.0, 0.60000002384185791, 0.60000002384185791)], 'red': [(0.0, 0.89411765336990356, 0.89411765336990356), (0.125, 0.21568627655506134, 0.21568627655506134), (0.25, 0.30196079611778259, 0.30196079611778259), (0.375, 0.59607845544815063, 0.59607845544815063), (0.5, 1.0, 1.0), (0.625, 1.0, 1.0), (0.75, 0.65098041296005249, 0.65098041296005249), (0.875, 0.9686274528503418, 0.9686274528503418), (1.0, 0.60000002384185791, 0.60000002384185791)]} _Set2_data = {'blue': [(0.0, 0.64705884456634521, 0.64705884456634521), (0.14285714285714285, 0.38431373238563538, 0.38431373238563538), (0.2857142857142857, 0.79607844352722168, 0.79607844352722168), (0.42857142857142855, 0.76470589637756348, 0.76470589637756348), (0.5714285714285714, 0.32941177487373352, 0.32941177487373352), (0.7142857142857143, 0.18431372940540314, 0.18431372940540314), (0.8571428571428571, 0.58039218187332153, 0.58039218187332153), (1.0, 0.70196080207824707, 0.70196080207824707)], 'green': [(0.0, 0.7607843279838562, 0.7607843279838562), (0.14285714285714285, 0.55294120311737061, 0.55294120311737061), (0.2857142857142857, 0.62745100259780884, 0.62745100259780884), (0.42857142857142855, 0.54117649793624878, 0.54117649793624878), (0.5714285714285714, 0.84705883264541626, 0.84705883264541626), (0.7142857142857143, 0.85098040103912354, 0.85098040103912354), (0.8571428571428571, 0.76862746477127075, 0.76862746477127075), (1.0, 0.70196080207824707, 0.70196080207824707)], 'red': [(0.0, 0.40000000596046448, 0.40000000596046448), (0.14285714285714285, 0.98823529481887817, 0.98823529481887817), (0.2857142857142857, 0.55294120311737061, 0.55294120311737061), (0.42857142857142855, 0.90588235855102539, 0.90588235855102539), (0.5714285714285714, 0.65098041296005249, 0.65098041296005249), (0.7142857142857143, 1.0, 1.0), (0.8571428571428571, 0.89803922176361084, 0.89803922176361084), (1.0, 0.70196080207824707, 0.70196080207824707)]} _Set3_data = {'blue': [(0.0, 0.78039216995239258, 0.78039216995239258), (0.090909090909090912, 0.70196080207824707, 0.70196080207824707), (0.18181818181818182, 0.85490196943283081, 0.85490196943283081), (0.27272727272727271, 0.44705882668495178, 0.44705882668495178), (0.36363636363636365, 0.82745099067687988, 0.82745099067687988), (0.45454545454545453, 0.38431373238563538, 0.38431373238563538), (0.54545454545454541, 0.4117647111415863, 0.4117647111415863), (0.63636363636363635, 0.89803922176361084, 0.89803922176361084), (0.72727272727272729, 0.85098040103912354, 0.85098040103912354), (0.81818181818181823, 0.74117648601531982, 0.74117648601531982), (0.90909090909090906, 0.77254903316497803, 0.77254903316497803), (1.0, 0.43529412150382996, 0.43529412150382996)], 'green': [(0.0, 0.82745099067687988, 0.82745099067687988), (0.090909090909090912, 1.0, 1.0), (0.18181818181818182, 0.729411780834198, 0.729411780834198), (0.27272727272727271, 0.50196081399917603, 0.50196081399917603), (0.36363636363636365, 0.69411766529083252, 0.69411766529083252), (0.45454545454545453, 0.70588237047195435, 0.70588237047195435), (0.54545454545454541, 0.87058824300765991, 0.87058824300765991), (0.63636363636363635, 0.80392158031463623, 0.80392158031463623), (0.72727272727272729, 0.85098040103912354, 0.85098040103912354), (0.81818181818181823, 0.50196081399917603, 0.50196081399917603), (0.90909090909090906, 0.92156863212585449, 0.92156863212585449), (1.0, 0.92941176891326904, 0.92941176891326904)], 'red': [(0.0, 0.55294120311737061, 0.55294120311737061), (0.090909090909090912, 1.0, 1.0), (0.18181818181818182, 0.7450980544090271, 0.7450980544090271), (0.27272727272727271, 0.9843137264251709, 0.9843137264251709), (0.36363636363636365, 0.50196081399917603, 0.50196081399917603), (0.45454545454545453, 0.99215686321258545, 0.99215686321258545), (0.54545454545454541, 0.70196080207824707, 0.70196080207824707), (0.63636363636363635, 0.98823529481887817, 0.98823529481887817), (0.72727272727272729, 0.85098040103912354, 0.85098040103912354), (0.81818181818181823, 0.73725491762161255, 0.73725491762161255), (0.90909090909090906, 0.80000001192092896, 0.80000001192092896), (1.0, 1.0, 1.0)]} _Spectral_data = {'blue': [(0.0, 0.25882354378700256, 0.25882354378700256), (0.10000000000000001, 0.30980393290519714, 0.30980393290519714), (0.20000000000000001, 0.26274511218070984, 0.26274511218070984), (0.29999999999999999, 0.3803921639919281, 0.3803921639919281), (0.40000000000000002, 0.54509806632995605, 0.54509806632995605), (0.5, 0.74901962280273438, 0.74901962280273438), (0.59999999999999998, 0.59607845544815063, 0.59607845544815063), (0.69999999999999996, 0.64313727617263794, 0.64313727617263794), (0.80000000000000004, 0.64705884456634521, 0.64705884456634521), (0.90000000000000002, 0.74117648601531982, 0.74117648601531982), (1.0, 0.63529413938522339, 0.63529413938522339)], 'green': [(0.0, 0.0039215688593685627, 0.0039215688593685627), (0.10000000000000001, 0.24313725531101227, 0.24313725531101227), (0.20000000000000001, 0.42745098471641541, 0.42745098471641541), (0.29999999999999999, 0.68235296010971069, 0.68235296010971069), (0.40000000000000002, 0.87843137979507446, 0.87843137979507446), (0.5, 1.0, 1.0), (0.59999999999999998, 0.96078431606292725, 0.96078431606292725), (0.69999999999999996, 0.86666667461395264, 0.86666667461395264), (0.80000000000000004, 0.7607843279838562, 0.7607843279838562), (0.90000000000000002, 0.53333336114883423, 0.53333336114883423), (1.0, 0.30980393290519714, 0.30980393290519714)], 'red': [(0.0, 0.61960786581039429, 0.61960786581039429), (0.10000000000000001, 0.83529412746429443, 0.83529412746429443), (0.20000000000000001, 0.95686274766921997, 0.95686274766921997), (0.29999999999999999, 0.99215686321258545, 0.99215686321258545), (0.40000000000000002, 0.99607843160629272, 0.99607843160629272), (0.5, 1.0, 1.0), (0.59999999999999998, 0.90196079015731812, 0.90196079015731812), (0.69999999999999996, 0.67058825492858887, 0.67058825492858887), (0.80000000000000004, 0.40000000596046448, 0.40000000596046448), (0.90000000000000002, 0.19607843458652496, 0.19607843458652496), (1.0, 0.36862745881080627, 0.36862745881080627)]} _YlGn_data = {'blue': [(0.0, 0.89803922176361084, 0.89803922176361084), (0.125, 0.72549021244049072, 0.72549021244049072), (0.25, 0.63921570777893066, 0.63921570777893066), (0.375, 0.55686277151107788, 0.55686277151107788), (0.5, 0.47450980544090271, 0.47450980544090271), (0.625, 0.364705890417099, 0.364705890417099), (0.75, 0.26274511218070984, 0.26274511218070984), (0.875, 0.21568627655506134, 0.21568627655506134), (1.0, 0.16078431904315948, 0.16078431904315948)], 'green': [(0.0, 1.0, 1.0), (0.125, 0.98823529481887817, 0.98823529481887817), (0.25, 0.94117647409439087, 0.94117647409439087), (0.375, 0.86666667461395264, 0.86666667461395264), (0.5, 0.7764706015586853, 0.7764706015586853), (0.625, 0.67058825492858887, 0.67058825492858887), (0.75, 0.51764708757400513, 0.51764708757400513), (0.875, 0.40784314274787903, 0.40784314274787903), (1.0, 0.27058824896812439, 0.27058824896812439)], 'red': [(0.0, 1.0, 1.0), (0.125, 0.9686274528503418, 0.9686274528503418), (0.25, 0.85098040103912354, 0.85098040103912354), (0.375, 0.67843139171600342, 0.67843139171600342), (0.5, 0.47058823704719543, 0.47058823704719543), (0.625, 0.25490197539329529, 0.25490197539329529), (0.75, 0.13725490868091583, 0.13725490868091583), (0.875, 0.0, 0.0), (1.0, 0.0, 0.0)]} _YlGnBu_data = {'blue': [(0.0, 0.85098040103912354, 0.85098040103912354), (0.125, 0.69411766529083252, 0.69411766529083252), (0.25, 0.70588237047195435, 0.70588237047195435), (0.375, 0.73333334922790527, 0.73333334922790527), (0.5, 0.76862746477127075, 0.76862746477127075), (0.625, 0.75294119119644165, 0.75294119119644165), (0.75, 0.65882354974746704, 0.65882354974746704), (0.875, 0.58039218187332153, 0.58039218187332153), (1.0, 0.34509804844856262, 0.34509804844856262)], 'green': [(0.0, 1.0, 1.0), (0.125, 0.97254902124404907, 0.97254902124404907), (0.25, 0.91372549533843994, 0.91372549533843994), (0.375, 0.80392158031463623, 0.80392158031463623), (0.5, 0.7137255072593689, 0.7137255072593689), (0.625, 0.56862747669219971, 0.56862747669219971), (0.75, 0.36862745881080627, 0.36862745881080627), (0.875, 0.20392157137393951, 0.20392157137393951), (1.0, 0.11372549086809158, 0.11372549086809158)], 'red': [(0.0, 1.0, 1.0), (0.125, 0.92941176891326904, 0.92941176891326904), (0.25, 0.78039216995239258, 0.78039216995239258), (0.375, 0.49803921580314636, 0.49803921580314636), (0.5, 0.25490197539329529, 0.25490197539329529), (0.625, 0.11372549086809158, 0.11372549086809158), (0.75, 0.13333334028720856, 0.13333334028720856), (0.875, 0.14509804546833038, 0.14509804546833038), (1.0, 0.031372550874948502, 0.031372550874948502)]} _YlOrBr_data = {'blue': [(0.0, 0.89803922176361084, 0.89803922176361084), (0.125, 0.73725491762161255, 0.73725491762161255), (0.25, 0.56862747669219971, 0.56862747669219971), (0.375, 0.30980393290519714, 0.30980393290519714), (0.5, 0.16078431904315948, 0.16078431904315948), (0.625, 0.078431375324726105, 0.078431375324726105), (0.75, 0.0078431377187371254, 0.0078431377187371254), (0.875, 0.015686275437474251, 0.015686275437474251), (1.0, 0.023529412224888802, 0.023529412224888802)], 'green': [(0.0, 1.0, 1.0), (0.125, 0.9686274528503418, 0.9686274528503418), (0.25, 0.89019608497619629, 0.89019608497619629), (0.375, 0.76862746477127075, 0.76862746477127075), (0.5, 0.60000002384185791, 0.60000002384185791), (0.625, 0.43921568989753723, 0.43921568989753723), (0.75, 0.29803922772407532, 0.29803922772407532), (0.875, 0.20392157137393951, 0.20392157137393951), (1.0, 0.14509804546833038, 0.14509804546833038)], 'red': [(0.0, 1.0, 1.0), (0.125, 1.0, 1.0), (0.25, 0.99607843160629272, 0.99607843160629272), (0.375, 0.99607843160629272, 0.99607843160629272), (0.5, 0.99607843160629272, 0.99607843160629272), (0.625, 0.92549020051956177, 0.92549020051956177), (0.75, 0.80000001192092896, 0.80000001192092896), (0.875, 0.60000002384185791, 0.60000002384185791), (1.0, 0.40000000596046448, 0.40000000596046448)]} _YlOrRd_data = {'blue': [(0.0, 0.80000001192092896, 0.80000001192092896), (0.125, 0.62745100259780884, 0.62745100259780884), (0.25, 0.46274510025978088, 0.46274510025978088), (0.375, 0.29803922772407532, 0.29803922772407532), (0.5, 0.23529411852359772, 0.23529411852359772), (0.625, 0.16470588743686676, 0.16470588743686676), (0.75, 0.10980392247438431, 0.10980392247438431), (0.875, 0.14901961386203766, 0.14901961386203766), (1.0, 0.14901961386203766, 0.14901961386203766)], 'green': [(0.0, 1.0, 1.0), (0.125, 0.92941176891326904, 0.92941176891326904), (0.25, 0.85098040103912354, 0.85098040103912354), (0.375, 0.69803923368453979, 0.69803923368453979), (0.5, 0.55294120311737061, 0.55294120311737061), (0.625, 0.30588236451148987, 0.30588236451148987), (0.75, 0.10196078568696976, 0.10196078568696976), (0.875, 0.0, 0.0), (1.0, 0.0, 0.0)], 'red': [(0.0, 1.0, 1.0), (0.125, 1.0, 1.0), (0.25, 0.99607843160629272, 0.99607843160629272), (0.375, 0.99607843160629272, 0.99607843160629272), (0.5, 0.99215686321258545, 0.99215686321258545), (0.625, 0.98823529481887817, 0.98823529481887817), (0.75, 0.89019608497619629, 0.89019608497619629), (0.875, 0.74117648601531982, 0.74117648601531982), (1.0, 0.50196081399917603, 0.50196081399917603)]} # The next 7 palettes are from the Yorick scientific visalisation package, # an evolution of the GIST package, both by David H. Munro. # They are released under a BSD-like license (see LICENSE_YORICK in # the license directory of the matplotlib source distribution). _gist_earth_data = {'blue': [(0.0, 0.0, 0.0), (0.0042016808874905109, 0.18039216101169586, 0.18039216101169586), (0.0084033617749810219, 0.22745098173618317, 0.22745098173618317), (0.012605042196810246, 0.27058824896812439, 0.27058824896812439), (0.016806723549962044, 0.31764706969261169, 0.31764706969261169), (0.021008403971791267, 0.36078432202339172, 0.36078432202339172), (0.025210084393620491, 0.40784314274787903, 0.40784314274787903), (0.029411764815449715, 0.45490196347236633, 0.45490196347236633), (0.033613447099924088, 0.45490196347236633, 0.45490196347236633), (0.037815127521753311, 0.45490196347236633, 0.45490196347236633), (0.042016807943582535, 0.45490196347236633, 0.45490196347236633), (0.046218488365411758, 0.45490196347236633, 0.45490196347236633), (0.050420168787240982, 0.45882353186607361, 0.45882353186607361), (0.054621849209070206, 0.45882353186607361, 0.45882353186607361), (0.058823529630899429, 0.45882353186607361, 0.45882353186607361), (0.063025213778018951, 0.45882353186607361, 0.45882353186607361), (0.067226894199848175, 0.45882353186607361, 0.45882353186607361), (0.071428574621677399, 0.46274510025978088, 0.46274510025978088), (0.075630255043506622, 0.46274510025978088, 0.46274510025978088), (0.079831935465335846, 0.46274510025978088, 0.46274510025978088), (0.08403361588716507, 0.46274510025978088, 0.46274510025978088), (0.088235296308994293, 0.46274510025978088, 0.46274510025978088), (0.092436976730823517, 0.46666666865348816, 0.46666666865348816), (0.09663865715265274, 0.46666666865348816, 0.46666666865348816), (0.10084033757448196, 0.46666666865348816, 0.46666666865348816), (0.10504201799631119, 0.46666666865348816, 0.46666666865348816), (0.10924369841814041, 0.46666666865348816, 0.46666666865348816), (0.11344537883996964, 0.47058823704719543, 0.47058823704719543), (0.11764705926179886, 0.47058823704719543, 0.47058823704719543), (0.12184873968362808, 0.47058823704719543, 0.47058823704719543), (0.1260504275560379, 0.47058823704719543, 0.47058823704719543), (0.13025210797786713, 0.47058823704719543, 0.47058823704719543), (0.13445378839969635, 0.47450980544090271, 0.47450980544090271), (0.13865546882152557, 0.47450980544090271, 0.47450980544090271), (0.1428571492433548, 0.47450980544090271, 0.47450980544090271), (0.14705882966518402, 0.47450980544090271, 0.47450980544090271), (0.15126051008701324, 0.47450980544090271, 0.47450980544090271), (0.15546219050884247, 0.47843137383460999, 0.47843137383460999), (0.15966387093067169, 0.47843137383460999, 0.47843137383460999), (0.16386555135250092, 0.47843137383460999, 0.47843137383460999), (0.16806723177433014, 0.47843137383460999, 0.47843137383460999), (0.17226891219615936, 0.47843137383460999, 0.47843137383460999), (0.17647059261798859, 0.48235294222831726, 0.48235294222831726), (0.18067227303981781, 0.48235294222831726, 0.48235294222831726), (0.18487395346164703, 0.48235294222831726, 0.48235294222831726), (0.18907563388347626, 0.48235294222831726, 0.48235294222831726), (0.19327731430530548, 0.48235294222831726, 0.48235294222831726), (0.1974789947271347, 0.48627451062202454, 0.48627451062202454), (0.20168067514896393, 0.48627451062202454, 0.48627451062202454), (0.20588235557079315, 0.48627451062202454, 0.48627451062202454), (0.21008403599262238, 0.48627451062202454, 0.48627451062202454), (0.2142857164144516, 0.48627451062202454, 0.48627451062202454), (0.21848739683628082, 0.49019607901573181, 0.49019607901573181), (0.22268907725811005, 0.49019607901573181, 0.49019607901573181), (0.22689075767993927, 0.49019607901573181, 0.49019607901573181), (0.23109243810176849, 0.49019607901573181, 0.49019607901573181), (0.23529411852359772, 0.49019607901573181, 0.49019607901573181), (0.23949579894542694, 0.49411764740943909, 0.49411764740943909), (0.24369747936725616, 0.49411764740943909, 0.49411764740943909), (0.24789915978908539, 0.49411764740943909, 0.49411764740943909), (0.25210085511207581, 0.49411764740943909, 0.49411764740943909), (0.25630253553390503, 0.49411764740943909, 0.49411764740943909), (0.26050421595573425, 0.49803921580314636, 0.49803921580314636), (0.26470589637756348, 0.49803921580314636, 0.49803921580314636), (0.2689075767993927, 0.49803921580314636, 0.49803921580314636), (0.27310925722122192, 0.49803921580314636, 0.49803921580314636), (0.27731093764305115, 0.49803921580314636, 0.49803921580314636), (0.28151261806488037, 0.50196081399917603, 0.50196081399917603), (0.28571429848670959, 0.49411764740943909, 0.49411764740943909), (0.28991597890853882, 0.49019607901573181, 0.49019607901573181), (0.29411765933036804, 0.48627451062202454, 0.48627451062202454), (0.29831933975219727, 0.48235294222831726, 0.48235294222831726), (0.30252102017402649, 0.47843137383460999, 0.47843137383460999), (0.30672270059585571, 0.47058823704719543, 0.47058823704719543), (0.31092438101768494, 0.46666666865348816, 0.46666666865348816), (0.31512606143951416, 0.46274510025978088, 0.46274510025978088), (0.31932774186134338, 0.45882353186607361, 0.45882353186607361), (0.32352942228317261, 0.45098039507865906, 0.45098039507865906), (0.32773110270500183, 0.44705882668495178, 0.44705882668495178), (0.33193278312683105, 0.44313725829124451, 0.44313725829124451), (0.33613446354866028, 0.43529412150382996, 0.43529412150382996), (0.3403361439704895, 0.43137255311012268, 0.43137255311012268), (0.34453782439231873, 0.42745098471641541, 0.42745098471641541), (0.34873950481414795, 0.42352941632270813, 0.42352941632270813), (0.35294118523597717, 0.41568627953529358, 0.41568627953529358), (0.3571428656578064, 0.4117647111415863, 0.4117647111415863), (0.36134454607963562, 0.40784314274787903, 0.40784314274787903), (0.36554622650146484, 0.40000000596046448, 0.40000000596046448), (0.36974790692329407, 0.3960784375667572, 0.3960784375667572), (0.37394958734512329, 0.39215686917304993, 0.39215686917304993), (0.37815126776695251, 0.38431373238563538, 0.38431373238563538), (0.38235294818878174, 0.3803921639919281, 0.3803921639919281), (0.38655462861061096, 0.37647059559822083, 0.37647059559822083), (0.39075630903244019, 0.36862745881080627, 0.36862745881080627), (0.39495798945426941, 0.364705890417099, 0.364705890417099), (0.39915966987609863, 0.36078432202339172, 0.36078432202339172), (0.40336135029792786, 0.35294118523597717, 0.35294118523597717), (0.40756303071975708, 0.3490196168422699, 0.3490196168422699), (0.4117647111415863, 0.34509804844856262, 0.34509804844856262), (0.41596639156341553, 0.33725491166114807, 0.33725491166114807), (0.42016807198524475, 0.3333333432674408, 0.3333333432674408), (0.42436975240707397, 0.32941177487373352, 0.32941177487373352), (0.4285714328289032, 0.32156863808631897, 0.32156863808631897), (0.43277311325073242, 0.31764706969261169, 0.31764706969261169), (0.43697479367256165, 0.31372550129890442, 0.31372550129890442), (0.44117647409439087, 0.30588236451148987, 0.30588236451148987), (0.44537815451622009, 0.30196079611778259, 0.30196079611778259), (0.44957983493804932, 0.29803922772407532, 0.29803922772407532), (0.45378151535987854, 0.29019609093666077, 0.29019609093666077), (0.45798319578170776, 0.28627452254295349, 0.28627452254295349), (0.46218487620353699, 0.27843138575553894, 0.27843138575553894), (0.46638655662536621, 0.27450981736183167, 0.27450981736183167), (0.47058823704719543, 0.27843138575553894, 0.27843138575553894), (0.47478991746902466, 0.28235295414924622, 0.28235295414924622), (0.47899159789085388, 0.28235295414924622, 0.28235295414924622), (0.48319327831268311, 0.28627452254295349, 0.28627452254295349), (0.48739495873451233, 0.28627452254295349, 0.28627452254295349), (0.49159663915634155, 0.29019609093666077, 0.29019609093666077), (0.49579831957817078, 0.29411765933036804, 0.29411765933036804), (0.5, 0.29411765933036804, 0.29411765933036804), (0.50420171022415161, 0.29803922772407532, 0.29803922772407532), (0.50840336084365845, 0.29803922772407532, 0.29803922772407532), (0.51260507106781006, 0.30196079611778259, 0.30196079611778259), (0.51680672168731689, 0.30196079611778259, 0.30196079611778259), (0.52100843191146851, 0.30588236451148987, 0.30588236451148987), (0.52521008253097534, 0.30980393290519714, 0.30980393290519714), (0.52941179275512695, 0.30980393290519714, 0.30980393290519714), (0.53361344337463379, 0.31372550129890442, 0.31372550129890442), (0.5378151535987854, 0.31372550129890442, 0.31372550129890442), (0.54201680421829224, 0.31764706969261169, 0.31764706969261169), (0.54621851444244385, 0.32156863808631897, 0.32156863808631897), (0.55042016506195068, 0.32156863808631897, 0.32156863808631897), (0.55462187528610229, 0.32156863808631897, 0.32156863808631897), (0.55882352590560913, 0.32549020648002625, 0.32549020648002625), (0.56302523612976074, 0.32549020648002625, 0.32549020648002625), (0.56722688674926758, 0.32549020648002625, 0.32549020648002625), (0.57142859697341919, 0.32941177487373352, 0.32941177487373352), (0.57563024759292603, 0.32941177487373352, 0.32941177487373352), (0.57983195781707764, 0.32941177487373352, 0.32941177487373352), (0.58403360843658447, 0.3333333432674408, 0.3333333432674408), (0.58823531866073608, 0.3333333432674408, 0.3333333432674408), (0.59243696928024292, 0.3333333432674408, 0.3333333432674408), (0.59663867950439453, 0.33725491166114807, 0.33725491166114807), (0.60084033012390137, 0.33725491166114807, 0.33725491166114807), (0.60504204034805298, 0.33725491166114807, 0.33725491166114807), (0.60924369096755981, 0.34117648005485535, 0.34117648005485535), (0.61344540119171143, 0.34117648005485535, 0.34117648005485535), (0.61764705181121826, 0.34117648005485535, 0.34117648005485535), (0.62184876203536987, 0.34509804844856262, 0.34509804844856262), (0.62605041265487671, 0.34509804844856262, 0.34509804844856262), (0.63025212287902832, 0.34509804844856262, 0.34509804844856262), (0.63445377349853516, 0.3490196168422699, 0.3490196168422699), (0.63865548372268677, 0.3490196168422699, 0.3490196168422699), (0.6428571343421936, 0.3490196168422699, 0.3490196168422699), (0.64705884456634521, 0.35294118523597717, 0.35294118523597717), (0.65126049518585205, 0.35294118523597717, 0.35294118523597717), (0.65546220541000366, 0.35294118523597717, 0.35294118523597717), (0.6596638560295105, 0.35686275362968445, 0.35686275362968445), (0.66386556625366211, 0.35686275362968445, 0.35686275362968445), (0.66806721687316895, 0.35686275362968445, 0.35686275362968445), (0.67226892709732056, 0.36078432202339172, 0.36078432202339172), (0.67647057771682739, 0.36078432202339172, 0.36078432202339172), (0.680672287940979, 0.36078432202339172, 0.36078432202339172), (0.68487393856048584, 0.364705890417099, 0.364705890417099), (0.68907564878463745, 0.364705890417099, 0.364705890417099), (0.69327729940414429, 0.364705890417099, 0.364705890417099), (0.6974790096282959, 0.36862745881080627, 0.36862745881080627), (0.70168066024780273, 0.36862745881080627, 0.36862745881080627), (0.70588237047195435, 0.36862745881080627, 0.36862745881080627), (0.71008402109146118, 0.37254902720451355, 0.37254902720451355), (0.71428573131561279, 0.37254902720451355, 0.37254902720451355), (0.71848738193511963, 0.37254902720451355, 0.37254902720451355), (0.72268909215927124, 0.37647059559822083, 0.37647059559822083), (0.72689074277877808, 0.37647059559822083, 0.37647059559822083), (0.73109245300292969, 0.3803921639919281, 0.3803921639919281), (0.73529410362243652, 0.3803921639919281, 0.3803921639919281), (0.73949581384658813, 0.3803921639919281, 0.3803921639919281), (0.74369746446609497, 0.38431373238563538, 0.38431373238563538), (0.74789917469024658, 0.38431373238563538, 0.38431373238563538), (0.75210082530975342, 0.38431373238563538, 0.38431373238563538), (0.75630253553390503, 0.38823530077934265, 0.38823530077934265), (0.76050418615341187, 0.38823530077934265, 0.38823530077934265), (0.76470589637756348, 0.38823530077934265, 0.38823530077934265), (0.76890754699707031, 0.39215686917304993, 0.39215686917304993), (0.77310925722122192, 0.39215686917304993, 0.39215686917304993), (0.77731090784072876, 0.39215686917304993, 0.39215686917304993), (0.78151261806488037, 0.3960784375667572, 0.3960784375667572), (0.78571426868438721, 0.3960784375667572, 0.3960784375667572), (0.78991597890853882, 0.40784314274787903, 0.40784314274787903), (0.79411762952804565, 0.41568627953529358, 0.41568627953529358), (0.79831933975219727, 0.42352941632270813, 0.42352941632270813), (0.8025209903717041, 0.43529412150382996, 0.43529412150382996), (0.80672270059585571, 0.44313725829124451, 0.44313725829124451), (0.81092435121536255, 0.45490196347236633, 0.45490196347236633), (0.81512606143951416, 0.46274510025978088, 0.46274510025978088), (0.819327712059021, 0.47450980544090271, 0.47450980544090271), (0.82352942228317261, 0.48235294222831726, 0.48235294222831726), (0.82773107290267944, 0.49411764740943909, 0.49411764740943909), (0.83193278312683105, 0.5058823823928833, 0.5058823823928833), (0.83613443374633789, 0.51372551918029785, 0.51372551918029785), (0.8403361439704895, 0.52549022436141968, 0.52549022436141968), (0.84453779458999634, 0.5372549295425415, 0.5372549295425415), (0.84873950481414795, 0.54509806632995605, 0.54509806632995605), (0.85294115543365479, 0.55686277151107788, 0.55686277151107788), (0.8571428656578064, 0.56862747669219971, 0.56862747669219971), (0.86134451627731323, 0.58039218187332153, 0.58039218187332153), (0.86554622650146484, 0.58823531866073608, 0.58823531866073608), (0.86974787712097168, 0.60000002384185791, 0.60000002384185791), (0.87394958734512329, 0.61176472902297974, 0.61176472902297974), (0.87815123796463013, 0.62352943420410156, 0.62352943420410156), (0.88235294818878174, 0.63529413938522339, 0.63529413938522339), (0.88655459880828857, 0.64705884456634521, 0.64705884456634521), (0.89075630903244019, 0.65882354974746704, 0.65882354974746704), (0.89495795965194702, 0.66666668653488159, 0.66666668653488159), (0.89915966987609863, 0.67843139171600342, 0.67843139171600342), (0.90336132049560547, 0.69019609689712524, 0.69019609689712524), (0.90756303071975708, 0.70196080207824707, 0.70196080207824707), (0.91176468133926392, 0.7137255072593689, 0.7137255072593689), (0.91596639156341553, 0.72549021244049072, 0.72549021244049072), (0.92016804218292236, 0.74117648601531982, 0.74117648601531982), (0.92436975240707397, 0.75294119119644165, 0.75294119119644165), (0.92857140302658081, 0.76470589637756348, 0.76470589637756348), (0.93277311325073242, 0.7764706015586853, 0.7764706015586853), (0.93697476387023926, 0.78823530673980713, 0.78823530673980713), (0.94117647409439087, 0.80000001192092896, 0.80000001192092896), (0.94537812471389771, 0.81176471710205078, 0.81176471710205078), (0.94957983493804932, 0.82745099067687988, 0.82745099067687988), (0.95378148555755615, 0.83921569585800171, 0.83921569585800171), (0.95798319578170776, 0.85098040103912354, 0.85098040103912354), (0.9621848464012146, 0.86274510622024536, 0.86274510622024536), (0.96638655662536621, 0.87843137979507446, 0.87843137979507446), (0.97058820724487305, 0.89019608497619629, 0.89019608497619629), (0.97478991746902466, 0.90196079015731812, 0.90196079015731812), (0.97899156808853149, 0.91764706373214722, 0.91764706373214722), (0.98319327831268311, 0.92941176891326904, 0.92941176891326904), (0.98739492893218994, 0.94509804248809814, 0.94509804248809814), (0.99159663915634155, 0.95686274766921997, 0.95686274766921997), (0.99579828977584839, 0.97254902124404907, 0.97254902124404907), (1.0, 0.9843137264251709, 0.9843137264251709)], 'green': [(0.0, 0.0, 0.0), (0.0042016808874905109, 0.0, 0.0), (0.0084033617749810219, 0.0, 0.0), (0.012605042196810246, 0.0, 0.0), (0.016806723549962044, 0.0, 0.0), (0.021008403971791267, 0.0, 0.0), (0.025210084393620491, 0.0, 0.0), (0.029411764815449715, 0.0, 0.0), (0.033613447099924088, 0.011764706112444401, 0.011764706112444401), (0.037815127521753311, 0.023529412224888802, 0.023529412224888802), (0.042016807943582535, 0.031372550874948502, 0.031372550874948502), (0.046218488365411758, 0.043137256056070328, 0.043137256056070328), (0.050420168787240982, 0.050980392843484879, 0.050980392843484879), (0.054621849209070206, 0.062745101749897003, 0.062745101749897003), (0.058823529630899429, 0.070588238537311554, 0.070588238537311554), (0.063025213778018951, 0.08235294371843338, 0.08235294371843338), (0.067226894199848175, 0.090196080505847931, 0.090196080505847931), (0.071428574621677399, 0.10196078568696976, 0.10196078568696976), (0.075630255043506622, 0.10980392247438431, 0.10980392247438431), (0.079831935465335846, 0.12156862765550613, 0.12156862765550613), (0.08403361588716507, 0.12941177189350128, 0.12941177189350128), (0.088235296308994293, 0.14117647707462311, 0.14117647707462311), (0.092436976730823517, 0.14901961386203766, 0.14901961386203766), (0.09663865715265274, 0.16078431904315948, 0.16078431904315948), (0.10084033757448196, 0.16862745583057404, 0.16862745583057404), (0.10504201799631119, 0.17647059261798859, 0.17647059261798859), (0.10924369841814041, 0.18823529779911041, 0.18823529779911041), (0.11344537883996964, 0.19607843458652496, 0.19607843458652496), (0.11764705926179886, 0.20392157137393951, 0.20392157137393951), (0.12184873968362808, 0.21568627655506134, 0.21568627655506134), (0.1260504275560379, 0.22352941334247589, 0.22352941334247589), (0.13025210797786713, 0.23137255012989044, 0.23137255012989044), (0.13445378839969635, 0.23921568691730499, 0.23921568691730499), (0.13865546882152557, 0.25098040699958801, 0.25098040699958801), (0.1428571492433548, 0.25882354378700256, 0.25882354378700256), (0.14705882966518402, 0.26666668057441711, 0.26666668057441711), (0.15126051008701324, 0.27450981736183167, 0.27450981736183167), (0.15546219050884247, 0.28235295414924622, 0.28235295414924622), (0.15966387093067169, 0.29019609093666077, 0.29019609093666077), (0.16386555135250092, 0.30196079611778259, 0.30196079611778259), (0.16806723177433014, 0.30980393290519714, 0.30980393290519714), (0.17226891219615936, 0.31764706969261169, 0.31764706969261169), (0.17647059261798859, 0.32549020648002625, 0.32549020648002625), (0.18067227303981781, 0.3333333432674408, 0.3333333432674408), (0.18487395346164703, 0.34117648005485535, 0.34117648005485535), (0.18907563388347626, 0.3490196168422699, 0.3490196168422699), (0.19327731430530548, 0.35686275362968445, 0.35686275362968445), (0.1974789947271347, 0.364705890417099, 0.364705890417099), (0.20168067514896393, 0.37254902720451355, 0.37254902720451355), (0.20588235557079315, 0.3803921639919281, 0.3803921639919281), (0.21008403599262238, 0.38823530077934265, 0.38823530077934265), (0.2142857164144516, 0.39215686917304993, 0.39215686917304993), (0.21848739683628082, 0.40000000596046448, 0.40000000596046448), (0.22268907725811005, 0.40784314274787903, 0.40784314274787903), (0.22689075767993927, 0.41568627953529358, 0.41568627953529358), (0.23109243810176849, 0.42352941632270813, 0.42352941632270813), (0.23529411852359772, 0.42745098471641541, 0.42745098471641541), (0.23949579894542694, 0.43529412150382996, 0.43529412150382996), (0.24369747936725616, 0.44313725829124451, 0.44313725829124451), (0.24789915978908539, 0.45098039507865906, 0.45098039507865906), (0.25210085511207581, 0.45490196347236633, 0.45490196347236633), (0.25630253553390503, 0.46274510025978088, 0.46274510025978088), (0.26050421595573425, 0.47058823704719543, 0.47058823704719543), (0.26470589637756348, 0.47450980544090271, 0.47450980544090271), (0.2689075767993927, 0.48235294222831726, 0.48235294222831726), (0.27310925722122192, 0.49019607901573181, 0.49019607901573181), (0.27731093764305115, 0.49411764740943909, 0.49411764740943909), (0.28151261806488037, 0.50196081399917603, 0.50196081399917603), (0.28571429848670959, 0.50196081399917603, 0.50196081399917603), (0.28991597890853882, 0.5058823823928833, 0.5058823823928833), (0.29411765933036804, 0.5058823823928833, 0.5058823823928833), (0.29831933975219727, 0.50980395078659058, 0.50980395078659058), (0.30252102017402649, 0.51372551918029785, 0.51372551918029785), (0.30672270059585571, 0.51372551918029785, 0.51372551918029785), (0.31092438101768494, 0.51764708757400513, 0.51764708757400513), (0.31512606143951416, 0.5215686559677124, 0.5215686559677124), (0.31932774186134338, 0.5215686559677124, 0.5215686559677124), (0.32352942228317261, 0.52549022436141968, 0.52549022436141968), (0.32773110270500183, 0.52549022436141968, 0.52549022436141968), (0.33193278312683105, 0.52941179275512695, 0.52941179275512695), (0.33613446354866028, 0.53333336114883423, 0.53333336114883423), (0.3403361439704895, 0.53333336114883423, 0.53333336114883423), (0.34453782439231873, 0.5372549295425415, 0.5372549295425415), (0.34873950481414795, 0.54117649793624878, 0.54117649793624878), (0.35294118523597717, 0.54117649793624878, 0.54117649793624878), (0.3571428656578064, 0.54509806632995605, 0.54509806632995605), (0.36134454607963562, 0.54901963472366333, 0.54901963472366333), (0.36554622650146484, 0.54901963472366333, 0.54901963472366333), (0.36974790692329407, 0.55294120311737061, 0.55294120311737061), (0.37394958734512329, 0.55294120311737061, 0.55294120311737061), (0.37815126776695251, 0.55686277151107788, 0.55686277151107788), (0.38235294818878174, 0.56078433990478516, 0.56078433990478516), (0.38655462861061096, 0.56078433990478516, 0.56078433990478516), (0.39075630903244019, 0.56470590829849243, 0.56470590829849243), (0.39495798945426941, 0.56862747669219971, 0.56862747669219971), (0.39915966987609863, 0.56862747669219971, 0.56862747669219971), (0.40336135029792786, 0.57254904508590698, 0.57254904508590698), (0.40756303071975708, 0.57254904508590698, 0.57254904508590698), (0.4117647111415863, 0.57647061347961426, 0.57647061347961426), (0.41596639156341553, 0.58039218187332153, 0.58039218187332153), (0.42016807198524475, 0.58039218187332153, 0.58039218187332153), (0.42436975240707397, 0.58431375026702881, 0.58431375026702881), (0.4285714328289032, 0.58823531866073608, 0.58823531866073608), (0.43277311325073242, 0.58823531866073608, 0.58823531866073608), (0.43697479367256165, 0.59215688705444336, 0.59215688705444336), (0.44117647409439087, 0.59215688705444336, 0.59215688705444336), (0.44537815451622009, 0.59607845544815063, 0.59607845544815063), (0.44957983493804932, 0.60000002384185791, 0.60000002384185791), (0.45378151535987854, 0.60000002384185791, 0.60000002384185791), (0.45798319578170776, 0.60392159223556519, 0.60392159223556519), (0.46218487620353699, 0.60784316062927246, 0.60784316062927246), (0.46638655662536621, 0.60784316062927246, 0.60784316062927246), (0.47058823704719543, 0.61176472902297974, 0.61176472902297974), (0.47478991746902466, 0.61176472902297974, 0.61176472902297974), (0.47899159789085388, 0.61568629741668701, 0.61568629741668701), (0.48319327831268311, 0.61960786581039429, 0.61960786581039429), (0.48739495873451233, 0.61960786581039429, 0.61960786581039429), (0.49159663915634155, 0.62352943420410156, 0.62352943420410156), (0.49579831957817078, 0.62745100259780884, 0.62745100259780884), (0.5, 0.62745100259780884, 0.62745100259780884), (0.50420171022415161, 0.63137257099151611, 0.63137257099151611), (0.50840336084365845, 0.63137257099151611, 0.63137257099151611), (0.51260507106781006, 0.63529413938522339, 0.63529413938522339), (0.51680672168731689, 0.63921570777893066, 0.63921570777893066), (0.52100843191146851, 0.63921570777893066, 0.63921570777893066), (0.52521008253097534, 0.64313727617263794, 0.64313727617263794), (0.52941179275512695, 0.64705884456634521, 0.64705884456634521), (0.53361344337463379, 0.64705884456634521, 0.64705884456634521), (0.5378151535987854, 0.65098041296005249, 0.65098041296005249), (0.54201680421829224, 0.65098041296005249, 0.65098041296005249), (0.54621851444244385, 0.65490198135375977, 0.65490198135375977), (0.55042016506195068, 0.65882354974746704, 0.65882354974746704), (0.55462187528610229, 0.65882354974746704, 0.65882354974746704), (0.55882352590560913, 0.65882354974746704, 0.65882354974746704), (0.56302523612976074, 0.66274511814117432, 0.66274511814117432), (0.56722688674926758, 0.66274511814117432, 0.66274511814117432), (0.57142859697341919, 0.66666668653488159, 0.66666668653488159), (0.57563024759292603, 0.66666668653488159, 0.66666668653488159), (0.57983195781707764, 0.67058825492858887, 0.67058825492858887), (0.58403360843658447, 0.67058825492858887, 0.67058825492858887), (0.58823531866073608, 0.67450982332229614, 0.67450982332229614), (0.59243696928024292, 0.67450982332229614, 0.67450982332229614), (0.59663867950439453, 0.67450982332229614, 0.67450982332229614), (0.60084033012390137, 0.67843139171600342, 0.67843139171600342), (0.60504204034805298, 0.67843139171600342, 0.67843139171600342), (0.60924369096755981, 0.68235296010971069, 0.68235296010971069), (0.61344540119171143, 0.68235296010971069, 0.68235296010971069), (0.61764705181121826, 0.68627452850341797, 0.68627452850341797), (0.62184876203536987, 0.68627452850341797, 0.68627452850341797), (0.62605041265487671, 0.68627452850341797, 0.68627452850341797), (0.63025212287902832, 0.69019609689712524, 0.69019609689712524), (0.63445377349853516, 0.69019609689712524, 0.69019609689712524), (0.63865548372268677, 0.69411766529083252, 0.69411766529083252), (0.6428571343421936, 0.69411766529083252, 0.69411766529083252), (0.64705884456634521, 0.69803923368453979, 0.69803923368453979), (0.65126049518585205, 0.69803923368453979, 0.69803923368453979), (0.65546220541000366, 0.70196080207824707, 0.70196080207824707), (0.6596638560295105, 0.70196080207824707, 0.70196080207824707), (0.66386556625366211, 0.70196080207824707, 0.70196080207824707), (0.66806721687316895, 0.70588237047195435, 0.70588237047195435), (0.67226892709732056, 0.70588237047195435, 0.70588237047195435), (0.67647057771682739, 0.70980393886566162, 0.70980393886566162), (0.680672287940979, 0.70980393886566162, 0.70980393886566162), (0.68487393856048584, 0.7137255072593689, 0.7137255072593689), (0.68907564878463745, 0.7137255072593689, 0.7137255072593689), (0.69327729940414429, 0.71764707565307617, 0.71764707565307617), (0.6974790096282959, 0.71764707565307617, 0.71764707565307617), (0.70168066024780273, 0.7137255072593689, 0.7137255072593689), (0.70588237047195435, 0.70980393886566162, 0.70980393886566162), (0.71008402109146118, 0.70980393886566162, 0.70980393886566162), (0.71428573131561279, 0.70588237047195435, 0.70588237047195435), (0.71848738193511963, 0.70196080207824707, 0.70196080207824707), (0.72268909215927124, 0.69803923368453979, 0.69803923368453979), (0.72689074277877808, 0.69411766529083252, 0.69411766529083252), (0.73109245300292969, 0.69019609689712524, 0.69019609689712524), (0.73529410362243652, 0.68627452850341797, 0.68627452850341797), (0.73949581384658813, 0.68235296010971069, 0.68235296010971069), (0.74369746446609497, 0.67843139171600342, 0.67843139171600342), (0.74789917469024658, 0.67450982332229614, 0.67450982332229614), (0.75210082530975342, 0.67058825492858887, 0.67058825492858887), (0.75630253553390503, 0.66666668653488159, 0.66666668653488159), (0.76050418615341187, 0.66274511814117432, 0.66274511814117432), (0.76470589637756348, 0.65882354974746704, 0.65882354974746704), (0.76890754699707031, 0.65490198135375977, 0.65490198135375977), (0.77310925722122192, 0.65098041296005249, 0.65098041296005249), (0.77731090784072876, 0.64705884456634521, 0.64705884456634521), (0.78151261806488037, 0.64313727617263794, 0.64313727617263794), (0.78571426868438721, 0.63921570777893066, 0.63921570777893066), (0.78991597890853882, 0.63921570777893066, 0.63921570777893066), (0.79411762952804565, 0.64313727617263794, 0.64313727617263794), (0.79831933975219727, 0.64313727617263794, 0.64313727617263794), (0.8025209903717041, 0.64705884456634521, 0.64705884456634521), (0.80672270059585571, 0.64705884456634521, 0.64705884456634521), (0.81092435121536255, 0.65098041296005249, 0.65098041296005249), (0.81512606143951416, 0.65490198135375977, 0.65490198135375977), (0.819327712059021, 0.65490198135375977, 0.65490198135375977), (0.82352942228317261, 0.65882354974746704, 0.65882354974746704), (0.82773107290267944, 0.66274511814117432, 0.66274511814117432), (0.83193278312683105, 0.66666668653488159, 0.66666668653488159), (0.83613443374633789, 0.67058825492858887, 0.67058825492858887), (0.8403361439704895, 0.67450982332229614, 0.67450982332229614), (0.84453779458999634, 0.67843139171600342, 0.67843139171600342), (0.84873950481414795, 0.68235296010971069, 0.68235296010971069), (0.85294115543365479, 0.68627452850341797, 0.68627452850341797), (0.8571428656578064, 0.69019609689712524, 0.69019609689712524), (0.86134451627731323, 0.69411766529083252, 0.69411766529083252), (0.86554622650146484, 0.69803923368453979, 0.69803923368453979), (0.86974787712097168, 0.70196080207824707, 0.70196080207824707), (0.87394958734512329, 0.70980393886566162, 0.70980393886566162), (0.87815123796463013, 0.7137255072593689, 0.7137255072593689), (0.88235294818878174, 0.72156864404678345, 0.72156864404678345), (0.88655459880828857, 0.72549021244049072, 0.72549021244049072), (0.89075630903244019, 0.73333334922790527, 0.73333334922790527), (0.89495795965194702, 0.73725491762161255, 0.73725491762161255), (0.89915966987609863, 0.7450980544090271, 0.7450980544090271), (0.90336132049560547, 0.75294119119644165, 0.75294119119644165), (0.90756303071975708, 0.7607843279838562, 0.7607843279838562), (0.91176468133926392, 0.76862746477127075, 0.76862746477127075), (0.91596639156341553, 0.7764706015586853, 0.7764706015586853), (0.92016804218292236, 0.78431373834609985, 0.78431373834609985), (0.92436975240707397, 0.7921568751335144, 0.7921568751335144), (0.92857140302658081, 0.80000001192092896, 0.80000001192092896), (0.93277311325073242, 0.80784314870834351, 0.80784314870834351), (0.93697476387023926, 0.81568628549575806, 0.81568628549575806), (0.94117647409439087, 0.82745099067687988, 0.82745099067687988), (0.94537812471389771, 0.83529412746429443, 0.83529412746429443), (0.94957983493804932, 0.84313726425170898, 0.84313726425170898), (0.95378148555755615, 0.85490196943283081, 0.85490196943283081), (0.95798319578170776, 0.86666667461395264, 0.86666667461395264), (0.9621848464012146, 0.87450981140136719, 0.87450981140136719), (0.96638655662536621, 0.88627451658248901, 0.88627451658248901), (0.97058820724487305, 0.89803922176361084, 0.89803922176361084), (0.97478991746902466, 0.90980392694473267, 0.90980392694473267), (0.97899156808853149, 0.92156863212585449, 0.92156863212585449), (0.98319327831268311, 0.93333333730697632, 0.93333333730697632), (0.98739492893218994, 0.94509804248809814, 0.94509804248809814), (0.99159663915634155, 0.95686274766921997, 0.95686274766921997), (0.99579828977584839, 0.97254902124404907, 0.97254902124404907), (1.0, 0.9843137264251709, 0.9843137264251709)], 'red': [(0.0, 0.0, 0.0), (0.0042016808874905109, 0.0, 0.0), (0.0084033617749810219, 0.0, 0.0), (0.012605042196810246, 0.0, 0.0), (0.016806723549962044, 0.0, 0.0), (0.021008403971791267, 0.0, 0.0), (0.025210084393620491, 0.0, 0.0), (0.029411764815449715, 0.0, 0.0), (0.033613447099924088, 0.0, 0.0), (0.037815127521753311, 0.0039215688593685627, 0.0039215688593685627), (0.042016807943582535, 0.0078431377187371254, 0.0078431377187371254), (0.046218488365411758, 0.0078431377187371254, 0.0078431377187371254), (0.050420168787240982, 0.011764706112444401, 0.011764706112444401), (0.054621849209070206, 0.015686275437474251, 0.015686275437474251), (0.058823529630899429, 0.019607843831181526, 0.019607843831181526), (0.063025213778018951, 0.019607843831181526, 0.019607843831181526), (0.067226894199848175, 0.023529412224888802, 0.023529412224888802), (0.071428574621677399, 0.027450980618596077, 0.027450980618596077), (0.075630255043506622, 0.031372550874948502, 0.031372550874948502), (0.079831935465335846, 0.031372550874948502, 0.031372550874948502), (0.08403361588716507, 0.035294119268655777, 0.035294119268655777), (0.088235296308994293, 0.039215687662363052, 0.039215687662363052), (0.092436976730823517, 0.043137256056070328, 0.043137256056070328), (0.09663865715265274, 0.043137256056070328, 0.043137256056070328), (0.10084033757448196, 0.047058824449777603, 0.047058824449777603), (0.10504201799631119, 0.050980392843484879, 0.050980392843484879), (0.10924369841814041, 0.054901961237192154, 0.054901961237192154), (0.11344537883996964, 0.058823529630899429, 0.058823529630899429), (0.11764705926179886, 0.058823529630899429, 0.058823529630899429), (0.12184873968362808, 0.062745101749897003, 0.062745101749897003), (0.1260504275560379, 0.066666670143604279, 0.066666670143604279), (0.13025210797786713, 0.070588238537311554, 0.070588238537311554), (0.13445378839969635, 0.070588238537311554, 0.070588238537311554), (0.13865546882152557, 0.074509806931018829, 0.074509806931018829), (0.1428571492433548, 0.078431375324726105, 0.078431375324726105), (0.14705882966518402, 0.08235294371843338, 0.08235294371843338), (0.15126051008701324, 0.086274512112140656, 0.086274512112140656), (0.15546219050884247, 0.086274512112140656, 0.086274512112140656), (0.15966387093067169, 0.090196080505847931, 0.090196080505847931), (0.16386555135250092, 0.094117648899555206, 0.094117648899555206), (0.16806723177433014, 0.098039217293262482, 0.098039217293262482), (0.17226891219615936, 0.10196078568696976, 0.10196078568696976), (0.17647059261798859, 0.10196078568696976, 0.10196078568696976), (0.18067227303981781, 0.10588235408067703, 0.10588235408067703), (0.18487395346164703, 0.10980392247438431, 0.10980392247438431), (0.18907563388347626, 0.11372549086809158, 0.11372549086809158), (0.19327731430530548, 0.11764705926179886, 0.11764705926179886), (0.1974789947271347, 0.12156862765550613, 0.12156862765550613), (0.20168067514896393, 0.12156862765550613, 0.12156862765550613), (0.20588235557079315, 0.12549020349979401, 0.12549020349979401), (0.21008403599262238, 0.12941177189350128, 0.12941177189350128), (0.2142857164144516, 0.13333334028720856, 0.13333334028720856), (0.21848739683628082, 0.13725490868091583, 0.13725490868091583), (0.22268907725811005, 0.14117647707462311, 0.14117647707462311), (0.22689075767993927, 0.14117647707462311, 0.14117647707462311), (0.23109243810176849, 0.14509804546833038, 0.14509804546833038), (0.23529411852359772, 0.14901961386203766, 0.14901961386203766), (0.23949579894542694, 0.15294118225574493, 0.15294118225574493), (0.24369747936725616, 0.15686275064945221, 0.15686275064945221), (0.24789915978908539, 0.16078431904315948, 0.16078431904315948), (0.25210085511207581, 0.16078431904315948, 0.16078431904315948), (0.25630253553390503, 0.16470588743686676, 0.16470588743686676), (0.26050421595573425, 0.16862745583057404, 0.16862745583057404), (0.26470589637756348, 0.17254902422428131, 0.17254902422428131), (0.2689075767993927, 0.17647059261798859, 0.17647059261798859), (0.27310925722122192, 0.18039216101169586, 0.18039216101169586), (0.27731093764305115, 0.18431372940540314, 0.18431372940540314), (0.28151261806488037, 0.18823529779911041, 0.18823529779911041), (0.28571429848670959, 0.18823529779911041, 0.18823529779911041), (0.28991597890853882, 0.18823529779911041, 0.18823529779911041), (0.29411765933036804, 0.19215686619281769, 0.19215686619281769), (0.29831933975219727, 0.19215686619281769, 0.19215686619281769), (0.30252102017402649, 0.19607843458652496, 0.19607843458652496), (0.30672270059585571, 0.19607843458652496, 0.19607843458652496), (0.31092438101768494, 0.20000000298023224, 0.20000000298023224), (0.31512606143951416, 0.20000000298023224, 0.20000000298023224), (0.31932774186134338, 0.20392157137393951, 0.20392157137393951), (0.32352942228317261, 0.20392157137393951, 0.20392157137393951), (0.32773110270500183, 0.20784313976764679, 0.20784313976764679), (0.33193278312683105, 0.20784313976764679, 0.20784313976764679), (0.33613446354866028, 0.21176470816135406, 0.21176470816135406), (0.3403361439704895, 0.21176470816135406, 0.21176470816135406), (0.34453782439231873, 0.21568627655506134, 0.21568627655506134), (0.34873950481414795, 0.21568627655506134, 0.21568627655506134), (0.35294118523597717, 0.21960784494876862, 0.21960784494876862), (0.3571428656578064, 0.21960784494876862, 0.21960784494876862), (0.36134454607963562, 0.22352941334247589, 0.22352941334247589), (0.36554622650146484, 0.22352941334247589, 0.22352941334247589), (0.36974790692329407, 0.22745098173618317, 0.22745098173618317), (0.37394958734512329, 0.22745098173618317, 0.22745098173618317), (0.37815126776695251, 0.23137255012989044, 0.23137255012989044), (0.38235294818878174, 0.23137255012989044, 0.23137255012989044), (0.38655462861061096, 0.23529411852359772, 0.23529411852359772), (0.39075630903244019, 0.23921568691730499, 0.23921568691730499), (0.39495798945426941, 0.23921568691730499, 0.23921568691730499), (0.39915966987609863, 0.24313725531101227, 0.24313725531101227), (0.40336135029792786, 0.24313725531101227, 0.24313725531101227), (0.40756303071975708, 0.24705882370471954, 0.24705882370471954), (0.4117647111415863, 0.24705882370471954, 0.24705882370471954), (0.41596639156341553, 0.25098040699958801, 0.25098040699958801), (0.42016807198524475, 0.25098040699958801, 0.25098040699958801), (0.42436975240707397, 0.25490197539329529, 0.25490197539329529), (0.4285714328289032, 0.25490197539329529, 0.25490197539329529), (0.43277311325073242, 0.25882354378700256, 0.25882354378700256), (0.43697479367256165, 0.26274511218070984, 0.26274511218070984), (0.44117647409439087, 0.26274511218070984, 0.26274511218070984), (0.44537815451622009, 0.26666668057441711, 0.26666668057441711), (0.44957983493804932, 0.26666668057441711, 0.26666668057441711), (0.45378151535987854, 0.27058824896812439, 0.27058824896812439), (0.45798319578170776, 0.27058824896812439, 0.27058824896812439), (0.46218487620353699, 0.27450981736183167, 0.27450981736183167), (0.46638655662536621, 0.27843138575553894, 0.27843138575553894), (0.47058823704719543, 0.28627452254295349, 0.28627452254295349), (0.47478991746902466, 0.29803922772407532, 0.29803922772407532), (0.47899159789085388, 0.30588236451148987, 0.30588236451148987), (0.48319327831268311, 0.31764706969261169, 0.31764706969261169), (0.48739495873451233, 0.32549020648002625, 0.32549020648002625), (0.49159663915634155, 0.33725491166114807, 0.33725491166114807), (0.49579831957817078, 0.34509804844856262, 0.34509804844856262), (0.5, 0.35686275362968445, 0.35686275362968445), (0.50420171022415161, 0.36862745881080627, 0.36862745881080627), (0.50840336084365845, 0.37647059559822083, 0.37647059559822083), (0.51260507106781006, 0.38823530077934265, 0.38823530077934265), (0.51680672168731689, 0.3960784375667572, 0.3960784375667572), (0.52100843191146851, 0.40784314274787903, 0.40784314274787903), (0.52521008253097534, 0.41568627953529358, 0.41568627953529358), (0.52941179275512695, 0.42745098471641541, 0.42745098471641541), (0.53361344337463379, 0.43529412150382996, 0.43529412150382996), (0.5378151535987854, 0.44705882668495178, 0.44705882668495178), (0.54201680421829224, 0.45882353186607361, 0.45882353186607361), (0.54621851444244385, 0.46666666865348816, 0.46666666865348816), (0.55042016506195068, 0.47450980544090271, 0.47450980544090271), (0.55462187528610229, 0.47843137383460999, 0.47843137383460999), (0.55882352590560913, 0.48627451062202454, 0.48627451062202454), (0.56302523612976074, 0.49411764740943909, 0.49411764740943909), (0.56722688674926758, 0.50196081399917603, 0.50196081399917603), (0.57142859697341919, 0.5058823823928833, 0.5058823823928833), (0.57563024759292603, 0.51372551918029785, 0.51372551918029785), (0.57983195781707764, 0.5215686559677124, 0.5215686559677124), (0.58403360843658447, 0.52941179275512695, 0.52941179275512695), (0.58823531866073608, 0.53333336114883423, 0.53333336114883423), (0.59243696928024292, 0.54117649793624878, 0.54117649793624878), (0.59663867950439453, 0.54901963472366333, 0.54901963472366333), (0.60084033012390137, 0.55294120311737061, 0.55294120311737061), (0.60504204034805298, 0.56078433990478516, 0.56078433990478516), (0.60924369096755981, 0.56862747669219971, 0.56862747669219971), (0.61344540119171143, 0.57647061347961426, 0.57647061347961426), (0.61764705181121826, 0.58431375026702881, 0.58431375026702881), (0.62184876203536987, 0.58823531866073608, 0.58823531866073608), (0.62605041265487671, 0.59607845544815063, 0.59607845544815063), (0.63025212287902832, 0.60392159223556519, 0.60392159223556519), (0.63445377349853516, 0.61176472902297974, 0.61176472902297974), (0.63865548372268677, 0.61568629741668701, 0.61568629741668701), (0.6428571343421936, 0.62352943420410156, 0.62352943420410156), (0.64705884456634521, 0.63137257099151611, 0.63137257099151611), (0.65126049518585205, 0.63921570777893066, 0.63921570777893066), (0.65546220541000366, 0.64705884456634521, 0.64705884456634521), (0.6596638560295105, 0.65098041296005249, 0.65098041296005249), (0.66386556625366211, 0.65882354974746704, 0.65882354974746704), (0.66806721687316895, 0.66666668653488159, 0.66666668653488159), (0.67226892709732056, 0.67450982332229614, 0.67450982332229614), (0.67647057771682739, 0.68235296010971069, 0.68235296010971069), (0.680672287940979, 0.68627452850341797, 0.68627452850341797), (0.68487393856048584, 0.69411766529083252, 0.69411766529083252), (0.68907564878463745, 0.70196080207824707, 0.70196080207824707), (0.69327729940414429, 0.70980393886566162, 0.70980393886566162), (0.6974790096282959, 0.71764707565307617, 0.71764707565307617), (0.70168066024780273, 0.71764707565307617, 0.71764707565307617), (0.70588237047195435, 0.72156864404678345, 0.72156864404678345), (0.71008402109146118, 0.72156864404678345, 0.72156864404678345), (0.71428573131561279, 0.72549021244049072, 0.72549021244049072), (0.71848738193511963, 0.72549021244049072, 0.72549021244049072), (0.72268909215927124, 0.729411780834198, 0.729411780834198), (0.72689074277877808, 0.729411780834198, 0.729411780834198), (0.73109245300292969, 0.73333334922790527, 0.73333334922790527), (0.73529410362243652, 0.73333334922790527, 0.73333334922790527), (0.73949581384658813, 0.73333334922790527, 0.73333334922790527), (0.74369746446609497, 0.73725491762161255, 0.73725491762161255), (0.74789917469024658, 0.73725491762161255, 0.73725491762161255), (0.75210082530975342, 0.74117648601531982, 0.74117648601531982), (0.75630253553390503, 0.74117648601531982, 0.74117648601531982), (0.76050418615341187, 0.7450980544090271, 0.7450980544090271), (0.76470589637756348, 0.7450980544090271, 0.7450980544090271), (0.76890754699707031, 0.7450980544090271, 0.7450980544090271), (0.77310925722122192, 0.74901962280273438, 0.74901962280273438), (0.77731090784072876, 0.74901962280273438, 0.74901962280273438), (0.78151261806488037, 0.75294119119644165, 0.75294119119644165), (0.78571426868438721, 0.75294119119644165, 0.75294119119644165), (0.78991597890853882, 0.75686275959014893, 0.75686275959014893), (0.79411762952804565, 0.76470589637756348, 0.76470589637756348), (0.79831933975219727, 0.76862746477127075, 0.76862746477127075), (0.8025209903717041, 0.77254903316497803, 0.77254903316497803), (0.80672270059585571, 0.7764706015586853, 0.7764706015586853), (0.81092435121536255, 0.78039216995239258, 0.78039216995239258), (0.81512606143951416, 0.78823530673980713, 0.78823530673980713), (0.819327712059021, 0.7921568751335144, 0.7921568751335144), (0.82352942228317261, 0.79607844352722168, 0.79607844352722168), (0.82773107290267944, 0.80000001192092896, 0.80000001192092896), (0.83193278312683105, 0.80392158031463623, 0.80392158031463623), (0.83613443374633789, 0.81176471710205078, 0.81176471710205078), (0.8403361439704895, 0.81568628549575806, 0.81568628549575806), (0.84453779458999634, 0.81960785388946533, 0.81960785388946533), (0.84873950481414795, 0.82352942228317261, 0.82352942228317261), (0.85294115543365479, 0.82745099067687988, 0.82745099067687988), (0.8571428656578064, 0.83529412746429443, 0.83529412746429443), (0.86134451627731323, 0.83921569585800171, 0.83921569585800171), (0.86554622650146484, 0.84313726425170898, 0.84313726425170898), (0.86974787712097168, 0.84705883264541626, 0.84705883264541626), (0.87394958734512329, 0.85098040103912354, 0.85098040103912354), (0.87815123796463013, 0.85882353782653809, 0.85882353782653809), (0.88235294818878174, 0.86274510622024536, 0.86274510622024536), (0.88655459880828857, 0.86666667461395264, 0.86666667461395264), (0.89075630903244019, 0.87058824300765991, 0.87058824300765991), (0.89495795965194702, 0.87450981140136719, 0.87450981140136719), (0.89915966987609863, 0.88235294818878174, 0.88235294818878174), (0.90336132049560547, 0.88627451658248901, 0.88627451658248901), (0.90756303071975708, 0.89019608497619629, 0.89019608497619629), (0.91176468133926392, 0.89411765336990356, 0.89411765336990356), (0.91596639156341553, 0.89803922176361084, 0.89803922176361084), (0.92016804218292236, 0.90588235855102539, 0.90588235855102539), (0.92436975240707397, 0.90980392694473267, 0.90980392694473267), (0.92857140302658081, 0.91372549533843994, 0.91372549533843994), (0.93277311325073242, 0.91764706373214722, 0.91764706373214722), (0.93697476387023926, 0.92156863212585449, 0.92156863212585449), (0.94117647409439087, 0.92941176891326904, 0.92941176891326904), (0.94537812471389771, 0.93333333730697632, 0.93333333730697632), (0.94957983493804932, 0.93725490570068359, 0.93725490570068359), (0.95378148555755615, 0.94117647409439087, 0.94117647409439087), (0.95798319578170776, 0.94509804248809814, 0.94509804248809814), (0.9621848464012146, 0.9529411792755127, 0.9529411792755127), (0.96638655662536621, 0.95686274766921997, 0.95686274766921997), (0.97058820724487305, 0.96078431606292725, 0.96078431606292725), (0.97478991746902466, 0.96470588445663452, 0.96470588445663452), (0.97899156808853149, 0.9686274528503418, 0.9686274528503418), (0.98319327831268311, 0.97647058963775635, 0.97647058963775635), (0.98739492893218994, 0.98039215803146362, 0.98039215803146362), (0.99159663915634155, 0.9843137264251709, 0.9843137264251709), (0.99579828977584839, 0.98823529481887817, 0.98823529481887817), (1.0, 0.99215686321258545, 0.99215686321258545)]} _gist_gray_data = {'blue': [(0.0, 0.0, 0.0), (0.0042016808874905109, 0.0039215688593685627, 0.0039215688593685627), (0.0084033617749810219, 0.0078431377187371254, 0.0078431377187371254), (0.012605042196810246, 0.011764706112444401, 0.011764706112444401), (0.016806723549962044, 0.015686275437474251, 0.015686275437474251), (0.021008403971791267, 0.019607843831181526, 0.019607843831181526), (0.025210084393620491, 0.023529412224888802, 0.023529412224888802), (0.029411764815449715, 0.027450980618596077, 0.027450980618596077), (0.033613447099924088, 0.035294119268655777, 0.035294119268655777), (0.037815127521753311, 0.039215687662363052, 0.039215687662363052), (0.042016807943582535, 0.043137256056070328, 0.043137256056070328), (0.046218488365411758, 0.047058824449777603, 0.047058824449777603), (0.050420168787240982, 0.050980392843484879, 0.050980392843484879), (0.054621849209070206, 0.054901961237192154, 0.054901961237192154), (0.058823529630899429, 0.058823529630899429, 0.058823529630899429), (0.063025213778018951, 0.062745101749897003, 0.062745101749897003), (0.067226894199848175, 0.066666670143604279, 0.066666670143604279), (0.071428574621677399, 0.070588238537311554, 0.070588238537311554), (0.075630255043506622, 0.074509806931018829, 0.074509806931018829), (0.079831935465335846, 0.078431375324726105, 0.078431375324726105), (0.08403361588716507, 0.08235294371843338, 0.08235294371843338), (0.088235296308994293, 0.086274512112140656, 0.086274512112140656), (0.092436976730823517, 0.090196080505847931, 0.090196080505847931), (0.09663865715265274, 0.098039217293262482, 0.098039217293262482), (0.10084033757448196, 0.10196078568696976, 0.10196078568696976), (0.10504201799631119, 0.10588235408067703, 0.10588235408067703), (0.10924369841814041, 0.10980392247438431, 0.10980392247438431), (0.11344537883996964, 0.11372549086809158, 0.11372549086809158), (0.11764705926179886, 0.11764705926179886, 0.11764705926179886), (0.12184873968362808, 0.12156862765550613, 0.12156862765550613), (0.1260504275560379, 0.12549020349979401, 0.12549020349979401), (0.13025210797786713, 0.12941177189350128, 0.12941177189350128), (0.13445378839969635, 0.13333334028720856, 0.13333334028720856), (0.13865546882152557, 0.13725490868091583, 0.13725490868091583), (0.1428571492433548, 0.14117647707462311, 0.14117647707462311), (0.14705882966518402, 0.14509804546833038, 0.14509804546833038), (0.15126051008701324, 0.14901961386203766, 0.14901961386203766), (0.15546219050884247, 0.15294118225574493, 0.15294118225574493), (0.15966387093067169, 0.16078431904315948, 0.16078431904315948), (0.16386555135250092, 0.16470588743686676, 0.16470588743686676), (0.16806723177433014, 0.16862745583057404, 0.16862745583057404), (0.17226891219615936, 0.17254902422428131, 0.17254902422428131), (0.17647059261798859, 0.17647059261798859, 0.17647059261798859), (0.18067227303981781, 0.18039216101169586, 0.18039216101169586), (0.18487395346164703, 0.18431372940540314, 0.18431372940540314), (0.18907563388347626, 0.18823529779911041, 0.18823529779911041), (0.19327731430530548, 0.19215686619281769, 0.19215686619281769), (0.1974789947271347, 0.19607843458652496, 0.19607843458652496), (0.20168067514896393, 0.20000000298023224, 0.20000000298023224), (0.20588235557079315, 0.20392157137393951, 0.20392157137393951), (0.21008403599262238, 0.20784313976764679, 0.20784313976764679), (0.2142857164144516, 0.21176470816135406, 0.21176470816135406), (0.21848739683628082, 0.21568627655506134, 0.21568627655506134), (0.22268907725811005, 0.22352941334247589, 0.22352941334247589), (0.22689075767993927, 0.22745098173618317, 0.22745098173618317), (0.23109243810176849, 0.23137255012989044, 0.23137255012989044), (0.23529411852359772, 0.23529411852359772, 0.23529411852359772), (0.23949579894542694, 0.23921568691730499, 0.23921568691730499), (0.24369747936725616, 0.24313725531101227, 0.24313725531101227), (0.24789915978908539, 0.24705882370471954, 0.24705882370471954), (0.25210085511207581, 0.25098040699958801, 0.25098040699958801), (0.25630253553390503, 0.25490197539329529, 0.25490197539329529), (0.26050421595573425, 0.25882354378700256, 0.25882354378700256), (0.26470589637756348, 0.26274511218070984, 0.26274511218070984), (0.2689075767993927, 0.26666668057441711, 0.26666668057441711), (0.27310925722122192, 0.27058824896812439, 0.27058824896812439), (0.27731093764305115, 0.27450981736183167, 0.27450981736183167), (0.28151261806488037, 0.27843138575553894, 0.27843138575553894), (0.28571429848670959, 0.28627452254295349, 0.28627452254295349), (0.28991597890853882, 0.29019609093666077, 0.29019609093666077), (0.29411765933036804, 0.29411765933036804, 0.29411765933036804), (0.29831933975219727, 0.29803922772407532, 0.29803922772407532), (0.30252102017402649, 0.30196079611778259, 0.30196079611778259), (0.30672270059585571, 0.30588236451148987, 0.30588236451148987), (0.31092438101768494, 0.30980393290519714, 0.30980393290519714), (0.31512606143951416, 0.31372550129890442, 0.31372550129890442), (0.31932774186134338, 0.31764706969261169, 0.31764706969261169), (0.32352942228317261, 0.32156863808631897, 0.32156863808631897), (0.32773110270500183, 0.32549020648002625, 0.32549020648002625), (0.33193278312683105, 0.32941177487373352, 0.32941177487373352), (0.33613446354866028, 0.3333333432674408, 0.3333333432674408), (0.3403361439704895, 0.33725491166114807, 0.33725491166114807), (0.34453782439231873, 0.34117648005485535, 0.34117648005485535), (0.34873950481414795, 0.3490196168422699, 0.3490196168422699), (0.35294118523597717, 0.35294118523597717, 0.35294118523597717), (0.3571428656578064, 0.35686275362968445, 0.35686275362968445), (0.36134454607963562, 0.36078432202339172, 0.36078432202339172), (0.36554622650146484, 0.364705890417099, 0.364705890417099), (0.36974790692329407, 0.36862745881080627, 0.36862745881080627), (0.37394958734512329, 0.37254902720451355, 0.37254902720451355), (0.37815126776695251, 0.37647059559822083, 0.37647059559822083), (0.38235294818878174, 0.3803921639919281, 0.3803921639919281), (0.38655462861061096, 0.38431373238563538, 0.38431373238563538), (0.39075630903244019, 0.38823530077934265, 0.38823530077934265), (0.39495798945426941, 0.39215686917304993, 0.39215686917304993), (0.39915966987609863, 0.3960784375667572, 0.3960784375667572), (0.40336135029792786, 0.40000000596046448, 0.40000000596046448), (0.40756303071975708, 0.40392157435417175, 0.40392157435417175), (0.4117647111415863, 0.4117647111415863, 0.4117647111415863), (0.41596639156341553, 0.41568627953529358, 0.41568627953529358), (0.42016807198524475, 0.41960784792900085, 0.41960784792900085), (0.42436975240707397, 0.42352941632270813, 0.42352941632270813), (0.4285714328289032, 0.42745098471641541, 0.42745098471641541), (0.43277311325073242, 0.43137255311012268, 0.43137255311012268), (0.43697479367256165, 0.43529412150382996, 0.43529412150382996), (0.44117647409439087, 0.43921568989753723, 0.43921568989753723), (0.44537815451622009, 0.44313725829124451, 0.44313725829124451), (0.44957983493804932, 0.44705882668495178, 0.44705882668495178), (0.45378151535987854, 0.45098039507865906, 0.45098039507865906), (0.45798319578170776, 0.45490196347236633, 0.45490196347236633), (0.46218487620353699, 0.45882353186607361, 0.45882353186607361), (0.46638655662536621, 0.46274510025978088, 0.46274510025978088), (0.47058823704719543, 0.46666666865348816, 0.46666666865348816), (0.47478991746902466, 0.47450980544090271, 0.47450980544090271), (0.47899159789085388, 0.47843137383460999, 0.47843137383460999), (0.48319327831268311, 0.48235294222831726, 0.48235294222831726), (0.48739495873451233, 0.48627451062202454, 0.48627451062202454), (0.49159663915634155, 0.49019607901573181, 0.49019607901573181), (0.49579831957817078, 0.49411764740943909, 0.49411764740943909), (0.5, 0.49803921580314636, 0.49803921580314636), (0.50420171022415161, 0.50196081399917603, 0.50196081399917603), (0.50840336084365845, 0.5058823823928833, 0.5058823823928833), (0.51260507106781006, 0.50980395078659058, 0.50980395078659058), (0.51680672168731689, 0.51372551918029785, 0.51372551918029785), (0.52100843191146851, 0.51764708757400513, 0.51764708757400513), (0.52521008253097534, 0.5215686559677124, 0.5215686559677124), (0.52941179275512695, 0.52549022436141968, 0.52549022436141968), (0.53361344337463379, 0.52941179275512695, 0.52941179275512695), (0.5378151535987854, 0.5372549295425415, 0.5372549295425415), (0.54201680421829224, 0.54117649793624878, 0.54117649793624878), (0.54621851444244385, 0.54509806632995605, 0.54509806632995605), (0.55042016506195068, 0.54901963472366333, 0.54901963472366333), (0.55462187528610229, 0.55294120311737061, 0.55294120311737061), (0.55882352590560913, 0.55686277151107788, 0.55686277151107788), (0.56302523612976074, 0.56078433990478516, 0.56078433990478516), (0.56722688674926758, 0.56470590829849243, 0.56470590829849243), (0.57142859697341919, 0.56862747669219971, 0.56862747669219971), (0.57563024759292603, 0.57254904508590698, 0.57254904508590698), (0.57983195781707764, 0.57647061347961426, 0.57647061347961426), (0.58403360843658447, 0.58039218187332153, 0.58039218187332153), (0.58823531866073608, 0.58431375026702881, 0.58431375026702881), (0.59243696928024292, 0.58823531866073608, 0.58823531866073608), (0.59663867950439453, 0.59215688705444336, 0.59215688705444336), (0.60084033012390137, 0.60000002384185791, 0.60000002384185791), (0.60504204034805298, 0.60392159223556519, 0.60392159223556519), (0.60924369096755981, 0.60784316062927246, 0.60784316062927246), (0.61344540119171143, 0.61176472902297974, 0.61176472902297974), (0.61764705181121826, 0.61568629741668701, 0.61568629741668701), (0.62184876203536987, 0.61960786581039429, 0.61960786581039429), (0.62605041265487671, 0.62352943420410156, 0.62352943420410156), (0.63025212287902832, 0.62745100259780884, 0.62745100259780884), (0.63445377349853516, 0.63137257099151611, 0.63137257099151611), (0.63865548372268677, 0.63529413938522339, 0.63529413938522339), (0.6428571343421936, 0.63921570777893066, 0.63921570777893066), (0.64705884456634521, 0.64313727617263794, 0.64313727617263794), (0.65126049518585205, 0.64705884456634521, 0.64705884456634521), (0.65546220541000366, 0.65098041296005249, 0.65098041296005249), (0.6596638560295105, 0.65490198135375977, 0.65490198135375977), (0.66386556625366211, 0.66274511814117432, 0.66274511814117432), (0.66806721687316895, 0.66666668653488159, 0.66666668653488159), (0.67226892709732056, 0.67058825492858887, 0.67058825492858887), (0.67647057771682739, 0.67450982332229614, 0.67450982332229614), (0.680672287940979, 0.67843139171600342, 0.67843139171600342), (0.68487393856048584, 0.68235296010971069, 0.68235296010971069), (0.68907564878463745, 0.68627452850341797, 0.68627452850341797), (0.69327729940414429, 0.69019609689712524, 0.69019609689712524), (0.6974790096282959, 0.69411766529083252, 0.69411766529083252), (0.70168066024780273, 0.69803923368453979, 0.69803923368453979), (0.70588237047195435, 0.70196080207824707, 0.70196080207824707), (0.71008402109146118, 0.70588237047195435, 0.70588237047195435), (0.71428573131561279, 0.70980393886566162, 0.70980393886566162), (0.71848738193511963, 0.7137255072593689, 0.7137255072593689), (0.72268909215927124, 0.71764707565307617, 0.71764707565307617), (0.72689074277877808, 0.72549021244049072, 0.72549021244049072), (0.73109245300292969, 0.729411780834198, 0.729411780834198), (0.73529410362243652, 0.73333334922790527, 0.73333334922790527), (0.73949581384658813, 0.73725491762161255, 0.73725491762161255), (0.74369746446609497, 0.74117648601531982, 0.74117648601531982), (0.74789917469024658, 0.7450980544090271, 0.7450980544090271), (0.75210082530975342, 0.74901962280273438, 0.74901962280273438), (0.75630253553390503, 0.75294119119644165, 0.75294119119644165), (0.76050418615341187, 0.75686275959014893, 0.75686275959014893), (0.76470589637756348, 0.7607843279838562, 0.7607843279838562), (0.76890754699707031, 0.76470589637756348, 0.76470589637756348), (0.77310925722122192, 0.76862746477127075, 0.76862746477127075), (0.77731090784072876, 0.77254903316497803, 0.77254903316497803), (0.78151261806488037, 0.7764706015586853, 0.7764706015586853), (0.78571426868438721, 0.78039216995239258, 0.78039216995239258), (0.78991597890853882, 0.78823530673980713, 0.78823530673980713), (0.79411762952804565, 0.7921568751335144, 0.7921568751335144), (0.79831933975219727, 0.79607844352722168, 0.79607844352722168), (0.8025209903717041, 0.80000001192092896, 0.80000001192092896), (0.80672270059585571, 0.80392158031463623, 0.80392158031463623), (0.81092435121536255, 0.80784314870834351, 0.80784314870834351), (0.81512606143951416, 0.81176471710205078, 0.81176471710205078), (0.819327712059021, 0.81568628549575806, 0.81568628549575806), (0.82352942228317261, 0.81960785388946533, 0.81960785388946533), (0.82773107290267944, 0.82352942228317261, 0.82352942228317261), (0.83193278312683105, 0.82745099067687988, 0.82745099067687988), (0.83613443374633789, 0.83137255907058716, 0.83137255907058716), (0.8403361439704895, 0.83529412746429443, 0.83529412746429443), (0.84453779458999634, 0.83921569585800171, 0.83921569585800171), (0.84873950481414795, 0.84313726425170898, 0.84313726425170898), (0.85294115543365479, 0.85098040103912354, 0.85098040103912354), (0.8571428656578064, 0.85490196943283081, 0.85490196943283081), (0.86134451627731323, 0.85882353782653809, 0.85882353782653809), (0.86554622650146484, 0.86274510622024536, 0.86274510622024536), (0.86974787712097168, 0.86666667461395264, 0.86666667461395264), (0.87394958734512329, 0.87058824300765991, 0.87058824300765991), (0.87815123796463013, 0.87450981140136719, 0.87450981140136719), (0.88235294818878174, 0.87843137979507446, 0.87843137979507446), (0.88655459880828857, 0.88235294818878174, 0.88235294818878174), (0.89075630903244019, 0.88627451658248901, 0.88627451658248901), (0.89495795965194702, 0.89019608497619629, 0.89019608497619629), (0.89915966987609863, 0.89411765336990356, 0.89411765336990356), (0.90336132049560547, 0.89803922176361084, 0.89803922176361084), (0.90756303071975708, 0.90196079015731812, 0.90196079015731812), (0.91176468133926392, 0.90588235855102539, 0.90588235855102539), (0.91596639156341553, 0.91372549533843994, 0.91372549533843994), (0.92016804218292236, 0.91764706373214722, 0.91764706373214722), (0.92436975240707397, 0.92156863212585449, 0.92156863212585449), (0.92857140302658081, 0.92549020051956177, 0.92549020051956177), (0.93277311325073242, 0.92941176891326904, 0.92941176891326904), (0.93697476387023926, 0.93333333730697632, 0.93333333730697632), (0.94117647409439087, 0.93725490570068359, 0.93725490570068359), (0.94537812471389771, 0.94117647409439087, 0.94117647409439087), (0.94957983493804932, 0.94509804248809814, 0.94509804248809814), (0.95378148555755615, 0.94901961088180542, 0.94901961088180542), (0.95798319578170776, 0.9529411792755127, 0.9529411792755127), (0.9621848464012146, 0.95686274766921997, 0.95686274766921997), (0.96638655662536621, 0.96078431606292725, 0.96078431606292725), (0.97058820724487305, 0.96470588445663452, 0.96470588445663452), (0.97478991746902466, 0.9686274528503418, 0.9686274528503418), (0.97899156808853149, 0.97647058963775635, 0.97647058963775635), (0.98319327831268311, 0.98039215803146362, 0.98039215803146362), (0.98739492893218994, 0.9843137264251709, 0.9843137264251709), (0.99159663915634155, 0.98823529481887817, 0.98823529481887817), (0.99579828977584839, 0.99215686321258545, 0.99215686321258545), (1.0, 0.99607843160629272, 0.99607843160629272)], 'green': [(0.0, 0.0, 0.0), (0.0042016808874905109, 0.0039215688593685627, 0.0039215688593685627), (0.0084033617749810219, 0.0078431377187371254, 0.0078431377187371254), (0.012605042196810246, 0.011764706112444401, 0.011764706112444401), (0.016806723549962044, 0.015686275437474251, 0.015686275437474251), (0.021008403971791267, 0.019607843831181526, 0.019607843831181526), (0.025210084393620491, 0.023529412224888802, 0.023529412224888802), (0.029411764815449715, 0.027450980618596077, 0.027450980618596077), (0.033613447099924088, 0.035294119268655777, 0.035294119268655777), (0.037815127521753311, 0.039215687662363052, 0.039215687662363052), (0.042016807943582535, 0.043137256056070328, 0.043137256056070328), (0.046218488365411758, 0.047058824449777603, 0.047058824449777603), (0.050420168787240982, 0.050980392843484879, 0.050980392843484879), (0.054621849209070206, 0.054901961237192154, 0.054901961237192154), (0.058823529630899429, 0.058823529630899429, 0.058823529630899429), (0.063025213778018951, 0.062745101749897003, 0.062745101749897003), (0.067226894199848175, 0.066666670143604279, 0.066666670143604279), (0.071428574621677399, 0.070588238537311554, 0.070588238537311554), (0.075630255043506622, 0.074509806931018829, 0.074509806931018829), (0.079831935465335846, 0.078431375324726105, 0.078431375324726105), (0.08403361588716507, 0.08235294371843338, 0.08235294371843338), (0.088235296308994293, 0.086274512112140656, 0.086274512112140656), (0.092436976730823517, 0.090196080505847931, 0.090196080505847931), (0.09663865715265274, 0.098039217293262482, 0.098039217293262482), (0.10084033757448196, 0.10196078568696976, 0.10196078568696976), (0.10504201799631119, 0.10588235408067703, 0.10588235408067703), (0.10924369841814041, 0.10980392247438431, 0.10980392247438431), (0.11344537883996964, 0.11372549086809158, 0.11372549086809158), (0.11764705926179886, 0.11764705926179886, 0.11764705926179886), (0.12184873968362808, 0.12156862765550613, 0.12156862765550613), (0.1260504275560379, 0.12549020349979401, 0.12549020349979401), (0.13025210797786713, 0.12941177189350128, 0.12941177189350128), (0.13445378839969635, 0.13333334028720856, 0.13333334028720856), (0.13865546882152557, 0.13725490868091583, 0.13725490868091583), (0.1428571492433548, 0.14117647707462311, 0.14117647707462311), (0.14705882966518402, 0.14509804546833038, 0.14509804546833038), (0.15126051008701324, 0.14901961386203766, 0.14901961386203766), (0.15546219050884247, 0.15294118225574493, 0.15294118225574493), (0.15966387093067169, 0.16078431904315948, 0.16078431904315948), (0.16386555135250092, 0.16470588743686676, 0.16470588743686676), (0.16806723177433014, 0.16862745583057404, 0.16862745583057404), (0.17226891219615936, 0.17254902422428131, 0.17254902422428131), (0.17647059261798859, 0.17647059261798859, 0.17647059261798859), (0.18067227303981781, 0.18039216101169586, 0.18039216101169586), (0.18487395346164703, 0.18431372940540314, 0.18431372940540314), (0.18907563388347626, 0.18823529779911041, 0.18823529779911041), (0.19327731430530548, 0.19215686619281769, 0.19215686619281769), (0.1974789947271347, 0.19607843458652496, 0.19607843458652496), (0.20168067514896393, 0.20000000298023224, 0.20000000298023224), (0.20588235557079315, 0.20392157137393951, 0.20392157137393951), (0.21008403599262238, 0.20784313976764679, 0.20784313976764679), (0.2142857164144516, 0.21176470816135406, 0.21176470816135406), (0.21848739683628082, 0.21568627655506134, 0.21568627655506134), (0.22268907725811005, 0.22352941334247589, 0.22352941334247589), (0.22689075767993927, 0.22745098173618317, 0.22745098173618317), (0.23109243810176849, 0.23137255012989044, 0.23137255012989044), (0.23529411852359772, 0.23529411852359772, 0.23529411852359772), (0.23949579894542694, 0.23921568691730499, 0.23921568691730499), (0.24369747936725616, 0.24313725531101227, 0.24313725531101227), (0.24789915978908539, 0.24705882370471954, 0.24705882370471954), (0.25210085511207581, 0.25098040699958801, 0.25098040699958801), (0.25630253553390503, 0.25490197539329529, 0.25490197539329529), (0.26050421595573425, 0.25882354378700256, 0.25882354378700256), (0.26470589637756348, 0.26274511218070984, 0.26274511218070984), (0.2689075767993927, 0.26666668057441711, 0.26666668057441711), (0.27310925722122192, 0.27058824896812439, 0.27058824896812439), (0.27731093764305115, 0.27450981736183167, 0.27450981736183167), (0.28151261806488037, 0.27843138575553894, 0.27843138575553894), (0.28571429848670959, 0.28627452254295349, 0.28627452254295349), (0.28991597890853882, 0.29019609093666077, 0.29019609093666077), (0.29411765933036804, 0.29411765933036804, 0.29411765933036804), (0.29831933975219727, 0.29803922772407532, 0.29803922772407532), (0.30252102017402649, 0.30196079611778259, 0.30196079611778259), (0.30672270059585571, 0.30588236451148987, 0.30588236451148987), (0.31092438101768494, 0.30980393290519714, 0.30980393290519714), (0.31512606143951416, 0.31372550129890442, 0.31372550129890442), (0.31932774186134338, 0.31764706969261169, 0.31764706969261169), (0.32352942228317261, 0.32156863808631897, 0.32156863808631897), (0.32773110270500183, 0.32549020648002625, 0.32549020648002625), (0.33193278312683105, 0.32941177487373352, 0.32941177487373352), (0.33613446354866028, 0.3333333432674408, 0.3333333432674408), (0.3403361439704895, 0.33725491166114807, 0.33725491166114807), (0.34453782439231873, 0.34117648005485535, 0.34117648005485535), (0.34873950481414795, 0.3490196168422699, 0.3490196168422699), (0.35294118523597717, 0.35294118523597717, 0.35294118523597717), (0.3571428656578064, 0.35686275362968445, 0.35686275362968445), (0.36134454607963562, 0.36078432202339172, 0.36078432202339172), (0.36554622650146484, 0.364705890417099, 0.364705890417099), (0.36974790692329407, 0.36862745881080627, 0.36862745881080627), (0.37394958734512329, 0.37254902720451355, 0.37254902720451355), (0.37815126776695251, 0.37647059559822083, 0.37647059559822083), (0.38235294818878174, 0.3803921639919281, 0.3803921639919281), (0.38655462861061096, 0.38431373238563538, 0.38431373238563538), (0.39075630903244019, 0.38823530077934265, 0.38823530077934265), (0.39495798945426941, 0.39215686917304993, 0.39215686917304993), (0.39915966987609863, 0.3960784375667572, 0.3960784375667572), (0.40336135029792786, 0.40000000596046448, 0.40000000596046448), (0.40756303071975708, 0.40392157435417175, 0.40392157435417175), (0.4117647111415863, 0.4117647111415863, 0.4117647111415863), (0.41596639156341553, 0.41568627953529358, 0.41568627953529358), (0.42016807198524475, 0.41960784792900085, 0.41960784792900085), (0.42436975240707397, 0.42352941632270813, 0.42352941632270813), (0.4285714328289032, 0.42745098471641541, 0.42745098471641541), (0.43277311325073242, 0.43137255311012268, 0.43137255311012268), (0.43697479367256165, 0.43529412150382996, 0.43529412150382996), (0.44117647409439087, 0.43921568989753723, 0.43921568989753723), (0.44537815451622009, 0.44313725829124451, 0.44313725829124451), (0.44957983493804932, 0.44705882668495178, 0.44705882668495178), (0.45378151535987854, 0.45098039507865906, 0.45098039507865906), (0.45798319578170776, 0.45490196347236633, 0.45490196347236633), (0.46218487620353699, 0.45882353186607361, 0.45882353186607361), (0.46638655662536621, 0.46274510025978088, 0.46274510025978088), (0.47058823704719543, 0.46666666865348816, 0.46666666865348816), (0.47478991746902466, 0.47450980544090271, 0.47450980544090271), (0.47899159789085388, 0.47843137383460999, 0.47843137383460999), (0.48319327831268311, 0.48235294222831726, 0.48235294222831726), (0.48739495873451233, 0.48627451062202454, 0.48627451062202454), (0.49159663915634155, 0.49019607901573181, 0.49019607901573181), (0.49579831957817078, 0.49411764740943909, 0.49411764740943909), (0.5, 0.49803921580314636, 0.49803921580314636), (0.50420171022415161, 0.50196081399917603, 0.50196081399917603), (0.50840336084365845, 0.5058823823928833, 0.5058823823928833), (0.51260507106781006, 0.50980395078659058, 0.50980395078659058), (0.51680672168731689, 0.51372551918029785, 0.51372551918029785), (0.52100843191146851, 0.51764708757400513, 0.51764708757400513), (0.52521008253097534, 0.5215686559677124, 0.5215686559677124), (0.52941179275512695, 0.52549022436141968, 0.52549022436141968), (0.53361344337463379, 0.52941179275512695, 0.52941179275512695), (0.5378151535987854, 0.5372549295425415, 0.5372549295425415), (0.54201680421829224, 0.54117649793624878, 0.54117649793624878), (0.54621851444244385, 0.54509806632995605, 0.54509806632995605), (0.55042016506195068, 0.54901963472366333, 0.54901963472366333), (0.55462187528610229, 0.55294120311737061, 0.55294120311737061), (0.55882352590560913, 0.55686277151107788, 0.55686277151107788), (0.56302523612976074, 0.56078433990478516, 0.56078433990478516), (0.56722688674926758, 0.56470590829849243, 0.56470590829849243), (0.57142859697341919, 0.56862747669219971, 0.56862747669219971), (0.57563024759292603, 0.57254904508590698, 0.57254904508590698), (0.57983195781707764, 0.57647061347961426, 0.57647061347961426), (0.58403360843658447, 0.58039218187332153, 0.58039218187332153), (0.58823531866073608, 0.58431375026702881, 0.58431375026702881), (0.59243696928024292, 0.58823531866073608, 0.58823531866073608), (0.59663867950439453, 0.59215688705444336, 0.59215688705444336), (0.60084033012390137, 0.60000002384185791, 0.60000002384185791), (0.60504204034805298, 0.60392159223556519, 0.60392159223556519), (0.60924369096755981, 0.60784316062927246, 0.60784316062927246), (0.61344540119171143, 0.61176472902297974, 0.61176472902297974), (0.61764705181121826, 0.61568629741668701, 0.61568629741668701), (0.62184876203536987, 0.61960786581039429, 0.61960786581039429), (0.62605041265487671, 0.62352943420410156, 0.62352943420410156), (0.63025212287902832, 0.62745100259780884, 0.62745100259780884), (0.63445377349853516, 0.63137257099151611, 0.63137257099151611), (0.63865548372268677, 0.63529413938522339, 0.63529413938522339), (0.6428571343421936, 0.63921570777893066, 0.63921570777893066), (0.64705884456634521, 0.64313727617263794, 0.64313727617263794), (0.65126049518585205, 0.64705884456634521, 0.64705884456634521), (0.65546220541000366, 0.65098041296005249, 0.65098041296005249), (0.6596638560295105, 0.65490198135375977, 0.65490198135375977), (0.66386556625366211, 0.66274511814117432, 0.66274511814117432), (0.66806721687316895, 0.66666668653488159, 0.66666668653488159), (0.67226892709732056, 0.67058825492858887, 0.67058825492858887), (0.67647057771682739, 0.67450982332229614, 0.67450982332229614), (0.680672287940979, 0.67843139171600342, 0.67843139171600342), (0.68487393856048584, 0.68235296010971069, 0.68235296010971069), (0.68907564878463745, 0.68627452850341797, 0.68627452850341797), (0.69327729940414429, 0.69019609689712524, 0.69019609689712524), (0.6974790096282959, 0.69411766529083252, 0.69411766529083252), (0.70168066024780273, 0.69803923368453979, 0.69803923368453979), (0.70588237047195435, 0.70196080207824707, 0.70196080207824707), (0.71008402109146118, 0.70588237047195435, 0.70588237047195435), (0.71428573131561279, 0.70980393886566162, 0.70980393886566162), (0.71848738193511963, 0.7137255072593689, 0.7137255072593689), (0.72268909215927124, 0.71764707565307617, 0.71764707565307617), (0.72689074277877808, 0.72549021244049072, 0.72549021244049072), (0.73109245300292969, 0.729411780834198, 0.729411780834198), (0.73529410362243652, 0.73333334922790527, 0.73333334922790527), (0.73949581384658813, 0.73725491762161255, 0.73725491762161255), (0.74369746446609497, 0.74117648601531982, 0.74117648601531982), (0.74789917469024658, 0.7450980544090271, 0.7450980544090271), (0.75210082530975342, 0.74901962280273438, 0.74901962280273438), (0.75630253553390503, 0.75294119119644165, 0.75294119119644165), (0.76050418615341187, 0.75686275959014893, 0.75686275959014893), (0.76470589637756348, 0.7607843279838562, 0.7607843279838562), (0.76890754699707031, 0.76470589637756348, 0.76470589637756348), (0.77310925722122192, 0.76862746477127075, 0.76862746477127075), (0.77731090784072876, 0.77254903316497803, 0.77254903316497803), (0.78151261806488037, 0.7764706015586853, 0.7764706015586853), (0.78571426868438721, 0.78039216995239258, 0.78039216995239258), (0.78991597890853882, 0.78823530673980713, 0.78823530673980713), (0.79411762952804565, 0.7921568751335144, 0.7921568751335144), (0.79831933975219727, 0.79607844352722168, 0.79607844352722168), (0.8025209903717041, 0.80000001192092896, 0.80000001192092896), (0.80672270059585571, 0.80392158031463623, 0.80392158031463623), (0.81092435121536255, 0.80784314870834351, 0.80784314870834351), (0.81512606143951416, 0.81176471710205078, 0.81176471710205078), (0.819327712059021, 0.81568628549575806, 0.81568628549575806), (0.82352942228317261, 0.81960785388946533, 0.81960785388946533), (0.82773107290267944, 0.82352942228317261, 0.82352942228317261), (0.83193278312683105, 0.82745099067687988, 0.82745099067687988), (0.83613443374633789, 0.83137255907058716, 0.83137255907058716), (0.8403361439704895, 0.83529412746429443, 0.83529412746429443), (0.84453779458999634, 0.83921569585800171, 0.83921569585800171), (0.84873950481414795, 0.84313726425170898, 0.84313726425170898), (0.85294115543365479, 0.85098040103912354, 0.85098040103912354), (0.8571428656578064, 0.85490196943283081, 0.85490196943283081), (0.86134451627731323, 0.85882353782653809, 0.85882353782653809), (0.86554622650146484, 0.86274510622024536, 0.86274510622024536), (0.86974787712097168, 0.86666667461395264, 0.86666667461395264), (0.87394958734512329, 0.87058824300765991, 0.87058824300765991), (0.87815123796463013, 0.87450981140136719, 0.87450981140136719), (0.88235294818878174, 0.87843137979507446, 0.87843137979507446), (0.88655459880828857, 0.88235294818878174, 0.88235294818878174), (0.89075630903244019, 0.88627451658248901, 0.88627451658248901), (0.89495795965194702, 0.89019608497619629, 0.89019608497619629), (0.89915966987609863, 0.89411765336990356, 0.89411765336990356), (0.90336132049560547, 0.89803922176361084, 0.89803922176361084), (0.90756303071975708, 0.90196079015731812, 0.90196079015731812), (0.91176468133926392, 0.90588235855102539, 0.90588235855102539), (0.91596639156341553, 0.91372549533843994, 0.91372549533843994), (0.92016804218292236, 0.91764706373214722, 0.91764706373214722), (0.92436975240707397, 0.92156863212585449, 0.92156863212585449), (0.92857140302658081, 0.92549020051956177, 0.92549020051956177), (0.93277311325073242, 0.92941176891326904, 0.92941176891326904), (0.93697476387023926, 0.93333333730697632, 0.93333333730697632), (0.94117647409439087, 0.93725490570068359, 0.93725490570068359), (0.94537812471389771, 0.94117647409439087, 0.94117647409439087), (0.94957983493804932, 0.94509804248809814, 0.94509804248809814), (0.95378148555755615, 0.94901961088180542, 0.94901961088180542), (0.95798319578170776, 0.9529411792755127, 0.9529411792755127), (0.9621848464012146, 0.95686274766921997, 0.95686274766921997), (0.96638655662536621, 0.96078431606292725, 0.96078431606292725), (0.97058820724487305, 0.96470588445663452, 0.96470588445663452), (0.97478991746902466, 0.9686274528503418, 0.9686274528503418), (0.97899156808853149, 0.97647058963775635, 0.97647058963775635), (0.98319327831268311, 0.98039215803146362, 0.98039215803146362), (0.98739492893218994, 0.9843137264251709, 0.9843137264251709), (0.99159663915634155, 0.98823529481887817, 0.98823529481887817), (0.99579828977584839, 0.99215686321258545, 0.99215686321258545), (1.0, 0.99607843160629272, 0.99607843160629272)], 'red': [(0.0, 0.0, 0.0), (0.0042016808874905109, 0.0039215688593685627, 0.0039215688593685627), (0.0084033617749810219, 0.0078431377187371254, 0.0078431377187371254), (0.012605042196810246, 0.011764706112444401, 0.011764706112444401), (0.016806723549962044, 0.015686275437474251, 0.015686275437474251), (0.021008403971791267, 0.019607843831181526, 0.019607843831181526), (0.025210084393620491, 0.023529412224888802, 0.023529412224888802), (0.029411764815449715, 0.027450980618596077, 0.027450980618596077), (0.033613447099924088, 0.035294119268655777, 0.035294119268655777), (0.037815127521753311, 0.039215687662363052, 0.039215687662363052), (0.042016807943582535, 0.043137256056070328, 0.043137256056070328), (0.046218488365411758, 0.047058824449777603, 0.047058824449777603), (0.050420168787240982, 0.050980392843484879, 0.050980392843484879), (0.054621849209070206, 0.054901961237192154, 0.054901961237192154), (0.058823529630899429, 0.058823529630899429, 0.058823529630899429), (0.063025213778018951, 0.062745101749897003, 0.062745101749897003), (0.067226894199848175, 0.066666670143604279, 0.066666670143604279), (0.071428574621677399, 0.070588238537311554, 0.070588238537311554), (0.075630255043506622, 0.074509806931018829, 0.074509806931018829), (0.079831935465335846, 0.078431375324726105, 0.078431375324726105), (0.08403361588716507, 0.08235294371843338, 0.08235294371843338), (0.088235296308994293, 0.086274512112140656, 0.086274512112140656), (0.092436976730823517, 0.090196080505847931, 0.090196080505847931), (0.09663865715265274, 0.098039217293262482, 0.098039217293262482), (0.10084033757448196, 0.10196078568696976, 0.10196078568696976), (0.10504201799631119, 0.10588235408067703, 0.10588235408067703), (0.10924369841814041, 0.10980392247438431, 0.10980392247438431), (0.11344537883996964, 0.11372549086809158, 0.11372549086809158), (0.11764705926179886, 0.11764705926179886, 0.11764705926179886), (0.12184873968362808, 0.12156862765550613, 0.12156862765550613), (0.1260504275560379, 0.12549020349979401, 0.12549020349979401), (0.13025210797786713, 0.12941177189350128, 0.12941177189350128), (0.13445378839969635, 0.13333334028720856, 0.13333334028720856), (0.13865546882152557, 0.13725490868091583, 0.13725490868091583), (0.1428571492433548, 0.14117647707462311, 0.14117647707462311), (0.14705882966518402, 0.14509804546833038, 0.14509804546833038), (0.15126051008701324, 0.14901961386203766, 0.14901961386203766), (0.15546219050884247, 0.15294118225574493, 0.15294118225574493), (0.15966387093067169, 0.16078431904315948, 0.16078431904315948), (0.16386555135250092, 0.16470588743686676, 0.16470588743686676), (0.16806723177433014, 0.16862745583057404, 0.16862745583057404), (0.17226891219615936, 0.17254902422428131, 0.17254902422428131), (0.17647059261798859, 0.17647059261798859, 0.17647059261798859), (0.18067227303981781, 0.18039216101169586, 0.18039216101169586), (0.18487395346164703, 0.18431372940540314, 0.18431372940540314), (0.18907563388347626, 0.18823529779911041, 0.18823529779911041), (0.19327731430530548, 0.19215686619281769, 0.19215686619281769), (0.1974789947271347, 0.19607843458652496, 0.19607843458652496), (0.20168067514896393, 0.20000000298023224, 0.20000000298023224), (0.20588235557079315, 0.20392157137393951, 0.20392157137393951), (0.21008403599262238, 0.20784313976764679, 0.20784313976764679), (0.2142857164144516, 0.21176470816135406, 0.21176470816135406), (0.21848739683628082, 0.21568627655506134, 0.21568627655506134), (0.22268907725811005, 0.22352941334247589, 0.22352941334247589), (0.22689075767993927, 0.22745098173618317, 0.22745098173618317), (0.23109243810176849, 0.23137255012989044, 0.23137255012989044), (0.23529411852359772, 0.23529411852359772, 0.23529411852359772), (0.23949579894542694, 0.23921568691730499, 0.23921568691730499), (0.24369747936725616, 0.24313725531101227, 0.24313725531101227), (0.24789915978908539, 0.24705882370471954, 0.24705882370471954), (0.25210085511207581, 0.25098040699958801, 0.25098040699958801), (0.25630253553390503, 0.25490197539329529, 0.25490197539329529), (0.26050421595573425, 0.25882354378700256, 0.25882354378700256), (0.26470589637756348, 0.26274511218070984, 0.26274511218070984), (0.2689075767993927, 0.26666668057441711, 0.26666668057441711), (0.27310925722122192, 0.27058824896812439, 0.27058824896812439), (0.27731093764305115, 0.27450981736183167, 0.27450981736183167), (0.28151261806488037, 0.27843138575553894, 0.27843138575553894), (0.28571429848670959, 0.28627452254295349, 0.28627452254295349), (0.28991597890853882, 0.29019609093666077, 0.29019609093666077), (0.29411765933036804, 0.29411765933036804, 0.29411765933036804), (0.29831933975219727, 0.29803922772407532, 0.29803922772407532), (0.30252102017402649, 0.30196079611778259, 0.30196079611778259), (0.30672270059585571, 0.30588236451148987, 0.30588236451148987), (0.31092438101768494, 0.30980393290519714, 0.30980393290519714), (0.31512606143951416, 0.31372550129890442, 0.31372550129890442), (0.31932774186134338, 0.31764706969261169, 0.31764706969261169), (0.32352942228317261, 0.32156863808631897, 0.32156863808631897), (0.32773110270500183, 0.32549020648002625, 0.32549020648002625), (0.33193278312683105, 0.32941177487373352, 0.32941177487373352), (0.33613446354866028, 0.3333333432674408, 0.3333333432674408), (0.3403361439704895, 0.33725491166114807, 0.33725491166114807), (0.34453782439231873, 0.34117648005485535, 0.34117648005485535), (0.34873950481414795, 0.3490196168422699, 0.3490196168422699), (0.35294118523597717, 0.35294118523597717, 0.35294118523597717), (0.3571428656578064, 0.35686275362968445, 0.35686275362968445), (0.36134454607963562, 0.36078432202339172, 0.36078432202339172), (0.36554622650146484, 0.364705890417099, 0.364705890417099), (0.36974790692329407, 0.36862745881080627, 0.36862745881080627), (0.37394958734512329, 0.37254902720451355, 0.37254902720451355), (0.37815126776695251, 0.37647059559822083, 0.37647059559822083), (0.38235294818878174, 0.3803921639919281, 0.3803921639919281), (0.38655462861061096, 0.38431373238563538, 0.38431373238563538), (0.39075630903244019, 0.38823530077934265, 0.38823530077934265), (0.39495798945426941, 0.39215686917304993, 0.39215686917304993), (0.39915966987609863, 0.3960784375667572, 0.3960784375667572), (0.40336135029792786, 0.40000000596046448, 0.40000000596046448), (0.40756303071975708, 0.40392157435417175, 0.40392157435417175), (0.4117647111415863, 0.4117647111415863, 0.4117647111415863), (0.41596639156341553, 0.41568627953529358, 0.41568627953529358), (0.42016807198524475, 0.41960784792900085, 0.41960784792900085), (0.42436975240707397, 0.42352941632270813, 0.42352941632270813), (0.4285714328289032, 0.42745098471641541, 0.42745098471641541), (0.43277311325073242, 0.43137255311012268, 0.43137255311012268), (0.43697479367256165, 0.43529412150382996, 0.43529412150382996), (0.44117647409439087, 0.43921568989753723, 0.43921568989753723), (0.44537815451622009, 0.44313725829124451, 0.44313725829124451), (0.44957983493804932, 0.44705882668495178, 0.44705882668495178), (0.45378151535987854, 0.45098039507865906, 0.45098039507865906), (0.45798319578170776, 0.45490196347236633, 0.45490196347236633), (0.46218487620353699, 0.45882353186607361, 0.45882353186607361), (0.46638655662536621, 0.46274510025978088, 0.46274510025978088), (0.47058823704719543, 0.46666666865348816, 0.46666666865348816), (0.47478991746902466, 0.47450980544090271, 0.47450980544090271), (0.47899159789085388, 0.47843137383460999, 0.47843137383460999), (0.48319327831268311, 0.48235294222831726, 0.48235294222831726), (0.48739495873451233, 0.48627451062202454, 0.48627451062202454), (0.49159663915634155, 0.49019607901573181, 0.49019607901573181), (0.49579831957817078, 0.49411764740943909, 0.49411764740943909), (0.5, 0.49803921580314636, 0.49803921580314636), (0.50420171022415161, 0.50196081399917603, 0.50196081399917603), (0.50840336084365845, 0.5058823823928833, 0.5058823823928833), (0.51260507106781006, 0.50980395078659058, 0.50980395078659058), (0.51680672168731689, 0.51372551918029785, 0.51372551918029785), (0.52100843191146851, 0.51764708757400513, 0.51764708757400513), (0.52521008253097534, 0.5215686559677124, 0.5215686559677124), (0.52941179275512695, 0.52549022436141968, 0.52549022436141968), (0.53361344337463379, 0.52941179275512695, 0.52941179275512695), (0.5378151535987854, 0.5372549295425415, 0.5372549295425415), (0.54201680421829224, 0.54117649793624878, 0.54117649793624878), (0.54621851444244385, 0.54509806632995605, 0.54509806632995605), (0.55042016506195068, 0.54901963472366333, 0.54901963472366333), (0.55462187528610229, 0.55294120311737061, 0.55294120311737061), (0.55882352590560913, 0.55686277151107788, 0.55686277151107788), (0.56302523612976074, 0.56078433990478516, 0.56078433990478516), (0.56722688674926758, 0.56470590829849243, 0.56470590829849243), (0.57142859697341919, 0.56862747669219971, 0.56862747669219971), (0.57563024759292603, 0.57254904508590698, 0.57254904508590698), (0.57983195781707764, 0.57647061347961426, 0.57647061347961426), (0.58403360843658447, 0.58039218187332153, 0.58039218187332153), (0.58823531866073608, 0.58431375026702881, 0.58431375026702881), (0.59243696928024292, 0.58823531866073608, 0.58823531866073608), (0.59663867950439453, 0.59215688705444336, 0.59215688705444336), (0.60084033012390137, 0.60000002384185791, 0.60000002384185791), (0.60504204034805298, 0.60392159223556519, 0.60392159223556519), (0.60924369096755981, 0.60784316062927246, 0.60784316062927246), (0.61344540119171143, 0.61176472902297974, 0.61176472902297974), (0.61764705181121826, 0.61568629741668701, 0.61568629741668701), (0.62184876203536987, 0.61960786581039429, 0.61960786581039429), (0.62605041265487671, 0.62352943420410156, 0.62352943420410156), (0.63025212287902832, 0.62745100259780884, 0.62745100259780884), (0.63445377349853516, 0.63137257099151611, 0.63137257099151611), (0.63865548372268677, 0.63529413938522339, 0.63529413938522339), (0.6428571343421936, 0.63921570777893066, 0.63921570777893066), (0.64705884456634521, 0.64313727617263794, 0.64313727617263794), (0.65126049518585205, 0.64705884456634521, 0.64705884456634521), (0.65546220541000366, 0.65098041296005249, 0.65098041296005249), (0.6596638560295105, 0.65490198135375977, 0.65490198135375977), (0.66386556625366211, 0.66274511814117432, 0.66274511814117432), (0.66806721687316895, 0.66666668653488159, 0.66666668653488159), (0.67226892709732056, 0.67058825492858887, 0.67058825492858887), (0.67647057771682739, 0.67450982332229614, 0.67450982332229614), (0.680672287940979, 0.67843139171600342, 0.67843139171600342), (0.68487393856048584, 0.68235296010971069, 0.68235296010971069), (0.68907564878463745, 0.68627452850341797, 0.68627452850341797), (0.69327729940414429, 0.69019609689712524, 0.69019609689712524), (0.6974790096282959, 0.69411766529083252, 0.69411766529083252), (0.70168066024780273, 0.69803923368453979, 0.69803923368453979), (0.70588237047195435, 0.70196080207824707, 0.70196080207824707), (0.71008402109146118, 0.70588237047195435, 0.70588237047195435), (0.71428573131561279, 0.70980393886566162, 0.70980393886566162), (0.71848738193511963, 0.7137255072593689, 0.7137255072593689), (0.72268909215927124, 0.71764707565307617, 0.71764707565307617), (0.72689074277877808, 0.72549021244049072, 0.72549021244049072), (0.73109245300292969, 0.729411780834198, 0.729411780834198), (0.73529410362243652, 0.73333334922790527, 0.73333334922790527), (0.73949581384658813, 0.73725491762161255, 0.73725491762161255), (0.74369746446609497, 0.74117648601531982, 0.74117648601531982), (0.74789917469024658, 0.7450980544090271, 0.7450980544090271), (0.75210082530975342, 0.74901962280273438, 0.74901962280273438), (0.75630253553390503, 0.75294119119644165, 0.75294119119644165), (0.76050418615341187, 0.75686275959014893, 0.75686275959014893), (0.76470589637756348, 0.7607843279838562, 0.7607843279838562), (0.76890754699707031, 0.76470589637756348, 0.76470589637756348), (0.77310925722122192, 0.76862746477127075, 0.76862746477127075), (0.77731090784072876, 0.77254903316497803, 0.77254903316497803), (0.78151261806488037, 0.7764706015586853, 0.7764706015586853), (0.78571426868438721, 0.78039216995239258, 0.78039216995239258), (0.78991597890853882, 0.78823530673980713, 0.78823530673980713), (0.79411762952804565, 0.7921568751335144, 0.7921568751335144), (0.79831933975219727, 0.79607844352722168, 0.79607844352722168), (0.8025209903717041, 0.80000001192092896, 0.80000001192092896), (0.80672270059585571, 0.80392158031463623, 0.80392158031463623), (0.81092435121536255, 0.80784314870834351, 0.80784314870834351), (0.81512606143951416, 0.81176471710205078, 0.81176471710205078), (0.819327712059021, 0.81568628549575806, 0.81568628549575806), (0.82352942228317261, 0.81960785388946533, 0.81960785388946533), (0.82773107290267944, 0.82352942228317261, 0.82352942228317261), (0.83193278312683105, 0.82745099067687988, 0.82745099067687988), (0.83613443374633789, 0.83137255907058716, 0.83137255907058716), (0.8403361439704895, 0.83529412746429443, 0.83529412746429443), (0.84453779458999634, 0.83921569585800171, 0.83921569585800171), (0.84873950481414795, 0.84313726425170898, 0.84313726425170898), (0.85294115543365479, 0.85098040103912354, 0.85098040103912354), (0.8571428656578064, 0.85490196943283081, 0.85490196943283081), (0.86134451627731323, 0.85882353782653809, 0.85882353782653809), (0.86554622650146484, 0.86274510622024536, 0.86274510622024536), (0.86974787712097168, 0.86666667461395264, 0.86666667461395264), (0.87394958734512329, 0.87058824300765991, 0.87058824300765991), (0.87815123796463013, 0.87450981140136719, 0.87450981140136719), (0.88235294818878174, 0.87843137979507446, 0.87843137979507446), (0.88655459880828857, 0.88235294818878174, 0.88235294818878174), (0.89075630903244019, 0.88627451658248901, 0.88627451658248901), (0.89495795965194702, 0.89019608497619629, 0.89019608497619629), (0.89915966987609863, 0.89411765336990356, 0.89411765336990356), (0.90336132049560547, 0.89803922176361084, 0.89803922176361084), (0.90756303071975708, 0.90196079015731812, 0.90196079015731812), (0.91176468133926392, 0.90588235855102539, 0.90588235855102539), (0.91596639156341553, 0.91372549533843994, 0.91372549533843994), (0.92016804218292236, 0.91764706373214722, 0.91764706373214722), (0.92436975240707397, 0.92156863212585449, 0.92156863212585449), (0.92857140302658081, 0.92549020051956177, 0.92549020051956177), (0.93277311325073242, 0.92941176891326904, 0.92941176891326904), (0.93697476387023926, 0.93333333730697632, 0.93333333730697632), (0.94117647409439087, 0.93725490570068359, 0.93725490570068359), (0.94537812471389771, 0.94117647409439087, 0.94117647409439087), (0.94957983493804932, 0.94509804248809814, 0.94509804248809814), (0.95378148555755615, 0.94901961088180542, 0.94901961088180542), (0.95798319578170776, 0.9529411792755127, 0.9529411792755127), (0.9621848464012146, 0.95686274766921997, 0.95686274766921997), (0.96638655662536621, 0.96078431606292725, 0.96078431606292725), (0.97058820724487305, 0.96470588445663452, 0.96470588445663452), (0.97478991746902466, 0.9686274528503418, 0.9686274528503418), (0.97899156808853149, 0.97647058963775635, 0.97647058963775635), (0.98319327831268311, 0.98039215803146362, 0.98039215803146362), (0.98739492893218994, 0.9843137264251709, 0.9843137264251709), (0.99159663915634155, 0.98823529481887817, 0.98823529481887817), (0.99579828977584839, 0.99215686321258545, 0.99215686321258545), (1.0, 0.99607843160629272, 0.99607843160629272)]} _gist_heat_data = {'blue': [(0.0, 0.0, 0.0), (0.0042016808874905109, 0.0, 0.0), (0.0084033617749810219, 0.0, 0.0), (0.012605042196810246, 0.0, 0.0), (0.016806723549962044, 0.0, 0.0), (0.021008403971791267, 0.0, 0.0), (0.025210084393620491, 0.0, 0.0), (0.029411764815449715, 0.0, 0.0), (0.033613447099924088, 0.0, 0.0), (0.037815127521753311, 0.0, 0.0), (0.042016807943582535, 0.0, 0.0), (0.046218488365411758, 0.0, 0.0), (0.050420168787240982, 0.0, 0.0), (0.054621849209070206, 0.0, 0.0), (0.058823529630899429, 0.0, 0.0), (0.063025213778018951, 0.0, 0.0), (0.067226894199848175, 0.0, 0.0), (0.071428574621677399, 0.0, 0.0), (0.075630255043506622, 0.0, 0.0), (0.079831935465335846, 0.0, 0.0), (0.08403361588716507, 0.0, 0.0), (0.088235296308994293, 0.0, 0.0), (0.092436976730823517, 0.0, 0.0), (0.09663865715265274, 0.0, 0.0), (0.10084033757448196, 0.0, 0.0), (0.10504201799631119, 0.0, 0.0), (0.10924369841814041, 0.0, 0.0), (0.11344537883996964, 0.0, 0.0), (0.11764705926179886, 0.0, 0.0), (0.12184873968362808, 0.0, 0.0), (0.1260504275560379, 0.0, 0.0), (0.13025210797786713, 0.0, 0.0), (0.13445378839969635, 0.0, 0.0), (0.13865546882152557, 0.0, 0.0), (0.1428571492433548, 0.0, 0.0), (0.14705882966518402, 0.0, 0.0), (0.15126051008701324, 0.0, 0.0), (0.15546219050884247, 0.0, 0.0), (0.15966387093067169, 0.0, 0.0), (0.16386555135250092, 0.0, 0.0), (0.16806723177433014, 0.0, 0.0), (0.17226891219615936, 0.0, 0.0), (0.17647059261798859, 0.0, 0.0), (0.18067227303981781, 0.0, 0.0), (0.18487395346164703, 0.0, 0.0), (0.18907563388347626, 0.0, 0.0), (0.19327731430530548, 0.0, 0.0), (0.1974789947271347, 0.0, 0.0), (0.20168067514896393, 0.0, 0.0), (0.20588235557079315, 0.0, 0.0), (0.21008403599262238, 0.0, 0.0), (0.2142857164144516, 0.0, 0.0), (0.21848739683628082, 0.0, 0.0), (0.22268907725811005, 0.0, 0.0), (0.22689075767993927, 0.0, 0.0), (0.23109243810176849, 0.0, 0.0), (0.23529411852359772, 0.0, 0.0), (0.23949579894542694, 0.0, 0.0), (0.24369747936725616, 0.0, 0.0), (0.24789915978908539, 0.0, 0.0), (0.25210085511207581, 0.0, 0.0), (0.25630253553390503, 0.0, 0.0), (0.26050421595573425, 0.0, 0.0), (0.26470589637756348, 0.0, 0.0), (0.2689075767993927, 0.0, 0.0), (0.27310925722122192, 0.0, 0.0), (0.27731093764305115, 0.0, 0.0), (0.28151261806488037, 0.0, 0.0), (0.28571429848670959, 0.0, 0.0), (0.28991597890853882, 0.0, 0.0), (0.29411765933036804, 0.0, 0.0), (0.29831933975219727, 0.0, 0.0), (0.30252102017402649, 0.0, 0.0), (0.30672270059585571, 0.0, 0.0), (0.31092438101768494, 0.0, 0.0), (0.31512606143951416, 0.0, 0.0), (0.31932774186134338, 0.0, 0.0), (0.32352942228317261, 0.0, 0.0), (0.32773110270500183, 0.0, 0.0), (0.33193278312683105, 0.0, 0.0), (0.33613446354866028, 0.0, 0.0), (0.3403361439704895, 0.0, 0.0), (0.34453782439231873, 0.0, 0.0), (0.34873950481414795, 0.0, 0.0), (0.35294118523597717, 0.0, 0.0), (0.3571428656578064, 0.0, 0.0), (0.36134454607963562, 0.0, 0.0), (0.36554622650146484, 0.0, 0.0), (0.36974790692329407, 0.0, 0.0), (0.37394958734512329, 0.0, 0.0), (0.37815126776695251, 0.0, 0.0), (0.38235294818878174, 0.0, 0.0), (0.38655462861061096, 0.0, 0.0), (0.39075630903244019, 0.0, 0.0), (0.39495798945426941, 0.0, 0.0), (0.39915966987609863, 0.0, 0.0), (0.40336135029792786, 0.0, 0.0), (0.40756303071975708, 0.0, 0.0), (0.4117647111415863, 0.0, 0.0), (0.41596639156341553, 0.0, 0.0), (0.42016807198524475, 0.0, 0.0), (0.42436975240707397, 0.0, 0.0), (0.4285714328289032, 0.0, 0.0), (0.43277311325073242, 0.0, 0.0), (0.43697479367256165, 0.0, 0.0), (0.44117647409439087, 0.0, 0.0), (0.44537815451622009, 0.0, 0.0), (0.44957983493804932, 0.0, 0.0), (0.45378151535987854, 0.0, 0.0), (0.45798319578170776, 0.0, 0.0), (0.46218487620353699, 0.0, 0.0), (0.46638655662536621, 0.0, 0.0), (0.47058823704719543, 0.0, 0.0), (0.47478991746902466, 0.0, 0.0), (0.47899159789085388, 0.0, 0.0), (0.48319327831268311, 0.0, 0.0), (0.48739495873451233, 0.0, 0.0), (0.49159663915634155, 0.0, 0.0), (0.49579831957817078, 0.0, 0.0), (0.5, 0.0, 0.0), (0.50420171022415161, 0.0, 0.0), (0.50840336084365845, 0.0, 0.0), (0.51260507106781006, 0.0, 0.0), (0.51680672168731689, 0.0, 0.0), (0.52100843191146851, 0.0, 0.0), (0.52521008253097534, 0.0, 0.0), (0.52941179275512695, 0.0, 0.0), (0.53361344337463379, 0.0, 0.0), (0.5378151535987854, 0.0, 0.0), (0.54201680421829224, 0.0, 0.0), (0.54621851444244385, 0.0, 0.0), (0.55042016506195068, 0.0, 0.0), (0.55462187528610229, 0.0, 0.0), (0.55882352590560913, 0.0, 0.0), (0.56302523612976074, 0.0, 0.0), (0.56722688674926758, 0.0, 0.0), (0.57142859697341919, 0.0, 0.0), (0.57563024759292603, 0.0, 0.0), (0.57983195781707764, 0.0, 0.0), (0.58403360843658447, 0.0, 0.0), (0.58823531866073608, 0.0, 0.0), (0.59243696928024292, 0.0, 0.0), (0.59663867950439453, 0.0, 0.0), (0.60084033012390137, 0.0, 0.0), (0.60504204034805298, 0.0, 0.0), (0.60924369096755981, 0.0, 0.0), (0.61344540119171143, 0.0, 0.0), (0.61764705181121826, 0.0, 0.0), (0.62184876203536987, 0.0, 0.0), (0.62605041265487671, 0.0, 0.0), (0.63025212287902832, 0.0, 0.0), (0.63445377349853516, 0.0, 0.0), (0.63865548372268677, 0.0, 0.0), (0.6428571343421936, 0.0, 0.0), (0.64705884456634521, 0.0, 0.0), (0.65126049518585205, 0.0, 0.0), (0.65546220541000366, 0.0, 0.0), (0.6596638560295105, 0.0, 0.0), (0.66386556625366211, 0.0, 0.0), (0.66806721687316895, 0.0, 0.0), (0.67226892709732056, 0.0, 0.0), (0.67647057771682739, 0.0, 0.0), (0.680672287940979, 0.0, 0.0), (0.68487393856048584, 0.0, 0.0), (0.68907564878463745, 0.0, 0.0), (0.69327729940414429, 0.0, 0.0), (0.6974790096282959, 0.0, 0.0), (0.70168066024780273, 0.0, 0.0), (0.70588237047195435, 0.0, 0.0), (0.71008402109146118, 0.0, 0.0), (0.71428573131561279, 0.0, 0.0), (0.71848738193511963, 0.0, 0.0), (0.72268909215927124, 0.0, 0.0), (0.72689074277877808, 0.0, 0.0), (0.73109245300292969, 0.0, 0.0), (0.73529410362243652, 0.0, 0.0), (0.73949581384658813, 0.0, 0.0), (0.74369746446609497, 0.0, 0.0), (0.74789917469024658, 0.0, 0.0), (0.75210082530975342, 0.0, 0.0), (0.75630253553390503, 0.027450980618596077, 0.027450980618596077), (0.76050418615341187, 0.043137256056070328, 0.043137256056070328), (0.76470589637756348, 0.058823529630899429, 0.058823529630899429), (0.76890754699707031, 0.074509806931018829, 0.074509806931018829), (0.77310925722122192, 0.090196080505847931, 0.090196080505847931), (0.77731090784072876, 0.10588235408067703, 0.10588235408067703), (0.78151261806488037, 0.12156862765550613, 0.12156862765550613), (0.78571426868438721, 0.13725490868091583, 0.13725490868091583), (0.78991597890853882, 0.15294118225574493, 0.15294118225574493), (0.79411762952804565, 0.16862745583057404, 0.16862745583057404), (0.79831933975219727, 0.20000000298023224, 0.20000000298023224), (0.8025209903717041, 0.21176470816135406, 0.21176470816135406), (0.80672270059585571, 0.22745098173618317, 0.22745098173618317), (0.81092435121536255, 0.24313725531101227, 0.24313725531101227), (0.81512606143951416, 0.25882354378700256, 0.25882354378700256), (0.819327712059021, 0.27450981736183167, 0.27450981736183167), (0.82352942228317261, 0.29019609093666077, 0.29019609093666077), (0.82773107290267944, 0.30588236451148987, 0.30588236451148987), (0.83193278312683105, 0.32156863808631897, 0.32156863808631897), (0.83613443374633789, 0.33725491166114807, 0.33725491166114807), (0.8403361439704895, 0.35294118523597717, 0.35294118523597717), (0.84453779458999634, 0.36862745881080627, 0.36862745881080627), (0.84873950481414795, 0.38431373238563538, 0.38431373238563538), (0.85294115543365479, 0.40000000596046448, 0.40000000596046448), (0.8571428656578064, 0.4117647111415863, 0.4117647111415863), (0.86134451627731323, 0.42745098471641541, 0.42745098471641541), (0.86554622650146484, 0.44313725829124451, 0.44313725829124451), (0.86974787712097168, 0.45882353186607361, 0.45882353186607361), (0.87394958734512329, 0.47450980544090271, 0.47450980544090271), (0.87815123796463013, 0.49019607901573181, 0.49019607901573181), (0.88235294818878174, 0.5215686559677124, 0.5215686559677124), (0.88655459880828857, 0.5372549295425415, 0.5372549295425415), (0.89075630903244019, 0.55294120311737061, 0.55294120311737061), (0.89495795965194702, 0.56862747669219971, 0.56862747669219971), (0.89915966987609863, 0.58431375026702881, 0.58431375026702881), (0.90336132049560547, 0.60000002384185791, 0.60000002384185791), (0.90756303071975708, 0.61176472902297974, 0.61176472902297974), (0.91176468133926392, 0.62745100259780884, 0.62745100259780884), (0.91596639156341553, 0.64313727617263794, 0.64313727617263794), (0.92016804218292236, 0.65882354974746704, 0.65882354974746704), (0.92436975240707397, 0.67450982332229614, 0.67450982332229614), (0.92857140302658081, 0.69019609689712524, 0.69019609689712524), (0.93277311325073242, 0.70588237047195435, 0.70588237047195435), (0.93697476387023926, 0.72156864404678345, 0.72156864404678345), (0.94117647409439087, 0.73725491762161255, 0.73725491762161255), (0.94537812471389771, 0.75294119119644165, 0.75294119119644165), (0.94957983493804932, 0.76862746477127075, 0.76862746477127075), (0.95378148555755615, 0.78431373834609985, 0.78431373834609985), (0.95798319578170776, 0.80000001192092896, 0.80000001192092896), (0.9621848464012146, 0.81176471710205078, 0.81176471710205078), (0.96638655662536621, 0.84313726425170898, 0.84313726425170898), (0.97058820724487305, 0.85882353782653809, 0.85882353782653809), (0.97478991746902466, 0.87450981140136719, 0.87450981140136719), (0.97899156808853149, 0.89019608497619629, 0.89019608497619629), (0.98319327831268311, 0.90588235855102539, 0.90588235855102539), (0.98739492893218994, 0.92156863212585449, 0.92156863212585449), (0.99159663915634155, 0.93725490570068359, 0.93725490570068359), (0.99579828977584839, 0.9529411792755127, 0.9529411792755127), (1.0, 0.9686274528503418, 0.9686274528503418)], 'green': [(0.0, 0.0, 0.0), (0.0042016808874905109, 0.0, 0.0), (0.0084033617749810219, 0.0, 0.0), (0.012605042196810246, 0.0, 0.0), (0.016806723549962044, 0.0, 0.0), (0.021008403971791267, 0.0, 0.0), (0.025210084393620491, 0.0, 0.0), (0.029411764815449715, 0.0, 0.0), (0.033613447099924088, 0.0, 0.0), (0.037815127521753311, 0.0, 0.0), (0.042016807943582535, 0.0, 0.0), (0.046218488365411758, 0.0, 0.0), (0.050420168787240982, 0.0, 0.0), (0.054621849209070206, 0.0, 0.0), (0.058823529630899429, 0.0, 0.0), (0.063025213778018951, 0.0, 0.0), (0.067226894199848175, 0.0, 0.0), (0.071428574621677399, 0.0, 0.0), (0.075630255043506622, 0.0, 0.0), (0.079831935465335846, 0.0, 0.0), (0.08403361588716507, 0.0, 0.0), (0.088235296308994293, 0.0, 0.0), (0.092436976730823517, 0.0, 0.0), (0.09663865715265274, 0.0, 0.0), (0.10084033757448196, 0.0, 0.0), (0.10504201799631119, 0.0, 0.0), (0.10924369841814041, 0.0, 0.0), (0.11344537883996964, 0.0, 0.0), (0.11764705926179886, 0.0, 0.0), (0.12184873968362808, 0.0, 0.0), (0.1260504275560379, 0.0, 0.0), (0.13025210797786713, 0.0, 0.0), (0.13445378839969635, 0.0, 0.0), (0.13865546882152557, 0.0, 0.0), (0.1428571492433548, 0.0, 0.0), (0.14705882966518402, 0.0, 0.0), (0.15126051008701324, 0.0, 0.0), (0.15546219050884247, 0.0, 0.0), (0.15966387093067169, 0.0, 0.0), (0.16386555135250092, 0.0, 0.0), (0.16806723177433014, 0.0, 0.0), (0.17226891219615936, 0.0, 0.0), (0.17647059261798859, 0.0, 0.0), (0.18067227303981781, 0.0, 0.0), (0.18487395346164703, 0.0, 0.0), (0.18907563388347626, 0.0, 0.0), (0.19327731430530548, 0.0, 0.0), (0.1974789947271347, 0.0, 0.0), (0.20168067514896393, 0.0, 0.0), (0.20588235557079315, 0.0, 0.0), (0.21008403599262238, 0.0, 0.0), (0.2142857164144516, 0.0, 0.0), (0.21848739683628082, 0.0, 0.0), (0.22268907725811005, 0.0, 0.0), (0.22689075767993927, 0.0, 0.0), (0.23109243810176849, 0.0, 0.0), (0.23529411852359772, 0.0, 0.0), (0.23949579894542694, 0.0, 0.0), (0.24369747936725616, 0.0, 0.0), (0.24789915978908539, 0.0, 0.0), (0.25210085511207581, 0.0, 0.0), (0.25630253553390503, 0.0, 0.0), (0.26050421595573425, 0.0, 0.0), (0.26470589637756348, 0.0, 0.0), (0.2689075767993927, 0.0, 0.0), (0.27310925722122192, 0.0, 0.0), (0.27731093764305115, 0.0, 0.0), (0.28151261806488037, 0.0, 0.0), (0.28571429848670959, 0.0, 0.0), (0.28991597890853882, 0.0, 0.0), (0.29411765933036804, 0.0, 0.0), (0.29831933975219727, 0.0, 0.0), (0.30252102017402649, 0.0, 0.0), (0.30672270059585571, 0.0, 0.0), (0.31092438101768494, 0.0, 0.0), (0.31512606143951416, 0.0, 0.0), (0.31932774186134338, 0.0, 0.0), (0.32352942228317261, 0.0, 0.0), (0.32773110270500183, 0.0, 0.0), (0.33193278312683105, 0.0, 0.0), (0.33613446354866028, 0.0, 0.0), (0.3403361439704895, 0.0, 0.0), (0.34453782439231873, 0.0, 0.0), (0.34873950481414795, 0.0, 0.0), (0.35294118523597717, 0.0, 0.0), (0.3571428656578064, 0.0, 0.0), (0.36134454607963562, 0.0, 0.0), (0.36554622650146484, 0.0, 0.0), (0.36974790692329407, 0.0, 0.0), (0.37394958734512329, 0.0, 0.0), (0.37815126776695251, 0.0, 0.0), (0.38235294818878174, 0.0, 0.0), (0.38655462861061096, 0.0, 0.0), (0.39075630903244019, 0.0, 0.0), (0.39495798945426941, 0.0, 0.0), (0.39915966987609863, 0.0, 0.0), (0.40336135029792786, 0.0, 0.0), (0.40756303071975708, 0.0, 0.0), (0.4117647111415863, 0.0, 0.0), (0.41596639156341553, 0.0, 0.0), (0.42016807198524475, 0.0, 0.0), (0.42436975240707397, 0.0, 0.0), (0.4285714328289032, 0.0, 0.0), (0.43277311325073242, 0.0, 0.0), (0.43697479367256165, 0.0, 0.0), (0.44117647409439087, 0.0, 0.0), (0.44537815451622009, 0.0, 0.0), (0.44957983493804932, 0.0, 0.0), (0.45378151535987854, 0.0, 0.0), (0.45798319578170776, 0.0, 0.0), (0.46218487620353699, 0.0, 0.0), (0.46638655662536621, 0.0, 0.0), (0.47058823704719543, 0.0, 0.0), (0.47478991746902466, 0.0, 0.0), (0.47899159789085388, 0.0039215688593685627, 0.0039215688593685627), (0.48319327831268311, 0.011764706112444401, 0.011764706112444401), (0.48739495873451233, 0.019607843831181526, 0.019607843831181526), (0.49159663915634155, 0.027450980618596077, 0.027450980618596077), (0.49579831957817078, 0.035294119268655777, 0.035294119268655777), (0.5, 0.043137256056070328, 0.043137256056070328), (0.50420171022415161, 0.058823529630899429, 0.058823529630899429), (0.50840336084365845, 0.066666670143604279, 0.066666670143604279), (0.51260507106781006, 0.070588238537311554, 0.070588238537311554), (0.51680672168731689, 0.078431375324726105, 0.078431375324726105), (0.52100843191146851, 0.086274512112140656, 0.086274512112140656), (0.52521008253097534, 0.094117648899555206, 0.094117648899555206), (0.52941179275512695, 0.10196078568696976, 0.10196078568696976), (0.53361344337463379, 0.10980392247438431, 0.10980392247438431), (0.5378151535987854, 0.11764705926179886, 0.11764705926179886), (0.54201680421829224, 0.12549020349979401, 0.12549020349979401), (0.54621851444244385, 0.13725490868091583, 0.13725490868091583), (0.55042016506195068, 0.14509804546833038, 0.14509804546833038), (0.55462187528610229, 0.15294118225574493, 0.15294118225574493), (0.55882352590560913, 0.16078431904315948, 0.16078431904315948), (0.56302523612976074, 0.16862745583057404, 0.16862745583057404), (0.56722688674926758, 0.17647059261798859, 0.17647059261798859), (0.57142859697341919, 0.18431372940540314, 0.18431372940540314), (0.57563024759292603, 0.19215686619281769, 0.19215686619281769), (0.57983195781707764, 0.20000000298023224, 0.20000000298023224), (0.58403360843658447, 0.20392157137393951, 0.20392157137393951), (0.58823531866073608, 0.21176470816135406, 0.21176470816135406), (0.59243696928024292, 0.21960784494876862, 0.21960784494876862), (0.59663867950439453, 0.22745098173618317, 0.22745098173618317), (0.60084033012390137, 0.23529411852359772, 0.23529411852359772), (0.60504204034805298, 0.24313725531101227, 0.24313725531101227), (0.60924369096755981, 0.25098040699958801, 0.25098040699958801), (0.61344540119171143, 0.25882354378700256, 0.25882354378700256), (0.61764705181121826, 0.26666668057441711, 0.26666668057441711), (0.62184876203536987, 0.27058824896812439, 0.27058824896812439), (0.62605041265487671, 0.27843138575553894, 0.27843138575553894), (0.63025212287902832, 0.29411765933036804, 0.29411765933036804), (0.63445377349853516, 0.30196079611778259, 0.30196079611778259), (0.63865548372268677, 0.30980393290519714, 0.30980393290519714), (0.6428571343421936, 0.31764706969261169, 0.31764706969261169), (0.64705884456634521, 0.32549020648002625, 0.32549020648002625), (0.65126049518585205, 0.3333333432674408, 0.3333333432674408), (0.65546220541000366, 0.33725491166114807, 0.33725491166114807), (0.6596638560295105, 0.34509804844856262, 0.34509804844856262), (0.66386556625366211, 0.35294118523597717, 0.35294118523597717), (0.66806721687316895, 0.36078432202339172, 0.36078432202339172), (0.67226892709732056, 0.36862745881080627, 0.36862745881080627), (0.67647057771682739, 0.37647059559822083, 0.37647059559822083), (0.680672287940979, 0.38431373238563538, 0.38431373238563538), (0.68487393856048584, 0.39215686917304993, 0.39215686917304993), (0.68907564878463745, 0.40000000596046448, 0.40000000596046448), (0.69327729940414429, 0.40392157435417175, 0.40392157435417175), (0.6974790096282959, 0.4117647111415863, 0.4117647111415863), (0.70168066024780273, 0.41960784792900085, 0.41960784792900085), (0.70588237047195435, 0.42745098471641541, 0.42745098471641541), (0.71008402109146118, 0.43529412150382996, 0.43529412150382996), (0.71428573131561279, 0.45098039507865906, 0.45098039507865906), (0.71848738193511963, 0.45882353186607361, 0.45882353186607361), (0.72268909215927124, 0.46666666865348816, 0.46666666865348816), (0.72689074277877808, 0.47058823704719543, 0.47058823704719543), (0.73109245300292969, 0.47843137383460999, 0.47843137383460999), (0.73529410362243652, 0.48627451062202454, 0.48627451062202454), (0.73949581384658813, 0.49411764740943909, 0.49411764740943909), (0.74369746446609497, 0.50196081399917603, 0.50196081399917603), (0.74789917469024658, 0.50980395078659058, 0.50980395078659058), (0.75210082530975342, 0.51764708757400513, 0.51764708757400513), (0.75630253553390503, 0.53333336114883423, 0.53333336114883423), (0.76050418615341187, 0.5372549295425415, 0.5372549295425415), (0.76470589637756348, 0.54509806632995605, 0.54509806632995605), (0.76890754699707031, 0.55294120311737061, 0.55294120311737061), (0.77310925722122192, 0.56078433990478516, 0.56078433990478516), (0.77731090784072876, 0.56862747669219971, 0.56862747669219971), (0.78151261806488037, 0.57647061347961426, 0.57647061347961426), (0.78571426868438721, 0.58431375026702881, 0.58431375026702881), (0.78991597890853882, 0.59215688705444336, 0.59215688705444336), (0.79411762952804565, 0.60000002384185791, 0.60000002384185791), (0.79831933975219727, 0.61176472902297974, 0.61176472902297974), (0.8025209903717041, 0.61960786581039429, 0.61960786581039429), (0.80672270059585571, 0.62745100259780884, 0.62745100259780884), (0.81092435121536255, 0.63529413938522339, 0.63529413938522339), (0.81512606143951416, 0.64313727617263794, 0.64313727617263794), (0.819327712059021, 0.65098041296005249, 0.65098041296005249), (0.82352942228317261, 0.65882354974746704, 0.65882354974746704), (0.82773107290267944, 0.66666668653488159, 0.66666668653488159), (0.83193278312683105, 0.67058825492858887, 0.67058825492858887), (0.83613443374633789, 0.67843139171600342, 0.67843139171600342), (0.8403361439704895, 0.68627452850341797, 0.68627452850341797), (0.84453779458999634, 0.69411766529083252, 0.69411766529083252), (0.84873950481414795, 0.70196080207824707, 0.70196080207824707), (0.85294115543365479, 0.70980393886566162, 0.70980393886566162), (0.8571428656578064, 0.71764707565307617, 0.71764707565307617), (0.86134451627731323, 0.72549021244049072, 0.72549021244049072), (0.86554622650146484, 0.73333334922790527, 0.73333334922790527), (0.86974787712097168, 0.73725491762161255, 0.73725491762161255), (0.87394958734512329, 0.7450980544090271, 0.7450980544090271), (0.87815123796463013, 0.75294119119644165, 0.75294119119644165), (0.88235294818878174, 0.76862746477127075, 0.76862746477127075), (0.88655459880828857, 0.7764706015586853, 0.7764706015586853), (0.89075630903244019, 0.78431373834609985, 0.78431373834609985), (0.89495795965194702, 0.7921568751335144, 0.7921568751335144), (0.89915966987609863, 0.80000001192092896, 0.80000001192092896), (0.90336132049560547, 0.80392158031463623, 0.80392158031463623), (0.90756303071975708, 0.81176471710205078, 0.81176471710205078), (0.91176468133926392, 0.81960785388946533, 0.81960785388946533), (0.91596639156341553, 0.82745099067687988, 0.82745099067687988), (0.92016804218292236, 0.83529412746429443, 0.83529412746429443), (0.92436975240707397, 0.84313726425170898, 0.84313726425170898), (0.92857140302658081, 0.85098040103912354, 0.85098040103912354), (0.93277311325073242, 0.85882353782653809, 0.85882353782653809), (0.93697476387023926, 0.86666667461395264, 0.86666667461395264), (0.94117647409439087, 0.87058824300765991, 0.87058824300765991), (0.94537812471389771, 0.87843137979507446, 0.87843137979507446), (0.94957983493804932, 0.88627451658248901, 0.88627451658248901), (0.95378148555755615, 0.89411765336990356, 0.89411765336990356), (0.95798319578170776, 0.90196079015731812, 0.90196079015731812), (0.9621848464012146, 0.90980392694473267, 0.90980392694473267), (0.96638655662536621, 0.92549020051956177, 0.92549020051956177), (0.97058820724487305, 0.93333333730697632, 0.93333333730697632), (0.97478991746902466, 0.93725490570068359, 0.93725490570068359), (0.97899156808853149, 0.94509804248809814, 0.94509804248809814), (0.98319327831268311, 0.9529411792755127, 0.9529411792755127), (0.98739492893218994, 0.96078431606292725, 0.96078431606292725), (0.99159663915634155, 0.9686274528503418, 0.9686274528503418), (0.99579828977584839, 0.97647058963775635, 0.97647058963775635), (1.0, 0.9843137264251709, 0.9843137264251709)], 'red': [(0.0, 0.0, 0.0), (0.0042016808874905109, 0.0039215688593685627, 0.0039215688593685627), (0.0084033617749810219, 0.0078431377187371254, 0.0078431377187371254), (0.012605042196810246, 0.015686275437474251, 0.015686275437474251), (0.016806723549962044, 0.019607843831181526, 0.019607843831181526), (0.021008403971791267, 0.027450980618596077, 0.027450980618596077), (0.025210084393620491, 0.031372550874948502, 0.031372550874948502), (0.029411764815449715, 0.039215687662363052, 0.039215687662363052), (0.033613447099924088, 0.043137256056070328, 0.043137256056070328), (0.037815127521753311, 0.050980392843484879, 0.050980392843484879), (0.042016807943582535, 0.058823529630899429, 0.058823529630899429), (0.046218488365411758, 0.066666670143604279, 0.066666670143604279), (0.050420168787240982, 0.070588238537311554, 0.070588238537311554), (0.054621849209070206, 0.078431375324726105, 0.078431375324726105), (0.058823529630899429, 0.08235294371843338, 0.08235294371843338), (0.063025213778018951, 0.090196080505847931, 0.090196080505847931), (0.067226894199848175, 0.094117648899555206, 0.094117648899555206), (0.071428574621677399, 0.10196078568696976, 0.10196078568696976), (0.075630255043506622, 0.10588235408067703, 0.10588235408067703), (0.079831935465335846, 0.10980392247438431, 0.10980392247438431), (0.08403361588716507, 0.11764705926179886, 0.11764705926179886), (0.088235296308994293, 0.12156862765550613, 0.12156862765550613), (0.092436976730823517, 0.12941177189350128, 0.12941177189350128), (0.09663865715265274, 0.13333334028720856, 0.13333334028720856), (0.10084033757448196, 0.14117647707462311, 0.14117647707462311), (0.10504201799631119, 0.14509804546833038, 0.14509804546833038), (0.10924369841814041, 0.15294118225574493, 0.15294118225574493), (0.11344537883996964, 0.15686275064945221, 0.15686275064945221), (0.11764705926179886, 0.16470588743686676, 0.16470588743686676), (0.12184873968362808, 0.16862745583057404, 0.16862745583057404), (0.1260504275560379, 0.18039216101169586, 0.18039216101169586), (0.13025210797786713, 0.18431372940540314, 0.18431372940540314), (0.13445378839969635, 0.19215686619281769, 0.19215686619281769), (0.13865546882152557, 0.19607843458652496, 0.19607843458652496), (0.1428571492433548, 0.20392157137393951, 0.20392157137393951), (0.14705882966518402, 0.20784313976764679, 0.20784313976764679), (0.15126051008701324, 0.21568627655506134, 0.21568627655506134), (0.15546219050884247, 0.21960784494876862, 0.21960784494876862), (0.15966387093067169, 0.22352941334247589, 0.22352941334247589), (0.16386555135250092, 0.23137255012989044, 0.23137255012989044), (0.16806723177433014, 0.23529411852359772, 0.23529411852359772), (0.17226891219615936, 0.24313725531101227, 0.24313725531101227), (0.17647059261798859, 0.24705882370471954, 0.24705882370471954), (0.18067227303981781, 0.25490197539329529, 0.25490197539329529), (0.18487395346164703, 0.25882354378700256, 0.25882354378700256), (0.18907563388347626, 0.26666668057441711, 0.26666668057441711), (0.19327731430530548, 0.27058824896812439, 0.27058824896812439), (0.1974789947271347, 0.27450981736183167, 0.27450981736183167), (0.20168067514896393, 0.28235295414924622, 0.28235295414924622), (0.20588235557079315, 0.28627452254295349, 0.28627452254295349), (0.21008403599262238, 0.29803922772407532, 0.29803922772407532), (0.2142857164144516, 0.30588236451148987, 0.30588236451148987), (0.21848739683628082, 0.30980393290519714, 0.30980393290519714), (0.22268907725811005, 0.31764706969261169, 0.31764706969261169), (0.22689075767993927, 0.32156863808631897, 0.32156863808631897), (0.23109243810176849, 0.32941177487373352, 0.32941177487373352), (0.23529411852359772, 0.3333333432674408, 0.3333333432674408), (0.23949579894542694, 0.33725491166114807, 0.33725491166114807), (0.24369747936725616, 0.34509804844856262, 0.34509804844856262), (0.24789915978908539, 0.3490196168422699, 0.3490196168422699), (0.25210085511207581, 0.36078432202339172, 0.36078432202339172), (0.25630253553390503, 0.36862745881080627, 0.36862745881080627), (0.26050421595573425, 0.37254902720451355, 0.37254902720451355), (0.26470589637756348, 0.3803921639919281, 0.3803921639919281), (0.2689075767993927, 0.38431373238563538, 0.38431373238563538), (0.27310925722122192, 0.38823530077934265, 0.38823530077934265), (0.27731093764305115, 0.3960784375667572, 0.3960784375667572), (0.28151261806488037, 0.40000000596046448, 0.40000000596046448), (0.28571429848670959, 0.40784314274787903, 0.40784314274787903), (0.28991597890853882, 0.4117647111415863, 0.4117647111415863), (0.29411765933036804, 0.42352941632270813, 0.42352941632270813), (0.29831933975219727, 0.43137255311012268, 0.43137255311012268), (0.30252102017402649, 0.43529412150382996, 0.43529412150382996), (0.30672270059585571, 0.44313725829124451, 0.44313725829124451), (0.31092438101768494, 0.44705882668495178, 0.44705882668495178), (0.31512606143951416, 0.45098039507865906, 0.45098039507865906), (0.31932774186134338, 0.45882353186607361, 0.45882353186607361), (0.32352942228317261, 0.46274510025978088, 0.46274510025978088), (0.32773110270500183, 0.47058823704719543, 0.47058823704719543), (0.33193278312683105, 0.47450980544090271, 0.47450980544090271), (0.33613446354866028, 0.48235294222831726, 0.48235294222831726), (0.3403361439704895, 0.48627451062202454, 0.48627451062202454), (0.34453782439231873, 0.49411764740943909, 0.49411764740943909), (0.34873950481414795, 0.49803921580314636, 0.49803921580314636), (0.35294118523597717, 0.50196081399917603, 0.50196081399917603), (0.3571428656578064, 0.50980395078659058, 0.50980395078659058), (0.36134454607963562, 0.51372551918029785, 0.51372551918029785), (0.36554622650146484, 0.5215686559677124, 0.5215686559677124), (0.36974790692329407, 0.52549022436141968, 0.52549022436141968), (0.37394958734512329, 0.53333336114883423, 0.53333336114883423), (0.37815126776695251, 0.54509806632995605, 0.54509806632995605), (0.38235294818878174, 0.54901963472366333, 0.54901963472366333), (0.38655462861061096, 0.55294120311737061, 0.55294120311737061), (0.39075630903244019, 0.56078433990478516, 0.56078433990478516), (0.39495798945426941, 0.56470590829849243, 0.56470590829849243), (0.39915966987609863, 0.57254904508590698, 0.57254904508590698), (0.40336135029792786, 0.57647061347961426, 0.57647061347961426), (0.40756303071975708, 0.58431375026702881, 0.58431375026702881), (0.4117647111415863, 0.58823531866073608, 0.58823531866073608), (0.41596639156341553, 0.59607845544815063, 0.59607845544815063), (0.42016807198524475, 0.60000002384185791, 0.60000002384185791), (0.42436975240707397, 0.60784316062927246, 0.60784316062927246), (0.4285714328289032, 0.61176472902297974, 0.61176472902297974), (0.43277311325073242, 0.61568629741668701, 0.61568629741668701), (0.43697479367256165, 0.62352943420410156, 0.62352943420410156), (0.44117647409439087, 0.62745100259780884, 0.62745100259780884), (0.44537815451622009, 0.63529413938522339, 0.63529413938522339), (0.44957983493804932, 0.63921570777893066, 0.63921570777893066), (0.45378151535987854, 0.64705884456634521, 0.64705884456634521), (0.45798319578170776, 0.65098041296005249, 0.65098041296005249), (0.46218487620353699, 0.66274511814117432, 0.66274511814117432), (0.46638655662536621, 0.66666668653488159, 0.66666668653488159), (0.47058823704719543, 0.67450982332229614, 0.67450982332229614), (0.47478991746902466, 0.67843139171600342, 0.67843139171600342), (0.47899159789085388, 0.68627452850341797, 0.68627452850341797), (0.48319327831268311, 0.69019609689712524, 0.69019609689712524), (0.48739495873451233, 0.69803923368453979, 0.69803923368453979), (0.49159663915634155, 0.70196080207824707, 0.70196080207824707), (0.49579831957817078, 0.70980393886566162, 0.70980393886566162), (0.5, 0.7137255072593689, 0.7137255072593689), (0.50420171022415161, 0.72549021244049072, 0.72549021244049072), (0.50840336084365845, 0.729411780834198, 0.729411780834198), (0.51260507106781006, 0.73725491762161255, 0.73725491762161255), (0.51680672168731689, 0.74117648601531982, 0.74117648601531982), (0.52100843191146851, 0.74901962280273438, 0.74901962280273438), (0.52521008253097534, 0.75294119119644165, 0.75294119119644165), (0.52941179275512695, 0.7607843279838562, 0.7607843279838562), (0.53361344337463379, 0.76470589637756348, 0.76470589637756348), (0.5378151535987854, 0.77254903316497803, 0.77254903316497803), (0.54201680421829224, 0.7764706015586853, 0.7764706015586853), (0.54621851444244385, 0.78823530673980713, 0.78823530673980713), (0.55042016506195068, 0.7921568751335144, 0.7921568751335144), (0.55462187528610229, 0.80000001192092896, 0.80000001192092896), (0.55882352590560913, 0.80392158031463623, 0.80392158031463623), (0.56302523612976074, 0.81176471710205078, 0.81176471710205078), (0.56722688674926758, 0.81568628549575806, 0.81568628549575806), (0.57142859697341919, 0.82352942228317261, 0.82352942228317261), (0.57563024759292603, 0.82745099067687988, 0.82745099067687988), (0.57983195781707764, 0.83137255907058716, 0.83137255907058716), (0.58403360843658447, 0.83921569585800171, 0.83921569585800171), (0.58823531866073608, 0.84313726425170898, 0.84313726425170898), (0.59243696928024292, 0.85098040103912354, 0.85098040103912354), (0.59663867950439453, 0.85490196943283081, 0.85490196943283081), (0.60084033012390137, 0.86274510622024536, 0.86274510622024536), (0.60504204034805298, 0.86666667461395264, 0.86666667461395264), (0.60924369096755981, 0.87450981140136719, 0.87450981140136719), (0.61344540119171143, 0.87843137979507446, 0.87843137979507446), (0.61764705181121826, 0.88627451658248901, 0.88627451658248901), (0.62184876203536987, 0.89019608497619629, 0.89019608497619629), (0.62605041265487671, 0.89411765336990356, 0.89411765336990356), (0.63025212287902832, 0.90588235855102539, 0.90588235855102539), (0.63445377349853516, 0.91372549533843994, 0.91372549533843994), (0.63865548372268677, 0.91764706373214722, 0.91764706373214722), (0.6428571343421936, 0.92549020051956177, 0.92549020051956177), (0.64705884456634521, 0.92941176891326904, 0.92941176891326904), (0.65126049518585205, 0.93725490570068359, 0.93725490570068359), (0.65546220541000366, 0.94117647409439087, 0.94117647409439087), (0.6596638560295105, 0.94509804248809814, 0.94509804248809814), (0.66386556625366211, 0.9529411792755127, 0.9529411792755127), (0.66806721687316895, 0.95686274766921997, 0.95686274766921997), (0.67226892709732056, 0.96470588445663452, 0.96470588445663452), (0.67647057771682739, 0.9686274528503418, 0.9686274528503418), (0.680672287940979, 0.97647058963775635, 0.97647058963775635), (0.68487393856048584, 0.98039215803146362, 0.98039215803146362), (0.68907564878463745, 0.98823529481887817, 0.98823529481887817), (0.69327729940414429, 0.99215686321258545, 0.99215686321258545), (0.6974790096282959, 1.0, 1.0), (0.70168066024780273, 1.0, 1.0), (0.70588237047195435, 1.0, 1.0), (0.71008402109146118, 1.0, 1.0), (0.71428573131561279, 1.0, 1.0), (0.71848738193511963, 1.0, 1.0), (0.72268909215927124, 1.0, 1.0), (0.72689074277877808, 1.0, 1.0), (0.73109245300292969, 1.0, 1.0), (0.73529410362243652, 1.0, 1.0), (0.73949581384658813, 1.0, 1.0), (0.74369746446609497, 1.0, 1.0), (0.74789917469024658, 1.0, 1.0), (0.75210082530975342, 1.0, 1.0), (0.75630253553390503, 1.0, 1.0), (0.76050418615341187, 1.0, 1.0), (0.76470589637756348, 1.0, 1.0), (0.76890754699707031, 1.0, 1.0), (0.77310925722122192, 1.0, 1.0), (0.77731090784072876, 1.0, 1.0), (0.78151261806488037, 1.0, 1.0), (0.78571426868438721, 1.0, 1.0), (0.78991597890853882, 1.0, 1.0), (0.79411762952804565, 1.0, 1.0), (0.79831933975219727, 1.0, 1.0), (0.8025209903717041, 1.0, 1.0), (0.80672270059585571, 1.0, 1.0), (0.81092435121536255, 1.0, 1.0), (0.81512606143951416, 1.0, 1.0), (0.819327712059021, 1.0, 1.0), (0.82352942228317261, 1.0, 1.0), (0.82773107290267944, 1.0, 1.0), (0.83193278312683105, 1.0, 1.0), (0.83613443374633789, 1.0, 1.0), (0.8403361439704895, 1.0, 1.0), (0.84453779458999634, 1.0, 1.0), (0.84873950481414795, 1.0, 1.0), (0.85294115543365479, 1.0, 1.0), (0.8571428656578064, 1.0, 1.0), (0.86134451627731323, 1.0, 1.0), (0.86554622650146484, 1.0, 1.0), (0.86974787712097168, 1.0, 1.0), (0.87394958734512329, 1.0, 1.0), (0.87815123796463013, 1.0, 1.0), (0.88235294818878174, 1.0, 1.0), (0.88655459880828857, 1.0, 1.0), (0.89075630903244019, 1.0, 1.0), (0.89495795965194702, 1.0, 1.0), (0.89915966987609863, 1.0, 1.0), (0.90336132049560547, 1.0, 1.0), (0.90756303071975708, 1.0, 1.0), (0.91176468133926392, 1.0, 1.0), (0.91596639156341553, 1.0, 1.0), (0.92016804218292236, 1.0, 1.0), (0.92436975240707397, 1.0, 1.0), (0.92857140302658081, 1.0, 1.0), (0.93277311325073242, 1.0, 1.0), (0.93697476387023926, 1.0, 1.0), (0.94117647409439087, 1.0, 1.0), (0.94537812471389771, 1.0, 1.0), (0.94957983493804932, 1.0, 1.0), (0.95378148555755615, 1.0, 1.0), (0.95798319578170776, 1.0, 1.0), (0.9621848464012146, 1.0, 1.0), (0.96638655662536621, 1.0, 1.0), (0.97058820724487305, 1.0, 1.0), (0.97478991746902466, 1.0, 1.0), (0.97899156808853149, 1.0, 1.0), (0.98319327831268311, 1.0, 1.0), (0.98739492893218994, 1.0, 1.0), (0.99159663915634155, 1.0, 1.0), (0.99579828977584839, 1.0, 1.0), (1.0, 1.0, 1.0)]} _gist_ncar_data = {'blue': [(0.0, 0.50196081399917603, 0.50196081399917603), (0.0050505050458014011, 0.45098039507865906, 0.45098039507865906), (0.010101010091602802, 0.40392157435417175, 0.40392157435417175), (0.015151515603065491, 0.35686275362968445, 0.35686275362968445), (0.020202020183205605, 0.30980393290519714, 0.30980393290519714), (0.025252524763345718, 0.25882354378700256, 0.25882354378700256), (0.030303031206130981, 0.21176470816135406, 0.21176470816135406), (0.035353533923625946, 0.16470588743686676, 0.16470588743686676), (0.040404040366411209, 0.11764705926179886, 0.11764705926179886), (0.045454546809196472, 0.070588238537311554, 0.070588238537311554), (0.050505049526691437, 0.019607843831181526, 0.019607843831181526), (0.0555555559694767, 0.047058824449777603, 0.047058824449777603), (0.060606062412261963, 0.14509804546833038, 0.14509804546833038), (0.065656565129756927, 0.23921568691730499, 0.23921568691730499), (0.070707067847251892, 0.3333333432674408, 0.3333333432674408), (0.075757578015327454, 0.43137255311012268, 0.43137255311012268), (0.080808080732822418, 0.52549022436141968, 0.52549022436141968), (0.085858583450317383, 0.61960786581039429, 0.61960786581039429), (0.090909093618392944, 0.71764707565307617, 0.71764707565307617), (0.095959596335887909, 0.81176471710205078, 0.81176471710205078), (0.10101009905338287, 0.90588235855102539, 0.90588235855102539), (0.10606060922145844, 1.0, 1.0), (0.1111111119389534, 1.0, 1.0), (0.11616161465644836, 1.0, 1.0), (0.12121212482452393, 1.0, 1.0), (0.12626262009143829, 1.0, 1.0), (0.13131313025951385, 1.0, 1.0), (0.13636364042758942, 1.0, 1.0), (0.14141413569450378, 1.0, 1.0), (0.14646464586257935, 1.0, 1.0), (0.15151515603065491, 1.0, 1.0), (0.15656565129756927, 1.0, 1.0), (0.16161616146564484, 1.0, 1.0), (0.1666666716337204, 1.0, 1.0), (0.17171716690063477, 1.0, 1.0), (0.17676767706871033, 1.0, 1.0), (0.18181818723678589, 1.0, 1.0), (0.18686868250370026, 1.0, 1.0), (0.19191919267177582, 1.0, 1.0), (0.19696970283985138, 1.0, 1.0), (0.20202019810676575, 1.0, 1.0), (0.20707070827484131, 1.0, 1.0), (0.21212121844291687, 0.99215686321258545, 0.99215686321258545), (0.21717171370983124, 0.95686274766921997, 0.95686274766921997), (0.2222222238779068, 0.91764706373214722, 0.91764706373214722), (0.22727273404598236, 0.88235294818878174, 0.88235294818878174), (0.23232322931289673, 0.84313726425170898, 0.84313726425170898), (0.23737373948097229, 0.80392158031463623, 0.80392158031463623), (0.24242424964904785, 0.76862746477127075, 0.76862746477127075), (0.24747474491596222, 0.729411780834198, 0.729411780834198), (0.25252524018287659, 0.69019609689712524, 0.69019609689712524), (0.25757575035095215, 0.65490198135375977, 0.65490198135375977), (0.26262626051902771, 0.61568629741668701, 0.61568629741668701), (0.26767677068710327, 0.56470590829849243, 0.56470590829849243), (0.27272728085517883, 0.50980395078659058, 0.50980395078659058), (0.27777779102325439, 0.45098039507865906, 0.45098039507865906), (0.28282827138900757, 0.39215686917304993, 0.39215686917304993), (0.28787878155708313, 0.3333333432674408, 0.3333333432674408), (0.29292929172515869, 0.27843138575553894, 0.27843138575553894), (0.29797980189323425, 0.21960784494876862, 0.21960784494876862), (0.30303031206130981, 0.16078431904315948, 0.16078431904315948), (0.30808082222938538, 0.10588235408067703, 0.10588235408067703), (0.31313130259513855, 0.047058824449777603, 0.047058824449777603), (0.31818181276321411, 0.0, 0.0), (0.32323232293128967, 0.0, 0.0), (0.32828283309936523, 0.0, 0.0), (0.3333333432674408, 0.0, 0.0), (0.33838382363319397, 0.0, 0.0), (0.34343433380126953, 0.0, 0.0), (0.34848484396934509, 0.0, 0.0), (0.35353535413742065, 0.0, 0.0), (0.35858586430549622, 0.0, 0.0), (0.36363637447357178, 0.0, 0.0), (0.36868685483932495, 0.0, 0.0), (0.37373736500740051, 0.0, 0.0), (0.37878787517547607, 0.0, 0.0), (0.38383838534355164, 0.0, 0.0), (0.3888888955116272, 0.0, 0.0), (0.39393940567970276, 0.0, 0.0), (0.39898988604545593, 0.0, 0.0), (0.40404039621353149, 0.0, 0.0), (0.40909090638160706, 0.0, 0.0), (0.41414141654968262, 0.0, 0.0), (0.41919192671775818, 0.0, 0.0), (0.42424243688583374, 0.0039215688593685627, 0.0039215688593685627), (0.42929291725158691, 0.027450980618596077, 0.027450980618596077), (0.43434342741966248, 0.050980392843484879, 0.050980392843484879), (0.43939393758773804, 0.074509806931018829, 0.074509806931018829), (0.4444444477558136, 0.094117648899555206, 0.094117648899555206), (0.44949495792388916, 0.11764705926179886, 0.11764705926179886), (0.45454546809196472, 0.14117647707462311, 0.14117647707462311), (0.4595959484577179, 0.16470588743686676, 0.16470588743686676), (0.46464645862579346, 0.18823529779911041, 0.18823529779911041), (0.46969696879386902, 0.21176470816135406, 0.21176470816135406), (0.47474747896194458, 0.23529411852359772, 0.23529411852359772), (0.47979798913002014, 0.22352941334247589, 0.22352941334247589), (0.4848484992980957, 0.20000000298023224, 0.20000000298023224), (0.48989897966384888, 0.17647059261798859, 0.17647059261798859), (0.49494948983192444, 0.15294118225574493, 0.15294118225574493), (0.5, 0.12941177189350128, 0.12941177189350128), (0.50505048036575317, 0.10980392247438431, 0.10980392247438431), (0.51010102033615112, 0.086274512112140656, 0.086274512112140656), (0.5151515007019043, 0.062745101749897003, 0.062745101749897003), (0.52020204067230225, 0.039215687662363052, 0.039215687662363052), (0.52525252103805542, 0.015686275437474251, 0.015686275437474251), (0.53030300140380859, 0.0, 0.0), (0.53535354137420654, 0.0, 0.0), (0.54040402173995972, 0.0, 0.0), (0.54545456171035767, 0.0, 0.0), (0.55050504207611084, 0.0, 0.0), (0.55555558204650879, 0.0, 0.0), (0.56060606241226196, 0.0, 0.0), (0.56565654277801514, 0.0, 0.0), (0.57070708274841309, 0.0, 0.0), (0.57575756311416626, 0.0, 0.0), (0.58080810308456421, 0.0, 0.0), (0.58585858345031738, 0.0039215688593685627, 0.0039215688593685627), (0.59090906381607056, 0.0078431377187371254, 0.0078431377187371254), (0.59595960378646851, 0.011764706112444401, 0.011764706112444401), (0.60101008415222168, 0.019607843831181526, 0.019607843831181526), (0.60606062412261963, 0.023529412224888802, 0.023529412224888802), (0.6111111044883728, 0.031372550874948502, 0.031372550874948502), (0.61616164445877075, 0.035294119268655777, 0.035294119268655777), (0.62121212482452393, 0.043137256056070328, 0.043137256056070328), (0.6262626051902771, 0.047058824449777603, 0.047058824449777603), (0.63131314516067505, 0.054901961237192154, 0.054901961237192154), (0.63636362552642822, 0.054901961237192154, 0.054901961237192154), (0.64141416549682617, 0.050980392843484879, 0.050980392843484879), (0.64646464586257935, 0.043137256056070328, 0.043137256056070328), (0.65151512622833252, 0.039215687662363052, 0.039215687662363052), (0.65656566619873047, 0.031372550874948502, 0.031372550874948502), (0.66161614656448364, 0.027450980618596077, 0.027450980618596077), (0.66666668653488159, 0.019607843831181526, 0.019607843831181526), (0.67171716690063477, 0.015686275437474251, 0.015686275437474251), (0.67676764726638794, 0.011764706112444401, 0.011764706112444401), (0.68181818723678589, 0.0039215688593685627, 0.0039215688593685627), (0.68686866760253906, 0.0, 0.0), (0.69191920757293701, 0.0, 0.0), (0.69696968793869019, 0.0, 0.0), (0.70202022790908813, 0.0, 0.0), (0.70707070827484131, 0.0, 0.0), (0.71212118864059448, 0.0, 0.0), (0.71717172861099243, 0.0, 0.0), (0.72222220897674561, 0.0, 0.0), (0.72727274894714355, 0.0, 0.0), (0.73232322931289673, 0.0, 0.0), (0.7373737096786499, 0.0, 0.0), (0.74242424964904785, 0.031372550874948502, 0.031372550874948502), (0.74747473001480103, 0.12941177189350128, 0.12941177189350128), (0.75252526998519897, 0.22352941334247589, 0.22352941334247589), (0.75757575035095215, 0.32156863808631897, 0.32156863808631897), (0.7626262903213501, 0.41568627953529358, 0.41568627953529358), (0.76767677068710327, 0.50980395078659058, 0.50980395078659058), (0.77272725105285645, 0.60784316062927246, 0.60784316062927246), (0.77777779102325439, 0.70196080207824707, 0.70196080207824707), (0.78282827138900757, 0.79607844352722168, 0.79607844352722168), (0.78787881135940552, 0.89411765336990356, 0.89411765336990356), (0.79292929172515869, 0.98823529481887817, 0.98823529481887817), (0.79797977209091187, 1.0, 1.0), (0.80303031206130981, 1.0, 1.0), (0.80808079242706299, 1.0, 1.0), (0.81313133239746094, 1.0, 1.0), (0.81818181276321411, 1.0, 1.0), (0.82323235273361206, 1.0, 1.0), (0.82828283309936523, 1.0, 1.0), (0.83333331346511841, 1.0, 1.0), (0.83838385343551636, 1.0, 1.0), (0.84343433380126953, 1.0, 1.0), (0.84848487377166748, 0.99607843160629272, 0.99607843160629272), (0.85353535413742065, 0.98823529481887817, 0.98823529481887817), (0.85858583450317383, 0.9843137264251709, 0.9843137264251709), (0.86363637447357178, 0.97647058963775635, 0.97647058963775635), (0.86868685483932495, 0.9686274528503418, 0.9686274528503418), (0.8737373948097229, 0.96470588445663452, 0.96470588445663452), (0.87878787517547607, 0.95686274766921997, 0.95686274766921997), (0.88383835554122925, 0.94901961088180542, 0.94901961088180542), (0.8888888955116272, 0.94509804248809814, 0.94509804248809814), (0.89393937587738037, 0.93725490570068359, 0.93725490570068359), (0.89898991584777832, 0.93333333730697632, 0.93333333730697632), (0.90404039621353149, 0.93333333730697632, 0.93333333730697632), (0.90909093618392944, 0.93725490570068359, 0.93725490570068359), (0.91414141654968262, 0.93725490570068359, 0.93725490570068359), (0.91919189691543579, 0.94117647409439087, 0.94117647409439087), (0.92424243688583374, 0.94509804248809814, 0.94509804248809814), (0.92929291725158691, 0.94509804248809814, 0.94509804248809814), (0.93434345722198486, 0.94901961088180542, 0.94901961088180542), (0.93939393758773804, 0.9529411792755127, 0.9529411792755127), (0.94444441795349121, 0.9529411792755127, 0.9529411792755127), (0.94949495792388916, 0.95686274766921997, 0.95686274766921997), (0.95454543828964233, 0.96078431606292725, 0.96078431606292725), (0.95959597826004028, 0.96470588445663452, 0.96470588445663452), (0.96464645862579346, 0.9686274528503418, 0.9686274528503418), (0.96969699859619141, 0.97254902124404907, 0.97254902124404907), (0.97474747896194458, 0.97647058963775635, 0.97647058963775635), (0.97979795932769775, 0.98039215803146362, 0.98039215803146362), (0.9848484992980957, 0.9843137264251709, 0.9843137264251709), (0.98989897966384888, 0.98823529481887817, 0.98823529481887817), (0.99494951963424683, 0.99215686321258545, 0.99215686321258545), (1.0, 0.99607843160629272, 0.99607843160629272)], 'green': [(0.0, 0.0, 0.0), (0.0050505050458014011, 0.035294119268655777, 0.035294119268655777), (0.010101010091602802, 0.074509806931018829, 0.074509806931018829), (0.015151515603065491, 0.10980392247438431, 0.10980392247438431), (0.020202020183205605, 0.14901961386203766, 0.14901961386203766), (0.025252524763345718, 0.18431372940540314, 0.18431372940540314), (0.030303031206130981, 0.22352941334247589, 0.22352941334247589), (0.035353533923625946, 0.25882354378700256, 0.25882354378700256), (0.040404040366411209, 0.29803922772407532, 0.29803922772407532), (0.045454546809196472, 0.3333333432674408, 0.3333333432674408), (0.050505049526691437, 0.37254902720451355, 0.37254902720451355), (0.0555555559694767, 0.36862745881080627, 0.36862745881080627), (0.060606062412261963, 0.3333333432674408, 0.3333333432674408), (0.065656565129756927, 0.29411765933036804, 0.29411765933036804), (0.070707067847251892, 0.25882354378700256, 0.25882354378700256), (0.075757578015327454, 0.21960784494876862, 0.21960784494876862), (0.080808080732822418, 0.18431372940540314, 0.18431372940540314), (0.085858583450317383, 0.14509804546833038, 0.14509804546833038), (0.090909093618392944, 0.10980392247438431, 0.10980392247438431), (0.095959596335887909, 0.070588238537311554, 0.070588238537311554), (0.10101009905338287, 0.035294119268655777, 0.035294119268655777), (0.10606060922145844, 0.0, 0.0), (0.1111111119389534, 0.074509806931018829, 0.074509806931018829), (0.11616161465644836, 0.14509804546833038, 0.14509804546833038), (0.12121212482452393, 0.21568627655506134, 0.21568627655506134), (0.12626262009143829, 0.28627452254295349, 0.28627452254295349), (0.13131313025951385, 0.36078432202339172, 0.36078432202339172), (0.13636364042758942, 0.43137255311012268, 0.43137255311012268), (0.14141413569450378, 0.50196081399917603, 0.50196081399917603), (0.14646464586257935, 0.57254904508590698, 0.57254904508590698), (0.15151515603065491, 0.64705884456634521, 0.64705884456634521), (0.15656565129756927, 0.71764707565307617, 0.71764707565307617), (0.16161616146564484, 0.7607843279838562, 0.7607843279838562), (0.1666666716337204, 0.78431373834609985, 0.78431373834609985), (0.17171716690063477, 0.80784314870834351, 0.80784314870834351), (0.17676767706871033, 0.83137255907058716, 0.83137255907058716), (0.18181818723678589, 0.85490196943283081, 0.85490196943283081), (0.18686868250370026, 0.88235294818878174, 0.88235294818878174), (0.19191919267177582, 0.90588235855102539, 0.90588235855102539), (0.19696970283985138, 0.92941176891326904, 0.92941176891326904), (0.20202019810676575, 0.9529411792755127, 0.9529411792755127), (0.20707070827484131, 0.97647058963775635, 0.97647058963775635), (0.21212121844291687, 0.99607843160629272, 0.99607843160629272), (0.21717171370983124, 0.99607843160629272, 0.99607843160629272), (0.2222222238779068, 0.99215686321258545, 0.99215686321258545), (0.22727273404598236, 0.99215686321258545, 0.99215686321258545), (0.23232322931289673, 0.99215686321258545, 0.99215686321258545), (0.23737373948097229, 0.98823529481887817, 0.98823529481887817), (0.24242424964904785, 0.98823529481887817, 0.98823529481887817), (0.24747474491596222, 0.9843137264251709, 0.9843137264251709), (0.25252524018287659, 0.9843137264251709, 0.9843137264251709), (0.25757575035095215, 0.98039215803146362, 0.98039215803146362), (0.26262626051902771, 0.98039215803146362, 0.98039215803146362), (0.26767677068710327, 0.98039215803146362, 0.98039215803146362), (0.27272728085517883, 0.98039215803146362, 0.98039215803146362), (0.27777779102325439, 0.9843137264251709, 0.9843137264251709), (0.28282827138900757, 0.9843137264251709, 0.9843137264251709), (0.28787878155708313, 0.98823529481887817, 0.98823529481887817), (0.29292929172515869, 0.98823529481887817, 0.98823529481887817), (0.29797980189323425, 0.99215686321258545, 0.99215686321258545), (0.30303031206130981, 0.99215686321258545, 0.99215686321258545), (0.30808082222938538, 0.99607843160629272, 0.99607843160629272), (0.31313130259513855, 0.99607843160629272, 0.99607843160629272), (0.31818181276321411, 0.99607843160629272, 0.99607843160629272), (0.32323232293128967, 0.97647058963775635, 0.97647058963775635), (0.32828283309936523, 0.95686274766921997, 0.95686274766921997), (0.3333333432674408, 0.93725490570068359, 0.93725490570068359), (0.33838382363319397, 0.92156863212585449, 0.92156863212585449), (0.34343433380126953, 0.90196079015731812, 0.90196079015731812), (0.34848484396934509, 0.88235294818878174, 0.88235294818878174), (0.35353535413742065, 0.86274510622024536, 0.86274510622024536), (0.35858586430549622, 0.84705883264541626, 0.84705883264541626), (0.36363637447357178, 0.82745099067687988, 0.82745099067687988), (0.36868685483932495, 0.80784314870834351, 0.80784314870834351), (0.37373736500740051, 0.81568628549575806, 0.81568628549575806), (0.37878787517547607, 0.83529412746429443, 0.83529412746429443), (0.38383838534355164, 0.85098040103912354, 0.85098040103912354), (0.3888888955116272, 0.87058824300765991, 0.87058824300765991), (0.39393940567970276, 0.89019608497619629, 0.89019608497619629), (0.39898988604545593, 0.90980392694473267, 0.90980392694473267), (0.40404039621353149, 0.92549020051956177, 0.92549020051956177), (0.40909090638160706, 0.94509804248809814, 0.94509804248809814), (0.41414141654968262, 0.96470588445663452, 0.96470588445663452), (0.41919192671775818, 0.9843137264251709, 0.9843137264251709), (0.42424243688583374, 1.0, 1.0), (0.42929291725158691, 1.0, 1.0), (0.43434342741966248, 1.0, 1.0), (0.43939393758773804, 1.0, 1.0), (0.4444444477558136, 1.0, 1.0), (0.44949495792388916, 1.0, 1.0), (0.45454546809196472, 1.0, 1.0), (0.4595959484577179, 1.0, 1.0), (0.46464645862579346, 1.0, 1.0), (0.46969696879386902, 1.0, 1.0), (0.47474747896194458, 1.0, 1.0), (0.47979798913002014, 1.0, 1.0), (0.4848484992980957, 1.0, 1.0), (0.48989897966384888, 1.0, 1.0), (0.49494948983192444, 1.0, 1.0), (0.5, 1.0, 1.0), (0.50505048036575317, 1.0, 1.0), (0.51010102033615112, 1.0, 1.0), (0.5151515007019043, 1.0, 1.0), (0.52020204067230225, 1.0, 1.0), (0.52525252103805542, 1.0, 1.0), (0.53030300140380859, 0.99215686321258545, 0.99215686321258545), (0.53535354137420654, 0.98039215803146362, 0.98039215803146362), (0.54040402173995972, 0.96470588445663452, 0.96470588445663452), (0.54545456171035767, 0.94901961088180542, 0.94901961088180542), (0.55050504207611084, 0.93333333730697632, 0.93333333730697632), (0.55555558204650879, 0.91764706373214722, 0.91764706373214722), (0.56060606241226196, 0.90588235855102539, 0.90588235855102539), (0.56565654277801514, 0.89019608497619629, 0.89019608497619629), (0.57070708274841309, 0.87450981140136719, 0.87450981140136719), (0.57575756311416626, 0.85882353782653809, 0.85882353782653809), (0.58080810308456421, 0.84313726425170898, 0.84313726425170898), (0.58585858345031738, 0.83137255907058716, 0.83137255907058716), (0.59090906381607056, 0.81960785388946533, 0.81960785388946533), (0.59595960378646851, 0.81176471710205078, 0.81176471710205078), (0.60101008415222168, 0.80000001192092896, 0.80000001192092896), (0.60606062412261963, 0.78823530673980713, 0.78823530673980713), (0.6111111044883728, 0.7764706015586853, 0.7764706015586853), (0.61616164445877075, 0.76470589637756348, 0.76470589637756348), (0.62121212482452393, 0.75294119119644165, 0.75294119119644165), (0.6262626051902771, 0.74117648601531982, 0.74117648601531982), (0.63131314516067505, 0.729411780834198, 0.729411780834198), (0.63636362552642822, 0.70980393886566162, 0.70980393886566162), (0.64141416549682617, 0.66666668653488159, 0.66666668653488159), (0.64646464586257935, 0.62352943420410156, 0.62352943420410156), (0.65151512622833252, 0.58039218187332153, 0.58039218187332153), (0.65656566619873047, 0.5372549295425415, 0.5372549295425415), (0.66161614656448364, 0.49411764740943909, 0.49411764740943909), (0.66666668653488159, 0.45098039507865906, 0.45098039507865906), (0.67171716690063477, 0.40392157435417175, 0.40392157435417175), (0.67676764726638794, 0.36078432202339172, 0.36078432202339172), (0.68181818723678589, 0.31764706969261169, 0.31764706969261169), (0.68686866760253906, 0.27450981736183167, 0.27450981736183167), (0.69191920757293701, 0.24705882370471954, 0.24705882370471954), (0.69696968793869019, 0.21960784494876862, 0.21960784494876862), (0.70202022790908813, 0.19607843458652496, 0.19607843458652496), (0.70707070827484131, 0.16862745583057404, 0.16862745583057404), (0.71212118864059448, 0.14509804546833038, 0.14509804546833038), (0.71717172861099243, 0.11764705926179886, 0.11764705926179886), (0.72222220897674561, 0.090196080505847931, 0.090196080505847931), (0.72727274894714355, 0.066666670143604279, 0.066666670143604279), (0.73232322931289673, 0.039215687662363052, 0.039215687662363052), (0.7373737096786499, 0.015686275437474251, 0.015686275437474251), (0.74242424964904785, 0.0, 0.0), (0.74747473001480103, 0.0, 0.0), (0.75252526998519897, 0.0, 0.0), (0.75757575035095215, 0.0, 0.0), (0.7626262903213501, 0.0, 0.0), (0.76767677068710327, 0.0, 0.0), (0.77272725105285645, 0.0, 0.0), (0.77777779102325439, 0.0, 0.0), (0.78282827138900757, 0.0, 0.0), (0.78787881135940552, 0.0, 0.0), (0.79292929172515869, 0.0, 0.0), (0.79797977209091187, 0.015686275437474251, 0.015686275437474251), (0.80303031206130981, 0.031372550874948502, 0.031372550874948502), (0.80808079242706299, 0.050980392843484879, 0.050980392843484879), (0.81313133239746094, 0.066666670143604279, 0.066666670143604279), (0.81818181276321411, 0.086274512112140656, 0.086274512112140656), (0.82323235273361206, 0.10588235408067703, 0.10588235408067703), (0.82828283309936523, 0.12156862765550613, 0.12156862765550613), (0.83333331346511841, 0.14117647707462311, 0.14117647707462311), (0.83838385343551636, 0.15686275064945221, 0.15686275064945221), (0.84343433380126953, 0.17647059261798859, 0.17647059261798859), (0.84848487377166748, 0.20000000298023224, 0.20000000298023224), (0.85353535413742065, 0.23137255012989044, 0.23137255012989044), (0.85858583450317383, 0.25882354378700256, 0.25882354378700256), (0.86363637447357178, 0.29019609093666077, 0.29019609093666077), (0.86868685483932495, 0.32156863808631897, 0.32156863808631897), (0.8737373948097229, 0.35294118523597717, 0.35294118523597717), (0.87878787517547607, 0.38431373238563538, 0.38431373238563538), (0.88383835554122925, 0.41568627953529358, 0.41568627953529358), (0.8888888955116272, 0.44313725829124451, 0.44313725829124451), (0.89393937587738037, 0.47450980544090271, 0.47450980544090271), (0.89898991584777832, 0.5058823823928833, 0.5058823823928833), (0.90404039621353149, 0.52941179275512695, 0.52941179275512695), (0.90909093618392944, 0.55294120311737061, 0.55294120311737061), (0.91414141654968262, 0.57254904508590698, 0.57254904508590698), (0.91919189691543579, 0.59607845544815063, 0.59607845544815063), (0.92424243688583374, 0.61960786581039429, 0.61960786581039429), (0.92929291725158691, 0.64313727617263794, 0.64313727617263794), (0.93434345722198486, 0.66274511814117432, 0.66274511814117432), (0.93939393758773804, 0.68627452850341797, 0.68627452850341797), (0.94444441795349121, 0.70980393886566162, 0.70980393886566162), (0.94949495792388916, 0.729411780834198, 0.729411780834198), (0.95454543828964233, 0.75294119119644165, 0.75294119119644165), (0.95959597826004028, 0.78039216995239258, 0.78039216995239258), (0.96464645862579346, 0.80392158031463623, 0.80392158031463623), (0.96969699859619141, 0.82745099067687988, 0.82745099067687988), (0.97474747896194458, 0.85098040103912354, 0.85098040103912354), (0.97979795932769775, 0.87450981140136719, 0.87450981140136719), (0.9848484992980957, 0.90196079015731812, 0.90196079015731812), (0.98989897966384888, 0.92549020051956177, 0.92549020051956177), (0.99494951963424683, 0.94901961088180542, 0.94901961088180542), (1.0, 0.97254902124404907, 0.97254902124404907)], 'red': [(0.0, 0.0, 0.0), (0.0050505050458014011, 0.0, 0.0), (0.010101010091602802, 0.0, 0.0), (0.015151515603065491, 0.0, 0.0), (0.020202020183205605, 0.0, 0.0), (0.025252524763345718, 0.0, 0.0), (0.030303031206130981, 0.0, 0.0), (0.035353533923625946, 0.0, 0.0), (0.040404040366411209, 0.0, 0.0), (0.045454546809196472, 0.0, 0.0), (0.050505049526691437, 0.0, 0.0), (0.0555555559694767, 0.0, 0.0), (0.060606062412261963, 0.0, 0.0), (0.065656565129756927, 0.0, 0.0), (0.070707067847251892, 0.0, 0.0), (0.075757578015327454, 0.0, 0.0), (0.080808080732822418, 0.0, 0.0), (0.085858583450317383, 0.0, 0.0), (0.090909093618392944, 0.0, 0.0), (0.095959596335887909, 0.0, 0.0), (0.10101009905338287, 0.0, 0.0), (0.10606060922145844, 0.0, 0.0), (0.1111111119389534, 0.0, 0.0), (0.11616161465644836, 0.0, 0.0), (0.12121212482452393, 0.0, 0.0), (0.12626262009143829, 0.0, 0.0), (0.13131313025951385, 0.0, 0.0), (0.13636364042758942, 0.0, 0.0), (0.14141413569450378, 0.0, 0.0), (0.14646464586257935, 0.0, 0.0), (0.15151515603065491, 0.0, 0.0), (0.15656565129756927, 0.0, 0.0), (0.16161616146564484, 0.0, 0.0), (0.1666666716337204, 0.0, 0.0), (0.17171716690063477, 0.0, 0.0), (0.17676767706871033, 0.0, 0.0), (0.18181818723678589, 0.0, 0.0), (0.18686868250370026, 0.0, 0.0), (0.19191919267177582, 0.0, 0.0), (0.19696970283985138, 0.0, 0.0), (0.20202019810676575, 0.0, 0.0), (0.20707070827484131, 0.0, 0.0), (0.21212121844291687, 0.0, 0.0), (0.21717171370983124, 0.0, 0.0), (0.2222222238779068, 0.0, 0.0), (0.22727273404598236, 0.0, 0.0), (0.23232322931289673, 0.0, 0.0), (0.23737373948097229, 0.0, 0.0), (0.24242424964904785, 0.0, 0.0), (0.24747474491596222, 0.0, 0.0), (0.25252524018287659, 0.0, 0.0), (0.25757575035095215, 0.0, 0.0), (0.26262626051902771, 0.0, 0.0), (0.26767677068710327, 0.0, 0.0), (0.27272728085517883, 0.0, 0.0), (0.27777779102325439, 0.0, 0.0), (0.28282827138900757, 0.0, 0.0), (0.28787878155708313, 0.0, 0.0), (0.29292929172515869, 0.0, 0.0), (0.29797980189323425, 0.0, 0.0), (0.30303031206130981, 0.0, 0.0), (0.30808082222938538, 0.0, 0.0), (0.31313130259513855, 0.0, 0.0), (0.31818181276321411, 0.0039215688593685627, 0.0039215688593685627), (0.32323232293128967, 0.043137256056070328, 0.043137256056070328), (0.32828283309936523, 0.08235294371843338, 0.08235294371843338), (0.3333333432674408, 0.11764705926179886, 0.11764705926179886), (0.33838382363319397, 0.15686275064945221, 0.15686275064945221), (0.34343433380126953, 0.19607843458652496, 0.19607843458652496), (0.34848484396934509, 0.23137255012989044, 0.23137255012989044), (0.35353535413742065, 0.27058824896812439, 0.27058824896812439), (0.35858586430549622, 0.30980393290519714, 0.30980393290519714), (0.36363637447357178, 0.3490196168422699, 0.3490196168422699), (0.36868685483932495, 0.38431373238563538, 0.38431373238563538), (0.37373736500740051, 0.40392157435417175, 0.40392157435417175), (0.37878787517547607, 0.41568627953529358, 0.41568627953529358), (0.38383838534355164, 0.42352941632270813, 0.42352941632270813), (0.3888888955116272, 0.43137255311012268, 0.43137255311012268), (0.39393940567970276, 0.44313725829124451, 0.44313725829124451), (0.39898988604545593, 0.45098039507865906, 0.45098039507865906), (0.40404039621353149, 0.45882353186607361, 0.45882353186607361), (0.40909090638160706, 0.47058823704719543, 0.47058823704719543), (0.41414141654968262, 0.47843137383460999, 0.47843137383460999), (0.41919192671775818, 0.49019607901573181, 0.49019607901573181), (0.42424243688583374, 0.50196081399917603, 0.50196081399917603), (0.42929291725158691, 0.52549022436141968, 0.52549022436141968), (0.43434342741966248, 0.54901963472366333, 0.54901963472366333), (0.43939393758773804, 0.57254904508590698, 0.57254904508590698), (0.4444444477558136, 0.60000002384185791, 0.60000002384185791), (0.44949495792388916, 0.62352943420410156, 0.62352943420410156), (0.45454546809196472, 0.64705884456634521, 0.64705884456634521), (0.4595959484577179, 0.67058825492858887, 0.67058825492858887), (0.46464645862579346, 0.69411766529083252, 0.69411766529083252), (0.46969696879386902, 0.72156864404678345, 0.72156864404678345), (0.47474747896194458, 0.7450980544090271, 0.7450980544090271), (0.47979798913002014, 0.76862746477127075, 0.76862746477127075), (0.4848484992980957, 0.7921568751335144, 0.7921568751335144), (0.48989897966384888, 0.81568628549575806, 0.81568628549575806), (0.49494948983192444, 0.83921569585800171, 0.83921569585800171), (0.5, 0.86274510622024536, 0.86274510622024536), (0.50505048036575317, 0.88627451658248901, 0.88627451658248901), (0.51010102033615112, 0.90980392694473267, 0.90980392694473267), (0.5151515007019043, 0.93333333730697632, 0.93333333730697632), (0.52020204067230225, 0.95686274766921997, 0.95686274766921997), (0.52525252103805542, 0.98039215803146362, 0.98039215803146362), (0.53030300140380859, 1.0, 1.0), (0.53535354137420654, 1.0, 1.0), (0.54040402173995972, 1.0, 1.0), (0.54545456171035767, 1.0, 1.0), (0.55050504207611084, 1.0, 1.0), (0.55555558204650879, 1.0, 1.0), (0.56060606241226196, 1.0, 1.0), (0.56565654277801514, 1.0, 1.0), (0.57070708274841309, 1.0, 1.0), (0.57575756311416626, 1.0, 1.0), (0.58080810308456421, 1.0, 1.0), (0.58585858345031738, 1.0, 1.0), (0.59090906381607056, 1.0, 1.0), (0.59595960378646851, 1.0, 1.0), (0.60101008415222168, 1.0, 1.0), (0.60606062412261963, 1.0, 1.0), (0.6111111044883728, 1.0, 1.0), (0.61616164445877075, 1.0, 1.0), (0.62121212482452393, 1.0, 1.0), (0.6262626051902771, 1.0, 1.0), (0.63131314516067505, 1.0, 1.0), (0.63636362552642822, 1.0, 1.0), (0.64141416549682617, 1.0, 1.0), (0.64646464586257935, 1.0, 1.0), (0.65151512622833252, 1.0, 1.0), (0.65656566619873047, 1.0, 1.0), (0.66161614656448364, 1.0, 1.0), (0.66666668653488159, 1.0, 1.0), (0.67171716690063477, 1.0, 1.0), (0.67676764726638794, 1.0, 1.0), (0.68181818723678589, 1.0, 1.0), (0.68686866760253906, 1.0, 1.0), (0.69191920757293701, 1.0, 1.0), (0.69696968793869019, 1.0, 1.0), (0.70202022790908813, 1.0, 1.0), (0.70707070827484131, 1.0, 1.0), (0.71212118864059448, 1.0, 1.0), (0.71717172861099243, 1.0, 1.0), (0.72222220897674561, 1.0, 1.0), (0.72727274894714355, 1.0, 1.0), (0.73232322931289673, 1.0, 1.0), (0.7373737096786499, 1.0, 1.0), (0.74242424964904785, 1.0, 1.0), (0.74747473001480103, 1.0, 1.0), (0.75252526998519897, 1.0, 1.0), (0.75757575035095215, 1.0, 1.0), (0.7626262903213501, 1.0, 1.0), (0.76767677068710327, 1.0, 1.0), (0.77272725105285645, 1.0, 1.0), (0.77777779102325439, 1.0, 1.0), (0.78282827138900757, 1.0, 1.0), (0.78787881135940552, 1.0, 1.0), (0.79292929172515869, 1.0, 1.0), (0.79797977209091187, 0.96470588445663452, 0.96470588445663452), (0.80303031206130981, 0.92549020051956177, 0.92549020051956177), (0.80808079242706299, 0.89019608497619629, 0.89019608497619629), (0.81313133239746094, 0.85098040103912354, 0.85098040103912354), (0.81818181276321411, 0.81568628549575806, 0.81568628549575806), (0.82323235273361206, 0.7764706015586853, 0.7764706015586853), (0.82828283309936523, 0.74117648601531982, 0.74117648601531982), (0.83333331346511841, 0.70196080207824707, 0.70196080207824707), (0.83838385343551636, 0.66666668653488159, 0.66666668653488159), (0.84343433380126953, 0.62745100259780884, 0.62745100259780884), (0.84848487377166748, 0.61960786581039429, 0.61960786581039429), (0.85353535413742065, 0.65098041296005249, 0.65098041296005249), (0.85858583450317383, 0.68235296010971069, 0.68235296010971069), (0.86363637447357178, 0.7137255072593689, 0.7137255072593689), (0.86868685483932495, 0.7450980544090271, 0.7450980544090271), (0.8737373948097229, 0.77254903316497803, 0.77254903316497803), (0.87878787517547607, 0.80392158031463623, 0.80392158031463623), (0.88383835554122925, 0.83529412746429443, 0.83529412746429443), (0.8888888955116272, 0.86666667461395264, 0.86666667461395264), (0.89393937587738037, 0.89803922176361084, 0.89803922176361084), (0.89898991584777832, 0.92941176891326904, 0.92941176891326904), (0.90404039621353149, 0.93333333730697632, 0.93333333730697632), (0.90909093618392944, 0.93725490570068359, 0.93725490570068359), (0.91414141654968262, 0.93725490570068359, 0.93725490570068359), (0.91919189691543579, 0.94117647409439087, 0.94117647409439087), (0.92424243688583374, 0.94509804248809814, 0.94509804248809814), (0.92929291725158691, 0.94509804248809814, 0.94509804248809814), (0.93434345722198486, 0.94901961088180542, 0.94901961088180542), (0.93939393758773804, 0.9529411792755127, 0.9529411792755127), (0.94444441795349121, 0.9529411792755127, 0.9529411792755127), (0.94949495792388916, 0.95686274766921997, 0.95686274766921997), (0.95454543828964233, 0.96078431606292725, 0.96078431606292725), (0.95959597826004028, 0.96470588445663452, 0.96470588445663452), (0.96464645862579346, 0.9686274528503418, 0.9686274528503418), (0.96969699859619141, 0.97254902124404907, 0.97254902124404907), (0.97474747896194458, 0.97647058963775635, 0.97647058963775635), (0.97979795932769775, 0.98039215803146362, 0.98039215803146362), (0.9848484992980957, 0.9843137264251709, 0.9843137264251709), (0.98989897966384888, 0.98823529481887817, 0.98823529481887817), (0.99494951963424683, 0.99215686321258545, 0.99215686321258545), (1.0, 0.99607843160629272, 0.99607843160629272)]} _gist_rainbow_data = {'blue': [(0.0, 0.16470588743686676, 0.16470588743686676), (0.0042016808874905109, 0.14117647707462311, 0.14117647707462311), (0.0084033617749810219, 0.12156862765550613, 0.12156862765550613), (0.012605042196810246, 0.10196078568696976, 0.10196078568696976), (0.016806723549962044, 0.078431375324726105, 0.078431375324726105), (0.021008403971791267, 0.058823529630899429, 0.058823529630899429), (0.025210084393620491, 0.039215687662363052, 0.039215687662363052), (0.029411764815449715, 0.015686275437474251, 0.015686275437474251), (0.033613447099924088, 0.0, 0.0), (0.037815127521753311, 0.0, 0.0), (0.042016807943582535, 0.0, 0.0), (0.046218488365411758, 0.0, 0.0), (0.050420168787240982, 0.0, 0.0), (0.054621849209070206, 0.0, 0.0), (0.058823529630899429, 0.0, 0.0), (0.063025213778018951, 0.0, 0.0), (0.067226894199848175, 0.0, 0.0), (0.071428574621677399, 0.0, 0.0), (0.075630255043506622, 0.0, 0.0), (0.079831935465335846, 0.0, 0.0), (0.08403361588716507, 0.0, 0.0), (0.088235296308994293, 0.0, 0.0), (0.092436976730823517, 0.0, 0.0), (0.09663865715265274, 0.0, 0.0), (0.10084033757448196, 0.0, 0.0), (0.10504201799631119, 0.0, 0.0), (0.10924369841814041, 0.0, 0.0), (0.11344537883996964, 0.0, 0.0), (0.11764705926179886, 0.0, 0.0), (0.12184873968362808, 0.0, 0.0), (0.1260504275560379, 0.0, 0.0), (0.13025210797786713, 0.0, 0.0), (0.13445378839969635, 0.0, 0.0), (0.13865546882152557, 0.0, 0.0), (0.1428571492433548, 0.0, 0.0), (0.14705882966518402, 0.0, 0.0), (0.15126051008701324, 0.0, 0.0), (0.15546219050884247, 0.0, 0.0), (0.15966387093067169, 0.0, 0.0), (0.16386555135250092, 0.0, 0.0), (0.16806723177433014, 0.0, 0.0), (0.17226891219615936, 0.0, 0.0), (0.17647059261798859, 0.0, 0.0), (0.18067227303981781, 0.0, 0.0), (0.18487395346164703, 0.0, 0.0), (0.18907563388347626, 0.0, 0.0), (0.19327731430530548, 0.0, 0.0), (0.1974789947271347, 0.0, 0.0), (0.20168067514896393, 0.0, 0.0), (0.20588235557079315, 0.0, 0.0), (0.21008403599262238, 0.0, 0.0), (0.2142857164144516, 0.0, 0.0), (0.21848739683628082, 0.0, 0.0), (0.22268907725811005, 0.0, 0.0), (0.22689075767993927, 0.0, 0.0), (0.23109243810176849, 0.0, 0.0), (0.23529411852359772, 0.0, 0.0), (0.23949579894542694, 0.0, 0.0), (0.24369747936725616, 0.0, 0.0), (0.24789915978908539, 0.0, 0.0), (0.25210085511207581, 0.0, 0.0), (0.25630253553390503, 0.0, 0.0), (0.26050421595573425, 0.0, 0.0), (0.26470589637756348, 0.0, 0.0), (0.2689075767993927, 0.0, 0.0), (0.27310925722122192, 0.0, 0.0), (0.27731093764305115, 0.0, 0.0), (0.28151261806488037, 0.0, 0.0), (0.28571429848670959, 0.0, 0.0), (0.28991597890853882, 0.0, 0.0), (0.29411765933036804, 0.0, 0.0), (0.29831933975219727, 0.0, 0.0), (0.30252102017402649, 0.0, 0.0), (0.30672270059585571, 0.0, 0.0), (0.31092438101768494, 0.0, 0.0), (0.31512606143951416, 0.0, 0.0), (0.31932774186134338, 0.0, 0.0), (0.32352942228317261, 0.0, 0.0), (0.32773110270500183, 0.0, 0.0), (0.33193278312683105, 0.0, 0.0), (0.33613446354866028, 0.0, 0.0), (0.3403361439704895, 0.0, 0.0), (0.34453782439231873, 0.0, 0.0), (0.34873950481414795, 0.0, 0.0), (0.35294118523597717, 0.0, 0.0), (0.3571428656578064, 0.0, 0.0), (0.36134454607963562, 0.0, 0.0), (0.36554622650146484, 0.0, 0.0), (0.36974790692329407, 0.0, 0.0), (0.37394958734512329, 0.0, 0.0), (0.37815126776695251, 0.0, 0.0), (0.38235294818878174, 0.0, 0.0), (0.38655462861061096, 0.0, 0.0), (0.39075630903244019, 0.0, 0.0), (0.39495798945426941, 0.0, 0.0), (0.39915966987609863, 0.0, 0.0), (0.40336135029792786, 0.0, 0.0), (0.40756303071975708, 0.0039215688593685627, 0.0039215688593685627), (0.4117647111415863, 0.047058824449777603, 0.047058824449777603), (0.41596639156341553, 0.066666670143604279, 0.066666670143604279), (0.42016807198524475, 0.090196080505847931, 0.090196080505847931), (0.42436975240707397, 0.10980392247438431, 0.10980392247438431), (0.4285714328289032, 0.12941177189350128, 0.12941177189350128), (0.43277311325073242, 0.15294118225574493, 0.15294118225574493), (0.43697479367256165, 0.17254902422428131, 0.17254902422428131), (0.44117647409439087, 0.19215686619281769, 0.19215686619281769), (0.44537815451622009, 0.21568627655506134, 0.21568627655506134), (0.44957983493804932, 0.23529411852359772, 0.23529411852359772), (0.45378151535987854, 0.25882354378700256, 0.25882354378700256), (0.45798319578170776, 0.27843138575553894, 0.27843138575553894), (0.46218487620353699, 0.29803922772407532, 0.29803922772407532), (0.46638655662536621, 0.32156863808631897, 0.32156863808631897), (0.47058823704719543, 0.34117648005485535, 0.34117648005485535), (0.47478991746902466, 0.38431373238563538, 0.38431373238563538), (0.47899159789085388, 0.40392157435417175, 0.40392157435417175), (0.48319327831268311, 0.42745098471641541, 0.42745098471641541), (0.48739495873451233, 0.44705882668495178, 0.44705882668495178), (0.49159663915634155, 0.46666666865348816, 0.46666666865348816), (0.49579831957817078, 0.49019607901573181, 0.49019607901573181), (0.5, 0.50980395078659058, 0.50980395078659058), (0.50420171022415161, 0.52941179275512695, 0.52941179275512695), (0.50840336084365845, 0.55294120311737061, 0.55294120311737061), (0.51260507106781006, 0.57254904508590698, 0.57254904508590698), (0.51680672168731689, 0.59607845544815063, 0.59607845544815063), (0.52100843191146851, 0.61568629741668701, 0.61568629741668701), (0.52521008253097534, 0.63529413938522339, 0.63529413938522339), (0.52941179275512695, 0.65882354974746704, 0.65882354974746704), (0.53361344337463379, 0.67843139171600342, 0.67843139171600342), (0.5378151535987854, 0.72156864404678345, 0.72156864404678345), (0.54201680421829224, 0.74117648601531982, 0.74117648601531982), (0.54621851444244385, 0.76470589637756348, 0.76470589637756348), (0.55042016506195068, 0.78431373834609985, 0.78431373834609985), (0.55462187528610229, 0.80392158031463623, 0.80392158031463623), (0.55882352590560913, 0.82745099067687988, 0.82745099067687988), (0.56302523612976074, 0.84705883264541626, 0.84705883264541626), (0.56722688674926758, 0.87058824300765991, 0.87058824300765991), (0.57142859697341919, 0.89019608497619629, 0.89019608497619629), (0.57563024759292603, 0.90980392694473267, 0.90980392694473267), (0.57983195781707764, 0.93333333730697632, 0.93333333730697632), (0.58403360843658447, 0.9529411792755127, 0.9529411792755127), (0.58823531866073608, 0.97254902124404907, 0.97254902124404907), (0.59243696928024292, 0.99607843160629272, 0.99607843160629272), (0.59663867950439453, 1.0, 1.0), (0.60084033012390137, 1.0, 1.0), (0.60504204034805298, 1.0, 1.0), (0.60924369096755981, 1.0, 1.0), (0.61344540119171143, 1.0, 1.0), (0.61764705181121826, 1.0, 1.0), (0.62184876203536987, 1.0, 1.0), (0.62605041265487671, 1.0, 1.0), (0.63025212287902832, 1.0, 1.0), (0.63445377349853516, 1.0, 1.0), (0.63865548372268677, 1.0, 1.0), (0.6428571343421936, 1.0, 1.0), (0.64705884456634521, 1.0, 1.0), (0.65126049518585205, 1.0, 1.0), (0.65546220541000366, 1.0, 1.0), (0.6596638560295105, 1.0, 1.0), (0.66386556625366211, 1.0, 1.0), (0.66806721687316895, 1.0, 1.0), (0.67226892709732056, 1.0, 1.0), (0.67647057771682739, 1.0, 1.0), (0.680672287940979, 1.0, 1.0), (0.68487393856048584, 1.0, 1.0), (0.68907564878463745, 1.0, 1.0), (0.69327729940414429, 1.0, 1.0), (0.6974790096282959, 1.0, 1.0), (0.70168066024780273, 1.0, 1.0), (0.70588237047195435, 1.0, 1.0), (0.71008402109146118, 1.0, 1.0), (0.71428573131561279, 1.0, 1.0), (0.71848738193511963, 1.0, 1.0), (0.72268909215927124, 1.0, 1.0), (0.72689074277877808, 1.0, 1.0), (0.73109245300292969, 1.0, 1.0), (0.73529410362243652, 1.0, 1.0), (0.73949581384658813, 1.0, 1.0), (0.74369746446609497, 1.0, 1.0), (0.74789917469024658, 1.0, 1.0), (0.75210082530975342, 1.0, 1.0), (0.75630253553390503, 1.0, 1.0), (0.76050418615341187, 1.0, 1.0), (0.76470589637756348, 1.0, 1.0), (0.76890754699707031, 1.0, 1.0), (0.77310925722122192, 1.0, 1.0), (0.77731090784072876, 1.0, 1.0), (0.78151261806488037, 1.0, 1.0), (0.78571426868438721, 1.0, 1.0), (0.78991597890853882, 1.0, 1.0), (0.79411762952804565, 1.0, 1.0), (0.79831933975219727, 1.0, 1.0), (0.8025209903717041, 1.0, 1.0), (0.80672270059585571, 1.0, 1.0), (0.81092435121536255, 1.0, 1.0), (0.81512606143951416, 1.0, 1.0), (0.819327712059021, 1.0, 1.0), (0.82352942228317261, 1.0, 1.0), (0.82773107290267944, 1.0, 1.0), (0.83193278312683105, 1.0, 1.0), (0.83613443374633789, 1.0, 1.0), (0.8403361439704895, 1.0, 1.0), (0.84453779458999634, 1.0, 1.0), (0.84873950481414795, 1.0, 1.0), (0.85294115543365479, 1.0, 1.0), (0.8571428656578064, 1.0, 1.0), (0.86134451627731323, 1.0, 1.0), (0.86554622650146484, 1.0, 1.0), (0.86974787712097168, 1.0, 1.0), (0.87394958734512329, 1.0, 1.0), (0.87815123796463013, 1.0, 1.0), (0.88235294818878174, 1.0, 1.0), (0.88655459880828857, 1.0, 1.0), (0.89075630903244019, 1.0, 1.0), (0.89495795965194702, 1.0, 1.0), (0.89915966987609863, 1.0, 1.0), (0.90336132049560547, 1.0, 1.0), (0.90756303071975708, 1.0, 1.0), (0.91176468133926392, 1.0, 1.0), (0.91596639156341553, 1.0, 1.0), (0.92016804218292236, 1.0, 1.0), (0.92436975240707397, 1.0, 1.0), (0.92857140302658081, 1.0, 1.0), (0.93277311325073242, 1.0, 1.0), (0.93697476387023926, 1.0, 1.0), (0.94117647409439087, 1.0, 1.0), (0.94537812471389771, 1.0, 1.0), (0.94957983493804932, 1.0, 1.0), (0.95378148555755615, 1.0, 1.0), (0.95798319578170776, 1.0, 1.0), (0.9621848464012146, 1.0, 1.0), (0.96638655662536621, 0.99607843160629272, 0.99607843160629272), (0.97058820724487305, 0.97647058963775635, 0.97647058963775635), (0.97478991746902466, 0.9529411792755127, 0.9529411792755127), (0.97899156808853149, 0.91372549533843994, 0.91372549533843994), (0.98319327831268311, 0.89019608497619629, 0.89019608497619629), (0.98739492893218994, 0.87058824300765991, 0.87058824300765991), (0.99159663915634155, 0.85098040103912354, 0.85098040103912354), (0.99579828977584839, 0.82745099067687988, 0.82745099067687988), (1.0, 0.80784314870834351, 0.80784314870834351)], 'green': [(0.0, 0.0, 0.0), (0.0042016808874905109, 0.0, 0.0), (0.0084033617749810219, 0.0, 0.0), (0.012605042196810246, 0.0, 0.0), (0.016806723549962044, 0.0, 0.0), (0.021008403971791267, 0.0, 0.0), (0.025210084393620491, 0.0, 0.0), (0.029411764815449715, 0.0, 0.0), (0.033613447099924088, 0.019607843831181526, 0.019607843831181526), (0.037815127521753311, 0.043137256056070328, 0.043137256056070328), (0.042016807943582535, 0.062745101749897003, 0.062745101749897003), (0.046218488365411758, 0.086274512112140656, 0.086274512112140656), (0.050420168787240982, 0.10588235408067703, 0.10588235408067703), (0.054621849209070206, 0.12549020349979401, 0.12549020349979401), (0.058823529630899429, 0.14901961386203766, 0.14901961386203766), (0.063025213778018951, 0.16862745583057404, 0.16862745583057404), (0.067226894199848175, 0.18823529779911041, 0.18823529779911041), (0.071428574621677399, 0.21176470816135406, 0.21176470816135406), (0.075630255043506622, 0.23137255012989044, 0.23137255012989044), (0.079831935465335846, 0.25490197539329529, 0.25490197539329529), (0.08403361588716507, 0.27450981736183167, 0.27450981736183167), (0.088235296308994293, 0.29411765933036804, 0.29411765933036804), (0.092436976730823517, 0.31764706969261169, 0.31764706969261169), (0.09663865715265274, 0.35686275362968445, 0.35686275362968445), (0.10084033757448196, 0.3803921639919281, 0.3803921639919281), (0.10504201799631119, 0.40000000596046448, 0.40000000596046448), (0.10924369841814041, 0.42352941632270813, 0.42352941632270813), (0.11344537883996964, 0.44313725829124451, 0.44313725829124451), (0.11764705926179886, 0.46274510025978088, 0.46274510025978088), (0.12184873968362808, 0.48627451062202454, 0.48627451062202454), (0.1260504275560379, 0.5058823823928833, 0.5058823823928833), (0.13025210797786713, 0.52941179275512695, 0.52941179275512695), (0.13445378839969635, 0.54901963472366333, 0.54901963472366333), (0.13865546882152557, 0.56862747669219971, 0.56862747669219971), (0.1428571492433548, 0.59215688705444336, 0.59215688705444336), (0.14705882966518402, 0.61176472902297974, 0.61176472902297974), (0.15126051008701324, 0.63137257099151611, 0.63137257099151611), (0.15546219050884247, 0.65490198135375977, 0.65490198135375977), (0.15966387093067169, 0.69803923368453979, 0.69803923368453979), (0.16386555135250092, 0.71764707565307617, 0.71764707565307617), (0.16806723177433014, 0.73725491762161255, 0.73725491762161255), (0.17226891219615936, 0.7607843279838562, 0.7607843279838562), (0.17647059261798859, 0.78039216995239258, 0.78039216995239258), (0.18067227303981781, 0.80000001192092896, 0.80000001192092896), (0.18487395346164703, 0.82352942228317261, 0.82352942228317261), (0.18907563388347626, 0.84313726425170898, 0.84313726425170898), (0.19327731430530548, 0.86666667461395264, 0.86666667461395264), (0.1974789947271347, 0.88627451658248901, 0.88627451658248901), (0.20168067514896393, 0.90588235855102539, 0.90588235855102539), (0.20588235557079315, 0.92941176891326904, 0.92941176891326904), (0.21008403599262238, 0.94901961088180542, 0.94901961088180542), (0.2142857164144516, 0.9686274528503418, 0.9686274528503418), (0.21848739683628082, 0.99215686321258545, 0.99215686321258545), (0.22268907725811005, 1.0, 1.0), (0.22689075767993927, 1.0, 1.0), (0.23109243810176849, 1.0, 1.0), (0.23529411852359772, 1.0, 1.0), (0.23949579894542694, 1.0, 1.0), (0.24369747936725616, 1.0, 1.0), (0.24789915978908539, 1.0, 1.0), (0.25210085511207581, 1.0, 1.0), (0.25630253553390503, 1.0, 1.0), (0.26050421595573425, 1.0, 1.0), (0.26470589637756348, 1.0, 1.0), (0.2689075767993927, 1.0, 1.0), (0.27310925722122192, 1.0, 1.0), (0.27731093764305115, 1.0, 1.0), (0.28151261806488037, 1.0, 1.0), (0.28571429848670959, 1.0, 1.0), (0.28991597890853882, 1.0, 1.0), (0.29411765933036804, 1.0, 1.0), (0.29831933975219727, 1.0, 1.0), (0.30252102017402649, 1.0, 1.0), (0.30672270059585571, 1.0, 1.0), (0.31092438101768494, 1.0, 1.0), (0.31512606143951416, 1.0, 1.0), (0.31932774186134338, 1.0, 1.0), (0.32352942228317261, 1.0, 1.0), (0.32773110270500183, 1.0, 1.0), (0.33193278312683105, 1.0, 1.0), (0.33613446354866028, 1.0, 1.0), (0.3403361439704895, 1.0, 1.0), (0.34453782439231873, 1.0, 1.0), (0.34873950481414795, 1.0, 1.0), (0.35294118523597717, 1.0, 1.0), (0.3571428656578064, 1.0, 1.0), (0.36134454607963562, 1.0, 1.0), (0.36554622650146484, 1.0, 1.0), (0.36974790692329407, 1.0, 1.0), (0.37394958734512329, 1.0, 1.0), (0.37815126776695251, 1.0, 1.0), (0.38235294818878174, 1.0, 1.0), (0.38655462861061096, 1.0, 1.0), (0.39075630903244019, 1.0, 1.0), (0.39495798945426941, 1.0, 1.0), (0.39915966987609863, 1.0, 1.0), (0.40336135029792786, 1.0, 1.0), (0.40756303071975708, 1.0, 1.0), (0.4117647111415863, 1.0, 1.0), (0.41596639156341553, 1.0, 1.0), (0.42016807198524475, 1.0, 1.0), (0.42436975240707397, 1.0, 1.0), (0.4285714328289032, 1.0, 1.0), (0.43277311325073242, 1.0, 1.0), (0.43697479367256165, 1.0, 1.0), (0.44117647409439087, 1.0, 1.0), (0.44537815451622009, 1.0, 1.0), (0.44957983493804932, 1.0, 1.0), (0.45378151535987854, 1.0, 1.0), (0.45798319578170776, 1.0, 1.0), (0.46218487620353699, 1.0, 1.0), (0.46638655662536621, 1.0, 1.0), (0.47058823704719543, 1.0, 1.0), (0.47478991746902466, 1.0, 1.0), (0.47899159789085388, 1.0, 1.0), (0.48319327831268311, 1.0, 1.0), (0.48739495873451233, 1.0, 1.0), (0.49159663915634155, 1.0, 1.0), (0.49579831957817078, 1.0, 1.0), (0.5, 1.0, 1.0), (0.50420171022415161, 1.0, 1.0), (0.50840336084365845, 1.0, 1.0), (0.51260507106781006, 1.0, 1.0), (0.51680672168731689, 1.0, 1.0), (0.52100843191146851, 1.0, 1.0), (0.52521008253097534, 1.0, 1.0), (0.52941179275512695, 1.0, 1.0), (0.53361344337463379, 1.0, 1.0), (0.5378151535987854, 1.0, 1.0), (0.54201680421829224, 1.0, 1.0), (0.54621851444244385, 1.0, 1.0), (0.55042016506195068, 1.0, 1.0), (0.55462187528610229, 1.0, 1.0), (0.55882352590560913, 1.0, 1.0), (0.56302523612976074, 1.0, 1.0), (0.56722688674926758, 1.0, 1.0), (0.57142859697341919, 1.0, 1.0), (0.57563024759292603, 1.0, 1.0), (0.57983195781707764, 1.0, 1.0), (0.58403360843658447, 1.0, 1.0), (0.58823531866073608, 1.0, 1.0), (0.59243696928024292, 1.0, 1.0), (0.59663867950439453, 0.98039215803146362, 0.98039215803146362), (0.60084033012390137, 0.93725490570068359, 0.93725490570068359), (0.60504204034805298, 0.91764706373214722, 0.91764706373214722), (0.60924369096755981, 0.89411765336990356, 0.89411765336990356), (0.61344540119171143, 0.87450981140136719, 0.87450981140136719), (0.61764705181121826, 0.85490196943283081, 0.85490196943283081), (0.62184876203536987, 0.83137255907058716, 0.83137255907058716), (0.62605041265487671, 0.81176471710205078, 0.81176471710205078), (0.63025212287902832, 0.78823530673980713, 0.78823530673980713), (0.63445377349853516, 0.76862746477127075, 0.76862746477127075), (0.63865548372268677, 0.74901962280273438, 0.74901962280273438), (0.6428571343421936, 0.72549021244049072, 0.72549021244049072), (0.64705884456634521, 0.70588237047195435, 0.70588237047195435), (0.65126049518585205, 0.68235296010971069, 0.68235296010971069), (0.65546220541000366, 0.66274511814117432, 0.66274511814117432), (0.6596638560295105, 0.64313727617263794, 0.64313727617263794), (0.66386556625366211, 0.60000002384185791, 0.60000002384185791), (0.66806721687316895, 0.58039218187332153, 0.58039218187332153), (0.67226892709732056, 0.55686277151107788, 0.55686277151107788), (0.67647057771682739, 0.5372549295425415, 0.5372549295425415), (0.680672287940979, 0.51372551918029785, 0.51372551918029785), (0.68487393856048584, 0.49411764740943909, 0.49411764740943909), (0.68907564878463745, 0.47450980544090271, 0.47450980544090271), (0.69327729940414429, 0.45098039507865906, 0.45098039507865906), (0.6974790096282959, 0.43137255311012268, 0.43137255311012268), (0.70168066024780273, 0.4117647111415863, 0.4117647111415863), (0.70588237047195435, 0.38823530077934265, 0.38823530077934265), (0.71008402109146118, 0.36862745881080627, 0.36862745881080627), (0.71428573131561279, 0.34509804844856262, 0.34509804844856262), (0.71848738193511963, 0.32549020648002625, 0.32549020648002625), (0.72268909215927124, 0.30588236451148987, 0.30588236451148987), (0.72689074277877808, 0.26274511218070984, 0.26274511218070984), (0.73109245300292969, 0.24313725531101227, 0.24313725531101227), (0.73529410362243652, 0.21960784494876862, 0.21960784494876862), (0.73949581384658813, 0.20000000298023224, 0.20000000298023224), (0.74369746446609497, 0.17647059261798859, 0.17647059261798859), (0.74789917469024658, 0.15686275064945221, 0.15686275064945221), (0.75210082530975342, 0.13725490868091583, 0.13725490868091583), (0.75630253553390503, 0.11372549086809158, 0.11372549086809158), (0.76050418615341187, 0.094117648899555206, 0.094117648899555206), (0.76470589637756348, 0.070588238537311554, 0.070588238537311554), (0.76890754699707031, 0.050980392843484879, 0.050980392843484879), (0.77310925722122192, 0.031372550874948502, 0.031372550874948502), (0.77731090784072876, 0.0078431377187371254, 0.0078431377187371254), (0.78151261806488037, 0.0, 0.0), (0.78571426868438721, 0.0, 0.0), (0.78991597890853882, 0.0, 0.0), (0.79411762952804565, 0.0, 0.0), (0.79831933975219727, 0.0, 0.0), (0.8025209903717041, 0.0, 0.0), (0.80672270059585571, 0.0, 0.0), (0.81092435121536255, 0.0, 0.0), (0.81512606143951416, 0.0, 0.0), (0.819327712059021, 0.0, 0.0), (0.82352942228317261, 0.0, 0.0), (0.82773107290267944, 0.0, 0.0), (0.83193278312683105, 0.0, 0.0), (0.83613443374633789, 0.0, 0.0), (0.8403361439704895, 0.0, 0.0), (0.84453779458999634, 0.0, 0.0), (0.84873950481414795, 0.0, 0.0), (0.85294115543365479, 0.0, 0.0), (0.8571428656578064, 0.0, 0.0), (0.86134451627731323, 0.0, 0.0), (0.86554622650146484, 0.0, 0.0), (0.86974787712097168, 0.0, 0.0), (0.87394958734512329, 0.0, 0.0), (0.87815123796463013, 0.0, 0.0), (0.88235294818878174, 0.0, 0.0), (0.88655459880828857, 0.0, 0.0), (0.89075630903244019, 0.0, 0.0), (0.89495795965194702, 0.0, 0.0), (0.89915966987609863, 0.0, 0.0), (0.90336132049560547, 0.0, 0.0), (0.90756303071975708, 0.0, 0.0), (0.91176468133926392, 0.0, 0.0), (0.91596639156341553, 0.0, 0.0), (0.92016804218292236, 0.0, 0.0), (0.92436975240707397, 0.0, 0.0), (0.92857140302658081, 0.0, 0.0), (0.93277311325073242, 0.0, 0.0), (0.93697476387023926, 0.0, 0.0), (0.94117647409439087, 0.0, 0.0), (0.94537812471389771, 0.0, 0.0), (0.94957983493804932, 0.0, 0.0), (0.95378148555755615, 0.0, 0.0), (0.95798319578170776, 0.0, 0.0), (0.9621848464012146, 0.0, 0.0), (0.96638655662536621, 0.0, 0.0), (0.97058820724487305, 0.0, 0.0), (0.97478991746902466, 0.0, 0.0), (0.97899156808853149, 0.0, 0.0), (0.98319327831268311, 0.0, 0.0), (0.98739492893218994, 0.0, 0.0), (0.99159663915634155, 0.0, 0.0), (0.99579828977584839, 0.0, 0.0), (1.0, 0.0, 0.0)], 'red': [(0.0, 1.0, 1.0), (0.0042016808874905109, 1.0, 1.0), (0.0084033617749810219, 1.0, 1.0), (0.012605042196810246, 1.0, 1.0), (0.016806723549962044, 1.0, 1.0), (0.021008403971791267, 1.0, 1.0), (0.025210084393620491, 1.0, 1.0), (0.029411764815449715, 1.0, 1.0), (0.033613447099924088, 1.0, 1.0), (0.037815127521753311, 1.0, 1.0), (0.042016807943582535, 1.0, 1.0), (0.046218488365411758, 1.0, 1.0), (0.050420168787240982, 1.0, 1.0), (0.054621849209070206, 1.0, 1.0), (0.058823529630899429, 1.0, 1.0), (0.063025213778018951, 1.0, 1.0), (0.067226894199848175, 1.0, 1.0), (0.071428574621677399, 1.0, 1.0), (0.075630255043506622, 1.0, 1.0), (0.079831935465335846, 1.0, 1.0), (0.08403361588716507, 1.0, 1.0), (0.088235296308994293, 1.0, 1.0), (0.092436976730823517, 1.0, 1.0), (0.09663865715265274, 1.0, 1.0), (0.10084033757448196, 1.0, 1.0), (0.10504201799631119, 1.0, 1.0), (0.10924369841814041, 1.0, 1.0), (0.11344537883996964, 1.0, 1.0), (0.11764705926179886, 1.0, 1.0), (0.12184873968362808, 1.0, 1.0), (0.1260504275560379, 1.0, 1.0), (0.13025210797786713, 1.0, 1.0), (0.13445378839969635, 1.0, 1.0), (0.13865546882152557, 1.0, 1.0), (0.1428571492433548, 1.0, 1.0), (0.14705882966518402, 1.0, 1.0), (0.15126051008701324, 1.0, 1.0), (0.15546219050884247, 1.0, 1.0), (0.15966387093067169, 1.0, 1.0), (0.16386555135250092, 1.0, 1.0), (0.16806723177433014, 1.0, 1.0), (0.17226891219615936, 1.0, 1.0), (0.17647059261798859, 1.0, 1.0), (0.18067227303981781, 1.0, 1.0), (0.18487395346164703, 1.0, 1.0), (0.18907563388347626, 1.0, 1.0), (0.19327731430530548, 1.0, 1.0), (0.1974789947271347, 1.0, 1.0), (0.20168067514896393, 1.0, 1.0), (0.20588235557079315, 1.0, 1.0), (0.21008403599262238, 1.0, 1.0), (0.2142857164144516, 1.0, 1.0), (0.21848739683628082, 1.0, 1.0), (0.22268907725811005, 0.96078431606292725, 0.96078431606292725), (0.22689075767993927, 0.94117647409439087, 0.94117647409439087), (0.23109243810176849, 0.92156863212585449, 0.92156863212585449), (0.23529411852359772, 0.89803922176361084, 0.89803922176361084), (0.23949579894542694, 0.87843137979507446, 0.87843137979507446), (0.24369747936725616, 0.85882353782653809, 0.85882353782653809), (0.24789915978908539, 0.83529412746429443, 0.83529412746429443), (0.25210085511207581, 0.81568628549575806, 0.81568628549575806), (0.25630253553390503, 0.7921568751335144, 0.7921568751335144), (0.26050421595573425, 0.77254903316497803, 0.77254903316497803), (0.26470589637756348, 0.75294119119644165, 0.75294119119644165), (0.2689075767993927, 0.729411780834198, 0.729411780834198), (0.27310925722122192, 0.70980393886566162, 0.70980393886566162), (0.27731093764305115, 0.68627452850341797, 0.68627452850341797), (0.28151261806488037, 0.66666668653488159, 0.66666668653488159), (0.28571429848670959, 0.62352943420410156, 0.62352943420410156), (0.28991597890853882, 0.60392159223556519, 0.60392159223556519), (0.29411765933036804, 0.58431375026702881, 0.58431375026702881), (0.29831933975219727, 0.56078433990478516, 0.56078433990478516), (0.30252102017402649, 0.54117649793624878, 0.54117649793624878), (0.30672270059585571, 0.51764708757400513, 0.51764708757400513), (0.31092438101768494, 0.49803921580314636, 0.49803921580314636), (0.31512606143951416, 0.47843137383460999, 0.47843137383460999), (0.31932774186134338, 0.45490196347236633, 0.45490196347236633), (0.32352942228317261, 0.43529412150382996, 0.43529412150382996), (0.32773110270500183, 0.41568627953529358, 0.41568627953529358), (0.33193278312683105, 0.39215686917304993, 0.39215686917304993), (0.33613446354866028, 0.37254902720451355, 0.37254902720451355), (0.3403361439704895, 0.3490196168422699, 0.3490196168422699), (0.34453782439231873, 0.32941177487373352, 0.32941177487373352), (0.34873950481414795, 0.28627452254295349, 0.28627452254295349), (0.35294118523597717, 0.26666668057441711, 0.26666668057441711), (0.3571428656578064, 0.24705882370471954, 0.24705882370471954), (0.36134454607963562, 0.22352941334247589, 0.22352941334247589), (0.36554622650146484, 0.20392157137393951, 0.20392157137393951), (0.36974790692329407, 0.18039216101169586, 0.18039216101169586), (0.37394958734512329, 0.16078431904315948, 0.16078431904315948), (0.37815126776695251, 0.14117647707462311, 0.14117647707462311), (0.38235294818878174, 0.11764705926179886, 0.11764705926179886), (0.38655462861061096, 0.098039217293262482, 0.098039217293262482), (0.39075630903244019, 0.074509806931018829, 0.074509806931018829), (0.39495798945426941, 0.054901961237192154, 0.054901961237192154), (0.39915966987609863, 0.035294119268655777, 0.035294119268655777), (0.40336135029792786, 0.011764706112444401, 0.011764706112444401), (0.40756303071975708, 0.0, 0.0), (0.4117647111415863, 0.0, 0.0), (0.41596639156341553, 0.0, 0.0), (0.42016807198524475, 0.0, 0.0), (0.42436975240707397, 0.0, 0.0), (0.4285714328289032, 0.0, 0.0), (0.43277311325073242, 0.0, 0.0), (0.43697479367256165, 0.0, 0.0), (0.44117647409439087, 0.0, 0.0), (0.44537815451622009, 0.0, 0.0), (0.44957983493804932, 0.0, 0.0), (0.45378151535987854, 0.0, 0.0), (0.45798319578170776, 0.0, 0.0), (0.46218487620353699, 0.0, 0.0), (0.46638655662536621, 0.0, 0.0), (0.47058823704719543, 0.0, 0.0), (0.47478991746902466, 0.0, 0.0), (0.47899159789085388, 0.0, 0.0), (0.48319327831268311, 0.0, 0.0), (0.48739495873451233, 0.0, 0.0), (0.49159663915634155, 0.0, 0.0), (0.49579831957817078, 0.0, 0.0), (0.5, 0.0, 0.0), (0.50420171022415161, 0.0, 0.0), (0.50840336084365845, 0.0, 0.0), (0.51260507106781006, 0.0, 0.0), (0.51680672168731689, 0.0, 0.0), (0.52100843191146851, 0.0, 0.0), (0.52521008253097534, 0.0, 0.0), (0.52941179275512695, 0.0, 0.0), (0.53361344337463379, 0.0, 0.0), (0.5378151535987854, 0.0, 0.0), (0.54201680421829224, 0.0, 0.0), (0.54621851444244385, 0.0, 0.0), (0.55042016506195068, 0.0, 0.0), (0.55462187528610229, 0.0, 0.0), (0.55882352590560913, 0.0, 0.0), (0.56302523612976074, 0.0, 0.0), (0.56722688674926758, 0.0, 0.0), (0.57142859697341919, 0.0, 0.0), (0.57563024759292603, 0.0, 0.0), (0.57983195781707764, 0.0, 0.0), (0.58403360843658447, 0.0, 0.0), (0.58823531866073608, 0.0, 0.0), (0.59243696928024292, 0.0, 0.0), (0.59663867950439453, 0.0, 0.0), (0.60084033012390137, 0.0, 0.0), (0.60504204034805298, 0.0, 0.0), (0.60924369096755981, 0.0, 0.0), (0.61344540119171143, 0.0, 0.0), (0.61764705181121826, 0.0, 0.0), (0.62184876203536987, 0.0, 0.0), (0.62605041265487671, 0.0, 0.0), (0.63025212287902832, 0.0, 0.0), (0.63445377349853516, 0.0, 0.0), (0.63865548372268677, 0.0, 0.0), (0.6428571343421936, 0.0, 0.0), (0.64705884456634521, 0.0, 0.0), (0.65126049518585205, 0.0, 0.0), (0.65546220541000366, 0.0, 0.0), (0.6596638560295105, 0.0, 0.0), (0.66386556625366211, 0.0, 0.0), (0.66806721687316895, 0.0, 0.0), (0.67226892709732056, 0.0, 0.0), (0.67647057771682739, 0.0, 0.0), (0.680672287940979, 0.0, 0.0), (0.68487393856048584, 0.0, 0.0), (0.68907564878463745, 0.0, 0.0), (0.69327729940414429, 0.0, 0.0), (0.6974790096282959, 0.0, 0.0), (0.70168066024780273, 0.0, 0.0), (0.70588237047195435, 0.0, 0.0), (0.71008402109146118, 0.0, 0.0), (0.71428573131561279, 0.0, 0.0), (0.71848738193511963, 0.0, 0.0), (0.72268909215927124, 0.0, 0.0), (0.72689074277877808, 0.0, 0.0), (0.73109245300292969, 0.0, 0.0), (0.73529410362243652, 0.0, 0.0), (0.73949581384658813, 0.0, 0.0), (0.74369746446609497, 0.0, 0.0), (0.74789917469024658, 0.0, 0.0), (0.75210082530975342, 0.0, 0.0), (0.75630253553390503, 0.0, 0.0), (0.76050418615341187, 0.0, 0.0), (0.76470589637756348, 0.0, 0.0), (0.76890754699707031, 0.0, 0.0), (0.77310925722122192, 0.0, 0.0), (0.77731090784072876, 0.0, 0.0), (0.78151261806488037, 0.0078431377187371254, 0.0078431377187371254), (0.78571426868438721, 0.027450980618596077, 0.027450980618596077), (0.78991597890853882, 0.070588238537311554, 0.070588238537311554), (0.79411762952804565, 0.094117648899555206, 0.094117648899555206), (0.79831933975219727, 0.11372549086809158, 0.11372549086809158), (0.8025209903717041, 0.13333334028720856, 0.13333334028720856), (0.80672270059585571, 0.15686275064945221, 0.15686275064945221), (0.81092435121536255, 0.17647059261798859, 0.17647059261798859), (0.81512606143951416, 0.19607843458652496, 0.19607843458652496), (0.819327712059021, 0.21960784494876862, 0.21960784494876862), (0.82352942228317261, 0.23921568691730499, 0.23921568691730499), (0.82773107290267944, 0.26274511218070984, 0.26274511218070984), (0.83193278312683105, 0.28235295414924622, 0.28235295414924622), (0.83613443374633789, 0.30196079611778259, 0.30196079611778259), (0.8403361439704895, 0.32549020648002625, 0.32549020648002625), (0.84453779458999634, 0.34509804844856262, 0.34509804844856262), (0.84873950481414795, 0.364705890417099, 0.364705890417099), (0.85294115543365479, 0.40784314274787903, 0.40784314274787903), (0.8571428656578064, 0.43137255311012268, 0.43137255311012268), (0.86134451627731323, 0.45098039507865906, 0.45098039507865906), (0.86554622650146484, 0.47058823704719543, 0.47058823704719543), (0.86974787712097168, 0.49411764740943909, 0.49411764740943909), (0.87394958734512329, 0.51372551918029785, 0.51372551918029785), (0.87815123796463013, 0.53333336114883423, 0.53333336114883423), (0.88235294818878174, 0.55686277151107788, 0.55686277151107788), (0.88655459880828857, 0.57647061347961426, 0.57647061347961426), (0.89075630903244019, 0.60000002384185791, 0.60000002384185791), (0.89495795965194702, 0.61960786581039429, 0.61960786581039429), (0.89915966987609863, 0.63921570777893066, 0.63921570777893066), (0.90336132049560547, 0.66274511814117432, 0.66274511814117432), (0.90756303071975708, 0.68235296010971069, 0.68235296010971069), (0.91176468133926392, 0.70588237047195435, 0.70588237047195435), (0.91596639156341553, 0.7450980544090271, 0.7450980544090271), (0.92016804218292236, 0.76862746477127075, 0.76862746477127075), (0.92436975240707397, 0.78823530673980713, 0.78823530673980713), (0.92857140302658081, 0.80784314870834351, 0.80784314870834351), (0.93277311325073242, 0.83137255907058716, 0.83137255907058716), (0.93697476387023926, 0.85098040103912354, 0.85098040103912354), (0.94117647409439087, 0.87450981140136719, 0.87450981140136719), (0.94537812471389771, 0.89411765336990356, 0.89411765336990356), (0.94957983493804932, 0.91372549533843994, 0.91372549533843994), (0.95378148555755615, 0.93725490570068359, 0.93725490570068359), (0.95798319578170776, 0.95686274766921997, 0.95686274766921997), (0.9621848464012146, 0.97647058963775635, 0.97647058963775635), (0.96638655662536621, 1.0, 1.0), (0.97058820724487305, 1.0, 1.0), (0.97478991746902466, 1.0, 1.0), (0.97899156808853149, 1.0, 1.0), (0.98319327831268311, 1.0, 1.0), (0.98739492893218994, 1.0, 1.0), (0.99159663915634155, 1.0, 1.0), (0.99579828977584839, 1.0, 1.0), (1.0, 1.0, 1.0)]} _gist_stern_data = {'blue': [(0.0, 0.0, 0.0), (0.0042016808874905109, 0.0039215688593685627, 0.0039215688593685627), (0.0084033617749810219, 0.011764706112444401, 0.011764706112444401), (0.012605042196810246, 0.019607843831181526, 0.019607843831181526), (0.016806723549962044, 0.027450980618596077, 0.027450980618596077), (0.021008403971791267, 0.035294119268655777, 0.035294119268655777), (0.025210084393620491, 0.043137256056070328, 0.043137256056070328), (0.029411764815449715, 0.050980392843484879, 0.050980392843484879), (0.033613447099924088, 0.058823529630899429, 0.058823529630899429), (0.037815127521753311, 0.066666670143604279, 0.066666670143604279), (0.042016807943582535, 0.08235294371843338, 0.08235294371843338), (0.046218488365411758, 0.090196080505847931, 0.090196080505847931), (0.050420168787240982, 0.098039217293262482, 0.098039217293262482), (0.054621849209070206, 0.10588235408067703, 0.10588235408067703), (0.058823529630899429, 0.11372549086809158, 0.11372549086809158), (0.063025213778018951, 0.12156862765550613, 0.12156862765550613), (0.067226894199848175, 0.12941177189350128, 0.12941177189350128), (0.071428574621677399, 0.13725490868091583, 0.13725490868091583), (0.075630255043506622, 0.14509804546833038, 0.14509804546833038), (0.079831935465335846, 0.15294118225574493, 0.15294118225574493), (0.08403361588716507, 0.16078431904315948, 0.16078431904315948), (0.088235296308994293, 0.16862745583057404, 0.16862745583057404), (0.092436976730823517, 0.17647059261798859, 0.17647059261798859), (0.09663865715265274, 0.18431372940540314, 0.18431372940540314), (0.10084033757448196, 0.19215686619281769, 0.19215686619281769), (0.10504201799631119, 0.20000000298023224, 0.20000000298023224), (0.10924369841814041, 0.20784313976764679, 0.20784313976764679), (0.11344537883996964, 0.21568627655506134, 0.21568627655506134), (0.11764705926179886, 0.22352941334247589, 0.22352941334247589), (0.12184873968362808, 0.23137255012989044, 0.23137255012989044), (0.1260504275560379, 0.24705882370471954, 0.24705882370471954), (0.13025210797786713, 0.25490197539329529, 0.25490197539329529), (0.13445378839969635, 0.26274511218070984, 0.26274511218070984), (0.13865546882152557, 0.27058824896812439, 0.27058824896812439), (0.1428571492433548, 0.27843138575553894, 0.27843138575553894), (0.14705882966518402, 0.28627452254295349, 0.28627452254295349), (0.15126051008701324, 0.29411765933036804, 0.29411765933036804), (0.15546219050884247, 0.30196079611778259, 0.30196079611778259), (0.15966387093067169, 0.30980393290519714, 0.30980393290519714), (0.16386555135250092, 0.31764706969261169, 0.31764706969261169), (0.16806723177433014, 0.32549020648002625, 0.32549020648002625), (0.17226891219615936, 0.3333333432674408, 0.3333333432674408), (0.17647059261798859, 0.34117648005485535, 0.34117648005485535), (0.18067227303981781, 0.3490196168422699, 0.3490196168422699), (0.18487395346164703, 0.35686275362968445, 0.35686275362968445), (0.18907563388347626, 0.364705890417099, 0.364705890417099), (0.19327731430530548, 0.37254902720451355, 0.37254902720451355), (0.1974789947271347, 0.3803921639919281, 0.3803921639919281), (0.20168067514896393, 0.38823530077934265, 0.38823530077934265), (0.20588235557079315, 0.3960784375667572, 0.3960784375667572), (0.21008403599262238, 0.4117647111415863, 0.4117647111415863), (0.2142857164144516, 0.41960784792900085, 0.41960784792900085), (0.21848739683628082, 0.42745098471641541, 0.42745098471641541), (0.22268907725811005, 0.43529412150382996, 0.43529412150382996), (0.22689075767993927, 0.44313725829124451, 0.44313725829124451), (0.23109243810176849, 0.45098039507865906, 0.45098039507865906), (0.23529411852359772, 0.45882353186607361, 0.45882353186607361), (0.23949579894542694, 0.46666666865348816, 0.46666666865348816), (0.24369747936725616, 0.47450980544090271, 0.47450980544090271), (0.24789915978908539, 0.48235294222831726, 0.48235294222831726), (0.25210085511207581, 0.49803921580314636, 0.49803921580314636), (0.25630253553390503, 0.5058823823928833, 0.5058823823928833), (0.26050421595573425, 0.51372551918029785, 0.51372551918029785), (0.26470589637756348, 0.5215686559677124, 0.5215686559677124), (0.2689075767993927, 0.52941179275512695, 0.52941179275512695), (0.27310925722122192, 0.5372549295425415, 0.5372549295425415), (0.27731093764305115, 0.54509806632995605, 0.54509806632995605), (0.28151261806488037, 0.55294120311737061, 0.55294120311737061), (0.28571429848670959, 0.56078433990478516, 0.56078433990478516), (0.28991597890853882, 0.56862747669219971, 0.56862747669219971), (0.29411765933036804, 0.58431375026702881, 0.58431375026702881), (0.29831933975219727, 0.59215688705444336, 0.59215688705444336), (0.30252102017402649, 0.60000002384185791, 0.60000002384185791), (0.30672270059585571, 0.60784316062927246, 0.60784316062927246), (0.31092438101768494, 0.61568629741668701, 0.61568629741668701), (0.31512606143951416, 0.62352943420410156, 0.62352943420410156), (0.31932774186134338, 0.63137257099151611, 0.63137257099151611), (0.32352942228317261, 0.63921570777893066, 0.63921570777893066), (0.32773110270500183, 0.64705884456634521, 0.64705884456634521), (0.33193278312683105, 0.65490198135375977, 0.65490198135375977), (0.33613446354866028, 0.66274511814117432, 0.66274511814117432), (0.3403361439704895, 0.67058825492858887, 0.67058825492858887), (0.34453782439231873, 0.67843139171600342, 0.67843139171600342), (0.34873950481414795, 0.68627452850341797, 0.68627452850341797), (0.35294118523597717, 0.69411766529083252, 0.69411766529083252), (0.3571428656578064, 0.70196080207824707, 0.70196080207824707), (0.36134454607963562, 0.70980393886566162, 0.70980393886566162), (0.36554622650146484, 0.71764707565307617, 0.71764707565307617), (0.36974790692329407, 0.72549021244049072, 0.72549021244049072), (0.37394958734512329, 0.73333334922790527, 0.73333334922790527), (0.37815126776695251, 0.74901962280273438, 0.74901962280273438), (0.38235294818878174, 0.75686275959014893, 0.75686275959014893), (0.38655462861061096, 0.76470589637756348, 0.76470589637756348), (0.39075630903244019, 0.77254903316497803, 0.77254903316497803), (0.39495798945426941, 0.78039216995239258, 0.78039216995239258), (0.39915966987609863, 0.78823530673980713, 0.78823530673980713), (0.40336135029792786, 0.79607844352722168, 0.79607844352722168), (0.40756303071975708, 0.80392158031463623, 0.80392158031463623), (0.4117647111415863, 0.81176471710205078, 0.81176471710205078), (0.41596639156341553, 0.81960785388946533, 0.81960785388946533), (0.42016807198524475, 0.82745099067687988, 0.82745099067687988), (0.42436975240707397, 0.83529412746429443, 0.83529412746429443), (0.4285714328289032, 0.84313726425170898, 0.84313726425170898), (0.43277311325073242, 0.85098040103912354, 0.85098040103912354), (0.43697479367256165, 0.85882353782653809, 0.85882353782653809), (0.44117647409439087, 0.86666667461395264, 0.86666667461395264), (0.44537815451622009, 0.87450981140136719, 0.87450981140136719), (0.44957983493804932, 0.88235294818878174, 0.88235294818878174), (0.45378151535987854, 0.89019608497619629, 0.89019608497619629), (0.45798319578170776, 0.89803922176361084, 0.89803922176361084), (0.46218487620353699, 0.91372549533843994, 0.91372549533843994), (0.46638655662536621, 0.92156863212585449, 0.92156863212585449), (0.47058823704719543, 0.92941176891326904, 0.92941176891326904), (0.47478991746902466, 0.93725490570068359, 0.93725490570068359), (0.47899159789085388, 0.94509804248809814, 0.94509804248809814), (0.48319327831268311, 0.9529411792755127, 0.9529411792755127), (0.48739495873451233, 0.96078431606292725, 0.96078431606292725), (0.49159663915634155, 0.9686274528503418, 0.9686274528503418), (0.49579831957817078, 0.97647058963775635, 0.97647058963775635), (0.5, 0.9843137264251709, 0.9843137264251709), (0.50420171022415161, 1.0, 1.0), (0.50840336084365845, 0.9843137264251709, 0.9843137264251709), (0.51260507106781006, 0.9686274528503418, 0.9686274528503418), (0.51680672168731689, 0.9529411792755127, 0.9529411792755127), (0.52100843191146851, 0.93333333730697632, 0.93333333730697632), (0.52521008253097534, 0.91764706373214722, 0.91764706373214722), (0.52941179275512695, 0.90196079015731812, 0.90196079015731812), (0.53361344337463379, 0.88627451658248901, 0.88627451658248901), (0.5378151535987854, 0.86666667461395264, 0.86666667461395264), (0.54201680421829224, 0.85098040103912354, 0.85098040103912354), (0.54621851444244385, 0.81960785388946533, 0.81960785388946533), (0.55042016506195068, 0.80000001192092896, 0.80000001192092896), (0.55462187528610229, 0.78431373834609985, 0.78431373834609985), (0.55882352590560913, 0.76862746477127075, 0.76862746477127075), (0.56302523612976074, 0.75294119119644165, 0.75294119119644165), (0.56722688674926758, 0.73333334922790527, 0.73333334922790527), (0.57142859697341919, 0.71764707565307617, 0.71764707565307617), (0.57563024759292603, 0.70196080207824707, 0.70196080207824707), (0.57983195781707764, 0.68627452850341797, 0.68627452850341797), (0.58403360843658447, 0.66666668653488159, 0.66666668653488159), (0.58823531866073608, 0.65098041296005249, 0.65098041296005249), (0.59243696928024292, 0.63529413938522339, 0.63529413938522339), (0.59663867950439453, 0.61960786581039429, 0.61960786581039429), (0.60084033012390137, 0.60000002384185791, 0.60000002384185791), (0.60504204034805298, 0.58431375026702881, 0.58431375026702881), (0.60924369096755981, 0.56862747669219971, 0.56862747669219971), (0.61344540119171143, 0.55294120311737061, 0.55294120311737061), (0.61764705181121826, 0.53333336114883423, 0.53333336114883423), (0.62184876203536987, 0.51764708757400513, 0.51764708757400513), (0.62605041265487671, 0.50196081399917603, 0.50196081399917603), (0.63025212287902832, 0.46666666865348816, 0.46666666865348816), (0.63445377349853516, 0.45098039507865906, 0.45098039507865906), (0.63865548372268677, 0.43529412150382996, 0.43529412150382996), (0.6428571343421936, 0.41960784792900085, 0.41960784792900085), (0.64705884456634521, 0.40000000596046448, 0.40000000596046448), (0.65126049518585205, 0.38431373238563538, 0.38431373238563538), (0.65546220541000366, 0.36862745881080627, 0.36862745881080627), (0.6596638560295105, 0.35294118523597717, 0.35294118523597717), (0.66386556625366211, 0.3333333432674408, 0.3333333432674408), (0.66806721687316895, 0.31764706969261169, 0.31764706969261169), (0.67226892709732056, 0.30196079611778259, 0.30196079611778259), (0.67647057771682739, 0.28627452254295349, 0.28627452254295349), (0.680672287940979, 0.26666668057441711, 0.26666668057441711), (0.68487393856048584, 0.25098040699958801, 0.25098040699958801), (0.68907564878463745, 0.23529411852359772, 0.23529411852359772), (0.69327729940414429, 0.21960784494876862, 0.21960784494876862), (0.6974790096282959, 0.20000000298023224, 0.20000000298023224), (0.70168066024780273, 0.18431372940540314, 0.18431372940540314), (0.70588237047195435, 0.16862745583057404, 0.16862745583057404), (0.71008402109146118, 0.15294118225574493, 0.15294118225574493), (0.71428573131561279, 0.11764705926179886, 0.11764705926179886), (0.71848738193511963, 0.10196078568696976, 0.10196078568696976), (0.72268909215927124, 0.086274512112140656, 0.086274512112140656), (0.72689074277877808, 0.066666670143604279, 0.066666670143604279), (0.73109245300292969, 0.050980392843484879, 0.050980392843484879), (0.73529410362243652, 0.035294119268655777, 0.035294119268655777), (0.73949581384658813, 0.019607843831181526, 0.019607843831181526), (0.74369746446609497, 0.0, 0.0), (0.74789917469024658, 0.011764706112444401, 0.011764706112444401), (0.75210082530975342, 0.027450980618596077, 0.027450980618596077), (0.75630253553390503, 0.058823529630899429, 0.058823529630899429), (0.76050418615341187, 0.074509806931018829, 0.074509806931018829), (0.76470589637756348, 0.086274512112140656, 0.086274512112140656), (0.76890754699707031, 0.10196078568696976, 0.10196078568696976), (0.77310925722122192, 0.11764705926179886, 0.11764705926179886), (0.77731090784072876, 0.13333334028720856, 0.13333334028720856), (0.78151261806488037, 0.14901961386203766, 0.14901961386203766), (0.78571426868438721, 0.16078431904315948, 0.16078431904315948), (0.78991597890853882, 0.17647059261798859, 0.17647059261798859), (0.79411762952804565, 0.19215686619281769, 0.19215686619281769), (0.79831933975219727, 0.22352941334247589, 0.22352941334247589), (0.8025209903717041, 0.23529411852359772, 0.23529411852359772), (0.80672270059585571, 0.25098040699958801, 0.25098040699958801), (0.81092435121536255, 0.26666668057441711, 0.26666668057441711), (0.81512606143951416, 0.28235295414924622, 0.28235295414924622), (0.819327712059021, 0.29803922772407532, 0.29803922772407532), (0.82352942228317261, 0.30980393290519714, 0.30980393290519714), (0.82773107290267944, 0.32549020648002625, 0.32549020648002625), (0.83193278312683105, 0.34117648005485535, 0.34117648005485535), (0.83613443374633789, 0.35686275362968445, 0.35686275362968445), (0.8403361439704895, 0.37254902720451355, 0.37254902720451355), (0.84453779458999634, 0.38431373238563538, 0.38431373238563538), (0.84873950481414795, 0.40000000596046448, 0.40000000596046448), (0.85294115543365479, 0.41568627953529358, 0.41568627953529358), (0.8571428656578064, 0.43137255311012268, 0.43137255311012268), (0.86134451627731323, 0.44705882668495178, 0.44705882668495178), (0.86554622650146484, 0.45882353186607361, 0.45882353186607361), (0.86974787712097168, 0.47450980544090271, 0.47450980544090271), (0.87394958734512329, 0.49019607901573181, 0.49019607901573181), (0.87815123796463013, 0.5058823823928833, 0.5058823823928833), (0.88235294818878174, 0.5372549295425415, 0.5372549295425415), (0.88655459880828857, 0.54901963472366333, 0.54901963472366333), (0.89075630903244019, 0.56470590829849243, 0.56470590829849243), (0.89495795965194702, 0.58039218187332153, 0.58039218187332153), (0.89915966987609863, 0.59607845544815063, 0.59607845544815063), (0.90336132049560547, 0.61176472902297974, 0.61176472902297974), (0.90756303071975708, 0.62352943420410156, 0.62352943420410156), (0.91176468133926392, 0.63921570777893066, 0.63921570777893066), (0.91596639156341553, 0.65490198135375977, 0.65490198135375977), (0.92016804218292236, 0.67058825492858887, 0.67058825492858887), (0.92436975240707397, 0.68627452850341797, 0.68627452850341797), (0.92857140302658081, 0.69803923368453979, 0.69803923368453979), (0.93277311325073242, 0.7137255072593689, 0.7137255072593689), (0.93697476387023926, 0.729411780834198, 0.729411780834198), (0.94117647409439087, 0.7450980544090271, 0.7450980544090271), (0.94537812471389771, 0.7607843279838562, 0.7607843279838562), (0.94957983493804932, 0.77254903316497803, 0.77254903316497803), (0.95378148555755615, 0.78823530673980713, 0.78823530673980713), (0.95798319578170776, 0.80392158031463623, 0.80392158031463623), (0.9621848464012146, 0.81960785388946533, 0.81960785388946533), (0.96638655662536621, 0.84705883264541626, 0.84705883264541626), (0.97058820724487305, 0.86274510622024536, 0.86274510622024536), (0.97478991746902466, 0.87843137979507446, 0.87843137979507446), (0.97899156808853149, 0.89411765336990356, 0.89411765336990356), (0.98319327831268311, 0.90980392694473267, 0.90980392694473267), (0.98739492893218994, 0.92156863212585449, 0.92156863212585449), (0.99159663915634155, 0.93725490570068359, 0.93725490570068359), (0.99579828977584839, 0.9529411792755127, 0.9529411792755127), (1.0, 0.9686274528503418, 0.9686274528503418)], 'green': [(0.0, 0.0, 0.0), (0.0042016808874905109, 0.0039215688593685627, 0.0039215688593685627), (0.0084033617749810219, 0.0078431377187371254, 0.0078431377187371254), (0.012605042196810246, 0.011764706112444401, 0.011764706112444401), (0.016806723549962044, 0.015686275437474251, 0.015686275437474251), (0.021008403971791267, 0.019607843831181526, 0.019607843831181526), (0.025210084393620491, 0.023529412224888802, 0.023529412224888802), (0.029411764815449715, 0.027450980618596077, 0.027450980618596077), (0.033613447099924088, 0.031372550874948502, 0.031372550874948502), (0.037815127521753311, 0.035294119268655777, 0.035294119268655777), (0.042016807943582535, 0.043137256056070328, 0.043137256056070328), (0.046218488365411758, 0.047058824449777603, 0.047058824449777603), (0.050420168787240982, 0.050980392843484879, 0.050980392843484879), (0.054621849209070206, 0.054901961237192154, 0.054901961237192154), (0.058823529630899429, 0.058823529630899429, 0.058823529630899429), (0.063025213778018951, 0.062745101749897003, 0.062745101749897003), (0.067226894199848175, 0.066666670143604279, 0.066666670143604279), (0.071428574621677399, 0.070588238537311554, 0.070588238537311554), (0.075630255043506622, 0.074509806931018829, 0.074509806931018829), (0.079831935465335846, 0.078431375324726105, 0.078431375324726105), (0.08403361588716507, 0.08235294371843338, 0.08235294371843338), (0.088235296308994293, 0.086274512112140656, 0.086274512112140656), (0.092436976730823517, 0.090196080505847931, 0.090196080505847931), (0.09663865715265274, 0.094117648899555206, 0.094117648899555206), (0.10084033757448196, 0.098039217293262482, 0.098039217293262482), (0.10504201799631119, 0.10196078568696976, 0.10196078568696976), (0.10924369841814041, 0.10588235408067703, 0.10588235408067703), (0.11344537883996964, 0.10980392247438431, 0.10980392247438431), (0.11764705926179886, 0.11372549086809158, 0.11372549086809158), (0.12184873968362808, 0.11764705926179886, 0.11764705926179886), (0.1260504275560379, 0.12549020349979401, 0.12549020349979401), (0.13025210797786713, 0.12941177189350128, 0.12941177189350128), (0.13445378839969635, 0.13333334028720856, 0.13333334028720856), (0.13865546882152557, 0.13725490868091583, 0.13725490868091583), (0.1428571492433548, 0.14117647707462311, 0.14117647707462311), (0.14705882966518402, 0.14509804546833038, 0.14509804546833038), (0.15126051008701324, 0.14901961386203766, 0.14901961386203766), (0.15546219050884247, 0.15294118225574493, 0.15294118225574493), (0.15966387093067169, 0.15686275064945221, 0.15686275064945221), (0.16386555135250092, 0.16078431904315948, 0.16078431904315948), (0.16806723177433014, 0.16470588743686676, 0.16470588743686676), (0.17226891219615936, 0.16862745583057404, 0.16862745583057404), (0.17647059261798859, 0.17254902422428131, 0.17254902422428131), (0.18067227303981781, 0.17647059261798859, 0.17647059261798859), (0.18487395346164703, 0.18039216101169586, 0.18039216101169586), (0.18907563388347626, 0.18431372940540314, 0.18431372940540314), (0.19327731430530548, 0.18823529779911041, 0.18823529779911041), (0.1974789947271347, 0.19215686619281769, 0.19215686619281769), (0.20168067514896393, 0.19607843458652496, 0.19607843458652496), (0.20588235557079315, 0.20000000298023224, 0.20000000298023224), (0.21008403599262238, 0.20784313976764679, 0.20784313976764679), (0.2142857164144516, 0.21176470816135406, 0.21176470816135406), (0.21848739683628082, 0.21568627655506134, 0.21568627655506134), (0.22268907725811005, 0.21960784494876862, 0.21960784494876862), (0.22689075767993927, 0.22352941334247589, 0.22352941334247589), (0.23109243810176849, 0.22745098173618317, 0.22745098173618317), (0.23529411852359772, 0.23137255012989044, 0.23137255012989044), (0.23949579894542694, 0.23529411852359772, 0.23529411852359772), (0.24369747936725616, 0.23921568691730499, 0.23921568691730499), (0.24789915978908539, 0.24313725531101227, 0.24313725531101227), (0.25210085511207581, 0.25098040699958801, 0.25098040699958801), (0.25630253553390503, 0.25490197539329529, 0.25490197539329529), (0.26050421595573425, 0.25882354378700256, 0.25882354378700256), (0.26470589637756348, 0.26274511218070984, 0.26274511218070984), (0.2689075767993927, 0.26666668057441711, 0.26666668057441711), (0.27310925722122192, 0.27058824896812439, 0.27058824896812439), (0.27731093764305115, 0.27450981736183167, 0.27450981736183167), (0.28151261806488037, 0.27843138575553894, 0.27843138575553894), (0.28571429848670959, 0.28235295414924622, 0.28235295414924622), (0.28991597890853882, 0.28627452254295349, 0.28627452254295349), (0.29411765933036804, 0.29411765933036804, 0.29411765933036804), (0.29831933975219727, 0.29803922772407532, 0.29803922772407532), (0.30252102017402649, 0.30196079611778259, 0.30196079611778259), (0.30672270059585571, 0.30588236451148987, 0.30588236451148987), (0.31092438101768494, 0.30980393290519714, 0.30980393290519714), (0.31512606143951416, 0.31372550129890442, 0.31372550129890442), (0.31932774186134338, 0.31764706969261169, 0.31764706969261169), (0.32352942228317261, 0.32156863808631897, 0.32156863808631897), (0.32773110270500183, 0.32549020648002625, 0.32549020648002625), (0.33193278312683105, 0.32941177487373352, 0.32941177487373352), (0.33613446354866028, 0.3333333432674408, 0.3333333432674408), (0.3403361439704895, 0.33725491166114807, 0.33725491166114807), (0.34453782439231873, 0.34117648005485535, 0.34117648005485535), (0.34873950481414795, 0.34509804844856262, 0.34509804844856262), (0.35294118523597717, 0.3490196168422699, 0.3490196168422699), (0.3571428656578064, 0.35294118523597717, 0.35294118523597717), (0.36134454607963562, 0.35686275362968445, 0.35686275362968445), (0.36554622650146484, 0.36078432202339172, 0.36078432202339172), (0.36974790692329407, 0.364705890417099, 0.364705890417099), (0.37394958734512329, 0.36862745881080627, 0.36862745881080627), (0.37815126776695251, 0.37647059559822083, 0.37647059559822083), (0.38235294818878174, 0.3803921639919281, 0.3803921639919281), (0.38655462861061096, 0.38431373238563538, 0.38431373238563538), (0.39075630903244019, 0.38823530077934265, 0.38823530077934265), (0.39495798945426941, 0.39215686917304993, 0.39215686917304993), (0.39915966987609863, 0.3960784375667572, 0.3960784375667572), (0.40336135029792786, 0.40000000596046448, 0.40000000596046448), (0.40756303071975708, 0.40392157435417175, 0.40392157435417175), (0.4117647111415863, 0.40784314274787903, 0.40784314274787903), (0.41596639156341553, 0.4117647111415863, 0.4117647111415863), (0.42016807198524475, 0.41568627953529358, 0.41568627953529358), (0.42436975240707397, 0.41960784792900085, 0.41960784792900085), (0.4285714328289032, 0.42352941632270813, 0.42352941632270813), (0.43277311325073242, 0.42745098471641541, 0.42745098471641541), (0.43697479367256165, 0.43137255311012268, 0.43137255311012268), (0.44117647409439087, 0.43529412150382996, 0.43529412150382996), (0.44537815451622009, 0.43921568989753723, 0.43921568989753723), (0.44957983493804932, 0.44313725829124451, 0.44313725829124451), (0.45378151535987854, 0.44705882668495178, 0.44705882668495178), (0.45798319578170776, 0.45098039507865906, 0.45098039507865906), (0.46218487620353699, 0.45882353186607361, 0.45882353186607361), (0.46638655662536621, 0.46274510025978088, 0.46274510025978088), (0.47058823704719543, 0.46666666865348816, 0.46666666865348816), (0.47478991746902466, 0.47058823704719543, 0.47058823704719543), (0.47899159789085388, 0.47450980544090271, 0.47450980544090271), (0.48319327831268311, 0.47843137383460999, 0.47843137383460999), (0.48739495873451233, 0.48235294222831726, 0.48235294222831726), (0.49159663915634155, 0.48627451062202454, 0.48627451062202454), (0.49579831957817078, 0.49019607901573181, 0.49019607901573181), (0.5, 0.49411764740943909, 0.49411764740943909), (0.50420171022415161, 0.50196081399917603, 0.50196081399917603), (0.50840336084365845, 0.5058823823928833, 0.5058823823928833), (0.51260507106781006, 0.50980395078659058, 0.50980395078659058), (0.51680672168731689, 0.51372551918029785, 0.51372551918029785), (0.52100843191146851, 0.51764708757400513, 0.51764708757400513), (0.52521008253097534, 0.5215686559677124, 0.5215686559677124), (0.52941179275512695, 0.52549022436141968, 0.52549022436141968), (0.53361344337463379, 0.52941179275512695, 0.52941179275512695), (0.5378151535987854, 0.53333336114883423, 0.53333336114883423), (0.54201680421829224, 0.5372549295425415, 0.5372549295425415), (0.54621851444244385, 0.54509806632995605, 0.54509806632995605), (0.55042016506195068, 0.54901963472366333, 0.54901963472366333), (0.55462187528610229, 0.55294120311737061, 0.55294120311737061), (0.55882352590560913, 0.55686277151107788, 0.55686277151107788), (0.56302523612976074, 0.56078433990478516, 0.56078433990478516), (0.56722688674926758, 0.56470590829849243, 0.56470590829849243), (0.57142859697341919, 0.56862747669219971, 0.56862747669219971), (0.57563024759292603, 0.57254904508590698, 0.57254904508590698), (0.57983195781707764, 0.57647061347961426, 0.57647061347961426), (0.58403360843658447, 0.58039218187332153, 0.58039218187332153), (0.58823531866073608, 0.58431375026702881, 0.58431375026702881), (0.59243696928024292, 0.58823531866073608, 0.58823531866073608), (0.59663867950439453, 0.59215688705444336, 0.59215688705444336), (0.60084033012390137, 0.59607845544815063, 0.59607845544815063), (0.60504204034805298, 0.60000002384185791, 0.60000002384185791), (0.60924369096755981, 0.60392159223556519, 0.60392159223556519), (0.61344540119171143, 0.60784316062927246, 0.60784316062927246), (0.61764705181121826, 0.61176472902297974, 0.61176472902297974), (0.62184876203536987, 0.61568629741668701, 0.61568629741668701), (0.62605041265487671, 0.61960786581039429, 0.61960786581039429), (0.63025212287902832, 0.62745100259780884, 0.62745100259780884), (0.63445377349853516, 0.63137257099151611, 0.63137257099151611), (0.63865548372268677, 0.63529413938522339, 0.63529413938522339), (0.6428571343421936, 0.63921570777893066, 0.63921570777893066), (0.64705884456634521, 0.64313727617263794, 0.64313727617263794), (0.65126049518585205, 0.64705884456634521, 0.64705884456634521), (0.65546220541000366, 0.65098041296005249, 0.65098041296005249), (0.6596638560295105, 0.65490198135375977, 0.65490198135375977), (0.66386556625366211, 0.65882354974746704, 0.65882354974746704), (0.66806721687316895, 0.66274511814117432, 0.66274511814117432), (0.67226892709732056, 0.66666668653488159, 0.66666668653488159), (0.67647057771682739, 0.67058825492858887, 0.67058825492858887), (0.680672287940979, 0.67450982332229614, 0.67450982332229614), (0.68487393856048584, 0.67843139171600342, 0.67843139171600342), (0.68907564878463745, 0.68235296010971069, 0.68235296010971069), (0.69327729940414429, 0.68627452850341797, 0.68627452850341797), (0.6974790096282959, 0.69019609689712524, 0.69019609689712524), (0.70168066024780273, 0.69411766529083252, 0.69411766529083252), (0.70588237047195435, 0.69803923368453979, 0.69803923368453979), (0.71008402109146118, 0.70196080207824707, 0.70196080207824707), (0.71428573131561279, 0.70980393886566162, 0.70980393886566162), (0.71848738193511963, 0.7137255072593689, 0.7137255072593689), (0.72268909215927124, 0.71764707565307617, 0.71764707565307617), (0.72689074277877808, 0.72156864404678345, 0.72156864404678345), (0.73109245300292969, 0.72549021244049072, 0.72549021244049072), (0.73529410362243652, 0.729411780834198, 0.729411780834198), (0.73949581384658813, 0.73333334922790527, 0.73333334922790527), (0.74369746446609497, 0.73725491762161255, 0.73725491762161255), (0.74789917469024658, 0.74117648601531982, 0.74117648601531982), (0.75210082530975342, 0.7450980544090271, 0.7450980544090271), (0.75630253553390503, 0.75294119119644165, 0.75294119119644165), (0.76050418615341187, 0.75686275959014893, 0.75686275959014893), (0.76470589637756348, 0.7607843279838562, 0.7607843279838562), (0.76890754699707031, 0.76470589637756348, 0.76470589637756348), (0.77310925722122192, 0.76862746477127075, 0.76862746477127075), (0.77731090784072876, 0.77254903316497803, 0.77254903316497803), (0.78151261806488037, 0.7764706015586853, 0.7764706015586853), (0.78571426868438721, 0.78039216995239258, 0.78039216995239258), (0.78991597890853882, 0.78431373834609985, 0.78431373834609985), (0.79411762952804565, 0.78823530673980713, 0.78823530673980713), (0.79831933975219727, 0.79607844352722168, 0.79607844352722168), (0.8025209903717041, 0.80000001192092896, 0.80000001192092896), (0.80672270059585571, 0.80392158031463623, 0.80392158031463623), (0.81092435121536255, 0.80784314870834351, 0.80784314870834351), (0.81512606143951416, 0.81176471710205078, 0.81176471710205078), (0.819327712059021, 0.81568628549575806, 0.81568628549575806), (0.82352942228317261, 0.81960785388946533, 0.81960785388946533), (0.82773107290267944, 0.82352942228317261, 0.82352942228317261), (0.83193278312683105, 0.82745099067687988, 0.82745099067687988), (0.83613443374633789, 0.83137255907058716, 0.83137255907058716), (0.8403361439704895, 0.83529412746429443, 0.83529412746429443), (0.84453779458999634, 0.83921569585800171, 0.83921569585800171), (0.84873950481414795, 0.84313726425170898, 0.84313726425170898), (0.85294115543365479, 0.84705883264541626, 0.84705883264541626), (0.8571428656578064, 0.85098040103912354, 0.85098040103912354), (0.86134451627731323, 0.85490196943283081, 0.85490196943283081), (0.86554622650146484, 0.85882353782653809, 0.85882353782653809), (0.86974787712097168, 0.86274510622024536, 0.86274510622024536), (0.87394958734512329, 0.86666667461395264, 0.86666667461395264), (0.87815123796463013, 0.87058824300765991, 0.87058824300765991), (0.88235294818878174, 0.87843137979507446, 0.87843137979507446), (0.88655459880828857, 0.88235294818878174, 0.88235294818878174), (0.89075630903244019, 0.88627451658248901, 0.88627451658248901), (0.89495795965194702, 0.89019608497619629, 0.89019608497619629), (0.89915966987609863, 0.89411765336990356, 0.89411765336990356), (0.90336132049560547, 0.89803922176361084, 0.89803922176361084), (0.90756303071975708, 0.90196079015731812, 0.90196079015731812), (0.91176468133926392, 0.90588235855102539, 0.90588235855102539), (0.91596639156341553, 0.90980392694473267, 0.90980392694473267), (0.92016804218292236, 0.91372549533843994, 0.91372549533843994), (0.92436975240707397, 0.91764706373214722, 0.91764706373214722), (0.92857140302658081, 0.92156863212585449, 0.92156863212585449), (0.93277311325073242, 0.92549020051956177, 0.92549020051956177), (0.93697476387023926, 0.92941176891326904, 0.92941176891326904), (0.94117647409439087, 0.93333333730697632, 0.93333333730697632), (0.94537812471389771, 0.93725490570068359, 0.93725490570068359), (0.94957983493804932, 0.94117647409439087, 0.94117647409439087), (0.95378148555755615, 0.94509804248809814, 0.94509804248809814), (0.95798319578170776, 0.94901961088180542, 0.94901961088180542), (0.9621848464012146, 0.9529411792755127, 0.9529411792755127), (0.96638655662536621, 0.96078431606292725, 0.96078431606292725), (0.97058820724487305, 0.96470588445663452, 0.96470588445663452), (0.97478991746902466, 0.9686274528503418, 0.9686274528503418), (0.97899156808853149, 0.97254902124404907, 0.97254902124404907), (0.98319327831268311, 0.97647058963775635, 0.97647058963775635), (0.98739492893218994, 0.98039215803146362, 0.98039215803146362), (0.99159663915634155, 0.9843137264251709, 0.9843137264251709), (0.99579828977584839, 0.98823529481887817, 0.98823529481887817), (1.0, 0.99215686321258545, 0.99215686321258545)], 'red': [(0.0, 0.0, 0.0), (0.0042016808874905109, 0.070588238537311554, 0.070588238537311554), (0.0084033617749810219, 0.14117647707462311, 0.14117647707462311), (0.012605042196810246, 0.21176470816135406, 0.21176470816135406), (0.016806723549962044, 0.28235295414924622, 0.28235295414924622), (0.021008403971791267, 0.35294118523597717, 0.35294118523597717), (0.025210084393620491, 0.42352941632270813, 0.42352941632270813), (0.029411764815449715, 0.49803921580314636, 0.49803921580314636), (0.033613447099924088, 0.56862747669219971, 0.56862747669219971), (0.037815127521753311, 0.63921570777893066, 0.63921570777893066), (0.042016807943582535, 0.78039216995239258, 0.78039216995239258), (0.046218488365411758, 0.85098040103912354, 0.85098040103912354), (0.050420168787240982, 0.92156863212585449, 0.92156863212585449), (0.054621849209070206, 0.99607843160629272, 0.99607843160629272), (0.058823529630899429, 0.97647058963775635, 0.97647058963775635), (0.063025213778018951, 0.95686274766921997, 0.95686274766921997), (0.067226894199848175, 0.93725490570068359, 0.93725490570068359), (0.071428574621677399, 0.91764706373214722, 0.91764706373214722), (0.075630255043506622, 0.89803922176361084, 0.89803922176361084), (0.079831935465335846, 0.87450981140136719, 0.87450981140136719), (0.08403361588716507, 0.85490196943283081, 0.85490196943283081), (0.088235296308994293, 0.83529412746429443, 0.83529412746429443), (0.092436976730823517, 0.81568628549575806, 0.81568628549575806), (0.09663865715265274, 0.79607844352722168, 0.79607844352722168), (0.10084033757448196, 0.77254903316497803, 0.77254903316497803), (0.10504201799631119, 0.75294119119644165, 0.75294119119644165), (0.10924369841814041, 0.73333334922790527, 0.73333334922790527), (0.11344537883996964, 0.7137255072593689, 0.7137255072593689), (0.11764705926179886, 0.69411766529083252, 0.69411766529083252), (0.12184873968362808, 0.67450982332229614, 0.67450982332229614), (0.1260504275560379, 0.63137257099151611, 0.63137257099151611), (0.13025210797786713, 0.61176472902297974, 0.61176472902297974), (0.13445378839969635, 0.59215688705444336, 0.59215688705444336), (0.13865546882152557, 0.57254904508590698, 0.57254904508590698), (0.1428571492433548, 0.54901963472366333, 0.54901963472366333), (0.14705882966518402, 0.52941179275512695, 0.52941179275512695), (0.15126051008701324, 0.50980395078659058, 0.50980395078659058), (0.15546219050884247, 0.49019607901573181, 0.49019607901573181), (0.15966387093067169, 0.47058823704719543, 0.47058823704719543), (0.16386555135250092, 0.45098039507865906, 0.45098039507865906), (0.16806723177433014, 0.42745098471641541, 0.42745098471641541), (0.17226891219615936, 0.40784314274787903, 0.40784314274787903), (0.17647059261798859, 0.38823530077934265, 0.38823530077934265), (0.18067227303981781, 0.36862745881080627, 0.36862745881080627), (0.18487395346164703, 0.3490196168422699, 0.3490196168422699), (0.18907563388347626, 0.32549020648002625, 0.32549020648002625), (0.19327731430530548, 0.30588236451148987, 0.30588236451148987), (0.1974789947271347, 0.28627452254295349, 0.28627452254295349), (0.20168067514896393, 0.26666668057441711, 0.26666668057441711), (0.20588235557079315, 0.24705882370471954, 0.24705882370471954), (0.21008403599262238, 0.20392157137393951, 0.20392157137393951), (0.2142857164144516, 0.18431372940540314, 0.18431372940540314), (0.21848739683628082, 0.16470588743686676, 0.16470588743686676), (0.22268907725811005, 0.14509804546833038, 0.14509804546833038), (0.22689075767993927, 0.12549020349979401, 0.12549020349979401), (0.23109243810176849, 0.10196078568696976, 0.10196078568696976), (0.23529411852359772, 0.08235294371843338, 0.08235294371843338), (0.23949579894542694, 0.062745101749897003, 0.062745101749897003), (0.24369747936725616, 0.043137256056070328, 0.043137256056070328), (0.24789915978908539, 0.023529412224888802, 0.023529412224888802), (0.25210085511207581, 0.25098040699958801, 0.25098040699958801), (0.25630253553390503, 0.25490197539329529, 0.25490197539329529), (0.26050421595573425, 0.25882354378700256, 0.25882354378700256), (0.26470589637756348, 0.26274511218070984, 0.26274511218070984), (0.2689075767993927, 0.26666668057441711, 0.26666668057441711), (0.27310925722122192, 0.27058824896812439, 0.27058824896812439), (0.27731093764305115, 0.27450981736183167, 0.27450981736183167), (0.28151261806488037, 0.27843138575553894, 0.27843138575553894), (0.28571429848670959, 0.28235295414924622, 0.28235295414924622), (0.28991597890853882, 0.28627452254295349, 0.28627452254295349), (0.29411765933036804, 0.29411765933036804, 0.29411765933036804), (0.29831933975219727, 0.29803922772407532, 0.29803922772407532), (0.30252102017402649, 0.30196079611778259, 0.30196079611778259), (0.30672270059585571, 0.30588236451148987, 0.30588236451148987), (0.31092438101768494, 0.30980393290519714, 0.30980393290519714), (0.31512606143951416, 0.31372550129890442, 0.31372550129890442), (0.31932774186134338, 0.31764706969261169, 0.31764706969261169), (0.32352942228317261, 0.32156863808631897, 0.32156863808631897), (0.32773110270500183, 0.32549020648002625, 0.32549020648002625), (0.33193278312683105, 0.32941177487373352, 0.32941177487373352), (0.33613446354866028, 0.3333333432674408, 0.3333333432674408), (0.3403361439704895, 0.33725491166114807, 0.33725491166114807), (0.34453782439231873, 0.34117648005485535, 0.34117648005485535), (0.34873950481414795, 0.34509804844856262, 0.34509804844856262), (0.35294118523597717, 0.3490196168422699, 0.3490196168422699), (0.3571428656578064, 0.35294118523597717, 0.35294118523597717), (0.36134454607963562, 0.35686275362968445, 0.35686275362968445), (0.36554622650146484, 0.36078432202339172, 0.36078432202339172), (0.36974790692329407, 0.364705890417099, 0.364705890417099), (0.37394958734512329, 0.36862745881080627, 0.36862745881080627), (0.37815126776695251, 0.37647059559822083, 0.37647059559822083), (0.38235294818878174, 0.3803921639919281, 0.3803921639919281), (0.38655462861061096, 0.38431373238563538, 0.38431373238563538), (0.39075630903244019, 0.38823530077934265, 0.38823530077934265), (0.39495798945426941, 0.39215686917304993, 0.39215686917304993), (0.39915966987609863, 0.3960784375667572, 0.3960784375667572), (0.40336135029792786, 0.40000000596046448, 0.40000000596046448), (0.40756303071975708, 0.40392157435417175, 0.40392157435417175), (0.4117647111415863, 0.40784314274787903, 0.40784314274787903), (0.41596639156341553, 0.4117647111415863, 0.4117647111415863), (0.42016807198524475, 0.41568627953529358, 0.41568627953529358), (0.42436975240707397, 0.41960784792900085, 0.41960784792900085), (0.4285714328289032, 0.42352941632270813, 0.42352941632270813), (0.43277311325073242, 0.42745098471641541, 0.42745098471641541), (0.43697479367256165, 0.43137255311012268, 0.43137255311012268), (0.44117647409439087, 0.43529412150382996, 0.43529412150382996), (0.44537815451622009, 0.43921568989753723, 0.43921568989753723), (0.44957983493804932, 0.44313725829124451, 0.44313725829124451), (0.45378151535987854, 0.44705882668495178, 0.44705882668495178), (0.45798319578170776, 0.45098039507865906, 0.45098039507865906), (0.46218487620353699, 0.45882353186607361, 0.45882353186607361), (0.46638655662536621, 0.46274510025978088, 0.46274510025978088), (0.47058823704719543, 0.46666666865348816, 0.46666666865348816), (0.47478991746902466, 0.47058823704719543, 0.47058823704719543), (0.47899159789085388, 0.47450980544090271, 0.47450980544090271), (0.48319327831268311, 0.47843137383460999, 0.47843137383460999), (0.48739495873451233, 0.48235294222831726, 0.48235294222831726), (0.49159663915634155, 0.48627451062202454, 0.48627451062202454), (0.49579831957817078, 0.49019607901573181, 0.49019607901573181), (0.5, 0.49411764740943909, 0.49411764740943909), (0.50420171022415161, 0.50196081399917603, 0.50196081399917603), (0.50840336084365845, 0.5058823823928833, 0.5058823823928833), (0.51260507106781006, 0.50980395078659058, 0.50980395078659058), (0.51680672168731689, 0.51372551918029785, 0.51372551918029785), (0.52100843191146851, 0.51764708757400513, 0.51764708757400513), (0.52521008253097534, 0.5215686559677124, 0.5215686559677124), (0.52941179275512695, 0.52549022436141968, 0.52549022436141968), (0.53361344337463379, 0.52941179275512695, 0.52941179275512695), (0.5378151535987854, 0.53333336114883423, 0.53333336114883423), (0.54201680421829224, 0.5372549295425415, 0.5372549295425415), (0.54621851444244385, 0.54509806632995605, 0.54509806632995605), (0.55042016506195068, 0.54901963472366333, 0.54901963472366333), (0.55462187528610229, 0.55294120311737061, 0.55294120311737061), (0.55882352590560913, 0.55686277151107788, 0.55686277151107788), (0.56302523612976074, 0.56078433990478516, 0.56078433990478516), (0.56722688674926758, 0.56470590829849243, 0.56470590829849243), (0.57142859697341919, 0.56862747669219971, 0.56862747669219971), (0.57563024759292603, 0.57254904508590698, 0.57254904508590698), (0.57983195781707764, 0.57647061347961426, 0.57647061347961426), (0.58403360843658447, 0.58039218187332153, 0.58039218187332153), (0.58823531866073608, 0.58431375026702881, 0.58431375026702881), (0.59243696928024292, 0.58823531866073608, 0.58823531866073608), (0.59663867950439453, 0.59215688705444336, 0.59215688705444336), (0.60084033012390137, 0.59607845544815063, 0.59607845544815063), (0.60504204034805298, 0.60000002384185791, 0.60000002384185791), (0.60924369096755981, 0.60392159223556519, 0.60392159223556519), (0.61344540119171143, 0.60784316062927246, 0.60784316062927246), (0.61764705181121826, 0.61176472902297974, 0.61176472902297974), (0.62184876203536987, 0.61568629741668701, 0.61568629741668701), (0.62605041265487671, 0.61960786581039429, 0.61960786581039429), (0.63025212287902832, 0.62745100259780884, 0.62745100259780884), (0.63445377349853516, 0.63137257099151611, 0.63137257099151611), (0.63865548372268677, 0.63529413938522339, 0.63529413938522339), (0.6428571343421936, 0.63921570777893066, 0.63921570777893066), (0.64705884456634521, 0.64313727617263794, 0.64313727617263794), (0.65126049518585205, 0.64705884456634521, 0.64705884456634521), (0.65546220541000366, 0.65098041296005249, 0.65098041296005249), (0.6596638560295105, 0.65490198135375977, 0.65490198135375977), (0.66386556625366211, 0.65882354974746704, 0.65882354974746704), (0.66806721687316895, 0.66274511814117432, 0.66274511814117432), (0.67226892709732056, 0.66666668653488159, 0.66666668653488159), (0.67647057771682739, 0.67058825492858887, 0.67058825492858887), (0.680672287940979, 0.67450982332229614, 0.67450982332229614), (0.68487393856048584, 0.67843139171600342, 0.67843139171600342), (0.68907564878463745, 0.68235296010971069, 0.68235296010971069), (0.69327729940414429, 0.68627452850341797, 0.68627452850341797), (0.6974790096282959, 0.69019609689712524, 0.69019609689712524), (0.70168066024780273, 0.69411766529083252, 0.69411766529083252), (0.70588237047195435, 0.69803923368453979, 0.69803923368453979), (0.71008402109146118, 0.70196080207824707, 0.70196080207824707), (0.71428573131561279, 0.70980393886566162, 0.70980393886566162), (0.71848738193511963, 0.7137255072593689, 0.7137255072593689), (0.72268909215927124, 0.71764707565307617, 0.71764707565307617), (0.72689074277877808, 0.72156864404678345, 0.72156864404678345), (0.73109245300292969, 0.72549021244049072, 0.72549021244049072), (0.73529410362243652, 0.729411780834198, 0.729411780834198), (0.73949581384658813, 0.73333334922790527, 0.73333334922790527), (0.74369746446609497, 0.73725491762161255, 0.73725491762161255), (0.74789917469024658, 0.74117648601531982, 0.74117648601531982), (0.75210082530975342, 0.7450980544090271, 0.7450980544090271), (0.75630253553390503, 0.75294119119644165, 0.75294119119644165), (0.76050418615341187, 0.75686275959014893, 0.75686275959014893), (0.76470589637756348, 0.7607843279838562, 0.7607843279838562), (0.76890754699707031, 0.76470589637756348, 0.76470589637756348), (0.77310925722122192, 0.76862746477127075, 0.76862746477127075), (0.77731090784072876, 0.77254903316497803, 0.77254903316497803), (0.78151261806488037, 0.7764706015586853, 0.7764706015586853), (0.78571426868438721, 0.78039216995239258, 0.78039216995239258), (0.78991597890853882, 0.78431373834609985, 0.78431373834609985), (0.79411762952804565, 0.78823530673980713, 0.78823530673980713), (0.79831933975219727, 0.79607844352722168, 0.79607844352722168), (0.8025209903717041, 0.80000001192092896, 0.80000001192092896), (0.80672270059585571, 0.80392158031463623, 0.80392158031463623), (0.81092435121536255, 0.80784314870834351, 0.80784314870834351), (0.81512606143951416, 0.81176471710205078, 0.81176471710205078), (0.819327712059021, 0.81568628549575806, 0.81568628549575806), (0.82352942228317261, 0.81960785388946533, 0.81960785388946533), (0.82773107290267944, 0.82352942228317261, 0.82352942228317261), (0.83193278312683105, 0.82745099067687988, 0.82745099067687988), (0.83613443374633789, 0.83137255907058716, 0.83137255907058716), (0.8403361439704895, 0.83529412746429443, 0.83529412746429443), (0.84453779458999634, 0.83921569585800171, 0.83921569585800171), (0.84873950481414795, 0.84313726425170898, 0.84313726425170898), (0.85294115543365479, 0.84705883264541626, 0.84705883264541626), (0.8571428656578064, 0.85098040103912354, 0.85098040103912354), (0.86134451627731323, 0.85490196943283081, 0.85490196943283081), (0.86554622650146484, 0.85882353782653809, 0.85882353782653809), (0.86974787712097168, 0.86274510622024536, 0.86274510622024536), (0.87394958734512329, 0.86666667461395264, 0.86666667461395264), (0.87815123796463013, 0.87058824300765991, 0.87058824300765991), (0.88235294818878174, 0.87843137979507446, 0.87843137979507446), (0.88655459880828857, 0.88235294818878174, 0.88235294818878174), (0.89075630903244019, 0.88627451658248901, 0.88627451658248901), (0.89495795965194702, 0.89019608497619629, 0.89019608497619629), (0.89915966987609863, 0.89411765336990356, 0.89411765336990356), (0.90336132049560547, 0.89803922176361084, 0.89803922176361084), (0.90756303071975708, 0.90196079015731812, 0.90196079015731812), (0.91176468133926392, 0.90588235855102539, 0.90588235855102539), (0.91596639156341553, 0.90980392694473267, 0.90980392694473267), (0.92016804218292236, 0.91372549533843994, 0.91372549533843994), (0.92436975240707397, 0.91764706373214722, 0.91764706373214722), (0.92857140302658081, 0.92156863212585449, 0.92156863212585449), (0.93277311325073242, 0.92549020051956177, 0.92549020051956177), (0.93697476387023926, 0.92941176891326904, 0.92941176891326904), (0.94117647409439087, 0.93333333730697632, 0.93333333730697632), (0.94537812471389771, 0.93725490570068359, 0.93725490570068359), (0.94957983493804932, 0.94117647409439087, 0.94117647409439087), (0.95378148555755615, 0.94509804248809814, 0.94509804248809814), (0.95798319578170776, 0.94901961088180542, 0.94901961088180542), (0.9621848464012146, 0.9529411792755127, 0.9529411792755127), (0.96638655662536621, 0.96078431606292725, 0.96078431606292725), (0.97058820724487305, 0.96470588445663452, 0.96470588445663452), (0.97478991746902466, 0.9686274528503418, 0.9686274528503418), (0.97899156808853149, 0.97254902124404907, 0.97254902124404907), (0.98319327831268311, 0.97647058963775635, 0.97647058963775635), (0.98739492893218994, 0.98039215803146362, 0.98039215803146362), (0.99159663915634155, 0.9843137264251709, 0.9843137264251709), (0.99579828977584839, 0.98823529481887817, 0.98823529481887817), (1.0, 0.99215686321258545, 0.99215686321258545)]} _gist_yarg_data = {'blue': [(0.0, 1.0, 1.0), (0.0042016808874905109, 0.99607843160629272, 0.99607843160629272), (0.0084033617749810219, 0.99215686321258545, 0.99215686321258545), (0.012605042196810246, 0.98823529481887817, 0.98823529481887817), (0.016806723549962044, 0.9843137264251709, 0.9843137264251709), (0.021008403971791267, 0.98039215803146362, 0.98039215803146362), (0.025210084393620491, 0.97647058963775635, 0.97647058963775635), (0.029411764815449715, 0.97254902124404907, 0.97254902124404907), (0.033613447099924088, 0.96470588445663452, 0.96470588445663452), (0.037815127521753311, 0.96078431606292725, 0.96078431606292725), (0.042016807943582535, 0.95686274766921997, 0.95686274766921997), (0.046218488365411758, 0.9529411792755127, 0.9529411792755127), (0.050420168787240982, 0.94901961088180542, 0.94901961088180542), (0.054621849209070206, 0.94509804248809814, 0.94509804248809814), (0.058823529630899429, 0.94117647409439087, 0.94117647409439087), (0.063025213778018951, 0.93725490570068359, 0.93725490570068359), (0.067226894199848175, 0.93333333730697632, 0.93333333730697632), (0.071428574621677399, 0.92941176891326904, 0.92941176891326904), (0.075630255043506622, 0.92549020051956177, 0.92549020051956177), (0.079831935465335846, 0.92156863212585449, 0.92156863212585449), (0.08403361588716507, 0.91764706373214722, 0.91764706373214722), (0.088235296308994293, 0.91372549533843994, 0.91372549533843994), (0.092436976730823517, 0.90980392694473267, 0.90980392694473267), (0.09663865715265274, 0.90196079015731812, 0.90196079015731812), (0.10084033757448196, 0.89803922176361084, 0.89803922176361084), (0.10504201799631119, 0.89411765336990356, 0.89411765336990356), (0.10924369841814041, 0.89019608497619629, 0.89019608497619629), (0.11344537883996964, 0.88627451658248901, 0.88627451658248901), (0.11764705926179886, 0.88235294818878174, 0.88235294818878174), (0.12184873968362808, 0.87843137979507446, 0.87843137979507446), (0.1260504275560379, 0.87450981140136719, 0.87450981140136719), (0.13025210797786713, 0.87058824300765991, 0.87058824300765991), (0.13445378839969635, 0.86666667461395264, 0.86666667461395264), (0.13865546882152557, 0.86274510622024536, 0.86274510622024536), (0.1428571492433548, 0.85882353782653809, 0.85882353782653809), (0.14705882966518402, 0.85490196943283081, 0.85490196943283081), (0.15126051008701324, 0.85098040103912354, 0.85098040103912354), (0.15546219050884247, 0.84705883264541626, 0.84705883264541626), (0.15966387093067169, 0.83921569585800171, 0.83921569585800171), (0.16386555135250092, 0.83529412746429443, 0.83529412746429443), (0.16806723177433014, 0.83137255907058716, 0.83137255907058716), (0.17226891219615936, 0.82745099067687988, 0.82745099067687988), (0.17647059261798859, 0.82352942228317261, 0.82352942228317261), (0.18067227303981781, 0.81960785388946533, 0.81960785388946533), (0.18487395346164703, 0.81568628549575806, 0.81568628549575806), (0.18907563388347626, 0.81176471710205078, 0.81176471710205078), (0.19327731430530548, 0.80784314870834351, 0.80784314870834351), (0.1974789947271347, 0.80392158031463623, 0.80392158031463623), (0.20168067514896393, 0.80000001192092896, 0.80000001192092896), (0.20588235557079315, 0.79607844352722168, 0.79607844352722168), (0.21008403599262238, 0.7921568751335144, 0.7921568751335144), (0.2142857164144516, 0.78823530673980713, 0.78823530673980713), (0.21848739683628082, 0.78431373834609985, 0.78431373834609985), (0.22268907725811005, 0.7764706015586853, 0.7764706015586853), (0.22689075767993927, 0.77254903316497803, 0.77254903316497803), (0.23109243810176849, 0.76862746477127075, 0.76862746477127075), (0.23529411852359772, 0.76470589637756348, 0.76470589637756348), (0.23949579894542694, 0.7607843279838562, 0.7607843279838562), (0.24369747936725616, 0.75686275959014893, 0.75686275959014893), (0.24789915978908539, 0.75294119119644165, 0.75294119119644165), (0.25210085511207581, 0.74901962280273438, 0.74901962280273438), (0.25630253553390503, 0.7450980544090271, 0.7450980544090271), (0.26050421595573425, 0.74117648601531982, 0.74117648601531982), (0.26470589637756348, 0.73725491762161255, 0.73725491762161255), (0.2689075767993927, 0.73333334922790527, 0.73333334922790527), (0.27310925722122192, 0.729411780834198, 0.729411780834198), (0.27731093764305115, 0.72549021244049072, 0.72549021244049072), (0.28151261806488037, 0.72156864404678345, 0.72156864404678345), (0.28571429848670959, 0.7137255072593689, 0.7137255072593689), (0.28991597890853882, 0.70980393886566162, 0.70980393886566162), (0.29411765933036804, 0.70588237047195435, 0.70588237047195435), (0.29831933975219727, 0.70196080207824707, 0.70196080207824707), (0.30252102017402649, 0.69803923368453979, 0.69803923368453979), (0.30672270059585571, 0.69411766529083252, 0.69411766529083252), (0.31092438101768494, 0.69019609689712524, 0.69019609689712524), (0.31512606143951416, 0.68627452850341797, 0.68627452850341797), (0.31932774186134338, 0.68235296010971069, 0.68235296010971069), (0.32352942228317261, 0.67843139171600342, 0.67843139171600342), (0.32773110270500183, 0.67450982332229614, 0.67450982332229614), (0.33193278312683105, 0.67058825492858887, 0.67058825492858887), (0.33613446354866028, 0.66666668653488159, 0.66666668653488159), (0.3403361439704895, 0.66274511814117432, 0.66274511814117432), (0.34453782439231873, 0.65882354974746704, 0.65882354974746704), (0.34873950481414795, 0.65098041296005249, 0.65098041296005249), (0.35294118523597717, 0.64705884456634521, 0.64705884456634521), (0.3571428656578064, 0.64313727617263794, 0.64313727617263794), (0.36134454607963562, 0.63921570777893066, 0.63921570777893066), (0.36554622650146484, 0.63529413938522339, 0.63529413938522339), (0.36974790692329407, 0.63137257099151611, 0.63137257099151611), (0.37394958734512329, 0.62745100259780884, 0.62745100259780884), (0.37815126776695251, 0.62352943420410156, 0.62352943420410156), (0.38235294818878174, 0.61960786581039429, 0.61960786581039429), (0.38655462861061096, 0.61568629741668701, 0.61568629741668701), (0.39075630903244019, 0.61176472902297974, 0.61176472902297974), (0.39495798945426941, 0.60784316062927246, 0.60784316062927246), (0.39915966987609863, 0.60392159223556519, 0.60392159223556519), (0.40336135029792786, 0.60000002384185791, 0.60000002384185791), (0.40756303071975708, 0.59607845544815063, 0.59607845544815063), (0.4117647111415863, 0.58823531866073608, 0.58823531866073608), (0.41596639156341553, 0.58431375026702881, 0.58431375026702881), (0.42016807198524475, 0.58039218187332153, 0.58039218187332153), (0.42436975240707397, 0.57647061347961426, 0.57647061347961426), (0.4285714328289032, 0.57254904508590698, 0.57254904508590698), (0.43277311325073242, 0.56862747669219971, 0.56862747669219971), (0.43697479367256165, 0.56470590829849243, 0.56470590829849243), (0.44117647409439087, 0.56078433990478516, 0.56078433990478516), (0.44537815451622009, 0.55686277151107788, 0.55686277151107788), (0.44957983493804932, 0.55294120311737061, 0.55294120311737061), (0.45378151535987854, 0.54901963472366333, 0.54901963472366333), (0.45798319578170776, 0.54509806632995605, 0.54509806632995605), (0.46218487620353699, 0.54117649793624878, 0.54117649793624878), (0.46638655662536621, 0.5372549295425415, 0.5372549295425415), (0.47058823704719543, 0.53333336114883423, 0.53333336114883423), (0.47478991746902466, 0.52549022436141968, 0.52549022436141968), (0.47899159789085388, 0.5215686559677124, 0.5215686559677124), (0.48319327831268311, 0.51764708757400513, 0.51764708757400513), (0.48739495873451233, 0.51372551918029785, 0.51372551918029785), (0.49159663915634155, 0.50980395078659058, 0.50980395078659058), (0.49579831957817078, 0.5058823823928833, 0.5058823823928833), (0.5, 0.50196081399917603, 0.50196081399917603), (0.50420171022415161, 0.49803921580314636, 0.49803921580314636), (0.50840336084365845, 0.49411764740943909, 0.49411764740943909), (0.51260507106781006, 0.49019607901573181, 0.49019607901573181), (0.51680672168731689, 0.48627451062202454, 0.48627451062202454), (0.52100843191146851, 0.48235294222831726, 0.48235294222831726), (0.52521008253097534, 0.47843137383460999, 0.47843137383460999), (0.52941179275512695, 0.47450980544090271, 0.47450980544090271), (0.53361344337463379, 0.47058823704719543, 0.47058823704719543), (0.5378151535987854, 0.46274510025978088, 0.46274510025978088), (0.54201680421829224, 0.45882353186607361, 0.45882353186607361), (0.54621851444244385, 0.45490196347236633, 0.45490196347236633), (0.55042016506195068, 0.45098039507865906, 0.45098039507865906), (0.55462187528610229, 0.44705882668495178, 0.44705882668495178), (0.55882352590560913, 0.44313725829124451, 0.44313725829124451), (0.56302523612976074, 0.43921568989753723, 0.43921568989753723), (0.56722688674926758, 0.43529412150382996, 0.43529412150382996), (0.57142859697341919, 0.43137255311012268, 0.43137255311012268), (0.57563024759292603, 0.42745098471641541, 0.42745098471641541), (0.57983195781707764, 0.42352941632270813, 0.42352941632270813), (0.58403360843658447, 0.41960784792900085, 0.41960784792900085), (0.58823531866073608, 0.41568627953529358, 0.41568627953529358), (0.59243696928024292, 0.4117647111415863, 0.4117647111415863), (0.59663867950439453, 0.40784314274787903, 0.40784314274787903), (0.60084033012390137, 0.40000000596046448, 0.40000000596046448), (0.60504204034805298, 0.3960784375667572, 0.3960784375667572), (0.60924369096755981, 0.39215686917304993, 0.39215686917304993), (0.61344540119171143, 0.38823530077934265, 0.38823530077934265), (0.61764705181121826, 0.38431373238563538, 0.38431373238563538), (0.62184876203536987, 0.3803921639919281, 0.3803921639919281), (0.62605041265487671, 0.37647059559822083, 0.37647059559822083), (0.63025212287902832, 0.37254902720451355, 0.37254902720451355), (0.63445377349853516, 0.36862745881080627, 0.36862745881080627), (0.63865548372268677, 0.364705890417099, 0.364705890417099), (0.6428571343421936, 0.36078432202339172, 0.36078432202339172), (0.64705884456634521, 0.35686275362968445, 0.35686275362968445), (0.65126049518585205, 0.35294118523597717, 0.35294118523597717), (0.65546220541000366, 0.3490196168422699, 0.3490196168422699), (0.6596638560295105, 0.34509804844856262, 0.34509804844856262), (0.66386556625366211, 0.33725491166114807, 0.33725491166114807), (0.66806721687316895, 0.3333333432674408, 0.3333333432674408), (0.67226892709732056, 0.32941177487373352, 0.32941177487373352), (0.67647057771682739, 0.32549020648002625, 0.32549020648002625), (0.680672287940979, 0.32156863808631897, 0.32156863808631897), (0.68487393856048584, 0.31764706969261169, 0.31764706969261169), (0.68907564878463745, 0.31372550129890442, 0.31372550129890442), (0.69327729940414429, 0.30980393290519714, 0.30980393290519714), (0.6974790096282959, 0.30588236451148987, 0.30588236451148987), (0.70168066024780273, 0.30196079611778259, 0.30196079611778259), (0.70588237047195435, 0.29803922772407532, 0.29803922772407532), (0.71008402109146118, 0.29411765933036804, 0.29411765933036804), (0.71428573131561279, 0.29019609093666077, 0.29019609093666077), (0.71848738193511963, 0.28627452254295349, 0.28627452254295349), (0.72268909215927124, 0.28235295414924622, 0.28235295414924622), (0.72689074277877808, 0.27450981736183167, 0.27450981736183167), (0.73109245300292969, 0.27058824896812439, 0.27058824896812439), (0.73529410362243652, 0.26666668057441711, 0.26666668057441711), (0.73949581384658813, 0.26274511218070984, 0.26274511218070984), (0.74369746446609497, 0.25882354378700256, 0.25882354378700256), (0.74789917469024658, 0.25490197539329529, 0.25490197539329529), (0.75210082530975342, 0.25098040699958801, 0.25098040699958801), (0.75630253553390503, 0.24705882370471954, 0.24705882370471954), (0.76050418615341187, 0.24313725531101227, 0.24313725531101227), (0.76470589637756348, 0.23921568691730499, 0.23921568691730499), (0.76890754699707031, 0.23529411852359772, 0.23529411852359772), (0.77310925722122192, 0.23137255012989044, 0.23137255012989044), (0.77731090784072876, 0.22745098173618317, 0.22745098173618317), (0.78151261806488037, 0.22352941334247589, 0.22352941334247589), (0.78571426868438721, 0.21960784494876862, 0.21960784494876862), (0.78991597890853882, 0.21176470816135406, 0.21176470816135406), (0.79411762952804565, 0.20784313976764679, 0.20784313976764679), (0.79831933975219727, 0.20392157137393951, 0.20392157137393951), (0.8025209903717041, 0.20000000298023224, 0.20000000298023224), (0.80672270059585571, 0.19607843458652496, 0.19607843458652496), (0.81092435121536255, 0.19215686619281769, 0.19215686619281769), (0.81512606143951416, 0.18823529779911041, 0.18823529779911041), (0.819327712059021, 0.18431372940540314, 0.18431372940540314), (0.82352942228317261, 0.18039216101169586, 0.18039216101169586), (0.82773107290267944, 0.17647059261798859, 0.17647059261798859), (0.83193278312683105, 0.17254902422428131, 0.17254902422428131), (0.83613443374633789, 0.16862745583057404, 0.16862745583057404), (0.8403361439704895, 0.16470588743686676, 0.16470588743686676), (0.84453779458999634, 0.16078431904315948, 0.16078431904315948), (0.84873950481414795, 0.15686275064945221, 0.15686275064945221), (0.85294115543365479, 0.14901961386203766, 0.14901961386203766), (0.8571428656578064, 0.14509804546833038, 0.14509804546833038), (0.86134451627731323, 0.14117647707462311, 0.14117647707462311), (0.86554622650146484, 0.13725490868091583, 0.13725490868091583), (0.86974787712097168, 0.13333334028720856, 0.13333334028720856), (0.87394958734512329, 0.12941177189350128, 0.12941177189350128), (0.87815123796463013, 0.12549020349979401, 0.12549020349979401), (0.88235294818878174, 0.12156862765550613, 0.12156862765550613), (0.88655459880828857, 0.11764705926179886, 0.11764705926179886), (0.89075630903244019, 0.11372549086809158, 0.11372549086809158), (0.89495795965194702, 0.10980392247438431, 0.10980392247438431), (0.89915966987609863, 0.10588235408067703, 0.10588235408067703), (0.90336132049560547, 0.10196078568696976, 0.10196078568696976), (0.90756303071975708, 0.098039217293262482, 0.098039217293262482), (0.91176468133926392, 0.094117648899555206, 0.094117648899555206), (0.91596639156341553, 0.086274512112140656, 0.086274512112140656), (0.92016804218292236, 0.08235294371843338, 0.08235294371843338), (0.92436975240707397, 0.078431375324726105, 0.078431375324726105), (0.92857140302658081, 0.074509806931018829, 0.074509806931018829), (0.93277311325073242, 0.070588238537311554, 0.070588238537311554), (0.93697476387023926, 0.066666670143604279, 0.066666670143604279), (0.94117647409439087, 0.062745101749897003, 0.062745101749897003), (0.94537812471389771, 0.058823529630899429, 0.058823529630899429), (0.94957983493804932, 0.054901961237192154, 0.054901961237192154), (0.95378148555755615, 0.050980392843484879, 0.050980392843484879), (0.95798319578170776, 0.047058824449777603, 0.047058824449777603), (0.9621848464012146, 0.043137256056070328, 0.043137256056070328), (0.96638655662536621, 0.039215687662363052, 0.039215687662363052), (0.97058820724487305, 0.035294119268655777, 0.035294119268655777), (0.97478991746902466, 0.031372550874948502, 0.031372550874948502), (0.97899156808853149, 0.023529412224888802, 0.023529412224888802), (0.98319327831268311, 0.019607843831181526, 0.019607843831181526), (0.98739492893218994, 0.015686275437474251, 0.015686275437474251), (0.99159663915634155, 0.011764706112444401, 0.011764706112444401), (0.99579828977584839, 0.0078431377187371254, 0.0078431377187371254), (1.0, 0.0039215688593685627, 0.0039215688593685627)], 'green': [(0.0, 1.0, 1.0), (0.0042016808874905109, 0.99607843160629272, 0.99607843160629272), (0.0084033617749810219, 0.99215686321258545, 0.99215686321258545), (0.012605042196810246, 0.98823529481887817, 0.98823529481887817), (0.016806723549962044, 0.9843137264251709, 0.9843137264251709), (0.021008403971791267, 0.98039215803146362, 0.98039215803146362), (0.025210084393620491, 0.97647058963775635, 0.97647058963775635), (0.029411764815449715, 0.97254902124404907, 0.97254902124404907), (0.033613447099924088, 0.96470588445663452, 0.96470588445663452), (0.037815127521753311, 0.96078431606292725, 0.96078431606292725), (0.042016807943582535, 0.95686274766921997, 0.95686274766921997), (0.046218488365411758, 0.9529411792755127, 0.9529411792755127), (0.050420168787240982, 0.94901961088180542, 0.94901961088180542), (0.054621849209070206, 0.94509804248809814, 0.94509804248809814), (0.058823529630899429, 0.94117647409439087, 0.94117647409439087), (0.063025213778018951, 0.93725490570068359, 0.93725490570068359), (0.067226894199848175, 0.93333333730697632, 0.93333333730697632), (0.071428574621677399, 0.92941176891326904, 0.92941176891326904), (0.075630255043506622, 0.92549020051956177, 0.92549020051956177), (0.079831935465335846, 0.92156863212585449, 0.92156863212585449), (0.08403361588716507, 0.91764706373214722, 0.91764706373214722), (0.088235296308994293, 0.91372549533843994, 0.91372549533843994), (0.092436976730823517, 0.90980392694473267, 0.90980392694473267), (0.09663865715265274, 0.90196079015731812, 0.90196079015731812), (0.10084033757448196, 0.89803922176361084, 0.89803922176361084), (0.10504201799631119, 0.89411765336990356, 0.89411765336990356), (0.10924369841814041, 0.89019608497619629, 0.89019608497619629), (0.11344537883996964, 0.88627451658248901, 0.88627451658248901), (0.11764705926179886, 0.88235294818878174, 0.88235294818878174), (0.12184873968362808, 0.87843137979507446, 0.87843137979507446), (0.1260504275560379, 0.87450981140136719, 0.87450981140136719), (0.13025210797786713, 0.87058824300765991, 0.87058824300765991), (0.13445378839969635, 0.86666667461395264, 0.86666667461395264), (0.13865546882152557, 0.86274510622024536, 0.86274510622024536), (0.1428571492433548, 0.85882353782653809, 0.85882353782653809), (0.14705882966518402, 0.85490196943283081, 0.85490196943283081), (0.15126051008701324, 0.85098040103912354, 0.85098040103912354), (0.15546219050884247, 0.84705883264541626, 0.84705883264541626), (0.15966387093067169, 0.83921569585800171, 0.83921569585800171), (0.16386555135250092, 0.83529412746429443, 0.83529412746429443), (0.16806723177433014, 0.83137255907058716, 0.83137255907058716), (0.17226891219615936, 0.82745099067687988, 0.82745099067687988), (0.17647059261798859, 0.82352942228317261, 0.82352942228317261), (0.18067227303981781, 0.81960785388946533, 0.81960785388946533), (0.18487395346164703, 0.81568628549575806, 0.81568628549575806), (0.18907563388347626, 0.81176471710205078, 0.81176471710205078), (0.19327731430530548, 0.80784314870834351, 0.80784314870834351), (0.1974789947271347, 0.80392158031463623, 0.80392158031463623), (0.20168067514896393, 0.80000001192092896, 0.80000001192092896), (0.20588235557079315, 0.79607844352722168, 0.79607844352722168), (0.21008403599262238, 0.7921568751335144, 0.7921568751335144), (0.2142857164144516, 0.78823530673980713, 0.78823530673980713), (0.21848739683628082, 0.78431373834609985, 0.78431373834609985), (0.22268907725811005, 0.7764706015586853, 0.7764706015586853), (0.22689075767993927, 0.77254903316497803, 0.77254903316497803), (0.23109243810176849, 0.76862746477127075, 0.76862746477127075), (0.23529411852359772, 0.76470589637756348, 0.76470589637756348), (0.23949579894542694, 0.7607843279838562, 0.7607843279838562), (0.24369747936725616, 0.75686275959014893, 0.75686275959014893), (0.24789915978908539, 0.75294119119644165, 0.75294119119644165), (0.25210085511207581, 0.74901962280273438, 0.74901962280273438), (0.25630253553390503, 0.7450980544090271, 0.7450980544090271), (0.26050421595573425, 0.74117648601531982, 0.74117648601531982), (0.26470589637756348, 0.73725491762161255, 0.73725491762161255), (0.2689075767993927, 0.73333334922790527, 0.73333334922790527), (0.27310925722122192, 0.729411780834198, 0.729411780834198), (0.27731093764305115, 0.72549021244049072, 0.72549021244049072), (0.28151261806488037, 0.72156864404678345, 0.72156864404678345), (0.28571429848670959, 0.7137255072593689, 0.7137255072593689), (0.28991597890853882, 0.70980393886566162, 0.70980393886566162), (0.29411765933036804, 0.70588237047195435, 0.70588237047195435), (0.29831933975219727, 0.70196080207824707, 0.70196080207824707), (0.30252102017402649, 0.69803923368453979, 0.69803923368453979), (0.30672270059585571, 0.69411766529083252, 0.69411766529083252), (0.31092438101768494, 0.69019609689712524, 0.69019609689712524), (0.31512606143951416, 0.68627452850341797, 0.68627452850341797), (0.31932774186134338, 0.68235296010971069, 0.68235296010971069), (0.32352942228317261, 0.67843139171600342, 0.67843139171600342), (0.32773110270500183, 0.67450982332229614, 0.67450982332229614), (0.33193278312683105, 0.67058825492858887, 0.67058825492858887), (0.33613446354866028, 0.66666668653488159, 0.66666668653488159), (0.3403361439704895, 0.66274511814117432, 0.66274511814117432), (0.34453782439231873, 0.65882354974746704, 0.65882354974746704), (0.34873950481414795, 0.65098041296005249, 0.65098041296005249), (0.35294118523597717, 0.64705884456634521, 0.64705884456634521), (0.3571428656578064, 0.64313727617263794, 0.64313727617263794), (0.36134454607963562, 0.63921570777893066, 0.63921570777893066), (0.36554622650146484, 0.63529413938522339, 0.63529413938522339), (0.36974790692329407, 0.63137257099151611, 0.63137257099151611), (0.37394958734512329, 0.62745100259780884, 0.62745100259780884), (0.37815126776695251, 0.62352943420410156, 0.62352943420410156), (0.38235294818878174, 0.61960786581039429, 0.61960786581039429), (0.38655462861061096, 0.61568629741668701, 0.61568629741668701), (0.39075630903244019, 0.61176472902297974, 0.61176472902297974), (0.39495798945426941, 0.60784316062927246, 0.60784316062927246), (0.39915966987609863, 0.60392159223556519, 0.60392159223556519), (0.40336135029792786, 0.60000002384185791, 0.60000002384185791), (0.40756303071975708, 0.59607845544815063, 0.59607845544815063), (0.4117647111415863, 0.58823531866073608, 0.58823531866073608), (0.41596639156341553, 0.58431375026702881, 0.58431375026702881), (0.42016807198524475, 0.58039218187332153, 0.58039218187332153), (0.42436975240707397, 0.57647061347961426, 0.57647061347961426), (0.4285714328289032, 0.57254904508590698, 0.57254904508590698), (0.43277311325073242, 0.56862747669219971, 0.56862747669219971), (0.43697479367256165, 0.56470590829849243, 0.56470590829849243), (0.44117647409439087, 0.56078433990478516, 0.56078433990478516), (0.44537815451622009, 0.55686277151107788, 0.55686277151107788), (0.44957983493804932, 0.55294120311737061, 0.55294120311737061), (0.45378151535987854, 0.54901963472366333, 0.54901963472366333), (0.45798319578170776, 0.54509806632995605, 0.54509806632995605), (0.46218487620353699, 0.54117649793624878, 0.54117649793624878), (0.46638655662536621, 0.5372549295425415, 0.5372549295425415), (0.47058823704719543, 0.53333336114883423, 0.53333336114883423), (0.47478991746902466, 0.52549022436141968, 0.52549022436141968), (0.47899159789085388, 0.5215686559677124, 0.5215686559677124), (0.48319327831268311, 0.51764708757400513, 0.51764708757400513), (0.48739495873451233, 0.51372551918029785, 0.51372551918029785), (0.49159663915634155, 0.50980395078659058, 0.50980395078659058), (0.49579831957817078, 0.5058823823928833, 0.5058823823928833), (0.5, 0.50196081399917603, 0.50196081399917603), (0.50420171022415161, 0.49803921580314636, 0.49803921580314636), (0.50840336084365845, 0.49411764740943909, 0.49411764740943909), (0.51260507106781006, 0.49019607901573181, 0.49019607901573181), (0.51680672168731689, 0.48627451062202454, 0.48627451062202454), (0.52100843191146851, 0.48235294222831726, 0.48235294222831726), (0.52521008253097534, 0.47843137383460999, 0.47843137383460999), (0.52941179275512695, 0.47450980544090271, 0.47450980544090271), (0.53361344337463379, 0.47058823704719543, 0.47058823704719543), (0.5378151535987854, 0.46274510025978088, 0.46274510025978088), (0.54201680421829224, 0.45882353186607361, 0.45882353186607361), (0.54621851444244385, 0.45490196347236633, 0.45490196347236633), (0.55042016506195068, 0.45098039507865906, 0.45098039507865906), (0.55462187528610229, 0.44705882668495178, 0.44705882668495178), (0.55882352590560913, 0.44313725829124451, 0.44313725829124451), (0.56302523612976074, 0.43921568989753723, 0.43921568989753723), (0.56722688674926758, 0.43529412150382996, 0.43529412150382996), (0.57142859697341919, 0.43137255311012268, 0.43137255311012268), (0.57563024759292603, 0.42745098471641541, 0.42745098471641541), (0.57983195781707764, 0.42352941632270813, 0.42352941632270813), (0.58403360843658447, 0.41960784792900085, 0.41960784792900085), (0.58823531866073608, 0.41568627953529358, 0.41568627953529358), (0.59243696928024292, 0.4117647111415863, 0.4117647111415863), (0.59663867950439453, 0.40784314274787903, 0.40784314274787903), (0.60084033012390137, 0.40000000596046448, 0.40000000596046448), (0.60504204034805298, 0.3960784375667572, 0.3960784375667572), (0.60924369096755981, 0.39215686917304993, 0.39215686917304993), (0.61344540119171143, 0.38823530077934265, 0.38823530077934265), (0.61764705181121826, 0.38431373238563538, 0.38431373238563538), (0.62184876203536987, 0.3803921639919281, 0.3803921639919281), (0.62605041265487671, 0.37647059559822083, 0.37647059559822083), (0.63025212287902832, 0.37254902720451355, 0.37254902720451355), (0.63445377349853516, 0.36862745881080627, 0.36862745881080627), (0.63865548372268677, 0.364705890417099, 0.364705890417099), (0.6428571343421936, 0.36078432202339172, 0.36078432202339172), (0.64705884456634521, 0.35686275362968445, 0.35686275362968445), (0.65126049518585205, 0.35294118523597717, 0.35294118523597717), (0.65546220541000366, 0.3490196168422699, 0.3490196168422699), (0.6596638560295105, 0.34509804844856262, 0.34509804844856262), (0.66386556625366211, 0.33725491166114807, 0.33725491166114807), (0.66806721687316895, 0.3333333432674408, 0.3333333432674408), (0.67226892709732056, 0.32941177487373352, 0.32941177487373352), (0.67647057771682739, 0.32549020648002625, 0.32549020648002625), (0.680672287940979, 0.32156863808631897, 0.32156863808631897), (0.68487393856048584, 0.31764706969261169, 0.31764706969261169), (0.68907564878463745, 0.31372550129890442, 0.31372550129890442), (0.69327729940414429, 0.30980393290519714, 0.30980393290519714), (0.6974790096282959, 0.30588236451148987, 0.30588236451148987), (0.70168066024780273, 0.30196079611778259, 0.30196079611778259), (0.70588237047195435, 0.29803922772407532, 0.29803922772407532), (0.71008402109146118, 0.29411765933036804, 0.29411765933036804), (0.71428573131561279, 0.29019609093666077, 0.29019609093666077), (0.71848738193511963, 0.28627452254295349, 0.28627452254295349), (0.72268909215927124, 0.28235295414924622, 0.28235295414924622), (0.72689074277877808, 0.27450981736183167, 0.27450981736183167), (0.73109245300292969, 0.27058824896812439, 0.27058824896812439), (0.73529410362243652, 0.26666668057441711, 0.26666668057441711), (0.73949581384658813, 0.26274511218070984, 0.26274511218070984), (0.74369746446609497, 0.25882354378700256, 0.25882354378700256), (0.74789917469024658, 0.25490197539329529, 0.25490197539329529), (0.75210082530975342, 0.25098040699958801, 0.25098040699958801), (0.75630253553390503, 0.24705882370471954, 0.24705882370471954), (0.76050418615341187, 0.24313725531101227, 0.24313725531101227), (0.76470589637756348, 0.23921568691730499, 0.23921568691730499), (0.76890754699707031, 0.23529411852359772, 0.23529411852359772), (0.77310925722122192, 0.23137255012989044, 0.23137255012989044), (0.77731090784072876, 0.22745098173618317, 0.22745098173618317), (0.78151261806488037, 0.22352941334247589, 0.22352941334247589), (0.78571426868438721, 0.21960784494876862, 0.21960784494876862), (0.78991597890853882, 0.21176470816135406, 0.21176470816135406), (0.79411762952804565, 0.20784313976764679, 0.20784313976764679), (0.79831933975219727, 0.20392157137393951, 0.20392157137393951), (0.8025209903717041, 0.20000000298023224, 0.20000000298023224), (0.80672270059585571, 0.19607843458652496, 0.19607843458652496), (0.81092435121536255, 0.19215686619281769, 0.19215686619281769), (0.81512606143951416, 0.18823529779911041, 0.18823529779911041), (0.819327712059021, 0.18431372940540314, 0.18431372940540314), (0.82352942228317261, 0.18039216101169586, 0.18039216101169586), (0.82773107290267944, 0.17647059261798859, 0.17647059261798859), (0.83193278312683105, 0.17254902422428131, 0.17254902422428131), (0.83613443374633789, 0.16862745583057404, 0.16862745583057404), (0.8403361439704895, 0.16470588743686676, 0.16470588743686676), (0.84453779458999634, 0.16078431904315948, 0.16078431904315948), (0.84873950481414795, 0.15686275064945221, 0.15686275064945221), (0.85294115543365479, 0.14901961386203766, 0.14901961386203766), (0.8571428656578064, 0.14509804546833038, 0.14509804546833038), (0.86134451627731323, 0.14117647707462311, 0.14117647707462311), (0.86554622650146484, 0.13725490868091583, 0.13725490868091583), (0.86974787712097168, 0.13333334028720856, 0.13333334028720856), (0.87394958734512329, 0.12941177189350128, 0.12941177189350128), (0.87815123796463013, 0.12549020349979401, 0.12549020349979401), (0.88235294818878174, 0.12156862765550613, 0.12156862765550613), (0.88655459880828857, 0.11764705926179886, 0.11764705926179886), (0.89075630903244019, 0.11372549086809158, 0.11372549086809158), (0.89495795965194702, 0.10980392247438431, 0.10980392247438431), (0.89915966987609863, 0.10588235408067703, 0.10588235408067703), (0.90336132049560547, 0.10196078568696976, 0.10196078568696976), (0.90756303071975708, 0.098039217293262482, 0.098039217293262482), (0.91176468133926392, 0.094117648899555206, 0.094117648899555206), (0.91596639156341553, 0.086274512112140656, 0.086274512112140656), (0.92016804218292236, 0.08235294371843338, 0.08235294371843338), (0.92436975240707397, 0.078431375324726105, 0.078431375324726105), (0.92857140302658081, 0.074509806931018829, 0.074509806931018829), (0.93277311325073242, 0.070588238537311554, 0.070588238537311554), (0.93697476387023926, 0.066666670143604279, 0.066666670143604279), (0.94117647409439087, 0.062745101749897003, 0.062745101749897003), (0.94537812471389771, 0.058823529630899429, 0.058823529630899429), (0.94957983493804932, 0.054901961237192154, 0.054901961237192154), (0.95378148555755615, 0.050980392843484879, 0.050980392843484879), (0.95798319578170776, 0.047058824449777603, 0.047058824449777603), (0.9621848464012146, 0.043137256056070328, 0.043137256056070328), (0.96638655662536621, 0.039215687662363052, 0.039215687662363052), (0.97058820724487305, 0.035294119268655777, 0.035294119268655777), (0.97478991746902466, 0.031372550874948502, 0.031372550874948502), (0.97899156808853149, 0.023529412224888802, 0.023529412224888802), (0.98319327831268311, 0.019607843831181526, 0.019607843831181526), (0.98739492893218994, 0.015686275437474251, 0.015686275437474251), (0.99159663915634155, 0.011764706112444401, 0.011764706112444401), (0.99579828977584839, 0.0078431377187371254, 0.0078431377187371254), (1.0, 0.0039215688593685627, 0.0039215688593685627)], 'red': [(0.0, 1.0, 1.0), (0.0042016808874905109, 0.99607843160629272, 0.99607843160629272), (0.0084033617749810219, 0.99215686321258545, 0.99215686321258545), (0.012605042196810246, 0.98823529481887817, 0.98823529481887817), (0.016806723549962044, 0.9843137264251709, 0.9843137264251709), (0.021008403971791267, 0.98039215803146362, 0.98039215803146362), (0.025210084393620491, 0.97647058963775635, 0.97647058963775635), (0.029411764815449715, 0.97254902124404907, 0.97254902124404907), (0.033613447099924088, 0.96470588445663452, 0.96470588445663452), (0.037815127521753311, 0.96078431606292725, 0.96078431606292725), (0.042016807943582535, 0.95686274766921997, 0.95686274766921997), (0.046218488365411758, 0.9529411792755127, 0.9529411792755127), (0.050420168787240982, 0.94901961088180542, 0.94901961088180542), (0.054621849209070206, 0.94509804248809814, 0.94509804248809814), (0.058823529630899429, 0.94117647409439087, 0.94117647409439087), (0.063025213778018951, 0.93725490570068359, 0.93725490570068359), (0.067226894199848175, 0.93333333730697632, 0.93333333730697632), (0.071428574621677399, 0.92941176891326904, 0.92941176891326904), (0.075630255043506622, 0.92549020051956177, 0.92549020051956177), (0.079831935465335846, 0.92156863212585449, 0.92156863212585449), (0.08403361588716507, 0.91764706373214722, 0.91764706373214722), (0.088235296308994293, 0.91372549533843994, 0.91372549533843994), (0.092436976730823517, 0.90980392694473267, 0.90980392694473267), (0.09663865715265274, 0.90196079015731812, 0.90196079015731812), (0.10084033757448196, 0.89803922176361084, 0.89803922176361084), (0.10504201799631119, 0.89411765336990356, 0.89411765336990356), (0.10924369841814041, 0.89019608497619629, 0.89019608497619629), (0.11344537883996964, 0.88627451658248901, 0.88627451658248901), (0.11764705926179886, 0.88235294818878174, 0.88235294818878174), (0.12184873968362808, 0.87843137979507446, 0.87843137979507446), (0.1260504275560379, 0.87450981140136719, 0.87450981140136719), (0.13025210797786713, 0.87058824300765991, 0.87058824300765991), (0.13445378839969635, 0.86666667461395264, 0.86666667461395264), (0.13865546882152557, 0.86274510622024536, 0.86274510622024536), (0.1428571492433548, 0.85882353782653809, 0.85882353782653809), (0.14705882966518402, 0.85490196943283081, 0.85490196943283081), (0.15126051008701324, 0.85098040103912354, 0.85098040103912354), (0.15546219050884247, 0.84705883264541626, 0.84705883264541626), (0.15966387093067169, 0.83921569585800171, 0.83921569585800171), (0.16386555135250092, 0.83529412746429443, 0.83529412746429443), (0.16806723177433014, 0.83137255907058716, 0.83137255907058716), (0.17226891219615936, 0.82745099067687988, 0.82745099067687988), (0.17647059261798859, 0.82352942228317261, 0.82352942228317261), (0.18067227303981781, 0.81960785388946533, 0.81960785388946533), (0.18487395346164703, 0.81568628549575806, 0.81568628549575806), (0.18907563388347626, 0.81176471710205078, 0.81176471710205078), (0.19327731430530548, 0.80784314870834351, 0.80784314870834351), (0.1974789947271347, 0.80392158031463623, 0.80392158031463623), (0.20168067514896393, 0.80000001192092896, 0.80000001192092896), (0.20588235557079315, 0.79607844352722168, 0.79607844352722168), (0.21008403599262238, 0.7921568751335144, 0.7921568751335144), (0.2142857164144516, 0.78823530673980713, 0.78823530673980713), (0.21848739683628082, 0.78431373834609985, 0.78431373834609985), (0.22268907725811005, 0.7764706015586853, 0.7764706015586853), (0.22689075767993927, 0.77254903316497803, 0.77254903316497803), (0.23109243810176849, 0.76862746477127075, 0.76862746477127075), (0.23529411852359772, 0.76470589637756348, 0.76470589637756348), (0.23949579894542694, 0.7607843279838562, 0.7607843279838562), (0.24369747936725616, 0.75686275959014893, 0.75686275959014893), (0.24789915978908539, 0.75294119119644165, 0.75294119119644165), (0.25210085511207581, 0.74901962280273438, 0.74901962280273438), (0.25630253553390503, 0.7450980544090271, 0.7450980544090271), (0.26050421595573425, 0.74117648601531982, 0.74117648601531982), (0.26470589637756348, 0.73725491762161255, 0.73725491762161255), (0.2689075767993927, 0.73333334922790527, 0.73333334922790527), (0.27310925722122192, 0.729411780834198, 0.729411780834198), (0.27731093764305115, 0.72549021244049072, 0.72549021244049072), (0.28151261806488037, 0.72156864404678345, 0.72156864404678345), (0.28571429848670959, 0.7137255072593689, 0.7137255072593689), (0.28991597890853882, 0.70980393886566162, 0.70980393886566162), (0.29411765933036804, 0.70588237047195435, 0.70588237047195435), (0.29831933975219727, 0.70196080207824707, 0.70196080207824707), (0.30252102017402649, 0.69803923368453979, 0.69803923368453979), (0.30672270059585571, 0.69411766529083252, 0.69411766529083252), (0.31092438101768494, 0.69019609689712524, 0.69019609689712524), (0.31512606143951416, 0.68627452850341797, 0.68627452850341797), (0.31932774186134338, 0.68235296010971069, 0.68235296010971069), (0.32352942228317261, 0.67843139171600342, 0.67843139171600342), (0.32773110270500183, 0.67450982332229614, 0.67450982332229614), (0.33193278312683105, 0.67058825492858887, 0.67058825492858887), (0.33613446354866028, 0.66666668653488159, 0.66666668653488159), (0.3403361439704895, 0.66274511814117432, 0.66274511814117432), (0.34453782439231873, 0.65882354974746704, 0.65882354974746704), (0.34873950481414795, 0.65098041296005249, 0.65098041296005249), (0.35294118523597717, 0.64705884456634521, 0.64705884456634521), (0.3571428656578064, 0.64313727617263794, 0.64313727617263794), (0.36134454607963562, 0.63921570777893066, 0.63921570777893066), (0.36554622650146484, 0.63529413938522339, 0.63529413938522339), (0.36974790692329407, 0.63137257099151611, 0.63137257099151611), (0.37394958734512329, 0.62745100259780884, 0.62745100259780884), (0.37815126776695251, 0.62352943420410156, 0.62352943420410156), (0.38235294818878174, 0.61960786581039429, 0.61960786581039429), (0.38655462861061096, 0.61568629741668701, 0.61568629741668701), (0.39075630903244019, 0.61176472902297974, 0.61176472902297974), (0.39495798945426941, 0.60784316062927246, 0.60784316062927246), (0.39915966987609863, 0.60392159223556519, 0.60392159223556519), (0.40336135029792786, 0.60000002384185791, 0.60000002384185791), (0.40756303071975708, 0.59607845544815063, 0.59607845544815063), (0.4117647111415863, 0.58823531866073608, 0.58823531866073608), (0.41596639156341553, 0.58431375026702881, 0.58431375026702881), (0.42016807198524475, 0.58039218187332153, 0.58039218187332153), (0.42436975240707397, 0.57647061347961426, 0.57647061347961426), (0.4285714328289032, 0.57254904508590698, 0.57254904508590698), (0.43277311325073242, 0.56862747669219971, 0.56862747669219971), (0.43697479367256165, 0.56470590829849243, 0.56470590829849243), (0.44117647409439087, 0.56078433990478516, 0.56078433990478516), (0.44537815451622009, 0.55686277151107788, 0.55686277151107788), (0.44957983493804932, 0.55294120311737061, 0.55294120311737061), (0.45378151535987854, 0.54901963472366333, 0.54901963472366333), (0.45798319578170776, 0.54509806632995605, 0.54509806632995605), (0.46218487620353699, 0.54117649793624878, 0.54117649793624878), (0.46638655662536621, 0.5372549295425415, 0.5372549295425415), (0.47058823704719543, 0.53333336114883423, 0.53333336114883423), (0.47478991746902466, 0.52549022436141968, 0.52549022436141968), (0.47899159789085388, 0.5215686559677124, 0.5215686559677124), (0.48319327831268311, 0.51764708757400513, 0.51764708757400513), (0.48739495873451233, 0.51372551918029785, 0.51372551918029785), (0.49159663915634155, 0.50980395078659058, 0.50980395078659058), (0.49579831957817078, 0.5058823823928833, 0.5058823823928833), (0.5, 0.50196081399917603, 0.50196081399917603), (0.50420171022415161, 0.49803921580314636, 0.49803921580314636), (0.50840336084365845, 0.49411764740943909, 0.49411764740943909), (0.51260507106781006, 0.49019607901573181, 0.49019607901573181), (0.51680672168731689, 0.48627451062202454, 0.48627451062202454), (0.52100843191146851, 0.48235294222831726, 0.48235294222831726), (0.52521008253097534, 0.47843137383460999, 0.47843137383460999), (0.52941179275512695, 0.47450980544090271, 0.47450980544090271), (0.53361344337463379, 0.47058823704719543, 0.47058823704719543), (0.5378151535987854, 0.46274510025978088, 0.46274510025978088), (0.54201680421829224, 0.45882353186607361, 0.45882353186607361), (0.54621851444244385, 0.45490196347236633, 0.45490196347236633), (0.55042016506195068, 0.45098039507865906, 0.45098039507865906), (0.55462187528610229, 0.44705882668495178, 0.44705882668495178), (0.55882352590560913, 0.44313725829124451, 0.44313725829124451), (0.56302523612976074, 0.43921568989753723, 0.43921568989753723), (0.56722688674926758, 0.43529412150382996, 0.43529412150382996), (0.57142859697341919, 0.43137255311012268, 0.43137255311012268), (0.57563024759292603, 0.42745098471641541, 0.42745098471641541), (0.57983195781707764, 0.42352941632270813, 0.42352941632270813), (0.58403360843658447, 0.41960784792900085, 0.41960784792900085), (0.58823531866073608, 0.41568627953529358, 0.41568627953529358), (0.59243696928024292, 0.4117647111415863, 0.4117647111415863), (0.59663867950439453, 0.40784314274787903, 0.40784314274787903), (0.60084033012390137, 0.40000000596046448, 0.40000000596046448), (0.60504204034805298, 0.3960784375667572, 0.3960784375667572), (0.60924369096755981, 0.39215686917304993, 0.39215686917304993), (0.61344540119171143, 0.38823530077934265, 0.38823530077934265), (0.61764705181121826, 0.38431373238563538, 0.38431373238563538), (0.62184876203536987, 0.3803921639919281, 0.3803921639919281), (0.62605041265487671, 0.37647059559822083, 0.37647059559822083), (0.63025212287902832, 0.37254902720451355, 0.37254902720451355), (0.63445377349853516, 0.36862745881080627, 0.36862745881080627), (0.63865548372268677, 0.364705890417099, 0.364705890417099), (0.6428571343421936, 0.36078432202339172, 0.36078432202339172), (0.64705884456634521, 0.35686275362968445, 0.35686275362968445), (0.65126049518585205, 0.35294118523597717, 0.35294118523597717), (0.65546220541000366, 0.3490196168422699, 0.3490196168422699), (0.6596638560295105, 0.34509804844856262, 0.34509804844856262), (0.66386556625366211, 0.33725491166114807, 0.33725491166114807), (0.66806721687316895, 0.3333333432674408, 0.3333333432674408), (0.67226892709732056, 0.32941177487373352, 0.32941177487373352), (0.67647057771682739, 0.32549020648002625, 0.32549020648002625), (0.680672287940979, 0.32156863808631897, 0.32156863808631897), (0.68487393856048584, 0.31764706969261169, 0.31764706969261169), (0.68907564878463745, 0.31372550129890442, 0.31372550129890442), (0.69327729940414429, 0.30980393290519714, 0.30980393290519714), (0.6974790096282959, 0.30588236451148987, 0.30588236451148987), (0.70168066024780273, 0.30196079611778259, 0.30196079611778259), (0.70588237047195435, 0.29803922772407532, 0.29803922772407532), (0.71008402109146118, 0.29411765933036804, 0.29411765933036804), (0.71428573131561279, 0.29019609093666077, 0.29019609093666077), (0.71848738193511963, 0.28627452254295349, 0.28627452254295349), (0.72268909215927124, 0.28235295414924622, 0.28235295414924622), (0.72689074277877808, 0.27450981736183167, 0.27450981736183167), (0.73109245300292969, 0.27058824896812439, 0.27058824896812439), (0.73529410362243652, 0.26666668057441711, 0.26666668057441711), (0.73949581384658813, 0.26274511218070984, 0.26274511218070984), (0.74369746446609497, 0.25882354378700256, 0.25882354378700256), (0.74789917469024658, 0.25490197539329529, 0.25490197539329529), (0.75210082530975342, 0.25098040699958801, 0.25098040699958801), (0.75630253553390503, 0.24705882370471954, 0.24705882370471954), (0.76050418615341187, 0.24313725531101227, 0.24313725531101227), (0.76470589637756348, 0.23921568691730499, 0.23921568691730499), (0.76890754699707031, 0.23529411852359772, 0.23529411852359772), (0.77310925722122192, 0.23137255012989044, 0.23137255012989044), (0.77731090784072876, 0.22745098173618317, 0.22745098173618317), (0.78151261806488037, 0.22352941334247589, 0.22352941334247589), (0.78571426868438721, 0.21960784494876862, 0.21960784494876862), (0.78991597890853882, 0.21176470816135406, 0.21176470816135406), (0.79411762952804565, 0.20784313976764679, 0.20784313976764679), (0.79831933975219727, 0.20392157137393951, 0.20392157137393951), (0.8025209903717041, 0.20000000298023224, 0.20000000298023224), (0.80672270059585571, 0.19607843458652496, 0.19607843458652496), (0.81092435121536255, 0.19215686619281769, 0.19215686619281769), (0.81512606143951416, 0.18823529779911041, 0.18823529779911041), (0.819327712059021, 0.18431372940540314, 0.18431372940540314), (0.82352942228317261, 0.18039216101169586, 0.18039216101169586), (0.82773107290267944, 0.17647059261798859, 0.17647059261798859), (0.83193278312683105, 0.17254902422428131, 0.17254902422428131), (0.83613443374633789, 0.16862745583057404, 0.16862745583057404), (0.8403361439704895, 0.16470588743686676, 0.16470588743686676), (0.84453779458999634, 0.16078431904315948, 0.16078431904315948), (0.84873950481414795, 0.15686275064945221, 0.15686275064945221), (0.85294115543365479, 0.14901961386203766, 0.14901961386203766), (0.8571428656578064, 0.14509804546833038, 0.14509804546833038), (0.86134451627731323, 0.14117647707462311, 0.14117647707462311), (0.86554622650146484, 0.13725490868091583, 0.13725490868091583), (0.86974787712097168, 0.13333334028720856, 0.13333334028720856), (0.87394958734512329, 0.12941177189350128, 0.12941177189350128), (0.87815123796463013, 0.12549020349979401, 0.12549020349979401), (0.88235294818878174, 0.12156862765550613, 0.12156862765550613), (0.88655459880828857, 0.11764705926179886, 0.11764705926179886), (0.89075630903244019, 0.11372549086809158, 0.11372549086809158), (0.89495795965194702, 0.10980392247438431, 0.10980392247438431), (0.89915966987609863, 0.10588235408067703, 0.10588235408067703), (0.90336132049560547, 0.10196078568696976, 0.10196078568696976), (0.90756303071975708, 0.098039217293262482, 0.098039217293262482), (0.91176468133926392, 0.094117648899555206, 0.094117648899555206), (0.91596639156341553, 0.086274512112140656, 0.086274512112140656), (0.92016804218292236, 0.08235294371843338, 0.08235294371843338), (0.92436975240707397, 0.078431375324726105, 0.078431375324726105), (0.92857140302658081, 0.074509806931018829, 0.074509806931018829), (0.93277311325073242, 0.070588238537311554, 0.070588238537311554), (0.93697476387023926, 0.066666670143604279, 0.066666670143604279), (0.94117647409439087, 0.062745101749897003, 0.062745101749897003), (0.94537812471389771, 0.058823529630899429, 0.058823529630899429), (0.94957983493804932, 0.054901961237192154, 0.054901961237192154), (0.95378148555755615, 0.050980392843484879, 0.050980392843484879), (0.95798319578170776, 0.047058824449777603, 0.047058824449777603), (0.9621848464012146, 0.043137256056070328, 0.043137256056070328), (0.96638655662536621, 0.039215687662363052, 0.039215687662363052), (0.97058820724487305, 0.035294119268655777, 0.035294119268655777), (0.97478991746902466, 0.031372550874948502, 0.031372550874948502), (0.97899156808853149, 0.023529412224888802, 0.023529412224888802), (0.98319327831268311, 0.019607843831181526, 0.019607843831181526), (0.98739492893218994, 0.015686275437474251, 0.015686275437474251), (0.99159663915634155, 0.011764706112444401, 0.011764706112444401), (0.99579828977584839, 0.0078431377187371254, 0.0078431377187371254), (1.0, 0.0039215688593685627, 0.0039215688593685627)]} Accent = colors.LinearSegmentedColormap('Accent', _Accent_data, LUTSIZE) Blues = colors.LinearSegmentedColormap('Blues', _Blues_data, LUTSIZE) BrBG = colors.LinearSegmentedColormap('BrBG', _BrBG_data, LUTSIZE) BuGn = colors.LinearSegmentedColormap('BuGn', _BuGn_data, LUTSIZE) BuPu = colors.LinearSegmentedColormap('BuPu', _BuPu_data, LUTSIZE) Dark2 = colors.LinearSegmentedColormap('Dark2', _Dark2_data, LUTSIZE) GnBu = colors.LinearSegmentedColormap('GnBu', _GnBu_data, LUTSIZE) Greens = colors.LinearSegmentedColormap('Greens', _Greens_data, LUTSIZE) Greys = colors.LinearSegmentedColormap('Greys', _Greys_data, LUTSIZE) Oranges = colors.LinearSegmentedColormap('Oranges', _Oranges_data, LUTSIZE) OrRd = colors.LinearSegmentedColormap('OrRd', _OrRd_data, LUTSIZE) Paired = colors.LinearSegmentedColormap('Paired', _Paired_data, LUTSIZE) Pastel1 = colors.LinearSegmentedColormap('Pastel1', _Pastel1_data, LUTSIZE) Pastel2 = colors.LinearSegmentedColormap('Pastel2', _Pastel2_data, LUTSIZE) PiYG = colors.LinearSegmentedColormap('PiYG', _PiYG_data, LUTSIZE) PRGn = colors.LinearSegmentedColormap('PRGn', _PRGn_data, LUTSIZE) PuBu = colors.LinearSegmentedColormap('PuBu', _PuBu_data, LUTSIZE) PuBuGn = colors.LinearSegmentedColormap('PuBuGn', _PuBuGn_data, LUTSIZE) PuOr = colors.LinearSegmentedColormap('PuOr', _PuOr_data, LUTSIZE) PuRd = colors.LinearSegmentedColormap('PuRd', _PuRd_data, LUTSIZE) Purples = colors.LinearSegmentedColormap('Purples', _Purples_data, LUTSIZE) RdBu = colors.LinearSegmentedColormap('RdBu', _RdBu_data, LUTSIZE) RdGy = colors.LinearSegmentedColormap('RdGy', _RdGy_data, LUTSIZE) RdPu = colors.LinearSegmentedColormap('RdPu', _RdPu_data, LUTSIZE) RdYlBu = colors.LinearSegmentedColormap('RdYlBu', _RdYlBu_data, LUTSIZE) RdYlGn = colors.LinearSegmentedColormap('RdYlGn', _RdYlGn_data, LUTSIZE) Reds = colors.LinearSegmentedColormap('Reds', _Reds_data, LUTSIZE) Set1 = colors.LinearSegmentedColormap('Set1', _Set1_data, LUTSIZE) Set2 = colors.LinearSegmentedColormap('Set2', _Set2_data, LUTSIZE) Set3 = colors.LinearSegmentedColormap('Set3', _Set3_data, LUTSIZE) Spectral = colors.LinearSegmentedColormap('Spectral', _Spectral_data, LUTSIZE) YlGn = colors.LinearSegmentedColormap('YlGn', _YlGn_data, LUTSIZE) YlGnBu = colors.LinearSegmentedColormap('YlGnBu', _YlGnBu_data, LUTSIZE) YlOrBr = colors.LinearSegmentedColormap('YlOrBr', _YlOrBr_data, LUTSIZE) YlOrRd = colors.LinearSegmentedColormap('YlOrRd', _YlOrRd_data, LUTSIZE) gist_earth = colors.LinearSegmentedColormap('gist_earth', _gist_earth_data, LUTSIZE) gist_gray = colors.LinearSegmentedColormap('gist_gray', _gist_gray_data, LUTSIZE) gist_heat = colors.LinearSegmentedColormap('gist_heat', _gist_heat_data, LUTSIZE) gist_ncar = colors.LinearSegmentedColormap('gist_ncar', _gist_ncar_data, LUTSIZE) gist_rainbow = colors.LinearSegmentedColormap('gist_rainbow', _gist_rainbow_data, LUTSIZE) gist_stern = colors.LinearSegmentedColormap('gist_stern', _gist_stern_data, LUTSIZE) gist_yarg = colors.LinearSegmentedColormap('gist_yarg', _gist_yarg_data, LUTSIZE) datad['Accent']=_Accent_data datad['Blues']=_Blues_data datad['BrBG']=_BrBG_data datad['BuGn']=_BuGn_data datad['BuPu']=_BuPu_data datad['Dark2']=_Dark2_data datad['GnBu']=_GnBu_data datad['Greens']=_Greens_data datad['Greys']=_Greys_data datad['Oranges']=_Oranges_data datad['OrRd']=_OrRd_data datad['Paired']=_Paired_data datad['Pastel1']=_Pastel1_data datad['Pastel2']=_Pastel2_data datad['PiYG']=_PiYG_data datad['PRGn']=_PRGn_data datad['PuBu']=_PuBu_data datad['PuBuGn']=_PuBuGn_data datad['PuOr']=_PuOr_data datad['PuRd']=_PuRd_data datad['Purples']=_Purples_data datad['RdBu']=_RdBu_data datad['RdGy']=_RdGy_data datad['RdPu']=_RdPu_data datad['RdYlBu']=_RdYlBu_data datad['RdYlGn']=_RdYlGn_data datad['Reds']=_Reds_data datad['Set1']=_Set1_data datad['Set2']=_Set2_data datad['Set3']=_Set3_data datad['Spectral']=_Spectral_data datad['YlGn']=_YlGn_data datad['YlGnBu']=_YlGnBu_data datad['YlOrBr']=_YlOrBr_data datad['YlOrRd']=_YlOrRd_data datad['gist_earth']=_gist_earth_data datad['gist_gray']=_gist_gray_data datad['gist_heat']=_gist_heat_data datad['gist_ncar']=_gist_ncar_data datad['gist_rainbow']=_gist_rainbow_data datad['gist_stern']=_gist_stern_data datad['gist_yarg']=_gist_yarg_data # reverse all the colormaps. # reversed colormaps have '_r' appended to the name. def revcmap(data): data_r = {} for key, val in data.iteritems(): valnew = [(1.-a, b, c) for a, b, c in reversed(val)] data_r[key] = valnew return data_r cmapnames = datad.keys() for cmapname in cmapnames: cmapname_r = cmapname+'_r' cmapdat_r = revcmap(datad[cmapname]) datad[cmapname_r] = cmapdat_r locals()[cmapname_r] = colors.LinearSegmentedColormap(cmapname_r, cmapdat_r, LUTSIZE)
agpl-3.0
kpespinosa/BuildingMachineLearningSystemsWithPython
ch04/blei_lda.py
21
2601
# This code is supporting material for the book # Building Machine Learning Systems with Python # by Willi Richert and Luis Pedro Coelho # published by PACKT Publishing # # It is made available under the MIT License from __future__ import print_function from wordcloud import create_cloud try: from gensim import corpora, models, matutils except: print("import gensim failed.") print() print("Please install it") raise import matplotlib.pyplot as plt import numpy as np from os import path NUM_TOPICS = 100 # Check that data exists if not path.exists('./data/ap/ap.dat'): print('Error: Expected data to be present at data/ap/') print('Please cd into ./data & run ./download_ap.sh') # Load the data corpus = corpora.BleiCorpus('./data/ap/ap.dat', './data/ap/vocab.txt') # Build the topic model model = models.ldamodel.LdaModel( corpus, num_topics=NUM_TOPICS, id2word=corpus.id2word, alpha=None) # Iterate over all the topics in the model for ti in range(model.num_topics): words = model.show_topic(ti, 64) tf = sum(f for f, w in words) with open('topics.txt', 'w') as output: output.write('\n'.join('{}:{}'.format(w, int(1000. * f / tf)) for f, w in words)) output.write("\n\n\n") # We first identify the most discussed topic, i.e., the one with the # highest total weight topics = matutils.corpus2dense(model[corpus], num_terms=model.num_topics) weight = topics.sum(1) max_topic = weight.argmax() # Get the top 64 words for this topic # Without the argument, show_topic would return only 10 words words = model.show_topic(max_topic, 64) # This function will actually check for the presence of pytagcloud and is otherwise a no-op create_cloud('cloud_blei_lda.png', words) num_topics_used = [len(model[doc]) for doc in corpus] fig,ax = plt.subplots() ax.hist(num_topics_used, np.arange(42)) ax.set_ylabel('Nr of documents') ax.set_xlabel('Nr of topics') fig.tight_layout() fig.savefig('Figure_04_01.png') # Now, repeat the same exercise using alpha=1.0 # You can edit the constant below to play around with this parameter ALPHA = 1.0 model1 = models.ldamodel.LdaModel( corpus, num_topics=NUM_TOPICS, id2word=corpus.id2word, alpha=ALPHA) num_topics_used1 = [len(model1[doc]) for doc in corpus] fig,ax = plt.subplots() ax.hist([num_topics_used, num_topics_used1], np.arange(42)) ax.set_ylabel('Nr of documents') ax.set_xlabel('Nr of topics') # The coordinates below were fit by trial and error to look good ax.text(9, 223, r'default alpha') ax.text(26, 156, 'alpha=1.0') fig.tight_layout() fig.savefig('Figure_04_02.png')
mit
samchrisinger/osf.io
scripts/analytics/tasks.py
14
1913
import os import matplotlib from framework.celery_tasks import app as celery_app from scripts import utils as script_utils from scripts.analytics import settings from scripts.analytics import utils from website import models from website import settings as website_settings from website.app import init_app from .logger import logger @celery_app.task(name='scripts.analytics.tasks') def analytics(): matplotlib.use('Agg') init_app(routes=False) script_utils.add_file_logger(logger, __file__) from scripts.analytics import ( logs, addons, comments, folders, links, watch, email_invites, permissions, profile, benchmarks ) modules = ( logs, addons, comments, folders, links, watch, email_invites, permissions, profile, benchmarks ) for module in modules: logger.info('Starting: {}'.format(module.__name__)) module.main() logger.info('Finished: {}'.format(module.__name__)) upload_analytics() def upload_analytics(local_path=None, remote_path='/'): node = models.Node.load(settings.TABULATE_LOGS_NODE_ID) user = models.User.load(settings.TABULATE_LOGS_USER_ID) if not local_path: local_path = website_settings.ANALYTICS_PATH for name in os.listdir(local_path): if not os.path.isfile(os.path.join(local_path, name)): logger.info('create directory: {}'.format(os.path.join(local_path, name))) metadata = utils.create_object(name, 'folder-update', node, user, kind='folder', path=remote_path) upload_analytics(os.path.join(local_path, name), metadata['attributes']['path']) else: logger.info('update file: {}'.format(os.path.join(local_path, name))) with open(os.path.join(local_path, name), 'rb') as fp: utils.create_object(name, 'file-update', node, user, stream=fp, kind='file', path=remote_path)
apache-2.0
Akson/RemoteConsolePlus3
RemoteConsolePlus3/RCP3/Backends/Processors/Graphs/Plot1D.py
1
2341
#Created by Dmytro Konobrytskyi, 2014 (github.com/Akson) import numpy as np import matplotlib import matplotlib.pyplot from RCP3.Infrastructure import TmpFilesStorage class Backend(object): def __init__(self, parentNode): self._parentNode = parentNode def Delete(self): """ This method is called when a parent node is deleted. """ pass def GetParameters(self): """ Returns a dictionary with object parameters, their values, limits and ways to change them. """ return {} def SetParameters(self, parameters): """ Gets a dictionary with parameter values and update object parameters accordingly """ pass def ProcessMessage(self, message): """ This message is called when a new message comes. If an incoming message should be processed by following nodes, the 'self._parentNode.SendMessage(message)' should be called with an appropriate message. """ dataArray = np.asarray(message["Data"]) fig = matplotlib.pyplot.figure(figsize=(6, 4), dpi=float(96)) ax=fig.add_subplot(111) #n, bins, patches = ax.hist(dataArray, bins=50) ax.plot(range(len(dataArray)), dataArray) processedMessage = {"Stream":message["Stream"], "Info":message["Info"]} filePath, link = TmpFilesStorage.NewTemporaryFile("png") fig.savefig(filePath,format='png') matplotlib.pyplot.close(fig) html = '<img src="http://{}" alt="Image should come here">'.format(link) processedMessage["Data"] = html self._parentNode.SendMessage(processedMessage) """ print len(message["Data"]) import numpy as np import matplotlib.pyplot as plt x = np.array(message["Data"]) num_bins = 50 # the histogram of the data n, bins, patches = plt.hist(x, num_bins, normed=1, facecolor='green', alpha=0.5) plt.subplots_adjust(left=0.15) plt.show() """ def AppendContextMenuItems(self, menu): """ Append backend specific menu items to a context menu that user will see when he clicks on a node. """ pass
lgpl-3.0
lancezlin/ml_template_py
lib/python2.7/site-packages/pandas/tests/frame/test_missing.py
7
24048
# -*- coding: utf-8 -*- from __future__ import print_function from distutils.version import LooseVersion from numpy import nan, random import numpy as np from pandas.compat import lrange from pandas import (DataFrame, Series, Timestamp, date_range) import pandas as pd from pandas.util.testing import (assert_series_equal, assert_frame_equal, assertRaisesRegexp) import pandas.util.testing as tm from pandas.tests.frame.common import TestData, _check_mixed_float def _skip_if_no_pchip(): try: from scipy.interpolate import pchip_interpolate # noqa except ImportError: import nose raise nose.SkipTest('scipy.interpolate.pchip missing') class TestDataFrameMissingData(tm.TestCase, TestData): _multiprocess_can_split_ = True def test_dropEmptyRows(self): N = len(self.frame.index) mat = random.randn(N) mat[:5] = nan frame = DataFrame({'foo': mat}, index=self.frame.index) original = Series(mat, index=self.frame.index, name='foo') expected = original.dropna() inplace_frame1, inplace_frame2 = frame.copy(), frame.copy() smaller_frame = frame.dropna(how='all') # check that original was preserved assert_series_equal(frame['foo'], original) inplace_frame1.dropna(how='all', inplace=True) assert_series_equal(smaller_frame['foo'], expected) assert_series_equal(inplace_frame1['foo'], expected) smaller_frame = frame.dropna(how='all', subset=['foo']) inplace_frame2.dropna(how='all', subset=['foo'], inplace=True) assert_series_equal(smaller_frame['foo'], expected) assert_series_equal(inplace_frame2['foo'], expected) def test_dropIncompleteRows(self): N = len(self.frame.index) mat = random.randn(N) mat[:5] = nan frame = DataFrame({'foo': mat}, index=self.frame.index) frame['bar'] = 5 original = Series(mat, index=self.frame.index, name='foo') inp_frame1, inp_frame2 = frame.copy(), frame.copy() smaller_frame = frame.dropna() assert_series_equal(frame['foo'], original) inp_frame1.dropna(inplace=True) exp = Series(mat[5:], index=self.frame.index[5:], name='foo') tm.assert_series_equal(smaller_frame['foo'], exp) tm.assert_series_equal(inp_frame1['foo'], exp) samesize_frame = frame.dropna(subset=['bar']) assert_series_equal(frame['foo'], original) self.assertTrue((frame['bar'] == 5).all()) inp_frame2.dropna(subset=['bar'], inplace=True) self.assert_index_equal(samesize_frame.index, self.frame.index) self.assert_index_equal(inp_frame2.index, self.frame.index) def test_dropna(self): df = DataFrame(np.random.randn(6, 4)) df[2][:2] = nan dropped = df.dropna(axis=1) expected = df.ix[:, [0, 1, 3]] inp = df.copy() inp.dropna(axis=1, inplace=True) assert_frame_equal(dropped, expected) assert_frame_equal(inp, expected) dropped = df.dropna(axis=0) expected = df.ix[lrange(2, 6)] inp = df.copy() inp.dropna(axis=0, inplace=True) assert_frame_equal(dropped, expected) assert_frame_equal(inp, expected) # threshold dropped = df.dropna(axis=1, thresh=5) expected = df.ix[:, [0, 1, 3]] inp = df.copy() inp.dropna(axis=1, thresh=5, inplace=True) assert_frame_equal(dropped, expected) assert_frame_equal(inp, expected) dropped = df.dropna(axis=0, thresh=4) expected = df.ix[lrange(2, 6)] inp = df.copy() inp.dropna(axis=0, thresh=4, inplace=True) assert_frame_equal(dropped, expected) assert_frame_equal(inp, expected) dropped = df.dropna(axis=1, thresh=4) assert_frame_equal(dropped, df) dropped = df.dropna(axis=1, thresh=3) assert_frame_equal(dropped, df) # subset dropped = df.dropna(axis=0, subset=[0, 1, 3]) inp = df.copy() inp.dropna(axis=0, subset=[0, 1, 3], inplace=True) assert_frame_equal(dropped, df) assert_frame_equal(inp, df) # all dropped = df.dropna(axis=1, how='all') assert_frame_equal(dropped, df) df[2] = nan dropped = df.dropna(axis=1, how='all') expected = df.ix[:, [0, 1, 3]] assert_frame_equal(dropped, expected) # bad input self.assertRaises(ValueError, df.dropna, axis=3) def test_drop_and_dropna_caching(self): # tst that cacher updates original = Series([1, 2, np.nan], name='A') expected = Series([1, 2], dtype=original.dtype, name='A') df = pd.DataFrame({'A': original.values.copy()}) df2 = df.copy() df['A'].dropna() assert_series_equal(df['A'], original) df['A'].dropna(inplace=True) assert_series_equal(df['A'], expected) df2['A'].drop([1]) assert_series_equal(df2['A'], original) df2['A'].drop([1], inplace=True) assert_series_equal(df2['A'], original.drop([1])) def test_dropna_corner(self): # bad input self.assertRaises(ValueError, self.frame.dropna, how='foo') self.assertRaises(TypeError, self.frame.dropna, how=None) # non-existent column - 8303 self.assertRaises(KeyError, self.frame.dropna, subset=['A', 'X']) def test_dropna_multiple_axes(self): df = DataFrame([[1, np.nan, 2, 3], [4, np.nan, 5, 6], [np.nan, np.nan, np.nan, np.nan], [7, np.nan, 8, 9]]) cp = df.copy() result = df.dropna(how='all', axis=[0, 1]) result2 = df.dropna(how='all', axis=(0, 1)) expected = df.dropna(how='all').dropna(how='all', axis=1) assert_frame_equal(result, expected) assert_frame_equal(result2, expected) assert_frame_equal(df, cp) inp = df.copy() inp.dropna(how='all', axis=(0, 1), inplace=True) assert_frame_equal(inp, expected) def test_fillna(self): self.tsframe.ix[:5, 'A'] = nan self.tsframe.ix[-5:, 'A'] = nan zero_filled = self.tsframe.fillna(0) self.assertTrue((zero_filled.ix[:5, 'A'] == 0).all()) padded = self.tsframe.fillna(method='pad') self.assertTrue(np.isnan(padded.ix[:5, 'A']).all()) self.assertTrue((padded.ix[-5:, 'A'] == padded.ix[-5, 'A']).all()) # mixed type self.mixed_frame.ix[5:20, 'foo'] = nan self.mixed_frame.ix[-10:, 'A'] = nan result = self.mixed_frame.fillna(value=0) result = self.mixed_frame.fillna(method='pad') self.assertRaises(ValueError, self.tsframe.fillna) self.assertRaises(ValueError, self.tsframe.fillna, 5, method='ffill') # mixed numeric (but no float16) mf = self.mixed_float.reindex(columns=['A', 'B', 'D']) mf.ix[-10:, 'A'] = nan result = mf.fillna(value=0) _check_mixed_float(result, dtype=dict(C=None)) result = mf.fillna(method='pad') _check_mixed_float(result, dtype=dict(C=None)) # empty frame (GH #2778) df = DataFrame(columns=['x']) for m in ['pad', 'backfill']: df.x.fillna(method=m, inplace=1) df.x.fillna(method=m) # with different dtype (GH3386) df = DataFrame([['a', 'a', np.nan, 'a'], [ 'b', 'b', np.nan, 'b'], ['c', 'c', np.nan, 'c']]) result = df.fillna({2: 'foo'}) expected = DataFrame([['a', 'a', 'foo', 'a'], ['b', 'b', 'foo', 'b'], ['c', 'c', 'foo', 'c']]) assert_frame_equal(result, expected) df.fillna({2: 'foo'}, inplace=True) assert_frame_equal(df, expected) # limit and value df = DataFrame(np.random.randn(10, 3)) df.iloc[2:7, 0] = np.nan df.iloc[3:5, 2] = np.nan expected = df.copy() expected.iloc[2, 0] = 999 expected.iloc[3, 2] = 999 result = df.fillna(999, limit=1) assert_frame_equal(result, expected) # with datelike # GH 6344 df = DataFrame({ 'Date': [pd.NaT, Timestamp("2014-1-1")], 'Date2': [Timestamp("2013-1-1"), pd.NaT] }) expected = df.copy() expected['Date'] = expected['Date'].fillna(df.ix[0, 'Date2']) result = df.fillna(value={'Date': df['Date2']}) assert_frame_equal(result, expected) def test_fillna_dtype_conversion(self): # make sure that fillna on an empty frame works df = DataFrame(index=["A", "B", "C"], columns=[1, 2, 3, 4, 5]) result = df.get_dtype_counts().sort_values() expected = Series({'object': 5}) assert_series_equal(result, expected) result = df.fillna(1) expected = DataFrame(1, index=["A", "B", "C"], columns=[1, 2, 3, 4, 5]) result = result.get_dtype_counts().sort_values() expected = Series({'int64': 5}) assert_series_equal(result, expected) # empty block df = DataFrame(index=lrange(3), columns=['A', 'B'], dtype='float64') result = df.fillna('nan') expected = DataFrame('nan', index=lrange(3), columns=['A', 'B']) assert_frame_equal(result, expected) # equiv of replace df = DataFrame(dict(A=[1, np.nan], B=[1., 2.])) for v in ['', 1, np.nan, 1.0]: expected = df.replace(np.nan, v) result = df.fillna(v) assert_frame_equal(result, expected) def test_fillna_datetime_columns(self): # GH 7095 df = pd.DataFrame({'A': [-1, -2, np.nan], 'B': date_range('20130101', periods=3), 'C': ['foo', 'bar', None], 'D': ['foo2', 'bar2', None]}, index=date_range('20130110', periods=3)) result = df.fillna('?') expected = pd.DataFrame({'A': [-1, -2, '?'], 'B': date_range('20130101', periods=3), 'C': ['foo', 'bar', '?'], 'D': ['foo2', 'bar2', '?']}, index=date_range('20130110', periods=3)) self.assert_frame_equal(result, expected) df = pd.DataFrame({'A': [-1, -2, np.nan], 'B': [pd.Timestamp('2013-01-01'), pd.Timestamp('2013-01-02'), pd.NaT], 'C': ['foo', 'bar', None], 'D': ['foo2', 'bar2', None]}, index=date_range('20130110', periods=3)) result = df.fillna('?') expected = pd.DataFrame({'A': [-1, -2, '?'], 'B': [pd.Timestamp('2013-01-01'), pd.Timestamp('2013-01-02'), '?'], 'C': ['foo', 'bar', '?'], 'D': ['foo2', 'bar2', '?']}, index=pd.date_range('20130110', periods=3)) self.assert_frame_equal(result, expected) def test_ffill(self): self.tsframe['A'][:5] = nan self.tsframe['A'][-5:] = nan assert_frame_equal(self.tsframe.ffill(), self.tsframe.fillna(method='ffill')) def test_bfill(self): self.tsframe['A'][:5] = nan self.tsframe['A'][-5:] = nan assert_frame_equal(self.tsframe.bfill(), self.tsframe.fillna(method='bfill')) def test_fillna_skip_certain_blocks(self): # don't try to fill boolean, int blocks df = DataFrame(np.random.randn(10, 4).astype(int)) # it works! df.fillna(np.nan) def test_fillna_inplace(self): df = DataFrame(np.random.randn(10, 4)) df[1][:4] = np.nan df[3][-4:] = np.nan expected = df.fillna(value=0) self.assertIsNot(expected, df) df.fillna(value=0, inplace=True) assert_frame_equal(df, expected) df[1][:4] = np.nan df[3][-4:] = np.nan expected = df.fillna(method='ffill') self.assertIsNot(expected, df) df.fillna(method='ffill', inplace=True) assert_frame_equal(df, expected) def test_fillna_dict_series(self): df = DataFrame({'a': [nan, 1, 2, nan, nan], 'b': [1, 2, 3, nan, nan], 'c': [nan, 1, 2, 3, 4]}) result = df.fillna({'a': 0, 'b': 5}) expected = df.copy() expected['a'] = expected['a'].fillna(0) expected['b'] = expected['b'].fillna(5) assert_frame_equal(result, expected) # it works result = df.fillna({'a': 0, 'b': 5, 'd': 7}) # Series treated same as dict result = df.fillna(df.max()) expected = df.fillna(df.max().to_dict()) assert_frame_equal(result, expected) # disable this for now with assertRaisesRegexp(NotImplementedError, 'column by column'): df.fillna(df.max(1), axis=1) def test_fillna_dataframe(self): # GH 8377 df = DataFrame({'a': [nan, 1, 2, nan, nan], 'b': [1, 2, 3, nan, nan], 'c': [nan, 1, 2, 3, 4]}, index=list('VWXYZ')) # df2 may have different index and columns df2 = DataFrame({'a': [nan, 10, 20, 30, 40], 'b': [50, 60, 70, 80, 90], 'foo': ['bar'] * 5}, index=list('VWXuZ')) result = df.fillna(df2) # only those columns and indices which are shared get filled expected = DataFrame({'a': [nan, 1, 2, nan, 40], 'b': [1, 2, 3, nan, 90], 'c': [nan, 1, 2, 3, 4]}, index=list('VWXYZ')) assert_frame_equal(result, expected) def test_fillna_columns(self): df = DataFrame(np.random.randn(10, 10)) df.values[:, ::2] = np.nan result = df.fillna(method='ffill', axis=1) expected = df.T.fillna(method='pad').T assert_frame_equal(result, expected) df.insert(6, 'foo', 5) result = df.fillna(method='ffill', axis=1) expected = df.astype(float).fillna(method='ffill', axis=1) assert_frame_equal(result, expected) def test_fillna_invalid_method(self): with assertRaisesRegexp(ValueError, 'ffil'): self.frame.fillna(method='ffil') def test_fillna_invalid_value(self): # list self.assertRaises(TypeError, self.frame.fillna, [1, 2]) # tuple self.assertRaises(TypeError, self.frame.fillna, (1, 2)) # frame with series self.assertRaises(ValueError, self.frame.iloc[:, 0].fillna, self.frame) def test_fillna_col_reordering(self): cols = ["COL." + str(i) for i in range(5, 0, -1)] data = np.random.rand(20, 5) df = DataFrame(index=lrange(20), columns=cols, data=data) filled = df.fillna(method='ffill') self.assertEqual(df.columns.tolist(), filled.columns.tolist()) def test_fill_corner(self): self.mixed_frame.ix[5:20, 'foo'] = nan self.mixed_frame.ix[-10:, 'A'] = nan filled = self.mixed_frame.fillna(value=0) self.assertTrue((filled.ix[5:20, 'foo'] == 0).all()) del self.mixed_frame['foo'] empty_float = self.frame.reindex(columns=[]) # TODO(wesm): unused? result = empty_float.fillna(value=0) # noqa def test_fill_value_when_combine_const(self): # GH12723 dat = np.array([0, 1, np.nan, 3, 4, 5], dtype='float') df = DataFrame({'foo': dat}, index=range(6)) exp = df.fillna(0).add(2) res = df.add(2, fill_value=0) assert_frame_equal(res, exp) class TestDataFrameInterpolate(tm.TestCase, TestData): def test_interp_basic(self): df = DataFrame({'A': [1, 2, np.nan, 4], 'B': [1, 4, 9, np.nan], 'C': [1, 2, 3, 5], 'D': list('abcd')}) expected = DataFrame({'A': [1., 2., 3., 4.], 'B': [1., 4., 9., 9.], 'C': [1, 2, 3, 5], 'D': list('abcd')}) result = df.interpolate() assert_frame_equal(result, expected) result = df.set_index('C').interpolate() expected = df.set_index('C') expected.loc[3, 'A'] = 3 expected.loc[5, 'B'] = 9 assert_frame_equal(result, expected) def test_interp_bad_method(self): df = DataFrame({'A': [1, 2, np.nan, 4], 'B': [1, 4, 9, np.nan], 'C': [1, 2, 3, 5], 'D': list('abcd')}) with tm.assertRaises(ValueError): df.interpolate(method='not_a_method') def test_interp_combo(self): df = DataFrame({'A': [1., 2., np.nan, 4.], 'B': [1, 4, 9, np.nan], 'C': [1, 2, 3, 5], 'D': list('abcd')}) result = df['A'].interpolate() expected = Series([1., 2., 3., 4.], name='A') assert_series_equal(result, expected) result = df['A'].interpolate(downcast='infer') expected = Series([1, 2, 3, 4], name='A') assert_series_equal(result, expected) def test_interp_nan_idx(self): df = DataFrame({'A': [1, 2, np.nan, 4], 'B': [np.nan, 2, 3, 4]}) df = df.set_index('A') with tm.assertRaises(NotImplementedError): df.interpolate(method='values') def test_interp_various(self): tm._skip_if_no_scipy() df = DataFrame({'A': [1, 2, np.nan, 4, 5, np.nan, 7], 'C': [1, 2, 3, 5, 8, 13, 21]}) df = df.set_index('C') expected = df.copy() result = df.interpolate(method='polynomial', order=1) expected.A.loc[3] = 2.66666667 expected.A.loc[13] = 5.76923076 assert_frame_equal(result, expected) result = df.interpolate(method='cubic') expected.A.loc[3] = 2.81621174 expected.A.loc[13] = 5.64146581 assert_frame_equal(result, expected) result = df.interpolate(method='nearest') expected.A.loc[3] = 2 expected.A.loc[13] = 5 assert_frame_equal(result, expected, check_dtype=False) result = df.interpolate(method='quadratic') expected.A.loc[3] = 2.82533638 expected.A.loc[13] = 6.02817974 assert_frame_equal(result, expected) result = df.interpolate(method='slinear') expected.A.loc[3] = 2.66666667 expected.A.loc[13] = 5.76923077 assert_frame_equal(result, expected) result = df.interpolate(method='zero') expected.A.loc[3] = 2. expected.A.loc[13] = 5 assert_frame_equal(result, expected, check_dtype=False) result = df.interpolate(method='quadratic') expected.A.loc[3] = 2.82533638 expected.A.loc[13] = 6.02817974 assert_frame_equal(result, expected) def test_interp_alt_scipy(self): tm._skip_if_no_scipy() df = DataFrame({'A': [1, 2, np.nan, 4, 5, np.nan, 7], 'C': [1, 2, 3, 5, 8, 13, 21]}) result = df.interpolate(method='barycentric') expected = df.copy() expected.ix[2, 'A'] = 3 expected.ix[5, 'A'] = 6 assert_frame_equal(result, expected) result = df.interpolate(method='barycentric', downcast='infer') assert_frame_equal(result, expected.astype(np.int64)) result = df.interpolate(method='krogh') expectedk = df.copy() expectedk['A'] = expected['A'] assert_frame_equal(result, expectedk) _skip_if_no_pchip() import scipy result = df.interpolate(method='pchip') expected.ix[2, 'A'] = 3 if LooseVersion(scipy.__version__) >= '0.17.0': expected.ix[5, 'A'] = 6.0 else: expected.ix[5, 'A'] = 6.125 assert_frame_equal(result, expected) def test_interp_rowwise(self): df = DataFrame({0: [1, 2, np.nan, 4], 1: [2, 3, 4, np.nan], 2: [np.nan, 4, 5, 6], 3: [4, np.nan, 6, 7], 4: [1, 2, 3, 4]}) result = df.interpolate(axis=1) expected = df.copy() expected.loc[3, 1] = 5 expected.loc[0, 2] = 3 expected.loc[1, 3] = 3 expected[4] = expected[4].astype(np.float64) assert_frame_equal(result, expected) # scipy route tm._skip_if_no_scipy() result = df.interpolate(axis=1, method='values') assert_frame_equal(result, expected) result = df.interpolate(axis=0) expected = df.interpolate() assert_frame_equal(result, expected) def test_rowwise_alt(self): df = DataFrame({0: [0, .5, 1., np.nan, 4, 8, np.nan, np.nan, 64], 1: [1, 2, 3, 4, 3, 2, 1, 0, -1]}) df.interpolate(axis=0) def test_interp_leading_nans(self): df = DataFrame({"A": [np.nan, np.nan, .5, .25, 0], "B": [np.nan, -3, -3.5, np.nan, -4]}) result = df.interpolate() expected = df.copy() expected['B'].loc[3] = -3.75 assert_frame_equal(result, expected) tm._skip_if_no_scipy() result = df.interpolate(method='polynomial', order=1) assert_frame_equal(result, expected) def test_interp_raise_on_only_mixed(self): df = DataFrame({'A': [1, 2, np.nan, 4], 'B': ['a', 'b', 'c', 'd'], 'C': [np.nan, 2, 5, 7], 'D': [np.nan, np.nan, 9, 9], 'E': [1, 2, 3, 4]}) with tm.assertRaises(TypeError): df.interpolate(axis=1) def test_interp_inplace(self): df = DataFrame({'a': [1., 2., np.nan, 4.]}) expected = DataFrame({'a': [1., 2., 3., 4.]}) result = df.copy() result['a'].interpolate(inplace=True) assert_frame_equal(result, expected) result = df.copy() result['a'].interpolate(inplace=True, downcast='infer') assert_frame_equal(result, expected.astype('int64')) def test_interp_inplace_row(self): # GH 10395 result = DataFrame({'a': [1., 2., 3., 4.], 'b': [np.nan, 2., 3., 4.], 'c': [3, 2, 2, 2]}) expected = result.interpolate(method='linear', axis=1, inplace=False) result.interpolate(method='linear', axis=1, inplace=True) assert_frame_equal(result, expected) def test_interp_ignore_all_good(self): # GH df = DataFrame({'A': [1, 2, np.nan, 4], 'B': [1, 2, 3, 4], 'C': [1., 2., np.nan, 4.], 'D': [1., 2., 3., 4.]}) expected = DataFrame({'A': np.array( [1, 2, 3, 4], dtype='float64'), 'B': np.array( [1, 2, 3, 4], dtype='int64'), 'C': np.array( [1., 2., 3, 4.], dtype='float64'), 'D': np.array( [1., 2., 3., 4.], dtype='float64')}) result = df.interpolate(downcast=None) assert_frame_equal(result, expected) # all good result = df[['B', 'D']].interpolate(downcast=None) assert_frame_equal(result, df[['B', 'D']]) if __name__ == '__main__': import nose nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'], # '--with-coverage', '--cover-package=pandas.core'] exit=False)
mit
jmmease/pandas
pandas/tests/tseries/test_timezones.py
2
69288
# pylint: disable-msg=E1101,W0612 import pytest import pytz import dateutil import numpy as np from dateutil.parser import parse from pytz import NonExistentTimeError from distutils.version import LooseVersion from dateutil.tz import tzlocal, tzoffset from datetime import datetime, timedelta, tzinfo, date import pandas.util.testing as tm import pandas.tseries.offsets as offsets from pandas.compat import lrange, zip from pandas.core.indexes.datetimes import bdate_range, date_range from pandas.core.dtypes.dtypes import DatetimeTZDtype from pandas._libs import tslib from pandas._libs.tslibs import timezones from pandas import (Index, Series, DataFrame, isna, Timestamp, NaT, DatetimeIndex, to_datetime) from pandas.util.testing import (assert_frame_equal, assert_series_equal, set_timezone) class FixedOffset(tzinfo): """Fixed offset in minutes east from UTC.""" def __init__(self, offset, name): self.__offset = timedelta(minutes=offset) self.__name = name def utcoffset(self, dt): return self.__offset def tzname(self, dt): return self.__name def dst(self, dt): return timedelta(0) fixed_off = FixedOffset(-420, '-07:00') fixed_off_no_name = FixedOffset(-330, None) class TestTimeZoneSupportPytz(object): def tz(self, tz): # Construct a timezone object from a string. Overridden in subclass to # parameterize tests. return pytz.timezone(tz) def tzstr(self, tz): # Construct a timezone string from a string. Overridden in subclass to # parameterize tests. return tz def localize(self, tz, x): return tz.localize(x) def cmptz(self, tz1, tz2): # Compare two timezones. Overridden in subclass to parameterize # tests. return tz1.zone == tz2.zone def test_utc_to_local_no_modify(self): rng = date_range('3/11/2012', '3/12/2012', freq='H', tz='utc') rng_eastern = rng.tz_convert(self.tzstr('US/Eastern')) # Values are unmodified assert np.array_equal(rng.asi8, rng_eastern.asi8) assert self.cmptz(rng_eastern.tz, self.tz('US/Eastern')) def test_utc_to_local_no_modify_explicit(self): rng = date_range('3/11/2012', '3/12/2012', freq='H', tz='utc') rng_eastern = rng.tz_convert(self.tz('US/Eastern')) # Values are unmodified tm.assert_numpy_array_equal(rng.asi8, rng_eastern.asi8) assert rng_eastern.tz == self.tz('US/Eastern') def test_localize_utc_conversion(self): # Localizing to time zone should: # 1) check for DST ambiguities # 2) convert to UTC rng = date_range('3/10/2012', '3/11/2012', freq='30T') converted = rng.tz_localize(self.tzstr('US/Eastern')) expected_naive = rng + offsets.Hour(5) tm.assert_numpy_array_equal(converted.asi8, expected_naive.asi8) # DST ambiguity, this should fail rng = date_range('3/11/2012', '3/12/2012', freq='30T') # Is this really how it should fail?? pytest.raises(NonExistentTimeError, rng.tz_localize, self.tzstr('US/Eastern')) def test_localize_utc_conversion_explicit(self): # Localizing to time zone should: # 1) check for DST ambiguities # 2) convert to UTC rng = date_range('3/10/2012', '3/11/2012', freq='30T') converted = rng.tz_localize(self.tz('US/Eastern')) expected_naive = rng + offsets.Hour(5) assert np.array_equal(converted.asi8, expected_naive.asi8) # DST ambiguity, this should fail rng = date_range('3/11/2012', '3/12/2012', freq='30T') # Is this really how it should fail?? pytest.raises(NonExistentTimeError, rng.tz_localize, self.tz('US/Eastern')) def test_timestamp_tz_localize(self): stamp = Timestamp('3/11/2012 04:00') result = stamp.tz_localize(self.tzstr('US/Eastern')) expected = Timestamp('3/11/2012 04:00', tz=self.tzstr('US/Eastern')) assert result.hour == expected.hour assert result == expected def test_timestamp_tz_localize_explicit(self): stamp = Timestamp('3/11/2012 04:00') result = stamp.tz_localize(self.tz('US/Eastern')) expected = Timestamp('3/11/2012 04:00', tz=self.tz('US/Eastern')) assert result.hour == expected.hour assert result == expected def test_timestamp_constructed_by_date_and_tz(self): # Fix Issue 2993, Timestamp cannot be constructed by datetime.date # and tz correctly result = Timestamp(date(2012, 3, 11), tz=self.tzstr('US/Eastern')) expected = Timestamp('3/11/2012', tz=self.tzstr('US/Eastern')) assert result.hour == expected.hour assert result == expected def test_timestamp_constructed_by_date_and_tz_explicit(self): # Fix Issue 2993, Timestamp cannot be constructed by datetime.date # and tz correctly result = Timestamp(date(2012, 3, 11), tz=self.tz('US/Eastern')) expected = Timestamp('3/11/2012', tz=self.tz('US/Eastern')) assert result.hour == expected.hour assert result == expected def test_timestamp_constructor_near_dst_boundary(self): # GH 11481 & 15777 # Naive string timestamps were being localized incorrectly # with tz_convert_single instead of tz_localize_to_utc for tz in ['Europe/Brussels', 'Europe/Prague']: result = Timestamp('2015-10-25 01:00', tz=tz) expected = Timestamp('2015-10-25 01:00').tz_localize(tz) assert result == expected with pytest.raises(pytz.AmbiguousTimeError): Timestamp('2015-10-25 02:00', tz=tz) result = Timestamp('2017-03-26 01:00', tz='Europe/Paris') expected = Timestamp('2017-03-26 01:00').tz_localize('Europe/Paris') assert result == expected with pytest.raises(pytz.NonExistentTimeError): Timestamp('2017-03-26 02:00', tz='Europe/Paris') # GH 11708 result = to_datetime("2015-11-18 15:30:00+05:30").tz_localize( 'UTC').tz_convert('Asia/Kolkata') expected = Timestamp('2015-11-18 15:30:00+0530', tz='Asia/Kolkata') assert result == expected # GH 15823 result = Timestamp('2017-03-26 00:00', tz='Europe/Paris') expected = Timestamp('2017-03-26 00:00:00+0100', tz='Europe/Paris') assert result == expected result = Timestamp('2017-03-26 01:00', tz='Europe/Paris') expected = Timestamp('2017-03-26 01:00:00+0100', tz='Europe/Paris') assert result == expected with pytest.raises(pytz.NonExistentTimeError): Timestamp('2017-03-26 02:00', tz='Europe/Paris') result = Timestamp('2017-03-26 02:00:00+0100', tz='Europe/Paris') expected = Timestamp(result.value).tz_localize( 'UTC').tz_convert('Europe/Paris') assert result == expected result = Timestamp('2017-03-26 03:00', tz='Europe/Paris') expected = Timestamp('2017-03-26 03:00:00+0200', tz='Europe/Paris') assert result == expected def test_timestamp_to_datetime_tzoffset(self): tzinfo = tzoffset(None, 7200) expected = Timestamp('3/11/2012 04:00', tz=tzinfo) result = Timestamp(expected.to_pydatetime()) assert expected == result def test_timedelta_push_over_dst_boundary(self): # #1389 # 4 hours before DST transition stamp = Timestamp('3/10/2012 22:00', tz=self.tzstr('US/Eastern')) result = stamp + timedelta(hours=6) # spring forward, + "7" hours expected = Timestamp('3/11/2012 05:00', tz=self.tzstr('US/Eastern')) assert result == expected def test_timedelta_push_over_dst_boundary_explicit(self): # #1389 # 4 hours before DST transition stamp = Timestamp('3/10/2012 22:00', tz=self.tz('US/Eastern')) result = stamp + timedelta(hours=6) # spring forward, + "7" hours expected = Timestamp('3/11/2012 05:00', tz=self.tz('US/Eastern')) assert result == expected def test_tz_localize_dti(self): dti = DatetimeIndex(start='1/1/2005', end='1/1/2005 0:00:30.256', freq='L') dti2 = dti.tz_localize(self.tzstr('US/Eastern')) dti_utc = DatetimeIndex(start='1/1/2005 05:00', end='1/1/2005 5:00:30.256', freq='L', tz='utc') tm.assert_numpy_array_equal(dti2.values, dti_utc.values) dti3 = dti2.tz_convert(self.tzstr('US/Pacific')) tm.assert_numpy_array_equal(dti3.values, dti_utc.values) dti = DatetimeIndex(start='11/6/2011 1:59', end='11/6/2011 2:00', freq='L') pytest.raises(pytz.AmbiguousTimeError, dti.tz_localize, self.tzstr('US/Eastern')) dti = DatetimeIndex(start='3/13/2011 1:59', end='3/13/2011 2:00', freq='L') pytest.raises(pytz.NonExistentTimeError, dti.tz_localize, self.tzstr('US/Eastern')) def test_tz_localize_empty_series(self): # #2248 ts = Series() ts2 = ts.tz_localize('utc') assert ts2.index.tz == pytz.utc ts2 = ts.tz_localize(self.tzstr('US/Eastern')) assert self.cmptz(ts2.index.tz, self.tz('US/Eastern')) def test_astimezone(self): utc = Timestamp('3/11/2012 22:00', tz='UTC') expected = utc.tz_convert(self.tzstr('US/Eastern')) result = utc.astimezone(self.tzstr('US/Eastern')) assert expected == result assert isinstance(result, Timestamp) def test_create_with_tz(self): stamp = Timestamp('3/11/2012 05:00', tz=self.tzstr('US/Eastern')) assert stamp.hour == 5 rng = date_range('3/11/2012 04:00', periods=10, freq='H', tz=self.tzstr('US/Eastern')) assert stamp == rng[1] utc_stamp = Timestamp('3/11/2012 05:00', tz='utc') assert utc_stamp.tzinfo is pytz.utc assert utc_stamp.hour == 5 utc_stamp = Timestamp('3/11/2012 05:00').tz_localize('utc') assert utc_stamp.hour == 5 def test_create_with_fixed_tz(self): off = FixedOffset(420, '+07:00') start = datetime(2012, 3, 11, 5, 0, 0, tzinfo=off) end = datetime(2012, 6, 11, 5, 0, 0, tzinfo=off) rng = date_range(start=start, end=end) assert off == rng.tz rng2 = date_range(start, periods=len(rng), tz=off) tm.assert_index_equal(rng, rng2) rng3 = date_range('3/11/2012 05:00:00+07:00', '6/11/2012 05:00:00+07:00') assert (rng.values == rng3.values).all() def test_create_with_fixedoffset_noname(self): off = fixed_off_no_name start = datetime(2012, 3, 11, 5, 0, 0, tzinfo=off) end = datetime(2012, 6, 11, 5, 0, 0, tzinfo=off) rng = date_range(start=start, end=end) assert off == rng.tz idx = Index([start, end]) assert off == idx.tz def test_date_range_localize(self): rng = date_range('3/11/2012 03:00', periods=15, freq='H', tz='US/Eastern') rng2 = DatetimeIndex(['3/11/2012 03:00', '3/11/2012 04:00'], tz='US/Eastern') rng3 = date_range('3/11/2012 03:00', periods=15, freq='H') rng3 = rng3.tz_localize('US/Eastern') tm.assert_index_equal(rng, rng3) # DST transition time val = rng[0] exp = Timestamp('3/11/2012 03:00', tz='US/Eastern') assert val.hour == 3 assert exp.hour == 3 assert val == exp # same UTC value tm.assert_index_equal(rng[:2], rng2) # Right before the DST transition rng = date_range('3/11/2012 00:00', periods=2, freq='H', tz='US/Eastern') rng2 = DatetimeIndex(['3/11/2012 00:00', '3/11/2012 01:00'], tz='US/Eastern') tm.assert_index_equal(rng, rng2) exp = Timestamp('3/11/2012 00:00', tz='US/Eastern') assert exp.hour == 0 assert rng[0] == exp exp = Timestamp('3/11/2012 01:00', tz='US/Eastern') assert exp.hour == 1 assert rng[1] == exp rng = date_range('3/11/2012 00:00', periods=10, freq='H', tz='US/Eastern') assert rng[2].hour == 3 def test_utc_box_timestamp_and_localize(self): rng = date_range('3/11/2012', '3/12/2012', freq='H', tz='utc') rng_eastern = rng.tz_convert(self.tzstr('US/Eastern')) tz = self.tz('US/Eastern') expected = rng[-1].astimezone(tz) stamp = rng_eastern[-1] assert stamp == expected assert stamp.tzinfo == expected.tzinfo # right tzinfo rng = date_range('3/13/2012', '3/14/2012', freq='H', tz='utc') rng_eastern = rng.tz_convert(self.tzstr('US/Eastern')) # test not valid for dateutil timezones. # assert 'EDT' in repr(rng_eastern[0].tzinfo) assert ('EDT' in repr(rng_eastern[0].tzinfo) or 'tzfile' in repr(rng_eastern[0].tzinfo)) def test_timestamp_tz_convert(self): strdates = ['1/1/2012', '3/1/2012', '4/1/2012'] idx = DatetimeIndex(strdates, tz=self.tzstr('US/Eastern')) conv = idx[0].tz_convert(self.tzstr('US/Pacific')) expected = idx.tz_convert(self.tzstr('US/Pacific'))[0] assert conv == expected def test_pass_dates_localize_to_utc(self): strdates = ['1/1/2012', '3/1/2012', '4/1/2012'] idx = DatetimeIndex(strdates) conv = idx.tz_localize(self.tzstr('US/Eastern')) fromdates = DatetimeIndex(strdates, tz=self.tzstr('US/Eastern')) assert conv.tz == fromdates.tz tm.assert_numpy_array_equal(conv.values, fromdates.values) def test_field_access_localize(self): strdates = ['1/1/2012', '3/1/2012', '4/1/2012'] rng = DatetimeIndex(strdates, tz=self.tzstr('US/Eastern')) assert (rng.hour == 0).all() # a more unusual time zone, #1946 dr = date_range('2011-10-02 00:00', freq='h', periods=10, tz=self.tzstr('America/Atikokan')) expected = Index(np.arange(10, dtype=np.int64)) tm.assert_index_equal(dr.hour, expected) def test_with_tz(self): tz = self.tz('US/Central') # just want it to work start = datetime(2011, 3, 12, tzinfo=pytz.utc) dr = bdate_range(start, periods=50, freq=offsets.Hour()) assert dr.tz is pytz.utc # DateRange with naive datetimes dr = bdate_range('1/1/2005', '1/1/2009', tz=pytz.utc) dr = bdate_range('1/1/2005', '1/1/2009', tz=tz) # normalized central = dr.tz_convert(tz) assert central.tz is tz comp = self.localize(tz, central[0].to_pydatetime().replace( tzinfo=None)).tzinfo assert central[0].tz is comp # compare vs a localized tz comp = self.localize(tz, dr[0].to_pydatetime().replace(tzinfo=None)).tzinfo assert central[0].tz is comp # datetimes with tzinfo set dr = bdate_range(datetime(2005, 1, 1, tzinfo=pytz.utc), '1/1/2009', tz=pytz.utc) pytest.raises(Exception, bdate_range, datetime(2005, 1, 1, tzinfo=pytz.utc), '1/1/2009', tz=tz) def test_tz_localize(self): dr = bdate_range('1/1/2009', '1/1/2010') dr_utc = bdate_range('1/1/2009', '1/1/2010', tz=pytz.utc) localized = dr.tz_localize(pytz.utc) tm.assert_index_equal(dr_utc, localized) def test_with_tz_ambiguous_times(self): tz = self.tz('US/Eastern') # March 13, 2011, spring forward, skip from 2 AM to 3 AM dr = date_range(datetime(2011, 3, 13, 1, 30), periods=3, freq=offsets.Hour()) pytest.raises(pytz.NonExistentTimeError, dr.tz_localize, tz) # after dst transition, it works dr = date_range(datetime(2011, 3, 13, 3, 30), periods=3, freq=offsets.Hour(), tz=tz) # November 6, 2011, fall back, repeat 2 AM hour dr = date_range(datetime(2011, 11, 6, 1, 30), periods=3, freq=offsets.Hour()) pytest.raises(pytz.AmbiguousTimeError, dr.tz_localize, tz) # UTC is OK dr = date_range(datetime(2011, 3, 13), periods=48, freq=offsets.Minute(30), tz=pytz.utc) def test_ambiguous_infer(self): # November 6, 2011, fall back, repeat 2 AM hour # With no repeated hours, we cannot infer the transition tz = self.tz('US/Eastern') dr = date_range(datetime(2011, 11, 6, 0), periods=5, freq=offsets.Hour()) pytest.raises(pytz.AmbiguousTimeError, dr.tz_localize, tz) # With repeated hours, we can infer the transition dr = date_range(datetime(2011, 11, 6, 0), periods=5, freq=offsets.Hour(), tz=tz) times = ['11/06/2011 00:00', '11/06/2011 01:00', '11/06/2011 01:00', '11/06/2011 02:00', '11/06/2011 03:00'] di = DatetimeIndex(times) localized = di.tz_localize(tz, ambiguous='infer') tm.assert_index_equal(dr, localized) with tm.assert_produces_warning(FutureWarning): localized_old = di.tz_localize(tz, infer_dst=True) tm.assert_index_equal(dr, localized_old) tm.assert_index_equal(dr, DatetimeIndex(times, tz=tz, ambiguous='infer')) # When there is no dst transition, nothing special happens dr = date_range(datetime(2011, 6, 1, 0), periods=10, freq=offsets.Hour()) localized = dr.tz_localize(tz) localized_infer = dr.tz_localize(tz, ambiguous='infer') tm.assert_index_equal(localized, localized_infer) with tm.assert_produces_warning(FutureWarning): localized_infer_old = dr.tz_localize(tz, infer_dst=True) tm.assert_index_equal(localized, localized_infer_old) def test_ambiguous_flags(self): # November 6, 2011, fall back, repeat 2 AM hour tz = self.tz('US/Eastern') # Pass in flags to determine right dst transition dr = date_range(datetime(2011, 11, 6, 0), periods=5, freq=offsets.Hour(), tz=tz) times = ['11/06/2011 00:00', '11/06/2011 01:00', '11/06/2011 01:00', '11/06/2011 02:00', '11/06/2011 03:00'] # Test tz_localize di = DatetimeIndex(times) is_dst = [1, 1, 0, 0, 0] localized = di.tz_localize(tz, ambiguous=is_dst) tm.assert_index_equal(dr, localized) tm.assert_index_equal(dr, DatetimeIndex(times, tz=tz, ambiguous=is_dst)) localized = di.tz_localize(tz, ambiguous=np.array(is_dst)) tm.assert_index_equal(dr, localized) localized = di.tz_localize(tz, ambiguous=np.array(is_dst).astype('bool')) tm.assert_index_equal(dr, localized) # Test constructor localized = DatetimeIndex(times, tz=tz, ambiguous=is_dst) tm.assert_index_equal(dr, localized) # Test duplicate times where infer_dst fails times += times di = DatetimeIndex(times) # When the sizes are incompatible, make sure error is raised pytest.raises(Exception, di.tz_localize, tz, ambiguous=is_dst) # When sizes are compatible and there are repeats ('infer' won't work) is_dst = np.hstack((is_dst, is_dst)) localized = di.tz_localize(tz, ambiguous=is_dst) dr = dr.append(dr) tm.assert_index_equal(dr, localized) # When there is no dst transition, nothing special happens dr = date_range(datetime(2011, 6, 1, 0), periods=10, freq=offsets.Hour()) is_dst = np.array([1] * 10) localized = dr.tz_localize(tz) localized_is_dst = dr.tz_localize(tz, ambiguous=is_dst) tm.assert_index_equal(localized, localized_is_dst) # construction with an ambiguous end-point # GH 11626 tz = self.tzstr("Europe/London") def f(): date_range("2013-10-26 23:00", "2013-10-27 01:00", tz="Europe/London", freq="H") pytest.raises(pytz.AmbiguousTimeError, f) times = date_range("2013-10-26 23:00", "2013-10-27 01:00", freq="H", tz=tz, ambiguous='infer') assert times[0] == Timestamp('2013-10-26 23:00', tz=tz, freq="H") if str(tz).startswith('dateutil'): if dateutil.__version__ < LooseVersion('2.6.0'): # see gh-14621 assert times[-1] == Timestamp('2013-10-27 01:00:00+0000', tz=tz, freq="H") elif dateutil.__version__ > LooseVersion('2.6.0'): # fixed ambiguous behavior assert times[-1] == Timestamp('2013-10-27 01:00:00+0100', tz=tz, freq="H") else: assert times[-1] == Timestamp('2013-10-27 01:00:00+0000', tz=tz, freq="H") def test_ambiguous_nat(self): tz = self.tz('US/Eastern') times = ['11/06/2011 00:00', '11/06/2011 01:00', '11/06/2011 01:00', '11/06/2011 02:00', '11/06/2011 03:00'] di = DatetimeIndex(times) localized = di.tz_localize(tz, ambiguous='NaT') times = ['11/06/2011 00:00', np.NaN, np.NaN, '11/06/2011 02:00', '11/06/2011 03:00'] di_test = DatetimeIndex(times, tz='US/Eastern') # left dtype is datetime64[ns, US/Eastern] # right is datetime64[ns, tzfile('/usr/share/zoneinfo/US/Eastern')] tm.assert_numpy_array_equal(di_test.values, localized.values) def test_ambiguous_bool(self): # make sure that we are correctly accepting bool values as ambiguous # gh-14402 t = Timestamp('2015-11-01 01:00:03') expected0 = Timestamp('2015-11-01 01:00:03-0500', tz='US/Central') expected1 = Timestamp('2015-11-01 01:00:03-0600', tz='US/Central') def f(): t.tz_localize('US/Central') pytest.raises(pytz.AmbiguousTimeError, f) result = t.tz_localize('US/Central', ambiguous=True) assert result == expected0 result = t.tz_localize('US/Central', ambiguous=False) assert result == expected1 s = Series([t]) expected0 = Series([expected0]) expected1 = Series([expected1]) def f(): s.dt.tz_localize('US/Central') pytest.raises(pytz.AmbiguousTimeError, f) result = s.dt.tz_localize('US/Central', ambiguous=True) assert_series_equal(result, expected0) result = s.dt.tz_localize('US/Central', ambiguous=[True]) assert_series_equal(result, expected0) result = s.dt.tz_localize('US/Central', ambiguous=False) assert_series_equal(result, expected1) result = s.dt.tz_localize('US/Central', ambiguous=[False]) assert_series_equal(result, expected1) def test_nonexistent_raise_coerce(self): # See issue 13057 from pytz.exceptions import NonExistentTimeError times = ['2015-03-08 01:00', '2015-03-08 02:00', '2015-03-08 03:00'] index = DatetimeIndex(times) tz = 'US/Eastern' pytest.raises(NonExistentTimeError, index.tz_localize, tz=tz) pytest.raises(NonExistentTimeError, index.tz_localize, tz=tz, errors='raise') result = index.tz_localize(tz=tz, errors='coerce') test_times = ['2015-03-08 01:00-05:00', 'NaT', '2015-03-08 03:00-04:00'] expected = DatetimeIndex(test_times)\ .tz_localize('UTC').tz_convert('US/Eastern') tm.assert_index_equal(result, expected) # test utility methods def test_infer_tz(self): eastern = self.tz('US/Eastern') utc = pytz.utc _start = datetime(2001, 1, 1) _end = datetime(2009, 1, 1) start = self.localize(eastern, _start) end = self.localize(eastern, _end) assert (timezones.infer_tzinfo(start, end) is self.localize(eastern, _start).tzinfo) assert (timezones.infer_tzinfo(start, None) is self.localize(eastern, _start).tzinfo) assert (timezones.infer_tzinfo(None, end) is self.localize(eastern, _end).tzinfo) start = utc.localize(_start) end = utc.localize(_end) assert (timezones.infer_tzinfo(start, end) is utc) end = self.localize(eastern, _end) pytest.raises(Exception, timezones.infer_tzinfo, start, end) pytest.raises(Exception, timezones.infer_tzinfo, end, start) def test_tz_string(self): result = date_range('1/1/2000', periods=10, tz=self.tzstr('US/Eastern')) expected = date_range('1/1/2000', periods=10, tz=self.tz('US/Eastern')) tm.assert_index_equal(result, expected) def test_take_dont_lose_meta(self): rng = date_range('1/1/2000', periods=20, tz=self.tzstr('US/Eastern')) result = rng.take(lrange(5)) assert result.tz == rng.tz assert result.freq == rng.freq def test_index_with_timezone_repr(self): rng = date_range('4/13/2010', '5/6/2010') rng_eastern = rng.tz_localize(self.tzstr('US/Eastern')) rng_repr = repr(rng_eastern) assert '2010-04-13 00:00:00' in rng_repr def test_index_astype_asobject_tzinfos(self): # #1345 # dates around a dst transition rng = date_range('2/13/2010', '5/6/2010', tz=self.tzstr('US/Eastern')) objs = rng.asobject for i, x in enumerate(objs): exval = rng[i] assert x == exval assert x.tzinfo == exval.tzinfo objs = rng.astype(object) for i, x in enumerate(objs): exval = rng[i] assert x == exval assert x.tzinfo == exval.tzinfo def test_localized_at_time_between_time(self): from datetime import time rng = date_range('4/16/2012', '5/1/2012', freq='H') ts = Series(np.random.randn(len(rng)), index=rng) ts_local = ts.tz_localize(self.tzstr('US/Eastern')) result = ts_local.at_time(time(10, 0)) expected = ts.at_time(time(10, 0)).tz_localize(self.tzstr( 'US/Eastern')) assert_series_equal(result, expected) assert self.cmptz(result.index.tz, self.tz('US/Eastern')) t1, t2 = time(10, 0), time(11, 0) result = ts_local.between_time(t1, t2) expected = ts.between_time(t1, t2).tz_localize(self.tzstr('US/Eastern')) assert_series_equal(result, expected) assert self.cmptz(result.index.tz, self.tz('US/Eastern')) def test_string_index_alias_tz_aware(self): rng = date_range('1/1/2000', periods=10, tz=self.tzstr('US/Eastern')) ts = Series(np.random.randn(len(rng)), index=rng) result = ts['1/3/2000'] tm.assert_almost_equal(result, ts[2]) def test_fixed_offset(self): dates = [datetime(2000, 1, 1, tzinfo=fixed_off), datetime(2000, 1, 2, tzinfo=fixed_off), datetime(2000, 1, 3, tzinfo=fixed_off)] result = to_datetime(dates) assert result.tz == fixed_off def test_fixedtz_topydatetime(self): dates = np.array([datetime(2000, 1, 1, tzinfo=fixed_off), datetime(2000, 1, 2, tzinfo=fixed_off), datetime(2000, 1, 3, tzinfo=fixed_off)]) result = to_datetime(dates).to_pydatetime() tm.assert_numpy_array_equal(dates, result) result = to_datetime(dates)._mpl_repr() tm.assert_numpy_array_equal(dates, result) def test_convert_tz_aware_datetime_datetime(self): # #1581 tz = self.tz('US/Eastern') dates = [datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)] dates_aware = [self.localize(tz, x) for x in dates] result = to_datetime(dates_aware) assert self.cmptz(result.tz, self.tz('US/Eastern')) converted = to_datetime(dates_aware, utc=True) ex_vals = np.array([Timestamp(x).value for x in dates_aware]) tm.assert_numpy_array_equal(converted.asi8, ex_vals) assert converted.tz is pytz.utc def test_to_datetime_utc(self): arr = np.array([parse('2012-06-13T01:39:00Z')], dtype=object) result = to_datetime(arr, utc=True) assert result.tz is pytz.utc def test_to_datetime_tzlocal(self): dt = parse('2012-06-13T01:39:00Z') dt = dt.replace(tzinfo=tzlocal()) arr = np.array([dt], dtype=object) result = to_datetime(arr, utc=True) assert result.tz is pytz.utc rng = date_range('2012-11-03 03:00', '2012-11-05 03:00', tz=tzlocal()) arr = rng.to_pydatetime() result = to_datetime(arr, utc=True) assert result.tz is pytz.utc def test_frame_no_datetime64_dtype(self): # after 7822 # these retain the timezones on dict construction dr = date_range('2011/1/1', '2012/1/1', freq='W-FRI') dr_tz = dr.tz_localize(self.tzstr('US/Eastern')) e = DataFrame({'A': 'foo', 'B': dr_tz}, index=dr) tz_expected = DatetimeTZDtype('ns', dr_tz.tzinfo) assert e['B'].dtype == tz_expected # GH 2810 (with timezones) datetimes_naive = [ts.to_pydatetime() for ts in dr] datetimes_with_tz = [ts.to_pydatetime() for ts in dr_tz] df = DataFrame({'dr': dr, 'dr_tz': dr_tz, 'datetimes_naive': datetimes_naive, 'datetimes_with_tz': datetimes_with_tz}) result = df.get_dtype_counts().sort_index() expected = Series({'datetime64[ns]': 2, str(tz_expected): 2}).sort_index() assert_series_equal(result, expected) def test_hongkong_tz_convert(self): # #1673 dr = date_range('2012-01-01', '2012-01-10', freq='D', tz='Hongkong') # it works! dr.hour def test_tz_convert_unsorted(self): dr = date_range('2012-03-09', freq='H', periods=100, tz='utc') dr = dr.tz_convert(self.tzstr('US/Eastern')) result = dr[::-1].hour exp = dr.hour[::-1] tm.assert_almost_equal(result, exp) def test_shift_localized(self): dr = date_range('2011/1/1', '2012/1/1', freq='W-FRI') dr_tz = dr.tz_localize(self.tzstr('US/Eastern')) result = dr_tz.shift(1, '10T') assert result.tz == dr_tz.tz def test_tz_aware_asfreq(self): dr = date_range('2011-12-01', '2012-07-20', freq='D', tz=self.tzstr('US/Eastern')) s = Series(np.random.randn(len(dr)), index=dr) # it works! s.asfreq('T') def test_static_tzinfo(self): # it works! index = DatetimeIndex([datetime(2012, 1, 1)], tz=self.tzstr('EST')) index.hour index[0] def test_tzaware_datetime_to_index(self): d = [datetime(2012, 8, 19, tzinfo=self.tz('US/Eastern'))] index = DatetimeIndex(d) assert self.cmptz(index.tz, self.tz('US/Eastern')) def test_date_range_span_dst_transition(self): # #1778 # Standard -> Daylight Savings Time dr = date_range('03/06/2012 00:00', periods=200, freq='W-FRI', tz='US/Eastern') assert (dr.hour == 0).all() dr = date_range('2012-11-02', periods=10, tz=self.tzstr('US/Eastern')) assert (dr.hour == 0).all() def test_convert_datetime_list(self): dr = date_range('2012-06-02', periods=10, tz=self.tzstr('US/Eastern'), name='foo') dr2 = DatetimeIndex(list(dr), name='foo') tm.assert_index_equal(dr, dr2) assert dr.tz == dr2.tz assert dr2.name == 'foo' def test_frame_from_records_utc(self): rec = {'datum': 1.5, 'begin_time': datetime(2006, 4, 27, tzinfo=pytz.utc)} # it works DataFrame.from_records([rec], index='begin_time') def test_frame_reset_index(self): dr = date_range('2012-06-02', periods=10, tz=self.tzstr('US/Eastern')) df = DataFrame(np.random.randn(len(dr)), dr) roundtripped = df.reset_index().set_index('index') xp = df.index.tz rs = roundtripped.index.tz assert xp == rs def test_dateutil_tzoffset_support(self): values = [188.5, 328.25] tzinfo = tzoffset(None, 7200) index = [datetime(2012, 5, 11, 11, tzinfo=tzinfo), datetime(2012, 5, 11, 12, tzinfo=tzinfo)] series = Series(data=values, index=index) assert series.index.tz == tzinfo # it works! #2443 repr(series.index[0]) def test_getitem_pydatetime_tz(self): index = date_range(start='2012-12-24 16:00', end='2012-12-24 18:00', freq='H', tz=self.tzstr('Europe/Berlin')) ts = Series(index=index, data=index.hour) time_pandas = Timestamp('2012-12-24 17:00', tz=self.tzstr('Europe/Berlin')) time_datetime = self.localize( self.tz('Europe/Berlin'), datetime(2012, 12, 24, 17, 0)) assert ts[time_pandas] == ts[time_datetime] def test_index_drop_dont_lose_tz(self): # #2621 ind = date_range("2012-12-01", periods=10, tz="utc") ind = ind.drop(ind[-1]) assert ind.tz is not None def test_datetimeindex_tz(self): """ Test different DatetimeIndex constructions with timezone Follow-up of #4229 """ arr = ['11/10/2005 08:00:00', '11/10/2005 09:00:00'] idx1 = to_datetime(arr).tz_localize(self.tzstr('US/Eastern')) idx2 = DatetimeIndex(start="2005-11-10 08:00:00", freq='H', periods=2, tz=self.tzstr('US/Eastern')) idx3 = DatetimeIndex(arr, tz=self.tzstr('US/Eastern')) idx4 = DatetimeIndex(np.array(arr), tz=self.tzstr('US/Eastern')) for other in [idx2, idx3, idx4]: tm.assert_index_equal(idx1, other) def test_datetimeindex_tz_nat(self): idx = to_datetime([Timestamp("2013-1-1", tz=self.tzstr('US/Eastern')), NaT]) assert isna(idx[1]) assert idx[0].tzinfo is not None class TestTimeZoneSupportDateutil(TestTimeZoneSupportPytz): def tz(self, tz): """ Construct a dateutil timezone. Use tslib.maybe_get_tz so that we get the filename on the tz right on windows. See #7337. """ return timezones.maybe_get_tz('dateutil/' + tz) def tzstr(self, tz): """ Construct a timezone string from a string. Overridden in subclass to parameterize tests. """ return 'dateutil/' + tz def cmptz(self, tz1, tz2): """ Compare two timezones. Overridden in subclass to parameterize tests. """ return tz1 == tz2 def localize(self, tz, x): return x.replace(tzinfo=tz) def test_utc_with_system_utc(self): # Skipped on win32 due to dateutil bug tm._skip_if_windows() from pandas._libs.tslibs.timezones import maybe_get_tz # from system utc to real utc ts = Timestamp('2001-01-05 11:56', tz=maybe_get_tz('dateutil/UTC')) # check that the time hasn't changed. assert ts == ts.tz_convert(dateutil.tz.tzutc()) # from system utc to real utc ts = Timestamp('2001-01-05 11:56', tz=maybe_get_tz('dateutil/UTC')) # check that the time hasn't changed. assert ts == ts.tz_convert(dateutil.tz.tzutc()) def test_tz_convert_hour_overflow_dst(self): # Regression test for: # https://github.com/pandas-dev/pandas/issues/13306 # sorted case US/Eastern -> UTC ts = ['2008-05-12 09:50:00', '2008-12-12 09:50:35', '2009-05-12 09:50:32'] tt = to_datetime(ts).tz_localize('US/Eastern') ut = tt.tz_convert('UTC') expected = Index([13, 14, 13]) tm.assert_index_equal(ut.hour, expected) # sorted case UTC -> US/Eastern ts = ['2008-05-12 13:50:00', '2008-12-12 14:50:35', '2009-05-12 13:50:32'] tt = to_datetime(ts).tz_localize('UTC') ut = tt.tz_convert('US/Eastern') expected = Index([9, 9, 9]) tm.assert_index_equal(ut.hour, expected) # unsorted case US/Eastern -> UTC ts = ['2008-05-12 09:50:00', '2008-12-12 09:50:35', '2008-05-12 09:50:32'] tt = to_datetime(ts).tz_localize('US/Eastern') ut = tt.tz_convert('UTC') expected = Index([13, 14, 13]) tm.assert_index_equal(ut.hour, expected) # unsorted case UTC -> US/Eastern ts = ['2008-05-12 13:50:00', '2008-12-12 14:50:35', '2008-05-12 13:50:32'] tt = to_datetime(ts).tz_localize('UTC') ut = tt.tz_convert('US/Eastern') expected = Index([9, 9, 9]) tm.assert_index_equal(ut.hour, expected) def test_tz_convert_hour_overflow_dst_timestamps(self): # Regression test for: # https://github.com/pandas-dev/pandas/issues/13306 tz = self.tzstr('US/Eastern') # sorted case US/Eastern -> UTC ts = [Timestamp('2008-05-12 09:50:00', tz=tz), Timestamp('2008-12-12 09:50:35', tz=tz), Timestamp('2009-05-12 09:50:32', tz=tz)] tt = to_datetime(ts) ut = tt.tz_convert('UTC') expected = Index([13, 14, 13]) tm.assert_index_equal(ut.hour, expected) # sorted case UTC -> US/Eastern ts = [Timestamp('2008-05-12 13:50:00', tz='UTC'), Timestamp('2008-12-12 14:50:35', tz='UTC'), Timestamp('2009-05-12 13:50:32', tz='UTC')] tt = to_datetime(ts) ut = tt.tz_convert('US/Eastern') expected = Index([9, 9, 9]) tm.assert_index_equal(ut.hour, expected) # unsorted case US/Eastern -> UTC ts = [Timestamp('2008-05-12 09:50:00', tz=tz), Timestamp('2008-12-12 09:50:35', tz=tz), Timestamp('2008-05-12 09:50:32', tz=tz)] tt = to_datetime(ts) ut = tt.tz_convert('UTC') expected = Index([13, 14, 13]) tm.assert_index_equal(ut.hour, expected) # unsorted case UTC -> US/Eastern ts = [Timestamp('2008-05-12 13:50:00', tz='UTC'), Timestamp('2008-12-12 14:50:35', tz='UTC'), Timestamp('2008-05-12 13:50:32', tz='UTC')] tt = to_datetime(ts) ut = tt.tz_convert('US/Eastern') expected = Index([9, 9, 9]) tm.assert_index_equal(ut.hour, expected) def test_tslib_tz_convert_trans_pos_plus_1__bug(self): # Regression test for tslib.tz_convert(vals, tz1, tz2). # See https://github.com/pandas-dev/pandas/issues/4496 for details. for freq, n in [('H', 1), ('T', 60), ('S', 3600)]: idx = date_range(datetime(2011, 3, 26, 23), datetime(2011, 3, 27, 1), freq=freq) idx = idx.tz_localize('UTC') idx = idx.tz_convert('Europe/Moscow') expected = np.repeat(np.array([3, 4, 5]), np.array([n, n, 1])) tm.assert_index_equal(idx.hour, Index(expected)) def test_tslib_tz_convert_dst(self): for freq, n in [('H', 1), ('T', 60), ('S', 3600)]: # Start DST idx = date_range('2014-03-08 23:00', '2014-03-09 09:00', freq=freq, tz='UTC') idx = idx.tz_convert('US/Eastern') expected = np.repeat(np.array([18, 19, 20, 21, 22, 23, 0, 1, 3, 4, 5]), np.array([n, n, n, n, n, n, n, n, n, n, 1])) tm.assert_index_equal(idx.hour, Index(expected)) idx = date_range('2014-03-08 18:00', '2014-03-09 05:00', freq=freq, tz='US/Eastern') idx = idx.tz_convert('UTC') expected = np.repeat(np.array([23, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]), np.array([n, n, n, n, n, n, n, n, n, n, 1])) tm.assert_index_equal(idx.hour, Index(expected)) # End DST idx = date_range('2014-11-01 23:00', '2014-11-02 09:00', freq=freq, tz='UTC') idx = idx.tz_convert('US/Eastern') expected = np.repeat(np.array([19, 20, 21, 22, 23, 0, 1, 1, 2, 3, 4]), np.array([n, n, n, n, n, n, n, n, n, n, 1])) tm.assert_index_equal(idx.hour, Index(expected)) idx = date_range('2014-11-01 18:00', '2014-11-02 05:00', freq=freq, tz='US/Eastern') idx = idx.tz_convert('UTC') expected = np.repeat(np.array([22, 23, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), np.array([n, n, n, n, n, n, n, n, n, n, n, n, 1])) tm.assert_index_equal(idx.hour, Index(expected)) # daily # Start DST idx = date_range('2014-03-08 00:00', '2014-03-09 00:00', freq='D', tz='UTC') idx = idx.tz_convert('US/Eastern') tm.assert_index_equal(idx.hour, Index([19, 19])) idx = date_range('2014-03-08 00:00', '2014-03-09 00:00', freq='D', tz='US/Eastern') idx = idx.tz_convert('UTC') tm.assert_index_equal(idx.hour, Index([5, 5])) # End DST idx = date_range('2014-11-01 00:00', '2014-11-02 00:00', freq='D', tz='UTC') idx = idx.tz_convert('US/Eastern') tm.assert_index_equal(idx.hour, Index([20, 20])) idx = date_range('2014-11-01 00:00', '2014-11-02 000:00', freq='D', tz='US/Eastern') idx = idx.tz_convert('UTC') tm.assert_index_equal(idx.hour, Index([4, 4])) def test_tzlocal(self): # GH 13583 ts = Timestamp('2011-01-01', tz=dateutil.tz.tzlocal()) assert ts.tz == dateutil.tz.tzlocal() assert "tz='tzlocal()')" in repr(ts) tz = timezones.maybe_get_tz('tzlocal()') assert tz == dateutil.tz.tzlocal() # get offset using normal datetime for test offset = dateutil.tz.tzlocal().utcoffset(datetime(2011, 1, 1)) offset = offset.total_seconds() * 1000000000 assert ts.value + offset == Timestamp('2011-01-01').value def test_tz_localize_tzlocal(self): # GH 13583 offset = dateutil.tz.tzlocal().utcoffset(datetime(2011, 1, 1)) offset = int(offset.total_seconds() * 1000000000) dti = date_range(start='2001-01-01', end='2001-03-01') dti2 = dti.tz_localize(dateutil.tz.tzlocal()) tm.assert_numpy_array_equal(dti2.asi8 + offset, dti.asi8) dti = date_range(start='2001-01-01', end='2001-03-01', tz=dateutil.tz.tzlocal()) dti2 = dti.tz_localize(None) tm.assert_numpy_array_equal(dti2.asi8 - offset, dti.asi8) def test_tz_convert_tzlocal(self): # GH 13583 # tz_convert doesn't affect to internal dti = date_range(start='2001-01-01', end='2001-03-01', tz='UTC') dti2 = dti.tz_convert(dateutil.tz.tzlocal()) tm.assert_numpy_array_equal(dti2.asi8, dti.asi8) dti = date_range(start='2001-01-01', end='2001-03-01', tz=dateutil.tz.tzlocal()) dti2 = dti.tz_convert(None) tm.assert_numpy_array_equal(dti2.asi8, dti.asi8) class TestTimeZoneCacheKey(object): def test_cache_keys_are_distinct_for_pytz_vs_dateutil(self): tzs = pytz.common_timezones for tz_name in tzs: if tz_name == 'UTC': # skip utc as it's a special case in dateutil continue tz_p = timezones.maybe_get_tz(tz_name) tz_d = timezones.maybe_get_tz('dateutil/' + tz_name) if tz_d is None: # skip timezones that dateutil doesn't know about. continue assert (timezones._p_tz_cache_key(tz_p) != timezones._p_tz_cache_key(tz_d)) class TestTimeZones(object): timezones = ['UTC', 'Asia/Tokyo', 'US/Eastern', 'dateutil/US/Pacific'] def test_replace(self): # GH 14621 # GH 7825 # replacing datetime components with and w/o presence of a timezone dt = Timestamp('2016-01-01 09:00:00') result = dt.replace(hour=0) expected = Timestamp('2016-01-01 00:00:00') assert result == expected for tz in self.timezones: dt = Timestamp('2016-01-01 09:00:00', tz=tz) result = dt.replace(hour=0) expected = Timestamp('2016-01-01 00:00:00', tz=tz) assert result == expected # we preserve nanoseconds dt = Timestamp('2016-01-01 09:00:00.000000123', tz=tz) result = dt.replace(hour=0) expected = Timestamp('2016-01-01 00:00:00.000000123', tz=tz) assert result == expected # test all dt = Timestamp('2016-01-01 09:00:00.000000123', tz=tz) result = dt.replace(year=2015, month=2, day=2, hour=0, minute=5, second=5, microsecond=5, nanosecond=5) expected = Timestamp('2015-02-02 00:05:05.000005005', tz=tz) assert result == expected # error def f(): dt.replace(foo=5) pytest.raises(TypeError, f) def f(): dt.replace(hour=0.1) pytest.raises(ValueError, f) # assert conversion to naive is the same as replacing tzinfo with None dt = Timestamp('2013-11-03 01:59:59.999999-0400', tz='US/Eastern') assert dt.tz_localize(None) == dt.replace(tzinfo=None) def test_ambiguous_compat(self): # validate that pytz and dateutil are compat for dst # when the transition happens pytz_zone = 'Europe/London' dateutil_zone = 'dateutil/Europe/London' result_pytz = (Timestamp('2013-10-27 01:00:00') .tz_localize(pytz_zone, ambiguous=0)) result_dateutil = (Timestamp('2013-10-27 01:00:00') .tz_localize(dateutil_zone, ambiguous=0)) assert result_pytz.value == result_dateutil.value assert result_pytz.value == 1382835600000000000 if dateutil.__version__ < LooseVersion('2.6.0'): # dateutil 2.6 buggy w.r.t. ambiguous=0 # see gh-14621 # see https://github.com/dateutil/dateutil/issues/321 assert (result_pytz.to_pydatetime().tzname() == result_dateutil.to_pydatetime().tzname()) assert str(result_pytz) == str(result_dateutil) elif dateutil.__version__ > LooseVersion('2.6.0'): # fixed ambiguous behavior assert result_pytz.to_pydatetime().tzname() == 'GMT' assert result_dateutil.to_pydatetime().tzname() == 'BST' assert str(result_pytz) != str(result_dateutil) # 1 hour difference result_pytz = (Timestamp('2013-10-27 01:00:00') .tz_localize(pytz_zone, ambiguous=1)) result_dateutil = (Timestamp('2013-10-27 01:00:00') .tz_localize(dateutil_zone, ambiguous=1)) assert result_pytz.value == result_dateutil.value assert result_pytz.value == 1382832000000000000 # dateutil < 2.6 is buggy w.r.t. ambiguous timezones if dateutil.__version__ > LooseVersion('2.5.3'): # see gh-14621 assert str(result_pytz) == str(result_dateutil) assert (result_pytz.to_pydatetime().tzname() == result_dateutil.to_pydatetime().tzname()) def test_replace_tzinfo(self): # GH 15683 dt = datetime(2016, 3, 27, 1) tzinfo = pytz.timezone('CET').localize(dt, is_dst=False).tzinfo result_dt = dt.replace(tzinfo=tzinfo) result_pd = Timestamp(dt).replace(tzinfo=tzinfo) if hasattr(result_dt, 'timestamp'): # New method in Py 3.3 assert result_dt.timestamp() == result_pd.timestamp() assert result_dt == result_pd assert result_dt == result_pd.to_pydatetime() result_dt = dt.replace(tzinfo=tzinfo).replace(tzinfo=None) result_pd = Timestamp(dt).replace(tzinfo=tzinfo).replace(tzinfo=None) if hasattr(result_dt, 'timestamp'): # New method in Py 3.3 assert result_dt.timestamp() == result_pd.timestamp() assert result_dt == result_pd assert result_dt == result_pd.to_pydatetime() def test_index_equals_with_tz(self): left = date_range('1/1/2011', periods=100, freq='H', tz='utc') right = date_range('1/1/2011', periods=100, freq='H', tz='US/Eastern') assert not left.equals(right) def test_tz_localize_naive(self): rng = date_range('1/1/2011', periods=100, freq='H') conv = rng.tz_localize('US/Pacific') exp = date_range('1/1/2011', periods=100, freq='H', tz='US/Pacific') tm.assert_index_equal(conv, exp) def test_tz_localize_roundtrip(self): for tz in self.timezones: idx1 = date_range(start='2014-01-01', end='2014-12-31', freq='M') idx2 = date_range(start='2014-01-01', end='2014-12-31', freq='D') idx3 = date_range(start='2014-01-01', end='2014-03-01', freq='H') idx4 = date_range(start='2014-08-01', end='2014-10-31', freq='T') for idx in [idx1, idx2, idx3, idx4]: localized = idx.tz_localize(tz) expected = date_range(start=idx[0], end=idx[-1], freq=idx.freq, tz=tz) tm.assert_index_equal(localized, expected) with pytest.raises(TypeError): localized.tz_localize(tz) reset = localized.tz_localize(None) tm.assert_index_equal(reset, idx) assert reset.tzinfo is None def test_series_frame_tz_localize(self): rng = date_range('1/1/2011', periods=100, freq='H') ts = Series(1, index=rng) result = ts.tz_localize('utc') assert result.index.tz.zone == 'UTC' df = DataFrame({'a': 1}, index=rng) result = df.tz_localize('utc') expected = DataFrame({'a': 1}, rng.tz_localize('UTC')) assert result.index.tz.zone == 'UTC' assert_frame_equal(result, expected) df = df.T result = df.tz_localize('utc', axis=1) assert result.columns.tz.zone == 'UTC' assert_frame_equal(result, expected.T) # Can't localize if already tz-aware rng = date_range('1/1/2011', periods=100, freq='H', tz='utc') ts = Series(1, index=rng) tm.assert_raises_regex(TypeError, 'Already tz-aware', ts.tz_localize, 'US/Eastern') def test_series_frame_tz_convert(self): rng = date_range('1/1/2011', periods=200, freq='D', tz='US/Eastern') ts = Series(1, index=rng) result = ts.tz_convert('Europe/Berlin') assert result.index.tz.zone == 'Europe/Berlin' df = DataFrame({'a': 1}, index=rng) result = df.tz_convert('Europe/Berlin') expected = DataFrame({'a': 1}, rng.tz_convert('Europe/Berlin')) assert result.index.tz.zone == 'Europe/Berlin' assert_frame_equal(result, expected) df = df.T result = df.tz_convert('Europe/Berlin', axis=1) assert result.columns.tz.zone == 'Europe/Berlin' assert_frame_equal(result, expected.T) # can't convert tz-naive rng = date_range('1/1/2011', periods=200, freq='D') ts = Series(1, index=rng) tm.assert_raises_regex(TypeError, "Cannot convert tz-naive", ts.tz_convert, 'US/Eastern') def test_tz_convert_roundtrip(self): for tz in self.timezones: idx1 = date_range(start='2014-01-01', end='2014-12-31', freq='M', tz='UTC') exp1 = date_range(start='2014-01-01', end='2014-12-31', freq='M') idx2 = date_range(start='2014-01-01', end='2014-12-31', freq='D', tz='UTC') exp2 = date_range(start='2014-01-01', end='2014-12-31', freq='D') idx3 = date_range(start='2014-01-01', end='2014-03-01', freq='H', tz='UTC') exp3 = date_range(start='2014-01-01', end='2014-03-01', freq='H') idx4 = date_range(start='2014-08-01', end='2014-10-31', freq='T', tz='UTC') exp4 = date_range(start='2014-08-01', end='2014-10-31', freq='T') for idx, expected in [(idx1, exp1), (idx2, exp2), (idx3, exp3), (idx4, exp4)]: converted = idx.tz_convert(tz) reset = converted.tz_convert(None) tm.assert_index_equal(reset, expected) assert reset.tzinfo is None tm.assert_index_equal(reset, converted.tz_convert( 'UTC').tz_localize(None)) def test_join_utc_convert(self): rng = date_range('1/1/2011', periods=100, freq='H', tz='utc') left = rng.tz_convert('US/Eastern') right = rng.tz_convert('Europe/Berlin') for how in ['inner', 'outer', 'left', 'right']: result = left.join(left[:-5], how=how) assert isinstance(result, DatetimeIndex) assert result.tz == left.tz result = left.join(right[:-5], how=how) assert isinstance(result, DatetimeIndex) assert result.tz.zone == 'UTC' def test_join_aware(self): rng = date_range('1/1/2011', periods=10, freq='H') ts = Series(np.random.randn(len(rng)), index=rng) ts_utc = ts.tz_localize('utc') pytest.raises(Exception, ts.__add__, ts_utc) pytest.raises(Exception, ts_utc.__add__, ts) test1 = DataFrame(np.zeros((6, 3)), index=date_range("2012-11-15 00:00:00", periods=6, freq="100L", tz="US/Central")) test2 = DataFrame(np.zeros((3, 3)), index=date_range("2012-11-15 00:00:00", periods=3, freq="250L", tz="US/Central"), columns=lrange(3, 6)) result = test1.join(test2, how='outer') ex_index = test1.index.union(test2.index) tm.assert_index_equal(result.index, ex_index) assert result.index.tz.zone == 'US/Central' # non-overlapping rng = date_range("2012-11-15 00:00:00", periods=6, freq="H", tz="US/Central") rng2 = date_range("2012-11-15 12:00:00", periods=6, freq="H", tz="US/Eastern") result = rng.union(rng2) assert result.tz.zone == 'UTC' def test_align_aware(self): idx1 = date_range('2001', periods=5, freq='H', tz='US/Eastern') idx2 = date_range('2001', periods=5, freq='2H', tz='US/Eastern') df1 = DataFrame(np.random.randn(len(idx1), 3), idx1) df2 = DataFrame(np.random.randn(len(idx2), 3), idx2) new1, new2 = df1.align(df2) assert df1.index.tz == new1.index.tz assert df2.index.tz == new2.index.tz # # different timezones convert to UTC # frame df1_central = df1.tz_convert('US/Central') new1, new2 = df1.align(df1_central) assert new1.index.tz == pytz.UTC assert new2.index.tz == pytz.UTC # series new1, new2 = df1[0].align(df1_central[0]) assert new1.index.tz == pytz.UTC assert new2.index.tz == pytz.UTC # combination new1, new2 = df1.align(df1_central[0], axis=0) assert new1.index.tz == pytz.UTC assert new2.index.tz == pytz.UTC df1[0].align(df1_central, axis=0) assert new1.index.tz == pytz.UTC assert new2.index.tz == pytz.UTC def test_append_aware(self): rng1 = date_range('1/1/2011 01:00', periods=1, freq='H', tz='US/Eastern') rng2 = date_range('1/1/2011 02:00', periods=1, freq='H', tz='US/Eastern') ts1 = Series([1], index=rng1) ts2 = Series([2], index=rng2) ts_result = ts1.append(ts2) exp_index = DatetimeIndex(['2011-01-01 01:00', '2011-01-01 02:00'], tz='US/Eastern') exp = Series([1, 2], index=exp_index) assert_series_equal(ts_result, exp) assert ts_result.index.tz == rng1.tz rng1 = date_range('1/1/2011 01:00', periods=1, freq='H', tz='UTC') rng2 = date_range('1/1/2011 02:00', periods=1, freq='H', tz='UTC') ts1 = Series([1], index=rng1) ts2 = Series([2], index=rng2) ts_result = ts1.append(ts2) exp_index = DatetimeIndex(['2011-01-01 01:00', '2011-01-01 02:00'], tz='UTC') exp = Series([1, 2], index=exp_index) assert_series_equal(ts_result, exp) utc = rng1.tz assert utc == ts_result.index.tz # GH 7795 # different tz coerces to object dtype, not UTC rng1 = date_range('1/1/2011 01:00', periods=1, freq='H', tz='US/Eastern') rng2 = date_range('1/1/2011 02:00', periods=1, freq='H', tz='US/Central') ts1 = Series([1], index=rng1) ts2 = Series([2], index=rng2) ts_result = ts1.append(ts2) exp_index = Index([Timestamp('1/1/2011 01:00', tz='US/Eastern'), Timestamp('1/1/2011 02:00', tz='US/Central')]) exp = Series([1, 2], index=exp_index) assert_series_equal(ts_result, exp) def test_append_dst(self): rng1 = date_range('1/1/2016 01:00', periods=3, freq='H', tz='US/Eastern') rng2 = date_range('8/1/2016 01:00', periods=3, freq='H', tz='US/Eastern') ts1 = Series([1, 2, 3], index=rng1) ts2 = Series([10, 11, 12], index=rng2) ts_result = ts1.append(ts2) exp_index = DatetimeIndex(['2016-01-01 01:00', '2016-01-01 02:00', '2016-01-01 03:00', '2016-08-01 01:00', '2016-08-01 02:00', '2016-08-01 03:00'], tz='US/Eastern') exp = Series([1, 2, 3, 10, 11, 12], index=exp_index) assert_series_equal(ts_result, exp) assert ts_result.index.tz == rng1.tz def test_append_aware_naive(self): rng1 = date_range('1/1/2011 01:00', periods=1, freq='H') rng2 = date_range('1/1/2011 02:00', periods=1, freq='H', tz='US/Eastern') ts1 = Series(np.random.randn(len(rng1)), index=rng1) ts2 = Series(np.random.randn(len(rng2)), index=rng2) ts_result = ts1.append(ts2) assert ts_result.index.equals(ts1.index.asobject.append( ts2.index.asobject)) # mixed rng1 = date_range('1/1/2011 01:00', periods=1, freq='H') rng2 = lrange(100) ts1 = Series(np.random.randn(len(rng1)), index=rng1) ts2 = Series(np.random.randn(len(rng2)), index=rng2) ts_result = ts1.append(ts2) assert ts_result.index.equals(ts1.index.asobject.append( ts2.index)) def test_equal_join_ensure_utc(self): rng = date_range('1/1/2011', periods=10, freq='H', tz='US/Eastern') ts = Series(np.random.randn(len(rng)), index=rng) ts_moscow = ts.tz_convert('Europe/Moscow') result = ts + ts_moscow assert result.index.tz is pytz.utc result = ts_moscow + ts assert result.index.tz is pytz.utc df = DataFrame({'a': ts}) df_moscow = df.tz_convert('Europe/Moscow') result = df + df_moscow assert result.index.tz is pytz.utc result = df_moscow + df assert result.index.tz is pytz.utc def test_arith_utc_convert(self): rng = date_range('1/1/2011', periods=100, freq='H', tz='utc') perm = np.random.permutation(100)[:90] ts1 = Series(np.random.randn(90), index=rng.take(perm).tz_convert('US/Eastern')) perm = np.random.permutation(100)[:90] ts2 = Series(np.random.randn(90), index=rng.take(perm).tz_convert('Europe/Berlin')) result = ts1 + ts2 uts1 = ts1.tz_convert('utc') uts2 = ts2.tz_convert('utc') expected = uts1 + uts2 assert result.index.tz == pytz.UTC assert_series_equal(result, expected) def test_intersection(self): rng = date_range('1/1/2011', periods=100, freq='H', tz='utc') left = rng[10:90][::-1] right = rng[20:80][::-1] assert left.tz == rng.tz result = left.intersection(right) assert result.tz == left.tz def test_timestamp_equality_different_timezones(self): utc_range = date_range('1/1/2000', periods=20, tz='UTC') eastern_range = utc_range.tz_convert('US/Eastern') berlin_range = utc_range.tz_convert('Europe/Berlin') for a, b, c in zip(utc_range, eastern_range, berlin_range): assert a == b assert b == c assert a == c assert (utc_range == eastern_range).all() assert (utc_range == berlin_range).all() assert (berlin_range == eastern_range).all() def test_datetimeindex_tz(self): rng = date_range('03/12/2012 00:00', periods=10, freq='W-FRI', tz='US/Eastern') rng2 = DatetimeIndex(data=rng, tz='US/Eastern') tm.assert_index_equal(rng, rng2) def test_normalize_tz(self): rng = date_range('1/1/2000 9:30', periods=10, freq='D', tz='US/Eastern') result = rng.normalize() expected = date_range('1/1/2000', periods=10, freq='D', tz='US/Eastern') tm.assert_index_equal(result, expected) assert result.is_normalized assert not rng.is_normalized rng = date_range('1/1/2000 9:30', periods=10, freq='D', tz='UTC') result = rng.normalize() expected = date_range('1/1/2000', periods=10, freq='D', tz='UTC') tm.assert_index_equal(result, expected) assert result.is_normalized assert not rng.is_normalized rng = date_range('1/1/2000 9:30', periods=10, freq='D', tz=tzlocal()) result = rng.normalize() expected = date_range('1/1/2000', periods=10, freq='D', tz=tzlocal()) tm.assert_index_equal(result, expected) assert result.is_normalized assert not rng.is_normalized def test_normalize_tz_local(self): # see gh-13459 timezones = ['US/Pacific', 'US/Eastern', 'UTC', 'Asia/Kolkata', 'Asia/Shanghai', 'Australia/Canberra'] for timezone in timezones: with set_timezone(timezone): rng = date_range('1/1/2000 9:30', periods=10, freq='D', tz=tzlocal()) result = rng.normalize() expected = date_range('1/1/2000', periods=10, freq='D', tz=tzlocal()) tm.assert_index_equal(result, expected) assert result.is_normalized assert not rng.is_normalized def test_tzaware_offset(self): dates = date_range('2012-11-01', periods=3, tz='US/Pacific') offset = dates + offsets.Hour(5) assert dates[0] + offsets.Hour(5) == offset[0] # GH 6818 for tz in ['UTC', 'US/Pacific', 'Asia/Tokyo']: dates = date_range('2010-11-01 00:00', periods=3, tz=tz, freq='H') expected = DatetimeIndex(['2010-11-01 05:00', '2010-11-01 06:00', '2010-11-01 07:00'], freq='H', tz=tz) offset = dates + offsets.Hour(5) tm.assert_index_equal(offset, expected) offset = dates + np.timedelta64(5, 'h') tm.assert_index_equal(offset, expected) offset = dates + timedelta(hours=5) tm.assert_index_equal(offset, expected) def test_nat(self): # GH 5546 dates = [NaT] idx = DatetimeIndex(dates) idx = idx.tz_localize('US/Pacific') tm.assert_index_equal(idx, DatetimeIndex(dates, tz='US/Pacific')) idx = idx.tz_convert('US/Eastern') tm.assert_index_equal(idx, DatetimeIndex(dates, tz='US/Eastern')) idx = idx.tz_convert('UTC') tm.assert_index_equal(idx, DatetimeIndex(dates, tz='UTC')) dates = ['2010-12-01 00:00', '2010-12-02 00:00', NaT] idx = DatetimeIndex(dates) idx = idx.tz_localize('US/Pacific') tm.assert_index_equal(idx, DatetimeIndex(dates, tz='US/Pacific')) idx = idx.tz_convert('US/Eastern') expected = ['2010-12-01 03:00', '2010-12-02 03:00', NaT] tm.assert_index_equal(idx, DatetimeIndex(expected, tz='US/Eastern')) idx = idx + offsets.Hour(5) expected = ['2010-12-01 08:00', '2010-12-02 08:00', NaT] tm.assert_index_equal(idx, DatetimeIndex(expected, tz='US/Eastern')) idx = idx.tz_convert('US/Pacific') expected = ['2010-12-01 05:00', '2010-12-02 05:00', NaT] tm.assert_index_equal(idx, DatetimeIndex(expected, tz='US/Pacific')) idx = idx + np.timedelta64(3, 'h') expected = ['2010-12-01 08:00', '2010-12-02 08:00', NaT] tm.assert_index_equal(idx, DatetimeIndex(expected, tz='US/Pacific')) idx = idx.tz_convert('US/Eastern') expected = ['2010-12-01 11:00', '2010-12-02 11:00', NaT] tm.assert_index_equal(idx, DatetimeIndex(expected, tz='US/Eastern')) class TestTslib(object): def test_tslib_tz_convert(self): def compare_utc_to_local(tz_didx, utc_didx): f = lambda x: tslib.tz_convert_single(x, 'UTC', tz_didx.tz) result = tslib.tz_convert(tz_didx.asi8, 'UTC', tz_didx.tz) result_single = np.vectorize(f)(tz_didx.asi8) tm.assert_numpy_array_equal(result, result_single) def compare_local_to_utc(tz_didx, utc_didx): f = lambda x: tslib.tz_convert_single(x, tz_didx.tz, 'UTC') result = tslib.tz_convert(utc_didx.asi8, tz_didx.tz, 'UTC') result_single = np.vectorize(f)(utc_didx.asi8) tm.assert_numpy_array_equal(result, result_single) for tz in ['UTC', 'Asia/Tokyo', 'US/Eastern', 'Europe/Moscow']: # US: 2014-03-09 - 2014-11-11 # MOSCOW: 2014-10-26 / 2014-12-31 tz_didx = date_range('2014-03-01', '2015-01-10', freq='H', tz=tz) utc_didx = date_range('2014-03-01', '2015-01-10', freq='H') compare_utc_to_local(tz_didx, utc_didx) # local tz to UTC can be differ in hourly (or higher) freqs because # of DST compare_local_to_utc(tz_didx, utc_didx) tz_didx = date_range('2000-01-01', '2020-01-01', freq='D', tz=tz) utc_didx = date_range('2000-01-01', '2020-01-01', freq='D') compare_utc_to_local(tz_didx, utc_didx) compare_local_to_utc(tz_didx, utc_didx) tz_didx = date_range('2000-01-01', '2100-01-01', freq='A', tz=tz) utc_didx = date_range('2000-01-01', '2100-01-01', freq='A') compare_utc_to_local(tz_didx, utc_didx) compare_local_to_utc(tz_didx, utc_didx) # Check empty array result = tslib.tz_convert(np.array([], dtype=np.int64), timezones.maybe_get_tz('US/Eastern'), timezones.maybe_get_tz('Asia/Tokyo')) tm.assert_numpy_array_equal(result, np.array([], dtype=np.int64)) # Check all-NaT array result = tslib.tz_convert(np.array([tslib.iNaT], dtype=np.int64), timezones.maybe_get_tz('US/Eastern'), timezones.maybe_get_tz('Asia/Tokyo')) tm.assert_numpy_array_equal(result, np.array( [tslib.iNaT], dtype=np.int64))
bsd-3-clause
kevin-intel/scikit-learn
examples/multioutput/plot_classifier_chain_yeast.py
23
4637
""" ============================ Classifier Chain ============================ Example of using classifier chain on a multilabel dataset. For this example we will use the `yeast <https://www.openml.org/d/40597>`_ dataset which contains 2417 datapoints each with 103 features and 14 possible labels. Each data point has at least one label. As a baseline we first train a logistic regression classifier for each of the 14 labels. To evaluate the performance of these classifiers we predict on a held-out test set and calculate the :ref:`jaccard score <jaccard_similarity_score>` for each sample. Next we create 10 classifier chains. Each classifier chain contains a logistic regression model for each of the 14 labels. The models in each chain are ordered randomly. In addition to the 103 features in the dataset, each model gets the predictions of the preceding models in the chain as features (note that by default at training time each model gets the true labels as features). These additional features allow each chain to exploit correlations among the classes. The Jaccard similarity score for each chain tends to be greater than that of the set independent logistic models. Because the models in each chain are arranged randomly there is significant variation in performance among the chains. Presumably there is an optimal ordering of the classes in a chain that will yield the best performance. However we do not know that ordering a priori. Instead we can construct an voting ensemble of classifier chains by averaging the binary predictions of the chains and apply a threshold of 0.5. The Jaccard similarity score of the ensemble is greater than that of the independent models and tends to exceed the score of each chain in the ensemble (although this is not guaranteed with randomly ordered chains). """ # Author: Adam Kleczewski # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import fetch_openml from sklearn.multioutput import ClassifierChain from sklearn.model_selection import train_test_split from sklearn.multiclass import OneVsRestClassifier from sklearn.metrics import jaccard_score from sklearn.linear_model import LogisticRegression print(__doc__) # Load a multi-label dataset from https://www.openml.org/d/40597 X, Y = fetch_openml('yeast', version=4, return_X_y=True) Y = Y == 'TRUE' X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=.2, random_state=0) # Fit an independent logistic regression model for each class using the # OneVsRestClassifier wrapper. base_lr = LogisticRegression() ovr = OneVsRestClassifier(base_lr) ovr.fit(X_train, Y_train) Y_pred_ovr = ovr.predict(X_test) ovr_jaccard_score = jaccard_score(Y_test, Y_pred_ovr, average='samples') # Fit an ensemble of logistic regression classifier chains and take the # take the average prediction of all the chains. chains = [ClassifierChain(base_lr, order='random', random_state=i) for i in range(10)] for chain in chains: chain.fit(X_train, Y_train) Y_pred_chains = np.array([chain.predict(X_test) for chain in chains]) chain_jaccard_scores = [jaccard_score(Y_test, Y_pred_chain >= .5, average='samples') for Y_pred_chain in Y_pred_chains] Y_pred_ensemble = Y_pred_chains.mean(axis=0) ensemble_jaccard_score = jaccard_score(Y_test, Y_pred_ensemble >= .5, average='samples') model_scores = [ovr_jaccard_score] + chain_jaccard_scores model_scores.append(ensemble_jaccard_score) model_names = ('Independent', 'Chain 1', 'Chain 2', 'Chain 3', 'Chain 4', 'Chain 5', 'Chain 6', 'Chain 7', 'Chain 8', 'Chain 9', 'Chain 10', 'Ensemble') x_pos = np.arange(len(model_names)) # Plot the Jaccard similarity scores for the independent model, each of the # chains, and the ensemble (note that the vertical axis on this plot does # not begin at 0). fig, ax = plt.subplots(figsize=(7, 4)) ax.grid(True) ax.set_title('Classifier Chain Ensemble Performance Comparison') ax.set_xticks(x_pos) ax.set_xticklabels(model_names, rotation='vertical') ax.set_ylabel('Jaccard Similarity Score') ax.set_ylim([min(model_scores) * .9, max(model_scores) * 1.1]) colors = ['r'] + ['b'] * len(chain_jaccard_scores) + ['g'] ax.bar(x_pos, model_scores, alpha=0.5, color=colors) plt.tight_layout() plt.show()
bsd-3-clause
LUTAN/tensorflow
tensorflow/examples/learn/text_classification_cnn.py
53
4430
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Example of Estimator for CNN-based text classification with DBpedia data.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import sys import numpy as np import pandas from sklearn import metrics import tensorflow as tf learn = tf.contrib.learn FLAGS = None MAX_DOCUMENT_LENGTH = 100 EMBEDDING_SIZE = 20 N_FILTERS = 10 WINDOW_SIZE = 20 FILTER_SHAPE1 = [WINDOW_SIZE, EMBEDDING_SIZE] FILTER_SHAPE2 = [WINDOW_SIZE, N_FILTERS] POOLING_WINDOW = 4 POOLING_STRIDE = 2 n_words = 0 def cnn_model(features, target): """2 layer ConvNet to predict from sequence of words to a class.""" # Convert indexes of words into embeddings. # This creates embeddings matrix of [n_words, EMBEDDING_SIZE] and then # maps word indexes of the sequence into [batch_size, sequence_length, # EMBEDDING_SIZE]. target = tf.one_hot(target, 15, 1, 0) word_vectors = tf.contrib.layers.embed_sequence( features, vocab_size=n_words, embed_dim=EMBEDDING_SIZE, scope='words') word_vectors = tf.expand_dims(word_vectors, 3) with tf.variable_scope('CNN_Layer1'): # Apply Convolution filtering on input sequence. conv1 = tf.contrib.layers.convolution2d( word_vectors, N_FILTERS, FILTER_SHAPE1, padding='VALID') # Add a RELU for non linearity. conv1 = tf.nn.relu(conv1) # Max pooling across output of Convolution+Relu. pool1 = tf.nn.max_pool( conv1, ksize=[1, POOLING_WINDOW, 1, 1], strides=[1, POOLING_STRIDE, 1, 1], padding='SAME') # Transpose matrix so that n_filters from convolution becomes width. pool1 = tf.transpose(pool1, [0, 1, 3, 2]) with tf.variable_scope('CNN_Layer2'): # Second level of convolution filtering. conv2 = tf.contrib.layers.convolution2d( pool1, N_FILTERS, FILTER_SHAPE2, padding='VALID') # Max across each filter to get useful features for classification. pool2 = tf.squeeze(tf.reduce_max(conv2, 1), squeeze_dims=[1]) # Apply regular WX + B and classification. logits = tf.contrib.layers.fully_connected(pool2, 15, activation_fn=None) loss = tf.contrib.losses.softmax_cross_entropy(logits, target) train_op = tf.contrib.layers.optimize_loss( loss, tf.contrib.framework.get_global_step(), optimizer='Adam', learning_rate=0.01) return ({ 'class': tf.argmax(logits, 1), 'prob': tf.nn.softmax(logits) }, loss, train_op) def main(unused_argv): global n_words # Prepare training and testing data dbpedia = learn.datasets.load_dataset( 'dbpedia', test_with_fake_data=FLAGS.test_with_fake_data) x_train = pandas.DataFrame(dbpedia.train.data)[1] y_train = pandas.Series(dbpedia.train.target) x_test = pandas.DataFrame(dbpedia.test.data)[1] y_test = pandas.Series(dbpedia.test.target) # Process vocabulary vocab_processor = learn.preprocessing.VocabularyProcessor(MAX_DOCUMENT_LENGTH) x_train = np.array(list(vocab_processor.fit_transform(x_train))) x_test = np.array(list(vocab_processor.transform(x_test))) n_words = len(vocab_processor.vocabulary_) print('Total words: %d' % n_words) # Build model classifier = learn.Estimator(model_fn=cnn_model) # Train and predict classifier.fit(x_train, y_train, steps=100) y_predicted = [ p['class'] for p in classifier.predict( x_test, as_iterable=True) ] score = metrics.accuracy_score(y_test, y_predicted) print('Accuracy: {0:f}'.format(score)) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--test_with_fake_data', default=False, help='Test the example code with fake data.', action='store_true') FLAGS, unparsed = parser.parse_known_args() tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
apache-2.0
marcsans/cnn-physics-perception
phy/lib/python2.7/site-packages/sklearn/externals/joblib/__init__.py
23
5101
""" Joblib is a set of tools to provide **lightweight pipelining in Python**. In particular, joblib offers: 1. transparent disk-caching of the output values and lazy re-evaluation (memoize pattern) 2. easy simple parallel computing 3. logging and tracing of the execution Joblib is optimized to be **fast** and **robust** in particular on large data and has specific optimizations for `numpy` arrays. It is **BSD-licensed**. ============================== ============================================ **User documentation**: http://pythonhosted.org/joblib **Download packages**: http://pypi.python.org/pypi/joblib#downloads **Source code**: http://github.com/joblib/joblib **Report issues**: http://github.com/joblib/joblib/issues ============================== ============================================ Vision -------- The vision is to provide tools to easily achieve better performance and reproducibility when working with long running jobs. * **Avoid computing twice the same thing**: code is rerun over an over, for instance when prototyping computational-heavy jobs (as in scientific development), but hand-crafted solution to alleviate this issue is error-prone and often leads to unreproducible results * **Persist to disk transparently**: persisting in an efficient way arbitrary objects containing large data is hard. Using joblib's caching mechanism avoids hand-written persistence and implicitly links the file on disk to the execution context of the original Python object. As a result, joblib's persistence is good for resuming an application status or computational job, eg after a crash. Joblib strives to address these problems while **leaving your code and your flow control as unmodified as possible** (no framework, no new paradigms). Main features ------------------ 1) **Transparent and fast disk-caching of output value:** a memoize or make-like functionality for Python functions that works well for arbitrary Python objects, including very large numpy arrays. Separate persistence and flow-execution logic from domain logic or algorithmic code by writing the operations as a set of steps with well-defined inputs and outputs: Python functions. Joblib can save their computation to disk and rerun it only if necessary:: >>> from sklearn.externals.joblib import Memory >>> mem = Memory(cachedir='/tmp/joblib') >>> import numpy as np >>> a = np.vander(np.arange(3)).astype(np.float) >>> square = mem.cache(np.square) >>> b = square(a) # doctest: +ELLIPSIS ________________________________________________________________________________ [Memory] Calling square... square(array([[ 0., 0., 1.], [ 1., 1., 1.], [ 4., 2., 1.]])) ___________________________________________________________square - 0...s, 0.0min >>> c = square(a) >>> # The above call did not trigger an evaluation 2) **Embarrassingly parallel helper:** to make it easy to write readable parallel code and debug it quickly:: >>> from sklearn.externals.joblib import Parallel, delayed >>> from math import sqrt >>> Parallel(n_jobs=1)(delayed(sqrt)(i**2) for i in range(10)) [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0] 3) **Logging/tracing:** The different functionalities will progressively acquire better logging mechanism to help track what has been ran, and capture I/O easily. In addition, Joblib will provide a few I/O primitives, to easily define logging and display streams, and provide a way of compiling a report. We want to be able to quickly inspect what has been run. 4) **Fast compressed Persistence**: a replacement for pickle to work efficiently on Python objects containing large data ( *joblib.dump* & *joblib.load* ). .. >>> import shutil ; shutil.rmtree('/tmp/joblib/') """ # PEP0440 compatible formatted version, see: # https://www.python.org/dev/peps/pep-0440/ # # Generic release markers: # X.Y # X.Y.Z # For bugfix releases # # Admissible pre-release markers: # X.YaN # Alpha release # X.YbN # Beta release # X.YrcN # Release Candidate # X.Y # Final release # # Dev branch marker is: 'X.Y.dev' or 'X.Y.devN' where N is an integer. # 'X.Y.dev0' is the canonical version of 'X.Y.dev' # __version__ = '0.10.3' from .memory import Memory, MemorizedResult from .logger import PrintTime from .logger import Logger from .hashing import hash from .numpy_pickle import dump from .numpy_pickle import load from .parallel import Parallel from .parallel import delayed from .parallel import cpu_count from .parallel import register_parallel_backend from .parallel import parallel_backend from .parallel import effective_n_jobs __all__ = ['Memory', 'MemorizedResult', 'PrintTime', 'Logger', 'hash', 'dump', 'load', 'Parallel', 'delayed', 'cpu_count', 'effective_n_jobs', 'register_parallel_backend', 'parallel_backend']
mit
jordancheah/zipline
tests/test_munge.py
34
1794
# # Copyright 2015 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random import pandas as pd import numpy as np from numpy.testing import assert_almost_equal from unittest import TestCase from zipline.utils.munge import bfill, ffill class MungeTests(TestCase): def test_bfill(self): # test ndim=1 N = 100 s = pd.Series(np.random.randn(N)) mask = random.sample(range(N), 10) s.iloc[mask] = np.nan correct = s.bfill().values test = bfill(s.values) assert_almost_equal(correct, test) # test ndim=2 df = pd.DataFrame(np.random.randn(N, N)) df.iloc[mask] = np.nan correct = df.bfill().values test = bfill(df.values) assert_almost_equal(correct, test) def test_ffill(self): # test ndim=1 N = 100 s = pd.Series(np.random.randn(N)) mask = random.sample(range(N), 10) s.iloc[mask] = np.nan correct = s.ffill().values test = ffill(s.values) assert_almost_equal(correct, test) # test ndim=2 df = pd.DataFrame(np.random.randn(N, N)) df.iloc[mask] = np.nan correct = df.ffill().values test = ffill(df.values) assert_almost_equal(correct, test)
apache-2.0
trankmichael/scikit-learn
examples/cluster/plot_agglomerative_clustering_metrics.py
402
4492
""" Agglomerative clustering with different metrics =============================================== Demonstrates the effect of different metrics on the hierarchical clustering. The example is engineered to show the effect of the choice of different metrics. It is applied to waveforms, which can be seen as high-dimensional vector. Indeed, the difference between metrics is usually more pronounced in high dimension (in particular for euclidean and cityblock). We generate data from three groups of waveforms. Two of the waveforms (waveform 1 and waveform 2) are proportional one to the other. The cosine distance is invariant to a scaling of the data, as a result, it cannot distinguish these two waveforms. Thus even with no noise, clustering using this distance will not separate out waveform 1 and 2. We add observation noise to these waveforms. We generate very sparse noise: only 6% of the time points contain noise. As a result, the l1 norm of this noise (ie "cityblock" distance) is much smaller than it's l2 norm ("euclidean" distance). This can be seen on the inter-class distance matrices: the values on the diagonal, that characterize the spread of the class, are much bigger for the Euclidean distance than for the cityblock distance. When we apply clustering to the data, we find that the clustering reflects what was in the distance matrices. Indeed, for the Euclidean distance, the classes are ill-separated because of the noise, and thus the clustering does not separate the waveforms. For the cityblock distance, the separation is good and the waveform classes are recovered. Finally, the cosine distance does not separate at all waveform 1 and 2, thus the clustering puts them in the same cluster. """ # Author: Gael Varoquaux # License: BSD 3-Clause or CC-0 import matplotlib.pyplot as plt import numpy as np from sklearn.cluster import AgglomerativeClustering from sklearn.metrics import pairwise_distances np.random.seed(0) # Generate waveform data n_features = 2000 t = np.pi * np.linspace(0, 1, n_features) def sqr(x): return np.sign(np.cos(x)) X = list() y = list() for i, (phi, a) in enumerate([(.5, .15), (.5, .6), (.3, .2)]): for _ in range(30): phase_noise = .01 * np.random.normal() amplitude_noise = .04 * np.random.normal() additional_noise = 1 - 2 * np.random.rand(n_features) # Make the noise sparse additional_noise[np.abs(additional_noise) < .997] = 0 X.append(12 * ((a + amplitude_noise) * (sqr(6 * (t + phi + phase_noise))) + additional_noise)) y.append(i) X = np.array(X) y = np.array(y) n_clusters = 3 labels = ('Waveform 1', 'Waveform 2', 'Waveform 3') # Plot the ground-truth labelling plt.figure() plt.axes([0, 0, 1, 1]) for l, c, n in zip(range(n_clusters), 'rgb', labels): lines = plt.plot(X[y == l].T, c=c, alpha=.5) lines[0].set_label(n) plt.legend(loc='best') plt.axis('tight') plt.axis('off') plt.suptitle("Ground truth", size=20) # Plot the distances for index, metric in enumerate(["cosine", "euclidean", "cityblock"]): avg_dist = np.zeros((n_clusters, n_clusters)) plt.figure(figsize=(5, 4.5)) for i in range(n_clusters): for j in range(n_clusters): avg_dist[i, j] = pairwise_distances(X[y == i], X[y == j], metric=metric).mean() avg_dist /= avg_dist.max() for i in range(n_clusters): for j in range(n_clusters): plt.text(i, j, '%5.3f' % avg_dist[i, j], verticalalignment='center', horizontalalignment='center') plt.imshow(avg_dist, interpolation='nearest', cmap=plt.cm.gnuplot2, vmin=0) plt.xticks(range(n_clusters), labels, rotation=45) plt.yticks(range(n_clusters), labels) plt.colorbar() plt.suptitle("Interclass %s distances" % metric, size=18) plt.tight_layout() # Plot clustering results for index, metric in enumerate(["cosine", "euclidean", "cityblock"]): model = AgglomerativeClustering(n_clusters=n_clusters, linkage="average", affinity=metric) model.fit(X) plt.figure() plt.axes([0, 0, 1, 1]) for l, c in zip(np.arange(model.n_clusters), 'rgbk'): plt.plot(X[model.labels_ == l].T, c=c, alpha=.5) plt.axis('tight') plt.axis('off') plt.suptitle("AgglomerativeClustering(affinity=%s)" % metric, size=20) plt.show()
bsd-3-clause
ppqm/fitting
fitter/fit.py
1
9239
import sklearn import sklearn.model_selection import time import itertools import functools import multiprocessing as mp import os import subprocess import time import copy import json import numpy as np import pandas as pd from numpy.linalg import norm from scipy.optimize import minimize import rmsd import joblib import mndo cachedir = '.pycache' memory = joblib.Memory(cachedir, verbose=0) def get_penalty(calc_properties, refs_properties, property_weights, keys=None): penalty = 0.0 n = 0 return penalty @memory.cache def load_data(): reference = "../dataset-qm9/reference.csv" reference = pd.read_csv(reference) filenames = reference["name"] # energies = reference["binding energy"] atoms_list = [] coord_list = [] charges = [] titles = [] for filename in filenames: titles.append(filename) charges.append(0) filename = "../dataset-qm9/xyz/" + filename + ".xyz" atoms, coord = rmsd.get_coordinates_xyz(filename) atoms_list.append(atoms) coord_list.append(coord) offset = 10+100 to_offset = 110+100 atoms_list = atoms_list[offset:to_offset] coord_list = coord_list[offset:to_offset] charges = charges[offset:to_offset] titles = titles[offset:to_offset] reference = reference[offset:to_offset] return atoms_list, coord_list, charges, titles, reference def minimize_parameters(mols_atoms, mols_coords, reference_properties, start_parameters, n_procs=1, method="PM3", ignore_keys=['DD2','DD3','PO1','PO2','PO3','PO9','HYF','CORE','EISOL','FN1','FN2','FN3','GSCAL','BETAS','ZS']): """ """ n_mols = len(mols_atoms) # Select header header = """{:} 1SCF MULLIK PRECISE charge={{:}} iparok=1 jprint=5 nextmol=-1 TITLE {{:}}""" header = header.format(method) filename = "_tmp_optimizer" inputtxt = mndo.get_inputs(mols_atoms, mols_coords, np.zeros(n_mols), range(n_mols), header=header) with open(filename, 'w') as f: f.write(inputtxt) # Select atom parameters to optimize atoms = [np.unique(atom) for atom in mols_atoms] atoms = list(itertools.chain(*atoms)) atoms = np.unique(atoms) parameters_values = [] parameters_keys = [] parameters = {} # Select parameters for atom in atoms: atom_params = start_parameters[atom] current = {} for key in atom_params: if key in ignore_keys: continue value = atom_params[key] current[key] = value parameters_values.append(value) parameters_keys.append([atom, key]) parameters[atom] = current # Define penalty func def penalty(params, debug=True): for param, key in zip(params, parameters_keys): parameters[key[0]][key[1]] = param mndo.set_params(parameters) properties_list = mndo.calculate(filename) calc_energies = np.array([properties["energy"] for properties in properties_list]) diff = reference_properties - calc_energies idxs = np.argwhere(np.isnan(diff)) diff[idxs] = 700.0 error = np.abs(diff) error = error.mean() if debug: print("penalty: {:10.2f}".format(error)) return error def penalty_properties(properties_list): calc_energies = np.array([properties["energy"] for properties in properties_list]) diff = reference_properties - calc_energies idxs = np.argwhere(np.isnan(diff)) diff[idxs] = 700.0 error = np.abs(diff) error = error.mean() return error def jacobian(params, dh=10**-5, debug=False): # TODO Parallelt grad = [] for i, p in enumerate(params): dparams = copy.deepcopy(params) dparams[i] += dh forward = penalty(dparams, debug=False) dparams[i] -= (2.0 * dh) backward = penalty(dparams, debug=False) de = forward - backward grad.append(de/(2.0 * dh)) grad = np.array(grad) if debug: nm = np.linalg.norm(grad) print("penalty grad: {:10.2f}".format(nm)) return grad def jacobian_parallel(params, dh=10**-5, procs=1): """ """ for param, key in zip(params, parameters_keys): parameters[key[0]][key[1]] = param params_grad = mndo.numerical_jacobian(inputtxt, parameters, n_procs=procs, dh=dh) grad = [] for atom, key in parameters_keys: forward_mols, backward_mols = params_grad[atom][key] penalty_forward = penalty_properties(forward_mols) penalty_backward = penalty_properties(backward_mols) de = penalty_forward - penalty_backward grad.append(de/(2.0 * dh)) grad = np.array(grad) return grad start_error = penalty(parameters_values) # check grad dh = 10**-5 t = time.time() grad = jacobian(parameters_values, dh=dh) nm = np.linalg.norm(grad) secs = time.time() - t print("penalty grad: {:10.2f} time: {:10.2f}".format(nm, secs)) t = time.time() grad = jacobian_parallel(parameters_values, procs=2, dh=dh) nm = np.linalg.norm(grad) secs = time.time() - t print("penalty grad: {:10.2f} time: {:10.2f}".format(nm, secs)) quit() res = minimize(penalty, parameters_values, method="L-BFGS-B", jac=jacobian, options={"maxiter": 1000, "disp": True}) parameters_values = res.x error = penalty(parameters_values) for param, key in zip(parameters_values, parameters_keys): parameters[key[0]][key[1]] = param end_parameters = parameters return end_parameters, error def learning_curve( mols_atoms, mols_coords, reference_properties, start_parameters): fold_five = sklearn.model_selection.KFold(n_splits=5, random_state=42, shuffle=True) n_items = len(mols_atoms) X = list(range(n_items)) score = [] for train_idxs, test_idxs in fold_five.split(X): train_atoms = [mols_atoms[i] for i in train_idxs] train_coords = [mols_coords[i] for i in train_idxs] train_properties = reference_properties[train_idxs] test_atoms = [mols_atoms[i] for i in test_idxs] test_coords = [mols_coords[i] for i in test_idxs] test_properties = reference_properties[test_idxs] train_parameters, train_error = minimize_parameters(train_atoms, train_coords, train_properties, start_parameters) print(train_parameters) quit() return def main(): import argparse import sys description = """""" parser = argparse.ArgumentParser( usage='%(prog)s [options]', description=description, formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument('-f', '--format', action='store', help='', metavar='fmt') parser.add_argument('-s', '--settings', action='store', help='', metavar='json') parser.add_argument('-p', '--parameters', action='store', help='', metavar='json') parser.add_argument('-o', '--results_parameters', action='store', help='', metavar='json') parser.add_argument('--methods', action='store', help='', metavar='str') args = parser.parse_args() mols_atoms, mols_coords, mols_charges, titles, reference = load_data() ref_energies = reference.iloc[:,1].tolist() ref_energies = np.array(ref_energies) with open(args.parameters, 'r') as f: start_params = f.read() start_params = json.loads(start_params) # end_params = minimize_parameters(mols_atoms, mols_coords, ref_energies, start_params) end_params = learning_curve(mols_atoms, mols_coords, ref_energies, start_params) print(end_params) quit() # TODO select reference # TODO prepare input file filename = "_tmp_optimizer" txt = mndo.get_inputs(atoms_list, coord_list, charges, titles) f = open(filename, 'w') f.write(txt) f.close() # TODO prepare parameters parameters = np.array([ -99., -77., 2., -32., 3., ]) parameter_keys = [ ["O", "USS"], ["O", "UPP"], ["O", "ZP"], ["O", "BETAP"], ["O", "ALP"], ] parameter_dict = {} parameter_dict["O"] = {} # TODO calculate penalty # properties_list = mndo.calculate(filename) def penalty(params): for param, key in zip(params, parameter_keys): parameter_dict[key[0]][key[1]] = param mndo.set_params(parameter_dict) properties_list = mndo.calculate(filename) calc_energies = np.array([properties["energy"] for properties in properties_list]) diff = ref_energies - calc_energies idxs = np.argwhere(np.isnan(diff)) diff[idxs] = 700.0 error = diff.mean() return error print(penalty(parameters)) status = minimize(penalty, parameters, method="L-BFGS-B", options={"maxiter": 1000, "disp": True}) print() print(status) # TODO optimize return if __name__ == "__main__": main()
cc0-1.0
advancedplotting/aplot
python/plotserv/api_annotations.py
1
8009
# Copyright (c) 2014-2015, Heliosphere Research LLC # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from this # software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """ Handles VIs in "api_annotations". """ import numpy as np from matplotlib import pyplot as plt from .core import resource from .terminals import remove_none from . import filters from . import errors @resource('text') def text(ctx, a): """ Display text on the plot """ plotid = a.plotid() x = a.float('x') y = a.float('y') s = a.string('s') relative = a.bool('coordinates') textprops = a.text() display = a.display() ctx.set(plotid) ax = plt.gca() # None-finite values here mean we skip the plot if x is None or y is None: return k = textprops._k() k.update(display._k()) k['clip_on'] = True if relative: k['transform'] = ax.transAxes remove_none(k) plt.text(x, y, s, **k) @resource('hline') def hline(ctx, a): """ Plot a horizontal line """ plotid = a.plotid() y = a.float('y') xmin = a.float('xmin') xmax = a.float('xmax') line = a.line() display = a.display() ctx.set(plotid) ctx.fail_if_polar() # Non-finite value provided if y is None: return k = { 'xmin': xmin, 'xmax': xmax, 'linewidth': line.width, 'linestyle': line.style, 'color': line.color if line.color is not None else 'k', } k.update(display._k()) remove_none(k) plt.axhline(y, **k) @resource('vline') def vline(ctx, a): """ Plot a vertical line """ plotid = a.plotid() x = a.float('x') ymin = a.float('ymin') ymax = a.float('ymax') line = a.line() display = a.display() ctx.set(plotid) ctx.fail_if_polar() # Non-finite value provided if x is None: return k = { 'ymin': ymin, 'ymax': ymax, 'linewidth': line.width, 'linestyle': line.style, 'color': line.color if line.color is not None else 'k', } k.update(display._k()) remove_none(k) plt.axvline(x, **k) @resource('colorbar') def colorbar(ctx, a): """ Display a colorbar """ plotid = a.plotid() label = a.string('label') ticks = a.dbl_1d('ticks') ticklabels = a.string_1d('ticklabels') ctx.set(plotid) # If no colormapped object has been plotted, MPL complains. # We permit this, and simply don't add the colorbar. if ctx.mappable is None: return c = plt.colorbar(ctx.mappable) # Don't bother setting an empty label if len(label) > 0: c.set_label(label) # Both specified if len(ticks) > 0 and len(ticklabels) > 0: ticks, ticklabels = filters.filter_1d(ticks, ticklabels) c.set_ticks(ticks) c.set_ticklabels(ticklabels) # Just ticks specified elif len(ticks) > 0: ticks = ticks[np.isfinite(ticks)] c.set_ticks(ticks) # Just ticklabels specified else: # Providing zero-length "ticks" array invokes auto-ticking, in which # case any ticklabels are ignored. pass @resource('legend') def legend(ctx, a): """ Represents Legend.vi. Note that there is no Positions enum on the Python side; the MPL values are hard-coded into the LabView control. """ POSITIONS = { 0: 0, 1: 1, 2: 9, 3: 2, 4: 6, 5: 3, 6: 8, 7: 4, 8: 7, 9: 10 } plotid = a.plotid() position = a.enum('position', POSITIONS) ctx.set(plotid) k = {'loc': position, 'fontsize': 'medium'} remove_none(k) if len(ctx.legend_entries) > 0: objects, labels = zip(*ctx.legend_entries) plt.legend(objects, labels, **k) @resource('label') def label(ctx, a): """ Title, X axis and Y axis labels. """ LOCATIONS = {0: 'title', 1: 'xlabel', 2: 'ylabel'} plotid = a.plotid() location = a.enum('kind', LOCATIONS) label = a.string('label') text = a.text() ctx.set(plotid) k = text._k() if location == 'title': plt.title(label, **k) elif location == 'xlabel': plt.xlabel(label, **k) elif location == 'ylabel': ctx.fail_if_polar() plt.ylabel(label, **k) else: pass @resource('circle') def circle(ctx, a): """ Draw a circle on a rectangular plot """ plotid = a.plotid() x = a.float('x') y = a.float('y') radius = a.float('radius') color = a.color('color') line = a.line() display = a.display() f = ctx.set(plotid) ctx.fail_if_polar() ctx.fail_if_log_symlog() # Like Text.vi, if any critical input is Nan we do nothing if x is None or y is None or radius is None: return # Catch this before MPL complains if radius <= 0: return k = { 'edgecolor': line.color, 'linestyle': line.style, 'linewidth': line.width, 'facecolor': color if color is not None else '#bbbbbb', } k.update(display._k()) remove_none(k) c = plt.Circle((x,y), radius, **k) f.gca().add_artist(c) @resource('rectangle') def rectangle(ctx, a): """ Draw a rectangle """ plotid = a.plotid() x = a.float('x') y = a.float('y') width = a.float('width') height = a.float('height') color = a.color('color') line = a.line() display = a.display() f = ctx.set(plotid) ctx.fail_if_symlog() # Like Text.vi, if any critical input is Nan we do nothing if x is None or y is None or width is None or height is None: return if width == 0 or height == 0: return k = { 'edgecolor': line.color, 'linestyle': line.style, 'linewidth': line.width, 'facecolor': color if color is not None else '#bbbbbb', } k.update(display._k()) remove_none(k) r = plt.Rectangle((x,y), width, height, **k) f.gca().add_artist(r)
bsd-3-clause
macioosch/dynamo-hard-spheres-sim
convergence-plot.py
1
6346
#!/usr/bin/env python2 # encoding=utf-8 from __future__ import division, print_function from glob import glob from itertools import izip from matplotlib import pyplot as plt import numpy as np input_files = glob("csv/convergence-256000-0.*.csv") #input_files = glob("csv/convergence-500000-0.*.csv") #input_files = glob("csv/convergence-1000188-0.*.csv") #plotted_parameter = "msds_diffusion" plotted_parameter = "pressures_collision" #plotted_parameter = "pressures_virial" #plotted_parameter = "msds_val" #plotted_parameter = "times" legend_names = [] tight_layout = False show_legend = False for file_number, file_name in enumerate(sorted(input_files)): data = np.genfromtxt(file_name, delimiter='\t', names=[ "packings","densities","collisions","n_atoms","pressures_virial", "pressures_collision","msds_val","msds_diffusion","times", "std_pressures_virial","std_pressures_collision","std_msds_val", "std_msds_diffusion","std_times"]) n_atoms = data["n_atoms"][0] density = data["densities"][0] equilibrated_collisions = data["collisions"] - 2*data["collisions"][0] \ + data["collisions"][1] """ ### 5 graphs: D(CPS) ### tight_layout = True skip_points = 0 ax = plt.subplot(3, 2, file_number+1) plt.fill_between((equilibrated_collisions / n_atoms)[skip_points:], data[plotted_parameter][skip_points:] - data["std_" + plotted_parameter][skip_points:], data[plotted_parameter][skip_points:] + data["std_" + plotted_parameter][skip_points:], alpha=0.3) plt.plot((equilibrated_collisions / n_atoms)[skip_points:], data[plotted_parameter][skip_points:], lw=2) if plotted_parameter == "msds_diffusion": plt.ylim(0.990*data[plotted_parameter][-1], 1.005*data[plotted_parameter][-1]) plt.xlim([0, 1e5]) plt.legend(["Density {}".format(data["densities"][0])], loc="lower right") ax.yaxis.set_major_formatter(plt.FormatStrFormatter('%.4f')) plt.xlabel("Collisions per sphere") plt.ylabel("D") """ ### 5 graphs: relative D(CPS) ### tight_layout = True skip_points = 0 ax = plt.subplot(3, 2, file_number+1) plt.fill_between((equilibrated_collisions / n_atoms)[skip_points:], -1 + (data[plotted_parameter][skip_points:] - data["std_" + plotted_parameter][skip_points:])/data[plotted_parameter][-1], -1 + (data[plotted_parameter][skip_points:] + data["std_" + plotted_parameter][skip_points:])/data[plotted_parameter][-1], alpha=0.3) plt.plot((equilibrated_collisions / n_atoms)[skip_points:], -1 + data[plotted_parameter][skip_points:]/data[plotted_parameter][-1], lw=2) plt.ylim(data["std_" + plotted_parameter][-1]*20*np.array([-1, 1])/data[plotted_parameter][-1]) #plt.xscale("log") plt.xlim([0, 1e5]) plt.legend(["$\\rho\\sigma^3=\\ {}$".format(data["densities"][0])], loc="lower right") ax.yaxis.set_major_formatter(plt.FormatStrFormatter('%.2e')) plt.xlabel("$C/N$") plt.ylabel("$[Z_{MD}(C) / Z_{MD}(C=10^5 N)] - 1$") """ ### 1 graph: D(t) ### show_legend = True skip_points = 0 plt.title("D(t) for 5 densities") plt.loglog(data["times"][skip_points:], data[plotted_parameter][skip_points:]) legend_names.append(data["densities"][0]) plt.xlabel("Time") plt.ylabel("D") """ """ ### 1 graph: D(t) / Dinf ### show_legend = True skip_points = 0 #plt.fill_between(data["times"][skip_points:], # (data[plotted_parameter] - data["std_" + plotted_parameter]) # / data[plotted_parameter][-1] - 1, # (data[plotted_parameter] + data["std_" + plotted_parameter]) # / data[plotted_parameter][-1] - 1, color="grey", alpha=0.4) plt.plot(data["times"][skip_points:], data[plotted_parameter] / data[plotted_parameter][-1] - 1, lw=1) legend_names.append(data["densities"][0]) #plt.xscale("log") plt.xlabel("Time") plt.ylabel("D / D(t --> inf)") """ """ ### 5 graphs: D(1/CPS) ### tight_layout = True skip_points = 40 ax = plt.subplot(3, 2, file_number+1) plt.fill_between((n_atoms / equilibrated_collisions)[skip_points:], data[plotted_parameter][skip_points:] - data["std_" + plotted_parameter][skip_points:], data[plotted_parameter][skip_points:] + data["std_" + plotted_parameter][skip_points:], alpha=0.3) plt.plot((n_atoms / equilibrated_collisions)[skip_points:], data[plotted_parameter][skip_points:], lw=2) plt.title("Density {}:".format(data["densities"][0])) ax.yaxis.set_major_formatter(plt.FormatStrFormatter('%.7f')) plt.xlim(xmin=0) plt.xlabel("1 / Collisions per sphere") plt.ylabel("D") """ """ ### 1 graph: D(CPS) / Dinf ### show_legend = True plt.fill_between(equilibrated_collisions / n_atoms, (data[plotted_parameter] - data["std_" + plotted_parameter]) / data[plotted_parameter][-1] - 1, (data[plotted_parameter] + data["std_" + plotted_parameter]) / data[plotted_parameter][-1] - 1, color="grey", alpha=0.4) plt.plot(equilibrated_collisions / n_atoms, data[plotted_parameter] / data[plotted_parameter][-1] - 1, lw=2) legend_names.append(data["densities"][0]) plt.xlabel("Collisions per sphere") plt.ylabel("D / D(t --> inf)") """ """ ### 1 graph: D(1/CPS) / Dinf ### show_legend = True plt.fill_between(n_atoms / equilibrated_collisions, (data[plotted_parameter] - data["std_" + plotted_parameter]) / data[plotted_parameter][-1] - 1, (data[plotted_parameter] + data["std_" + plotted_parameter]) / data[plotted_parameter][-1] - 1, color="grey", alpha=0.4) plt.plot( n_atoms / equilibrated_collisions, data[plotted_parameter] / data[plotted_parameter][-1] - 1) legend_names.append(data["densities"][0]) plt.xlabel(" 1 / Collisions per sphere") plt.ylabel(plotted_parameter) """ #if tight_layout: # plt.tight_layout(pad=0.0, w_pad=0.0, h_pad=0.0) if show_legend: plt.legend(legend_names, title="Density:", loc="lower right") plt.show()
gpl-3.0
Garrett-R/scikit-learn
sklearn/datasets/samples_generator.py
14
54612
""" Generate samples of synthetic data sets. """ # Authors: B. Thirion, G. Varoquaux, A. Gramfort, V. Michel, O. Grisel, # G. Louppe, J. Nothman # License: BSD 3 clause import numbers import warnings import array import numpy as np from scipy import linalg import scipy.sparse as sp from ..preprocessing import MultiLabelBinarizer from ..utils import check_array, check_random_state from ..utils import shuffle as util_shuffle from ..utils.fixes import astype from ..utils.random import sample_without_replacement from ..externals import six map = six.moves.map zip = six.moves.zip def _generate_hypercube(samples, dimensions, rng): """Returns distinct binary samples of length dimensions """ if dimensions > 30: return np.hstack([_generate_hypercube(samples, dimensions - 30, rng), _generate_hypercube(samples, 30, rng)]) out = astype(sample_without_replacement(2 ** dimensions, samples, random_state=rng), dtype='>u4', copy=False) out = np.unpackbits(out.view('>u1')).reshape((-1, 32))[:, -dimensions:] return out def make_classification(n_samples=100, n_features=20, n_informative=2, n_redundant=2, n_repeated=0, n_classes=2, n_clusters_per_class=2, weights=None, flip_y=0.01, class_sep=1.0, hypercube=True, shift=0.0, scale=1.0, shuffle=True, random_state=None): """Generate a random n-class classification problem. This initially creates clusters of points normally distributed (std=1) about vertices of a `2 * class_sep`-sided hypercube, and assigns an equal number of clusters to each class. It introduces interdependence between these features and adds various types of further noise to the data. Prior to shuffling, `X` stacks a number of these primary "informative" features, "redundant" linear combinations of these, "repeated" duplicates of sampled features, and arbitrary noise for and remaining features. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=20) The total number of features. These comprise `n_informative` informative features, `n_redundant` redundant features, `n_repeated` duplicated features and `n_features-n_informative-n_redundant- n_repeated` useless features drawn at random. n_informative : int, optional (default=2) The number of informative features. Each class is composed of a number of gaussian clusters each located around the vertices of a hypercube in a subspace of dimension `n_informative`. For each cluster, informative features are drawn independently from N(0, 1) and then randomly linearly combined within each cluster in order to add covariance. The clusters are then placed on the vertices of the hypercube. n_redundant : int, optional (default=2) The number of redundant features. These features are generated as random linear combinations of the informative features. n_repeated : int, optional (default=0) The number of duplicated features, drawn randomly from the informative and the redundant features. n_classes : int, optional (default=2) The number of classes (or labels) of the classification problem. n_clusters_per_class : int, optional (default=2) The number of clusters per class. weights : list of floats or None (default=None) The proportions of samples assigned to each class. If None, then classes are balanced. Note that if `len(weights) == n_classes - 1`, then the last class weight is automatically inferred. More than `n_samples` samples may be returned if the sum of `weights` exceeds 1. flip_y : float, optional (default=0.01) The fraction of samples whose class are randomly exchanged. class_sep : float, optional (default=1.0) The factor multiplying the hypercube dimension. hypercube : boolean, optional (default=True) If True, the clusters are put on the vertices of a hypercube. If False, the clusters are put on the vertices of a random polytope. shift : float, array of shape [n_features] or None, optional (default=0.0) Shift features by the specified value. If None, then features are shifted by a random value drawn in [-class_sep, class_sep]. scale : float, array of shape [n_features] or None, optional (default=1.0) Multiply features by the specified value. If None, then features are scaled by a random value drawn in [1, 100]. Note that scaling happens after shifting. shuffle : boolean, optional (default=True) Shuffle the samples and the features. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The generated samples. y : array of shape [n_samples] The integer labels for class membership of each sample. Notes ----- The algorithm is adapted from Guyon [1] and was designed to generate the "Madelon" dataset. References ---------- .. [1] I. Guyon, "Design of experiments for the NIPS 2003 variable selection benchmark", 2003. See also -------- make_blobs: simplified variant make_multilabel_classification: unrelated generator for multilabel tasks """ generator = check_random_state(random_state) # Count features, clusters and samples if n_informative + n_redundant + n_repeated > n_features: raise ValueError("Number of informative, redundant and repeated " "features must sum to less than the number of total" " features") if 2 ** n_informative < n_classes * n_clusters_per_class: raise ValueError("n_classes * n_clusters_per_class must" " be smaller or equal 2 ** n_informative") if weights and len(weights) not in [n_classes, n_classes - 1]: raise ValueError("Weights specified but incompatible with number " "of classes.") n_useless = n_features - n_informative - n_redundant - n_repeated n_clusters = n_classes * n_clusters_per_class if weights and len(weights) == (n_classes - 1): weights.append(1.0 - sum(weights)) if weights is None: weights = [1.0 / n_classes] * n_classes weights[-1] = 1.0 - sum(weights[:-1]) # Distribute samples among clusters by weight n_samples_per_cluster = [] for k in range(n_clusters): n_samples_per_cluster.append(int(n_samples * weights[k % n_classes] / n_clusters_per_class)) for i in range(n_samples - sum(n_samples_per_cluster)): n_samples_per_cluster[i % n_clusters] += 1 # Intialize X and y X = np.zeros((n_samples, n_features)) y = np.zeros(n_samples, dtype=np.int) # Build the polytope whose vertices become cluster centroids centroids = _generate_hypercube(n_clusters, n_informative, generator).astype(float) centroids *= 2 * class_sep centroids -= class_sep if not hypercube: centroids *= generator.rand(n_clusters, 1) centroids *= generator.rand(1, n_informative) # Initially draw informative features from the standard normal X[:, :n_informative] = generator.randn(n_samples, n_informative) # Create each cluster; a variant of make_blobs stop = 0 for k, centroid in enumerate(centroids): start, stop = stop, stop + n_samples_per_cluster[k] y[start:stop] = k % n_classes # assign labels X_k = X[start:stop, :n_informative] # slice a view of the cluster A = 2 * generator.rand(n_informative, n_informative) - 1 X_k[...] = np.dot(X_k, A) # introduce random covariance X_k += centroid # shift the cluster to a vertex # Create redundant features if n_redundant > 0: B = 2 * generator.rand(n_informative, n_redundant) - 1 X[:, n_informative:n_informative + n_redundant] = \ np.dot(X[:, :n_informative], B) # Repeat some features if n_repeated > 0: n = n_informative + n_redundant indices = ((n - 1) * generator.rand(n_repeated) + 0.5).astype(np.intp) X[:, n:n + n_repeated] = X[:, indices] # Fill useless features if n_useless > 0: X[:, -n_useless:] = generator.randn(n_samples, n_useless) # Randomly replace labels if flip_y >= 0.0: flip_mask = generator.rand(n_samples) < flip_y y[flip_mask] = generator.randint(n_classes, size=flip_mask.sum()) # Randomly shift and scale if shift is None: shift = (2 * generator.rand(n_features) - 1) * class_sep X += shift if scale is None: scale = 1 + 100 * generator.rand(n_features) X *= scale if shuffle: # Randomly permute samples X, y = util_shuffle(X, y, random_state=generator) # Randomly permute features indices = np.arange(n_features) generator.shuffle(indices) X[:, :] = X[:, indices] return X, y def make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=2, length=50, allow_unlabeled=True, sparse=False, return_indicator=False, return_distributions=False, random_state=None): """Generate a random multilabel classification problem. For each sample, the generative process is: - pick the number of labels: n ~ Poisson(n_labels) - n times, choose a class c: c ~ Multinomial(theta) - pick the document length: k ~ Poisson(length) - k times, choose a word: w ~ Multinomial(theta_c) In the above process, rejection sampling is used to make sure that n is never zero or more than `n_classes`, and that the document length is never zero. Likewise, we reject classes which have already been chosen. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=20) The total number of features. n_classes : int, optional (default=5) The number of classes of the classification problem. n_labels : int, optional (default=2) The average number of labels per instance. More precisely, the number of labels per sample is drawn from a Poisson distribution with ``n_labels`` as its expected value, but samples are bounded (using rejection sampling) by ``n_classes``, and must be nonzero if ``allow_unlabeled`` is False. length : int, optional (default=50) The sum of the features (number of words if documents) is drawn from a Poisson distribution with this expected value. allow_unlabeled : bool, optional (default=True) If ``True``, some instances might not belong to any class. sparse : bool, optional (default=False) If ``True``, return a sparse feature matrix return_indicator : bool, optional (default=False), If ``True``, return ``Y`` in the binary indicator format, else return a tuple of lists of labels. return_distributions : bool, optional (default=False) If ``True``, return the prior class probability and conditional probabilities of features given classes, from which the data was drawn. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array or sparse CSR matrix of shape [n_samples, n_features] The generated samples. Y : tuple of lists or array of shape [n_samples, n_classes] The label sets. p_c : array, shape [n_classes] The probability of each class being drawn. Only returned if ``return_distributions=True``. p_w_c : array, shape [n_features, n_classes] The probability of each feature being drawn given each class. Only returned if ``return_distributions=True``. """ generator = check_random_state(random_state) p_c = generator.rand(n_classes) p_c /= p_c.sum() cumulative_p_c = np.cumsum(p_c) p_w_c = generator.rand(n_features, n_classes) p_w_c /= np.sum(p_w_c, axis=0) def sample_example(): _, n_classes = p_w_c.shape # pick a nonzero number of labels per document by rejection sampling y_size = n_classes + 1 while (not allow_unlabeled and y_size == 0) or y_size > n_classes: y_size = generator.poisson(n_labels) # pick n classes y = set() while len(y) != y_size: # pick a class with probability P(c) c = np.searchsorted(cumulative_p_c, generator.rand(y_size - len(y))) y.update(c) y = list(y) # pick a non-zero document length by rejection sampling n_words = 0 while n_words == 0: n_words = generator.poisson(length) # generate a document of length n_words if len(y) == 0: # if sample does not belong to any class, generate noise word words = generator.randint(n_features, size=n_words) return words, y # sample words with replacement from selected classes cumulative_p_w_sample = p_w_c.take(y, axis=1).sum(axis=1).cumsum() cumulative_p_w_sample /= cumulative_p_w_sample[-1] words = np.searchsorted(cumulative_p_w_sample, generator.rand(n_words)) return words, y X_indices = array.array('i') X_indptr = array.array('i', [0]) Y = [] for i in range(n_samples): words, y = sample_example() X_indices.extend(words) X_indptr.append(len(X_indices)) Y.append(y) X_data = np.ones(len(X_indices), dtype=np.float64) X = sp.csr_matrix((X_data, X_indices, X_indptr), shape=(n_samples, n_features)) X.sum_duplicates() if not sparse: X = X.toarray() if return_indicator: lb = MultiLabelBinarizer() Y = lb.fit([range(n_classes)]).transform(Y) else: warnings.warn('Support for the sequence of sequences multilabel ' 'representation is being deprecated and replaced with ' 'a sparse indicator matrix. ' 'return_indicator will default to True from version ' '0.17.', DeprecationWarning) if return_distributions: return X, Y, p_c, p_w_c return X, Y def make_hastie_10_2(n_samples=12000, random_state=None): """Generates data for binary classification used in Hastie et al. 2009, Example 10.2. The ten features are standard independent Gaussian and the target ``y`` is defined by:: y[i] = 1 if np.sum(X[i] ** 2) > 9.34 else -1 Parameters ---------- n_samples : int, optional (default=12000) The number of samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 10] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning Ed. 2", Springer, 2009. See also -------- make_gaussian_quantiles: a generalization of this dataset approach """ rs = check_random_state(random_state) shape = (n_samples, 10) X = rs.normal(size=shape).reshape(shape) y = ((X ** 2.0).sum(axis=1) > 9.34).astype(np.float64) y[y == 0.0] = -1.0 return X, y def make_regression(n_samples=100, n_features=100, n_informative=10, n_targets=1, bias=0.0, effective_rank=None, tail_strength=0.5, noise=0.0, shuffle=True, coef=False, random_state=None): """Generate a random regression problem. The input set can either be well conditioned (by default) or have a low rank-fat tail singular profile. See :func:`make_low_rank_matrix` for more details. The output is generated by applying a (potentially biased) random linear regression model with `n_informative` nonzero regressors to the previously generated input and some gaussian centered noise with some adjustable scale. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=100) The number of features. n_informative : int, optional (default=10) The number of informative features, i.e., the number of features used to build the linear model used to generate the output. n_targets : int, optional (default=1) The number of regression targets, i.e., the dimension of the y output vector associated with a sample. By default, the output is a scalar. bias : float, optional (default=0.0) The bias term in the underlying linear model. effective_rank : int or None, optional (default=None) if not None: The approximate number of singular vectors required to explain most of the input data by linear combinations. Using this kind of singular spectrum in the input allows the generator to reproduce the correlations often observed in practice. if None: The input set is well conditioned, centered and gaussian with unit variance. tail_strength : float between 0.0 and 1.0, optional (default=0.5) The relative importance of the fat noisy tail of the singular values profile if `effective_rank` is not None. noise : float, optional (default=0.0) The standard deviation of the gaussian noise applied to the output. shuffle : boolean, optional (default=True) Shuffle the samples and the features. coef : boolean, optional (default=False) If True, the coefficients of the underlying linear model are returned. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The input samples. y : array of shape [n_samples] or [n_samples, n_targets] The output values. coef : array of shape [n_features] or [n_features, n_targets], optional The coefficient of the underlying linear model. It is returned only if coef is True. """ n_informative = min(n_features, n_informative) generator = check_random_state(random_state) if effective_rank is None: # Randomly generate a well conditioned input set X = generator.randn(n_samples, n_features) else: # Randomly generate a low rank, fat tail input set X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features, effective_rank=effective_rank, tail_strength=tail_strength, random_state=generator) # Generate a ground truth model with only n_informative features being non # zeros (the other features are not correlated to y and should be ignored # by a sparsifying regularizers such as L1 or elastic net) ground_truth = np.zeros((n_features, n_targets)) ground_truth[:n_informative, :] = 100 * generator.rand(n_informative, n_targets) y = np.dot(X, ground_truth) + bias # Add noise if noise > 0.0: y += generator.normal(scale=noise, size=y.shape) # Randomly permute samples and features if shuffle: X, y = util_shuffle(X, y, random_state=generator) indices = np.arange(n_features) generator.shuffle(indices) X[:, :] = X[:, indices] ground_truth = ground_truth[indices] y = np.squeeze(y) if coef: return X, y, np.squeeze(ground_truth) else: return X, y def make_circles(n_samples=100, shuffle=True, noise=None, random_state=None, factor=.8): """Make a large circle containing a smaller circle in 2d. A simple toy dataset to visualize clustering and classification algorithms. Parameters ---------- n_samples : int, optional (default=100) The total number of points generated. shuffle: bool, optional (default=True) Whether to shuffle the samples. noise : double or None (default=None) Standard deviation of Gaussian noise added to the data. factor : double < 1 (default=.8) Scale factor between inner and outer circle. Returns ------- X : array of shape [n_samples, 2] The generated samples. y : array of shape [n_samples] The integer labels (0 or 1) for class membership of each sample. """ if factor > 1 or factor < 0: raise ValueError("'factor' has to be between 0 and 1.") generator = check_random_state(random_state) # so as not to have the first point = last point, we add one and then # remove it. linspace = np.linspace(0, 2 * np.pi, n_samples // 2 + 1)[:-1] outer_circ_x = np.cos(linspace) outer_circ_y = np.sin(linspace) inner_circ_x = outer_circ_x * factor inner_circ_y = outer_circ_y * factor X = np.vstack((np.append(outer_circ_x, inner_circ_x), np.append(outer_circ_y, inner_circ_y))).T y = np.hstack([np.zeros(n_samples // 2, dtype=np.intp), np.ones(n_samples // 2, dtype=np.intp)]) if shuffle: X, y = util_shuffle(X, y, random_state=generator) if not noise is None: X += generator.normal(scale=noise, size=X.shape) return X, y def make_moons(n_samples=100, shuffle=True, noise=None, random_state=None): """Make two interleaving half circles A simple toy dataset to visualize clustering and classification algorithms. Parameters ---------- n_samples : int, optional (default=100) The total number of points generated. shuffle : bool, optional (default=True) Whether to shuffle the samples. noise : double or None (default=None) Standard deviation of Gaussian noise added to the data. Returns ------- X : array of shape [n_samples, 2] The generated samples. y : array of shape [n_samples] The integer labels (0 or 1) for class membership of each sample. """ n_samples_out = n_samples // 2 n_samples_in = n_samples - n_samples_out generator = check_random_state(random_state) outer_circ_x = np.cos(np.linspace(0, np.pi, n_samples_out)) outer_circ_y = np.sin(np.linspace(0, np.pi, n_samples_out)) inner_circ_x = 1 - np.cos(np.linspace(0, np.pi, n_samples_in)) inner_circ_y = 1 - np.sin(np.linspace(0, np.pi, n_samples_in)) - .5 X = np.vstack((np.append(outer_circ_x, inner_circ_x), np.append(outer_circ_y, inner_circ_y))).T y = np.hstack([np.zeros(n_samples_in, dtype=np.intp), np.ones(n_samples_out, dtype=np.intp)]) if shuffle: X, y = util_shuffle(X, y, random_state=generator) if not noise is None: X += generator.normal(scale=noise, size=X.shape) return X, y def make_blobs(n_samples=100, n_features=2, centers=3, cluster_std=1.0, center_box=(-10.0, 10.0), shuffle=True, random_state=None): """Generate isotropic Gaussian blobs for clustering. Parameters ---------- n_samples : int, optional (default=100) The total number of points equally divided among clusters. n_features : int, optional (default=2) The number of features for each sample. centers : int or array of shape [n_centers, n_features], optional (default=3) The number of centers to generate, or the fixed center locations. cluster_std: float or sequence of floats, optional (default=1.0) The standard deviation of the clusters. center_box: pair of floats (min, max), optional (default=(-10.0, 10.0)) The bounding box for each cluster center when centers are generated at random. shuffle : boolean, optional (default=True) Shuffle the samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The generated samples. y : array of shape [n_samples] The integer labels for cluster membership of each sample. Examples -------- >>> from sklearn.datasets.samples_generator import make_blobs >>> X, y = make_blobs(n_samples=10, centers=3, n_features=2, ... random_state=0) >>> print(X.shape) (10, 2) >>> y array([0, 0, 1, 0, 2, 2, 2, 1, 1, 0]) See also -------- make_classification: a more intricate variant """ generator = check_random_state(random_state) if isinstance(centers, numbers.Integral): centers = generator.uniform(center_box[0], center_box[1], size=(centers, n_features)) else: centers = check_array(centers) n_features = centers.shape[1] X = [] y = [] n_centers = centers.shape[0] n_samples_per_center = [int(n_samples // n_centers)] * n_centers for i in range(n_samples % n_centers): n_samples_per_center[i] += 1 for i, n in enumerate(n_samples_per_center): X.append(centers[i] + generator.normal(scale=cluster_std, size=(n, n_features))) y += [i] * n X = np.concatenate(X) y = np.array(y) if shuffle: indices = np.arange(n_samples) generator.shuffle(indices) X = X[indices] y = y[indices] return X, y def make_friedman1(n_samples=100, n_features=10, noise=0.0, random_state=None): """Generate the "Friedman \#1" regression problem This dataset is described in Friedman [1] and Breiman [2]. Inputs `X` are independent features uniformly distributed on the interval [0, 1]. The output `y` is created according to the formula:: y(X) = 10 * sin(pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - 0.5) ** 2 \ + 10 * X[:, 3] + 5 * X[:, 4] + noise * N(0, 1). Out of the `n_features` features, only 5 are actually used to compute `y`. The remaining features are independent of `y`. The number of features has to be >= 5. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=10) The number of features. Should be at least 5. noise : float, optional (default=0.0) The standard deviation of the gaussian noise applied to the output. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] J. Friedman, "Multivariate adaptive regression splines", The Annals of Statistics 19 (1), pages 1-67, 1991. .. [2] L. Breiman, "Bagging predictors", Machine Learning 24, pages 123-140, 1996. """ if n_features < 5: raise ValueError("n_features must be at least five.") generator = check_random_state(random_state) X = generator.rand(n_samples, n_features) y = 10 * np.sin(np.pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - 0.5) ** 2 \ + 10 * X[:, 3] + 5 * X[:, 4] + noise * generator.randn(n_samples) return X, y def make_friedman2(n_samples=100, noise=0.0, random_state=None): """Generate the "Friedman \#2" regression problem This dataset is described in Friedman [1] and Breiman [2]. Inputs `X` are 4 independent features uniformly distributed on the intervals:: 0 <= X[:, 0] <= 100, 40 * pi <= X[:, 1] <= 560 * pi, 0 <= X[:, 2] <= 1, 1 <= X[:, 3] <= 11. The output `y` is created according to the formula:: y(X) = (X[:, 0] ** 2 + (X[:, 1] * X[:, 2] \ - 1 / (X[:, 1] * X[:, 3])) ** 2) ** 0.5 + noise * N(0, 1). Parameters ---------- n_samples : int, optional (default=100) The number of samples. noise : float, optional (default=0.0) The standard deviation of the gaussian noise applied to the output. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 4] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] J. Friedman, "Multivariate adaptive regression splines", The Annals of Statistics 19 (1), pages 1-67, 1991. .. [2] L. Breiman, "Bagging predictors", Machine Learning 24, pages 123-140, 1996. """ generator = check_random_state(random_state) X = generator.rand(n_samples, 4) X[:, 0] *= 100 X[:, 1] *= 520 * np.pi X[:, 1] += 40 * np.pi X[:, 3] *= 10 X[:, 3] += 1 y = (X[:, 0] ** 2 + (X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) ** 2) ** 0.5 \ + noise * generator.randn(n_samples) return X, y def make_friedman3(n_samples=100, noise=0.0, random_state=None): """Generate the "Friedman \#3" regression problem This dataset is described in Friedman [1] and Breiman [2]. Inputs `X` are 4 independent features uniformly distributed on the intervals:: 0 <= X[:, 0] <= 100, 40 * pi <= X[:, 1] <= 560 * pi, 0 <= X[:, 2] <= 1, 1 <= X[:, 3] <= 11. The output `y` is created according to the formula:: y(X) = arctan((X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) \ / X[:, 0]) + noise * N(0, 1). Parameters ---------- n_samples : int, optional (default=100) The number of samples. noise : float, optional (default=0.0) The standard deviation of the gaussian noise applied to the output. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 4] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] J. Friedman, "Multivariate adaptive regression splines", The Annals of Statistics 19 (1), pages 1-67, 1991. .. [2] L. Breiman, "Bagging predictors", Machine Learning 24, pages 123-140, 1996. """ generator = check_random_state(random_state) X = generator.rand(n_samples, 4) X[:, 0] *= 100 X[:, 1] *= 520 * np.pi X[:, 1] += 40 * np.pi X[:, 3] *= 10 X[:, 3] += 1 y = np.arctan((X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) / X[:, 0]) \ + noise * generator.randn(n_samples) return X, y def make_low_rank_matrix(n_samples=100, n_features=100, effective_rank=10, tail_strength=0.5, random_state=None): """Generate a mostly low rank matrix with bell-shaped singular values Most of the variance can be explained by a bell-shaped curve of width effective_rank: the low rank part of the singular values profile is:: (1 - tail_strength) * exp(-1.0 * (i / effective_rank) ** 2) The remaining singular values' tail is fat, decreasing as:: tail_strength * exp(-0.1 * i / effective_rank). The low rank part of the profile can be considered the structured signal part of the data while the tail can be considered the noisy part of the data that cannot be summarized by a low number of linear components (singular vectors). This kind of singular profiles is often seen in practice, for instance: - gray level pictures of faces - TF-IDF vectors of text documents crawled from the web Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=100) The number of features. effective_rank : int, optional (default=10) The approximate number of singular vectors required to explain most of the data by linear combinations. tail_strength : float between 0.0 and 1.0, optional (default=0.5) The relative importance of the fat noisy tail of the singular values profile. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The matrix. """ generator = check_random_state(random_state) n = min(n_samples, n_features) # Random (ortho normal) vectors u, _ = linalg.qr(generator.randn(n_samples, n), mode='economic') v, _ = linalg.qr(generator.randn(n_features, n), mode='economic') # Index of the singular values singular_ind = np.arange(n, dtype=np.float64) # Build the singular profile by assembling signal and noise components low_rank = ((1 - tail_strength) * np.exp(-1.0 * (singular_ind / effective_rank) ** 2)) tail = tail_strength * np.exp(-0.1 * singular_ind / effective_rank) s = np.identity(n) * (low_rank + tail) return np.dot(np.dot(u, s), v.T) def make_sparse_coded_signal(n_samples, n_components, n_features, n_nonzero_coefs, random_state=None): """Generate a signal as a sparse combination of dictionary elements. Returns a matrix Y = DX, such as D is (n_features, n_components), X is (n_components, n_samples) and each column of X has exactly n_nonzero_coefs non-zero elements. Parameters ---------- n_samples : int number of samples to generate n_components: int, number of components in the dictionary n_features : int number of features of the dataset to generate n_nonzero_coefs : int number of active (non-zero) coefficients in each sample random_state: int or RandomState instance, optional (default=None) seed used by the pseudo random number generator Returns ------- data: array of shape [n_features, n_samples] The encoded signal (Y). dictionary: array of shape [n_features, n_components] The dictionary with normalized components (D). code: array of shape [n_components, n_samples] The sparse code such that each column of this matrix has exactly n_nonzero_coefs non-zero items (X). """ generator = check_random_state(random_state) # generate dictionary D = generator.randn(n_features, n_components) D /= np.sqrt(np.sum((D ** 2), axis=0)) # generate code X = np.zeros((n_components, n_samples)) for i in range(n_samples): idx = np.arange(n_components) generator.shuffle(idx) idx = idx[:n_nonzero_coefs] X[idx, i] = generator.randn(n_nonzero_coefs) # encode signal Y = np.dot(D, X) return map(np.squeeze, (Y, D, X)) def make_sparse_uncorrelated(n_samples=100, n_features=10, random_state=None): """Generate a random regression problem with sparse uncorrelated design This dataset is described in Celeux et al [1]. as:: X ~ N(0, 1) y(X) = X[:, 0] + 2 * X[:, 1] - 2 * X[:, 2] - 1.5 * X[:, 3] Only the first 4 features are informative. The remaining features are useless. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=10) The number of features. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] G. Celeux, M. El Anbari, J.-M. Marin, C. P. Robert, "Regularization in regression: comparing Bayesian and frequentist methods in a poorly informative situation", 2009. """ generator = check_random_state(random_state) X = generator.normal(loc=0, scale=1, size=(n_samples, n_features)) y = generator.normal(loc=(X[:, 0] + 2 * X[:, 1] - 2 * X[:, 2] - 1.5 * X[:, 3]), scale=np.ones(n_samples)) return X, y def make_spd_matrix(n_dim, random_state=None): """Generate a random symmetric, positive-definite matrix. Parameters ---------- n_dim : int The matrix dimension. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_dim, n_dim] The random symmetric, positive-definite matrix. See also -------- make_sparse_spd_matrix """ generator = check_random_state(random_state) A = generator.rand(n_dim, n_dim) U, s, V = linalg.svd(np.dot(A.T, A)) X = np.dot(np.dot(U, 1.0 + np.diag(generator.rand(n_dim))), V) return X def make_sparse_spd_matrix(dim=1, alpha=0.95, norm_diag=False, smallest_coef=.1, largest_coef=.9, random_state=None): """Generate a sparse symmetric definite positive matrix. Parameters ---------- dim: integer, optional (default=1) The size of the random (matrix to generate. alpha: float between 0 and 1, optional (default=0.95) The probability that a coefficient is non zero (see notes). random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- prec: array of shape = [dim, dim] Notes ----- The sparsity is actually imposed on the cholesky factor of the matrix. Thus alpha does not translate directly into the filling fraction of the matrix itself. See also -------- make_spd_matrix """ random_state = check_random_state(random_state) chol = -np.eye(dim) aux = random_state.rand(dim, dim) aux[aux < alpha] = 0 aux[aux > alpha] = (smallest_coef + (largest_coef - smallest_coef) * random_state.rand(np.sum(aux > alpha))) aux = np.tril(aux, k=-1) # Permute the lines: we don't want to have asymmetries in the final # SPD matrix permutation = random_state.permutation(dim) aux = aux[permutation].T[permutation] chol += aux prec = np.dot(chol.T, chol) if norm_diag: d = np.diag(prec) d = 1. / np.sqrt(d) prec *= d prec *= d[:, np.newaxis] return prec def make_swiss_roll(n_samples=100, noise=0.0, random_state=None): """Generate a swiss roll dataset. Parameters ---------- n_samples : int, optional (default=100) The number of sample points on the S curve. noise : float, optional (default=0.0) The standard deviation of the gaussian noise. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 3] The points. t : array of shape [n_samples] The univariate position of the sample according to the main dimension of the points in the manifold. Notes ----- The algorithm is from Marsland [1]. References ---------- .. [1] S. Marsland, "Machine Learning: An Algorithmic Perpsective", Chapter 10, 2009. http://www-ist.massey.ac.nz/smarsland/Code/10/lle.py """ generator = check_random_state(random_state) t = 1.5 * np.pi * (1 + 2 * generator.rand(1, n_samples)) x = t * np.cos(t) y = 21 * generator.rand(1, n_samples) z = t * np.sin(t) X = np.concatenate((x, y, z)) X += noise * generator.randn(3, n_samples) X = X.T t = np.squeeze(t) return X, t def make_s_curve(n_samples=100, noise=0.0, random_state=None): """Generate an S curve dataset. Parameters ---------- n_samples : int, optional (default=100) The number of sample points on the S curve. noise : float, optional (default=0.0) The standard deviation of the gaussian noise. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 3] The points. t : array of shape [n_samples] The univariate position of the sample according to the main dimension of the points in the manifold. """ generator = check_random_state(random_state) t = 3 * np.pi * (generator.rand(1, n_samples) - 0.5) x = np.sin(t) y = 2.0 * generator.rand(1, n_samples) z = np.sign(t) * (np.cos(t) - 1) X = np.concatenate((x, y, z)) X += noise * generator.randn(3, n_samples) X = X.T t = np.squeeze(t) return X, t def make_gaussian_quantiles(mean=None, cov=1., n_samples=100, n_features=2, n_classes=3, shuffle=True, random_state=None): """Generate isotropic Gaussian and label samples by quantile This classification dataset is constructed by taking a multi-dimensional standard normal distribution and defining classes separated by nested concentric multi-dimensional spheres such that roughly equal numbers of samples are in each class (quantiles of the :math:`\chi^2` distribution). Parameters ---------- mean : array of shape [n_features], optional (default=None) The mean of the multi-dimensional normal distribution. If None then use the origin (0, 0, ...). cov : float, optional (default=1.) The covariance matrix will be this value times the unit matrix. This dataset only produces symmetric normal distributions. n_samples : int, optional (default=100) The total number of points equally divided among classes. n_features : int, optional (default=2) The number of features for each sample. n_classes : int, optional (default=3) The number of classes shuffle : boolean, optional (default=True) Shuffle the samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The generated samples. y : array of shape [n_samples] The integer labels for quantile membership of each sample. Notes ----- The dataset is from Zhu et al [1]. References ---------- .. [1] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009. """ if n_samples < n_classes: raise ValueError("n_samples must be at least n_classes") generator = check_random_state(random_state) if mean is None: mean = np.zeros(n_features) else: mean = np.array(mean) # Build multivariate normal distribution X = generator.multivariate_normal(mean, cov * np.identity(n_features), (n_samples,)) # Sort by distance from origin idx = np.argsort(np.sum((X - mean[np.newaxis, :]) ** 2, axis=1)) X = X[idx, :] # Label by quantile step = n_samples // n_classes y = np.hstack([np.repeat(np.arange(n_classes), step), np.repeat(n_classes - 1, n_samples - step * n_classes)]) if shuffle: X, y = util_shuffle(X, y, random_state=generator) return X, y def _shuffle(data, random_state=None): generator = check_random_state(random_state) n_rows, n_cols = data.shape row_idx = generator.permutation(n_rows) col_idx = generator.permutation(n_cols) result = data[row_idx][:, col_idx] return result, row_idx, col_idx def make_biclusters(shape, n_clusters, noise=0.0, minval=10, maxval=100, shuffle=True, random_state=None): """Generate an array with constant block diagonal structure for biclustering. Parameters ---------- shape : iterable (n_rows, n_cols) The shape of the result. n_clusters : integer The number of biclusters. noise : float, optional (default=0.0) The standard deviation of the gaussian noise. minval : int, optional (default=10) Minimum value of a bicluster. maxval : int, optional (default=100) Maximum value of a bicluster. shuffle : boolean, optional (default=True) Shuffle the samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape `shape` The generated array. rows : array of shape (n_clusters, X.shape[0],) The indicators for cluster membership of each row. cols : array of shape (n_clusters, X.shape[1],) The indicators for cluster membership of each column. References ---------- .. [1] Dhillon, I. S. (2001, August). Co-clustering documents and words using bipartite spectral graph partitioning. In Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 269-274). ACM. See also -------- make_checkerboard """ generator = check_random_state(random_state) n_rows, n_cols = shape consts = generator.uniform(minval, maxval, n_clusters) # row and column clusters of approximately equal sizes row_sizes = generator.multinomial(n_rows, np.repeat(1.0 / n_clusters, n_clusters)) col_sizes = generator.multinomial(n_cols, np.repeat(1.0 / n_clusters, n_clusters)) row_labels = np.hstack(list(np.repeat(val, rep) for val, rep in zip(range(n_clusters), row_sizes))) col_labels = np.hstack(list(np.repeat(val, rep) for val, rep in zip(range(n_clusters), col_sizes))) result = np.zeros(shape, dtype=np.float64) for i in range(n_clusters): selector = np.outer(row_labels == i, col_labels == i) result[selector] += consts[i] if noise > 0: result += generator.normal(scale=noise, size=result.shape) if shuffle: result, row_idx, col_idx = _shuffle(result, random_state) row_labels = row_labels[row_idx] col_labels = col_labels[col_idx] rows = np.vstack(row_labels == c for c in range(n_clusters)) cols = np.vstack(col_labels == c for c in range(n_clusters)) return result, rows, cols def make_checkerboard(shape, n_clusters, noise=0.0, minval=10, maxval=100, shuffle=True, random_state=None): """Generate an array with block checkerboard structure for biclustering. Parameters ---------- shape : iterable (n_rows, n_cols) The shape of the result. n_clusters : integer or iterable (n_row_clusters, n_column_clusters) The number of row and column clusters. noise : float, optional (default=0.0) The standard deviation of the gaussian noise. minval : int, optional (default=10) Minimum value of a bicluster. maxval : int, optional (default=100) Maximum value of a bicluster. shuffle : boolean, optional (default=True) Shuffle the samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape `shape` The generated array. rows : array of shape (n_clusters, X.shape[0],) The indicators for cluster membership of each row. cols : array of shape (n_clusters, X.shape[1],) The indicators for cluster membership of each column. References ---------- .. [1] Kluger, Y., Basri, R., Chang, J. T., & Gerstein, M. (2003). Spectral biclustering of microarray data: coclustering genes and conditions. Genome research, 13(4), 703-716. See also -------- make_biclusters """ generator = check_random_state(random_state) if hasattr(n_clusters, "__len__"): n_row_clusters, n_col_clusters = n_clusters else: n_row_clusters = n_col_clusters = n_clusters # row and column clusters of approximately equal sizes n_rows, n_cols = shape row_sizes = generator.multinomial(n_rows, np.repeat(1.0 / n_row_clusters, n_row_clusters)) col_sizes = generator.multinomial(n_cols, np.repeat(1.0 / n_col_clusters, n_col_clusters)) row_labels = np.hstack(list(np.repeat(val, rep) for val, rep in zip(range(n_row_clusters), row_sizes))) col_labels = np.hstack(list(np.repeat(val, rep) for val, rep in zip(range(n_col_clusters), col_sizes))) result = np.zeros(shape, dtype=np.float64) for i in range(n_row_clusters): for j in range(n_col_clusters): selector = np.outer(row_labels == i, col_labels == j) result[selector] += generator.uniform(minval, maxval) if noise > 0: result += generator.normal(scale=noise, size=result.shape) if shuffle: result, row_idx, col_idx = _shuffle(result, random_state) row_labels = row_labels[row_idx] col_labels = col_labels[col_idx] rows = np.vstack(row_labels == label for label in range(n_row_clusters) for _ in range(n_col_clusters)) cols = np.vstack(col_labels == label for _ in range(n_row_clusters) for label in range(n_col_clusters)) return result, rows, cols
bsd-3-clause
harshaneelhg/scikit-learn
sklearn/naive_bayes.py
128
28358
# -*- coding: utf-8 -*- """ The :mod:`sklearn.naive_bayes` module implements Naive Bayes algorithms. These are supervised learning methods based on applying Bayes' theorem with strong (naive) feature independence assumptions. """ # Author: Vincent Michel <vincent.michel@inria.fr> # Minor fixes by Fabian Pedregosa # Amit Aides <amitibo@tx.technion.ac.il> # Yehuda Finkelstein <yehudaf@tx.technion.ac.il> # Lars Buitinck <L.J.Buitinck@uva.nl> # Jan Hendrik Metzen <jhm@informatik.uni-bremen.de> # (parts based on earlier work by Mathieu Blondel) # # License: BSD 3 clause from abc import ABCMeta, abstractmethod import numpy as np from scipy.sparse import issparse from .base import BaseEstimator, ClassifierMixin from .preprocessing import binarize from .preprocessing import LabelBinarizer from .preprocessing import label_binarize from .utils import check_X_y, check_array from .utils.extmath import safe_sparse_dot, logsumexp from .utils.multiclass import _check_partial_fit_first_call from .utils.fixes import in1d from .utils.validation import check_is_fitted from .externals import six __all__ = ['BernoulliNB', 'GaussianNB', 'MultinomialNB'] class BaseNB(six.with_metaclass(ABCMeta, BaseEstimator, ClassifierMixin)): """Abstract base class for naive Bayes estimators""" @abstractmethod def _joint_log_likelihood(self, X): """Compute the unnormalized posterior log probability of X I.e. ``log P(c) + log P(x|c)`` for all rows x of X, as an array-like of shape [n_classes, n_samples]. Input is passed to _joint_log_likelihood as-is by predict, predict_proba and predict_log_proba. """ def predict(self, X): """ Perform classification on an array of test vectors X. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- C : array, shape = [n_samples] Predicted target values for X """ jll = self._joint_log_likelihood(X) return self.classes_[np.argmax(jll, axis=1)] def predict_log_proba(self, X): """ Return log-probability estimates for the test vector X. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- C : array-like, shape = [n_samples, n_classes] Returns the log-probability of the samples for each class in the model. The columns correspond to the classes in sorted order, as they appear in the attribute `classes_`. """ jll = self._joint_log_likelihood(X) # normalize by P(x) = P(f_1, ..., f_n) log_prob_x = logsumexp(jll, axis=1) return jll - np.atleast_2d(log_prob_x).T def predict_proba(self, X): """ Return probability estimates for the test vector X. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- C : array-like, shape = [n_samples, n_classes] Returns the probability of the samples for each class in the model. The columns correspond to the classes in sorted order, as they appear in the attribute `classes_`. """ return np.exp(self.predict_log_proba(X)) class GaussianNB(BaseNB): """ Gaussian Naive Bayes (GaussianNB) Can perform online updates to model parameters via `partial_fit` method. For details on algorithm used to update feature means and variance online, see Stanford CS tech report STAN-CS-79-773 by Chan, Golub, and LeVeque: http://i.stanford.edu/pub/cstr/reports/cs/tr/79/773/CS-TR-79-773.pdf Read more in the :ref:`User Guide <gaussian_naive_bayes>`. Attributes ---------- class_prior_ : array, shape (n_classes,) probability of each class. class_count_ : array, shape (n_classes,) number of training samples observed in each class. theta_ : array, shape (n_classes, n_features) mean of each feature per class sigma_ : array, shape (n_classes, n_features) variance of each feature per class Examples -------- >>> import numpy as np >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> Y = np.array([1, 1, 1, 2, 2, 2]) >>> from sklearn.naive_bayes import GaussianNB >>> clf = GaussianNB() >>> clf.fit(X, Y) GaussianNB() >>> print(clf.predict([[-0.8, -1]])) [1] >>> clf_pf = GaussianNB() >>> clf_pf.partial_fit(X, Y, np.unique(Y)) GaussianNB() >>> print(clf_pf.predict([[-0.8, -1]])) [1] """ def fit(self, X, y, sample_weight=None): """Fit Gaussian Naive Bayes according to X, y Parameters ---------- X : array-like, shape (n_samples, n_features) Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) Target values. sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples (1. for unweighted). Returns ------- self : object Returns self. """ X, y = check_X_y(X, y) return self._partial_fit(X, y, np.unique(y), _refit=True, sample_weight=sample_weight) @staticmethod def _update_mean_variance(n_past, mu, var, X, sample_weight=None): """Compute online update of Gaussian mean and variance. Given starting sample count, mean, and variance, a new set of points X, and optionally sample weights, return the updated mean and variance. (NB - each dimension (column) in X is treated as independent -- you get variance, not covariance). Can take scalar mean and variance, or vector mean and variance to simultaneously update a number of independent Gaussians. See Stanford CS tech report STAN-CS-79-773 by Chan, Golub, and LeVeque: http://i.stanford.edu/pub/cstr/reports/cs/tr/79/773/CS-TR-79-773.pdf Parameters ---------- n_past : int Number of samples represented in old mean and variance. If sample weights were given, this should contain the sum of sample weights represented in old mean and variance. mu : array-like, shape (number of Gaussians,) Means for Gaussians in original set. var : array-like, shape (number of Gaussians,) Variances for Gaussians in original set. sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples (1. for unweighted). Returns ------- total_mu : array-like, shape (number of Gaussians,) Updated mean for each Gaussian over the combined set. total_var : array-like, shape (number of Gaussians,) Updated variance for each Gaussian over the combined set. """ if X.shape[0] == 0: return mu, var # Compute (potentially weighted) mean and variance of new datapoints if sample_weight is not None: n_new = float(sample_weight.sum()) new_mu = np.average(X, axis=0, weights=sample_weight / n_new) new_var = np.average((X - new_mu) ** 2, axis=0, weights=sample_weight / n_new) else: n_new = X.shape[0] new_var = np.var(X, axis=0) new_mu = np.mean(X, axis=0) if n_past == 0: return new_mu, new_var n_total = float(n_past + n_new) # Combine mean of old and new data, taking into consideration # (weighted) number of observations total_mu = (n_new * new_mu + n_past * mu) / n_total # Combine variance of old and new data, taking into consideration # (weighted) number of observations. This is achieved by combining # the sum-of-squared-differences (ssd) old_ssd = n_past * var new_ssd = n_new * new_var total_ssd = (old_ssd + new_ssd + (n_past / float(n_new * n_total)) * (n_new * mu - n_new * new_mu) ** 2) total_var = total_ssd / n_total return total_mu, total_var def partial_fit(self, X, y, classes=None, sample_weight=None): """Incremental fit on a batch of samples. This method is expected to be called several times consecutively on different chunks of a dataset so as to implement out-of-core or online learning. This is especially useful when the whole dataset is too big to fit in memory at once. This method has some performance and numerical stability overhead, hence it is better to call partial_fit on chunks of data that are as large as possible (as long as fitting in the memory budget) to hide the overhead. Parameters ---------- X : array-like, shape (n_samples, n_features) Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) Target values. classes : array-like, shape (n_classes,) List of all the classes that can possibly appear in the y vector. Must be provided at the first call to partial_fit, can be omitted in subsequent calls. sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples (1. for unweighted). Returns ------- self : object Returns self. """ return self._partial_fit(X, y, classes, _refit=False, sample_weight=sample_weight) def _partial_fit(self, X, y, classes=None, _refit=False, sample_weight=None): """Actual implementation of Gaussian NB fitting. Parameters ---------- X : array-like, shape (n_samples, n_features) Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) Target values. classes : array-like, shape (n_classes,) List of all the classes that can possibly appear in the y vector. Must be provided at the first call to partial_fit, can be omitted in subsequent calls. _refit: bool If true, act as though this were the first time we called _partial_fit (ie, throw away any past fitting and start over). sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples (1. for unweighted). Returns ------- self : object Returns self. """ X, y = check_X_y(X, y) epsilon = 1e-9 if _refit: self.classes_ = None if _check_partial_fit_first_call(self, classes): # This is the first call to partial_fit: # initialize various cumulative counters n_features = X.shape[1] n_classes = len(self.classes_) self.theta_ = np.zeros((n_classes, n_features)) self.sigma_ = np.zeros((n_classes, n_features)) self.class_prior_ = np.zeros(n_classes) self.class_count_ = np.zeros(n_classes) else: if X.shape[1] != self.theta_.shape[1]: msg = "Number of features %d does not match previous data %d." raise ValueError(msg % (X.shape[1], self.theta_.shape[1])) # Put epsilon back in each time self.sigma_[:, :] -= epsilon classes = self.classes_ unique_y = np.unique(y) unique_y_in_classes = in1d(unique_y, classes) if not np.all(unique_y_in_classes): raise ValueError("The target label(s) %s in y do not exist in the " "initial classes %s" % (y[~unique_y_in_classes], classes)) for y_i in unique_y: i = classes.searchsorted(y_i) X_i = X[y == y_i, :] if sample_weight is not None: sw_i = sample_weight[y == y_i] N_i = sw_i.sum() else: sw_i = None N_i = X_i.shape[0] new_theta, new_sigma = self._update_mean_variance( self.class_count_[i], self.theta_[i, :], self.sigma_[i, :], X_i, sw_i) self.theta_[i, :] = new_theta self.sigma_[i, :] = new_sigma self.class_count_[i] += N_i self.sigma_[:, :] += epsilon self.class_prior_[:] = self.class_count_ / np.sum(self.class_count_) return self def _joint_log_likelihood(self, X): check_is_fitted(self, "classes_") X = check_array(X) joint_log_likelihood = [] for i in range(np.size(self.classes_)): jointi = np.log(self.class_prior_[i]) n_ij = - 0.5 * np.sum(np.log(2. * np.pi * self.sigma_[i, :])) n_ij -= 0.5 * np.sum(((X - self.theta_[i, :]) ** 2) / (self.sigma_[i, :]), 1) joint_log_likelihood.append(jointi + n_ij) joint_log_likelihood = np.array(joint_log_likelihood).T return joint_log_likelihood class BaseDiscreteNB(BaseNB): """Abstract base class for naive Bayes on discrete/categorical data Any estimator based on this class should provide: __init__ _joint_log_likelihood(X) as per BaseNB """ def _update_class_log_prior(self, class_prior=None): n_classes = len(self.classes_) if class_prior is not None: if len(class_prior) != n_classes: raise ValueError("Number of priors must match number of" " classes.") self.class_log_prior_ = np.log(class_prior) elif self.fit_prior: # empirical prior, with sample_weight taken into account self.class_log_prior_ = (np.log(self.class_count_) - np.log(self.class_count_.sum())) else: self.class_log_prior_ = np.zeros(n_classes) - np.log(n_classes) def partial_fit(self, X, y, classes=None, sample_weight=None): """Incremental fit on a batch of samples. This method is expected to be called several times consecutively on different chunks of a dataset so as to implement out-of-core or online learning. This is especially useful when the whole dataset is too big to fit in memory at once. This method has some performance overhead hence it is better to call partial_fit on chunks of data that are as large as possible (as long as fitting in the memory budget) to hide the overhead. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] Target values. classes : array-like, shape = [n_classes] List of all the classes that can possibly appear in the y vector. Must be provided at the first call to partial_fit, can be omitted in subsequent calls. sample_weight : array-like, shape = [n_samples], optional Weights applied to individual samples (1. for unweighted). Returns ------- self : object Returns self. """ X = check_array(X, accept_sparse='csr', dtype=np.float64) _, n_features = X.shape if _check_partial_fit_first_call(self, classes): # This is the first call to partial_fit: # initialize various cumulative counters n_effective_classes = len(classes) if len(classes) > 1 else 2 self.class_count_ = np.zeros(n_effective_classes, dtype=np.float64) self.feature_count_ = np.zeros((n_effective_classes, n_features), dtype=np.float64) elif n_features != self.coef_.shape[1]: msg = "Number of features %d does not match previous data %d." raise ValueError(msg % (n_features, self.coef_.shape[-1])) Y = label_binarize(y, classes=self.classes_) if Y.shape[1] == 1: Y = np.concatenate((1 - Y, Y), axis=1) n_samples, n_classes = Y.shape if X.shape[0] != Y.shape[0]: msg = "X.shape[0]=%d and y.shape[0]=%d are incompatible." raise ValueError(msg % (X.shape[0], y.shape[0])) # label_binarize() returns arrays with dtype=np.int64. # We convert it to np.float64 to support sample_weight consistently Y = Y.astype(np.float64) if sample_weight is not None: Y *= check_array(sample_weight).T class_prior = self.class_prior # Count raw events from data before updating the class log prior # and feature log probas self._count(X, Y) # XXX: OPTIM: we could introduce a public finalization method to # be called by the user explicitly just once after several consecutive # calls to partial_fit and prior any call to predict[_[log_]proba] # to avoid computing the smooth log probas at each call to partial fit self._update_feature_log_prob() self._update_class_log_prior(class_prior=class_prior) return self def fit(self, X, y, sample_weight=None): """Fit Naive Bayes classifier according to X, y Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] Target values. sample_weight : array-like, shape = [n_samples], optional Weights applied to individual samples (1. for unweighted). Returns ------- self : object Returns self. """ X, y = check_X_y(X, y, 'csr') _, n_features = X.shape labelbin = LabelBinarizer() Y = labelbin.fit_transform(y) self.classes_ = labelbin.classes_ if Y.shape[1] == 1: Y = np.concatenate((1 - Y, Y), axis=1) # LabelBinarizer().fit_transform() returns arrays with dtype=np.int64. # We convert it to np.float64 to support sample_weight consistently; # this means we also don't have to cast X to floating point Y = Y.astype(np.float64) if sample_weight is not None: Y *= check_array(sample_weight).T class_prior = self.class_prior # Count raw events from data before updating the class log prior # and feature log probas n_effective_classes = Y.shape[1] self.class_count_ = np.zeros(n_effective_classes, dtype=np.float64) self.feature_count_ = np.zeros((n_effective_classes, n_features), dtype=np.float64) self._count(X, Y) self._update_feature_log_prob() self._update_class_log_prior(class_prior=class_prior) return self # XXX The following is a stopgap measure; we need to set the dimensions # of class_log_prior_ and feature_log_prob_ correctly. def _get_coef(self): return (self.feature_log_prob_[1:] if len(self.classes_) == 2 else self.feature_log_prob_) def _get_intercept(self): return (self.class_log_prior_[1:] if len(self.classes_) == 2 else self.class_log_prior_) coef_ = property(_get_coef) intercept_ = property(_get_intercept) class MultinomialNB(BaseDiscreteNB): """ Naive Bayes classifier for multinomial models The multinomial Naive Bayes classifier is suitable for classification with discrete features (e.g., word counts for text classification). The multinomial distribution normally requires integer feature counts. However, in practice, fractional counts such as tf-idf may also work. Read more in the :ref:`User Guide <multinomial_naive_bayes>`. Parameters ---------- alpha : float, optional (default=1.0) Additive (Laplace/Lidstone) smoothing parameter (0 for no smoothing). fit_prior : boolean Whether to learn class prior probabilities or not. If false, a uniform prior will be used. class_prior : array-like, size (n_classes,) Prior probabilities of the classes. If specified the priors are not adjusted according to the data. Attributes ---------- class_log_prior_ : array, shape (n_classes, ) Smoothed empirical log probability for each class. intercept_ : property Mirrors ``class_log_prior_`` for interpreting MultinomialNB as a linear model. feature_log_prob_ : array, shape (n_classes, n_features) Empirical log probability of features given a class, ``P(x_i|y)``. coef_ : property Mirrors ``feature_log_prob_`` for interpreting MultinomialNB as a linear model. class_count_ : array, shape (n_classes,) Number of samples encountered for each class during fitting. This value is weighted by the sample weight when provided. feature_count_ : array, shape (n_classes, n_features) Number of samples encountered for each (class, feature) during fitting. This value is weighted by the sample weight when provided. Examples -------- >>> import numpy as np >>> X = np.random.randint(5, size=(6, 100)) >>> y = np.array([1, 2, 3, 4, 5, 6]) >>> from sklearn.naive_bayes import MultinomialNB >>> clf = MultinomialNB() >>> clf.fit(X, y) MultinomialNB(alpha=1.0, class_prior=None, fit_prior=True) >>> print(clf.predict(X[2])) [3] Notes ----- For the rationale behind the names `coef_` and `intercept_`, i.e. naive Bayes as a linear classifier, see J. Rennie et al. (2003), Tackling the poor assumptions of naive Bayes text classifiers, ICML. References ---------- C.D. Manning, P. Raghavan and H. Schuetze (2008). Introduction to Information Retrieval. Cambridge University Press, pp. 234-265. http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html """ def __init__(self, alpha=1.0, fit_prior=True, class_prior=None): self.alpha = alpha self.fit_prior = fit_prior self.class_prior = class_prior def _count(self, X, Y): """Count and smooth feature occurrences.""" if np.any((X.data if issparse(X) else X) < 0): raise ValueError("Input X must be non-negative") self.feature_count_ += safe_sparse_dot(Y.T, X) self.class_count_ += Y.sum(axis=0) def _update_feature_log_prob(self): """Apply smoothing to raw counts and recompute log probabilities""" smoothed_fc = self.feature_count_ + self.alpha smoothed_cc = smoothed_fc.sum(axis=1) self.feature_log_prob_ = (np.log(smoothed_fc) - np.log(smoothed_cc.reshape(-1, 1))) def _joint_log_likelihood(self, X): """Calculate the posterior log probability of the samples X""" check_is_fitted(self, "classes_") X = check_array(X, accept_sparse='csr') return (safe_sparse_dot(X, self.feature_log_prob_.T) + self.class_log_prior_) class BernoulliNB(BaseDiscreteNB): """Naive Bayes classifier for multivariate Bernoulli models. Like MultinomialNB, this classifier is suitable for discrete data. The difference is that while MultinomialNB works with occurrence counts, BernoulliNB is designed for binary/boolean features. Read more in the :ref:`User Guide <bernoulli_naive_bayes>`. Parameters ---------- alpha : float, optional (default=1.0) Additive (Laplace/Lidstone) smoothing parameter (0 for no smoothing). binarize : float or None, optional Threshold for binarizing (mapping to booleans) of sample features. If None, input is presumed to already consist of binary vectors. fit_prior : boolean Whether to learn class prior probabilities or not. If false, a uniform prior will be used. class_prior : array-like, size=[n_classes,] Prior probabilities of the classes. If specified the priors are not adjusted according to the data. Attributes ---------- class_log_prior_ : array, shape = [n_classes] Log probability of each class (smoothed). feature_log_prob_ : array, shape = [n_classes, n_features] Empirical log probability of features given a class, P(x_i|y). class_count_ : array, shape = [n_classes] Number of samples encountered for each class during fitting. This value is weighted by the sample weight when provided. feature_count_ : array, shape = [n_classes, n_features] Number of samples encountered for each (class, feature) during fitting. This value is weighted by the sample weight when provided. Examples -------- >>> import numpy as np >>> X = np.random.randint(2, size=(6, 100)) >>> Y = np.array([1, 2, 3, 4, 4, 5]) >>> from sklearn.naive_bayes import BernoulliNB >>> clf = BernoulliNB() >>> clf.fit(X, Y) BernoulliNB(alpha=1.0, binarize=0.0, class_prior=None, fit_prior=True) >>> print(clf.predict(X[2])) [3] References ---------- C.D. Manning, P. Raghavan and H. Schuetze (2008). Introduction to Information Retrieval. Cambridge University Press, pp. 234-265. http://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html A. McCallum and K. Nigam (1998). A comparison of event models for naive Bayes text classification. Proc. AAAI/ICML-98 Workshop on Learning for Text Categorization, pp. 41-48. V. Metsis, I. Androutsopoulos and G. Paliouras (2006). Spam filtering with naive Bayes -- Which naive Bayes? 3rd Conf. on Email and Anti-Spam (CEAS). """ def __init__(self, alpha=1.0, binarize=.0, fit_prior=True, class_prior=None): self.alpha = alpha self.binarize = binarize self.fit_prior = fit_prior self.class_prior = class_prior def _count(self, X, Y): """Count and smooth feature occurrences.""" if self.binarize is not None: X = binarize(X, threshold=self.binarize) self.feature_count_ += safe_sparse_dot(Y.T, X) self.class_count_ += Y.sum(axis=0) def _update_feature_log_prob(self): """Apply smoothing to raw counts and recompute log probabilities""" smoothed_fc = self.feature_count_ + self.alpha smoothed_cc = self.class_count_ + self.alpha * 2 self.feature_log_prob_ = (np.log(smoothed_fc) - np.log(smoothed_cc.reshape(-1, 1))) def _joint_log_likelihood(self, X): """Calculate the posterior log probability of the samples X""" check_is_fitted(self, "classes_") X = check_array(X, accept_sparse='csr') if self.binarize is not None: X = binarize(X, threshold=self.binarize) n_classes, n_features = self.feature_log_prob_.shape n_samples, n_features_X = X.shape if n_features_X != n_features: raise ValueError("Expected input with %d features, got %d instead" % (n_features, n_features_X)) neg_prob = np.log(1 - np.exp(self.feature_log_prob_)) # Compute neg_prob · (1 - X).T as ∑neg_prob - X · neg_prob jll = safe_sparse_dot(X, (self.feature_log_prob_ - neg_prob).T) jll += self.class_log_prior_ + neg_prob.sum(axis=1) return jll
bsd-3-clause
gf712/AbPyTools
abpytools/core/fab_collection.py
1
14123
from .chain_collection import ChainCollection import numpy as np import pandas as pd from .chain import calculate_charge from abpytools.utils import DataLoader from operator import itemgetter from .fab import Fab from .helper_functions import germline_identity_pd, to_numbering_table from .base import CollectionBase import os import json from .utils import (json_FabCollection_formatter, pb2_FabCollection_formatter, pb2_FabCollection_parser, json_FabCollection_parser) from .flags import * if BACKEND_FLAGS.HAS_PROTO: from abpytools.core.formats import FabCollectionProto class FabCollection(CollectionBase): def __init__(self, fab=None, heavy_chains=None, light_chains=None, names=None): """ Fab object container that handles combinations of light/heavy Chain pairs. Args: fab (list): heavy_chains (ChainCollection): light_chains (ChainCollection): names (list): """ # check if it's a Chain object if heavy_chains is None and light_chains is None and fab is None: raise ValueError('Provide a list of Chain objects or an ChainCollection object') # check if fab object is a list and if all object are abpytools.Fab objects if isinstance(fab, list) and all(isinstance(fab_i, Fab) for fab_i in fab): self._fab = fab self._light_chains = ChainCollection([x[0] for x in self._fab]) self._heavy_chains = ChainCollection([x[1] for x in self._fab]) if fab is None and (heavy_chains is not None and light_chains is not None): if isinstance(heavy_chains, list): self._heavy_chains = ChainCollection(antibody_objects=heavy_chains) elif isinstance(heavy_chains, ChainCollection): self._heavy_chains = heavy_chains else: raise ValueError('Provide a list of Chain objects or an ChainCollection object') if isinstance(light_chains, list): self._light_chains = ChainCollection(antibody_objects=light_chains) elif isinstance(light_chains, ChainCollection): self._light_chains = light_chains else: raise ValueError('Provide a list of Chain objects or an ChainCollection object') if len(self._light_chains.loading_status()) == 0: self._light_chains.load() if len(self._heavy_chains.loading_status()) == 0: self._heavy_chains.load() if self._light_chains.n_ab != self._heavy_chains.n_ab: raise ValueError('Number of heavy chains must be the same of light chains') if isinstance(names, list) and all(isinstance(name, str) for name in names): if len(names) == self._heavy_chains.n_ab: self._names = names else: raise ValueError( 'Length of name list must be the same as length of heavy_chains/light chains lists') elif names is None: self._names = ['{} - {}'.format(heavy, light) for heavy, light in zip(self._heavy_chains.names, self._light_chains.names)] else: raise ValueError("Names expected a list of strings, instead got {}".format(type(names))) self._n_ab = self._light_chains.n_ab self._pair_sequences = [heavy + light for light, heavy in zip(self._heavy_chains.sequences, self._light_chains.sequences)] # keep the name of the heavy and light chains internally to keep everything in the right order self._internal_heavy_name = self._heavy_chains.names self._internal_light_name = self._light_chains.names # even though it makes more sense to draw all these values from the base Fab objects this is much slower # whenever self._n_ab > 1 it makes more sense to use the self._heavy_chain and self._light_chain containers # in all the methods # in essence the abpytools.Fab object is just a representative building block that could in future just # cache data and would then represent a speed up in the calculations def molecular_weights(self, monoisotopic=False): return [heavy + light for heavy, light in zip(self._heavy_chains.molecular_weights(monoisotopic=monoisotopic), self._light_chains.molecular_weights(monoisotopic=monoisotopic))] def extinction_coefficients(self, extinction_coefficient_database='Standard', reduced=False, normalise=False, **kwargs): heavy_ec = self._heavy_chains.extinction_coefficients( extinction_coefficient_database=extinction_coefficient_database, reduced=reduced) light_ec = self._light_chains.extinction_coefficients( extinction_coefficient_database=extinction_coefficient_database, reduced=reduced) if normalise: return [(heavy + light) / mw for heavy, light, mw in zip(heavy_ec, light_ec, self.molecular_weights(**kwargs))] else: return [heavy + light for heavy, light in zip(heavy_ec, light_ec)] def hydrophobicity_matrix(self): return np.column_stack((self._heavy_chains.hydrophobicity_matrix(), self._light_chains.hydrophobicity_matrix())) def charge(self): return np.column_stack((self._heavy_chains.charge, self._light_chains.charge)) def total_charge(self, ph=7.4, pka_database='Wikipedia'): available_pi_databases = ["EMBOSS", "DTASetect", "Solomon", "Sillero", "Rodwell", "Wikipedia", "Lehninger", "Grimsley"] assert pka_database in available_pi_databases, \ "Selected pI database {} not available. Available databases: {}".format(pka_database, ' ,'.join(available_pi_databases)) data_loader = DataLoader(data_type='AminoAcidProperties', data=['pI', pka_database]) pka_data = data_loader.get_data() return [calculate_charge(sequence=seq, ph=ph, pka_values=pka_data) for seq in self.sequences] def igblast_local_query(self, file_path, chain): if chain.lower() == 'light': self._light_chains.igblast_local_query(file_path=file_path) elif chain.lower() == 'heavy': self._heavy_chains.igblast_local_query(file_path=file_path) else: raise ValueError('Specify if the data being loaded is for the heavy or light chain') def igblast_server_query(self, **kwargs): self._light_chains.igblast_server_query(**kwargs) self._heavy_chains.igblast_server_query(**kwargs) def numbering_table(self, as_array=False, region='all', chain='both', **kwargs): return to_numbering_table(as_array=as_array, region=region, chain=chain, heavy_chains_numbering_table=self._heavy_chains.numbering_table, light_chains_numbering_table=self._light_chains.numbering_table, names=self.names, **kwargs) def _germline_pd(self): # empty dictionaries return false, so this condition checks if any of the values are False if all([x for x in self._light_chains.germline_identity.values()]) is False: # this means there is no information about the germline, # by default it will run a web query self._light_chains.igblast_server_query() if all([x for x in self._heavy_chains.germline_identity.values()]) is False: self._heavy_chains.igblast_server_query() heavy_chain_germlines = self._heavy_chains.germline light_chain_germlines = self._light_chains.germline data = np.array([[heavy_chain_germlines[x][0] for x in self._internal_heavy_name], [heavy_chain_germlines[x][1] for x in self._internal_heavy_name], [light_chain_germlines[x][0] for x in self._internal_light_name], [light_chain_germlines[x][1] for x in self._internal_light_name]]).T df = pd.DataFrame(data=data, columns=pd.MultiIndex.from_tuples([('Heavy', 'Assignment'), ('Heavy', 'Score'), ('Light', 'Assignment'), ('Light', 'Score')]), index=self.names) df.loc[:, (slice(None), 'Score')] = df.loc[:, (slice(None), 'Score')].apply(pd.to_numeric) return df def save_to_json(self, path, update=True): with open(os.path.join(path + '.json'), 'w') as f: fab_data = json_FabCollection_formatter(self) json.dump(fab_data, f, indent=2) def save_to_pb2(self, path, update=True): proto_parser = FabCollectionProto() try: with open(os.path.join(path + '.pb2'), 'rb') as f: proto_parser.ParseFromString(f.read()) except IOError: # Creating new file pass pb2_FabCollection_formatter(self, proto_parser) with open(os.path.join(path + '.pb2'), 'wb') as f: f.write(proto_parser.SerializeToString()) def save_to_fasta(self, path, update=True): raise NotImplementedError @classmethod def load_from_json(cls, path, n_threads=20, verbose=True, show_progressbar=True): with open(path, 'r') as f: data = json.load(f) fab_objects = json_FabCollection_parser(data) fab_collection = cls(fab=fab_objects) return fab_collection @classmethod def load_from_pb2(cls, path, n_threads=20, verbose=True, show_progressbar=True): with open(path, 'rb') as f: proto_parser = FabCollectionProto() proto_parser.ParseFromString(f.read()) fab_objects = pb2_FabCollection_parser(proto_parser) fab_collection = cls(fab=fab_objects) return fab_collection @classmethod def load_from_fasta(cls, path, numbering_scheme=NUMBERING_FLAGS.CHOTHIA, n_threads=20, verbose=True, show_progressbar=True): raise NotImplementedError def _get_names_iter(self, chain='both'): if chain == 'both': for light_chain, heavy_chain in zip(self._light_chains, self._heavy_chains): yield f"{light_chain.name}-{heavy_chain.name}" elif chain == 'light': for light_chain in self._light_chains: yield light_chain.name elif chain == 'heavy': for heavy_chain in self._heavy_chains: yield heavy_chain.name else: raise ValueError(f"Unknown chain type ({chain}), available options are:" f"both, light or heavy.") @property def regions(self): heavy_regions = self._heavy_chains.ab_region_index() light_regions = self._light_chains.ab_region_index() return {name: {CHAIN_FLAGS.HEAVY_CHAIN: heavy_regions[heavy], CHAIN_FLAGS.LIGHT_CHAIN: light_regions[light]} for name, heavy, light in zip(self.names, self._internal_heavy_name, self._internal_light_name)} @property def names(self): return self._names @property def sequences(self): return self._pair_sequences @property def aligned_sequences(self): return [heavy + light for light, heavy in zip(self._heavy_chains.aligned_sequences, self._light_chains.aligned_sequences)] @property def n_ab(self): return self._n_ab @property def germline_identity(self): return self._germline_identity() @property def germline(self): return self._germline_pd() def _string_summary_basic(self): return "abpytools.FabCollection Number of sequences: {}".format(self._n_ab) def __len__(self): return self._n_ab def __repr__(self): return "<%s at 0x%02x>" % (self._string_summary_basic(), id(self)) def __getitem__(self, indices): if isinstance(indices, int): return Fab(heavy_chain=self._heavy_chains[indices], light_chain=self._light_chains[indices], name=self.names[indices], load=False) else: return FabCollection(heavy_chains=list(itemgetter(*indices)(self._heavy_chains)), light_chains=list(itemgetter(*indices)(self._light_chains)), names=list(itemgetter(*indices)(self._names))) def _germline_identity(self): # empty dictionaries return false, so this condition checks if any of the values are False if all([x for x in self._light_chains.germline_identity.values()]) is False: # this means there is no information about the germline, # by default it will run a web query self._light_chains.igblast_server_query() if all([x for x in self._heavy_chains.germline_identity.values()]) is False: self._heavy_chains.igblast_server_query() return germline_identity_pd(self._heavy_chains.germline_identity, self._light_chains.germline_identity, self._internal_heavy_name, self._internal_light_name, self._names) def get_object(self, name): """ :param name: str :return: """ if name in self.names: index = self.names.index(name) return self[index] else: raise ValueError('Could not find sequence with specified name')
mit
srio/shadow3-scripts
transfocator_id30b.py
1
25823
import numpy import xraylib """ transfocator_id30b : transfocator for id13b: It can: 1) guess the lens configuration (number of lenses for each type) for a given photon energy and target image size. Use transfocator_compute_configuration() for this task 2) for a given transfocator configuration, compute the main optical parameters (image size, focal distance, focal position and divergence). Use transfocator_compute_parameters() for this task 3) Performs full ray tracing. Use id30b_ray_tracing() for this task Note that for the optimization and parameters calculations the transfocator configuration is given in keywords. For ray tracing calculations many parameters of the transfocator are hard coded with the values of id30b See main program for examples. Dependencies: Numpy xraylib (to compute refracion indices) Shadow (for ray tracing only) matplotlib (for some plots of ray=tracing) Side effects: When running ray tracing some files are created. MODIFICATION HISTORY: 2015-03-25 srio@esrf.eu, written """ __author__ = "Manuel Sanchez del Rio" __contact__ = "srio@esrf.eu" __copyright__ = "ESRF, 2015" def transfocator_compute_configuration(photon_energy_ev,s_target,\ symbol=["Be","Be","Be"], density=[1.845,1.845,1.845],\ nlenses_max = [15,3,1], nlenses_radii = [500e-4,1000e-4,1500e-4], lens_diameter=0.05, \ sigmaz=6.46e-4, alpha = 0.55, \ tf_p=5960, tf_q=3800, verbose=1 ): """ Computes the optimum transfocator configuration for a given photon energy and target image size. All length units are cm :param photon_energy_ev: the photon energy in eV :param s_target: the target image size in cm. :param symbol: the chemical symbol of the lens material of each type. Default symbol=["Be","Be","Be"] :param density: the density of each type of lens. Default: density=[1.845,1.845,1.845] :param nlenses_max: the maximum allowed number of lenases for each type of lens. nlenses_max = [15,3,1] :param nlenses_radii: the radii in cm of each type of lens. Default: nlenses_radii = [500e-4,1000e-4,1500e-4] :param lens_diameter: the physical diameter (acceptance) in cm of the lenses. If different for each type of lens, consider the smaller one. Default: lens_diameter=0.05 :param sigmaz: the sigma (standard deviation) of the source in cm :param alpha: an adjustable parameter in [0,1](see doc). Default: 0.55 (it is 0.76 for pure Gaussian beams) :param tf_p: the distance source-transfocator in cm :param tf_q: the distance transfocator-image in cm :param:verbose: set to 1 for verbose text output :return: a list with the number of lenses of each type. """ if s_target < 2.35*sigmaz*tf_q/tf_p: print("Source size FWHM is: %f um"%(1e4*2.35*sigmaz)) print("Maximum Demagnifications is: %f um"%(tf_p/tf_q)) print("Minimum possible size is: %f um"%(1e4*2.35*sigmaz*tf_q/tf_p)) print("Error: redefine size") return None deltas = [(1.0 - xraylib.Refractive_Index_Re(symbol[i],photon_energy_ev*1e-3,density[i])) \ for i in range(len(symbol))] focal_q_target = _tansfocator_guess_focal_position( s_target, p=tf_p, q=tf_q, sigmaz=sigmaz, alpha=alpha, \ lens_diameter=lens_diameter,method=2) focal_f_target = 1.0 / (1.0/focal_q_target + 1.0/tf_p) div_q_target = alpha * lens_diameter / focal_q_target #corrections for extreme cases source_demagnified = 2.35*sigmaz*focal_q_target/tf_p if source_demagnified > lens_diameter: source_demagnified = lens_diameter s_target_calc = numpy.sqrt( (div_q_target*(tf_q-focal_q_target))**2 + source_demagnified**2) nlenses_target = _transfocator_guess_configuration(focal_f_target,deltas=deltas,\ nlenses_max=nlenses_max,radii=nlenses_radii, ) if verbose: print("transfocator_compute_configuration: focal_f_target: %f"%(focal_f_target)) print("transfocator_compute_configuration: focal_q_target: %f cm"%(focal_q_target)) print("transfocator_compute_configuration: s_target: %f um"%(s_target_calc*1e4)) print("transfocator_compute_configuration: nlenses_target: ",nlenses_target) return nlenses_target def transfocator_compute_parameters(photon_energy_ev, nlenses_target,\ symbol=["Be","Be","Be"], density=[1.845,1.845,1.845],\ nlenses_max = [15,3,1], nlenses_radii = [500e-4,1000e-4,1500e-4], lens_diameter=0.05, \ sigmaz=6.46e-4, alpha = 0.55, \ tf_p=5960, tf_q=3800 ): """ Computes the parameters of the optical performances of a given transgocator configuration. returns a l All length units are cm :param photon_energy_ev: :param nlenses_target: a list with the lens configuration, i.e. the number of lenses of each type. :param symbol: the chemical symbol of the lens material of each type. Default symbol=["Be","Be","Be"] :param density: the density of each type of lens. Default: density=[1.845,1.845,1.845] :param nlenses_max: the maximum allowed number of lenases for each type of lens. nlenses_max = [15,3,1] TODO: remove (not used) :param nlenses_radii: the radii in cm of each type of lens. Default: nlenses_radii = [500e-4,1000e-4,1500e-4] :param lens_diameter: the physical diameter (acceptance) in cm of the lenses. If different for each type of lens, consider the smaller one. Default: lens_diameter=0.05 :param sigmaz: the sigma (standard deviation) of the source in cm :param alpha: an adjustable parameter in [0,1](see doc). Default: 0.55 (it is 0.76 for pure Gaussian beams) :param tf_p: the distance source-transfocator in cm :param tf_q: the distance transfocator-image in cm :return: a list with parameters (image_siza, lens_focal_distance, focal_position from transfocator center, divergence of beam after the transfocator) """ deltas = [(1.0 - xraylib.Refractive_Index_Re(symbol[i],photon_energy_ev*1e-3,density[i])) \ for i in range(len(symbol))] focal_f = _transfocator_calculate_focal_distance( deltas=deltas,\ nlenses=nlenses_target,radii=nlenses_radii) focal_q = 1.0 / (1.0/focal_f - 1.0/tf_p) div_q = alpha * lens_diameter / focal_q #corrections source_demagnified = 2.35*sigmaz*focal_q/tf_p if source_demagnified > lens_diameter: source_demagnified = lens_diameter s_target = numpy.sqrt( (div_q*(tf_q-focal_q))**2 + (source_demagnified)**2 ) return (s_target,focal_f,focal_q,div_q) def transfocator_nlenses_to_slots(nlenses,nlenses_max=None): """ converts the transfocator configuration from a list of the number of lenses of each type, into a list of active (1) or inactive (0) actuators for the slots. :param nlenses: the list with number of lenses (e.g., [5,2,0] :param nlenses_max: the maximum number of lenses of each type, usually powers of two minus one. E.g. [15,3,1] :return: a list of on (1) and off (0) slots, e.g., [1, 0, 1, 0, 0, 1, 0] (first type: 1*1+0*2+1*4+0*8=5, second type: 0*1+1*2=2, third type: 0*1=0) """ if nlenses_max == None: nlenses_max = nlenses ss = [] for i,iopt in enumerate(nlenses): if iopt > nlenses_max[i]: print("Error: i:%d, nlenses: %d, nlenses_max: %d"%(i,iopt,nlenses_max[i])) ncharacters = len("{0:b}".format(nlenses_max[i])) si = list( ("{0:0%db}"%(ncharacters)).format(int(iopt)) ) si.reverse() ss += si on_off = [int(i) for i in ss] #print("transfocator_nlenses_to_slots: nlenses_max: ",nlenses_max," nlenses: ",nlenses," slots: ",on_off) return on_off def _transfocator_calculate_focal_distance(deltas=[0.999998],nlenses=[1],radii=[500e-4]): inverse_focal_distance = 0.0 for i,nlensesi in enumerate(nlenses): if nlensesi > 0: focal_distance_i = radii[i] / (2.*nlensesi*deltas[i]) inverse_focal_distance += 1.0/focal_distance_i if inverse_focal_distance == 0: return 99999999999999999999999999. else: return 1.0/inverse_focal_distance def _tansfocator_guess_focal_position( s_target, p=5960., q=3800.0, sigmaz=6.46e-4, \ alpha=0.66, lens_diameter=0.05, method=2): x = 1e15 if method == 1: # simple sum AA = 2.35*sigmaz/p BB = -(s_target + alpha * lens_diameter) CC = alpha*lens_diameter*q cc = numpy.roots([AA,BB,CC]) x = cc[1] return x if method == 2: # sum in quadrature AA = ( (2.35*sigmaz)**2)/(p**2) BB = 0.0 CC = alpha**2 * lens_diameter**2 - s_target**2 DD = - 2.0 * alpha**2 * lens_diameter**2 * q EE = alpha**2 * lens_diameter**2 * q**2 cc = numpy.roots([AA,BB,CC,DD,EE]) for i,cci in enumerate(cc): if numpy.imag(cci) == 0: return numpy.real(cci) return x def _transfocator_guess_configuration(focal_f_target,deltas=[0.999998],nlenses_max=[15],radii=[500e-4]): nn = len(nlenses_max) ncombinations = (1+nlenses_max[0]) * (1+nlenses_max[1]) * (1+nlenses_max[2]) icombinations = 0 aa = numpy.zeros((3,ncombinations),dtype=int) bb = numpy.zeros(ncombinations) for i0 in range(1+nlenses_max[0]): for i1 in range(1+nlenses_max[1]): for i2 in range(1+nlenses_max[2]): aa[0,icombinations] = i0 aa[1,icombinations] = i1 aa[2,icombinations] = i2 bb[icombinations] = focal_f_target - _transfocator_calculate_focal_distance(deltas=deltas,nlenses=[i0,i1,i2],radii=radii) icombinations += 1 bb1 = numpy.abs(bb) ibest = bb1.argmin() return (aa[:,ibest]).tolist() # # # def id30b_ray_tracing(emittH=4e-9,emittV=1e-11,betaH=35.6,betaV=3.0,number_of_rays=50000,\ density=1.845,symbol="Be",tf_p=1000.0,tf_q=1000.0,lens_diameter=0.05,\ slots_max=None,slots_on_off=None,photon_energy_ev=14000.0,\ slots_lens_thickness=None,slots_steps=None,slots_radii=None,\ s_target=10e-4,focal_f=10.0,focal_q=10.0,div_q=1e-6): #======================================================================================================================= # Gaussian undulator source #======================================================================================================================= import Shadow #import Shadow.ShadowPreprocessorsXraylib as sx sigmaXp = numpy.sqrt(emittH/betaH) sigmaZp = numpy.sqrt(emittV/betaV) sigmaX = emittH/sigmaXp sigmaZ = emittV/sigmaZp print("\n\nElectron sizes H:%f um, V:%fu m;\nelectron divergences: H:%f urad, V:%f urad"%\ (sigmaX*1e6, sigmaZ*1e6, sigmaXp*1e6, sigmaZp*1e6)) # set Gaussian source src = Shadow.Source() src.set_energy_monochromatic(photon_energy_ev) src.set_gauss(sigmaX*1e2,sigmaZ*1e2,sigmaXp,sigmaZp) print("\n\nElectron sizes stored H:%f um, V:%f um;\nelectron divergences: H:%f urad, V:%f urad"%\ (src.SIGMAX*1e4,src.SIGMAZ*1e4,src.SIGDIX*1e6,src.SIGDIZ*1e6)) src.apply_gaussian_undulator(undulator_length_in_m=2.8, user_unit_to_m=1e-2, verbose=1) print("\n\nElectron sizes stored (undulator) H:%f um, V:%f um;\nelectron divergences: H:%f urad, V:%f urad"%\ (src.SIGMAX*1e4,src.SIGMAZ*1e4,src.SIGDIX*1e6,src.SIGDIZ*1e6)) print("\n\nSource size in vertical FWHM: %f um\n"%\ (2.35*src.SIGMAZ*1e4)) src.NPOINT = number_of_rays src.ISTAR1 = 0 # 677543155 src.write("start.00") # create source beam = Shadow.Beam() beam.genSource(src) beam.write("begin.dat") src.write("end.00") #======================================================================================================================= # complete the (detailed) transfocator description #======================================================================================================================= print("\nSetting detailed Transfocator for ID30B") slots_nlenses = numpy.array(slots_max)*numpy.array(slots_on_off) slots_empty = (numpy.array(slots_max)-slots_nlenses) # ####interactive=True, SYMBOL="SiC",DENSITY=3.217,FILE="prerefl.dat",E_MIN=100.0,E_MAX=20000.0,E_STEP=100.0 Shadow.ShadowPreprocessorsXraylib.prerefl(interactive=False,E_MIN=2000.0,E_MAX=55000.0,E_STEP=100.0,\ DENSITY=density,SYMBOL=symbol,FILE="Be2_55.dat" ) nslots = len(slots_max) prerefl_file = ["Be2_55.dat" for i in range(nslots)] print("slots_max: ",slots_max) #print("slots_target: ",slots_target) print("slots_on_off: ",slots_on_off) print("slots_steps: ",slots_steps) print("slots_radii: ",slots_radii) print("slots_nlenses: ",slots_nlenses) print("slots_empty: ",slots_empty) #calculate distances, nlenses and slots_empty # these are distances p and q with TF length removed tf_length = numpy.array(slots_steps).sum() #tf length in cm tf_fs_before = tf_p - 0.5*tf_length #distance from source to center of transfocator tf_fs_after = tf_q - 0.5*tf_length # distance from center of transfocator to image # for each slot, these are the empty distances before and after the lenses tf_p0 = numpy.zeros(nslots) tf_q0 = numpy.array(slots_steps) - (numpy.array(slots_max) * slots_lens_thickness) # add now the p q distances tf_p0[0] += tf_fs_before tf_q0[-1] += tf_fs_after print("tf_p0: ",tf_p0) print("tf_q0: ",tf_q0) print("tf_length: %f cm"%(tf_length)) # build transfocator tf = Shadow.CompoundOE(name='TF ID30B') tf.append_transfocator(tf_p0.tolist(), tf_q0.tolist(), \ nlenses=slots_nlenses.tolist(), radius=slots_radii, slots_empty=slots_empty.tolist(),\ thickness=slots_lens_thickness, prerefl_file=prerefl_file,\ surface_shape=4, convex_to_the_beam=0, diameter=lens_diameter,\ cylinder_angle=0.0,interthickness=50e-4,use_ccc=0) itmp = input("SHADOW Source complete. Do you want to run SHADOR trace? [1=Yes,0=No]: ") if str(itmp) != "1": return #trace system tf.dump_systemfile() beam.traceCompoundOE(tf,write_start_files=0,write_end_files=0,write_star_files=0, write_mirr_files=0) #write only last result file beam.write("star_tf.dat") print("\nFile written to disk: star_tf.dat") # # #ideal calculations # print("\n\n\n") print("=============================================== TRANSFOCATOR OUTPUTS ==========================================") print("\nTHEORETICAL results: ") print("REMIND-----With these lenses we obtained (analytically): ") print("REMIND----- focal_f: %f cm"%(focal_f)) print("REMIND----- focal_q: %f cm"%(focal_q)) print("REMIND----- s_target: %f um"%(s_target*1e4)) demagnification_factor = tf_p/focal_q theoretical_focal_size = src.SIGMAZ*2.35/demagnification_factor # analyze shadow results print("\nSHADOW results: ") st1 = beam.get_standard_deviation(3,ref=0) st2 = beam.get_standard_deviation(3,ref=1) print(" stDev*2.35: unweighted: %f um, weighted: %f um "%(st1*2.35*1e4,st2*2.35*1e4)) tk = beam.histo1(3, nbins=75, ref=1, nolost=1, write="HISTO1") print(" Histogram FWHM: %f um "%(1e4*tk["fwhm"])) print(" Transmitted intensity: %f (source was: %d) (transmission is %f %%) "%(beam.intensity(nolost=1), src.NPOINT, beam.intensity(nolost=1)/src.NPOINT*100)) #scan around image xx1 = numpy.linspace(0.0,1.1*tf_fs_after,11) # position from TF exit plane #xx0 = focal_q - tf_length*0.5 xx0 = focal_q - tf_length*0.5 # position of focus from TF exit plane xx2 = numpy.linspace(xx0-100.0,xx0+100,21) # position from TF exit plane xx3 = numpy.array([tf_fs_after]) xx = numpy.concatenate(([-0.5*tf_length],xx1,xx2,[tf_fs_after])) xx.sort() f = open("id30b.spec","w") f.write("#F id30b.spec\n") f.write("\n#S 1 calculations for id30b transfocator\n") f.write("#N 8\n") labels = " %18s %18s %18s %18s %18s %18s %18s %18s"%\ ("pos from source","pos from image","[pos from TF]", "pos from TF center", "pos from focus",\ "fwhm shadow(stdev)","fwhm shadow(histo)","fwhm theoretical") f.write("#L "+labels+"\n") out = numpy.zeros((8,xx.size)) for i,pos in enumerate(xx): beam2 = beam.duplicate() beam2.retrace(-tf_fs_after+pos) fwhm1 = 2.35*1e4*beam2.get_standard_deviation(3,ref=1,nolost=1) tk = beam2.histo1(3, nbins=75, ref=1, nolost=1) fwhm2 = 1e4*tk["fwhm"] #fwhm_th = 1e4*transfocator_calculate_estimated_size(pos,diameter=diameter,focal_distance=focal_q) fwhm_th2 = 1e4*numpy.sqrt( (div_q*(pos+0.5*tf_length-focal_q))**2 + theoretical_focal_size**2 ) #fwhm_th2 = 1e4*( numpy.abs(div_q*(pos-focal_q+0.5*tf_length)) + theoretical_focal_size ) out[0,i] = tf_fs_before+tf_length+pos out[1,i] = -tf_fs_after+pos out[2,i] = pos out[3,i] = pos+0.5*tf_length out[4,i] = pos+0.5*tf_length-focal_q out[5,i] = fwhm1 out[6,i] = fwhm2 out[7,i] = fwhm_th2 f.write(" %18.3f %18.3f %18.3f %18.3f %18.3f %18.3f %18.3f %18.3f \n"%\ (tf_fs_before+tf_length+pos,\ -tf_fs_after+pos,\ pos,\ pos+0.5*tf_length,\ pos+0.5*tf_length-focal_q,\ fwhm1,fwhm2,fwhm_th2)) f.close() print("File with beam evolution written to disk: id30b.spec") # # plots # itmp = input("Do you want to plot the intensity distribution and beam evolution? [1=yes,0=No]") if str(itmp) != "1": return import matplotlib.pylab as plt plt.figure(1) plt.plot(out[1,:],out[5,:],'blue',label="fwhm shadow(stdev)") plt.plot(out[1,:],out[6,:],'green',label="fwhm shadow(histo1)") plt.plot(out[1,:],out[7,:],'red',label="fwhm theoretical") plt.xlabel("Distance from image plane [cm]") plt.ylabel("spot size [um] ") ax = plt.subplot(111) ax.legend(bbox_to_anchor=(1.1, 1.05)) print("Kill graphic to continue.") plt.show() Shadow.ShadowTools.histo1(beam,3,nbins=75,ref=1,nolost=1,calfwhm=1) input("<Enter> to finish.") return None def id30b_full_simulation(photon_energy_ev=14000.0,s_target=20.0e-4,nlenses_target=None): if nlenses_target == None: force_nlenses = 0 else: force_nlenses = 1 # # define lens setup (general) # xrl_symbol = ["Be","Be","Be"] xrl_density = [1.845,1.845,1.845] lens_diameter = 0.05 nlenses_max = [15,3,1] nlenses_radii = [500e-4,1000e-4,1500e-4] sigmaz=6.46e-4 alpha = 0.55 tf_p = 5960 # position of the TF measured from the center of the transfocator tf_q = 9760 - tf_p # position of the image plane measured from the center of the transfocator if s_target < 2.35*sigmaz*tf_q/tf_p: print("Source size FWHM is: %f um"%(1e4*2.35*sigmaz)) print("Maximum Demagnifications is: %f um"%(tf_p/tf_q)) print("Minimum possible size is: %f um"%(1e4*2.35*sigmaz*tf_q/tf_p)) print("Error: redefine size") return print("================================== TRANSFOCATOR INPUTS ") print("Photon energy: %f eV"%(photon_energy_ev)) if force_nlenses: print("Forced_nlenses: ",nlenses_target) else: print("target size: %f cm"%(s_target)) print("materials: ",xrl_symbol) print("densities: ",xrl_density) print("Lens diameter: %f cm"%(lens_diameter)) print("nlenses_max:",nlenses_max,"nlenses_radii: ",nlenses_radii) print("Source size (sigma): %f um, FWHM: %f um"%(1e4*sigmaz,2.35*1e4*sigmaz)) print("Distances: tf_p: %f cm, tf_q: %f cm"%(tf_p,tf_q)) print("alpha: %f"%(alpha)) print("========================================================") if force_nlenses != 1: nlenses_target = transfocator_compute_configuration(photon_energy_ev,s_target,\ symbol=xrl_symbol,density=xrl_density,\ nlenses_max=nlenses_max, nlenses_radii=nlenses_radii, lens_diameter=lens_diameter, \ sigmaz=sigmaz, alpha=alpha, \ tf_p=tf_p,tf_q=tf_q, verbose=1) (s_target,focal_f,focal_q,div_q) = \ transfocator_compute_parameters(photon_energy_ev, nlenses_target,\ symbol=xrl_symbol,density=xrl_density,\ nlenses_max=nlenses_max, nlenses_radii=nlenses_radii, \ lens_diameter=lens_diameter,\ sigmaz=sigmaz, alpha=alpha,\ tf_p=tf_p,tf_q=tf_q) slots_max = [ 1, 2, 4, 8, 1, 2, 1] # slots slots_on_off = transfocator_nlenses_to_slots(nlenses_target,nlenses_max=nlenses_max) print("=============================== TRANSFOCATOR SET") #print("deltas: ",deltas) if force_nlenses != 1: print("nlenses_target (optimized): ",nlenses_target) else: print("nlenses_target (forced): ",nlenses_target) print("With these lenses we obtain: ") print(" focal_f: %f cm"%(focal_f)) print(" focal_q: %f cm"%(focal_q)) print(" s_target: %f um"%(s_target*1e4)) print(" slots_max: ",slots_max) print(" slots_on_off: ",slots_on_off) print("==================================================") # for theoretical calculations use the focal position and distances given by the target nlenses itmp = input("Start SHADOW simulation? [1=yes,0=No]: ") if str(itmp) != "1": return #======================================================================================================================= # Inputs #======================================================================================================================= emittH = 3.9e-9 emittV = 10e-12 betaH = 35.6 betaV = 3.0 number_of_rays = 50000 nslots = len(slots_max) slots_lens_thickness = [0.3 for i in range(nslots)] #total thickness of a single lens in cm # for each slot, positional gap of the first lens in cm slots_steps = [ 4, 4, 1.9, 6.1, 4, 4, slots_lens_thickness[-1]] slots_radii = [.05, .05, .05, .05, 0.1, 0.1, 0.15] # radii of the lenses in cm AAA= 333 id30b_ray_tracing(emittH=emittH,emittV=emittV,betaH=betaH,betaV=betaV,number_of_rays=number_of_rays,\ density=xrl_density[0],symbol=xrl_symbol[0],tf_p=tf_p,tf_q=tf_q,lens_diameter=lens_diameter,\ slots_max=slots_max,slots_on_off=slots_on_off,photon_energy_ev=photon_energy_ev,\ slots_lens_thickness=slots_lens_thickness,slots_steps=slots_steps,slots_radii=slots_radii,\ s_target=s_target,focal_f=focal_f,focal_q=focal_q,div_q=div_q) def main(): # this performs the full simulation: calculates the optimum configuration and do the ray-tracing itmp = input("Enter: \n 0 = optimization calculation only \n 1 = full simulation (ray tracing) \n?> ") photon_energy_kev = float(input("Enter photon energy in keV: ")) s_target_um = float(input("Enter target focal dimension in microns: ")) if str(itmp) == "1": id30b_full_simulation(photon_energy_ev=photon_energy_kev*1e3,s_target=s_target_um*1e-4,nlenses_target=None) #id30b_full_simulation(photon_energy_ev=14000.0,s_target=20.0e-4,nlenses_target=[3,1,1]) else: #this performs the calculation of the optimizad configuration nlenses_optimum = transfocator_compute_configuration(photon_energy_kev*1e3,s_target_um*1e-4,\ symbol=["Be","Be","Be"], density=[1.845,1.845,1.845],\ nlenses_max = [15,3,1], nlenses_radii = [500e-4,1000e-4,1500e-4], lens_diameter=0.05, \ sigmaz=6.46e-4, alpha = 0.55, \ tf_p=5960, tf_q=3800, verbose=0 ) print("Optimum lens configuration is: ",nlenses_optimum) if nlenses_optimum == None: return print("Activate slots: ",transfocator_nlenses_to_slots(nlenses_optimum,nlenses_max=[15,3,1])) # this calculates the parameters (image size, etc) for a given lens configuration (size, f, q_f, div) = transfocator_compute_parameters(photon_energy_kev*1e3, nlenses_optimum,\ symbol=["Be","Be","Be"], density=[1.845,1.845,1.845],\ nlenses_max = [15,3,1], nlenses_radii = [500e-4,1000e-4,1500e-4], lens_diameter=0.05, \ sigmaz=6.46e-4, alpha = 0.55, \ tf_p=5960, tf_q=3800 ) print("For given configuration ",nlenses_optimum," we get: ") print(" size: %f cm, focal length: %f cm, focal distance: %f cm, divergence: %f rad: "%(size, f, q_f, div)) if __name__ == "__main__": main()
mit
RAJSD2610/SDNopenflowSwitchAnalysis
TotalFlowPlot.py
1
2742
import os import pandas as pd import matplotlib.pyplot as plt import seaborn seaborn.set() path= os.path.expanduser("~/Desktop/ece671/udpt8") num_files = len([f for f in os.listdir(path)if os.path.isfile(os.path.join(path, f))]) print(num_files) u8=[] i=0 def file_len(fname): with open(fname) as f: for i, l in enumerate(f): pass return i + 1 while i<(num_files/2) : # df+=[] j=i+1 path ="/home/vetri/Desktop/ece671/udpt8/ftotal."+str(j)+".csv" y = file_len(path) # except: pass #df.append(pd.read_csv(path,header=None)) # a+=[] #y=len(df[i].index)-1 #1 row added by default so that table has a entry if y<0: y=0 u8.append(y) i+=1 print(u8) path= os.path.expanduser("~/Desktop/ece671/udpnone") num_files = len([f for f in os.listdir(path)if os.path.isfile(os.path.join(path, f))]) print(num_files) i=0 j=0 u=[] while i<(num_files/2): j=i+1 path ="/home/vetri/Desktop/ece671/udpnone/ftotal."+str(j)+".csv" y = file_len(path) # except: pass #df.append(pd.read_csv(path,header=None)) # a+=[] #y=len(df[i].index)-1 #1 row added by default so that table has a entry if y<0: y=0 u.append(y) i+=1 print(u) path= os.path.expanduser("~/Desktop/ece671/tcpnone") num_files = len([f for f in os.listdir(path)if os.path.isfile(os.path.join(path, f))]) print(num_files) i=0 j=0 t=[] while i<(num_files/2): j=i+1 path ="/home/vetri/Desktop/ece671/tcpnone/ftotal."+str(j)+".csv" y = file_len(path) # except: pass #df.append(pd.read_csv(path,header=None)) # a+=[] #y=len(df[i].index)-1 #1 row added by default so that table has a entry if y<0: y=0 t.append(y) i+=1 print(t) path= os.path.expanduser("~/Desktop/ece671/tcpt8") num_files = len([f for f in os.listdir(path)if os.path.isfile(os.path.join(path, f))]) print(num_files) i=0 j=0 t8=[] while i<(num_files/2): j=i+1 path ="/home/vetri/Desktop/ece671/tcpt8/ftotal."+str(j)+".csv" y = file_len(path) # except: pass #df.append(pd.read_csv(path,header=None)) # a+=[] #y=len(df[i].index)-1 #1 row added by default so that table has a entry if y<0: y=0 t8.append(y) i+=1 print(t8) #plt.figure(figsize=(4, 5)) plt.plot(list(range(1,len(u8)+1)),u8, '.-',label="udpt8") plt.plot(list(range(1,len(u)+1)),u, '.-',label="udpnone") plt.plot(list(range(1,len(t)+1)),t, '.-',label="tcpnone") plt.plot(list(range(1,len(t8)+1)),t8, '.-',label="tcpt8") plt.title("Total Flows Present after 1st flow") plt.xlabel("time(s)") plt.ylabel("flows") #plt.frameon=True plt.legend() plt.show()
gpl-3.0
Mazecreator/tensorflow
tensorflow/contrib/learn/python/learn/learn_io/__init__.py
79
2464
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tools to allow different io formats.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.learn.python.learn.learn_io.dask_io import extract_dask_data from tensorflow.contrib.learn.python.learn.learn_io.dask_io import extract_dask_labels from tensorflow.contrib.learn.python.learn.learn_io.dask_io import HAS_DASK from tensorflow.contrib.learn.python.learn.learn_io.graph_io import queue_parsed_features from tensorflow.contrib.learn.python.learn.learn_io.graph_io import read_batch_examples from tensorflow.contrib.learn.python.learn.learn_io.graph_io import read_batch_features from tensorflow.contrib.learn.python.learn.learn_io.graph_io import read_batch_record_features from tensorflow.contrib.learn.python.learn.learn_io.graph_io import read_keyed_batch_examples from tensorflow.contrib.learn.python.learn.learn_io.graph_io import read_keyed_batch_examples_shared_queue from tensorflow.contrib.learn.python.learn.learn_io.graph_io import read_keyed_batch_features from tensorflow.contrib.learn.python.learn.learn_io.graph_io import read_keyed_batch_features_shared_queue from tensorflow.contrib.learn.python.learn.learn_io.numpy_io import numpy_input_fn from tensorflow.contrib.learn.python.learn.learn_io.pandas_io import extract_pandas_data from tensorflow.contrib.learn.python.learn.learn_io.pandas_io import extract_pandas_labels from tensorflow.contrib.learn.python.learn.learn_io.pandas_io import extract_pandas_matrix from tensorflow.contrib.learn.python.learn.learn_io.pandas_io import HAS_PANDAS from tensorflow.contrib.learn.python.learn.learn_io.pandas_io import pandas_input_fn from tensorflow.contrib.learn.python.learn.learn_io.generator_io import generator_input_fn
apache-2.0
liangz0707/scikit-learn
benchmarks/bench_sparsify.py
323
3372
""" Benchmark SGD prediction time with dense/sparse coefficients. Invoke with ----------- $ kernprof.py -l sparsity_benchmark.py $ python -m line_profiler sparsity_benchmark.py.lprof Typical output -------------- input data sparsity: 0.050000 true coef sparsity: 0.000100 test data sparsity: 0.027400 model sparsity: 0.000024 r^2 on test data (dense model) : 0.233651 r^2 on test data (sparse model) : 0.233651 Wrote profile results to sparsity_benchmark.py.lprof Timer unit: 1e-06 s File: sparsity_benchmark.py Function: benchmark_dense_predict at line 51 Total time: 0.532979 s Line # Hits Time Per Hit % Time Line Contents ============================================================== 51 @profile 52 def benchmark_dense_predict(): 53 301 640 2.1 0.1 for _ in range(300): 54 300 532339 1774.5 99.9 clf.predict(X_test) File: sparsity_benchmark.py Function: benchmark_sparse_predict at line 56 Total time: 0.39274 s Line # Hits Time Per Hit % Time Line Contents ============================================================== 56 @profile 57 def benchmark_sparse_predict(): 58 1 10854 10854.0 2.8 X_test_sparse = csr_matrix(X_test) 59 301 477 1.6 0.1 for _ in range(300): 60 300 381409 1271.4 97.1 clf.predict(X_test_sparse) """ from scipy.sparse.csr import csr_matrix import numpy as np from sklearn.linear_model.stochastic_gradient import SGDRegressor from sklearn.metrics import r2_score np.random.seed(42) def sparsity_ratio(X): return np.count_nonzero(X) / float(n_samples * n_features) n_samples, n_features = 5000, 300 X = np.random.randn(n_samples, n_features) inds = np.arange(n_samples) np.random.shuffle(inds) X[inds[int(n_features / 1.2):]] = 0 # sparsify input print("input data sparsity: %f" % sparsity_ratio(X)) coef = 3 * np.random.randn(n_features) inds = np.arange(n_features) np.random.shuffle(inds) coef[inds[n_features/2:]] = 0 # sparsify coef print("true coef sparsity: %f" % sparsity_ratio(coef)) y = np.dot(X, coef) # add noise y += 0.01 * np.random.normal((n_samples,)) # Split data in train set and test set n_samples = X.shape[0] X_train, y_train = X[:n_samples / 2], y[:n_samples / 2] X_test, y_test = X[n_samples / 2:], y[n_samples / 2:] print("test data sparsity: %f" % sparsity_ratio(X_test)) ############################################################################### clf = SGDRegressor(penalty='l1', alpha=.2, fit_intercept=True, n_iter=2000) clf.fit(X_train, y_train) print("model sparsity: %f" % sparsity_ratio(clf.coef_)) def benchmark_dense_predict(): for _ in range(300): clf.predict(X_test) def benchmark_sparse_predict(): X_test_sparse = csr_matrix(X_test) for _ in range(300): clf.predict(X_test_sparse) def score(y_test, y_pred, case): r2 = r2_score(y_test, y_pred) print("r^2 on test data (%s) : %f" % (case, r2)) score(y_test, clf.predict(X_test), 'dense model') benchmark_dense_predict() clf.sparsify() score(y_test, clf.predict(X_test), 'sparse model') benchmark_sparse_predict()
bsd-3-clause
JackKelly/neuralnilm_prototype
scripts/e307.py
2
6092
from __future__ import print_function, division import matplotlib import logging from sys import stdout matplotlib.use('Agg') # Must be before importing matplotlib.pyplot or pylab! from neuralnilm import (Net, RealApplianceSource, BLSTMLayer, DimshuffleLayer, BidirectionalRecurrentLayer) from neuralnilm.source import standardise, discretize, fdiff, power_and_fdiff from neuralnilm.experiment import run_experiment, init_experiment from neuralnilm.net import TrainingError from neuralnilm.layers import MixtureDensityLayer from neuralnilm.objectives import scaled_cost, mdn_nll, scaled_cost_ignore_inactive, ignore_inactive from neuralnilm.plot import MDNPlotter from lasagne.nonlinearities import sigmoid, rectify, tanh from lasagne.objectives import mse from lasagne.init import Uniform, Normal from lasagne.layers import (LSTMLayer, DenseLayer, Conv1DLayer, ReshapeLayer, FeaturePoolLayer, RecurrentLayer) from lasagne.updates import nesterov_momentum, momentum from functools import partial import os import __main__ from copy import deepcopy from math import sqrt import numpy as np import theano.tensor as T NAME = os.path.splitext(os.path.split(__main__.__file__)[1])[0] PATH = "/homes/dk3810/workspace/python/neuralnilm/figures" SAVE_PLOT_INTERVAL = 250 GRADIENT_STEPS = 100 SEQ_LENGTH = 512 source_dict = dict( filename='/data/dk3810/ukdale.h5', appliances=[ ['fridge freezer', 'fridge', 'freezer'], 'hair straighteners', 'television' # 'dish washer', # ['washer dryer', 'washing machine'] ], max_appliance_powers=[300, 500, 200, 2500, 2400], on_power_thresholds=[5] * 5, max_input_power=5900, min_on_durations=[60, 60, 60, 1800, 1800], min_off_durations=[12, 12, 12, 1800, 600], window=("2013-06-01", "2014-07-01"), seq_length=SEQ_LENGTH, output_one_appliance=False, boolean_targets=False, train_buildings=[1], validation_buildings=[1], skip_probability=0.0, n_seq_per_batch=16, subsample_target=4, include_diff=False, clip_appliance_power=True, target_is_prediction=False, independently_center_inputs = True, standardise_input=True, standardise_targets=True, input_padding=0, lag=0, reshape_target_to_2D=False, input_stats={'mean': np.array([ 0.05526326], dtype=np.float32), 'std': np.array([ 0.12636775], dtype=np.float32)}, target_stats={ 'mean': np.array([ 0.04066789, 0.01881946, 0.24639061, 0.17608672, 0.10273963], dtype=np.float32), 'std': np.array([ 0.11449792, 0.07338708, 0.26608968, 0.33463112, 0.21250485], dtype=np.float32)} ) N = 50 net_dict = dict( save_plot_interval=SAVE_PLOT_INTERVAL, # loss_function=partial(ignore_inactive, loss_func=mdn_nll, seq_length=SEQ_LENGTH), # loss_function=lambda x, t: mdn_nll(x, t).mean(), loss_function=lambda x, t: mse(x, t).mean(), # loss_function=partial(scaled_cost, loss_func=mse), updates_func=momentum, learning_rate=1e-02, learning_rate_changes_by_iteration={ 500: 5e-03 # 4000: 1e-03, # 6000: 5e-06, # 7000: 1e-06 # 2000: 5e-06 # 3000: 1e-05 # 7000: 5e-06, # 10000: 1e-06, # 15000: 5e-07, # 50000: 1e-07 }, do_save_activations=True ) def callback(net, epoch): net.source.reshape_target_to_2D = True net.plotter = MDNPlotter(net) net.generate_validation_data_and_set_shapes() net.loss_function = lambda x, t: mdn_nll(x, t).mean() net.learning_rate.set_value(1e-05) def exp_a(name): # 3 appliances global source source_dict_copy = deepcopy(source_dict) source_dict_copy['reshape_target_to_2D'] = False source = RealApplianceSource(**source_dict_copy) source.reshape_target_to_2D = False net_dict_copy = deepcopy(net_dict) net_dict_copy.update(dict( experiment_name=name, source=source )) N = 50 net_dict_copy['layers_config'] = [ { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1.), 'nonlinearity': tanh }, { 'type': FeaturePoolLayer, 'ds': 4, # number of feature maps to be pooled together 'axis': 1, # pool over the time axis 'pool_function': T.max }, { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(N)), 'nonlinearity': tanh }, { 'type': DenseLayer, 'W': Normal(std=1/sqrt(N)), 'num_units': source.n_outputs, 'nonlinearity': None } ] net_dict_copy['layer_changes'] = { 1001: { 'remove_from': -2, 'callback': callback, 'new_layers': [ { 'type': MixtureDensityLayer, 'num_units': source.n_outputs, 'num_components': 2 } ] } } net = Net(**net_dict_copy) return net def main(): # EXPERIMENTS = list('abcdefghijklmnopqrstuvwxyz') EXPERIMENTS = list('a') for experiment in EXPERIMENTS: full_exp_name = NAME + experiment func_call = init_experiment(PATH, experiment, full_exp_name) logger = logging.getLogger(full_exp_name) try: net = eval(func_call) run_experiment(net, epochs=None) except KeyboardInterrupt: logger.info("KeyboardInterrupt") break except Exception as exception: logger.exception("Exception") raise finally: logging.shutdown() if __name__ == "__main__": main()
mit
ARudiuk/mne-python
examples/inverse/plot_label_from_stc.py
31
3963
""" ================================================= Generate a functional label from source estimates ================================================= Threshold source estimates and produce a functional label. The label is typically the region of interest that contains high values. Here we compare the average time course in the anatomical label obtained by FreeSurfer segmentation and the average time course from the functional label. As expected the time course in the functional label yields higher values. """ # Author: Luke Bloy <luke.bloy@gmail.com> # Alex Gramfort <alexandre.gramfort@telecom-paristech.fr> # License: BSD (3-clause) import numpy as np import matplotlib.pyplot as plt import mne from mne.minimum_norm import read_inverse_operator, apply_inverse from mne.datasets import sample print(__doc__) data_path = sample.data_path() subjects_dir = data_path + '/subjects' fname_inv = data_path + '/MEG/sample/sample_audvis-meg-oct-6-meg-inv.fif' fname_evoked = data_path + '/MEG/sample/sample_audvis-ave.fif' subjects_dir = data_path + '/subjects' subject = 'sample' snr = 3.0 lambda2 = 1.0 / snr ** 2 method = "dSPM" # use dSPM method (could also be MNE or sLORETA) # Compute a label/ROI based on the peak power between 80 and 120 ms. # The label bankssts-lh is used for the comparison. aparc_label_name = 'bankssts-lh' tmin, tmax = 0.080, 0.120 # Load data evoked = mne.read_evokeds(fname_evoked, condition=0, baseline=(None, 0)) inverse_operator = read_inverse_operator(fname_inv) src = inverse_operator['src'] # get the source space # Compute inverse solution stc = apply_inverse(evoked, inverse_operator, lambda2, method, pick_ori='normal') # Make an STC in the time interval of interest and take the mean stc_mean = stc.copy().crop(tmin, tmax).mean() # use the stc_mean to generate a functional label # region growing is halted at 60% of the peak value within the # anatomical label / ROI specified by aparc_label_name label = mne.read_labels_from_annot(subject, parc='aparc', subjects_dir=subjects_dir, regexp=aparc_label_name)[0] stc_mean_label = stc_mean.in_label(label) data = np.abs(stc_mean_label.data) stc_mean_label.data[data < 0.6 * np.max(data)] = 0. func_labels, _ = mne.stc_to_label(stc_mean_label, src=src, smooth=True, subjects_dir=subjects_dir, connected=True) # take first as func_labels are ordered based on maximum values in stc func_label = func_labels[0] # load the anatomical ROI for comparison anat_label = mne.read_labels_from_annot(subject, parc='aparc', subjects_dir=subjects_dir, regexp=aparc_label_name)[0] # extract the anatomical time course for each label stc_anat_label = stc.in_label(anat_label) pca_anat = stc.extract_label_time_course(anat_label, src, mode='pca_flip')[0] stc_func_label = stc.in_label(func_label) pca_func = stc.extract_label_time_course(func_label, src, mode='pca_flip')[0] # flip the pca so that the max power between tmin and tmax is positive pca_anat *= np.sign(pca_anat[np.argmax(np.abs(pca_anat))]) pca_func *= np.sign(pca_func[np.argmax(np.abs(pca_anat))]) ############################################################################### # plot the time courses.... plt.figure() plt.plot(1e3 * stc_anat_label.times, pca_anat, 'k', label='Anatomical %s' % aparc_label_name) plt.plot(1e3 * stc_func_label.times, pca_func, 'b', label='Functional %s' % aparc_label_name) plt.legend() plt.show() ############################################################################### # plot brain in 3D with PySurfer if available brain = stc_mean.plot(hemi='lh', subjects_dir=subjects_dir) brain.show_view('lateral') # show both labels brain.add_label(anat_label, borders=True, color='k') brain.add_label(func_label, borders=True, color='b')
bsd-3-clause
SU-ECE-17-7/hotspotter
hsviz/draw_func2.py
1
54605
''' Lots of functions for drawing and plotting visiony things ''' # TODO: New naming scheme # viz_<func_name> will clear everything. The current axes and fig: clf, cla. # Will add annotations # interact_<func_name> will clear everything and start user interactions. # show_<func_name> will always clear the current axes, but not fig: cla # Might # add annotates? # plot_<func_name> will not clear the axes or figure. More useful for graphs # draw_<func_name> same as plot for now. More useful for images from __future__ import division, print_function from hscom import __common__ (print, print_, print_on, print_off, rrr, profile, printDBG) = __common__.init(__name__, '[df2]', DEBUG=False, initmpl=True) # Python from itertools import izip from os.path import splitext, split, join, normpath, exists import colorsys import itertools import pylab import sys import textwrap import time import warnings # Matplotlib / Qt import matplotlib import matplotlib as mpl # NOQA from matplotlib.collections import PatchCollection, LineCollection from matplotlib.font_manager import FontProperties from matplotlib.patches import Rectangle, Circle, FancyArrow from matplotlib.transforms import Affine2D from matplotlib.backends import backend_qt4 import matplotlib.pyplot as plt # Qt from PyQt4 import QtCore, QtGui from PyQt4.QtCore import Qt # Scientific import numpy as np import scipy.stats import cv2 # HotSpotter from hscom import helpers from hscom import tools from hscom.Printable import DynStruct #================ # GLOBALS #================ TMP_mevent = None QT4_WINS = [] plotWidget = None # GENERAL FONTS SMALLER = 8 SMALL = 10 MED = 12 LARGE = 14 #fpargs = dict(family=None, style=None, variant=None, stretch=None, fname=None) FONTS = DynStruct() FONTS.small = FontProperties(weight='light', size=SMALL) FONTS.smaller = FontProperties(weight='light', size=SMALLER) FONTS.med = FontProperties(weight='light', size=MED) FONTS.large = FontProperties(weight='light', size=LARGE) FONTS.medbold = FontProperties(weight='bold', size=MED) FONTS.largebold = FontProperties(weight='bold', size=LARGE) # SPECIFIC FONTS FONTS.legend = FONTS.small FONTS.figtitle = FONTS.med FONTS.axtitle = FONTS.med FONTS.subtitle = FONTS.med FONTS.xlabel = FONTS.smaller FONTS.ylabel = FONTS.small FONTS.relative = FONTS.smaller # COLORS ORANGE = np.array((255, 127, 0, 255)) / 255.0 RED = np.array((255, 0, 0, 255)) / 255.0 GREEN = np.array(( 0, 255, 0, 255)) / 255.0 BLUE = np.array(( 0, 0, 255, 255)) / 255.0 YELLOW = np.array((255, 255, 0, 255)) / 255.0 BLACK = np.array(( 0, 0, 0, 255)) / 255.0 WHITE = np.array((255, 255, 255, 255)) / 255.0 GRAY = np.array((127, 127, 127, 255)) / 255.0 DEEP_PINK = np.array((255, 20, 147, 255)) / 255.0 PINK = np.array((255, 100, 100, 255)) / 255.0 FALSE_RED = np.array((255, 51, 0, 255)) / 255.0 TRUE_GREEN = np.array(( 0, 255, 0, 255)) / 255.0 DARK_ORANGE = np.array((127, 63, 0, 255)) / 255.0 DARK_YELLOW = np.array((127, 127, 0, 255)) / 255.0 PURPLE = np.array((102, 0, 153, 255)) / 255.0 UNKNOWN_PURP = PURPLE # FIGURE GEOMETRY DPI = 80 #DPI = 160 #FIGSIZE = (24) # default windows fullscreen FIGSIZE_MED = (12, 6) FIGSIZE_SQUARE = (12, 12) FIGSIZE_BIGGER = (24, 12) FIGSIZE_HUGE = (32, 16) FIGSIZE = FIGSIZE_MED # Quality drawings #FIGSIZE = FIGSIZE_SQUARE #DPI = 120 tile_within = (-1, 30, 969, 1041) if helpers.get_computer_name() == 'Ooo': TILE_WITHIN = (-1912, 30, -969, 1071) # DEFAULTS. (TODO: Can these be cleaned up?) DISTINCT_COLORS = True # and False DARKEN = None ELL_LINEWIDTH = 1.5 if DISTINCT_COLORS: ELL_ALPHA = .6 LINE_ALPHA = .35 else: ELL_ALPHA = .4 LINE_ALPHA = .4 LINE_ALPHA_OVERRIDE = helpers.get_arg('--line-alpha-override', type_=float, default=None) ELL_ALPHA_OVERRIDE = helpers.get_arg('--ell-alpha-override', type_=float, default=None) #LINE_ALPHA_OVERRIDE = None #ELL_ALPHA_OVERRIDE = None ELL_COLOR = BLUE LINE_COLOR = RED LINE_WIDTH = 1.4 SHOW_LINES = True # True SHOW_ELLS = True POINT_SIZE = 2 base_fnum = 9001 def next_fnum(): global base_fnum base_fnum += 1 return base_fnum def my_prefs(): global LINE_COLOR global ELL_COLOR global ELL_LINEWIDTH global ELL_ALPHA LINE_COLOR = (1, 0, 0) ELL_COLOR = (0, 0, 1) ELL_LINEWIDTH = 2 ELL_ALPHA = .5 def execstr_global(): execstr = ['global' + key for key in globals().keys()] return execstr def register_matplotlib_widget(plotWidget_): 'talks to PyQt4 guis' global plotWidget plotWidget = plotWidget_ #fig = plotWidget.figure #axes_list = fig.get_axes() #ax = axes_list[0] #plt.sca(ax) def unregister_qt4_win(win): global QT4_WINS if win == 'all': QT4_WINS = [] def register_qt4_win(win): global QT4_WINS QT4_WINS.append(win) def OooScreen2(): nRows = 1 nCols = 1 x_off = 30 * 4 y_off = 30 * 4 x_0 = -1920 y_0 = 30 w = (1912 - x_off) / nRows h = (1080 - y_off) / nCols return dict(num_rc=(1, 1), wh=(w, h), xy_off=(x_0, y_0), wh_off=(0, 10), row_first=True, no_tile=False) def deterministic_shuffle(list_): randS = int(np.random.rand() * np.uint(0 - 2) / 2) np.random.seed(len(list_)) np.random.shuffle(list_) np.random.seed(randS) def distinct_colors(N, brightness=.878): # http://blog.jianhuashao.com/2011/09/generate-n-distinct-colors.html sat = brightness val = brightness HSV_tuples = [(x * 1.0 / N, sat, val) for x in xrange(N)] RGB_tuples = map(lambda x: colorsys.hsv_to_rgb(*x), HSV_tuples) deterministic_shuffle(RGB_tuples) return RGB_tuples def add_alpha(colors): return [list(color) + [1] for color in colors] def _axis_xy_width_height(ax, xaug=0, yaug=0, waug=0, haug=0): 'gets geometry of a subplot' autoAxis = ax.axis() xy = (autoAxis[0] + xaug, autoAxis[2] + yaug) width = (autoAxis[1] - autoAxis[0]) + waug height = (autoAxis[3] - autoAxis[2]) + haug return xy, width, height def draw_border(ax, color=GREEN, lw=2, offset=None): 'draws rectangle border around a subplot' xy, width, height = _axis_xy_width_height(ax, -.7, -.2, 1, .4) if offset is not None: xoff, yoff = offset xy = [xoff, yoff] height = - height - yoff width = width - xoff rect = matplotlib.patches.Rectangle(xy, width, height, lw=lw) rect = ax.add_patch(rect) rect.set_clip_on(False) rect.set_fill(False) rect.set_edgecolor(color) def draw_roi(roi, label=None, bbox_color=(1, 0, 0), lbl_bgcolor=(0, 0, 0), lbl_txtcolor=(1, 1, 1), theta=0, ax=None): if ax is None: ax = gca() (rx, ry, rw, rh) = roi #cos_ = np.cos(theta) #sin_ = np.sin(theta) #rot_t = Affine2D([( cos_, -sin_, 0), #( sin_, cos_, 0), #( 0, 0, 1)]) #scale_t = Affine2D([( rw, 0, 0), #( 0, rh, 0), #( 0, 0, 1)]) #trans_t = Affine2D([( 1, 0, rx + rw / 2), #( 0, 1, ry + rh / 2), #( 0, 0, 1)]) #t_end = scale_t + rot_t + trans_t + t_start # Transformations are specified in backwards order. trans_roi = Affine2D() trans_roi.scale(rw, rh) trans_roi.rotate(theta) trans_roi.translate(rx + rw / 2, ry + rh / 2) t_end = trans_roi + ax.transData bbox = matplotlib.patches.Rectangle((-.5, -.5), 1, 1, lw=2, transform=t_end) arw_x, arw_y, arw_dx, arw_dy = (-0.5, -0.5, 1.0, 0.0) arrowargs = dict(head_width=.1, transform=t_end, length_includes_head=True) arrow = FancyArrow(arw_x, arw_y, arw_dx, arw_dy, **arrowargs) bbox.set_fill(False) #bbox.set_transform(trans) bbox.set_edgecolor(bbox_color) arrow.set_edgecolor(bbox_color) arrow.set_facecolor(bbox_color) ax.add_patch(bbox) ax.add_patch(arrow) #ax.add_patch(arrow2) if label is not None: ax_absolute_text(rx, ry, label, ax=ax, horizontalalignment='center', verticalalignment='center', color=lbl_txtcolor, backgroundcolor=lbl_bgcolor) # ---- GENERAL FIGURE COMMANDS ---- def sanatize_img_fname(fname): fname_clean = fname search_replace_list = [(' ', '_'), ('\n', '--'), ('\\', ''), ('/', '')] for old, new in search_replace_list: fname_clean = fname_clean.replace(old, new) fname_noext, ext = splitext(fname_clean) fname_clean = fname_noext + ext.lower() # Check for correct extensions if not ext.lower() in helpers.IMG_EXTENSIONS: fname_clean += '.png' return fname_clean def sanatize_img_fpath(fpath): [dpath, fname] = split(fpath) fname_clean = sanatize_img_fname(fname) fpath_clean = join(dpath, fname_clean) fpath_clean = normpath(fpath_clean) return fpath_clean def set_geometry(fnum, x, y, w, h): fig = get_fig(fnum) qtwin = fig.canvas.manager.window qtwin.setGeometry(x, y, w, h) def get_geometry(fnum): fig = get_fig(fnum) qtwin = fig.canvas.manager.window (x1, y1, x2, y2) = qtwin.geometry().getCoords() (x, y, w, h) = (x1, y1, x2 - x1, y2 - y1) return (x, y, w, h) def get_screen_info(): from PyQt4 import Qt, QtGui # NOQA desktop = QtGui.QDesktopWidget() mask = desktop.mask() # NOQA layout_direction = desktop.layoutDirection() # NOQA screen_number = desktop.screenNumber() # NOQA normal_geometry = desktop.normalGeometry() # NOQA num_screens = desktop.screenCount() # NOQA avail_rect = desktop.availableGeometry() # NOQA screen_rect = desktop.screenGeometry() # NOQA QtGui.QDesktopWidget().availableGeometry().center() # NOQA normal_geometry = desktop.normalGeometry() # NOQA def get_all_figures(): all_figures_ = [manager.canvas.figure for manager in matplotlib._pylab_helpers.Gcf.get_all_fig_managers()] all_figures = [] # Make sure you dont show figures that this module closed for fig in iter(all_figures_): if not 'df2_closed' in fig.__dict__.keys() or not fig.df2_closed: all_figures.append(fig) # Return all the figures sorted by their number all_figures = sorted(all_figures, key=lambda fig: fig.number) return all_figures def get_all_qt4_wins(): return QT4_WINS def all_figures_show(): if plotWidget is not None: plotWidget.figure.show() plotWidget.figure.canvas.draw() for fig in iter(get_all_figures()): time.sleep(.1) fig.show() fig.canvas.draw() def all_figures_tight_layout(): for fig in iter(get_all_figures()): fig.tight_layout() #adjust_subplots() time.sleep(.1) def get_monitor_geom(monitor_num=0): from PyQt4 import QtGui # NOQA desktop = QtGui.QDesktopWidget() rect = desktop.availableGeometry() geom = (rect.x(), rect.y(), rect.width(), rect.height()) return geom def golden_wh(x): 'returns a width / height with a golden aspect ratio' return map(int, map(round, (x * .618, x * .312))) def all_figures_tile(num_rc=(3, 4), wh=1000, xy_off=(0, 0), wh_off=(0, 10), row_first=True, no_tile=False, override1=False): 'Lays out all figures in a grid. if wh is a scalar, a golden ratio is used' # RCOS TODO: # I want this function to layout all the figures and qt windows within the # bounds of a rectangle. (taken from the get_monitor_geom, or specified by # the user i.e. left half of monitor 0). It should lay them out # rectangularly and choose figure sizes such that all of them will fit. if no_tile: return if not np.iterable(wh): wh = golden_wh(wh) all_figures = get_all_figures() all_qt4wins = get_all_qt4_wins() if override1: if len(all_figures) == 1: fig = all_figures[0] win = fig.canvas.manager.window win.setGeometry(0, 0, 900, 900) update() return #nFigs = len(all_figures) + len(all_qt4_wins) num_rows, num_cols = num_rc w, h = wh x_off, y_off = xy_off w_off, h_off = wh_off x_pad, y_pad = (0, 0) printDBG('[df2] Tile all figures: ') printDBG('[df2] wh = %r' % ((w, h),)) printDBG('[df2] xy_offsets = %r' % ((x_off, y_off),)) printDBG('[df2] wh_offsets = %r' % ((w_off, h_off),)) printDBG('[df2] xy_pads = %r' % ((x_pad, y_pad),)) if sys.platform == 'win32': h_off += 0 w_off += 40 x_off += 40 y_off += 40 x_pad += 0 y_pad += 100 def position_window(i, win): isqt4_mpl = isinstance(win, backend_qt4.MainWindow) isqt4_back = isinstance(win, QtGui.QMainWindow) if not isqt4_mpl and not isqt4_back: raise NotImplementedError('%r-th Backend %r is not a Qt Window' % (i, win)) if row_first: y = (i % num_rows) * (h + h_off) + 40 x = (int(i / num_rows)) * (w + w_off) + x_pad else: x = (i % num_cols) * (w + w_off) + 40 y = (int(i / num_cols)) * (h + h_off) + y_pad x += x_off y += y_off win.setGeometry(x, y, w, h) ioff = 0 for i, win in enumerate(all_qt4wins): position_window(i, win) ioff += 1 for i, fig in enumerate(all_figures): win = fig.canvas.manager.window position_window(i + ioff, win) def all_figures_bring_to_front(): all_figures = get_all_figures() for fig in iter(all_figures): bring_to_front(fig) def close_all_figures(): all_figures = get_all_figures() for fig in iter(all_figures): close_figure(fig) def close_figure(fig): fig.clf() fig.df2_closed = True qtwin = fig.canvas.manager.window qtwin.close() def bring_to_front(fig): #what is difference between show and show normal? qtwin = fig.canvas.manager.window qtwin.raise_() qtwin.activateWindow() qtwin.setWindowFlags(Qt.WindowStaysOnTopHint) qtwin.setWindowFlags(Qt.WindowFlags(0)) qtwin.show() def show(): all_figures_show() all_figures_bring_to_front() plt.show() def reset(): close_all_figures() def draw(): all_figures_show() def update(): draw() all_figures_bring_to_front() def present(*args, **kwargs): 'execing present should cause IPython magic' print('[df2] Presenting figures...') with warnings.catch_warnings(): warnings.simplefilter("ignore") all_figures_tile(*args, **kwargs) all_figures_show() all_figures_bring_to_front() # Return an exec string execstr = helpers.ipython_execstr() execstr += textwrap.dedent(''' if not embedded: print('[df2] Presenting in normal shell.') print('[df2] ... plt.show()') plt.show() ''') return execstr def save_figure(fnum=None, fpath=None, usetitle=False, overwrite=True): #import warnings #warnings.simplefilter("error") # Find the figure if fnum is None: fig = gcf() else: fig = plt.figure(fnum, figsize=FIGSIZE, dpi=DPI) # Enforce inches and DPI fig.set_size_inches(FIGSIZE[0], FIGSIZE[1]) fnum = fig.number if fpath is None: # Find the title fpath = sanatize_img_fname(fig.canvas.get_window_title()) if usetitle: title = sanatize_img_fname(fig.canvas.get_window_title()) fpath = join(fpath, title) # Add in DPI information fpath_noext, ext = splitext(fpath) size_suffix = '_DPI=%r_FIGSIZE=%d,%d' % (DPI, FIGSIZE[0], FIGSIZE[1]) fpath = fpath_noext + size_suffix + ext # Sanatize the filename fpath_clean = sanatize_img_fpath(fpath) #fname_clean = split(fpath_clean)[1] print('[df2] save_figure() %r' % (fpath_clean,)) #adjust_subplots() with warnings.catch_warnings(): warnings.filterwarnings('ignore', category=DeprecationWarning) if not exists(fpath_clean) or overwrite: fig.savefig(fpath_clean, dpi=DPI) def set_ticks(xticks, yticks): ax = gca() ax.set_xticks(xticks) ax.set_yticks(yticks) def set_xticks(tick_set): ax = gca() ax.set_xticks(tick_set) def set_yticks(tick_set): ax = gca() ax.set_yticks(tick_set) def set_xlabel(lbl, ax=None): if ax is None: ax = gca() ax.set_xlabel(lbl, fontproperties=FONTS.xlabel) def set_title(title, ax=None): if ax is None: ax = gca() ax.set_title(title, fontproperties=FONTS.axtitle) def set_ylabel(lbl): ax = gca() ax.set_ylabel(lbl, fontproperties=FONTS.xlabel) def plot(*args, **kwargs): return plt.plot(*args, **kwargs) def plot2(x_data, y_data, marker='o', title_pref='', x_label='x', y_label='y', *args, **kwargs): do_plot = True ax = gca() if len(x_data) != len(y_data): warnstr = '[df2] ! Warning: len(x_data) != len(y_data). Cannot plot2' warnings.warn(warnstr) draw_text(warnstr) do_plot = False if len(x_data) == 0: warnstr = '[df2] ! Warning: len(x_data) == 0. Cannot plot2' warnings.warn(warnstr) draw_text(warnstr) do_plot = False if do_plot: ax.plot(x_data, y_data, marker, *args, **kwargs) min_ = min(x_data.min(), y_data.min()) max_ = max(x_data.max(), y_data.max()) # Equal aspect ratio ax.set_xlim(min_, max_) ax.set_ylim(min_, max_) ax.set_aspect('equal') ax.set_xlabel(x_label, fontproperties=FONTS.xlabel) ax.set_ylabel(y_label, fontproperties=FONTS.xlabel) ax.set_title(title_pref + ' ' + x_label + ' vs ' + y_label, fontproperties=FONTS.axtitle) def adjust_subplots_xlabels(): adjust_subplots(left=.03, right=.97, bottom=.2, top=.9, hspace=.15) def adjust_subplots_xylabels(): adjust_subplots(left=.03, right=1, bottom=.1, top=.9, hspace=.15) def adjust_subplots_safe(left=.1, right=.9, bottom=.1, top=.9, wspace=.3, hspace=.5): adjust_subplots(left, bottom, right, top, wspace, hspace) def adjust_subplots(left=0.02, bottom=0.02, right=0.98, top=0.90, wspace=0.1, hspace=0.15): ''' left = 0.125 # the left side of the subplots of the figure right = 0.9 # the right side of the subplots of the figure bottom = 0.1 # the bottom of the subplots of the figure top = 0.9 # the top of the subplots of the figure wspace = 0.2 # the amount of width reserved for blank space between subplots hspace = 0.2 ''' #print('[df2] adjust_subplots(%r)' % locals()) plt.subplots_adjust(left, bottom, right, top, wspace, hspace) #======================= # TEXT FUNCTIONS # TODO: I have too many of these. Need to consolidate #======================= def upperleft_text(txt): txtargs = dict(horizontalalignment='left', verticalalignment='top', #fontsize='smaller', #fontweight='ultralight', backgroundcolor=(0, 0, 0, .5), color=ORANGE) ax_relative_text(.02, .02, txt, **txtargs) def upperright_text(txt, offset=None): txtargs = dict(horizontalalignment='right', verticalalignment='top', #fontsize='smaller', #fontweight='ultralight', backgroundcolor=(0, 0, 0, .5), color=ORANGE, offset=offset) ax_relative_text(.98, .02, txt, **txtargs) def lowerright_text(txt): txtargs = dict(horizontalalignment='right', verticalalignment='top', #fontsize='smaller', #fontweight='ultralight', backgroundcolor=(0, 0, 0, .5), color=ORANGE) ax_relative_text(.98, .92, txt, **txtargs) def absolute_lbl(x_, y_, txt, roffset=(-.02, -.02), **kwargs): txtargs = dict(horizontalalignment='right', verticalalignment='top', backgroundcolor=(0, 0, 0, .5), color=ORANGE, **kwargs) ax_absolute_text(x_, y_, txt, roffset=roffset, **txtargs) def ax_relative_text(x, y, txt, ax=None, offset=None, **kwargs): if ax is None: ax = gca() xy, width, height = _axis_xy_width_height(ax) x_, y_ = ((xy[0]) + x * width, (xy[1] + height) - y * height) if offset is not None: xoff, yoff = offset x_ += xoff y_ += yoff ax_absolute_text(x_, y_, txt, ax=ax, **kwargs) def ax_absolute_text(x_, y_, txt, ax=None, roffset=None, **kwargs): if ax is None: ax = gca() if 'fontproperties' in kwargs: kwargs['fontproperties'] = FONTS.relative if roffset is not None: xroff, yroff = roffset xy, width, height = _axis_xy_width_height(ax) x_ += xroff * width y_ += yroff * height ax.text(x_, y_, txt, **kwargs) def fig_relative_text(x, y, txt, **kwargs): kwargs['horizontalalignment'] = 'center' kwargs['verticalalignment'] = 'center' fig = gcf() #xy, width, height = _axis_xy_width_height(ax) #x_, y_ = ((xy[0]+width)+x*width, (xy[1]+height)-y*height) fig.text(x, y, txt, **kwargs) def draw_text(text_str, rgb_textFG=(0, 0, 0), rgb_textBG=(1, 1, 1)): ax = gca() xy, width, height = _axis_xy_width_height(ax) text_x = xy[0] + (width / 2) text_y = xy[1] + (height / 2) ax.text(text_x, text_y, text_str, horizontalalignment='center', verticalalignment='center', color=rgb_textFG, backgroundcolor=rgb_textBG) def set_figtitle(figtitle, subtitle='', forcefignum=True, incanvas=True): if figtitle is None: figtitle = '' fig = gcf() if incanvas: if subtitle != '': subtitle = '\n' + subtitle fig.suptitle(figtitle + subtitle, fontsize=14, fontweight='bold') #fig.suptitle(figtitle, x=.5, y=.98, fontproperties=FONTS.figtitle) #fig_relative_text(.5, .96, subtitle, fontproperties=FONTS.subtitle) else: fig.suptitle('') window_figtitle = ('fig(%d) ' % fig.number) + figtitle fig.canvas.set_window_title(window_figtitle) def convert_keypress_event_mpl_to_qt4(mevent): global TMP_mevent TMP_mevent = mevent # Grab the key from the mpl.KeyPressEvent key = mevent.key print('[df2] convert event mpl -> qt4') print('[df2] key=%r' % key) # dicts modified from backend_qt4.py mpl2qtkey = {'control': Qt.Key_Control, 'shift': Qt.Key_Shift, 'alt': Qt.Key_Alt, 'super': Qt.Key_Meta, 'enter': Qt.Key_Return, 'left': Qt.Key_Left, 'up': Qt.Key_Up, 'right': Qt.Key_Right, 'down': Qt.Key_Down, 'escape': Qt.Key_Escape, 'f1': Qt.Key_F1, 'f2': Qt.Key_F2, 'f3': Qt.Key_F3, 'f4': Qt.Key_F4, 'f5': Qt.Key_F5, 'f6': Qt.Key_F6, 'f7': Qt.Key_F7, 'f8': Qt.Key_F8, 'f9': Qt.Key_F9, 'f10': Qt.Key_F10, 'f11': Qt.Key_F11, 'f12': Qt.Key_F12, 'home': Qt.Key_Home, 'end': Qt.Key_End, 'pageup': Qt.Key_PageUp, 'pagedown': Qt.Key_PageDown} # Reverse the control and super (aka cmd/apple) keys on OSX if sys.platform == 'darwin': mpl2qtkey.update({'super': Qt.Key_Control, 'control': Qt.Key_Meta, }) # Try to reconstruct QtGui.KeyEvent type_ = QtCore.QEvent.Type(QtCore.QEvent.KeyPress) # The type should always be KeyPress text = '' # Try to extract the original modifiers modifiers = QtCore.Qt.NoModifier # initialize to no modifiers if key.find(u'ctrl+') >= 0: modifiers = modifiers | QtCore.Qt.ControlModifier key = key.replace(u'ctrl+', u'') print('[df2] has ctrl modifier') text += 'Ctrl+' if key.find(u'alt+') >= 0: modifiers = modifiers | QtCore.Qt.AltModifier key = key.replace(u'alt+', u'') print('[df2] has alt modifier') text += 'Alt+' if key.find(u'super+') >= 0: modifiers = modifiers | QtCore.Qt.MetaModifier key = key.replace(u'super+', u'') print('[df2] has super modifier') text += 'Super+' if key.isupper(): modifiers = modifiers | QtCore.Qt.ShiftModifier print('[df2] has shift modifier') text += 'Shift+' # Try to extract the original key try: if key in mpl2qtkey: key_ = mpl2qtkey[key] else: key_ = ord(key.upper()) # Qt works with uppercase keys text += key.upper() except Exception as ex: print('[df2] ERROR key=%r' % key) print('[df2] ERROR %r' % ex) raise autorep = False # default false count = 1 # default 1 text = QtCore.QString(text) # The text is somewhat arbitrary # Create the QEvent print('----------------') print('[df2] Create event') print('[df2] type_ = %r' % type_) print('[df2] text = %r' % text) print('[df2] modifiers = %r' % modifiers) print('[df2] autorep = %r' % autorep) print('[df2] count = %r ' % count) print('----------------') qevent = QtGui.QKeyEvent(type_, key_, modifiers, text, autorep, count) return qevent def test_build_qkeyevent(): import draw_func2 as df2 qtwin = df2.QT4_WINS[0] # This reconstructs an test mplevent canvas = df2.figure(1).canvas mevent = matplotlib.backend_bases.KeyEvent('key_press_event', canvas, u'ctrl+p', x=672, y=230.0) qevent = df2.convert_keypress_event_mpl_to_qt4(mevent) app = qtwin.backend.app app.sendEvent(qtwin.ui, mevent) #type_ = QtCore.QEvent.Type(QtCore.QEvent.KeyPress) # The type should always be KeyPress #text = QtCore.QString('A') # The text is somewhat arbitrary #modifiers = QtCore.Qt.NoModifier # initialize to no modifiers #modifiers = modifiers | QtCore.Qt.ControlModifier #modifiers = modifiers | QtCore.Qt.AltModifier #key_ = ord('A') # Qt works with uppercase keys #autorep = False # default false #count = 1 # default 1 #qevent = QtGui.QKeyEvent(type_, key_, modifiers, text, autorep, count) return qevent # This actually doesn't matter def on_key_press_event(event): 'redirects keypress events to main window' global QT4_WINS print('[df2] %r' % event) print('[df2] %r' % str(event.__dict__)) for qtwin in QT4_WINS: qevent = convert_keypress_event_mpl_to_qt4(event) app = qtwin.backend.app print('[df2] attempting to send qevent to qtwin') app.sendEvent(qtwin, qevent) # TODO: FINISH ME #PyQt4.QtGui.QKeyEvent #qtwin.keyPressEvent(event) #fig.canvas.manager.window.keyPressEvent() def customize_figure(fig, docla): if not 'user_stat_list' in fig.__dict__.keys() or docla: fig.user_stat_list = [] fig.user_notes = [] # We dont need to catch keypress events because you just need to set it as # an application level shortcut # Catch key press events #key_event_cbid = fig.__dict__.get('key_event_cbid', None) #if key_event_cbid is not None: #fig.canvas.mpl_disconnect(key_event_cbid) #fig.key_event_cbid = fig.canvas.mpl_connect('key_press_event', on_key_press_event) fig.df2_closed = False def gcf(): if plotWidget is not None: #print('is plotwidget visible = %r' % plotWidget.isVisible()) fig = plotWidget.figure return fig return plt.gcf() def gca(): if plotWidget is not None: #print('is plotwidget visible = %r' % plotWidget.isVisible()) axes_list = plotWidget.figure.get_axes() current = 0 ax = axes_list[current] return ax return plt.gca() def cla(): return plt.cla() def clf(): return plt.clf() def get_fig(fnum=None): printDBG('[df2] get_fig(fnum=%r)' % fnum) fig_kwargs = dict(figsize=FIGSIZE, dpi=DPI) if plotWidget is not None: return gcf() if fnum is None: try: fig = gcf() except Exception as ex: printDBG('[df2] get_fig(): ex=%r' % ex) fig = plt.figure(**fig_kwargs) fnum = fig.number else: try: fig = plt.figure(fnum, **fig_kwargs) except Exception as ex: print(repr(ex)) warnings.warn(repr(ex)) fig = gcf() return fig def get_ax(fnum=None, pnum=None): figure(fnum=fnum, pnum=pnum) ax = gca() return ax def figure(fnum=None, docla=False, title=None, pnum=(1, 1, 1), figtitle=None, doclf=False, **kwargs): ''' fnum = fignum = figure number pnum = plotnum = plot tuple ''' #matplotlib.pyplot.xkcd() fig = get_fig(fnum) axes_list = fig.get_axes() # Ensure my customized settings customize_figure(fig, docla) # Convert pnum to tuple format if tools.is_int(pnum): nr = pnum // 100 nc = pnum // 10 - (nr * 10) px = pnum - (nr * 100) - (nc * 10) pnum = (nr, nc, px) if doclf: # a bit hacky. Need to rectify docla and doclf fig.clf() # Get the subplot if docla or len(axes_list) == 0: printDBG('[df2] *** NEW FIGURE %r.%r ***' % (fnum, pnum)) if not pnum is None: #ax = plt.subplot(*pnum) ax = fig.add_subplot(*pnum) ax.cla() else: ax = gca() else: printDBG('[df2] *** OLD FIGURE %r.%r ***' % (fnum, pnum)) if not pnum is None: ax = plt.subplot(*pnum) # fig.add_subplot fails here #ax = fig.add_subplot(*pnum) else: ax = gca() #ax = axes_list[0] # Set the title if not title is None: ax = gca() ax.set_title(title, fontproperties=FONTS.axtitle) # Add title to figure if figtitle is None and pnum == (1, 1, 1): figtitle = title if not figtitle is None: set_figtitle(figtitle, incanvas=False) return fig def plot_pdf(data, draw_support=True, scale_to=None, label=None, color=0, nYTicks=3): fig = gcf() ax = gca() data = np.array(data) if len(data) == 0: warnstr = '[df2] ! Warning: len(data) = 0. Cannot visualize pdf' warnings.warn(warnstr) draw_text(warnstr) return bw_factor = .05 if isinstance(color, (int, float)): colorx = color line_color = plt.get_cmap('gist_rainbow')(colorx) else: line_color = color # Estimate a pdf data_pdf = estimate_pdf(data, bw_factor) # Get probability of seen data prob_x = data_pdf(data) # Get probability of unseen data data x_data = np.linspace(0, data.max(), 500) y_data = data_pdf(x_data) # Scale if requested if not scale_to is None: scale_factor = scale_to / y_data.max() y_data *= scale_factor prob_x *= scale_factor #Plot the actual datas on near the bottom perterbed in Y if draw_support: pdfrange = prob_x.max() - prob_x.min() perb = (np.random.randn(len(data))) * pdfrange / 30. preb_y_data = np.abs([pdfrange / 50. for _ in data] + perb) ax.plot(data, preb_y_data, 'o', color=line_color, figure=fig, alpha=.1) # Plot the pdf (unseen data) ax.plot(x_data, y_data, color=line_color, label=label) if nYTicks is not None: yticks = np.linspace(min(y_data), max(y_data), nYTicks) ax.set_yticks(yticks) def estimate_pdf(data, bw_factor): try: data_pdf = scipy.stats.gaussian_kde(data, bw_factor) data_pdf.covariance_factor = bw_factor except Exception as ex: print('[df2] ! Exception while estimating kernel density') print('[df2] data=%r' % (data,)) print('[df2] ex=%r' % (ex,)) raise return data_pdf def show_histogram(data, bins=None, **kwargs): print('[df2] show_histogram()') dmin = int(np.floor(data.min())) dmax = int(np.ceil(data.max())) if bins is None: bins = dmax - dmin fig = figure(**kwargs) ax = gca() ax.hist(data, bins=bins, range=(dmin, dmax)) #help(np.bincount) fig.show() def show_signature(sig, **kwargs): fig = figure(**kwargs) plt.plot(sig) fig.show() def plot_stems(x_data=None, y_data=None): if y_data is not None and x_data is None: x_data = np.arange(len(y_data)) pass if len(x_data) != len(y_data): print('[df2] WARNING plot_stems(): len(x_data)!=len(y_data)') if len(x_data) == 0: print('[df2] WARNING plot_stems(): len(x_data)=len(y_data)=0') x_data_ = np.array(x_data) y_data_ = np.array(y_data) x_data_sort = x_data_[y_data_.argsort()[::-1]] y_data_sort = y_data_[y_data_.argsort()[::-1]] markerline, stemlines, baseline = pylab.stem(x_data_sort, y_data_sort, linefmt='-') pylab.setp(markerline, 'markerfacecolor', 'b') pylab.setp(baseline, 'linewidth', 0) ax = gca() ax.set_xlim(min(x_data) - 1, max(x_data) + 1) ax.set_ylim(min(y_data) - 1, max(max(y_data), max(x_data)) + 1) def plot_sift_signature(sift, title='', fnum=None, pnum=None): figure(fnum=fnum, pnum=pnum) ax = gca() plot_bars(sift, 16) ax.set_xlim(0, 128) ax.set_ylim(0, 256) space_xticks(9, 16) space_yticks(5, 64) ax.set_title(title) dark_background(ax) return ax def dark_background(ax=None, doubleit=False): if ax is None: ax = gca() xy, width, height = _axis_xy_width_height(ax) if doubleit: halfw = (doubleit) * (width / 2) halfh = (doubleit) * (height / 2) xy = (xy[0] - halfw, xy[1] - halfh) width *= (doubleit + 1) height *= (doubleit + 1) rect = matplotlib.patches.Rectangle(xy, width, height, lw=0, zorder=0) rect.set_clip_on(True) rect.set_fill(True) rect.set_color(BLACK * .9) rect = ax.add_patch(rect) def space_xticks(nTicks=9, spacing=16, ax=None): if ax is None: ax = gca() ax.set_xticks(np.arange(nTicks) * spacing) small_xticks(ax) def space_yticks(nTicks=9, spacing=32, ax=None): if ax is None: ax = gca() ax.set_yticks(np.arange(nTicks) * spacing) small_yticks(ax) def small_xticks(ax=None): for tick in ax.xaxis.get_major_ticks(): tick.label.set_fontsize(8) def small_yticks(ax=None): for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(8) def plot_bars(y_data, nColorSplits=1): width = 1 nDims = len(y_data) nGroup = nDims // nColorSplits ori_colors = distinct_colors(nColorSplits) x_data = np.arange(nDims) ax = gca() for ix in xrange(nColorSplits): xs = np.arange(nGroup) + (nGroup * ix) color = ori_colors[ix] x_dat = x_data[xs] y_dat = y_data[xs] ax.bar(x_dat, y_dat, width, color=color, edgecolor=np.array(color) * .8) def phantom_legend_label(label, color, loc='upper right'): 'adds a legend label without displaying an actor' pass #phantom_actor = plt.Circle((0, 0), 1, fc=color, prop=FONTS.legend, loc=loc) #plt.legend(phant_actor, label, framealpha=.2) #plt.legend(*zip(*legend_tups), framealpha=.2) #legend_tups = [] #legend_tups.append((phantom_actor, label)) def legend(loc='upper right'): ax = gca() ax.legend(prop=FONTS.legend, loc=loc) def plot_histpdf(data, label=None, draw_support=False, nbins=10): freq, _ = plot_hist(data, nbins=nbins) plot_pdf(data, draw_support=draw_support, scale_to=freq.max(), label=label) def plot_hist(data, bins=None, nbins=10, weights=None): if isinstance(data, list): data = np.array(data) if bins is None: dmin = data.min() dmax = data.max() bins = dmax - dmin ax = gca() freq, bins_, patches = ax.hist(data, bins=nbins, weights=weights, range=(dmin, dmax)) return freq, bins_ def variation_trunctate(data): ax = gca() data = np.array(data) if len(data) == 0: warnstr = '[df2] ! Warning: len(data) = 0. Cannot variation_truncate' warnings.warn(warnstr) return trunc_max = data.mean() + data.std() * 2 trunc_min = np.floor(data.min()) ax.set_xlim(trunc_min, trunc_max) #trunc_xticks = np.linspace(0, int(trunc_max),11) #trunc_xticks = trunc_xticks[trunc_xticks >= trunc_min] #trunc_xticks = np.append([int(trunc_min)], trunc_xticks) #no_zero_yticks = ax.get_yticks()[ax.get_yticks() > 0] #ax.set_xticks(trunc_xticks) #ax.set_yticks(no_zero_yticks) #_----------------- HELPERS ^^^ --------- # ---- IMAGE CREATION FUNCTIONS ---- @tools.debug_exception def draw_sift(desc, kp=None): # TODO: There might be a divide by zero warning in here. ''' desc = np.random.rand(128) desc = desc / np.sqrt((desc**2).sum()) desc = np.round(desc * 255) ''' # This is draw, because it is an overlay ax = gca() tau = 2 * np.pi DSCALE = .25 XYSCALE = .5 XYSHIFT = -.75 ORI_SHIFT = 0 # -tau #1/8 * tau # SIFT CONSTANTS NORIENTS = 8 NX = 4 NY = 4 NBINS = NX * NY def cirlce_rad2xy(radians, mag): return np.cos(radians) * mag, np.sin(radians) * mag discrete_ori = (np.arange(0, NORIENTS) * (tau / NORIENTS) + ORI_SHIFT) # Build list of plot positions # Build an "arm" for each sift measurement arm_mag = desc / 255.0 arm_ori = np.tile(discrete_ori, (NBINS, 1)).flatten() # The offset x,y's for each sift measurment arm_dxy = np.array(zip(*cirlce_rad2xy(arm_ori, arm_mag))) yxt_gen = itertools.product(xrange(NY), xrange(NX), xrange(NORIENTS)) yx_gen = itertools.product(xrange(NY), xrange(NX)) # Transform the drawing of the SIFT descriptor to the its elliptical patch axTrans = ax.transData kpTrans = None if kp is None: kp = [0, 0, 1, 0, 1] kp = np.array(kp) kpT = kp.T x, y, a, c, d = kpT[:, 0] kpTrans = Affine2D([( a, 0, x), ( c, d, y), ( 0, 0, 1)]) axTrans = ax.transData # Draw 8 directional arms in each of the 4x4 grid cells arrow_patches = [] arrow_patches2 = [] for y, x, t in yxt_gen: index = y * NX * NORIENTS + x * NORIENTS + t (dx, dy) = arm_dxy[index] arw_x = x * XYSCALE + XYSHIFT arw_y = y * XYSCALE + XYSHIFT arw_dy = dy * DSCALE * 1.5 # scale for viz Hack arw_dx = dx * DSCALE * 1.5 #posA = (arw_x, arw_y) #posB = (arw_x+arw_dx, arw_y+arw_dy) _args = [arw_x, arw_y, arw_dx, arw_dy] _kwargs = dict(head_width=.0001, transform=kpTrans, length_includes_head=False) arrow_patches += [FancyArrow(*_args, **_kwargs)] arrow_patches2 += [FancyArrow(*_args, **_kwargs)] # Draw circles around each of the 4x4 grid cells circle_patches = [] for y, x in yx_gen: circ_xy = (x * XYSCALE + XYSHIFT, y * XYSCALE + XYSHIFT) circ_radius = DSCALE circle_patches += [Circle(circ_xy, circ_radius, transform=kpTrans)] # Efficiently draw many patches with PatchCollections circ_collection = PatchCollection(circle_patches) circ_collection.set_facecolor('none') circ_collection.set_transform(axTrans) circ_collection.set_edgecolor(BLACK) circ_collection.set_alpha(.5) # Body of arrows arw_collection = PatchCollection(arrow_patches) arw_collection.set_transform(axTrans) arw_collection.set_linewidth(.5) arw_collection.set_color(RED) arw_collection.set_alpha(1) # Border of arrows arw_collection2 = matplotlib.collections.PatchCollection(arrow_patches2) arw_collection2.set_transform(axTrans) arw_collection2.set_linewidth(1) arw_collection2.set_color(BLACK) arw_collection2.set_alpha(1) # Add artists to axes ax.add_collection(circ_collection) ax.add_collection(arw_collection2) ax.add_collection(arw_collection) def feat_scores_to_color(fs, cmap_='hot'): assert len(fs.shape) == 1, 'score must be 1d' cmap = plt.get_cmap(cmap_) mins = fs.min() rnge = fs.max() - mins if rnge == 0: return [cmap(.5) for fx in xrange(len(fs))] score2_01 = lambda score: .1 + .9 * (float(score) - mins) / (rnge) colors = [cmap(score2_01(score)) for score in fs] return colors def colorbar(scalars, colors): 'adds a color bar next to the axes' orientation = ['vertical', 'horizontal'][0] TICK_FONTSIZE = 8 # Put colors and scalars in correct order sorted_scalars = sorted(scalars) sorted_colors = [x for (y, x) in sorted(zip(scalars, colors))] # Make a listed colormap and mappable object listed_cmap = mpl.colors.ListedColormap(sorted_colors) sm = plt.cm.ScalarMappable(cmap=listed_cmap) sm.set_array(sorted_scalars) # Use mapable object to create the colorbar cb = plt.colorbar(sm, orientation=orientation) # Add the colorbar to the correct label axis = cb.ax.xaxis if orientation == 'horizontal' else cb.ax.yaxis position = 'bottom' if orientation == 'horizontal' else 'right' axis.set_ticks_position(position) axis.set_ticks([0, .5, 1]) cb.ax.tick_params(labelsize=TICK_FONTSIZE) def draw_lines2(kpts1, kpts2, fm=None, fs=None, kpts2_offset=(0, 0), color_list=None, **kwargs): if not DISTINCT_COLORS: color_list = None # input data if not SHOW_LINES: return if fm is None: # assume kpts are in director correspondence assert kpts1.shape == kpts2.shape if len(fm) == 0: return ax = gca() woff, hoff = kpts2_offset # Draw line collection kpts1_m = kpts1[fm[:, 0]].T kpts2_m = kpts2[fm[:, 1]].T xxyy_iter = iter(zip(kpts1_m[0], kpts2_m[0] + woff, kpts1_m[1], kpts2_m[1] + hoff)) if color_list is None: if fs is None: # Draw with solid color color_list = [ LINE_COLOR for fx in xrange(len(fm))] else: # Draw with colors proportional to score difference color_list = feat_scores_to_color(fs) segments = [((x1, y1), (x2, y2)) for (x1, x2, y1, y2) in xxyy_iter] linewidth = [LINE_WIDTH for fx in xrange(len(fm))] line_alpha = LINE_ALPHA if LINE_ALPHA_OVERRIDE is not None: line_alpha = LINE_ALPHA_OVERRIDE line_group = LineCollection(segments, linewidth, color_list, alpha=line_alpha) #plt.colorbar(line_group, ax=ax) ax.add_collection(line_group) #figure(100) #plt.hexbin(x,y, cmap=plt.cm.YlOrRd_r) def draw_kpts(kpts, *args, **kwargs): draw_kpts2(kpts, *args, **kwargs) def draw_kpts2(kpts, offset=(0, 0), ell=SHOW_ELLS, pts=False, pts_color=ORANGE, pts_size=POINT_SIZE, ell_alpha=ELL_ALPHA, ell_linewidth=ELL_LINEWIDTH, ell_color=ELL_COLOR, color_list=None, rect=None, arrow=False, **kwargs): if not DISTINCT_COLORS: color_list = None printDBG('drawkpts2: Drawing Keypoints! ell=%r pts=%r' % (ell, pts)) # get matplotlib info ax = gca() pltTrans = ax.transData ell_actors = [] # data kpts = np.array(kpts) kptsT = kpts.T x = kptsT[0, :] + offset[0] y = kptsT[1, :] + offset[1] printDBG('[df2] draw_kpts()----------') printDBG('[df2] draw_kpts() ell=%r pts=%r' % (ell, pts)) printDBG('[df2] draw_kpts() drawing kpts.shape=%r' % (kpts.shape,)) if rect is None: rect = ell rect = False if pts is True: rect = False if ell or rect: printDBG('[df2] draw_kpts() drawing ell kptsT.shape=%r' % (kptsT.shape,)) # We have the transformation from unit circle to ellipse here. (inv(A)) a = kptsT[2] b = np.zeros(len(a)) c = kptsT[3] d = kptsT[4] kpts_iter = izip(x, y, a, b, c, d) aff_list = [Affine2D([( a_, b_, x_), ( c_, d_, y_), ( 0, 0, 1)]) for (x_, y_, a_, b_, c_, d_) in kpts_iter] patch_list = [] ell_actors = [Circle( (0, 0), 1, transform=aff) for aff in aff_list] if ell: patch_list += ell_actors if rect: rect_actors = [Rectangle( (-1, -1), 2, 2, transform=aff) for aff in aff_list] patch_list += rect_actors if arrow: _kwargs = dict(head_width=.01, length_includes_head=False) arrow_actors1 = [FancyArrow(0, 0, 0, 1, transform=aff, **_kwargs) for aff in aff_list] arrow_actors2 = [FancyArrow(0, 0, 1, 0, transform=aff, **_kwargs) for aff in aff_list] patch_list += arrow_actors1 patch_list += arrow_actors2 ellipse_collection = matplotlib.collections.PatchCollection(patch_list) ellipse_collection.set_facecolor('none') ellipse_collection.set_transform(pltTrans) if ELL_ALPHA_OVERRIDE is not None: ell_alpha = ELL_ALPHA_OVERRIDE ellipse_collection.set_alpha(ell_alpha) ellipse_collection.set_linewidth(ell_linewidth) if not color_list is None: ell_color = color_list if ell_color == 'distinct': ell_color = distinct_colors(len(kpts)) ellipse_collection.set_edgecolor(ell_color) ax.add_collection(ellipse_collection) if pts: printDBG('[df2] draw_kpts() drawing pts x.shape=%r y.shape=%r' % (x.shape, y.shape)) if color_list is None: color_list = [pts_color for _ in xrange(len(x))] ax.autoscale(enable=False) ax.scatter(x, y, c=color_list, s=2 * pts_size, marker='o', edgecolor='none') #ax.autoscale(enable=False) #ax.plot(x, y, linestyle='None', marker='o', markerfacecolor=pts_color, markersize=pts_size, markeredgewidth=0) # ---- CHIP DISPLAY COMMANDS ---- def imshow(img, fnum=None, title=None, figtitle=None, pnum=None, interpolation='nearest', **kwargs): 'other interpolations = nearest, bicubic, bilinear' #printDBG('[df2] ----- IMSHOW ------ ') #printDBG('[***df2.imshow] fnum=%r pnum=%r title=%r *** ' % (fnum, pnum, title)) #printDBG('[***df2.imshow] img.shape = %r ' % (img.shape,)) #printDBG('[***df2.imshow] img.stats = %r ' % (helpers.printable_mystats(img),)) fig = figure(fnum=fnum, pnum=pnum, title=title, figtitle=figtitle, **kwargs) ax = gca() if not DARKEN is None: imgdtype = img.dtype img = np.array(img, dtype=float) * DARKEN img = np.array(img, dtype=imgdtype) plt_imshow_kwargs = { 'interpolation': interpolation, #'cmap': plt.get_cmap('gray'), 'vmin': 0, 'vmax': 255, } try: if len(img.shape) == 3 and img.shape[2] == 3: # img is in a color format imgBGR = img if imgBGR.dtype == np.float64: if imgBGR.max() <= 1: imgBGR = np.array(imgBGR, dtype=np.float32) else: imgBGR = np.array(imgBGR, dtype=np.uint8) imgRGB = cv2.cvtColor(imgBGR, cv2.COLOR_BGR2RGB) ax.imshow(imgRGB, **plt_imshow_kwargs) elif len(img.shape) == 2: # img is in grayscale imgGRAY = img ax.imshow(imgGRAY, cmap=plt.get_cmap('gray'), **plt_imshow_kwargs) else: raise Exception('unknown image format') except TypeError as te: print('[df2] imshow ERROR %r' % te) raise except Exception as ex: print('[df2] img.dtype = %r' % (img.dtype,)) print('[df2] type(img) = %r' % (type(img),)) print('[df2] img.shape = %r' % (img.shape,)) print('[df2] imshow ERROR %r' % ex) raise #plt.set_cmap('gray') ax.set_xticks([]) ax.set_yticks([]) #ax.set_autoscale(False) #try: #if pnum == 111: #fig.tight_layout() #except Exception as ex: #print('[df2] !! Exception durring fig.tight_layout: '+repr(ex)) #raise return fig, ax def get_num_channels(img): ndims = len(img.shape) if ndims == 2: nChannels = 1 elif ndims == 3 and img.shape[2] == 3: nChannels = 3 elif ndims == 3 and img.shape[2] == 1: nChannels = 1 else: raise Exception('Cannot determine number of channels') return nChannels def stack_images(img1, img2, vert=None): nChannels = get_num_channels(img1) nChannels2 = get_num_channels(img2) assert nChannels == nChannels2 (h1, w1) = img1.shape[0: 2] # get chip dimensions (h2, w2) = img2.shape[0: 2] woff, hoff = 0, 0 vert_wh = max(w1, w2), h1 + h2 horiz_wh = w1 + w2, max(h1, h2) if vert is None: # Display the orientation with the better (closer to 1) aspect ratio vert_ar = max(vert_wh) / min(vert_wh) horiz_ar = max(horiz_wh) / min(horiz_wh) vert = vert_ar < horiz_ar if vert: wB, hB = vert_wh hoff = h1 else: wB, hB = horiz_wh woff = w1 # concatentate images if nChannels == 3: imgB = np.zeros((hB, wB, 3), np.uint8) imgB[0:h1, 0:w1, :] = img1 imgB[hoff:(hoff + h2), woff:(woff + w2), :] = img2 elif nChannels == 1: imgB = np.zeros((hB, wB), np.uint8) imgB[0:h1, 0:w1] = img1 imgB[hoff:(hoff + h2), woff:(woff + w2)] = img2 return imgB, woff, hoff def show_chipmatch2(rchip1, rchip2, kpts1, kpts2, fm=None, fs=None, title=None, vert=None, fnum=None, pnum=None, **kwargs): '''Draws two chips and the feature matches between them. feature matches kpts1 and kpts2 use the (x,y,a,c,d) ''' printDBG('[df2] draw_matches2() fnum=%r, pnum=%r' % (fnum, pnum)) # get matching keypoints + offset (h1, w1) = rchip1.shape[0:2] # get chip (h, w) dimensions (h2, w2) = rchip2.shape[0:2] # Stack the compared chips match_img, woff, hoff = stack_images(rchip1, rchip2, vert) xywh1 = (0, 0, w1, h1) xywh2 = (woff, hoff, w2, h2) # Show the stacked chips fig, ax = imshow(match_img, title=title, fnum=fnum, pnum=pnum) # Overlay feature match nnotations draw_fmatch(xywh1, xywh2, kpts1, kpts2, fm, fs, **kwargs) return ax, xywh1, xywh2 # draw feature match def draw_fmatch(xywh1, xywh2, kpts1, kpts2, fm, fs=None, lbl1=None, lbl2=None, fnum=None, pnum=None, rect=False, colorbar_=True, **kwargs): '''Draws the matching features. This is draw because it is an overlay xywh1 - location of rchip1 in the axes xywh2 - location or rchip2 in the axes ''' if fm is None: assert kpts1.shape == kpts2.shape, 'shapes different or fm not none' fm = np.tile(np.arange(0, len(kpts1)), (2, 1)).T pts = kwargs.get('draw_pts', False) ell = kwargs.get('draw_ell', True) lines = kwargs.get('draw_lines', True) ell_alpha = kwargs.get('ell_alpha', .4) nMatch = len(fm) #printDBG('[df2.draw_fnmatch] nMatch=%r' % nMatch) x1, y1, w1, h1 = xywh1 x2, y2, w2, h2 = xywh2 offset2 = (x2, y2) # Custom user label for chips 1 and 2 if lbl1 is not None: absolute_lbl(x1 + w1, y1, lbl1) if lbl2 is not None: absolute_lbl(x2 + w2, y2, lbl2) # Plot the number of matches if kwargs.get('show_nMatches', False): upperleft_text('#match=%d' % nMatch) # Draw all keypoints in both chips as points if kwargs.get('all_kpts', False): all_args = dict(ell=False, pts=pts, pts_color=GREEN, pts_size=2, ell_alpha=ell_alpha, rect=rect) all_args.update(kwargs) draw_kpts2(kpts1, **all_args) draw_kpts2(kpts2, offset=offset2, **all_args) # Draw Lines and Ellipses and Points oh my if nMatch > 0: colors = [kwargs['colors']] * nMatch if 'colors' in kwargs else distinct_colors(nMatch) if fs is not None: colors = feat_scores_to_color(fs, 'hot') acols = add_alpha(colors) # Helper functions def _drawkpts(**_kwargs): _kwargs.update(kwargs) fxs1 = fm[:, 0] fxs2 = fm[:, 1] draw_kpts2(kpts1[fxs1], rect=rect, **_kwargs) draw_kpts2(kpts2[fxs2], offset=offset2, rect=rect, **_kwargs) def _drawlines(**_kwargs): _kwargs.update(kwargs) draw_lines2(kpts1, kpts2, fm, fs, kpts2_offset=offset2, **_kwargs) # User helpers if ell: _drawkpts(pts=False, ell=True, color_list=colors) if pts: _drawkpts(pts_size=8, pts=True, ell=False, pts_color=BLACK) _drawkpts(pts_size=6, pts=True, ell=False, color_list=acols) if lines: _drawlines(color_list=colors) else: draw_boxedX(xywh2) if fs is not None and colorbar_ and 'colors' in vars() and colors is not None: colorbar(fs, colors) #legend() return None def draw_boxedX(xywh, color=RED, lw=2, alpha=.5, theta=0): 'draws a big red x. redx' ax = gca() x1, y1, w, h = xywh x2, y2 = x1 + w, y1 + h segments = [((x1, y1), (x2, y2)), ((x1, y2), (x2, y1))] trans = Affine2D() trans.rotate(theta) trans = trans + ax.transData width_list = [lw] * len(segments) color_list = [color] * len(segments) line_group = LineCollection(segments, width_list, color_list, alpha=alpha, transOffset=trans) ax.add_collection(line_group) def disconnect_callback(fig, callback_type, **kwargs): #print('[df2] disconnect %r callback' % callback_type) axes = kwargs.get('axes', []) for ax in axes: ax._hs_viewtype = '' cbid_type = callback_type + '_cbid' cbfn_type = callback_type + '_func' cbid = fig.__dict__.get(cbid_type, None) cbfn = fig.__dict__.get(cbfn_type, None) if cbid is not None: fig.canvas.mpl_disconnect(cbid) else: cbfn = None fig.__dict__[cbid_type] = None return cbid, cbfn def connect_callback(fig, callback_type, callback_fn): #print('[df2] register %r callback' % callback_type) if callback_fn is None: return cbid_type = callback_type + '_cbid' cbfn_type = callback_type + '_func' fig.__dict__[cbid_type] = fig.canvas.mpl_connect(callback_type, callback_fn) fig.__dict__[cbfn_type] = callback_fn
apache-2.0
classicboyir/BuildingMachineLearningSystemsWithPython
ch10/simple_classification.py
21
2299
# This code is supporting material for the book # Building Machine Learning Systems with Python # by Willi Richert and Luis Pedro Coelho # published by PACKT Publishing # # It is made available under the MIT License import mahotas as mh import numpy as np from glob import glob from features import texture, color_histogram from sklearn.linear_model import LogisticRegression from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler basedir = '../SimpleImageDataset/' haralicks = [] labels = [] chists = [] print('This script will test (with cross-validation) classification of the simple 3 class dataset') print('Computing features...') # Use glob to get all the images images = glob('{}/*.jpg'.format(basedir)) # We sort the images to ensure that they are always processed in the same order # Otherwise, this would introduce some variation just based on the random # ordering that the filesystem uses for fname in sorted(images): imc = mh.imread(fname) haralicks.append(texture(mh.colors.rgb2grey(imc))) chists.append(color_histogram(imc)) # Files are named like building00.jpg, scene23.jpg... labels.append(fname[:-len('xx.jpg')]) print('Finished computing features.') haralicks = np.array(haralicks) labels = np.array(labels) chists = np.array(chists) haralick_plus_chists = np.hstack([chists, haralicks]) # We use Logistic Regression because it achieves high accuracy on small(ish) datasets # Feel free to experiment with other classifiers clf = Pipeline([('preproc', StandardScaler()), ('classifier', LogisticRegression())]) from sklearn import cross_validation cv = cross_validation.LeaveOneOut(len(images)) scores = cross_validation.cross_val_score( clf, haralicks, labels, cv=cv) print('Accuracy (Leave-one-out) with Logistic Regression [haralick features]: {:.1%}'.format( scores.mean())) scores = cross_validation.cross_val_score( clf, chists, labels, cv=cv) print('Accuracy (Leave-one-out) with Logistic Regression [color histograms]: {:.1%}'.format( scores.mean())) scores = cross_validation.cross_val_score( clf, haralick_plus_chists, labels, cv=cv) print('Accuracy (Leave-one-out) with Logistic Regression [texture features + color histograms]: {:.1%}'.format( scores.mean()))
mit
kevin-coder/tensorflow-fork
tensorflow/lite/experimental/micro/examples/micro_speech/apollo3/captured_data_to_wav.py
11
1442
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Converts values pulled from the microcontroller into audio files.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import struct # import matplotlib.pyplot as plt import numpy as np import soundfile as sf def new_data_to_array(fn): vals = [] with open(fn) as f: for n, line in enumerate(f): if n != 0: vals.extend([int(v, 16) for v in line.split()]) b = ''.join(map(chr, vals)) y = struct.unpack('<' + 'h' * int(len(b) / 2), b) return y data = 'captured_data.txt' values = np.array(new_data_to_array(data)).astype(float) # plt.plot(values, 'o-') # plt.show(block=False) wav = values / np.max(np.abs(values)) sf.write('captured_data.wav', wav, 16000)
apache-2.0
waynenilsen/statsmodels
statsmodels/examples/ex_kde_confint.py
34
1973
# -*- coding: utf-8 -*- """ Created on Mon Dec 16 11:02:59 2013 Author: Josef Perktold """ from __future__ import print_function import numpy as np from scipy import stats import matplotlib.pyplot as plt import statsmodels.nonparametric.api as npar from statsmodels.sandbox.nonparametric import kernels from statsmodels.distributions.mixture_rvs import mixture_rvs # example from test_kde.py mixture of two normal distributions np.random.seed(12345) x = mixture_rvs([.25,.75], size=200, dist=[stats.norm, stats.norm], kwargs = (dict(loc=-1, scale=.5),dict(loc=1, scale=.5))) x.sort() # not needed kde = npar.KDEUnivariate(x) kde.fit('gau') ci = kde.kernel.density_confint(kde.density, len(x)) fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.hist(x, bins=15, normed=True, alpha=0.25) ax.plot(kde.support, kde.density, lw=2, color='red') ax.fill_between(kde.support, ci[:,0], ci[:,1], color='grey', alpha='0.7') ax.set_title('Kernel Density Gaussian (bw = %4.2f)' % kde.bw) # use all kernels directly x_grid = np.linspace(np.min(x), np.max(x), 51) x_grid = np.linspace(-3, 3, 51) kernel_names = ['Biweight', 'Cosine', 'Epanechnikov', 'Gaussian', 'Triangular', 'Triweight', #'Uniform', ] fig = plt.figure() for ii, kn in enumerate(kernel_names): ax = fig.add_subplot(2, 3, ii+1) # without uniform ax.hist(x, bins=10, normed=True, alpha=0.25) #reduce bandwidth for Gaussian and Uniform which are to large in example if kn in ['Gaussian', 'Uniform']: args = (0.5,) else: args = () kernel = getattr(kernels, kn)(*args) kde_grid = [kernel.density(x, xi) for xi in x_grid] confint_grid = kernel.density_confint(kde_grid, len(x)) ax.plot(x_grid, kde_grid, lw=2, color='red', label=kn) ax.fill_between(x_grid, confint_grid[:,0], confint_grid[:,1], color='grey', alpha='0.7') ax.legend(loc='upper left') plt.show()
bsd-3-clause
liyu1990/sklearn
sklearn/linear_model/stochastic_gradient.py
31
50760
# Authors: Peter Prettenhofer <peter.prettenhofer@gmail.com> (main author) # Mathieu Blondel (partial_fit support) # # License: BSD 3 clause """Classification and regression using Stochastic Gradient Descent (SGD).""" import numpy as np from abc import ABCMeta, abstractmethod from ..externals.joblib import Parallel, delayed from .base import LinearClassifierMixin, SparseCoefMixin from .base import make_dataset from ..base import BaseEstimator, RegressorMixin from ..feature_selection.from_model import _LearntSelectorMixin from ..utils import (check_array, check_random_state, check_X_y, deprecated) from ..utils.extmath import safe_sparse_dot from ..utils.multiclass import _check_partial_fit_first_call from ..utils.validation import check_is_fitted from ..externals import six from .sgd_fast import plain_sgd, average_sgd from ..utils.fixes import astype from ..utils import compute_class_weight from .sgd_fast import Hinge from .sgd_fast import SquaredHinge from .sgd_fast import Log from .sgd_fast import ModifiedHuber from .sgd_fast import SquaredLoss from .sgd_fast import Huber from .sgd_fast import EpsilonInsensitive from .sgd_fast import SquaredEpsilonInsensitive LEARNING_RATE_TYPES = {"constant": 1, "optimal": 2, "invscaling": 3, "pa1": 4, "pa2": 5} PENALTY_TYPES = {"none": 0, "l2": 2, "l1": 1, "elasticnet": 3} DEFAULT_EPSILON = 0.1 # Default value of ``epsilon`` parameter. class BaseSGD(six.with_metaclass(ABCMeta, BaseEstimator, SparseCoefMixin)): """Base class for SGD classification and regression.""" def __init__(self, loss, penalty='l2', alpha=0.0001, C=1.0, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=0.1, random_state=None, learning_rate="optimal", eta0=0.0, power_t=0.5, warm_start=False, average=False): self.loss = loss self.penalty = penalty self.learning_rate = learning_rate self.epsilon = epsilon self.alpha = alpha self.C = C self.l1_ratio = l1_ratio self.fit_intercept = fit_intercept self.n_iter = n_iter self.shuffle = shuffle self.random_state = random_state self.verbose = verbose self.eta0 = eta0 self.power_t = power_t self.warm_start = warm_start self.average = average self._validate_params() self.coef_ = None if self.average > 0: self.standard_coef_ = None self.average_coef_ = None # iteration count for learning rate schedule # must not be int (e.g. if ``learning_rate=='optimal'``) self.t_ = None def set_params(self, *args, **kwargs): super(BaseSGD, self).set_params(*args, **kwargs) self._validate_params() return self @abstractmethod def fit(self, X, y): """Fit model.""" def _validate_params(self): """Validate input params. """ if not isinstance(self.shuffle, bool): raise ValueError("shuffle must be either True or False") if self.n_iter <= 0: raise ValueError("n_iter must be > zero") if not (0.0 <= self.l1_ratio <= 1.0): raise ValueError("l1_ratio must be in [0, 1]") if self.alpha < 0.0: raise ValueError("alpha must be >= 0") if self.learning_rate in ("constant", "invscaling"): if self.eta0 <= 0.0: raise ValueError("eta0 must be > 0") if self.learning_rate == "optimal" and self.alpha == 0: raise ValueError("alpha must be > 0 since " "learning_rate is 'optimal'. alpha is used " "to compute the optimal learning rate.") # raises ValueError if not registered self._get_penalty_type(self.penalty) self._get_learning_rate_type(self.learning_rate) if self.loss not in self.loss_functions: raise ValueError("The loss %s is not supported. " % self.loss) def _get_loss_function(self, loss): """Get concrete ``LossFunction`` object for str ``loss``. """ try: loss_ = self.loss_functions[loss] loss_class, args = loss_[0], loss_[1:] if loss in ('huber', 'epsilon_insensitive', 'squared_epsilon_insensitive'): args = (self.epsilon, ) return loss_class(*args) except KeyError: raise ValueError("The loss %s is not supported. " % loss) def _get_learning_rate_type(self, learning_rate): try: return LEARNING_RATE_TYPES[learning_rate] except KeyError: raise ValueError("learning rate %s " "is not supported. " % learning_rate) def _get_penalty_type(self, penalty): penalty = str(penalty).lower() try: return PENALTY_TYPES[penalty] except KeyError: raise ValueError("Penalty %s is not supported. " % penalty) def _validate_sample_weight(self, sample_weight, n_samples): """Set the sample weight array.""" if sample_weight is None: # uniform sample weights sample_weight = np.ones(n_samples, dtype=np.float64, order='C') else: # user-provided array sample_weight = np.asarray(sample_weight, dtype=np.float64, order="C") if sample_weight.shape[0] != n_samples: raise ValueError("Shapes of X and sample_weight do not match.") return sample_weight def _allocate_parameter_mem(self, n_classes, n_features, coef_init=None, intercept_init=None): """Allocate mem for parameters; initialize if provided.""" if n_classes > 2: # allocate coef_ for multi-class if coef_init is not None: coef_init = np.asarray(coef_init, order="C") if coef_init.shape != (n_classes, n_features): raise ValueError("Provided ``coef_`` does not match " "dataset. ") self.coef_ = coef_init else: self.coef_ = np.zeros((n_classes, n_features), dtype=np.float64, order="C") # allocate intercept_ for multi-class if intercept_init is not None: intercept_init = np.asarray(intercept_init, order="C") if intercept_init.shape != (n_classes, ): raise ValueError("Provided intercept_init " "does not match dataset.") self.intercept_ = intercept_init else: self.intercept_ = np.zeros(n_classes, dtype=np.float64, order="C") else: # allocate coef_ for binary problem if coef_init is not None: coef_init = np.asarray(coef_init, dtype=np.float64, order="C") coef_init = coef_init.ravel() if coef_init.shape != (n_features,): raise ValueError("Provided coef_init does not " "match dataset.") self.coef_ = coef_init else: self.coef_ = np.zeros(n_features, dtype=np.float64, order="C") # allocate intercept_ for binary problem if intercept_init is not None: intercept_init = np.asarray(intercept_init, dtype=np.float64) if intercept_init.shape != (1,) and intercept_init.shape != (): raise ValueError("Provided intercept_init " "does not match dataset.") self.intercept_ = intercept_init.reshape(1,) else: self.intercept_ = np.zeros(1, dtype=np.float64, order="C") # initialize average parameters if self.average > 0: self.standard_coef_ = self.coef_ self.standard_intercept_ = self.intercept_ self.average_coef_ = np.zeros(self.coef_.shape, dtype=np.float64, order="C") self.average_intercept_ = np.zeros(self.standard_intercept_.shape, dtype=np.float64, order="C") def _prepare_fit_binary(est, y, i): """Initialization for fit_binary. Returns y, coef, intercept. """ y_i = np.ones(y.shape, dtype=np.float64, order="C") y_i[y != est.classes_[i]] = -1.0 average_intercept = 0 average_coef = None if len(est.classes_) == 2: if not est.average: coef = est.coef_.ravel() intercept = est.intercept_[0] else: coef = est.standard_coef_.ravel() intercept = est.standard_intercept_[0] average_coef = est.average_coef_.ravel() average_intercept = est.average_intercept_[0] else: if not est.average: coef = est.coef_[i] intercept = est.intercept_[i] else: coef = est.standard_coef_[i] intercept = est.standard_intercept_[i] average_coef = est.average_coef_[i] average_intercept = est.average_intercept_[i] return y_i, coef, intercept, average_coef, average_intercept def fit_binary(est, i, X, y, alpha, C, learning_rate, n_iter, pos_weight, neg_weight, sample_weight): """Fit a single binary classifier. The i'th class is considered the "positive" class. """ # if average is not true, average_coef, and average_intercept will be # unused y_i, coef, intercept, average_coef, average_intercept = \ _prepare_fit_binary(est, y, i) assert y_i.shape[0] == y.shape[0] == sample_weight.shape[0] dataset, intercept_decay = make_dataset(X, y_i, sample_weight) penalty_type = est._get_penalty_type(est.penalty) learning_rate_type = est._get_learning_rate_type(learning_rate) # XXX should have random_state_! random_state = check_random_state(est.random_state) # numpy mtrand expects a C long which is a signed 32 bit integer under # Windows seed = random_state.randint(0, np.iinfo(np.int32).max) if not est.average: return plain_sgd(coef, intercept, est.loss_function, penalty_type, alpha, C, est.l1_ratio, dataset, n_iter, int(est.fit_intercept), int(est.verbose), int(est.shuffle), seed, pos_weight, neg_weight, learning_rate_type, est.eta0, est.power_t, est.t_, intercept_decay) else: standard_coef, standard_intercept, average_coef, \ average_intercept = average_sgd(coef, intercept, average_coef, average_intercept, est.loss_function, penalty_type, alpha, C, est.l1_ratio, dataset, n_iter, int(est.fit_intercept), int(est.verbose), int(est.shuffle), seed, pos_weight, neg_weight, learning_rate_type, est.eta0, est.power_t, est.t_, intercept_decay, est.average) if len(est.classes_) == 2: est.average_intercept_[0] = average_intercept else: est.average_intercept_[i] = average_intercept return standard_coef, standard_intercept class BaseSGDClassifier(six.with_metaclass(ABCMeta, BaseSGD, LinearClassifierMixin)): loss_functions = { "hinge": (Hinge, 1.0), "squared_hinge": (SquaredHinge, 1.0), "perceptron": (Hinge, 0.0), "log": (Log, ), "modified_huber": (ModifiedHuber, ), "squared_loss": (SquaredLoss, ), "huber": (Huber, DEFAULT_EPSILON), "epsilon_insensitive": (EpsilonInsensitive, DEFAULT_EPSILON), "squared_epsilon_insensitive": (SquaredEpsilonInsensitive, DEFAULT_EPSILON), } @abstractmethod def __init__(self, loss="hinge", penalty='l2', alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=DEFAULT_EPSILON, n_jobs=1, random_state=None, learning_rate="optimal", eta0=0.0, power_t=0.5, class_weight=None, warm_start=False, average=False): super(BaseSGDClassifier, self).__init__(loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, epsilon=epsilon, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, warm_start=warm_start, average=average) self.class_weight = class_weight self.classes_ = None self.n_jobs = int(n_jobs) def _partial_fit(self, X, y, alpha, C, loss, learning_rate, n_iter, classes, sample_weight, coef_init, intercept_init): X, y = check_X_y(X, y, 'csr', dtype=np.float64, order="C") n_samples, n_features = X.shape self._validate_params() _check_partial_fit_first_call(self, classes) n_classes = self.classes_.shape[0] # Allocate datastructures from input arguments self._expanded_class_weight = compute_class_weight(self.class_weight, self.classes_, y) sample_weight = self._validate_sample_weight(sample_weight, n_samples) if self.coef_ is None or coef_init is not None: self._allocate_parameter_mem(n_classes, n_features, coef_init, intercept_init) elif n_features != self.coef_.shape[-1]: raise ValueError("Number of features %d does not match previous " "data %d." % (n_features, self.coef_.shape[-1])) self.loss_function = self._get_loss_function(loss) if self.t_ is None: self.t_ = 1.0 # delegate to concrete training procedure if n_classes > 2: self._fit_multiclass(X, y, alpha=alpha, C=C, learning_rate=learning_rate, sample_weight=sample_weight, n_iter=n_iter) elif n_classes == 2: self._fit_binary(X, y, alpha=alpha, C=C, learning_rate=learning_rate, sample_weight=sample_weight, n_iter=n_iter) else: raise ValueError("The number of class labels must be " "greater than one.") return self def _fit(self, X, y, alpha, C, loss, learning_rate, coef_init=None, intercept_init=None, sample_weight=None): if hasattr(self, "classes_"): self.classes_ = None X, y = check_X_y(X, y, 'csr', dtype=np.float64, order="C") n_samples, n_features = X.shape # labels can be encoded as float, int, or string literals # np.unique sorts in asc order; largest class id is positive class classes = np.unique(y) if self.warm_start and self.coef_ is not None: if coef_init is None: coef_init = self.coef_ if intercept_init is None: intercept_init = self.intercept_ else: self.coef_ = None self.intercept_ = None if self.average > 0: self.standard_coef_ = self.coef_ self.standard_intercept_ = self.intercept_ self.average_coef_ = None self.average_intercept_ = None # Clear iteration count for multiple call to fit. self.t_ = None self._partial_fit(X, y, alpha, C, loss, learning_rate, self.n_iter, classes, sample_weight, coef_init, intercept_init) return self def _fit_binary(self, X, y, alpha, C, sample_weight, learning_rate, n_iter): """Fit a binary classifier on X and y. """ coef, intercept = fit_binary(self, 1, X, y, alpha, C, learning_rate, n_iter, self._expanded_class_weight[1], self._expanded_class_weight[0], sample_weight) self.t_ += n_iter * X.shape[0] # need to be 2d if self.average > 0: if self.average <= self.t_ - 1: self.coef_ = self.average_coef_.reshape(1, -1) self.intercept_ = self.average_intercept_ else: self.coef_ = self.standard_coef_.reshape(1, -1) self.standard_intercept_ = np.atleast_1d(intercept) self.intercept_ = self.standard_intercept_ else: self.coef_ = coef.reshape(1, -1) # intercept is a float, need to convert it to an array of length 1 self.intercept_ = np.atleast_1d(intercept) def _fit_multiclass(self, X, y, alpha, C, learning_rate, sample_weight, n_iter): """Fit a multi-class classifier by combining binary classifiers Each binary classifier predicts one class versus all others. This strategy is called OVA: One Versus All. """ # Use joblib to fit OvA in parallel. result = Parallel(n_jobs=self.n_jobs, backend="threading", verbose=self.verbose)( delayed(fit_binary)(self, i, X, y, alpha, C, learning_rate, n_iter, self._expanded_class_weight[i], 1., sample_weight) for i in range(len(self.classes_))) for i, (_, intercept) in enumerate(result): self.intercept_[i] = intercept self.t_ += n_iter * X.shape[0] if self.average > 0: if self.average <= self.t_ - 1.0: self.coef_ = self.average_coef_ self.intercept_ = self.average_intercept_ else: self.coef_ = self.standard_coef_ self.standard_intercept_ = np.atleast_1d(self.intercept_) self.intercept_ = self.standard_intercept_ def partial_fit(self, X, y, classes=None, sample_weight=None): """Fit linear model with Stochastic Gradient Descent. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Subset of the training data y : numpy array, shape (n_samples,) Subset of the target values classes : array, shape (n_classes,) Classes across all calls to partial_fit. Can be obtained by via `np.unique(y_all)`, where y_all is the target vector of the entire dataset. This argument is required for the first call to partial_fit and can be omitted in the subsequent calls. Note that y doesn't need to contain all labels in `classes`. sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples. If not provided, uniform weights are assumed. Returns ------- self : returns an instance of self. """ if self.class_weight in ['balanced', 'auto']: raise ValueError("class_weight '{0}' is not supported for " "partial_fit. In order to use 'balanced' weights," " use compute_class_weight('{0}', classes, y). " "In place of y you can us a large enough sample " "of the full training set target to properly " "estimate the class frequency distributions. " "Pass the resulting weights as the class_weight " "parameter.".format(self.class_weight)) return self._partial_fit(X, y, alpha=self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, n_iter=1, classes=classes, sample_weight=sample_weight, coef_init=None, intercept_init=None) def fit(self, X, y, coef_init=None, intercept_init=None, sample_weight=None): """Fit linear model with Stochastic Gradient Descent. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data y : numpy array, shape (n_samples,) Target values coef_init : array, shape (n_classes, n_features) The initial coefficients to warm-start the optimization. intercept_init : array, shape (n_classes,) The initial intercept to warm-start the optimization. sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples. If not provided, uniform weights are assumed. These weights will be multiplied with class_weight (passed through the contructor) if class_weight is specified Returns ------- self : returns an instance of self. """ return self._fit(X, y, alpha=self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, coef_init=coef_init, intercept_init=intercept_init, sample_weight=sample_weight) class SGDClassifier(BaseSGDClassifier, _LearntSelectorMixin): """Linear classifiers (SVM, logistic regression, a.o.) with SGD training. This estimator implements regularized linear models with stochastic gradient descent (SGD) learning: the gradient of the loss is estimated each sample at a time and the model is updated along the way with a decreasing strength schedule (aka learning rate). SGD allows minibatch (online/out-of-core) learning, see the partial_fit method. For best results using the default learning rate schedule, the data should have zero mean and unit variance. This implementation works with data represented as dense or sparse arrays of floating point values for the features. The model it fits can be controlled with the loss parameter; by default, it fits a linear support vector machine (SVM). The regularizer is a penalty added to the loss function that shrinks model parameters towards the zero vector using either the squared euclidean norm L2 or the absolute norm L1 or a combination of both (Elastic Net). If the parameter update crosses the 0.0 value because of the regularizer, the update is truncated to 0.0 to allow for learning sparse models and achieve online feature selection. Read more in the :ref:`User Guide <sgd>`. Parameters ---------- loss : str, 'hinge', 'log', 'modified_huber', 'squared_hinge',\ 'perceptron', or a regression loss: 'squared_loss', 'huber',\ 'epsilon_insensitive', or 'squared_epsilon_insensitive' The loss function to be used. Defaults to 'hinge', which gives a linear SVM. The 'log' loss gives logistic regression, a probabilistic classifier. 'modified_huber' is another smooth loss that brings tolerance to outliers as well as probability estimates. 'squared_hinge' is like hinge but is quadratically penalized. 'perceptron' is the linear loss used by the perceptron algorithm. The other losses are designed for regression but can be useful in classification as well; see SGDRegressor for a description. penalty : str, 'none', 'l2', 'l1', or 'elasticnet' The penalty (aka regularization term) to be used. Defaults to 'l2' which is the standard regularizer for linear SVM models. 'l1' and 'elasticnet' might bring sparsity to the model (feature selection) not achievable with 'l2'. alpha : float Constant that multiplies the regularization term. Defaults to 0.0001 Also used to compute learning_rate when set to 'optimal'. l1_ratio : float The Elastic Net mixing parameter, with 0 <= l1_ratio <= 1. l1_ratio=0 corresponds to L2 penalty, l1_ratio=1 to L1. Defaults to 0.15. fit_intercept : bool Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. Defaults to True. n_iter : int, optional The number of passes over the training data (aka epochs). The number of iterations is set to 1 if using partial_fit. Defaults to 5. shuffle : bool, optional Whether or not the training data should be shuffled after each epoch. Defaults to True. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. verbose : integer, optional The verbosity level epsilon : float Epsilon in the epsilon-insensitive loss functions; only if `loss` is 'huber', 'epsilon_insensitive', or 'squared_epsilon_insensitive'. For 'huber', determines the threshold at which it becomes less important to get the prediction exactly right. For epsilon-insensitive, any differences between the current prediction and the correct label are ignored if they are less than this threshold. n_jobs : integer, optional The number of CPUs to use to do the OVA (One Versus All, for multi-class problems) computation. -1 means 'all CPUs'. Defaults to 1. learning_rate : string, optional The learning rate schedule: constant: eta = eta0 optimal: eta = 1.0 / (alpha * (t + t0)) [default] invscaling: eta = eta0 / pow(t, power_t) where t0 is chosen by a heuristic proposed by Leon Bottou. eta0 : double The initial learning rate for the 'constant' or 'invscaling' schedules. The default value is 0.0 as eta0 is not used by the default schedule 'optimal'. power_t : double The exponent for inverse scaling learning rate [default 0.5]. class_weight : dict, {class_label: weight} or "balanced" or None, optional Preset for the class_weight fit parameter. Weights associated with classes. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` warm_start : bool, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. average : bool or int, optional When set to True, computes the averaged SGD weights and stores the result in the ``coef_`` attribute. If set to an int greater than 1, averaging will begin once the total number of samples seen reaches average. So average=10 will begin averaging after seeing 10 samples. Attributes ---------- coef_ : array, shape (1, n_features) if n_classes == 2 else (n_classes,\ n_features) Weights assigned to the features. intercept_ : array, shape (1,) if n_classes == 2 else (n_classes,) Constants in decision function. Examples -------- >>> import numpy as np >>> from sklearn import linear_model >>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) >>> Y = np.array([1, 1, 2, 2]) >>> clf = linear_model.SGDClassifier() >>> clf.fit(X, Y) ... #doctest: +NORMALIZE_WHITESPACE SGDClassifier(alpha=0.0001, average=False, class_weight=None, epsilon=0.1, eta0=0.0, fit_intercept=True, l1_ratio=0.15, learning_rate='optimal', loss='hinge', n_iter=5, n_jobs=1, penalty='l2', power_t=0.5, random_state=None, shuffle=True, verbose=0, warm_start=False) >>> print(clf.predict([[-0.8, -1]])) [1] See also -------- LinearSVC, LogisticRegression, Perceptron """ def __init__(self, loss="hinge", penalty='l2', alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=DEFAULT_EPSILON, n_jobs=1, random_state=None, learning_rate="optimal", eta0=0.0, power_t=0.5, class_weight=None, warm_start=False, average=False): super(SGDClassifier, self).__init__( loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, epsilon=epsilon, n_jobs=n_jobs, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, class_weight=class_weight, warm_start=warm_start, average=average) def _check_proba(self): check_is_fitted(self, "t_") if self.loss not in ("log", "modified_huber"): raise AttributeError("probability estimates are not available for" " loss=%r" % self.loss) @property def predict_proba(self): """Probability estimates. This method is only available for log loss and modified Huber loss. Multiclass probability estimates are derived from binary (one-vs.-rest) estimates by simple normalization, as recommended by Zadrozny and Elkan. Binary probability estimates for loss="modified_huber" are given by (clip(decision_function(X), -1, 1) + 1) / 2. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Returns ------- array, shape (n_samples, n_classes) Returns the probability of the sample for each class in the model, where classes are ordered as they are in `self.classes_`. References ---------- Zadrozny and Elkan, "Transforming classifier scores into multiclass probability estimates", SIGKDD'02, http://www.research.ibm.com/people/z/zadrozny/kdd2002-Transf.pdf The justification for the formula in the loss="modified_huber" case is in the appendix B in: http://jmlr.csail.mit.edu/papers/volume2/zhang02c/zhang02c.pdf """ self._check_proba() return self._predict_proba def _predict_proba(self, X): if self.loss == "log": return self._predict_proba_lr(X) elif self.loss == "modified_huber": binary = (len(self.classes_) == 2) scores = self.decision_function(X) if binary: prob2 = np.ones((scores.shape[0], 2)) prob = prob2[:, 1] else: prob = scores np.clip(scores, -1, 1, prob) prob += 1. prob /= 2. if binary: prob2[:, 0] -= prob prob = prob2 else: # the above might assign zero to all classes, which doesn't # normalize neatly; work around this to produce uniform # probabilities prob_sum = prob.sum(axis=1) all_zero = (prob_sum == 0) if np.any(all_zero): prob[all_zero, :] = 1 prob_sum[all_zero] = len(self.classes_) # normalize prob /= prob_sum.reshape((prob.shape[0], -1)) return prob else: raise NotImplementedError("predict_(log_)proba only supported when" " loss='log' or loss='modified_huber' " "(%r given)" % self.loss) @property def predict_log_proba(self): """Log of probability estimates. This method is only available for log loss and modified Huber loss. When loss="modified_huber", probability estimates may be hard zeros and ones, so taking the logarithm is not possible. See ``predict_proba`` for details. Parameters ---------- X : array-like, shape (n_samples, n_features) Returns ------- T : array-like, shape (n_samples, n_classes) Returns the log-probability of the sample for each class in the model, where classes are ordered as they are in `self.classes_`. """ self._check_proba() return self._predict_log_proba def _predict_log_proba(self, X): return np.log(self.predict_proba(X)) class BaseSGDRegressor(BaseSGD, RegressorMixin): loss_functions = { "squared_loss": (SquaredLoss, ), "huber": (Huber, DEFAULT_EPSILON), "epsilon_insensitive": (EpsilonInsensitive, DEFAULT_EPSILON), "squared_epsilon_insensitive": (SquaredEpsilonInsensitive, DEFAULT_EPSILON), } @abstractmethod def __init__(self, loss="squared_loss", penalty="l2", alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=DEFAULT_EPSILON, random_state=None, learning_rate="invscaling", eta0=0.01, power_t=0.25, warm_start=False, average=False): super(BaseSGDRegressor, self).__init__(loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, epsilon=epsilon, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, warm_start=warm_start, average=average) def _partial_fit(self, X, y, alpha, C, loss, learning_rate, n_iter, sample_weight, coef_init, intercept_init): X, y = check_X_y(X, y, "csr", copy=False, order='C', dtype=np.float64) y = astype(y, np.float64, copy=False) n_samples, n_features = X.shape self._validate_params() # Allocate datastructures from input arguments sample_weight = self._validate_sample_weight(sample_weight, n_samples) if self.coef_ is None: self._allocate_parameter_mem(1, n_features, coef_init, intercept_init) elif n_features != self.coef_.shape[-1]: raise ValueError("Number of features %d does not match previous " "data %d." % (n_features, self.coef_.shape[-1])) if self.average > 0 and self.average_coef_ is None: self.average_coef_ = np.zeros(n_features, dtype=np.float64, order="C") self.average_intercept_ = np.zeros(1, dtype=np.float64, order="C") self._fit_regressor(X, y, alpha, C, loss, learning_rate, sample_weight, n_iter) return self def partial_fit(self, X, y, sample_weight=None): """Fit linear model with Stochastic Gradient Descent. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Subset of training data y : numpy array of shape (n_samples,) Subset of target values sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples. If not provided, uniform weights are assumed. Returns ------- self : returns an instance of self. """ return self._partial_fit(X, y, self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, n_iter=1, sample_weight=sample_weight, coef_init=None, intercept_init=None) def _fit(self, X, y, alpha, C, loss, learning_rate, coef_init=None, intercept_init=None, sample_weight=None): if self.warm_start and self.coef_ is not None: if coef_init is None: coef_init = self.coef_ if intercept_init is None: intercept_init = self.intercept_ else: self.coef_ = None self.intercept_ = None if self.average > 0: self.standard_intercept_ = self.intercept_ self.standard_coef_ = self.coef_ self.average_coef_ = None self.average_intercept_ = None # Clear iteration count for multiple call to fit. self.t_ = None return self._partial_fit(X, y, alpha, C, loss, learning_rate, self.n_iter, sample_weight, coef_init, intercept_init) def fit(self, X, y, coef_init=None, intercept_init=None, sample_weight=None): """Fit linear model with Stochastic Gradient Descent. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data y : numpy array, shape (n_samples,) Target values coef_init : array, shape (n_features,) The initial coefficients to warm-start the optimization. intercept_init : array, shape (1,) The initial intercept to warm-start the optimization. sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples (1. for unweighted). Returns ------- self : returns an instance of self. """ return self._fit(X, y, alpha=self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, coef_init=coef_init, intercept_init=intercept_init, sample_weight=sample_weight) @deprecated(" and will be removed in 0.19.") def decision_function(self, X): """Predict using the linear model Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Returns ------- array, shape (n_samples,) Predicted target values per element in X. """ return self._decision_function(X) def _decision_function(self, X): """Predict using the linear model Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Returns ------- array, shape (n_samples,) Predicted target values per element in X. """ check_is_fitted(self, ["t_", "coef_", "intercept_"], all_or_any=all) X = check_array(X, accept_sparse='csr') scores = safe_sparse_dot(X, self.coef_.T, dense_output=True) + self.intercept_ return scores.ravel() def predict(self, X): """Predict using the linear model Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Returns ------- array, shape (n_samples,) Predicted target values per element in X. """ return self._decision_function(X) def _fit_regressor(self, X, y, alpha, C, loss, learning_rate, sample_weight, n_iter): dataset, intercept_decay = make_dataset(X, y, sample_weight) loss_function = self._get_loss_function(loss) penalty_type = self._get_penalty_type(self.penalty) learning_rate_type = self._get_learning_rate_type(learning_rate) if self.t_ is None: self.t_ = 1.0 random_state = check_random_state(self.random_state) # numpy mtrand expects a C long which is a signed 32 bit integer under # Windows seed = random_state.randint(0, np.iinfo(np.int32).max) if self.average > 0: self.standard_coef_, self.standard_intercept_, \ self.average_coef_, self.average_intercept_ =\ average_sgd(self.standard_coef_, self.standard_intercept_[0], self.average_coef_, self.average_intercept_[0], loss_function, penalty_type, alpha, C, self.l1_ratio, dataset, n_iter, int(self.fit_intercept), int(self.verbose), int(self.shuffle), seed, 1.0, 1.0, learning_rate_type, self.eta0, self.power_t, self.t_, intercept_decay, self.average) self.average_intercept_ = np.atleast_1d(self.average_intercept_) self.standard_intercept_ = np.atleast_1d(self.standard_intercept_) self.t_ += n_iter * X.shape[0] if self.average <= self.t_ - 1.0: self.coef_ = self.average_coef_ self.intercept_ = self.average_intercept_ else: self.coef_ = self.standard_coef_ self.intercept_ = self.standard_intercept_ else: self.coef_, self.intercept_ = \ plain_sgd(self.coef_, self.intercept_[0], loss_function, penalty_type, alpha, C, self.l1_ratio, dataset, n_iter, int(self.fit_intercept), int(self.verbose), int(self.shuffle), seed, 1.0, 1.0, learning_rate_type, self.eta0, self.power_t, self.t_, intercept_decay) self.t_ += n_iter * X.shape[0] self.intercept_ = np.atleast_1d(self.intercept_) class SGDRegressor(BaseSGDRegressor, _LearntSelectorMixin): """Linear model fitted by minimizing a regularized empirical loss with SGD SGD stands for Stochastic Gradient Descent: the gradient of the loss is estimated each sample at a time and the model is updated along the way with a decreasing strength schedule (aka learning rate). The regularizer is a penalty added to the loss function that shrinks model parameters towards the zero vector using either the squared euclidean norm L2 or the absolute norm L1 or a combination of both (Elastic Net). If the parameter update crosses the 0.0 value because of the regularizer, the update is truncated to 0.0 to allow for learning sparse models and achieve online feature selection. This implementation works with data represented as dense numpy arrays of floating point values for the features. Read more in the :ref:`User Guide <sgd>`. Parameters ---------- loss : str, 'squared_loss', 'huber', 'epsilon_insensitive', \ or 'squared_epsilon_insensitive' The loss function to be used. Defaults to 'squared_loss' which refers to the ordinary least squares fit. 'huber' modifies 'squared_loss' to focus less on getting outliers correct by switching from squared to linear loss past a distance of epsilon. 'epsilon_insensitive' ignores errors less than epsilon and is linear past that; this is the loss function used in SVR. 'squared_epsilon_insensitive' is the same but becomes squared loss past a tolerance of epsilon. penalty : str, 'none', 'l2', 'l1', or 'elasticnet' The penalty (aka regularization term) to be used. Defaults to 'l2' which is the standard regularizer for linear SVM models. 'l1' and 'elasticnet' might bring sparsity to the model (feature selection) not achievable with 'l2'. alpha : float Constant that multiplies the regularization term. Defaults to 0.0001 Also used to compute learning_rate when set to 'optimal'. l1_ratio : float The Elastic Net mixing parameter, with 0 <= l1_ratio <= 1. l1_ratio=0 corresponds to L2 penalty, l1_ratio=1 to L1. Defaults to 0.15. fit_intercept : bool Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. Defaults to True. n_iter : int, optional The number of passes over the training data (aka epochs). The number of iterations is set to 1 if using partial_fit. Defaults to 5. shuffle : bool, optional Whether or not the training data should be shuffled after each epoch. Defaults to True. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. verbose : integer, optional The verbosity level. epsilon : float Epsilon in the epsilon-insensitive loss functions; only if `loss` is 'huber', 'epsilon_insensitive', or 'squared_epsilon_insensitive'. For 'huber', determines the threshold at which it becomes less important to get the prediction exactly right. For epsilon-insensitive, any differences between the current prediction and the correct label are ignored if they are less than this threshold. learning_rate : string, optional The learning rate: constant: eta = eta0 optimal: eta = 1.0/(alpha * t) invscaling: eta = eta0 / pow(t, power_t) [default] eta0 : double, optional The initial learning rate [default 0.01]. power_t : double, optional The exponent for inverse scaling learning rate [default 0.25]. warm_start : bool, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. average : bool or int, optional When set to True, computes the averaged SGD weights and stores the result in the ``coef_`` attribute. If set to an int greater than 1, averaging will begin once the total number of samples seen reaches average. So ``average=10 will`` begin averaging after seeing 10 samples. Attributes ---------- coef_ : array, shape (n_features,) Weights assigned to the features. intercept_ : array, shape (1,) The intercept term. average_coef_ : array, shape (n_features,) Averaged weights assigned to the features. average_intercept_ : array, shape (1,) The averaged intercept term. Examples -------- >>> import numpy as np >>> from sklearn import linear_model >>> n_samples, n_features = 10, 5 >>> np.random.seed(0) >>> y = np.random.randn(n_samples) >>> X = np.random.randn(n_samples, n_features) >>> clf = linear_model.SGDRegressor() >>> clf.fit(X, y) ... #doctest: +NORMALIZE_WHITESPACE SGDRegressor(alpha=0.0001, average=False, epsilon=0.1, eta0=0.01, fit_intercept=True, l1_ratio=0.15, learning_rate='invscaling', loss='squared_loss', n_iter=5, penalty='l2', power_t=0.25, random_state=None, shuffle=True, verbose=0, warm_start=False) See also -------- Ridge, ElasticNet, Lasso, SVR """ def __init__(self, loss="squared_loss", penalty="l2", alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=DEFAULT_EPSILON, random_state=None, learning_rate="invscaling", eta0=0.01, power_t=0.25, warm_start=False, average=False): super(SGDRegressor, self).__init__(loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, epsilon=epsilon, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, warm_start=warm_start, average=average)
bsd-3-clause
pratapvardhan/scikit-learn
examples/plot_multilabel.py
236
4157
# Authors: Vlad Niculae, Mathieu Blondel # License: BSD 3 clause """ ========================= Multilabel classification ========================= This example simulates a multi-label document classification problem. The dataset is generated randomly based on the following process: - pick the number of labels: n ~ Poisson(n_labels) - n times, choose a class c: c ~ Multinomial(theta) - pick the document length: k ~ Poisson(length) - k times, choose a word: w ~ Multinomial(theta_c) In the above process, rejection sampling is used to make sure that n is more than 2, and that the document length is never zero. Likewise, we reject classes which have already been chosen. The documents that are assigned to both classes are plotted surrounded by two colored circles. The classification is performed by projecting to the first two principal components found by PCA and CCA for visualisation purposes, followed by using the :class:`sklearn.multiclass.OneVsRestClassifier` metaclassifier using two SVCs with linear kernels to learn a discriminative model for each class. Note that PCA is used to perform an unsupervised dimensionality reduction, while CCA is used to perform a supervised one. Note: in the plot, "unlabeled samples" does not mean that we don't know the labels (as in semi-supervised learning) but that the samples simply do *not* have a label. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_multilabel_classification from sklearn.multiclass import OneVsRestClassifier from sklearn.svm import SVC from sklearn.preprocessing import LabelBinarizer from sklearn.decomposition import PCA from sklearn.cross_decomposition import CCA def plot_hyperplane(clf, min_x, max_x, linestyle, label): # get the separating hyperplane w = clf.coef_[0] a = -w[0] / w[1] xx = np.linspace(min_x - 5, max_x + 5) # make sure the line is long enough yy = a * xx - (clf.intercept_[0]) / w[1] plt.plot(xx, yy, linestyle, label=label) def plot_subfigure(X, Y, subplot, title, transform): if transform == "pca": X = PCA(n_components=2).fit_transform(X) elif transform == "cca": X = CCA(n_components=2).fit(X, Y).transform(X) else: raise ValueError min_x = np.min(X[:, 0]) max_x = np.max(X[:, 0]) min_y = np.min(X[:, 1]) max_y = np.max(X[:, 1]) classif = OneVsRestClassifier(SVC(kernel='linear')) classif.fit(X, Y) plt.subplot(2, 2, subplot) plt.title(title) zero_class = np.where(Y[:, 0]) one_class = np.where(Y[:, 1]) plt.scatter(X[:, 0], X[:, 1], s=40, c='gray') plt.scatter(X[zero_class, 0], X[zero_class, 1], s=160, edgecolors='b', facecolors='none', linewidths=2, label='Class 1') plt.scatter(X[one_class, 0], X[one_class, 1], s=80, edgecolors='orange', facecolors='none', linewidths=2, label='Class 2') plot_hyperplane(classif.estimators_[0], min_x, max_x, 'k--', 'Boundary\nfor class 1') plot_hyperplane(classif.estimators_[1], min_x, max_x, 'k-.', 'Boundary\nfor class 2') plt.xticks(()) plt.yticks(()) plt.xlim(min_x - .5 * max_x, max_x + .5 * max_x) plt.ylim(min_y - .5 * max_y, max_y + .5 * max_y) if subplot == 2: plt.xlabel('First principal component') plt.ylabel('Second principal component') plt.legend(loc="upper left") plt.figure(figsize=(8, 6)) X, Y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=True, random_state=1) plot_subfigure(X, Y, 1, "With unlabeled samples + CCA", "cca") plot_subfigure(X, Y, 2, "With unlabeled samples + PCA", "pca") X, Y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=False, random_state=1) plot_subfigure(X, Y, 3, "Without unlabeled samples + CCA", "cca") plot_subfigure(X, Y, 4, "Without unlabeled samples + PCA", "pca") plt.subplots_adjust(.04, .02, .97, .94, .09, .2) plt.show()
bsd-3-clause
zachcp/qiime
qiime/quality_scores_plot.py
9
6918
#!/usr/bin/env python # File created Sept 29, 2010 from __future__ import division __author__ = "William Walters" __copyright__ = "Copyright 2011, The QIIME Project" __credits__ = ["William Walters", "Greg Caporaso"] __license__ = "GPL" __version__ = "1.9.1-dev" __maintainer__ = "William Walters" __email__ = "William.A.Walters@colorado.edu" from matplotlib import use use('Agg', warn=False) from skbio.parse.sequences import parse_fasta from numpy import arange, std, average from pylab import plot, savefig, xlabel, ylabel, text, \ hist, figure, legend, title, show, xlim, ylim, xticks, yticks,\ scatter, subplot from matplotlib.font_manager import fontManager, FontProperties from qiime.util import gzip_open from qiime.parse import parse_qual_score def bin_qual_scores(qual_scores): """ Bins qual score according to nucleotide position qual_scores: Dict of label: numpy array of base scores """ qual_bins = [] qual_lens = [] for l in qual_scores.values(): qual_lens.append(len(l)) max_seq_size = max(qual_lens) for base_position in range(max_seq_size): qual_bins.append([]) for scores in qual_scores.values(): # Add score if exists in base position, otherwise skip try: qual_bins[base_position].append(scores[base_position]) except IndexError: continue return qual_bins def get_qual_stats(qual_bins, score_min): """ Generates bins of averages, std devs, total NT from quality bins""" ave_bins = [] std_dev_bins = [] total_bases_bins = [] found_first_poor_qual_pos = False suggested_trunc_pos = None for base_position in qual_bins: total_bases_bins.append(len(base_position)) std_dev_bins.append(std(base_position)) ave_bins.append(average(base_position)) if not found_first_poor_qual_pos: if average(base_position) < score_min: suggested_trunc_pos = qual_bins.index(base_position) found_first_poor_qual_pos = True return ave_bins, std_dev_bins, total_bases_bins, suggested_trunc_pos def plot_qual_report(ave_bins, std_dev_bins, total_bases_bins, score_min, output_dir): """ Plots, saves graph showing quality score averages, stddev. Additionally, the total nucleotide count for each position is shown on a second subplot ave_bins: list with average quality score for each base position std_dev_bins: list with standard deviation for each base position total_bases_bins: list with total counts of bases for each position score_min: lowest value that a given base call can be and still be acceptable. Used to generate a dotted line on the graph for easy assay of the poor scoring positions. output_dir: output directory """ t = arange(0, len(ave_bins), 1) std_dev_plus = [] std_dev_minus = [] for n in range(len(ave_bins)): std_dev_plus.append(ave_bins[n] + std_dev_bins[n]) std_dev_minus.append(ave_bins[n] - std_dev_bins[n]) figure_num = 0 f = figure(figure_num, figsize=(8, 10)) figure_title = "Quality Scores Report" f.text(.5, .93, figure_title, horizontalalignment='center', size="large") subplot(2, 1, 1) plot(t, ave_bins, linewidth=2.0, color="black") plot(t, std_dev_plus, linewidth=0.5, color="red") dashed_line = [score_min] * len(ave_bins) l, = plot(dashed_line, '--', color='gray') plot(t, std_dev_minus, linewidth=0.5, color="red") legend( ('Quality Score Average', 'Std Dev', 'Score Threshold'), loc='lower left') xlabel("Nucleotide Position") ylabel("Quality Score") subplot(2, 1, 2) plot(t, total_bases_bins, linewidth=2.0, color="blue") xlabel("Nucleotide Position") ylabel("Nucleotide Counts") outfile_name = output_dir + "/quality_scores_plot.pdf" savefig(outfile_name) def write_qual_report(ave_bins, std_dev_bins, total_bases_bins, output_dir, suggested_trunc_pos): """ Writes data in bins to output text file ave_bins: list with average quality score for each base position std_dev_bins: list with standard deviation for each base position total_bases_bins: list with total counts of bases for each position output_dir: output directory suggested_trunc_pos: Position where average quality score dropped below the score minimum (25 by default) """ outfile_name = output_dir + "/quality_bins.txt" outfile = open(outfile_name, "w") outfile.write("# Suggested nucleotide truncation position (None if " + "quality score average did not drop below the score minimum threshold)" + ": %s\n" % suggested_trunc_pos) outfile.write("# Average quality score bins\n") outfile.write(",".join(str("%2.3f" % ave) for ave in ave_bins) + "\n") outfile.write("# Standard deviation bins\n") outfile.write(",".join(str("%2.3f" % std) for std in std_dev_bins) + "\n") outfile.write("# Total bases per nucleotide position bins\n") outfile.write(",".join(str("%d" % total_bases) for total_bases in total_bases_bins)) def generate_histogram(qual_fp, output_dir, score_min=25, verbose=True, qual_parser=parse_qual_score): """ Main program function for generating quality score histogram qual_fp: quality score filepath output_dir: output directory score_min: minimum score to be considered a reliable base call, used to generate dotted line on histogram for easy visualization of poor quality scores. qual_parser : function to apply to extract quality scores """ if qual_fp.endswith('.gz'): qual_lines = gzip_open(qual_fp) else: qual_lines = open(qual_fp, "U") qual_scores = qual_parser(qual_lines) # Sort bins according to base position qual_bins = bin_qual_scores(qual_scores) # Get average, std dev, and total nucleotide counts for each base position ave_bins, std_dev_bins, total_bases_bins, suggested_trunc_pos =\ get_qual_stats(qual_bins, score_min) plot_qual_report(ave_bins, std_dev_bins, total_bases_bins, score_min, output_dir) # Save values to output text file write_qual_report(ave_bins, std_dev_bins, total_bases_bins, output_dir, suggested_trunc_pos) if verbose: print "Suggested nucleotide truncation position (None if quality " +\ "score average did not fall below the minimum score parameter): %s\n" %\ suggested_trunc_pos
gpl-2.0
qifeigit/scikit-learn
sklearn/neighbors/tests/test_dist_metrics.py
230
5234
import itertools import pickle import numpy as np from numpy.testing import assert_array_almost_equal import scipy from scipy.spatial.distance import cdist from sklearn.neighbors.dist_metrics import DistanceMetric from nose import SkipTest def dist_func(x1, x2, p): return np.sum((x1 - x2) ** p) ** (1. / p) def cmp_version(version1, version2): version1 = tuple(map(int, version1.split('.')[:2])) version2 = tuple(map(int, version2.split('.')[:2])) if version1 < version2: return -1 elif version1 > version2: return 1 else: return 0 class TestMetrics: def __init__(self, n1=20, n2=25, d=4, zero_frac=0.5, rseed=0, dtype=np.float64): np.random.seed(rseed) self.X1 = np.random.random((n1, d)).astype(dtype) self.X2 = np.random.random((n2, d)).astype(dtype) # make boolean arrays: ones and zeros self.X1_bool = self.X1.round(0) self.X2_bool = self.X2.round(0) V = np.random.random((d, d)) VI = np.dot(V, V.T) self.metrics = {'euclidean': {}, 'cityblock': {}, 'minkowski': dict(p=(1, 1.5, 2, 3)), 'chebyshev': {}, 'seuclidean': dict(V=(np.random.random(d),)), 'wminkowski': dict(p=(1, 1.5, 3), w=(np.random.random(d),)), 'mahalanobis': dict(VI=(VI,)), 'hamming': {}, 'canberra': {}, 'braycurtis': {}} self.bool_metrics = ['matching', 'jaccard', 'dice', 'kulsinski', 'rogerstanimoto', 'russellrao', 'sokalmichener', 'sokalsneath'] def test_cdist(self): for metric, argdict in self.metrics.items(): keys = argdict.keys() for vals in itertools.product(*argdict.values()): kwargs = dict(zip(keys, vals)) D_true = cdist(self.X1, self.X2, metric, **kwargs) yield self.check_cdist, metric, kwargs, D_true for metric in self.bool_metrics: D_true = cdist(self.X1_bool, self.X2_bool, metric) yield self.check_cdist_bool, metric, D_true def check_cdist(self, metric, kwargs, D_true): if metric == 'canberra' and cmp_version(scipy.__version__, '0.9') <= 0: raise SkipTest("Canberra distance incorrect in scipy < 0.9") dm = DistanceMetric.get_metric(metric, **kwargs) D12 = dm.pairwise(self.X1, self.X2) assert_array_almost_equal(D12, D_true) def check_cdist_bool(self, metric, D_true): dm = DistanceMetric.get_metric(metric) D12 = dm.pairwise(self.X1_bool, self.X2_bool) assert_array_almost_equal(D12, D_true) def test_pdist(self): for metric, argdict in self.metrics.items(): keys = argdict.keys() for vals in itertools.product(*argdict.values()): kwargs = dict(zip(keys, vals)) D_true = cdist(self.X1, self.X1, metric, **kwargs) yield self.check_pdist, metric, kwargs, D_true for metric in self.bool_metrics: D_true = cdist(self.X1_bool, self.X1_bool, metric) yield self.check_pdist_bool, metric, D_true def check_pdist(self, metric, kwargs, D_true): if metric == 'canberra' and cmp_version(scipy.__version__, '0.9') <= 0: raise SkipTest("Canberra distance incorrect in scipy < 0.9") dm = DistanceMetric.get_metric(metric, **kwargs) D12 = dm.pairwise(self.X1) assert_array_almost_equal(D12, D_true) def check_pdist_bool(self, metric, D_true): dm = DistanceMetric.get_metric(metric) D12 = dm.pairwise(self.X1_bool) assert_array_almost_equal(D12, D_true) def test_haversine_metric(): def haversine_slow(x1, x2): return 2 * np.arcsin(np.sqrt(np.sin(0.5 * (x1[0] - x2[0])) ** 2 + np.cos(x1[0]) * np.cos(x2[0]) * np.sin(0.5 * (x1[1] - x2[1])) ** 2)) X = np.random.random((10, 2)) haversine = DistanceMetric.get_metric("haversine") D1 = haversine.pairwise(X) D2 = np.zeros_like(D1) for i, x1 in enumerate(X): for j, x2 in enumerate(X): D2[i, j] = haversine_slow(x1, x2) assert_array_almost_equal(D1, D2) assert_array_almost_equal(haversine.dist_to_rdist(D1), np.sin(0.5 * D2) ** 2) def test_pyfunc_metric(): X = np.random.random((10, 3)) euclidean = DistanceMetric.get_metric("euclidean") pyfunc = DistanceMetric.get_metric("pyfunc", func=dist_func, p=2) # Check if both callable metric and predefined metric initialized # DistanceMetric object is picklable euclidean_pkl = pickle.loads(pickle.dumps(euclidean)) pyfunc_pkl = pickle.loads(pickle.dumps(pyfunc)) D1 = euclidean.pairwise(X) D2 = pyfunc.pairwise(X) D1_pkl = euclidean_pkl.pairwise(X) D2_pkl = pyfunc_pkl.pairwise(X) assert_array_almost_equal(D1, D2) assert_array_almost_equal(D1_pkl, D2_pkl)
bsd-3-clause
barbagroup/PetIBM
examples/ibpm/cylinder2dRe40/scripts/plotVorticity.py
4
1401
""" Computes, plots, and saves the 2D vorticity field from a PetIBM simulation after 2000 time steps (20 non-dimensional time-units). """ import pathlib import h5py import numpy from matplotlib import pyplot simu_dir = pathlib.Path(__file__).absolute().parents[1] data_dir = simu_dir / 'output' # Read vorticity field and its grid from files. name = 'wz' filepath = data_dir / 'grid.h5' f = h5py.File(filepath, 'r') x, y = f[name]['x'][:], f[name]['y'][:] X, Y = numpy.meshgrid(x, y) timestep = 2000 filepath = data_dir / '{:0>7}.h5'.format(timestep) f = h5py.File(filepath, 'r') wz = f[name][:] # Read body coordinates from file. filepath = simu_dir / 'circle.body' with open(filepath, 'r') as infile: xb, yb = numpy.loadtxt(infile, dtype=numpy.float64, unpack=True, skiprows=1) pyplot.rc('font', family='serif', size=16) # Plot the filled contour of the vorticity. fig, ax = pyplot.subplots(figsize=(6.0, 6.0)) ax.grid() ax.set_xlabel('x') ax.set_ylabel('y') levels = numpy.linspace(-3.0, 3.0, 16) ax.contour(X, Y, wz, levels=levels, colors='black') ax.plot(xb, yb, color='red') ax.set_xlim(-1.0, 4.0) ax.set_ylim(-2.0, 2.0) ax.set_aspect('equal') fig.tight_layout() pyplot.show() # Save figure. fig_dir = simu_dir / 'figures' fig_dir.mkdir(parents=True, exist_ok=True) filepath = fig_dir / 'wz{:0>7}.png'.format(timestep) fig.savefig(str(filepath), dpi=300)
bsd-3-clause
jonyroda97/redbot-amigosprovaveis
lib/matplotlib/units.py
2
6084
""" The classes here provide support for using custom classes with matplotlib, e.g., those that do not expose the array interface but know how to convert themselves to arrays. It also supports classes with units and units conversion. Use cases include converters for custom objects, e.g., a list of datetime objects, as well as for objects that are unit aware. We don't assume any particular units implementation; rather a units implementation must provide the register with the Registry converter dictionary and a ConversionInterface. For example, here is a complete implementation which supports plotting with native datetime objects:: import matplotlib.units as units import matplotlib.dates as dates import matplotlib.ticker as ticker import datetime class DateConverter(units.ConversionInterface): @staticmethod def convert(value, unit, axis): 'convert value to a scalar or array' return dates.date2num(value) @staticmethod def axisinfo(unit, axis): 'return major and minor tick locators and formatters' if unit!='date': return None majloc = dates.AutoDateLocator() majfmt = dates.AutoDateFormatter(majloc) return AxisInfo(majloc=majloc, majfmt=majfmt, label='date') @staticmethod def default_units(x, axis): 'return the default unit for x or None' return 'date' # finally we register our object type with a converter units.registry[datetime.date] = DateConverter() """ from __future__ import (absolute_import, division, print_function, unicode_literals) import six from matplotlib.cbook import iterable, is_numlike, safe_first_element import numpy as np class AxisInfo(object): """information to support default axis labeling and tick labeling, and default limits""" def __init__(self, majloc=None, minloc=None, majfmt=None, minfmt=None, label=None, default_limits=None): """ majloc and minloc: TickLocators for the major and minor ticks majfmt and minfmt: TickFormatters for the major and minor ticks label: the default axis label default_limits: the default min, max of the axis if no data is present If any of the above are None, the axis will simply use the default """ self.majloc = majloc self.minloc = minloc self.majfmt = majfmt self.minfmt = minfmt self.label = label self.default_limits = default_limits class ConversionInterface(object): """ The minimal interface for a converter to take custom instances (or sequences) and convert them to values mpl can use """ @staticmethod def axisinfo(unit, axis): 'return an units.AxisInfo instance for axis with the specified units' return None @staticmethod def default_units(x, axis): 'return the default unit for x or None for the given axis' return None @staticmethod def convert(obj, unit, axis): """ convert obj using unit for the specified axis. If obj is a sequence, return the converted sequence. The output must be a sequence of scalars that can be used by the numpy array layer """ return obj @staticmethod def is_numlike(x): """ The matplotlib datalim, autoscaling, locators etc work with scalars which are the units converted to floats given the current unit. The converter may be passed these floats, or arrays of them, even when units are set. Derived conversion interfaces may opt to pass plain-ol unitless numbers through the conversion interface and this is a helper function for them. """ if iterable(x): for thisx in x: return is_numlike(thisx) else: return is_numlike(x) class Registry(dict): """ register types with conversion interface """ def __init__(self): dict.__init__(self) self._cached = {} def get_converter(self, x): 'get the converter interface instance for x, or None' if not len(self): return None # nothing registered # DISABLED idx = id(x) # DISABLED cached = self._cached.get(idx) # DISABLED if cached is not None: return cached converter = None classx = getattr(x, '__class__', None) if classx is not None: converter = self.get(classx) if isinstance(x, np.ndarray) and x.size: xravel = x.ravel() try: # pass the first value of x that is not masked back to # get_converter if not np.all(xravel.mask): # some elements are not masked converter = self.get_converter( xravel[np.argmin(xravel.mask)]) return converter except AttributeError: # not a masked_array # Make sure we don't recurse forever -- it's possible for # ndarray subclasses to continue to return subclasses and # not ever return a non-subclass for a single element. next_item = xravel[0] if (not isinstance(next_item, np.ndarray) or next_item.shape != x.shape): converter = self.get_converter(next_item) return converter if converter is None: try: thisx = safe_first_element(x) except (TypeError, StopIteration): pass else: if classx and classx != getattr(thisx, '__class__', None): converter = self.get_converter(thisx) return converter # DISABLED self._cached[idx] = converter return converter registry = Registry()
gpl-3.0
xiaoxiamii/scikit-learn
benchmarks/bench_plot_svd.py
325
2899
"""Benchmarks of Singular Value Decomposition (Exact and Approximate) The data is mostly low rank but is a fat infinite tail. """ import gc from time import time import numpy as np from collections import defaultdict from scipy.linalg import svd from sklearn.utils.extmath import randomized_svd from sklearn.datasets.samples_generator import make_low_rank_matrix def compute_bench(samples_range, features_range, n_iter=3, rank=50): it = 0 results = defaultdict(lambda: []) max_it = len(samples_range) * len(features_range) for n_samples in samples_range: for n_features in features_range: it += 1 print('====================') print('Iteration %03d of %03d' % (it, max_it)) print('====================') X = make_low_rank_matrix(n_samples, n_features, effective_rank=rank, tail_strength=0.2) gc.collect() print("benchmarking scipy svd: ") tstart = time() svd(X, full_matrices=False) results['scipy svd'].append(time() - tstart) gc.collect() print("benchmarking scikit-learn randomized_svd: n_iter=0") tstart = time() randomized_svd(X, rank, n_iter=0) results['scikit-learn randomized_svd (n_iter=0)'].append( time() - tstart) gc.collect() print("benchmarking scikit-learn randomized_svd: n_iter=%d " % n_iter) tstart = time() randomized_svd(X, rank, n_iter=n_iter) results['scikit-learn randomized_svd (n_iter=%d)' % n_iter].append(time() - tstart) return results if __name__ == '__main__': from mpl_toolkits.mplot3d import axes3d # register the 3d projection import matplotlib.pyplot as plt samples_range = np.linspace(2, 1000, 4).astype(np.int) features_range = np.linspace(2, 1000, 4).astype(np.int) results = compute_bench(samples_range, features_range) label = 'scikit-learn singular value decomposition benchmark results' fig = plt.figure(label) ax = fig.gca(projection='3d') for c, (label, timings) in zip('rbg', sorted(results.iteritems())): X, Y = np.meshgrid(samples_range, features_range) Z = np.asarray(timings).reshape(samples_range.shape[0], features_range.shape[0]) # plot the actual surface ax.plot_surface(X, Y, Z, rstride=8, cstride=8, alpha=0.3, color=c) # dummy point plot to stick the legend to since surface plot do not # support legends (yet?) ax.plot([1], [1], [1], color=c, label=label) ax.set_xlabel('n_samples') ax.set_ylabel('n_features') ax.set_zlabel('Time (s)') ax.legend() plt.show()
bsd-3-clause
mcocdawc/chemopt
src/chemopt/utilities/_print_versions.py
2
4591
# The following code was taken from the pandas project and modified. # http://pandas.pydata.org/ import codecs import importlib import locale import os import platform import struct import sys def get_sys_info(): "Returns system information as a dict" blob = [] # commit = cc._git_hash # blob.append(('commit', commit)) try: (sysname, nodename, release, version, machine, processor) = platform.uname() blob.extend([ ("python", "%d.%d.%d.%s.%s" % sys.version_info[:]), ("python-bits", struct.calcsize("P") * 8), ("OS", "%s" % (sysname)), ("OS-release", "%s" % (release)), # ("Version", "%s" % (version)), ("machine", "%s" % (machine)), ("processor", "%s" % (processor)), # ("byteorder", "%s" % sys.byteorder), ("LC_ALL", "%s" % os.environ.get('LC_ALL', "None")), ("LANG", "%s" % os.environ.get('LANG', "None")), ("LOCALE", "%s.%s" % locale.getlocale()), ]) except Exception: pass return blob def show_versions(as_json=False): sys_info = get_sys_info() deps = [ # (MODULE_NAME, f(mod) -> mod version) ("chemcoord", lambda mod: mod.__version__), ("numpy", lambda mod: mod.version.version), ("scipy", lambda mod: mod.version.version), ("pandas", lambda mod: mod.__version__), ("numba", lambda mod: mod.__version__), ("sortedcontainers", lambda mod: mod.__version__), ("sympy", lambda mod: mod.__version__), ("pytest", lambda mod: mod.__version__), ("pip", lambda mod: mod.__version__), ("setuptools", lambda mod: mod.__version__), ("IPython", lambda mod: mod.__version__), ("sphinx", lambda mod: mod.__version__), # ("tables", lambda mod: mod.__version__), # ("matplotlib", lambda mod: mod.__version__), # ("Cython", lambda mod: mod.__version__), # ("xarray", lambda mod: mod.__version__), # ("patsy", lambda mod: mod.__version__), # ("dateutil", lambda mod: mod.__version__), # ("pytz", lambda mod: mod.VERSION), # ("blosc", lambda mod: mod.__version__), # ("bottleneck", lambda mod: mod.__version__), # ("numexpr", lambda mod: mod.__version__), # ("feather", lambda mod: mod.__version__), # ("openpyxl", lambda mod: mod.__version__), # ("xlrd", lambda mod: mod.__VERSION__), # ("xlwt", lambda mod: mod.__VERSION__), # ("xlsxwriter", lambda mod: mod.__version__), # ("lxml", lambda mod: mod.etree.__version__), # ("bs4", lambda mod: mod.__version__), # ("html5lib", lambda mod: mod.__version__), # ("sqlalchemy", lambda mod: mod.__version__), # ("pymysql", lambda mod: mod.__version__), # ("psycopg2", lambda mod: mod.__version__), # ("jinja2", lambda mod: mod.__version__), # ("s3fs", lambda mod: mod.__version__), # ("pandas_gbq", lambda mod: mod.__version__), # ("pandas_datareader", lambda mod: mod.__version__) ] deps_blob = list() for (modname, ver_f) in deps: try: if modname in sys.modules: mod = sys.modules[modname] else: mod = importlib.import_module(modname) ver = ver_f(mod) deps_blob.append((modname, ver)) except Exception: deps_blob.append((modname, None)) if (as_json): try: import json except Exception: import simplejson as json j = dict(system=dict(sys_info), dependencies=dict(deps_blob)) if as_json is True: print(j) else: with codecs.open(as_json, "wb", encoding='utf8') as f: json.dump(j, f, indent=2) else: print("\nINSTALLED VERSIONS") print("------------------") for k, stat in sys_info: print("%s: %s" % (k, stat)) print("") for k, stat in deps_blob: print("%s: %s" % (k, stat)) def main(): from optparse import OptionParser parser = OptionParser() parser.add_option("-j", "--json", metavar="FILE", nargs=1, help="Save output as JSON into file, pass in " "'-' to output to stdout") options = parser.parse_args()[0] if options.json == "-": options.json = True show_versions(as_json=options.json) return 0 if __name__ == "__main__": sys.exit(main())
lgpl-3.0
lscheinkman/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/units.py
70
4810
""" The classes here provide support for using custom classes with matplotlib, eg those that do not expose the array interface but know how to converter themselves to arrays. It also supoprts classes with units and units conversion. Use cases include converters for custom objects, eg a list of datetime objects, as well as for objects that are unit aware. We don't assume any particular units implementation, rather a units implementation must provide a ConversionInterface, and the register with the Registry converter dictionary. For example, here is a complete implementation which support plotting with native datetime objects import matplotlib.units as units import matplotlib.dates as dates import matplotlib.ticker as ticker import datetime class DateConverter(units.ConversionInterface): def convert(value, unit): 'convert value to a scalar or array' return dates.date2num(value) convert = staticmethod(convert) def axisinfo(unit): 'return major and minor tick locators and formatters' if unit!='date': return None majloc = dates.AutoDateLocator() majfmt = dates.AutoDateFormatter(majloc) return AxisInfo(majloc=majloc, majfmt=majfmt, label='date') axisinfo = staticmethod(axisinfo) def default_units(x): 'return the default unit for x or None' return 'date' default_units = staticmethod(default_units) # finally we register our object type with a converter units.registry[datetime.date] = DateConverter() """ import numpy as np from matplotlib.cbook import iterable, is_numlike class AxisInfo: 'information to support default axis labeling and tick labeling' def __init__(self, majloc=None, minloc=None, majfmt=None, minfmt=None, label=None): """ majloc and minloc: TickLocators for the major and minor ticks majfmt and minfmt: TickFormatters for the major and minor ticks label: the default axis label If any of the above are None, the axis will simply use the default """ self.majloc = majloc self.minloc = minloc self.majfmt = majfmt self.minfmt = minfmt self.label = label class ConversionInterface: """ The minimal interface for a converter to take custom instances (or sequences) and convert them to values mpl can use """ def axisinfo(unit): 'return an units.AxisInfo instance for unit' return None axisinfo = staticmethod(axisinfo) def default_units(x): 'return the default unit for x or None' return None default_units = staticmethod(default_units) def convert(obj, unit): """ convert obj using unit. If obj is a sequence, return the converted sequence. The ouput must be a sequence of scalars that can be used by the numpy array layer """ return obj convert = staticmethod(convert) def is_numlike(x): """ The matplotlib datalim, autoscaling, locators etc work with scalars which are the units converted to floats given the current unit. The converter may be passed these floats, or arrays of them, even when units are set. Derived conversion interfaces may opt to pass plain-ol unitless numbers through the conversion interface and this is a helper function for them. """ if iterable(x): for thisx in x: return is_numlike(thisx) else: return is_numlike(x) is_numlike = staticmethod(is_numlike) class Registry(dict): """ register types with conversion interface """ def __init__(self): dict.__init__(self) self._cached = {} def get_converter(self, x): 'get the converter interface instance for x, or None' if not len(self): return None # nothing registered #DISABLED idx = id(x) #DISABLED cached = self._cached.get(idx) #DISABLED if cached is not None: return cached converter = None classx = getattr(x, '__class__', None) if classx is not None: converter = self.get(classx) if converter is None and iterable(x): # if this is anything but an object array, we'll assume # there are no custom units if isinstance(x, np.ndarray) and x.dtype != np.object: return None for thisx in x: converter = self.get_converter( thisx ) return converter #DISABLED self._cached[idx] = converter return converter registry = Registry()
agpl-3.0
Akshay0724/scikit-learn
sklearn/model_selection/_split.py
12
63090
""" The :mod:`sklearn.model_selection._split` module includes classes and functions to split the data based on a preset strategy. """ # Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>, # Gael Varoquaux <gael.varoquaux@normalesup.org>, # Olivier Grisel <olivier.grisel@ensta.org> # Raghav RV <rvraghav93@gmail.com> # License: BSD 3 clause from __future__ import print_function from __future__ import division import warnings from itertools import chain, combinations from collections import Iterable from math import ceil, floor import numbers from abc import ABCMeta, abstractmethod import numpy as np from scipy.misc import comb from ..utils import indexable, check_random_state, safe_indexing from ..utils.validation import _num_samples, column_or_1d from ..utils.validation import check_array from ..utils.multiclass import type_of_target from ..externals.six import with_metaclass from ..externals.six.moves import zip from ..utils.fixes import bincount from ..utils.fixes import signature from ..utils.random import choice from ..base import _pprint __all__ = ['BaseCrossValidator', 'KFold', 'GroupKFold', 'LeaveOneGroupOut', 'LeaveOneOut', 'LeavePGroupsOut', 'LeavePOut', 'ShuffleSplit', 'GroupShuffleSplit', 'StratifiedKFold', 'StratifiedShuffleSplit', 'PredefinedSplit', 'train_test_split', 'check_cv'] class BaseCrossValidator(with_metaclass(ABCMeta)): """Base class for all cross-validators Implementations must define `_iter_test_masks` or `_iter_test_indices`. """ def __init__(self): # We need this for the build_repr to work properly in py2.7 # see #6304 pass def split(self, X, y=None, groups=None): """Generate indices to split data into training and test set. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. y : array-like, of length n_samples The target variable for supervised learning problems. groups : array-like, with shape (n_samples,), optional Group labels for the samples used while splitting the dataset into train/test set. Returns ------- train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. """ X, y, groups = indexable(X, y, groups) indices = np.arange(_num_samples(X)) for test_index in self._iter_test_masks(X, y, groups): train_index = indices[np.logical_not(test_index)] test_index = indices[test_index] yield train_index, test_index # Since subclasses must implement either _iter_test_masks or # _iter_test_indices, neither can be abstract. def _iter_test_masks(self, X=None, y=None, groups=None): """Generates boolean masks corresponding to test sets. By default, delegates to _iter_test_indices(X, y, groups) """ for test_index in self._iter_test_indices(X, y, groups): test_mask = np.zeros(_num_samples(X), dtype=np.bool) test_mask[test_index] = True yield test_mask def _iter_test_indices(self, X=None, y=None, groups=None): """Generates integer indices corresponding to test sets.""" raise NotImplementedError @abstractmethod def get_n_splits(self, X=None, y=None, groups=None): """Returns the number of splitting iterations in the cross-validator""" def __repr__(self): return _build_repr(self) class LeaveOneOut(BaseCrossValidator): """Leave-One-Out cross-validator Provides train/test indices to split data in train/test sets. Each sample is used once as a test set (singleton) while the remaining samples form the training set. Note: ``LeaveOneOut()`` is equivalent to ``KFold(n_splits=n)`` and ``LeavePOut(p=1)`` where ``n`` is the number of samples. Due to the high number of test sets (which is the same as the number of samples) this cross-validation method can be very costly. For large datasets one should favor :class:`KFold`, :class:`ShuffleSplit` or :class:`StratifiedKFold`. Read more in the :ref:`User Guide <cross_validation>`. Examples -------- >>> from sklearn.model_selection import LeaveOneOut >>> X = np.array([[1, 2], [3, 4]]) >>> y = np.array([1, 2]) >>> loo = LeaveOneOut() >>> loo.get_n_splits(X) 2 >>> print(loo) LeaveOneOut() >>> for train_index, test_index in loo.split(X): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... print(X_train, X_test, y_train, y_test) TRAIN: [1] TEST: [0] [[3 4]] [[1 2]] [2] [1] TRAIN: [0] TEST: [1] [[1 2]] [[3 4]] [1] [2] See also -------- LeaveOneGroupOut For splitting the data according to explicit, domain-specific stratification of the dataset. GroupKFold: K-fold iterator variant with non-overlapping groups. """ def _iter_test_indices(self, X, y=None, groups=None): return range(_num_samples(X)) def get_n_splits(self, X, y=None, groups=None): """Returns the number of splitting iterations in the cross-validator Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. y : object Always ignored, exists for compatibility. groups : object Always ignored, exists for compatibility. Returns ------- n_splits : int Returns the number of splitting iterations in the cross-validator. """ if X is None: raise ValueError("The X parameter should not be None") return _num_samples(X) class LeavePOut(BaseCrossValidator): """Leave-P-Out cross-validator Provides train/test indices to split data in train/test sets. This results in testing on all distinct samples of size p, while the remaining n - p samples form the training set in each iteration. Note: ``LeavePOut(p)`` is NOT equivalent to ``KFold(n_splits=n_samples // p)`` which creates non-overlapping test sets. Due to the high number of iterations which grows combinatorically with the number of samples this cross-validation method can be very costly. For large datasets one should favor :class:`KFold`, :class:`StratifiedKFold` or :class:`ShuffleSplit`. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- p : int Size of the test sets. Examples -------- >>> from sklearn.model_selection import LeavePOut >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) >>> y = np.array([1, 2, 3, 4]) >>> lpo = LeavePOut(2) >>> lpo.get_n_splits(X) 6 >>> print(lpo) LeavePOut(p=2) >>> for train_index, test_index in lpo.split(X): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [2 3] TEST: [0 1] TRAIN: [1 3] TEST: [0 2] TRAIN: [1 2] TEST: [0 3] TRAIN: [0 3] TEST: [1 2] TRAIN: [0 2] TEST: [1 3] TRAIN: [0 1] TEST: [2 3] """ def __init__(self, p): self.p = p def _iter_test_indices(self, X, y=None, groups=None): for combination in combinations(range(_num_samples(X)), self.p): yield np.array(combination) def get_n_splits(self, X, y=None, groups=None): """Returns the number of splitting iterations in the cross-validator Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. y : object Always ignored, exists for compatibility. groups : object Always ignored, exists for compatibility. """ if X is None: raise ValueError("The X parameter should not be None") return int(comb(_num_samples(X), self.p, exact=True)) class _BaseKFold(with_metaclass(ABCMeta, BaseCrossValidator)): """Base class for KFold, GroupKFold, and StratifiedKFold""" @abstractmethod def __init__(self, n_splits, shuffle, random_state): if not isinstance(n_splits, numbers.Integral): raise ValueError('The number of folds must be of Integral type. ' '%s of type %s was passed.' % (n_splits, type(n_splits))) n_splits = int(n_splits) if n_splits <= 1: raise ValueError( "k-fold cross-validation requires at least one" " train/test split by setting n_splits=2 or more," " got n_splits={0}.".format(n_splits)) if not isinstance(shuffle, bool): raise TypeError("shuffle must be True or False;" " got {0}".format(shuffle)) self.n_splits = n_splits self.shuffle = shuffle self.random_state = random_state def split(self, X, y=None, groups=None): """Generate indices to split data into training and test set. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) The target variable for supervised learning problems. groups : array-like, with shape (n_samples,), optional Group labels for the samples used while splitting the dataset into train/test set. Returns ------- train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. """ X, y, groups = indexable(X, y, groups) n_samples = _num_samples(X) if self.n_splits > n_samples: raise ValueError( ("Cannot have number of splits n_splits={0} greater" " than the number of samples: {1}.").format(self.n_splits, n_samples)) for train, test in super(_BaseKFold, self).split(X, y, groups): yield train, test def get_n_splits(self, X=None, y=None, groups=None): """Returns the number of splitting iterations in the cross-validator Parameters ---------- X : object Always ignored, exists for compatibility. y : object Always ignored, exists for compatibility. groups : object Always ignored, exists for compatibility. Returns ------- n_splits : int Returns the number of splitting iterations in the cross-validator. """ return self.n_splits class KFold(_BaseKFold): """K-Folds cross-validator Provides train/test indices to split data in train/test sets. Split dataset into k consecutive folds (without shuffling by default). Each fold is then used once as a validation while the k - 1 remaining folds form the training set. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n_splits : int, default=3 Number of folds. Must be at least 2. shuffle : boolean, optional Whether to shuffle the data before splitting into batches. random_state : None, int or RandomState When shuffle=True, pseudo-random number generator state used for shuffling. If None, use default numpy RNG for shuffling. Examples -------- >>> from sklearn.model_selection import KFold >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([1, 2, 3, 4]) >>> kf = KFold(n_splits=2) >>> kf.get_n_splits(X) 2 >>> print(kf) # doctest: +NORMALIZE_WHITESPACE KFold(n_splits=2, random_state=None, shuffle=False) >>> for train_index, test_index in kf.split(X): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [2 3] TEST: [0 1] TRAIN: [0 1] TEST: [2 3] Notes ----- The first ``n_samples % n_splits`` folds have size ``n_samples // n_splits + 1``, other folds have size ``n_samples // n_splits``, where ``n_samples`` is the number of samples. See also -------- StratifiedKFold Takes group information into account to avoid building folds with imbalanced class distributions (for binary or multiclass classification tasks). GroupKFold: K-fold iterator variant with non-overlapping groups. """ def __init__(self, n_splits=3, shuffle=False, random_state=None): super(KFold, self).__init__(n_splits, shuffle, random_state) def _iter_test_indices(self, X, y=None, groups=None): n_samples = _num_samples(X) indices = np.arange(n_samples) if self.shuffle: check_random_state(self.random_state).shuffle(indices) n_splits = self.n_splits fold_sizes = (n_samples // n_splits) * np.ones(n_splits, dtype=np.int) fold_sizes[:n_samples % n_splits] += 1 current = 0 for fold_size in fold_sizes: start, stop = current, current + fold_size yield indices[start:stop] current = stop class GroupKFold(_BaseKFold): """K-fold iterator variant with non-overlapping groups. The same group will not appear in two different folds (the number of distinct groups has to be at least equal to the number of folds). The folds are approximately balanced in the sense that the number of distinct groups is approximately the same in each fold. Parameters ---------- n_splits : int, default=3 Number of folds. Must be at least 2. Examples -------- >>> from sklearn.model_selection import GroupKFold >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) >>> y = np.array([1, 2, 3, 4]) >>> groups = np.array([0, 0, 2, 2]) >>> group_kfold = GroupKFold(n_splits=2) >>> group_kfold.get_n_splits(X, y, groups) 2 >>> print(group_kfold) GroupKFold(n_splits=2) >>> for train_index, test_index in group_kfold.split(X, y, groups): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... print(X_train, X_test, y_train, y_test) ... TRAIN: [0 1] TEST: [2 3] [[1 2] [3 4]] [[5 6] [7 8]] [1 2] [3 4] TRAIN: [2 3] TEST: [0 1] [[5 6] [7 8]] [[1 2] [3 4]] [3 4] [1 2] See also -------- LeaveOneGroupOut For splitting the data according to explicit domain-specific stratification of the dataset. """ def __init__(self, n_splits=3): super(GroupKFold, self).__init__(n_splits, shuffle=False, random_state=None) def _iter_test_indices(self, X, y, groups): if groups is None: raise ValueError("The groups parameter should not be None") groups = check_array(groups, ensure_2d=False, dtype=None) unique_groups, groups = np.unique(groups, return_inverse=True) n_groups = len(unique_groups) if self.n_splits > n_groups: raise ValueError("Cannot have number of splits n_splits=%d greater" " than the number of groups: %d." % (self.n_splits, n_groups)) # Weight groups by their number of occurrences n_samples_per_group = np.bincount(groups) # Distribute the most frequent groups first indices = np.argsort(n_samples_per_group)[::-1] n_samples_per_group = n_samples_per_group[indices] # Total weight of each fold n_samples_per_fold = np.zeros(self.n_splits) # Mapping from group index to fold index group_to_fold = np.zeros(len(unique_groups)) # Distribute samples by adding the largest weight to the lightest fold for group_index, weight in enumerate(n_samples_per_group): lightest_fold = np.argmin(n_samples_per_fold) n_samples_per_fold[lightest_fold] += weight group_to_fold[indices[group_index]] = lightest_fold indices = group_to_fold[groups] for f in range(self.n_splits): yield np.where(indices == f)[0] class StratifiedKFold(_BaseKFold): """Stratified K-Folds cross-validator Provides train/test indices to split data in train/test sets. This cross-validation object is a variation of KFold that returns stratified folds. The folds are made by preserving the percentage of samples for each class. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n_splits : int, default=3 Number of folds. Must be at least 2. shuffle : boolean, optional Whether to shuffle each stratification of the data before splitting into batches. random_state : None, int or RandomState When shuffle=True, pseudo-random number generator state used for shuffling. If None, use default numpy RNG for shuffling. Examples -------- >>> from sklearn.model_selection import StratifiedKFold >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([0, 0, 1, 1]) >>> skf = StratifiedKFold(n_splits=2) >>> skf.get_n_splits(X, y) 2 >>> print(skf) # doctest: +NORMALIZE_WHITESPACE StratifiedKFold(n_splits=2, random_state=None, shuffle=False) >>> for train_index, test_index in skf.split(X, y): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [1 3] TEST: [0 2] TRAIN: [0 2] TEST: [1 3] Notes ----- All the folds have size ``trunc(n_samples / n_splits)``, the last one has the complementary. """ def __init__(self, n_splits=3, shuffle=False, random_state=None): super(StratifiedKFold, self).__init__(n_splits, shuffle, random_state) def _make_test_folds(self, X, y=None, groups=None): if self.shuffle: rng = check_random_state(self.random_state) else: rng = self.random_state y = np.asarray(y) n_samples = y.shape[0] unique_y, y_inversed = np.unique(y, return_inverse=True) y_counts = bincount(y_inversed) min_groups = np.min(y_counts) if np.all(self.n_splits > y_counts): raise ValueError("All the n_groups for individual classes" " are less than n_splits=%d." % (self.n_splits)) if self.n_splits > min_groups: warnings.warn(("The least populated class in y has only %d" " members, which is too few. The minimum" " number of groups for any class cannot" " be less than n_splits=%d." % (min_groups, self.n_splits)), Warning) # pre-assign each sample to a test fold index using individual KFold # splitting strategies for each class so as to respect the balance of # classes # NOTE: Passing the data corresponding to ith class say X[y==class_i] # will break when the data is not 100% stratifiable for all classes. # So we pass np.zeroes(max(c, n_splits)) as data to the KFold per_cls_cvs = [ KFold(self.n_splits, shuffle=self.shuffle, random_state=rng).split(np.zeros(max(count, self.n_splits))) for count in y_counts] test_folds = np.zeros(n_samples, dtype=np.int) for test_fold_indices, per_cls_splits in enumerate(zip(*per_cls_cvs)): for cls, (_, test_split) in zip(unique_y, per_cls_splits): cls_test_folds = test_folds[y == cls] # the test split can be too big because we used # KFold(...).split(X[:max(c, n_splits)]) when data is not 100% # stratifiable for all the classes # (we use a warning instead of raising an exception) # If this is the case, let's trim it: test_split = test_split[test_split < len(cls_test_folds)] cls_test_folds[test_split] = test_fold_indices test_folds[y == cls] = cls_test_folds return test_folds def _iter_test_masks(self, X, y=None, groups=None): test_folds = self._make_test_folds(X, y) for i in range(self.n_splits): yield test_folds == i def split(self, X, y, groups=None): """Generate indices to split data into training and test set. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. Note that providing ``y`` is sufficient to generate the splits and hence ``np.zeros(n_samples)`` may be used as a placeholder for ``X`` instead of actual training data. y : array-like, shape (n_samples,) The target variable for supervised learning problems. Stratification is done based on the y labels. groups : object Always ignored, exists for compatibility. Returns ------- train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. """ y = check_array(y, ensure_2d=False, dtype=None) return super(StratifiedKFold, self).split(X, y, groups) class TimeSeriesSplit(_BaseKFold): """Time Series cross-validator Provides train/test indices to split time series data samples that are observed at fixed time intervals, in train/test sets. In each split, test indices must be higher than before, and thus shuffling in cross validator is inappropriate. This cross-validation object is a variation of :class:`KFold`. In the kth split, it returns first k folds as train set and the (k+1)th fold as test set. Note that unlike standard cross-validation methods, successive training sets are supersets of those that come before them. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n_splits : int, default=3 Number of splits. Must be at least 1. Examples -------- >>> from sklearn.model_selection import TimeSeriesSplit >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([1, 2, 3, 4]) >>> tscv = TimeSeriesSplit(n_splits=3) >>> print(tscv) # doctest: +NORMALIZE_WHITESPACE TimeSeriesSplit(n_splits=3) >>> for train_index, test_index in tscv.split(X): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [0] TEST: [1] TRAIN: [0 1] TEST: [2] TRAIN: [0 1 2] TEST: [3] Notes ----- The training set has size ``i * n_samples // (n_splits + 1) + n_samples % (n_splits + 1)`` in the ``i``th split, with a test set of size ``n_samples//(n_splits + 1)``, where ``n_samples`` is the number of samples. """ def __init__(self, n_splits=3): super(TimeSeriesSplit, self).__init__(n_splits, shuffle=False, random_state=None) def split(self, X, y=None, groups=None): """Generate indices to split data into training and test set. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) Always ignored, exists for compatibility. groups : array-like, with shape (n_samples,), optional Always ignored, exists for compatibility. Returns ------- train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. """ X, y, groups = indexable(X, y, groups) n_samples = _num_samples(X) n_splits = self.n_splits n_folds = n_splits + 1 if n_folds > n_samples: raise ValueError( ("Cannot have number of folds ={0} greater" " than the number of samples: {1}.").format(n_folds, n_samples)) indices = np.arange(n_samples) test_size = (n_samples // n_folds) test_starts = range(test_size + n_samples % n_folds, n_samples, test_size) for test_start in test_starts: yield (indices[:test_start], indices[test_start:test_start + test_size]) class LeaveOneGroupOut(BaseCrossValidator): """Leave One Group Out cross-validator Provides train/test indices to split data according to a third-party provided group. This group information can be used to encode arbitrary domain specific stratifications of the samples as integers. For instance the groups could be the year of collection of the samples and thus allow for cross-validation against time-based splits. Read more in the :ref:`User Guide <cross_validation>`. Examples -------- >>> from sklearn.model_selection import LeaveOneGroupOut >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) >>> y = np.array([1, 2, 1, 2]) >>> groups = np.array([1, 1, 2, 2]) >>> logo = LeaveOneGroupOut() >>> logo.get_n_splits(X, y, groups) 2 >>> print(logo) LeaveOneGroupOut() >>> for train_index, test_index in logo.split(X, y, groups): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... print(X_train, X_test, y_train, y_test) TRAIN: [2 3] TEST: [0 1] [[5 6] [7 8]] [[1 2] [3 4]] [1 2] [1 2] TRAIN: [0 1] TEST: [2 3] [[1 2] [3 4]] [[5 6] [7 8]] [1 2] [1 2] """ def _iter_test_masks(self, X, y, groups): if groups is None: raise ValueError("The groups parameter should not be None") # We make a copy of groups to avoid side-effects during iteration groups = check_array(groups, copy=True, ensure_2d=False, dtype=None) unique_groups = np.unique(groups) if len(unique_groups) <= 1: raise ValueError( "The groups parameter contains fewer than 2 unique groups " "(%s). LeaveOneGroupOut expects at least 2." % unique_groups) for i in unique_groups: yield groups == i def get_n_splits(self, X, y, groups): """Returns the number of splitting iterations in the cross-validator Parameters ---------- X : object Always ignored, exists for compatibility. y : object Always ignored, exists for compatibility. groups : array-like, with shape (n_samples,), optional Group labels for the samples used while splitting the dataset into train/test set. Returns ------- n_splits : int Returns the number of splitting iterations in the cross-validator. """ if groups is None: raise ValueError("The groups parameter should not be None") return len(np.unique(groups)) class LeavePGroupsOut(BaseCrossValidator): """Leave P Group(s) Out cross-validator Provides train/test indices to split data according to a third-party provided group. This group information can be used to encode arbitrary domain specific stratifications of the samples as integers. For instance the groups could be the year of collection of the samples and thus allow for cross-validation against time-based splits. The difference between LeavePGroupsOut and LeaveOneGroupOut is that the former builds the test sets with all the samples assigned to ``p`` different values of the groups while the latter uses samples all assigned the same groups. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n_groups : int Number of groups (``p``) to leave out in the test split. Examples -------- >>> from sklearn.model_selection import LeavePGroupsOut >>> X = np.array([[1, 2], [3, 4], [5, 6]]) >>> y = np.array([1, 2, 1]) >>> groups = np.array([1, 2, 3]) >>> lpgo = LeavePGroupsOut(n_groups=2) >>> lpgo.get_n_splits(X, y, groups) 3 >>> print(lpgo) LeavePGroupsOut(n_groups=2) >>> for train_index, test_index in lpgo.split(X, y, groups): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... print(X_train, X_test, y_train, y_test) TRAIN: [2] TEST: [0 1] [[5 6]] [[1 2] [3 4]] [1] [1 2] TRAIN: [1] TEST: [0 2] [[3 4]] [[1 2] [5 6]] [2] [1 1] TRAIN: [0] TEST: [1 2] [[1 2]] [[3 4] [5 6]] [1] [2 1] See also -------- GroupKFold: K-fold iterator variant with non-overlapping groups. """ def __init__(self, n_groups): self.n_groups = n_groups def _iter_test_masks(self, X, y, groups): if groups is None: raise ValueError("The groups parameter should not be None") groups = check_array(groups, copy=True, ensure_2d=False, dtype=None) unique_groups = np.unique(groups) if self.n_groups >= len(unique_groups): raise ValueError( "The groups parameter contains fewer than (or equal to) " "n_groups (%d) numbers of unique groups (%s). LeavePGroupsOut " "expects that at least n_groups + 1 (%d) unique groups be " "present" % (self.n_groups, unique_groups, self.n_groups + 1)) combi = combinations(range(len(unique_groups)), self.n_groups) for indices in combi: test_index = np.zeros(_num_samples(X), dtype=np.bool) for l in unique_groups[np.array(indices)]: test_index[groups == l] = True yield test_index def get_n_splits(self, X, y, groups): """Returns the number of splitting iterations in the cross-validator Parameters ---------- X : object Always ignored, exists for compatibility. ``np.zeros(n_samples)`` may be used as a placeholder. y : object Always ignored, exists for compatibility. ``np.zeros(n_samples)`` may be used as a placeholder. groups : array-like, with shape (n_samples,), optional Group labels for the samples used while splitting the dataset into train/test set. Returns ------- n_splits : int Returns the number of splitting iterations in the cross-validator. """ if groups is None: raise ValueError("The groups parameter should not be None") groups = check_array(groups, ensure_2d=False, dtype=None) X, y, groups = indexable(X, y, groups) return int(comb(len(np.unique(groups)), self.n_groups, exact=True)) class BaseShuffleSplit(with_metaclass(ABCMeta)): """Base class for ShuffleSplit and StratifiedShuffleSplit""" def __init__(self, n_splits=10, test_size=0.1, train_size=None, random_state=None): _validate_shuffle_split_init(test_size, train_size) self.n_splits = n_splits self.test_size = test_size self.train_size = train_size self.random_state = random_state def split(self, X, y=None, groups=None): """Generate indices to split data into training and test set. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) The target variable for supervised learning problems. groups : array-like, with shape (n_samples,), optional Group labels for the samples used while splitting the dataset into train/test set. Returns ------- train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. """ X, y, groups = indexable(X, y, groups) for train, test in self._iter_indices(X, y, groups): yield train, test @abstractmethod def _iter_indices(self, X, y=None, groups=None): """Generate (train, test) indices""" def get_n_splits(self, X=None, y=None, groups=None): """Returns the number of splitting iterations in the cross-validator Parameters ---------- X : object Always ignored, exists for compatibility. y : object Always ignored, exists for compatibility. groups : object Always ignored, exists for compatibility. Returns ------- n_splits : int Returns the number of splitting iterations in the cross-validator. """ return self.n_splits def __repr__(self): return _build_repr(self) class ShuffleSplit(BaseShuffleSplit): """Random permutation cross-validator Yields indices to split data into training and test sets. Note: contrary to other cross-validation strategies, random splits do not guarantee that all folds will be different, although this is still very likely for sizeable datasets. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n_splits : int (default 10) Number of re-shuffling & splitting iterations. test_size : float, int, or None, default 0.1 If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples. If None, the value is automatically set to the complement of the train size. train_size : float, int, or None (default is None) If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. If int, represents the absolute number of train samples. If None, the value is automatically set to the complement of the test size. random_state : int or RandomState Pseudo-random number generator state used for random sampling. Examples -------- >>> from sklearn.model_selection import ShuffleSplit >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) >>> y = np.array([1, 2, 1, 2]) >>> rs = ShuffleSplit(n_splits=3, test_size=.25, random_state=0) >>> rs.get_n_splits(X) 3 >>> print(rs) ShuffleSplit(n_splits=3, random_state=0, test_size=0.25, train_size=None) >>> for train_index, test_index in rs.split(X): ... print("TRAIN:", train_index, "TEST:", test_index) ... # doctest: +ELLIPSIS TRAIN: [3 1 0] TEST: [2] TRAIN: [2 1 3] TEST: [0] TRAIN: [0 2 1] TEST: [3] >>> rs = ShuffleSplit(n_splits=3, train_size=0.5, test_size=.25, ... random_state=0) >>> for train_index, test_index in rs.split(X): ... print("TRAIN:", train_index, "TEST:", test_index) ... # doctest: +ELLIPSIS TRAIN: [3 1] TEST: [2] TRAIN: [2 1] TEST: [0] TRAIN: [0 2] TEST: [3] """ def _iter_indices(self, X, y=None, groups=None): n_samples = _num_samples(X) n_train, n_test = _validate_shuffle_split(n_samples, self.test_size, self.train_size) rng = check_random_state(self.random_state) for i in range(self.n_splits): # random partition permutation = rng.permutation(n_samples) ind_test = permutation[:n_test] ind_train = permutation[n_test:(n_test + n_train)] yield ind_train, ind_test class GroupShuffleSplit(ShuffleSplit): '''Shuffle-Group(s)-Out cross-validation iterator Provides randomized train/test indices to split data according to a third-party provided group. This group information can be used to encode arbitrary domain specific stratifications of the samples as integers. For instance the groups could be the year of collection of the samples and thus allow for cross-validation against time-based splits. The difference between LeavePGroupsOut and GroupShuffleSplit is that the former generates splits using all subsets of size ``p`` unique groups, whereas GroupShuffleSplit generates a user-determined number of random test splits, each with a user-determined fraction of unique groups. For example, a less computationally intensive alternative to ``LeavePGroupsOut(p=10)`` would be ``GroupShuffleSplit(test_size=10, n_splits=100)``. Note: The parameters ``test_size`` and ``train_size`` refer to groups, and not to samples, as in ShuffleSplit. Parameters ---------- n_splits : int (default 5) Number of re-shuffling & splitting iterations. test_size : float (default 0.2), int, or None If float, should be between 0.0 and 1.0 and represent the proportion of the groups to include in the test split. If int, represents the absolute number of test groups. If None, the value is automatically set to the complement of the train size. train_size : float, int, or None (default is None) If float, should be between 0.0 and 1.0 and represent the proportion of the groups to include in the train split. If int, represents the absolute number of train groups. If None, the value is automatically set to the complement of the test size. random_state : int or RandomState Pseudo-random number generator state used for random sampling. ''' def __init__(self, n_splits=5, test_size=0.2, train_size=None, random_state=None): super(GroupShuffleSplit, self).__init__( n_splits=n_splits, test_size=test_size, train_size=train_size, random_state=random_state) def _iter_indices(self, X, y, groups): if groups is None: raise ValueError("The groups parameter should not be None") groups = check_array(groups, ensure_2d=False, dtype=None) classes, group_indices = np.unique(groups, return_inverse=True) for group_train, group_test in super( GroupShuffleSplit, self)._iter_indices(X=classes): # these are the indices of classes in the partition # invert them into data indices train = np.flatnonzero(np.in1d(group_indices, group_train)) test = np.flatnonzero(np.in1d(group_indices, group_test)) yield train, test def _approximate_mode(class_counts, n_draws, rng): """Computes approximate mode of multivariate hypergeometric. This is an approximation to the mode of the multivariate hypergeometric given by class_counts and n_draws. It shouldn't be off by more than one. It is the mostly likely outcome of drawing n_draws many samples from the population given by class_counts. Parameters ---------- class_counts : ndarray of int Population per class. n_draws : int Number of draws (samples to draw) from the overall population. rng : random state Used to break ties. Returns ------- sampled_classes : ndarray of int Number of samples drawn from each class. np.sum(sampled_classes) == n_draws Examples -------- >>> from sklearn.model_selection._split import _approximate_mode >>> _approximate_mode(class_counts=np.array([4, 2]), n_draws=3, rng=0) array([2, 1]) >>> _approximate_mode(class_counts=np.array([5, 2]), n_draws=4, rng=0) array([3, 1]) >>> _approximate_mode(class_counts=np.array([2, 2, 2, 1]), ... n_draws=2, rng=0) array([0, 1, 1, 0]) >>> _approximate_mode(class_counts=np.array([2, 2, 2, 1]), ... n_draws=2, rng=42) array([1, 1, 0, 0]) """ # this computes a bad approximation to the mode of the # multivariate hypergeometric given by class_counts and n_draws continuous = n_draws * class_counts / class_counts.sum() # floored means we don't overshoot n_samples, but probably undershoot floored = np.floor(continuous) # we add samples according to how much "left over" probability # they had, until we arrive at n_samples need_to_add = int(n_draws - floored.sum()) if need_to_add > 0: remainder = continuous - floored values = np.sort(np.unique(remainder))[::-1] # add according to remainder, but break ties # randomly to avoid biases for value in values: inds, = np.where(remainder == value) # if we need_to_add less than what's in inds # we draw randomly from them. # if we need to add more, we add them all and # go to the next value add_now = min(len(inds), need_to_add) inds = choice(inds, size=add_now, replace=False, random_state=rng) floored[inds] += 1 need_to_add -= add_now if need_to_add == 0: break return floored.astype(np.int) class StratifiedShuffleSplit(BaseShuffleSplit): """Stratified ShuffleSplit cross-validator Provides train/test indices to split data in train/test sets. This cross-validation object is a merge of StratifiedKFold and ShuffleSplit, which returns stratified randomized folds. The folds are made by preserving the percentage of samples for each class. Note: like the ShuffleSplit strategy, stratified random splits do not guarantee that all folds will be different, although this is still very likely for sizeable datasets. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n_splits : int (default 10) Number of re-shuffling & splitting iterations. test_size : float (default 0.1), int, or None If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples. If None, the value is automatically set to the complement of the train size. train_size : float, int, or None (default is None) If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. If int, represents the absolute number of train samples. If None, the value is automatically set to the complement of the test size. random_state : int or RandomState Pseudo-random number generator state used for random sampling. Examples -------- >>> from sklearn.model_selection import StratifiedShuffleSplit >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([0, 0, 1, 1]) >>> sss = StratifiedShuffleSplit(n_splits=3, test_size=0.5, random_state=0) >>> sss.get_n_splits(X, y) 3 >>> print(sss) # doctest: +ELLIPSIS StratifiedShuffleSplit(n_splits=3, random_state=0, ...) >>> for train_index, test_index in sss.split(X, y): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [1 2] TEST: [3 0] TRAIN: [0 2] TEST: [1 3] TRAIN: [0 2] TEST: [3 1] """ def __init__(self, n_splits=10, test_size=0.1, train_size=None, random_state=None): super(StratifiedShuffleSplit, self).__init__( n_splits, test_size, train_size, random_state) def _iter_indices(self, X, y, groups=None): n_samples = _num_samples(X) y = check_array(y, ensure_2d=False, dtype=None) n_train, n_test = _validate_shuffle_split(n_samples, self.test_size, self.train_size) classes, y_indices = np.unique(y, return_inverse=True) n_classes = classes.shape[0] class_counts = bincount(y_indices) if np.min(class_counts) < 2: raise ValueError("The least populated class in y has only 1" " member, which is too few. The minimum" " number of groups for any class cannot" " be less than 2.") if n_train < n_classes: raise ValueError('The train_size = %d should be greater or ' 'equal to the number of classes = %d' % (n_train, n_classes)) if n_test < n_classes: raise ValueError('The test_size = %d should be greater or ' 'equal to the number of classes = %d' % (n_test, n_classes)) rng = check_random_state(self.random_state) for _ in range(self.n_splits): # if there are ties in the class-counts, we want # to make sure to break them anew in each iteration n_i = _approximate_mode(class_counts, n_train, rng) class_counts_remaining = class_counts - n_i t_i = _approximate_mode(class_counts_remaining, n_test, rng) train = [] test = [] for i, class_i in enumerate(classes): permutation = rng.permutation(class_counts[i]) perm_indices_class_i = np.where((y == class_i))[0][permutation] train.extend(perm_indices_class_i[:n_i[i]]) test.extend(perm_indices_class_i[n_i[i]:n_i[i] + t_i[i]]) train = rng.permutation(train) test = rng.permutation(test) yield train, test def split(self, X, y, groups=None): """Generate indices to split data into training and test set. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. Note that providing ``y`` is sufficient to generate the splits and hence ``np.zeros(n_samples)`` may be used as a placeholder for ``X`` instead of actual training data. y : array-like, shape (n_samples,) The target variable for supervised learning problems. Stratification is done based on the y labels. groups : object Always ignored, exists for compatibility. Returns ------- train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. """ y = check_array(y, ensure_2d=False, dtype=None) return super(StratifiedShuffleSplit, self).split(X, y, groups) def _validate_shuffle_split_init(test_size, train_size): """Validation helper to check the test_size and train_size at init NOTE This does not take into account the number of samples which is known only at split """ if test_size is None and train_size is None: raise ValueError('test_size and train_size can not both be None') if test_size is not None: if np.asarray(test_size).dtype.kind == 'f': if test_size >= 1.: raise ValueError( 'test_size=%f should be smaller ' 'than 1.0 or be an integer' % test_size) elif np.asarray(test_size).dtype.kind != 'i': # int values are checked during split based on the input raise ValueError("Invalid value for test_size: %r" % test_size) if train_size is not None: if np.asarray(train_size).dtype.kind == 'f': if train_size >= 1.: raise ValueError("train_size=%f should be smaller " "than 1.0 or be an integer" % train_size) elif (np.asarray(test_size).dtype.kind == 'f' and (train_size + test_size) > 1.): raise ValueError('The sum of test_size and train_size = %f, ' 'should be smaller than 1.0. Reduce ' 'test_size and/or train_size.' % (train_size + test_size)) elif np.asarray(train_size).dtype.kind != 'i': # int values are checked during split based on the input raise ValueError("Invalid value for train_size: %r" % train_size) def _validate_shuffle_split(n_samples, test_size, train_size): """ Validation helper to check if the test/test sizes are meaningful wrt to the size of the data (n_samples) """ if (test_size is not None and np.asarray(test_size).dtype.kind == 'i' and test_size >= n_samples): raise ValueError('test_size=%d should be smaller than the number of ' 'samples %d' % (test_size, n_samples)) if (train_size is not None and np.asarray(train_size).dtype.kind == 'i' and train_size >= n_samples): raise ValueError("train_size=%d should be smaller than the number of" " samples %d" % (train_size, n_samples)) if np.asarray(test_size).dtype.kind == 'f': n_test = ceil(test_size * n_samples) elif np.asarray(test_size).dtype.kind == 'i': n_test = float(test_size) if train_size is None: n_train = n_samples - n_test elif np.asarray(train_size).dtype.kind == 'f': n_train = floor(train_size * n_samples) else: n_train = float(train_size) if test_size is None: n_test = n_samples - n_train if n_train + n_test > n_samples: raise ValueError('The sum of train_size and test_size = %d, ' 'should be smaller than the number of ' 'samples %d. Reduce test_size and/or ' 'train_size.' % (n_train + n_test, n_samples)) return int(n_train), int(n_test) class PredefinedSplit(BaseCrossValidator): """Predefined split cross-validator Splits the data into training/test set folds according to a predefined scheme. Each sample can be assigned to at most one test set fold, as specified by the user through the ``test_fold`` parameter. Read more in the :ref:`User Guide <cross_validation>`. Examples -------- >>> from sklearn.model_selection import PredefinedSplit >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([0, 0, 1, 1]) >>> test_fold = [0, 1, -1, 1] >>> ps = PredefinedSplit(test_fold) >>> ps.get_n_splits() 2 >>> print(ps) # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS PredefinedSplit(test_fold=array([ 0, 1, -1, 1])) >>> for train_index, test_index in ps.split(): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [1 2 3] TEST: [0] TRAIN: [0 2] TEST: [1 3] """ def __init__(self, test_fold): self.test_fold = np.array(test_fold, dtype=np.int) self.test_fold = column_or_1d(self.test_fold) self.unique_folds = np.unique(self.test_fold) self.unique_folds = self.unique_folds[self.unique_folds != -1] def split(self, X=None, y=None, groups=None): """Generate indices to split data into training and test set. Parameters ---------- X : object Always ignored, exists for compatibility. y : object Always ignored, exists for compatibility. groups : object Always ignored, exists for compatibility. Returns ------- train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. """ ind = np.arange(len(self.test_fold)) for test_index in self._iter_test_masks(): train_index = ind[np.logical_not(test_index)] test_index = ind[test_index] yield train_index, test_index def _iter_test_masks(self): """Generates boolean masks corresponding to test sets.""" for f in self.unique_folds: test_index = np.where(self.test_fold == f)[0] test_mask = np.zeros(len(self.test_fold), dtype=np.bool) test_mask[test_index] = True yield test_mask def get_n_splits(self, X=None, y=None, groups=None): """Returns the number of splitting iterations in the cross-validator Parameters ---------- X : object Always ignored, exists for compatibility. y : object Always ignored, exists for compatibility. groups : object Always ignored, exists for compatibility. Returns ------- n_splits : int Returns the number of splitting iterations in the cross-validator. """ return len(self.unique_folds) class _CVIterableWrapper(BaseCrossValidator): """Wrapper class for old style cv objects and iterables.""" def __init__(self, cv): self.cv = list(cv) def get_n_splits(self, X=None, y=None, groups=None): """Returns the number of splitting iterations in the cross-validator Parameters ---------- X : object Always ignored, exists for compatibility. y : object Always ignored, exists for compatibility. groups : object Always ignored, exists for compatibility. Returns ------- n_splits : int Returns the number of splitting iterations in the cross-validator. """ return len(self.cv) def split(self, X=None, y=None, groups=None): """Generate indices to split data into training and test set. Parameters ---------- X : object Always ignored, exists for compatibility. y : object Always ignored, exists for compatibility. groups : object Always ignored, exists for compatibility. Returns ------- train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. """ for train, test in self.cv: yield train, test def check_cv(cv=3, y=None, classifier=False): """Input checker utility for building a cross-validator Parameters ---------- cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if classifier is True and ``y`` is either binary or multiclass, :class:`StratifiedKFold` is used. In all other cases, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. y : array-like, optional The target variable for supervised learning problems. classifier : boolean, optional, default False Whether the task is a classification task, in which case stratified KFold will be used. Returns ------- checked_cv : a cross-validator instance. The return value is a cross-validator which generates the train/test splits via the ``split`` method. """ if cv is None: cv = 3 if isinstance(cv, numbers.Integral): if (classifier and (y is not None) and (type_of_target(y) in ('binary', 'multiclass'))): return StratifiedKFold(cv) else: return KFold(cv) if not hasattr(cv, 'split') or isinstance(cv, str): if not isinstance(cv, Iterable) or isinstance(cv, str): raise ValueError("Expected cv as an integer, cross-validation " "object (from sklearn.model_selection) " "or an iterable. Got %s." % cv) return _CVIterableWrapper(cv) return cv # New style cv objects are passed without any modification def train_test_split(*arrays, **options): """Split arrays or matrices into random train and test subsets Quick utility that wraps input validation and ``next(ShuffleSplit().split(X, y))`` and application to input data into a single call for splitting (and optionally subsampling) data in a oneliner. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- *arrays : sequence of indexables with same length / shape[0] Allowed inputs are lists, numpy arrays, scipy-sparse matrices or pandas dataframes. test_size : float, int, or None (default is None) If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples. If None, the value is automatically set to the complement of the train size. If train size is also None, test size is set to 0.25. train_size : float, int, or None (default is None) If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. If int, represents the absolute number of train samples. If None, the value is automatically set to the complement of the test size. random_state : int or RandomState Pseudo-random number generator state used for random sampling. stratify : array-like or None (default is None) If not None, data is split in a stratified fashion, using this as the class labels. Returns ------- splitting : list, length=2 * len(arrays) List containing train-test split of inputs. .. versionadded:: 0.16 If the input is sparse, the output will be a ``scipy.sparse.csr_matrix``. Else, output type is the same as the input type. Examples -------- >>> import numpy as np >>> from sklearn.model_selection import train_test_split >>> X, y = np.arange(10).reshape((5, 2)), range(5) >>> X array([[0, 1], [2, 3], [4, 5], [6, 7], [8, 9]]) >>> list(y) [0, 1, 2, 3, 4] >>> X_train, X_test, y_train, y_test = train_test_split( ... X, y, test_size=0.33, random_state=42) ... >>> X_train array([[4, 5], [0, 1], [6, 7]]) >>> y_train [2, 0, 3] >>> X_test array([[2, 3], [8, 9]]) >>> y_test [1, 4] """ n_arrays = len(arrays) if n_arrays == 0: raise ValueError("At least one array required as input") test_size = options.pop('test_size', None) train_size = options.pop('train_size', None) random_state = options.pop('random_state', None) stratify = options.pop('stratify', None) if options: raise TypeError("Invalid parameters passed: %s" % str(options)) if test_size is None and train_size is None: test_size = 0.25 arrays = indexable(*arrays) if stratify is not None: CVClass = StratifiedShuffleSplit else: CVClass = ShuffleSplit cv = CVClass(test_size=test_size, train_size=train_size, random_state=random_state) train, test = next(cv.split(X=arrays[0], y=stratify)) return list(chain.from_iterable((safe_indexing(a, train), safe_indexing(a, test)) for a in arrays)) train_test_split.__test__ = False # to avoid a pb with nosetests def _build_repr(self): # XXX This is copied from BaseEstimator's get_params cls = self.__class__ init = getattr(cls.__init__, 'deprecated_original', cls.__init__) # Ignore varargs, kw and default values and pop self init_signature = signature(init) # Consider the constructor parameters excluding 'self' if init is object.__init__: args = [] else: args = sorted([p.name for p in init_signature.parameters.values() if p.name != 'self' and p.kind != p.VAR_KEYWORD]) class_name = self.__class__.__name__ params = dict() for key in args: # We need deprecation warnings to always be on in order to # catch deprecated param values. # This is set in utils/__init__.py but it gets overwritten # when running under python3 somehow. warnings.simplefilter("always", DeprecationWarning) try: with warnings.catch_warnings(record=True) as w: value = getattr(self, key, None) if len(w) and w[0].category == DeprecationWarning: # if the parameter is deprecated, don't show it continue finally: warnings.filters.pop(0) params[key] = value return '%s(%s)' % (class_name, _pprint(params, offset=len(class_name)))
bsd-3-clause
dhruv13J/scikit-learn
sklearn/decomposition/nmf.py
15
19103
""" Non-negative matrix factorization """ # Author: Vlad Niculae # Lars Buitinck <L.J.Buitinck@uva.nl> # Author: Chih-Jen Lin, National Taiwan University (original projected gradient # NMF implementation) # Author: Anthony Di Franco (original Python and NumPy port) # License: BSD 3 clause from __future__ import division from math import sqrt import warnings import numpy as np import scipy.sparse as sp from scipy.optimize import nnls from ..base import BaseEstimator, TransformerMixin from ..utils import check_random_state, check_array from ..utils.extmath import randomized_svd, safe_sparse_dot, squared_norm from ..utils.validation import check_is_fitted def safe_vstack(Xs): if any(sp.issparse(X) for X in Xs): return sp.vstack(Xs) else: return np.vstack(Xs) def norm(x): """Dot product-based Euclidean norm implementation See: http://fseoane.net/blog/2011/computing-the-vector-norm/ """ return sqrt(squared_norm(x)) def trace_dot(X, Y): """Trace of np.dot(X, Y.T).""" return np.dot(X.ravel(), Y.ravel()) def _sparseness(x): """Hoyer's measure of sparsity for a vector""" sqrt_n = np.sqrt(len(x)) return (sqrt_n - np.linalg.norm(x, 1) / norm(x)) / (sqrt_n - 1) def check_non_negative(X, whom): X = X.data if sp.issparse(X) else X if (X < 0).any(): raise ValueError("Negative values in data passed to %s" % whom) def _initialize_nmf(X, n_components, variant=None, eps=1e-6, random_state=None): """NNDSVD algorithm for NMF initialization. Computes a good initial guess for the non-negative rank k matrix approximation for X: X = WH Parameters ---------- X : array, [n_samples, n_features] The data matrix to be decomposed. n_components : array, [n_components, n_features] The number of components desired in the approximation. variant : None | 'a' | 'ar' The variant of the NNDSVD algorithm. Accepts None, 'a', 'ar' None: leaves the zero entries as zero 'a': Fills the zero entries with the average of X 'ar': Fills the zero entries with standard normal random variates. Default: None eps: float Truncate all values less then this in output to zero. random_state : numpy.RandomState | int, optional The generator used to fill in the zeros, when using variant='ar' Default: numpy.random Returns ------- (W, H) : Initial guesses for solving X ~= WH such that the number of columns in W is n_components. References ---------- C. Boutsidis, E. Gallopoulos: SVD based initialization: A head start for nonnegative matrix factorization - Pattern Recognition, 2008 http://tinyurl.com/nndsvd """ check_non_negative(X, "NMF initialization") if variant not in (None, 'a', 'ar'): raise ValueError("Invalid variant name") U, S, V = randomized_svd(X, n_components) W, H = np.zeros(U.shape), np.zeros(V.shape) # The leading singular triplet is non-negative # so it can be used as is for initialization. W[:, 0] = np.sqrt(S[0]) * np.abs(U[:, 0]) H[0, :] = np.sqrt(S[0]) * np.abs(V[0, :]) for j in range(1, n_components): x, y = U[:, j], V[j, :] # extract positive and negative parts of column vectors x_p, y_p = np.maximum(x, 0), np.maximum(y, 0) x_n, y_n = np.abs(np.minimum(x, 0)), np.abs(np.minimum(y, 0)) # and their norms x_p_nrm, y_p_nrm = norm(x_p), norm(y_p) x_n_nrm, y_n_nrm = norm(x_n), norm(y_n) m_p, m_n = x_p_nrm * y_p_nrm, x_n_nrm * y_n_nrm # choose update if m_p > m_n: u = x_p / x_p_nrm v = y_p / y_p_nrm sigma = m_p else: u = x_n / x_n_nrm v = y_n / y_n_nrm sigma = m_n lbd = np.sqrt(S[j] * sigma) W[:, j] = lbd * u H[j, :] = lbd * v W[W < eps] = 0 H[H < eps] = 0 if variant == "a": avg = X.mean() W[W == 0] = avg H[H == 0] = avg elif variant == "ar": random_state = check_random_state(random_state) avg = X.mean() W[W == 0] = abs(avg * random_state.randn(len(W[W == 0])) / 100) H[H == 0] = abs(avg * random_state.randn(len(H[H == 0])) / 100) return W, H def _nls_subproblem(V, W, H, tol, max_iter, sigma=0.01, beta=0.1): """Non-negative least square solver Solves a non-negative least squares subproblem using the projected gradient descent algorithm. min || WH - V ||_2 Parameters ---------- V, W : array-like Constant matrices. H : array-like Initial guess for the solution. tol : float Tolerance of the stopping condition. max_iter : int Maximum number of iterations before timing out. sigma : float Constant used in the sufficient decrease condition checked by the line search. Smaller values lead to a looser sufficient decrease condition, thus reducing the time taken by the line search, but potentially increasing the number of iterations of the projected gradient procedure. 0.01 is a commonly used value in the optimization literature. beta : float Factor by which the step size is decreased (resp. increased) until (resp. as long as) the sufficient decrease condition is satisfied. Larger values allow to find a better step size but lead to longer line search. 0.1 is a commonly used value in the optimization literature. Returns ------- H : array-like Solution to the non-negative least squares problem. grad : array-like The gradient. n_iter : int The number of iterations done by the algorithm. References ---------- C.-J. Lin. Projected gradient methods for non-negative matrix factorization. Neural Computation, 19(2007), 2756-2779. http://www.csie.ntu.edu.tw/~cjlin/nmf/ """ WtV = safe_sparse_dot(W.T, V) WtW = np.dot(W.T, W) # values justified in the paper alpha = 1 for n_iter in range(1, max_iter + 1): grad = np.dot(WtW, H) - WtV # The following multiplication with a boolean array is more than twice # as fast as indexing into grad. if norm(grad * np.logical_or(grad < 0, H > 0)) < tol: break Hp = H for inner_iter in range(19): # Gradient step. Hn = H - alpha * grad # Projection step. Hn *= Hn > 0 d = Hn - H gradd = np.dot(grad.ravel(), d.ravel()) dQd = np.dot(np.dot(WtW, d).ravel(), d.ravel()) suff_decr = (1 - sigma) * gradd + 0.5 * dQd < 0 if inner_iter == 0: decr_alpha = not suff_decr if decr_alpha: if suff_decr: H = Hn break else: alpha *= beta elif not suff_decr or (Hp == Hn).all(): H = Hp break else: alpha /= beta Hp = Hn if n_iter == max_iter: warnings.warn("Iteration limit reached in nls subproblem.") return H, grad, n_iter class ProjectedGradientNMF(BaseEstimator, TransformerMixin): """Non-Negative matrix factorization by Projected Gradient (NMF) Read more in the :ref:`User Guide <NMF>`. Parameters ---------- n_components : int or None Number of components, if n_components is not set all components are kept init : 'nndsvd' | 'nndsvda' | 'nndsvdar' | 'random' Method used to initialize the procedure. Default: 'nndsvdar' if n_components < n_features, otherwise random. Valid options:: 'nndsvd': Nonnegative Double Singular Value Decomposition (NNDSVD) initialization (better for sparseness) 'nndsvda': NNDSVD with zeros filled with the average of X (better when sparsity is not desired) 'nndsvdar': NNDSVD with zeros filled with small random values (generally faster, less accurate alternative to NNDSVDa for when sparsity is not desired) 'random': non-negative random matrices sparseness : 'data' | 'components' | None, default: None Where to enforce sparsity in the model. beta : double, default: 1 Degree of sparseness, if sparseness is not None. Larger values mean more sparseness. eta : double, default: 0.1 Degree of correctness to maintain, if sparsity is not None. Smaller values mean larger error. tol : double, default: 1e-4 Tolerance value used in stopping conditions. max_iter : int, default: 200 Number of iterations to compute. nls_max_iter : int, default: 2000 Number of iterations in NLS subproblem. random_state : int or RandomState Random number generator seed control. Attributes ---------- components_ : array, [n_components, n_features] Non-negative components of the data. reconstruction_err_ : number Frobenius norm of the matrix difference between the training data and the reconstructed data from the fit produced by the model. ``|| X - WH ||_2`` n_iter_ : int Number of iterations run. Examples -------- >>> import numpy as np >>> X = np.array([[1,1], [2, 1], [3, 1.2], [4, 1], [5, 0.8], [6, 1]]) >>> from sklearn.decomposition import ProjectedGradientNMF >>> model = ProjectedGradientNMF(n_components=2, init='random', ... random_state=0) >>> model.fit(X) #doctest: +ELLIPSIS +NORMALIZE_WHITESPACE ProjectedGradientNMF(beta=1, eta=0.1, init='random', max_iter=200, n_components=2, nls_max_iter=2000, random_state=0, sparseness=None, tol=0.0001) >>> model.components_ array([[ 0.77032744, 0.11118662], [ 0.38526873, 0.38228063]]) >>> model.reconstruction_err_ #doctest: +ELLIPSIS 0.00746... >>> model = ProjectedGradientNMF(n_components=2, ... sparseness='components', init='random', random_state=0) >>> model.fit(X) #doctest: +ELLIPSIS +NORMALIZE_WHITESPACE ProjectedGradientNMF(beta=1, eta=0.1, init='random', max_iter=200, n_components=2, nls_max_iter=2000, random_state=0, sparseness='components', tol=0.0001) >>> model.components_ array([[ 1.67481991, 0.29614922], [ 0. , 0.4681982 ]]) >>> model.reconstruction_err_ #doctest: +ELLIPSIS 0.513... References ---------- This implements C.-J. Lin. Projected gradient methods for non-negative matrix factorization. Neural Computation, 19(2007), 2756-2779. http://www.csie.ntu.edu.tw/~cjlin/nmf/ P. Hoyer. Non-negative Matrix Factorization with Sparseness Constraints. Journal of Machine Learning Research 2004. NNDSVD is introduced in C. Boutsidis, E. Gallopoulos: SVD based initialization: A head start for nonnegative matrix factorization - Pattern Recognition, 2008 http://tinyurl.com/nndsvd """ def __init__(self, n_components=None, init=None, sparseness=None, beta=1, eta=0.1, tol=1e-4, max_iter=200, nls_max_iter=2000, random_state=None): self.n_components = n_components self.init = init self.tol = tol if sparseness not in (None, 'data', 'components'): raise ValueError( 'Invalid sparseness parameter: got %r instead of one of %r' % (sparseness, (None, 'data', 'components'))) self.sparseness = sparseness self.beta = beta self.eta = eta self.max_iter = max_iter self.nls_max_iter = nls_max_iter self.random_state = random_state def _init(self, X): n_samples, n_features = X.shape init = self.init if init is None: if self.n_components_ < n_features: init = 'nndsvd' else: init = 'random' random_state = self.random_state if init == 'nndsvd': W, H = _initialize_nmf(X, self.n_components_) elif init == 'nndsvda': W, H = _initialize_nmf(X, self.n_components_, variant='a') elif init == 'nndsvdar': W, H = _initialize_nmf(X, self.n_components_, variant='ar') elif init == "random": rng = check_random_state(random_state) W = rng.randn(n_samples, self.n_components_) # we do not write np.abs(W, out=W) to stay compatible with # numpy 1.5 and earlier where the 'out' keyword is not # supported as a kwarg on ufuncs np.abs(W, W) H = rng.randn(self.n_components_, n_features) np.abs(H, H) else: raise ValueError( 'Invalid init parameter: got %r instead of one of %r' % (init, (None, 'nndsvd', 'nndsvda', 'nndsvdar', 'random'))) return W, H def _update_W(self, X, H, W, tolW): n_samples, n_features = X.shape if self.sparseness is None: W, gradW, iterW = _nls_subproblem(X.T, H.T, W.T, tolW, self.nls_max_iter) elif self.sparseness == 'data': W, gradW, iterW = _nls_subproblem( safe_vstack([X.T, np.zeros((1, n_samples))]), safe_vstack([H.T, np.sqrt(self.beta) * np.ones((1, self.n_components_))]), W.T, tolW, self.nls_max_iter) elif self.sparseness == 'components': W, gradW, iterW = _nls_subproblem( safe_vstack([X.T, np.zeros((self.n_components_, n_samples))]), safe_vstack([H.T, np.sqrt(self.eta) * np.eye(self.n_components_)]), W.T, tolW, self.nls_max_iter) return W.T, gradW.T, iterW def _update_H(self, X, H, W, tolH): n_samples, n_features = X.shape if self.sparseness is None: H, gradH, iterH = _nls_subproblem(X, W, H, tolH, self.nls_max_iter) elif self.sparseness == 'data': H, gradH, iterH = _nls_subproblem( safe_vstack([X, np.zeros((self.n_components_, n_features))]), safe_vstack([W, np.sqrt(self.eta) * np.eye(self.n_components_)]), H, tolH, self.nls_max_iter) elif self.sparseness == 'components': H, gradH, iterH = _nls_subproblem( safe_vstack([X, np.zeros((1, n_features))]), safe_vstack([W, np.sqrt(self.beta) * np.ones((1, self.n_components_))]), H, tolH, self.nls_max_iter) return H, gradH, iterH def fit_transform(self, X, y=None): """Learn a NMF model for the data X and returns the transformed data. This is more efficient than calling fit followed by transform. Parameters ---------- X: {array-like, sparse matrix}, shape = [n_samples, n_features] Data matrix to be decomposed Returns ------- data: array, [n_samples, n_components] Transformed data """ X = check_array(X, accept_sparse='csr') check_non_negative(X, "NMF.fit") n_samples, n_features = X.shape if not self.n_components: self.n_components_ = n_features else: self.n_components_ = self.n_components W, H = self._init(X) gradW = (np.dot(W, np.dot(H, H.T)) - safe_sparse_dot(X, H.T, dense_output=True)) gradH = (np.dot(np.dot(W.T, W), H) - safe_sparse_dot(W.T, X, dense_output=True)) init_grad = norm(np.r_[gradW, gradH.T]) tolW = max(0.001, self.tol) * init_grad # why max? tolH = tolW tol = self.tol * init_grad for n_iter in range(1, self.max_iter + 1): # stopping condition # as discussed in paper proj_norm = norm(np.r_[gradW[np.logical_or(gradW < 0, W > 0)], gradH[np.logical_or(gradH < 0, H > 0)]]) if proj_norm < tol: break # update W W, gradW, iterW = self._update_W(X, H, W, tolW) if iterW == 1: tolW = 0.1 * tolW # update H H, gradH, iterH = self._update_H(X, H, W, tolH) if iterH == 1: tolH = 0.1 * tolH if not sp.issparse(X): error = norm(X - np.dot(W, H)) else: sqnorm_X = np.dot(X.data, X.data) norm_WHT = trace_dot(np.dot(np.dot(W.T, W), H), H) cross_prod = trace_dot((X * H.T), W) error = sqrt(sqnorm_X + norm_WHT - 2. * cross_prod) self.reconstruction_err_ = error self.comp_sparseness_ = _sparseness(H.ravel()) self.data_sparseness_ = _sparseness(W.ravel()) H[H == 0] = 0 # fix up negative zeros self.components_ = H if n_iter == self.max_iter: warnings.warn("Iteration limit reached during fit. Solving for W exactly.") return self.transform(X) self.n_iter_ = n_iter return W def fit(self, X, y=None, **params): """Learn a NMF model for the data X. Parameters ---------- X: {array-like, sparse matrix}, shape = [n_samples, n_features] Data matrix to be decomposed Returns ------- self """ self.fit_transform(X, **params) return self def transform(self, X): """Transform the data X according to the fitted NMF model Parameters ---------- X: {array-like, sparse matrix}, shape = [n_samples, n_features] Data matrix to be transformed by the model Returns ------- data: array, [n_samples, n_components] Transformed data """ check_is_fitted(self, 'n_components_') X = check_array(X, accept_sparse='csc') Wt = np.zeros((self.n_components_, X.shape[0])) check_non_negative(X, "ProjectedGradientNMF.transform") if sp.issparse(X): Wt, _, _ = _nls_subproblem(X.T, self.components_.T, Wt, tol=self.tol, max_iter=self.nls_max_iter) else: for j in range(0, X.shape[0]): Wt[:, j], _ = nnls(self.components_.T, X[j, :]) return Wt.T class NMF(ProjectedGradientNMF): __doc__ = ProjectedGradientNMF.__doc__ pass
bsd-3-clause
danviv/trading-with-python
cookbook/reconstructVXX/reconstructVXX.py
77
3574
# -*- coding: utf-8 -*- """ Reconstructing VXX from futures data author: Jev Kuznetsov License : BSD """ from __future__ import division from pandas import * import numpy as np import os class Future(object): """ vix future class, used to keep data structures simple """ def __init__(self,series,code=None): """ code is optional, example '2010_01' """ self.series = series.dropna() # price data self.settleDate = self.series.index[-1] self.dt = len(self.series) # roll period (this is default, should be recalculated) self.code = code # string code 'YYYY_MM' def monthNr(self): """ get month nr from the future code """ return int(self.code.split('_')[1]) def dr(self,date): """ days remaining before settlement, on a given date """ return(sum(self.series.index>date)) def price(self,date): """ price on a date """ return self.series.get_value(date) def returns(df): """ daily return """ return (df/df.shift(1)-1) def recounstructVXX(): """ calculate VXX returns needs a previously preprocessed file vix_futures.csv """ dataDir = os.path.expanduser('~')+'/twpData' X = DataFrame.from_csv(dataDir+'/vix_futures.csv') # raw data table # build end dates list & futures classes futures = [] codes = X.columns endDates = [] for code in codes: f = Future(X[code],code=code) print code,':', f.settleDate endDates.append(f.settleDate) futures.append(f) endDates = np.array(endDates) # set roll period of each future for i in range(1,len(futures)): futures[i].dt = futures[i].dr(futures[i-1].settleDate) # Y is the result table idx = X.index Y = DataFrame(index=idx, columns=['first','second','days_left','w1','w2', 'ret','30days_avg']) # W is the weight matrix W = DataFrame(data = np.zeros(X.values.shape),index=idx,columns = X.columns) # for VXX calculation see http://www.ipathetn.com/static/pdf/vix-prospectus.pdf # page PS-20 for date in idx: i =np.nonzero(endDates>=date)[0][0] # find first not exprired future first = futures[i] # first month futures class second = futures[i+1] # second month futures class dr = first.dr(date) # number of remaining dates in the first futures contract dt = first.dt #number of business days in roll period W.set_value(date,codes[i],100*dr/dt) W.set_value(date,codes[i+1],100*(dt-dr)/dt) # this is all just debug info p1 = first.price(date) p2 = second.price(date) w1 = 100*dr/dt w2 = 100*(dt-dr)/dt Y.set_value(date,'first',p1) Y.set_value(date,'second',p2) Y.set_value(date,'days_left',first.dr(date)) Y.set_value(date,'w1',w1) Y.set_value(date,'w2',w2) Y.set_value(date,'30days_avg',(p1*w1+p2*w2)/100) valCurr = (X*W.shift(1)).sum(axis=1) # value on day N valYest = (X.shift(1)*W.shift(1)).sum(axis=1) # value on day N-1 Y['ret'] = valCurr/valYest-1 # index return on day N return Y ##-------------------Main script--------------------------- if __name__=="__main__": Y = recounstructVXX() print Y.head(30)# Y.to_csv('reconstructedVXX.csv')
bsd-3-clause
plaes/numpy
doc/source/conf.py
6
8773
# -*- coding: utf-8 -*- import sys, os, re # Check Sphinx version import sphinx if sphinx.__version__ < "0.5": raise RuntimeError("Sphinx 0.5.dev or newer required") # ----------------------------------------------------------------------------- # General configuration # ----------------------------------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. sys.path.insert(0, os.path.abspath('../sphinxext')) extensions = ['sphinx.ext.autodoc', 'sphinx.ext.pngmath', 'numpydoc', 'sphinx.ext.intersphinx', 'sphinx.ext.coverage', 'sphinx.ext.doctest', 'plot_directive'] if sphinx.__version__ >= "0.7": extensions.append('sphinx.ext.autosummary') else: extensions.append('autosummary') extensions.append('only_directives') # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The master toctree document. #master_doc = 'index' # General substitutions. project = 'NumPy' copyright = '2008-2009, The Scipy community' # The default replacements for |version| and |release|, also used in various # other places throughout the built documents. # import numpy # The short X.Y version (including .devXXXX, rcX, b1 suffixes if present) version = re.sub(r'(\d+\.\d+)\.\d+(.*)', r'\1\2', numpy.__version__) version = re.sub(r'(\.dev\d+).*?$', r'\1', version) # The full version, including alpha/beta/rc tags. release = numpy.__version__ print version, release # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. today_fmt = '%B %d, %Y' # List of documents that shouldn't be included in the build. #unused_docs = [] # The reST default role (used for this markup: `text`) to use for all documents. default_role = "autolink" # List of directories, relative to source directories, that shouldn't be searched # for source files. exclude_dirs = [] # If true, '()' will be appended to :func: etc. cross-reference text. add_function_parentheses = False # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # ----------------------------------------------------------------------------- # HTML output # ----------------------------------------------------------------------------- # The style sheet to use for HTML and HTML Help pages. A file of that name # must exist either in Sphinx' static/ path, or in one of the custom paths # given in html_static_path. html_style = 'scipy.css' # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". html_title = "%s v%s Manual (DRAFT)" % (project, version) # The name of an image file (within the static path) to place at the top of # the sidebar. html_logo = 'scipyshiny_small.png' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. html_sidebars = { 'index': 'indexsidebar.html' } # Additional templates that should be rendered to pages, maps page names to # template names. html_additional_pages = { 'index': 'indexcontent.html', } # If false, no module index is generated. html_use_modindex = True # If true, the reST sources are included in the HTML build as _sources/<name>. #html_copy_source = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # If nonempty, this is the file name suffix for HTML files (e.g. ".html"). #html_file_suffix = '.html' # Output file base name for HTML help builder. htmlhelp_basename = 'numpy' # Pngmath should try to align formulas properly pngmath_use_preview = True # ----------------------------------------------------------------------------- # LaTeX output # ----------------------------------------------------------------------------- # The paper size ('letter' or 'a4'). #latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). #latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, document class [howto/manual]). _stdauthor = 'Written by the NumPy community' latex_documents = [ ('reference/index', 'numpy-ref.tex', 'NumPy Reference', _stdauthor, 'manual'), ('user/index', 'numpy-user.tex', 'NumPy User Guide', _stdauthor, 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # Additional stuff for the LaTeX preamble. latex_preamble = r''' \usepackage{amsmath} \DeclareUnicodeCharacter{00A0}{\nobreakspace} % In the parameters section, place a newline after the Parameters % header \usepackage{expdlist} \let\latexdescription=\description \def\description{\latexdescription{}{} \breaklabel} % Make Examples/etc section headers smaller and more compact \makeatletter \titleformat{\paragraph}{\normalsize\py@HeaderFamily}% {\py@TitleColor}{0em}{\py@TitleColor}{\py@NormalColor} \titlespacing*{\paragraph}{0pt}{1ex}{0pt} \makeatother % Fix footer/header \renewcommand{\chaptermark}[1]{\markboth{\MakeUppercase{\thechapter.\ #1}}{}} \renewcommand{\sectionmark}[1]{\markright{\MakeUppercase{\thesection.\ #1}}} ''' # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. latex_use_modindex = False # ----------------------------------------------------------------------------- # Intersphinx configuration # ----------------------------------------------------------------------------- intersphinx_mapping = {'http://docs.python.org/dev': None} # ----------------------------------------------------------------------------- # Numpy extensions # ----------------------------------------------------------------------------- # If we want to do a phantom import from an XML file for all autodocs phantom_import_file = 'dump.xml' # Make numpydoc to generate plots for example sections numpydoc_use_plots = True # ----------------------------------------------------------------------------- # Autosummary # ----------------------------------------------------------------------------- if sphinx.__version__ >= "0.7": import glob autosummary_generate = glob.glob("reference/*.rst") # ----------------------------------------------------------------------------- # Coverage checker # ----------------------------------------------------------------------------- coverage_ignore_modules = r""" """.split() coverage_ignore_functions = r""" test($|_) (some|all)true bitwise_not cumproduct pkgload generic\. """.split() coverage_ignore_classes = r""" """.split() coverage_c_path = [] coverage_c_regexes = {} coverage_ignore_c_items = {} # ----------------------------------------------------------------------------- # Plots # ----------------------------------------------------------------------------- plot_pre_code = """ import numpy as np np.random.seed(0) """ plot_include_source = True plot_formats = [('png', 100), 'pdf'] import math phi = (math.sqrt(5) + 1)/2 import matplotlib matplotlib.rcParams.update({ 'font.size': 8, 'axes.titlesize': 8, 'axes.labelsize': 8, 'xtick.labelsize': 8, 'ytick.labelsize': 8, 'legend.fontsize': 8, 'figure.figsize': (3*phi, 3), 'figure.subplot.bottom': 0.2, 'figure.subplot.left': 0.2, 'figure.subplot.right': 0.9, 'figure.subplot.top': 0.85, 'figure.subplot.wspace': 0.4, 'text.usetex': False, })
bsd-3-clause
tequa/ammisoft
ammimain/WinPython-64bit-2.7.13.1Zero/python-2.7.13.amd64/Lib/site-packages/matplotlib/axis.py
4
85084
""" Classes for the ticks and x and y axis """ from __future__ import (absolute_import, division, print_function, unicode_literals) import six from matplotlib import rcParams import matplotlib.artist as artist from matplotlib.artist import allow_rasterization import matplotlib.cbook as cbook import matplotlib.font_manager as font_manager import matplotlib.lines as mlines import matplotlib.patches as mpatches import matplotlib.scale as mscale import matplotlib.text as mtext import matplotlib.ticker as mticker import matplotlib.transforms as mtransforms import matplotlib.units as munits import numpy as np import warnings GRIDLINE_INTERPOLATION_STEPS = 180 class Tick(artist.Artist): """ Abstract base class for the axis ticks, grid lines and labels 1 refers to the bottom of the plot for xticks and the left for yticks 2 refers to the top of the plot for xticks and the right for yticks Publicly accessible attributes: :attr:`tick1line` a Line2D instance :attr:`tick2line` a Line2D instance :attr:`gridline` a Line2D instance :attr:`label1` a Text instance :attr:`label2` a Text instance :attr:`gridOn` a boolean which determines whether to draw the tickline :attr:`tick1On` a boolean which determines whether to draw the 1st tickline :attr:`tick2On` a boolean which determines whether to draw the 2nd tickline :attr:`label1On` a boolean which determines whether to draw tick label :attr:`label2On` a boolean which determines whether to draw tick label """ def __init__(self, axes, loc, label, size=None, # points width=None, color=None, tickdir=None, pad=None, labelsize=None, labelcolor=None, zorder=None, gridOn=None, # defaults to axes.grid depending on # axes.grid.which tick1On=True, tick2On=True, label1On=True, label2On=False, major=True, ): """ bbox is the Bound2D bounding box in display coords of the Axes loc is the tick location in data coords size is the tick size in points """ artist.Artist.__init__(self) if gridOn is None: if major and (rcParams['axes.grid.which'] in ('both', 'major')): gridOn = rcParams['axes.grid'] elif (not major) and (rcParams['axes.grid.which'] in ('both', 'minor')): gridOn = rcParams['axes.grid'] else: gridOn = False self.set_figure(axes.figure) self.axes = axes name = self.__name__.lower() self._name = name self._loc = loc if size is None: if major: size = rcParams['%s.major.size' % name] else: size = rcParams['%s.minor.size' % name] self._size = size if width is None: if major: width = rcParams['%s.major.width' % name] else: width = rcParams['%s.minor.width' % name] self._width = width if color is None: color = rcParams['%s.color' % name] self._color = color if pad is None: if major: pad = rcParams['%s.major.pad' % name] else: pad = rcParams['%s.minor.pad' % name] self._base_pad = pad if labelcolor is None: labelcolor = rcParams['%s.color' % name] self._labelcolor = labelcolor if labelsize is None: labelsize = rcParams['%s.labelsize' % name] self._labelsize = labelsize if zorder is None: if major: zorder = mlines.Line2D.zorder + 0.01 else: zorder = mlines.Line2D.zorder self._zorder = zorder self.apply_tickdir(tickdir) self.tick1line = self._get_tick1line() self.tick2line = self._get_tick2line() self.gridline = self._get_gridline() self.label1 = self._get_text1() self.label = self.label1 # legacy name self.label2 = self._get_text2() self.gridOn = gridOn self.tick1On = tick1On self.tick2On = tick2On self.label1On = label1On self.label2On = label2On self.update_position(loc) def apply_tickdir(self, tickdir): """ Calculate self._pad and self._tickmarkers """ pass def get_tickdir(self): return self._tickdir def get_tick_padding(self): """ Get the length of the tick outside of the axes. """ padding = { 'in': 0.0, 'inout': 0.5, 'out': 1.0 } return self._size * padding[self._tickdir] def get_children(self): children = [self.tick1line, self.tick2line, self.gridline, self.label1, self.label2] return children def set_clip_path(self, clippath, transform=None): artist.Artist.set_clip_path(self, clippath, transform) self.gridline.set_clip_path(clippath, transform) self.stale = True set_clip_path.__doc__ = artist.Artist.set_clip_path.__doc__ def get_pad_pixels(self): return self.figure.dpi * self._base_pad / 72.0 def contains(self, mouseevent): """ Test whether the mouse event occurred in the Tick marks. This function always returns false. It is more useful to test if the axis as a whole contains the mouse rather than the set of tick marks. """ if six.callable(self._contains): return self._contains(self, mouseevent) return False, {} def set_pad(self, val): """ Set the tick label pad in points ACCEPTS: float """ self._apply_params(pad=val) self.stale = True def get_pad(self): 'Get the value of the tick label pad in points' return self._base_pad def _get_text1(self): 'Get the default Text 1 instance' pass def _get_text2(self): 'Get the default Text 2 instance' pass def _get_tick1line(self): 'Get the default line2D instance for tick1' pass def _get_tick2line(self): 'Get the default line2D instance for tick2' pass def _get_gridline(self): 'Get the default grid Line2d instance for this tick' pass def get_loc(self): 'Return the tick location (data coords) as a scalar' return self._loc @allow_rasterization def draw(self, renderer): if not self.get_visible(): self.stale = False return renderer.open_group(self.__name__) if self.gridOn: self.gridline.draw(renderer) if self.tick1On: self.tick1line.draw(renderer) if self.tick2On: self.tick2line.draw(renderer) if self.label1On: self.label1.draw(renderer) if self.label2On: self.label2.draw(renderer) renderer.close_group(self.__name__) self.stale = False def set_label1(self, s): """ Set the text of ticklabel ACCEPTS: str """ self.label1.set_text(s) self.stale = True set_label = set_label1 def set_label2(self, s): """ Set the text of ticklabel2 ACCEPTS: str """ self.label2.set_text(s) self.stale = True def _set_artist_props(self, a): a.set_figure(self.figure) def get_view_interval(self): 'return the view Interval instance for the axis this tick is ticking' raise NotImplementedError('Derived must override') def _apply_params(self, **kw): switchkw = ['gridOn', 'tick1On', 'tick2On', 'label1On', 'label2On'] switches = [k for k in kw if k in switchkw] for k in switches: setattr(self, k, kw.pop(k)) newmarker = [k for k in kw if k in ['size', 'width', 'pad', 'tickdir']] if newmarker: self._size = kw.pop('size', self._size) # Width could be handled outside this block, but it is # convenient to leave it here. self._width = kw.pop('width', self._width) self._base_pad = kw.pop('pad', self._base_pad) # apply_tickdir uses _size and _base_pad to make _pad, # and also makes _tickmarkers. self.apply_tickdir(kw.pop('tickdir', self._tickdir)) self.tick1line.set_marker(self._tickmarkers[0]) self.tick2line.set_marker(self._tickmarkers[1]) for line in (self.tick1line, self.tick2line): line.set_markersize(self._size) line.set_markeredgewidth(self._width) # _get_text1_transform uses _pad from apply_tickdir. trans = self._get_text1_transform()[0] self.label1.set_transform(trans) trans = self._get_text2_transform()[0] self.label2.set_transform(trans) tick_kw = dict([kv for kv in six.iteritems(kw) if kv[0] in ['color', 'zorder']]) if tick_kw: self.tick1line.set(**tick_kw) self.tick2line.set(**tick_kw) for k, v in six.iteritems(tick_kw): setattr(self, '_' + k, v) label_list = [k for k in six.iteritems(kw) if k[0] in ['labelsize', 'labelcolor']] if label_list: label_kw = dict([(k[5:], v) for (k, v) in label_list]) self.label1.set(**label_kw) self.label2.set(**label_kw) for k, v in six.iteritems(label_kw): # for labelsize the text objects covert str ('small') # -> points. grab the integer from the `Text` object # instead of saving the string representation v = getattr(self.label1, 'get_' + k)() setattr(self, '_label' + k, v) def update_position(self, loc): 'Set the location of tick in data coords with scalar *loc*' raise NotImplementedError('Derived must override') def _get_text1_transform(self): raise NotImplementedError('Derived must override') def _get_text2_transform(self): raise NotImplementedError('Derived must override') class XTick(Tick): """ Contains all the Artists needed to make an x tick - the tick line, the label text and the grid line """ __name__ = 'xtick' def _get_text1_transform(self): return self.axes.get_xaxis_text1_transform(self._pad) def _get_text2_transform(self): return self.axes.get_xaxis_text2_transform(self._pad) def apply_tickdir(self, tickdir): if tickdir is None: tickdir = rcParams['%s.direction' % self._name] self._tickdir = tickdir if self._tickdir == 'in': self._tickmarkers = (mlines.TICKUP, mlines.TICKDOWN) elif self._tickdir == 'inout': self._tickmarkers = ('|', '|') else: self._tickmarkers = (mlines.TICKDOWN, mlines.TICKUP) self._pad = self._base_pad + self.get_tick_padding() self.stale = True def _get_text1(self): 'Get the default Text instance' # the y loc is 3 points below the min of y axis # get the affine as an a,b,c,d,tx,ty list # x in data coords, y in axes coords trans, vert, horiz = self._get_text1_transform() t = mtext.Text( x=0, y=0, fontproperties=font_manager.FontProperties(size=self._labelsize), color=self._labelcolor, verticalalignment=vert, horizontalalignment=horiz, ) t.set_transform(trans) self._set_artist_props(t) return t def _get_text2(self): 'Get the default Text 2 instance' # x in data coords, y in axes coords trans, vert, horiz = self._get_text2_transform() t = mtext.Text( x=0, y=1, fontproperties=font_manager.FontProperties(size=self._labelsize), color=self._labelcolor, verticalalignment=vert, horizontalalignment=horiz, ) t.set_transform(trans) self._set_artist_props(t) return t def _get_tick1line(self): 'Get the default line2D instance' # x in data coords, y in axes coords l = mlines.Line2D(xdata=(0,), ydata=(0,), color=self._color, linestyle='None', marker=self._tickmarkers[0], markersize=self._size, markeredgewidth=self._width, zorder=self._zorder) l.set_transform(self.axes.get_xaxis_transform(which='tick1')) self._set_artist_props(l) return l def _get_tick2line(self): 'Get the default line2D instance' # x in data coords, y in axes coords l = mlines.Line2D(xdata=(0,), ydata=(1,), color=self._color, linestyle='None', marker=self._tickmarkers[1], markersize=self._size, markeredgewidth=self._width, zorder=self._zorder) l.set_transform(self.axes.get_xaxis_transform(which='tick2')) self._set_artist_props(l) return l def _get_gridline(self): 'Get the default line2D instance' # x in data coords, y in axes coords l = mlines.Line2D(xdata=(0.0, 0.0), ydata=(0, 1.0), color=rcParams['grid.color'], linestyle=rcParams['grid.linestyle'], linewidth=rcParams['grid.linewidth'], alpha=rcParams['grid.alpha'], markersize=0) l.set_transform(self.axes.get_xaxis_transform(which='grid')) l.get_path()._interpolation_steps = GRIDLINE_INTERPOLATION_STEPS self._set_artist_props(l) return l def update_position(self, loc): 'Set the location of tick in data coords with scalar *loc*' x = loc nonlinear = (hasattr(self.axes, 'yaxis') and self.axes.yaxis.get_scale() != 'linear' or hasattr(self.axes, 'xaxis') and self.axes.xaxis.get_scale() != 'linear') if self.tick1On: self.tick1line.set_xdata((x,)) if self.tick2On: self.tick2line.set_xdata((x,)) if self.gridOn: self.gridline.set_xdata((x,)) if self.label1On: self.label1.set_x(x) if self.label2On: self.label2.set_x(x) if nonlinear: self.tick1line._invalid = True self.tick2line._invalid = True self.gridline._invalid = True self._loc = loc self.stale = True def get_view_interval(self): 'return the Interval instance for this axis view limits' return self.axes.viewLim.intervalx class YTick(Tick): """ Contains all the Artists needed to make a Y tick - the tick line, the label text and the grid line """ __name__ = 'ytick' def _get_text1_transform(self): return self.axes.get_yaxis_text1_transform(self._pad) def _get_text2_transform(self): return self.axes.get_yaxis_text2_transform(self._pad) def apply_tickdir(self, tickdir): if tickdir is None: tickdir = rcParams['%s.direction' % self._name] self._tickdir = tickdir if self._tickdir == 'in': self._tickmarkers = (mlines.TICKRIGHT, mlines.TICKLEFT) elif self._tickdir == 'inout': self._tickmarkers = ('_', '_') else: self._tickmarkers = (mlines.TICKLEFT, mlines.TICKRIGHT) self._pad = self._base_pad + self.get_tick_padding() self.stale = True # how far from the y axis line the right of the ticklabel are def _get_text1(self): 'Get the default Text instance' # x in axes coords, y in data coords trans, vert, horiz = self._get_text1_transform() t = mtext.Text( x=0, y=0, fontproperties=font_manager.FontProperties(size=self._labelsize), color=self._labelcolor, verticalalignment=vert, horizontalalignment=horiz, ) t.set_transform(trans) self._set_artist_props(t) return t def _get_text2(self): 'Get the default Text instance' # x in axes coords, y in data coords trans, vert, horiz = self._get_text2_transform() t = mtext.Text( x=1, y=0, fontproperties=font_manager.FontProperties(size=self._labelsize), color=self._labelcolor, verticalalignment=vert, horizontalalignment=horiz, ) t.set_transform(trans) self._set_artist_props(t) return t def _get_tick1line(self): 'Get the default line2D instance' # x in axes coords, y in data coords l = mlines.Line2D((0,), (0,), color=self._color, marker=self._tickmarkers[0], linestyle='None', markersize=self._size, markeredgewidth=self._width, zorder=self._zorder) l.set_transform(self.axes.get_yaxis_transform(which='tick1')) self._set_artist_props(l) return l def _get_tick2line(self): 'Get the default line2D instance' # x in axes coords, y in data coords l = mlines.Line2D((1,), (0,), color=self._color, marker=self._tickmarkers[1], linestyle='None', markersize=self._size, markeredgewidth=self._width, zorder=self._zorder) l.set_transform(self.axes.get_yaxis_transform(which='tick2')) self._set_artist_props(l) return l def _get_gridline(self): 'Get the default line2D instance' # x in axes coords, y in data coords l = mlines.Line2D(xdata=(0, 1), ydata=(0, 0), color=rcParams['grid.color'], linestyle=rcParams['grid.linestyle'], linewidth=rcParams['grid.linewidth'], alpha=rcParams['grid.alpha'], markersize=0) l.set_transform(self.axes.get_yaxis_transform(which='grid')) l.get_path()._interpolation_steps = GRIDLINE_INTERPOLATION_STEPS self._set_artist_props(l) return l def update_position(self, loc): 'Set the location of tick in data coords with scalar loc' y = loc nonlinear = (hasattr(self.axes, 'yaxis') and self.axes.yaxis.get_scale() != 'linear' or hasattr(self.axes, 'xaxis') and self.axes.xaxis.get_scale() != 'linear') if self.tick1On: self.tick1line.set_ydata((y,)) if self.tick2On: self.tick2line.set_ydata((y,)) if self.gridOn: self.gridline.set_ydata((y, )) if self.label1On: self.label1.set_y(y) if self.label2On: self.label2.set_y(y) if nonlinear: self.tick1line._invalid = True self.tick2line._invalid = True self.gridline._invalid = True self._loc = loc self.stale = True def get_view_interval(self): 'return the Interval instance for this axis view limits' return self.axes.viewLim.intervaly class Ticker(object): locator = None formatter = None class Axis(artist.Artist): """ Public attributes * :attr:`axes.transData` - transform data coords to display coords * :attr:`axes.transAxes` - transform axis coords to display coords * :attr:`labelpad` - number of points between the axis and its label """ OFFSETTEXTPAD = 3 def __str__(self): return self.__class__.__name__ \ + "(%f,%f)" % tuple(self.axes.transAxes.transform_point((0, 0))) def __init__(self, axes, pickradius=15): """ Init the axis with the parent Axes instance """ artist.Artist.__init__(self) self.set_figure(axes.figure) # Keep track of setting to the default value, this allows use to know # if any of the following values is explicitly set by the user, so as # to not overwrite their settings with any of our 'auto' settings. self.isDefault_majloc = True self.isDefault_minloc = True self.isDefault_majfmt = True self.isDefault_minfmt = True self.isDefault_label = True self.axes = axes self.major = Ticker() self.minor = Ticker() self.callbacks = cbook.CallbackRegistry() self._autolabelpos = True self._smart_bounds = False self.label = self._get_label() self.labelpad = rcParams['axes.labelpad'] self.offsetText = self._get_offset_text() self.majorTicks = [] self.minorTicks = [] self.pickradius = pickradius # Initialize here for testing; later add API self._major_tick_kw = dict() self._minor_tick_kw = dict() self.cla() self._set_scale('linear') def set_label_coords(self, x, y, transform=None): """ Set the coordinates of the label. By default, the x coordinate of the y label is determined by the tick label bounding boxes, but this can lead to poor alignment of multiple ylabels if there are multiple axes. Ditto for the y coodinate of the x label. You can also specify the coordinate system of the label with the transform. If None, the default coordinate system will be the axes coordinate system (0,0) is (left,bottom), (0.5, 0.5) is middle, etc """ self._autolabelpos = False if transform is None: transform = self.axes.transAxes self.label.set_transform(transform) self.label.set_position((x, y)) self.stale = True def get_transform(self): return self._scale.get_transform() def get_scale(self): return self._scale.name def _set_scale(self, value, **kwargs): self._scale = mscale.scale_factory(value, self, **kwargs) self._scale.set_default_locators_and_formatters(self) self.isDefault_majloc = True self.isDefault_minloc = True self.isDefault_majfmt = True self.isDefault_minfmt = True def limit_range_for_scale(self, vmin, vmax): return self._scale.limit_range_for_scale(vmin, vmax, self.get_minpos()) def get_children(self): children = [self.label, self.offsetText] majorticks = self.get_major_ticks() minorticks = self.get_minor_ticks() children.extend(majorticks) children.extend(minorticks) return children def cla(self): 'clear the current axis' self.set_major_locator(mticker.AutoLocator()) self.set_major_formatter(mticker.ScalarFormatter()) self.set_minor_locator(mticker.NullLocator()) self.set_minor_formatter(mticker.NullFormatter()) self.set_label_text('') self._set_artist_props(self.label) # Keep track of setting to the default value, this allows use to know # if any of the following values is explicitly set by the user, so as # to not overwrite their settings with any of our 'auto' settings. self.isDefault_majloc = True self.isDefault_minloc = True self.isDefault_majfmt = True self.isDefault_minfmt = True self.isDefault_label = True # Clear the callback registry for this axis, or it may "leak" self.callbacks = cbook.CallbackRegistry() # whether the grids are on self._gridOnMajor = (rcParams['axes.grid'] and rcParams['axes.grid.which'] in ('both', 'major')) self._gridOnMinor = (rcParams['axes.grid'] and rcParams['axes.grid.which'] in ('both', 'minor')) self.label.set_text('') self._set_artist_props(self.label) self.reset_ticks() self.converter = None self.units = None self.set_units(None) self.stale = True def reset_ticks(self): # build a few default ticks; grow as necessary later; only # define 1 so properties set on ticks will be copied as they # grow cbook.popall(self.majorTicks) cbook.popall(self.minorTicks) self.majorTicks.extend([self._get_tick(major=True)]) self.minorTicks.extend([self._get_tick(major=False)]) self._lastNumMajorTicks = 1 self._lastNumMinorTicks = 1 def set_tick_params(self, which='major', reset=False, **kw): """ Set appearance parameters for ticks and ticklabels. For documentation of keyword arguments, see :meth:`matplotlib.axes.Axes.tick_params`. """ dicts = [] if which == 'major' or which == 'both': dicts.append(self._major_tick_kw) if which == 'minor' or which == 'both': dicts.append(self._minor_tick_kw) kwtrans = self._translate_tick_kw(kw, to_init_kw=True) for d in dicts: if reset: d.clear() d.update(kwtrans) if reset: self.reset_ticks() else: if which == 'major' or which == 'both': for tick in self.majorTicks: tick._apply_params(**self._major_tick_kw) if which == 'minor' or which == 'both': for tick in self.minorTicks: tick._apply_params(**self._minor_tick_kw) if 'labelcolor' in kwtrans: self.offsetText.set_color(kwtrans['labelcolor']) self.stale = True @staticmethod def _translate_tick_kw(kw, to_init_kw=True): # We may want to move the following function to # a more visible location; or maybe there already # is something like this. def _bool(arg): if cbook.is_string_like(arg): if arg.lower() == 'on': return True if arg.lower() == 'off': return False raise ValueError('String "%s" should be "on" or "off"' % arg) return bool(arg) # The following lists may be moved to a more # accessible location. kwkeys0 = ['size', 'width', 'color', 'tickdir', 'pad', 'labelsize', 'labelcolor', 'zorder', 'gridOn', 'tick1On', 'tick2On', 'label1On', 'label2On'] kwkeys1 = ['length', 'direction', 'left', 'bottom', 'right', 'top', 'labelleft', 'labelbottom', 'labelright', 'labeltop'] kwkeys = kwkeys0 + kwkeys1 kwtrans = dict() if to_init_kw: if 'length' in kw: kwtrans['size'] = kw.pop('length') if 'direction' in kw: kwtrans['tickdir'] = kw.pop('direction') if 'left' in kw: kwtrans['tick1On'] = _bool(kw.pop('left')) if 'bottom' in kw: kwtrans['tick1On'] = _bool(kw.pop('bottom')) if 'right' in kw: kwtrans['tick2On'] = _bool(kw.pop('right')) if 'top' in kw: kwtrans['tick2On'] = _bool(kw.pop('top')) if 'labelleft' in kw: kwtrans['label1On'] = _bool(kw.pop('labelleft')) if 'labelbottom' in kw: kwtrans['label1On'] = _bool(kw.pop('labelbottom')) if 'labelright' in kw: kwtrans['label2On'] = _bool(kw.pop('labelright')) if 'labeltop' in kw: kwtrans['label2On'] = _bool(kw.pop('labeltop')) if 'colors' in kw: c = kw.pop('colors') kwtrans['color'] = c kwtrans['labelcolor'] = c # Maybe move the checking up to the caller of this method. for key in kw: if key not in kwkeys: raise ValueError( "keyword %s is not recognized; valid keywords are %s" % (key, kwkeys)) kwtrans.update(kw) else: raise NotImplementedError("Inverse translation is deferred") return kwtrans def set_clip_path(self, clippath, transform=None): artist.Artist.set_clip_path(self, clippath, transform) for child in self.majorTicks + self.minorTicks: child.set_clip_path(clippath, transform) self.stale = True def get_view_interval(self): 'return the Interval instance for this axis view limits' raise NotImplementedError('Derived must override') def set_view_interval(self, vmin, vmax, ignore=False): raise NotImplementedError('Derived must override') def get_data_interval(self): 'return the Interval instance for this axis data limits' raise NotImplementedError('Derived must override') def set_data_interval(self): '''set the axis data limits''' raise NotImplementedError('Derived must override') def set_default_intervals(self): '''set the default limits for the axis data and view interval if they are not mutated''' # this is mainly in support of custom object plotting. For # example, if someone passes in a datetime object, we do not # know automagically how to set the default min/max of the # data and view limits. The unit conversion AxisInfo # interface provides a hook for custom types to register # default limits through the AxisInfo.default_limits # attribute, and the derived code below will check for that # and use it if is available (else just use 0..1) pass def _set_artist_props(self, a): if a is None: return a.set_figure(self.figure) def iter_ticks(self): """ Iterate through all of the major and minor ticks. """ majorLocs = self.major.locator() majorTicks = self.get_major_ticks(len(majorLocs)) self.major.formatter.set_locs(majorLocs) majorLabels = [self.major.formatter(val, i) for i, val in enumerate(majorLocs)] minorLocs = self.minor.locator() minorTicks = self.get_minor_ticks(len(minorLocs)) self.minor.formatter.set_locs(minorLocs) minorLabels = [self.minor.formatter(val, i) for i, val in enumerate(minorLocs)] major_minor = [ (majorTicks, majorLocs, majorLabels), (minorTicks, minorLocs, minorLabels)] for group in major_minor: for tick in zip(*group): yield tick def get_ticklabel_extents(self, renderer): """ Get the extents of the tick labels on either side of the axes. """ ticks_to_draw = self._update_ticks(renderer) ticklabelBoxes, ticklabelBoxes2 = self._get_tick_bboxes(ticks_to_draw, renderer) if len(ticklabelBoxes): bbox = mtransforms.Bbox.union(ticklabelBoxes) else: bbox = mtransforms.Bbox.from_extents(0, 0, 0, 0) if len(ticklabelBoxes2): bbox2 = mtransforms.Bbox.union(ticklabelBoxes2) else: bbox2 = mtransforms.Bbox.from_extents(0, 0, 0, 0) return bbox, bbox2 def set_smart_bounds(self, value): """set the axis to have smart bounds""" self._smart_bounds = value self.stale = True def get_smart_bounds(self): """get whether the axis has smart bounds""" return self._smart_bounds def _update_ticks(self, renderer): """ Update ticks (position and labels) using the current data interval of the axes. Returns a list of ticks that will be drawn. """ interval = self.get_view_interval() tick_tups = [t for t in self.iter_ticks()] if self._smart_bounds: # handle inverted limits view_low, view_high = min(*interval), max(*interval) data_low, data_high = self.get_data_interval() if data_low > data_high: data_low, data_high = data_high, data_low locs = [ti[1] for ti in tick_tups] locs.sort() locs = np.array(locs) if len(locs): if data_low <= view_low: # data extends beyond view, take view as limit ilow = view_low else: # data stops within view, take best tick cond = locs <= data_low good_locs = locs[cond] if len(good_locs) > 0: # last tick prior or equal to first data point ilow = good_locs[-1] else: # No ticks (why not?), take first tick ilow = locs[0] if data_high >= view_high: # data extends beyond view, take view as limit ihigh = view_high else: # data stops within view, take best tick cond = locs >= data_high good_locs = locs[cond] if len(good_locs) > 0: # first tick after or equal to last data point ihigh = good_locs[0] else: # No ticks (why not?), take last tick ihigh = locs[-1] tick_tups = [ti for ti in tick_tups if (ti[1] >= ilow) and (ti[1] <= ihigh)] # so that we don't lose ticks on the end, expand out the interval ever # so slightly. The "ever so slightly" is defined to be the width of a # half of a pixel. We don't want to draw a tick that even one pixel # outside of the defined axis interval. if interval[0] <= interval[1]: interval_expanded = interval else: interval_expanded = interval[1], interval[0] if hasattr(self, '_get_pixel_distance_along_axis'): # normally, one does not want to catch all exceptions that # could possibly happen, but it is not clear exactly what # exceptions might arise from a user's projection (their # rendition of the Axis object). So, we catch all, with # the idea that one would rather potentially lose a tick # from one side of the axis or another, rather than see a # stack trace. # We also catch users warnings here. These are the result of # invalid numpy calculations that may be the result of out of # bounds on axis with finite allowed intervals such as geo # projections i.e. Mollweide. with np.errstate(invalid='ignore'): try: ds1 = self._get_pixel_distance_along_axis( interval_expanded[0], -0.5) except: warnings.warn("Unable to find pixel distance along axis " "for interval padding of ticks; assuming no " "interval padding needed.") ds1 = 0.0 if np.isnan(ds1): ds1 = 0.0 try: ds2 = self._get_pixel_distance_along_axis( interval_expanded[1], +0.5) except: warnings.warn("Unable to find pixel distance along axis " "for interval padding of ticks; assuming no " "interval padding needed.") ds2 = 0.0 if np.isnan(ds2): ds2 = 0.0 interval_expanded = (interval_expanded[0] - ds1, interval_expanded[1] + ds2) ticks_to_draw = [] for tick, loc, label in tick_tups: if tick is None: continue if not mtransforms.interval_contains(interval_expanded, loc): continue tick.update_position(loc) tick.set_label1(label) tick.set_label2(label) ticks_to_draw.append(tick) return ticks_to_draw def _get_tick_bboxes(self, ticks, renderer): """ Given the list of ticks, return two lists of bboxes. One for tick lable1's and another for tick label2's. """ ticklabelBoxes = [] ticklabelBoxes2 = [] for tick in ticks: if tick.label1On and tick.label1.get_visible(): extent = tick.label1.get_window_extent(renderer) ticklabelBoxes.append(extent) if tick.label2On and tick.label2.get_visible(): extent = tick.label2.get_window_extent(renderer) ticklabelBoxes2.append(extent) return ticklabelBoxes, ticklabelBoxes2 def get_tightbbox(self, renderer): """ Return a bounding box that encloses the axis. It only accounts tick labels, axis label, and offsetText. """ if not self.get_visible(): return ticks_to_draw = self._update_ticks(renderer) ticklabelBoxes, ticklabelBoxes2 = self._get_tick_bboxes(ticks_to_draw, renderer) self._update_label_position(ticklabelBoxes, ticklabelBoxes2) self._update_offset_text_position(ticklabelBoxes, ticklabelBoxes2) self.offsetText.set_text(self.major.formatter.get_offset()) bb = [] for a in [self.label, self.offsetText]: if a.get_visible(): bb.append(a.get_window_extent(renderer)) bb.extend(ticklabelBoxes) bb.extend(ticklabelBoxes2) bb = [b for b in bb if b.width != 0 or b.height != 0] if bb: _bbox = mtransforms.Bbox.union(bb) return _bbox else: return None def get_tick_padding(self): values = [] if len(self.majorTicks): values.append(self.majorTicks[0].get_tick_padding()) if len(self.minorTicks): values.append(self.minorTicks[0].get_tick_padding()) if len(values): return max(values) return 0.0 @allow_rasterization def draw(self, renderer, *args, **kwargs): 'Draw the axis lines, grid lines, tick lines and labels' if not self.get_visible(): return renderer.open_group(__name__) ticks_to_draw = self._update_ticks(renderer) ticklabelBoxes, ticklabelBoxes2 = self._get_tick_bboxes(ticks_to_draw, renderer) for tick in ticks_to_draw: tick.draw(renderer) # scale up the axis label box to also find the neighbors, not # just the tick labels that actually overlap note we need a # *copy* of the axis label box because we don't wan't to scale # the actual bbox self._update_label_position(ticklabelBoxes, ticklabelBoxes2) self.label.draw(renderer) self._update_offset_text_position(ticklabelBoxes, ticklabelBoxes2) self.offsetText.set_text(self.major.formatter.get_offset()) self.offsetText.draw(renderer) if 0: # draw the bounding boxes around the text for debug for tick in self.majorTicks: label = tick.label1 mpatches.bbox_artist(label, renderer) mpatches.bbox_artist(self.label, renderer) renderer.close_group(__name__) self.stale = False def _get_label(self): raise NotImplementedError('Derived must override') def _get_offset_text(self): raise NotImplementedError('Derived must override') def get_gridlines(self): 'Return the grid lines as a list of Line2D instance' ticks = self.get_major_ticks() return cbook.silent_list('Line2D gridline', [tick.gridline for tick in ticks]) def get_label(self): 'Return the axis label as a Text instance' return self.label def get_offset_text(self): 'Return the axis offsetText as a Text instance' return self.offsetText def get_pickradius(self): 'Return the depth of the axis used by the picker' return self.pickradius def get_majorticklabels(self): 'Return a list of Text instances for the major ticklabels' ticks = self.get_major_ticks() labels1 = [tick.label1 for tick in ticks if tick.label1On] labels2 = [tick.label2 for tick in ticks if tick.label2On] return cbook.silent_list('Text major ticklabel', labels1 + labels2) def get_minorticklabels(self): 'Return a list of Text instances for the minor ticklabels' ticks = self.get_minor_ticks() labels1 = [tick.label1 for tick in ticks if tick.label1On] labels2 = [tick.label2 for tick in ticks if tick.label2On] return cbook.silent_list('Text minor ticklabel', labels1 + labels2) def get_ticklabels(self, minor=False, which=None): """ Get the x tick labels as a list of :class:`~matplotlib.text.Text` instances. Parameters ---------- minor : bool If True return the minor ticklabels, else return the major ticklabels which : None, ('minor', 'major', 'both') Overrides `minor`. Selects which ticklabels to return Returns ------- ret : list List of :class:`~matplotlib.text.Text` instances. """ if which is not None: if which == 'minor': return self.get_minorticklabels() elif which == 'major': return self.get_majorticklabels() elif which == 'both': return self.get_majorticklabels() + self.get_minorticklabels() else: raise ValueError("`which` must be one of ('minor', 'major', " "'both') not " + str(which)) if minor: return self.get_minorticklabels() return self.get_majorticklabels() def get_majorticklines(self): 'Return the major tick lines as a list of Line2D instances' lines = [] ticks = self.get_major_ticks() for tick in ticks: lines.append(tick.tick1line) lines.append(tick.tick2line) return cbook.silent_list('Line2D ticklines', lines) def get_minorticklines(self): 'Return the minor tick lines as a list of Line2D instances' lines = [] ticks = self.get_minor_ticks() for tick in ticks: lines.append(tick.tick1line) lines.append(tick.tick2line) return cbook.silent_list('Line2D ticklines', lines) def get_ticklines(self, minor=False): 'Return the tick lines as a list of Line2D instances' if minor: return self.get_minorticklines() return self.get_majorticklines() def get_majorticklocs(self): "Get the major tick locations in data coordinates as a numpy array" return self.major.locator() def get_minorticklocs(self): "Get the minor tick locations in data coordinates as a numpy array" return self.minor.locator() def get_ticklocs(self, minor=False): "Get the tick locations in data coordinates as a numpy array" if minor: return self.minor.locator() return self.major.locator() def _get_tick(self, major): 'return the default tick instance' raise NotImplementedError('derived must override') def _copy_tick_props(self, src, dest): 'Copy the props from src tick to dest tick' if src is None or dest is None: return dest.label1.update_from(src.label1) dest.label2.update_from(src.label2) dest.tick1line.update_from(src.tick1line) dest.tick2line.update_from(src.tick2line) dest.gridline.update_from(src.gridline) dest.tick1On = src.tick1On dest.tick2On = src.tick2On dest.label1On = src.label1On dest.label2On = src.label2On def get_label_text(self): 'Get the text of the label' return self.label.get_text() def get_major_locator(self): 'Get the locator of the major ticker' return self.major.locator def get_minor_locator(self): 'Get the locator of the minor ticker' return self.minor.locator def get_major_formatter(self): 'Get the formatter of the major ticker' return self.major.formatter def get_minor_formatter(self): 'Get the formatter of the minor ticker' return self.minor.formatter def get_major_ticks(self, numticks=None): 'get the tick instances; grow as necessary' if numticks is None: numticks = len(self.get_major_locator()()) if len(self.majorTicks) < numticks: # update the new tick label properties from the old for i in range(numticks - len(self.majorTicks)): tick = self._get_tick(major=True) self.majorTicks.append(tick) if self._lastNumMajorTicks < numticks: protoTick = self.majorTicks[0] for i in range(self._lastNumMajorTicks, len(self.majorTicks)): tick = self.majorTicks[i] if self._gridOnMajor: tick.gridOn = True self._copy_tick_props(protoTick, tick) self._lastNumMajorTicks = numticks ticks = self.majorTicks[:numticks] return ticks def get_minor_ticks(self, numticks=None): 'get the minor tick instances; grow as necessary' if numticks is None: numticks = len(self.get_minor_locator()()) if len(self.minorTicks) < numticks: # update the new tick label properties from the old for i in range(numticks - len(self.minorTicks)): tick = self._get_tick(major=False) self.minorTicks.append(tick) if self._lastNumMinorTicks < numticks: protoTick = self.minorTicks[0] for i in range(self._lastNumMinorTicks, len(self.minorTicks)): tick = self.minorTicks[i] if self._gridOnMinor: tick.gridOn = True self._copy_tick_props(protoTick, tick) self._lastNumMinorTicks = numticks ticks = self.minorTicks[:numticks] return ticks def grid(self, b=None, which='major', **kwargs): """ Set the axis grid on or off; b is a boolean. Use *which* = 'major' | 'minor' | 'both' to set the grid for major or minor ticks. If *b* is *None* and len(kwargs)==0, toggle the grid state. If *kwargs* are supplied, it is assumed you want the grid on and *b* will be set to True. *kwargs* are used to set the line properties of the grids, e.g., xax.grid(color='r', linestyle='-', linewidth=2) """ if len(kwargs): b = True which = which.lower() if which in ['minor', 'both']: if b is None: self._gridOnMinor = not self._gridOnMinor else: self._gridOnMinor = b for tick in self.minorTicks: # don't use get_ticks here! if tick is None: continue tick.gridOn = self._gridOnMinor if len(kwargs): tick.gridline.update(kwargs) self._minor_tick_kw['gridOn'] = self._gridOnMinor if which in ['major', 'both']: if b is None: self._gridOnMajor = not self._gridOnMajor else: self._gridOnMajor = b for tick in self.majorTicks: # don't use get_ticks here! if tick is None: continue tick.gridOn = self._gridOnMajor if len(kwargs): tick.gridline.update(kwargs) self._major_tick_kw['gridOn'] = self._gridOnMajor self.stale = True def update_units(self, data): """ introspect *data* for units converter and update the axis.converter instance if necessary. Return *True* if *data* is registered for unit conversion. """ converter = munits.registry.get_converter(data) if converter is None: return False neednew = self.converter != converter self.converter = converter default = self.converter.default_units(data, self) if default is not None and self.units is None: self.set_units(default) if neednew: self._update_axisinfo() self.stale = True return True def _update_axisinfo(self): """ check the axis converter for the stored units to see if the axis info needs to be updated """ if self.converter is None: return info = self.converter.axisinfo(self.units, self) if info is None: return if info.majloc is not None and \ self.major.locator != info.majloc and self.isDefault_majloc: self.set_major_locator(info.majloc) self.isDefault_majloc = True if info.minloc is not None and \ self.minor.locator != info.minloc and self.isDefault_minloc: self.set_minor_locator(info.minloc) self.isDefault_minloc = True if info.majfmt is not None and \ self.major.formatter != info.majfmt and self.isDefault_majfmt: self.set_major_formatter(info.majfmt) self.isDefault_majfmt = True if info.minfmt is not None and \ self.minor.formatter != info.minfmt and self.isDefault_minfmt: self.set_minor_formatter(info.minfmt) self.isDefault_minfmt = True if info.label is not None and self.isDefault_label: self.set_label_text(info.label) self.isDefault_label = True self.set_default_intervals() def have_units(self): return self.converter is not None or self.units is not None def convert_units(self, x): if self.converter is None: self.converter = munits.registry.get_converter(x) if self.converter is None: return x ret = self.converter.convert(x, self.units, self) return ret def set_units(self, u): """ set the units for axis ACCEPTS: a units tag """ pchanged = False if u is None: self.units = None pchanged = True else: if u != self.units: self.units = u pchanged = True if pchanged: self._update_axisinfo() self.callbacks.process('units') self.callbacks.process('units finalize') self.stale = True def get_units(self): 'return the units for axis' return self.units def set_label_text(self, label, fontdict=None, **kwargs): """ Sets the text value of the axis label ACCEPTS: A string value for the label """ self.isDefault_label = False self.label.set_text(label) if fontdict is not None: self.label.update(fontdict) self.label.update(kwargs) self.stale = True return self.label def set_major_formatter(self, formatter): """ Set the formatter of the major ticker ACCEPTS: A :class:`~matplotlib.ticker.Formatter` instance """ self.isDefault_majfmt = False self.major.formatter = formatter formatter.set_axis(self) self.stale = True def set_minor_formatter(self, formatter): """ Set the formatter of the minor ticker ACCEPTS: A :class:`~matplotlib.ticker.Formatter` instance """ self.isDefault_minfmt = False self.minor.formatter = formatter formatter.set_axis(self) self.stale = True def set_major_locator(self, locator): """ Set the locator of the major ticker ACCEPTS: a :class:`~matplotlib.ticker.Locator` instance """ self.isDefault_majloc = False self.major.locator = locator locator.set_axis(self) self.stale = True def set_minor_locator(self, locator): """ Set the locator of the minor ticker ACCEPTS: a :class:`~matplotlib.ticker.Locator` instance """ self.isDefault_minloc = False self.minor.locator = locator locator.set_axis(self) self.stale = True def set_pickradius(self, pickradius): """ Set the depth of the axis used by the picker ACCEPTS: a distance in points """ self.pickradius = pickradius def set_ticklabels(self, ticklabels, *args, **kwargs): """ Set the text values of the tick labels. Return a list of Text instances. Use *kwarg* *minor=True* to select minor ticks. All other kwargs are used to update the text object properties. As for get_ticklabels, label1 (left or bottom) is affected for a given tick only if its label1On attribute is True, and similarly for label2. The list of returned label text objects consists of all such label1 objects followed by all such label2 objects. The input *ticklabels* is assumed to match the set of tick locations, regardless of the state of label1On and label2On. ACCEPTS: sequence of strings or Text objects """ get_labels = [] for t in ticklabels: # try calling get_text() to check whether it is Text object # if it is Text, get label content try: get_labels.append(t.get_text()) # otherwise add the label to the list directly except AttributeError: get_labels.append(t) # replace the ticklabels list with the processed one ticklabels = get_labels minor = kwargs.pop('minor', False) if minor: self.set_minor_formatter(mticker.FixedFormatter(ticklabels)) ticks = self.get_minor_ticks() else: self.set_major_formatter(mticker.FixedFormatter(ticklabels)) ticks = self.get_major_ticks() ret = [] for tick_label, tick in zip(ticklabels, ticks): # deal with label1 tick.label1.set_text(tick_label) tick.label1.update(kwargs) # deal with label2 tick.label2.set_text(tick_label) tick.label2.update(kwargs) # only return visible tick labels if tick.label1On: ret.append(tick.label1) if tick.label2On: ret.append(tick.label2) self.stale = True return ret def set_ticks(self, ticks, minor=False): """ Set the locations of the tick marks from sequence ticks ACCEPTS: sequence of floats """ # XXX if the user changes units, the information will be lost here ticks = self.convert_units(ticks) if len(ticks) > 1: xleft, xright = self.get_view_interval() if xright > xleft: self.set_view_interval(min(ticks), max(ticks)) else: self.set_view_interval(max(ticks), min(ticks)) if minor: self.set_minor_locator(mticker.FixedLocator(ticks)) return self.get_minor_ticks(len(ticks)) else: self.set_major_locator(mticker.FixedLocator(ticks)) return self.get_major_ticks(len(ticks)) def _update_label_position(self, bboxes, bboxes2): """ Update the label position based on the bounding box enclosing all the ticklabels and axis spine """ raise NotImplementedError('Derived must override') def _update_offset_text_postion(self, bboxes, bboxes2): """ Update the label position based on the sequence of bounding boxes of all the ticklabels """ raise NotImplementedError('Derived must override') def pan(self, numsteps): 'Pan *numsteps* (can be positive or negative)' self.major.locator.pan(numsteps) def zoom(self, direction): "Zoom in/out on axis; if *direction* is >0 zoom in, else zoom out" self.major.locator.zoom(direction) def axis_date(self, tz=None): """ Sets up x-axis ticks and labels that treat the x data as dates. *tz* is a :class:`tzinfo` instance or a timezone string. This timezone is used to create date labels. """ # By providing a sample datetime instance with the desired # timezone, the registered converter can be selected, # and the "units" attribute, which is the timezone, can # be set. import datetime if isinstance(tz, six.string_types): import pytz tz = pytz.timezone(tz) self.update_units(datetime.datetime(2009, 1, 1, 0, 0, 0, 0, tz)) def get_tick_space(self): """ Return the estimated number of ticks that can fit on the axis. """ # Must be overridden in the subclass raise NotImplementedError() def get_label_position(self): """ Return the label position (top or bottom) """ return self.label_position def set_label_position(self, position): """ Set the label position (top or bottom) ACCEPTS: [ 'top' | 'bottom' ] """ raise NotImplementedError() def get_minpos(self): raise NotImplementedError() class XAxis(Axis): __name__ = 'xaxis' axis_name = 'x' def contains(self, mouseevent): """Test whether the mouse event occured in the x axis. """ if six.callable(self._contains): return self._contains(self, mouseevent) x, y = mouseevent.x, mouseevent.y try: trans = self.axes.transAxes.inverted() xaxes, yaxes = trans.transform_point((x, y)) except ValueError: return False, {} l, b = self.axes.transAxes.transform_point((0, 0)) r, t = self.axes.transAxes.transform_point((1, 1)) inaxis = xaxes >= 0 and xaxes <= 1 and ( (y < b and y > b - self.pickradius) or (y > t and y < t + self.pickradius)) return inaxis, {} def _get_tick(self, major): if major: tick_kw = self._major_tick_kw else: tick_kw = self._minor_tick_kw return XTick(self.axes, 0, '', major=major, **tick_kw) def _get_label(self): # x in axes coords, y in display coords (to be updated at draw # time by _update_label_positions) label = mtext.Text(x=0.5, y=0, fontproperties=font_manager.FontProperties( size=rcParams['axes.labelsize'], weight=rcParams['axes.labelweight']), color=rcParams['axes.labelcolor'], verticalalignment='top', horizontalalignment='center') label.set_transform(mtransforms.blended_transform_factory( self.axes.transAxes, mtransforms.IdentityTransform())) self._set_artist_props(label) self.label_position = 'bottom' return label def _get_offset_text(self): # x in axes coords, y in display coords (to be updated at draw time) offsetText = mtext.Text(x=1, y=0, fontproperties=font_manager.FontProperties( size=rcParams['xtick.labelsize']), color=rcParams['xtick.color'], verticalalignment='top', horizontalalignment='right') offsetText.set_transform(mtransforms.blended_transform_factory( self.axes.transAxes, mtransforms.IdentityTransform()) ) self._set_artist_props(offsetText) self.offset_text_position = 'bottom' return offsetText def _get_pixel_distance_along_axis(self, where, perturb): """ Returns the amount, in data coordinates, that a single pixel corresponds to in the locality given by "where", which is also given in data coordinates, and is an x coordinate. "perturb" is the amount to perturb the pixel. Usually +0.5 or -0.5. Implementing this routine for an axis is optional; if present, it will ensure that no ticks are lost due to round-off at the extreme ends of an axis. """ # Note that this routine does not work for a polar axis, because of # the 1e-10 below. To do things correctly, we need to use rmax # instead of 1e-10 for a polar axis. But since we do not have that # kind of information at this point, we just don't try to pad anything # for the theta axis of a polar plot. if self.axes.name == 'polar': return 0.0 # # first figure out the pixel location of the "where" point. We use # 1e-10 for the y point, so that we remain compatible with log axes. # transformation from data coords to display coords trans = self.axes.transData # transformation from display coords to data coords transinv = trans.inverted() pix = trans.transform_point((where, 1e-10)) # perturb the pixel ptp = transinv.transform_point((pix[0] + perturb, pix[1])) dx = abs(ptp[0] - where) return dx def set_label_position(self, position): """ Set the label position (top or bottom) ACCEPTS: [ 'top' | 'bottom' ] """ if position == 'top': self.label.set_verticalalignment('baseline') elif position == 'bottom': self.label.set_verticalalignment('top') else: msg = "Position accepts only [ 'top' | 'bottom' ]" raise ValueError(msg) self.label_position = position self.stale = True def _update_label_position(self, bboxes, bboxes2): """ Update the label position based on the bounding box enclosing all the ticklabels and axis spine """ if not self._autolabelpos: return x, y = self.label.get_position() if self.label_position == 'bottom': try: spine = self.axes.spines['bottom'] spinebbox = spine.get_transform().transform_path( spine.get_path()).get_extents() except KeyError: # use axes if spine doesn't exist spinebbox = self.axes.bbox bbox = mtransforms.Bbox.union(bboxes + [spinebbox]) bottom = bbox.y0 self.label.set_position( (x, bottom - self.labelpad * self.figure.dpi / 72.0) ) else: try: spine = self.axes.spines['top'] spinebbox = spine.get_transform().transform_path( spine.get_path()).get_extents() except KeyError: # use axes if spine doesn't exist spinebbox = self.axes.bbox bbox = mtransforms.Bbox.union(bboxes2 + [spinebbox]) top = bbox.y1 self.label.set_position( (x, top + self.labelpad * self.figure.dpi / 72.0) ) def _update_offset_text_position(self, bboxes, bboxes2): """ Update the offset_text position based on the sequence of bounding boxes of all the ticklabels """ x, y = self.offsetText.get_position() if not len(bboxes): bottom = self.axes.bbox.ymin else: bbox = mtransforms.Bbox.union(bboxes) bottom = bbox.y0 self.offsetText.set_position( (x, bottom - self.OFFSETTEXTPAD * self.figure.dpi / 72.0) ) def get_text_heights(self, renderer): """ Returns the amount of space one should reserve for text above and below the axes. Returns a tuple (above, below) """ bbox, bbox2 = self.get_ticklabel_extents(renderer) # MGDTODO: Need a better way to get the pad padPixels = self.majorTicks[0].get_pad_pixels() above = 0.0 if bbox2.height: above += bbox2.height + padPixels below = 0.0 if bbox.height: below += bbox.height + padPixels if self.get_label_position() == 'top': above += self.label.get_window_extent(renderer).height + padPixels else: below += self.label.get_window_extent(renderer).height + padPixels return above, below def set_ticks_position(self, position): """ Set the ticks position (top, bottom, both, default or none) both sets the ticks to appear on both positions, but does not change the tick labels. 'default' resets the tick positions to the default: ticks on both positions, labels at bottom. 'none' can be used if you don't want any ticks. 'none' and 'both' affect only the ticks, not the labels. ACCEPTS: [ 'top' | 'bottom' | 'both' | 'default' | 'none' ] """ if position == 'top': self.set_tick_params(which='both', top=True, labeltop=True, bottom=False, labelbottom=False) elif position == 'bottom': self.set_tick_params(which='both', top=False, labeltop=False, bottom=True, labelbottom=True) elif position == 'both': self.set_tick_params(which='both', top=True, bottom=True) elif position == 'none': self.set_tick_params(which='both', top=False, bottom=False) elif position == 'default': self.set_tick_params(which='both', top=True, labeltop=False, bottom=True, labelbottom=True) else: raise ValueError("invalid position: %s" % position) self.stale = True def tick_top(self): 'use ticks only on top' self.set_ticks_position('top') def tick_bottom(self): 'use ticks only on bottom' self.set_ticks_position('bottom') def get_ticks_position(self): """ Return the ticks position (top, bottom, default or unknown) """ majt = self.majorTicks[0] mT = self.minorTicks[0] majorTop = ((not majt.tick1On) and majt.tick2On and (not majt.label1On) and majt.label2On) minorTop = ((not mT.tick1On) and mT.tick2On and (not mT.label1On) and mT.label2On) if majorTop and minorTop: return 'top' MajorBottom = (majt.tick1On and (not majt.tick2On) and majt.label1On and (not majt.label2On)) MinorBottom = (mT.tick1On and (not mT.tick2On) and mT.label1On and (not mT.label2On)) if MajorBottom and MinorBottom: return 'bottom' majorDefault = (majt.tick1On and majt.tick2On and majt.label1On and (not majt.label2On)) minorDefault = (mT.tick1On and mT.tick2On and mT.label1On and (not mT.label2On)) if majorDefault and minorDefault: return 'default' return 'unknown' def get_view_interval(self): 'return the Interval instance for this axis view limits' return self.axes.viewLim.intervalx def set_view_interval(self, vmin, vmax, ignore=False): """ If *ignore* is *False*, the order of vmin, vmax does not matter; the original axis orientation will be preserved. In addition, the view limits can be expanded, but will not be reduced. This method is for mpl internal use; for normal use, see :meth:`~matplotlib.axes.Axes.set_xlim`. """ if ignore: self.axes.viewLim.intervalx = vmin, vmax else: Vmin, Vmax = self.get_view_interval() if Vmin < Vmax: self.axes.viewLim.intervalx = (min(vmin, vmax, Vmin), max(vmin, vmax, Vmax)) else: self.axes.viewLim.intervalx = (max(vmin, vmax, Vmin), min(vmin, vmax, Vmax)) def get_minpos(self): return self.axes.dataLim.minposx def get_data_interval(self): 'return the Interval instance for this axis data limits' return self.axes.dataLim.intervalx def set_data_interval(self, vmin, vmax, ignore=False): 'set the axis data limits' if ignore: self.axes.dataLim.intervalx = vmin, vmax else: Vmin, Vmax = self.get_data_interval() self.axes.dataLim.intervalx = min(vmin, Vmin), max(vmax, Vmax) self.stale = True def set_default_intervals(self): 'set the default limits for the axis interval if they are not mutated' xmin, xmax = 0., 1. dataMutated = self.axes.dataLim.mutatedx() viewMutated = self.axes.viewLim.mutatedx() if not dataMutated or not viewMutated: if self.converter is not None: info = self.converter.axisinfo(self.units, self) if info.default_limits is not None: valmin, valmax = info.default_limits xmin = self.converter.convert(valmin, self.units, self) xmax = self.converter.convert(valmax, self.units, self) if not dataMutated: self.axes.dataLim.intervalx = xmin, xmax if not viewMutated: self.axes.viewLim.intervalx = xmin, xmax self.stale = True def get_tick_space(self): ends = self.axes.transAxes.transform([[0, 0], [1, 0]]) length = ((ends[1][0] - ends[0][0]) / self.axes.figure.dpi) * 72.0 tick = self._get_tick(True) # There is a heuristic here that the aspect ratio of tick text # is no more than 3:1 size = tick.label1.get_size() * 3 if size > 0: return int(np.floor(length / size)) else: return 2**31 - 1 class YAxis(Axis): __name__ = 'yaxis' axis_name = 'y' def contains(self, mouseevent): """Test whether the mouse event occurred in the y axis. Returns *True* | *False* """ if six.callable(self._contains): return self._contains(self, mouseevent) x, y = mouseevent.x, mouseevent.y try: trans = self.axes.transAxes.inverted() xaxes, yaxes = trans.transform_point((x, y)) except ValueError: return False, {} l, b = self.axes.transAxes.transform_point((0, 0)) r, t = self.axes.transAxes.transform_point((1, 1)) inaxis = yaxes >= 0 and yaxes <= 1 and ( (x < l and x > l - self.pickradius) or (x > r and x < r + self.pickradius)) return inaxis, {} def _get_tick(self, major): if major: tick_kw = self._major_tick_kw else: tick_kw = self._minor_tick_kw return YTick(self.axes, 0, '', major=major, **tick_kw) def _get_label(self): # x in display coords (updated by _update_label_position) # y in axes coords label = mtext.Text(x=0, y=0.5, # todo: get the label position fontproperties=font_manager.FontProperties( size=rcParams['axes.labelsize'], weight=rcParams['axes.labelweight']), color=rcParams['axes.labelcolor'], verticalalignment='bottom', horizontalalignment='center', rotation='vertical', rotation_mode='anchor') label.set_transform(mtransforms.blended_transform_factory( mtransforms.IdentityTransform(), self.axes.transAxes)) self._set_artist_props(label) self.label_position = 'left' return label def _get_offset_text(self): # x in display coords, y in axes coords (to be updated at draw time) offsetText = mtext.Text(x=0, y=0.5, fontproperties=font_manager.FontProperties( size=rcParams['ytick.labelsize'] ), color=rcParams['ytick.color'], verticalalignment='baseline', horizontalalignment='left') offsetText.set_transform(mtransforms.blended_transform_factory( self.axes.transAxes, mtransforms.IdentityTransform()) ) self._set_artist_props(offsetText) self.offset_text_position = 'left' return offsetText def _get_pixel_distance_along_axis(self, where, perturb): """ Returns the amount, in data coordinates, that a single pixel corresponds to in the locality given by *where*, which is also given in data coordinates, and is a y coordinate. *perturb* is the amount to perturb the pixel. Usually +0.5 or -0.5. Implementing this routine for an axis is optional; if present, it will ensure that no ticks are lost due to round-off at the extreme ends of an axis. """ # # first figure out the pixel location of the "where" point. We use # 1e-10 for the x point, so that we remain compatible with log axes. # transformation from data coords to display coords trans = self.axes.transData # transformation from display coords to data coords transinv = trans.inverted() pix = trans.transform_point((1e-10, where)) # perturb the pixel ptp = transinv.transform_point((pix[0], pix[1] + perturb)) dy = abs(ptp[1] - where) return dy def set_label_position(self, position): """ Set the label position (left or right) ACCEPTS: [ 'left' | 'right' ] """ self.label.set_rotation_mode('anchor') self.label.set_horizontalalignment('center') if position == 'left': self.label.set_verticalalignment('bottom') elif position == 'right': self.label.set_verticalalignment('top') else: msg = "Position accepts only [ 'left' | 'right' ]" raise ValueError(msg) self.label_position = position self.stale = True def _update_label_position(self, bboxes, bboxes2): """ Update the label position based on the bounding box enclosing all the ticklabels and axis spine """ if not self._autolabelpos: return x, y = self.label.get_position() if self.label_position == 'left': try: spine = self.axes.spines['left'] spinebbox = spine.get_transform().transform_path( spine.get_path()).get_extents() except KeyError: # use axes if spine doesn't exist spinebbox = self.axes.bbox bbox = mtransforms.Bbox.union(bboxes + [spinebbox]) left = bbox.x0 self.label.set_position( (left - self.labelpad * self.figure.dpi / 72.0, y) ) else: try: spine = self.axes.spines['right'] spinebbox = spine.get_transform().transform_path( spine.get_path()).get_extents() except KeyError: # use axes if spine doesn't exist spinebbox = self.axes.bbox bbox = mtransforms.Bbox.union(bboxes2 + [spinebbox]) right = bbox.x1 self.label.set_position( (right + self.labelpad * self.figure.dpi / 72.0, y) ) def _update_offset_text_position(self, bboxes, bboxes2): """ Update the offset_text position based on the sequence of bounding boxes of all the ticklabels """ x, y = self.offsetText.get_position() top = self.axes.bbox.ymax self.offsetText.set_position( (x, top + self.OFFSETTEXTPAD * self.figure.dpi / 72.0) ) def set_offset_position(self, position): x, y = self.offsetText.get_position() if position == 'left': x = 0 elif position == 'right': x = 1 else: msg = "Position accepts only [ 'left' | 'right' ]" raise ValueError(msg) self.offsetText.set_ha(position) self.offsetText.set_position((x, y)) self.stale = True def get_text_widths(self, renderer): bbox, bbox2 = self.get_ticklabel_extents(renderer) # MGDTODO: Need a better way to get the pad padPixels = self.majorTicks[0].get_pad_pixels() left = 0.0 if bbox.width: left += bbox.width + padPixels right = 0.0 if bbox2.width: right += bbox2.width + padPixels if self.get_label_position() == 'left': left += self.label.get_window_extent(renderer).width + padPixels else: right += self.label.get_window_extent(renderer).width + padPixels return left, right def set_ticks_position(self, position): """ Set the ticks position (left, right, both, default or none) 'both' sets the ticks to appear on both positions, but does not change the tick labels. 'default' resets the tick positions to the default: ticks on both positions, labels at left. 'none' can be used if you don't want any ticks. 'none' and 'both' affect only the ticks, not the labels. ACCEPTS: [ 'left' | 'right' | 'both' | 'default' | 'none' ] """ if position == 'right': self.set_tick_params(which='both', right=True, labelright=True, left=False, labelleft=False) self.set_offset_position(position) elif position == 'left': self.set_tick_params(which='both', right=False, labelright=False, left=True, labelleft=True) self.set_offset_position(position) elif position == 'both': self.set_tick_params(which='both', right=True, left=True) elif position == 'none': self.set_tick_params(which='both', right=False, left=False) elif position == 'default': self.set_tick_params(which='both', right=True, labelright=False, left=True, labelleft=True) else: raise ValueError("invalid position: %s" % position) self.stale = True def tick_right(self): 'use ticks only on right' self.set_ticks_position('right') def tick_left(self): 'use ticks only on left' self.set_ticks_position('left') def get_ticks_position(self): """ Return the ticks position (left, right, both or unknown) """ majt = self.majorTicks[0] mT = self.minorTicks[0] majorRight = ((not majt.tick1On) and majt.tick2On and (not majt.label1On) and majt.label2On) minorRight = ((not mT.tick1On) and mT.tick2On and (not mT.label1On) and mT.label2On) if majorRight and minorRight: return 'right' majorLeft = (majt.tick1On and (not majt.tick2On) and majt.label1On and (not majt.label2On)) minorLeft = (mT.tick1On and (not mT.tick2On) and mT.label1On and (not mT.label2On)) if majorLeft and minorLeft: return 'left' majorDefault = (majt.tick1On and majt.tick2On and majt.label1On and (not majt.label2On)) minorDefault = (mT.tick1On and mT.tick2On and mT.label1On and (not mT.label2On)) if majorDefault and minorDefault: return 'default' return 'unknown' def get_view_interval(self): 'return the Interval instance for this axis view limits' return self.axes.viewLim.intervaly def set_view_interval(self, vmin, vmax, ignore=False): """ If *ignore* is *False*, the order of vmin, vmax does not matter; the original axis orientation will be preserved. In addition, the view limits can be expanded, but will not be reduced. This method is for mpl internal use; for normal use, see :meth:`~matplotlib.axes.Axes.set_ylim`. """ if ignore: self.axes.viewLim.intervaly = vmin, vmax else: Vmin, Vmax = self.get_view_interval() if Vmin < Vmax: self.axes.viewLim.intervaly = (min(vmin, vmax, Vmin), max(vmin, vmax, Vmax)) else: self.axes.viewLim.intervaly = (max(vmin, vmax, Vmin), min(vmin, vmax, Vmax)) self.stale = True def get_minpos(self): return self.axes.dataLim.minposy def get_data_interval(self): 'return the Interval instance for this axis data limits' return self.axes.dataLim.intervaly def set_data_interval(self, vmin, vmax, ignore=False): 'set the axis data limits' if ignore: self.axes.dataLim.intervaly = vmin, vmax else: Vmin, Vmax = self.get_data_interval() self.axes.dataLim.intervaly = min(vmin, Vmin), max(vmax, Vmax) self.stale = True def set_default_intervals(self): 'set the default limits for the axis interval if they are not mutated' ymin, ymax = 0., 1. dataMutated = self.axes.dataLim.mutatedy() viewMutated = self.axes.viewLim.mutatedy() if not dataMutated or not viewMutated: if self.converter is not None: info = self.converter.axisinfo(self.units, self) if info.default_limits is not None: valmin, valmax = info.default_limits ymin = self.converter.convert(valmin, self.units, self) ymax = self.converter.convert(valmax, self.units, self) if not dataMutated: self.axes.dataLim.intervaly = ymin, ymax if not viewMutated: self.axes.viewLim.intervaly = ymin, ymax self.stale = True def get_tick_space(self): ends = self.axes.transAxes.transform([[0, 0], [0, 1]]) length = ((ends[1][1] - ends[0][1]) / self.axes.figure.dpi) * 72.0 tick = self._get_tick(True) # Having a spacing of at least 2 just looks good. size = tick.label1.get_size() * 2.0 if size > 0: return int(np.floor(length / size)) else: return 2**31 - 1
bsd-3-clause
ryfeus/lambda-packs
Tensorflow_LightGBM_Scipy_nightly/source/scipy/stats/_binned_statistic.py
10
25912
from __future__ import division, print_function, absolute_import import numpy as np from scipy._lib.six import callable, xrange from scipy._lib._numpy_compat import suppress_warnings from collections import namedtuple __all__ = ['binned_statistic', 'binned_statistic_2d', 'binned_statistic_dd'] BinnedStatisticResult = namedtuple('BinnedStatisticResult', ('statistic', 'bin_edges', 'binnumber')) def binned_statistic(x, values, statistic='mean', bins=10, range=None): """ Compute a binned statistic for one or more sets of data. This is a generalization of a histogram function. A histogram divides the space into bins, and returns the count of the number of points in each bin. This function allows the computation of the sum, mean, median, or other statistic of the values (or set of values) within each bin. Parameters ---------- x : (N,) array_like A sequence of values to be binned. values : (N,) array_like or list of (N,) array_like The data on which the statistic will be computed. This must be the same shape as `x`, or a set of sequences - each the same shape as `x`. If `values` is a set of sequences, the statistic will be computed on each independently. statistic : string or callable, optional The statistic to compute (default is 'mean'). The following statistics are available: * 'mean' : compute the mean of values for points within each bin. Empty bins will be represented by NaN. * 'median' : compute the median of values for points within each bin. Empty bins will be represented by NaN. * 'count' : compute the count of points within each bin. This is identical to an unweighted histogram. `values` array is not referenced. * 'sum' : compute the sum of values for points within each bin. This is identical to a weighted histogram. * 'min' : compute the minimum of values for points within each bin. Empty bins will be represented by NaN. * 'max' : compute the maximum of values for point within each bin. Empty bins will be represented by NaN. * function : a user-defined function which takes a 1D array of values, and outputs a single numerical statistic. This function will be called on the values in each bin. Empty bins will be represented by function([]), or NaN if this returns an error. bins : int or sequence of scalars, optional If `bins` is an int, it defines the number of equal-width bins in the given range (10 by default). If `bins` is a sequence, it defines the bin edges, including the rightmost edge, allowing for non-uniform bin widths. Values in `x` that are smaller than lowest bin edge are assigned to bin number 0, values beyond the highest bin are assigned to ``bins[-1]``. If the bin edges are specified, the number of bins will be, (nx = len(bins)-1). range : (float, float) or [(float, float)], optional The lower and upper range of the bins. If not provided, range is simply ``(x.min(), x.max())``. Values outside the range are ignored. Returns ------- statistic : array The values of the selected statistic in each bin. bin_edges : array of dtype float Return the bin edges ``(length(statistic)+1)``. binnumber: 1-D ndarray of ints Indices of the bins (corresponding to `bin_edges`) in which each value of `x` belongs. Same length as `values`. A binnumber of `i` means the corresponding value is between (bin_edges[i-1], bin_edges[i]). See Also -------- numpy.digitize, numpy.histogram, binned_statistic_2d, binned_statistic_dd Notes ----- All but the last (righthand-most) bin is half-open. In other words, if `bins` is ``[1, 2, 3, 4]``, then the first bin is ``[1, 2)`` (including 1, but excluding 2) and the second ``[2, 3)``. The last bin, however, is ``[3, 4]``, which *includes* 4. .. versionadded:: 0.11.0 Examples -------- >>> from scipy import stats >>> import matplotlib.pyplot as plt First some basic examples: Create two evenly spaced bins in the range of the given sample, and sum the corresponding values in each of those bins: >>> values = [1.0, 1.0, 2.0, 1.5, 3.0] >>> stats.binned_statistic([1, 1, 2, 5, 7], values, 'sum', bins=2) (array([ 4. , 4.5]), array([ 1., 4., 7.]), array([1, 1, 1, 2, 2])) Multiple arrays of values can also be passed. The statistic is calculated on each set independently: >>> values = [[1.0, 1.0, 2.0, 1.5, 3.0], [2.0, 2.0, 4.0, 3.0, 6.0]] >>> stats.binned_statistic([1, 1, 2, 5, 7], values, 'sum', bins=2) (array([[ 4. , 4.5], [ 8. , 9. ]]), array([ 1., 4., 7.]), array([1, 1, 1, 2, 2])) >>> stats.binned_statistic([1, 2, 1, 2, 4], np.arange(5), statistic='mean', ... bins=3) (array([ 1., 2., 4.]), array([ 1., 2., 3., 4.]), array([1, 2, 1, 2, 3])) As a second example, we now generate some random data of sailing boat speed as a function of wind speed, and then determine how fast our boat is for certain wind speeds: >>> windspeed = 8 * np.random.rand(500) >>> boatspeed = .3 * windspeed**.5 + .2 * np.random.rand(500) >>> bin_means, bin_edges, binnumber = stats.binned_statistic(windspeed, ... boatspeed, statistic='median', bins=[1,2,3,4,5,6,7]) >>> plt.figure() >>> plt.plot(windspeed, boatspeed, 'b.', label='raw data') >>> plt.hlines(bin_means, bin_edges[:-1], bin_edges[1:], colors='g', lw=5, ... label='binned statistic of data') >>> plt.legend() Now we can use ``binnumber`` to select all datapoints with a windspeed below 1: >>> low_boatspeed = boatspeed[binnumber == 0] As a final example, we will use ``bin_edges`` and ``binnumber`` to make a plot of a distribution that shows the mean and distribution around that mean per bin, on top of a regular histogram and the probability distribution function: >>> x = np.linspace(0, 5, num=500) >>> x_pdf = stats.maxwell.pdf(x) >>> samples = stats.maxwell.rvs(size=10000) >>> bin_means, bin_edges, binnumber = stats.binned_statistic(x, x_pdf, ... statistic='mean', bins=25) >>> bin_width = (bin_edges[1] - bin_edges[0]) >>> bin_centers = bin_edges[1:] - bin_width/2 >>> plt.figure() >>> plt.hist(samples, bins=50, normed=True, histtype='stepfilled', ... alpha=0.2, label='histogram of data') >>> plt.plot(x, x_pdf, 'r-', label='analytical pdf') >>> plt.hlines(bin_means, bin_edges[:-1], bin_edges[1:], colors='g', lw=2, ... label='binned statistic of data') >>> plt.plot((binnumber - 0.5) * bin_width, x_pdf, 'g.', alpha=0.5) >>> plt.legend(fontsize=10) >>> plt.show() """ try: N = len(bins) except TypeError: N = 1 if N != 1: bins = [np.asarray(bins, float)] if range is not None: if len(range) == 2: range = [range] medians, edges, binnumbers = binned_statistic_dd( [x], values, statistic, bins, range) return BinnedStatisticResult(medians, edges[0], binnumbers) BinnedStatistic2dResult = namedtuple('BinnedStatistic2dResult', ('statistic', 'x_edge', 'y_edge', 'binnumber')) def binned_statistic_2d(x, y, values, statistic='mean', bins=10, range=None, expand_binnumbers=False): """ Compute a bidimensional binned statistic for one or more sets of data. This is a generalization of a histogram2d function. A histogram divides the space into bins, and returns the count of the number of points in each bin. This function allows the computation of the sum, mean, median, or other statistic of the values (or set of values) within each bin. Parameters ---------- x : (N,) array_like A sequence of values to be binned along the first dimension. y : (N,) array_like A sequence of values to be binned along the second dimension. values : (N,) array_like or list of (N,) array_like The data on which the statistic will be computed. This must be the same shape as `x`, or a list of sequences - each with the same shape as `x`. If `values` is such a list, the statistic will be computed on each independently. statistic : string or callable, optional The statistic to compute (default is 'mean'). The following statistics are available: * 'mean' : compute the mean of values for points within each bin. Empty bins will be represented by NaN. * 'median' : compute the median of values for points within each bin. Empty bins will be represented by NaN. * 'count' : compute the count of points within each bin. This is identical to an unweighted histogram. `values` array is not referenced. * 'sum' : compute the sum of values for points within each bin. This is identical to a weighted histogram. * 'min' : compute the minimum of values for points within each bin. Empty bins will be represented by NaN. * 'max' : compute the maximum of values for point within each bin. Empty bins will be represented by NaN. * function : a user-defined function which takes a 1D array of values, and outputs a single numerical statistic. This function will be called on the values in each bin. Empty bins will be represented by function([]), or NaN if this returns an error. bins : int or [int, int] or array_like or [array, array], optional The bin specification: * the number of bins for the two dimensions (nx = ny = bins), * the number of bins in each dimension (nx, ny = bins), * the bin edges for the two dimensions (x_edge = y_edge = bins), * the bin edges in each dimension (x_edge, y_edge = bins). If the bin edges are specified, the number of bins will be, (nx = len(x_edge)-1, ny = len(y_edge)-1). range : (2,2) array_like, optional The leftmost and rightmost edges of the bins along each dimension (if not specified explicitly in the `bins` parameters): [[xmin, xmax], [ymin, ymax]]. All values outside of this range will be considered outliers and not tallied in the histogram. expand_binnumbers : bool, optional 'False' (default): the returned `binnumber` is a shape (N,) array of linearized bin indices. 'True': the returned `binnumber` is 'unraveled' into a shape (2,N) ndarray, where each row gives the bin numbers in the corresponding dimension. See the `binnumber` returned value, and the `Examples` section. .. versionadded:: 0.17.0 Returns ------- statistic : (nx, ny) ndarray The values of the selected statistic in each two-dimensional bin. x_edge : (nx + 1) ndarray The bin edges along the first dimension. y_edge : (ny + 1) ndarray The bin edges along the second dimension. binnumber : (N,) array of ints or (2,N) ndarray of ints This assigns to each element of `sample` an integer that represents the bin in which this observation falls. The representation depends on the `expand_binnumbers` argument. See `Notes` for details. See Also -------- numpy.digitize, numpy.histogram2d, binned_statistic, binned_statistic_dd Notes ----- Binedges: All but the last (righthand-most) bin is half-open. In other words, if `bins` is ``[1, 2, 3, 4]``, then the first bin is ``[1, 2)`` (including 1, but excluding 2) and the second ``[2, 3)``. The last bin, however, is ``[3, 4]``, which *includes* 4. `binnumber`: This returned argument assigns to each element of `sample` an integer that represents the bin in which it belongs. The representation depends on the `expand_binnumbers` argument. If 'False' (default): The returned `binnumber` is a shape (N,) array of linearized indices mapping each element of `sample` to its corresponding bin (using row-major ordering). If 'True': The returned `binnumber` is a shape (2,N) ndarray where each row indicates bin placements for each dimension respectively. In each dimension, a binnumber of `i` means the corresponding value is between (D_edge[i-1], D_edge[i]), where 'D' is either 'x' or 'y'. .. versionadded:: 0.11.0 Examples -------- >>> from scipy import stats Calculate the counts with explicit bin-edges: >>> x = [0.1, 0.1, 0.1, 0.6] >>> y = [2.1, 2.6, 2.1, 2.1] >>> binx = [0.0, 0.5, 1.0] >>> biny = [2.0, 2.5, 3.0] >>> ret = stats.binned_statistic_2d(x, y, None, 'count', bins=[binx,biny]) >>> ret.statistic array([[ 2., 1.], [ 1., 0.]]) The bin in which each sample is placed is given by the `binnumber` returned parameter. By default, these are the linearized bin indices: >>> ret.binnumber array([5, 6, 5, 9]) The bin indices can also be expanded into separate entries for each dimension using the `expand_binnumbers` parameter: >>> ret = stats.binned_statistic_2d(x, y, None, 'count', bins=[binx,biny], ... expand_binnumbers=True) >>> ret.binnumber array([[1, 1, 1, 2], [1, 2, 1, 1]]) Which shows that the first three elements belong in the xbin 1, and the fourth into xbin 2; and so on for y. """ # This code is based on np.histogram2d try: N = len(bins) except TypeError: N = 1 if N != 1 and N != 2: xedges = yedges = np.asarray(bins, float) bins = [xedges, yedges] medians, edges, binnumbers = binned_statistic_dd( [x, y], values, statistic, bins, range, expand_binnumbers=expand_binnumbers) return BinnedStatistic2dResult(medians, edges[0], edges[1], binnumbers) BinnedStatisticddResult = namedtuple('BinnedStatisticddResult', ('statistic', 'bin_edges', 'binnumber')) def binned_statistic_dd(sample, values, statistic='mean', bins=10, range=None, expand_binnumbers=False): """ Compute a multidimensional binned statistic for a set of data. This is a generalization of a histogramdd function. A histogram divides the space into bins, and returns the count of the number of points in each bin. This function allows the computation of the sum, mean, median, or other statistic of the values within each bin. Parameters ---------- sample : array_like Data to histogram passed as a sequence of D arrays of length N, or as an (N,D) array. values : (N,) array_like or list of (N,) array_like The data on which the statistic will be computed. This must be the same shape as `x`, or a list of sequences - each with the same shape as `x`. If `values` is such a list, the statistic will be computed on each independently. statistic : string or callable, optional The statistic to compute (default is 'mean'). The following statistics are available: * 'mean' : compute the mean of values for points within each bin. Empty bins will be represented by NaN. * 'median' : compute the median of values for points within each bin. Empty bins will be represented by NaN. * 'count' : compute the count of points within each bin. This is identical to an unweighted histogram. `values` array is not referenced. * 'sum' : compute the sum of values for points within each bin. This is identical to a weighted histogram. * 'min' : compute the minimum of values for points within each bin. Empty bins will be represented by NaN. * 'max' : compute the maximum of values for point within each bin. Empty bins will be represented by NaN. * function : a user-defined function which takes a 1D array of values, and outputs a single numerical statistic. This function will be called on the values in each bin. Empty bins will be represented by function([]), or NaN if this returns an error. bins : sequence or int, optional The bin specification must be in one of the following forms: * A sequence of arrays describing the bin edges along each dimension. * The number of bins for each dimension (nx, ny, ... = bins). * The number of bins for all dimensions (nx = ny = ... = bins). range : sequence, optional A sequence of lower and upper bin edges to be used if the edges are not given explicitely in `bins`. Defaults to the minimum and maximum values along each dimension. expand_binnumbers : bool, optional 'False' (default): the returned `binnumber` is a shape (N,) array of linearized bin indices. 'True': the returned `binnumber` is 'unraveled' into a shape (D,N) ndarray, where each row gives the bin numbers in the corresponding dimension. See the `binnumber` returned value, and the `Examples` section of `binned_statistic_2d`. .. versionadded:: 0.17.0 Returns ------- statistic : ndarray, shape(nx1, nx2, nx3,...) The values of the selected statistic in each two-dimensional bin. bin_edges : list of ndarrays A list of D arrays describing the (nxi + 1) bin edges for each dimension. binnumber : (N,) array of ints or (D,N) ndarray of ints This assigns to each element of `sample` an integer that represents the bin in which this observation falls. The representation depends on the `expand_binnumbers` argument. See `Notes` for details. See Also -------- numpy.digitize, numpy.histogramdd, binned_statistic, binned_statistic_2d Notes ----- Binedges: All but the last (righthand-most) bin is half-open in each dimension. In other words, if `bins` is ``[1, 2, 3, 4]``, then the first bin is ``[1, 2)`` (including 1, but excluding 2) and the second ``[2, 3)``. The last bin, however, is ``[3, 4]``, which *includes* 4. `binnumber`: This returned argument assigns to each element of `sample` an integer that represents the bin in which it belongs. The representation depends on the `expand_binnumbers` argument. If 'False' (default): The returned `binnumber` is a shape (N,) array of linearized indices mapping each element of `sample` to its corresponding bin (using row-major ordering). If 'True': The returned `binnumber` is a shape (D,N) ndarray where each row indicates bin placements for each dimension respectively. In each dimension, a binnumber of `i` means the corresponding value is between (bin_edges[D][i-1], bin_edges[D][i]), for each dimension 'D'. .. versionadded:: 0.11.0 """ known_stats = ['mean', 'median', 'count', 'sum', 'std','min','max'] if not callable(statistic) and statistic not in known_stats: raise ValueError('invalid statistic %r' % (statistic,)) # `Ndim` is the number of dimensions (e.g. `2` for `binned_statistic_2d`) # `Dlen` is the length of elements along each dimension. # This code is based on np.histogramdd try: # `sample` is an ND-array. Dlen, Ndim = sample.shape except (AttributeError, ValueError): # `sample` is a sequence of 1D arrays. sample = np.atleast_2d(sample).T Dlen, Ndim = sample.shape # Store initial shape of `values` to preserve it in the output values = np.asarray(values) input_shape = list(values.shape) # Make sure that `values` is 2D to iterate over rows values = np.atleast_2d(values) Vdim, Vlen = values.shape # Make sure `values` match `sample` if(statistic != 'count' and Vlen != Dlen): raise AttributeError('The number of `values` elements must match the ' 'length of each `sample` dimension.') nbin = np.empty(Ndim, int) # Number of bins in each dimension edges = Ndim * [None] # Bin edges for each dim (will be 2D array) dedges = Ndim * [None] # Spacing between edges (will be 2D array) try: M = len(bins) if M != Ndim: raise AttributeError('The dimension of bins must be equal ' 'to the dimension of the sample x.') except TypeError: bins = Ndim * [bins] # Select range for each dimension # Used only if number of bins is given. if range is None: smin = np.atleast_1d(np.array(sample.min(axis=0), float)) smax = np.atleast_1d(np.array(sample.max(axis=0), float)) else: smin = np.zeros(Ndim) smax = np.zeros(Ndim) for i in xrange(Ndim): smin[i], smax[i] = range[i] # Make sure the bins have a finite width. for i in xrange(len(smin)): if smin[i] == smax[i]: smin[i] = smin[i] - .5 smax[i] = smax[i] + .5 # Create edge arrays for i in xrange(Ndim): if np.isscalar(bins[i]): nbin[i] = bins[i] + 2 # +2 for outlier bins edges[i] = np.linspace(smin[i], smax[i], nbin[i] - 1) else: edges[i] = np.asarray(bins[i], float) nbin[i] = len(edges[i]) + 1 # +1 for outlier bins dedges[i] = np.diff(edges[i]) nbin = np.asarray(nbin) # Compute the bin number each sample falls into, in each dimension sampBin = [ np.digitize(sample[:, i], edges[i]) for i in xrange(Ndim) ] # Using `digitize`, values that fall on an edge are put in the right bin. # For the rightmost bin, we want values equal to the right # edge to be counted in the last bin, and not as an outlier. for i in xrange(Ndim): # Find the rounding precision decimal = int(-np.log10(dedges[i].min())) + 6 # Find which points are on the rightmost edge. on_edge = np.where(np.around(sample[:, i], decimal) == np.around(edges[i][-1], decimal))[0] # Shift these points one bin to the left. sampBin[i][on_edge] -= 1 # Compute the sample indices in the flattened statistic matrix. binnumbers = np.ravel_multi_index(sampBin, nbin) result = np.empty([Vdim, nbin.prod()], float) if statistic == 'mean': result.fill(np.nan) flatcount = np.bincount(binnumbers, None) a = flatcount.nonzero() for vv in xrange(Vdim): flatsum = np.bincount(binnumbers, values[vv]) result[vv, a] = flatsum[a] / flatcount[a] elif statistic == 'std': result.fill(0) flatcount = np.bincount(binnumbers, None) a = flatcount.nonzero() for vv in xrange(Vdim): flatsum = np.bincount(binnumbers, values[vv]) flatsum2 = np.bincount(binnumbers, values[vv] ** 2) result[vv, a] = np.sqrt(flatsum2[a] / flatcount[a] - (flatsum[a] / flatcount[a]) ** 2) elif statistic == 'count': result.fill(0) flatcount = np.bincount(binnumbers, None) a = np.arange(len(flatcount)) result[:, a] = flatcount[np.newaxis, :] elif statistic == 'sum': result.fill(0) for vv in xrange(Vdim): flatsum = np.bincount(binnumbers, values[vv]) a = np.arange(len(flatsum)) result[vv, a] = flatsum elif statistic == 'median': result.fill(np.nan) for i in np.unique(binnumbers): for vv in xrange(Vdim): result[vv, i] = np.median(values[vv, binnumbers == i]) elif statistic == 'min': result.fill(np.nan) for i in np.unique(binnumbers): for vv in xrange(Vdim): result[vv, i] = np.min(values[vv, binnumbers == i]) elif statistic == 'max': result.fill(np.nan) for i in np.unique(binnumbers): for vv in xrange(Vdim): result[vv, i] = np.max(values[vv, binnumbers == i]) elif callable(statistic): with np.errstate(invalid='ignore'), suppress_warnings() as sup: sup.filter(RuntimeWarning) try: null = statistic([]) except: null = np.nan result.fill(null) for i in np.unique(binnumbers): for vv in xrange(Vdim): result[vv, i] = statistic(values[vv, binnumbers == i]) # Shape into a proper matrix result = result.reshape(np.append(Vdim, nbin)) # Remove outliers (indices 0 and -1 for each bin-dimension). core = [slice(None)] + Ndim * [slice(1, -1)] result = result[core] # Unravel binnumbers into an ndarray, each row the bins for each dimension if(expand_binnumbers and Ndim > 1): binnumbers = np.asarray(np.unravel_index(binnumbers, nbin)) if np.any(result.shape[1:] != nbin - 2): raise RuntimeError('Internal Shape Error') # Reshape to have output (`reulst`) match input (`values`) shape result = result.reshape(input_shape[:-1] + list(nbin-2)) return BinnedStatisticddResult(result, edges, binnumbers)
mit
jeffery-do/Vizdoombot
doom/lib/python3.5/site-packages/scipy/stats/_stats_mstats_common.py
12
8157
from collections import namedtuple import numpy as np from . import distributions __all__ = ['_find_repeats', 'linregress', 'theilslopes'] def linregress(x, y=None): """ Calculate a linear least-squares regression for two sets of measurements. Parameters ---------- x, y : array_like Two sets of measurements. Both arrays should have the same length. If only x is given (and y=None), then it must be a two-dimensional array where one dimension has length 2. The two sets of measurements are then found by splitting the array along the length-2 dimension. Returns ------- slope : float slope of the regression line intercept : float intercept of the regression line rvalue : float correlation coefficient pvalue : float two-sided p-value for a hypothesis test whose null hypothesis is that the slope is zero. stderr : float Standard error of the estimated gradient. See also -------- optimize.curve_fit : Use non-linear least squares to fit a function to data. optimize.leastsq : Minimize the sum of squares of a set of equations. Examples -------- >>> from scipy import stats >>> np.random.seed(12345678) >>> x = np.random.random(10) >>> y = np.random.random(10) >>> slope, intercept, r_value, p_value, std_err = stats.linregress(x,y) # To get coefficient of determination (r_squared) >>> print("r-squared:", r_value**2) ('r-squared:', 0.080402268539028335) """ TINY = 1.0e-20 if y is None: # x is a (2, N) or (N, 2) shaped array_like x = np.asarray(x) if x.shape[0] == 2: x, y = x elif x.shape[1] == 2: x, y = x.T else: msg = ("If only `x` is given as input, it has to be of shape " "(2, N) or (N, 2), provided shape was %s" % str(x.shape)) raise ValueError(msg) else: x = np.asarray(x) y = np.asarray(y) if x.size == 0 or y.size == 0: raise ValueError("Inputs must not be empty.") n = len(x) xmean = np.mean(x, None) ymean = np.mean(y, None) # average sum of squares: ssxm, ssxym, ssyxm, ssym = np.cov(x, y, bias=1).flat r_num = ssxym r_den = np.sqrt(ssxm * ssym) if r_den == 0.0: r = 0.0 else: r = r_num / r_den # test for numerical error propagation if r > 1.0: r = 1.0 elif r < -1.0: r = -1.0 df = n - 2 t = r * np.sqrt(df / ((1.0 - r + TINY)*(1.0 + r + TINY))) prob = 2 * distributions.t.sf(np.abs(t), df) slope = r_num / ssxm intercept = ymean - slope*xmean sterrest = np.sqrt((1 - r**2) * ssym / ssxm / df) LinregressResult = namedtuple('LinregressResult', ('slope', 'intercept', 'rvalue', 'pvalue', 'stderr')) return LinregressResult(slope, intercept, r, prob, sterrest) def theilslopes(y, x=None, alpha=0.95): r""" Computes the Theil-Sen estimator for a set of points (x, y). `theilslopes` implements a method for robust linear regression. It computes the slope as the median of all slopes between paired values. Parameters ---------- y : array_like Dependent variable. x : array_like or None, optional Independent variable. If None, use ``arange(len(y))`` instead. alpha : float, optional Confidence degree between 0 and 1. Default is 95% confidence. Note that `alpha` is symmetric around 0.5, i.e. both 0.1 and 0.9 are interpreted as "find the 90% confidence interval". Returns ------- medslope : float Theil slope. medintercept : float Intercept of the Theil line, as ``median(y) - medslope*median(x)``. lo_slope : float Lower bound of the confidence interval on `medslope`. up_slope : float Upper bound of the confidence interval on `medslope`. Notes ----- The implementation of `theilslopes` follows [1]_. The intercept is not defined in [1]_, and here it is defined as ``median(y) - medslope*median(x)``, which is given in [3]_. Other definitions of the intercept exist in the literature. A confidence interval for the intercept is not given as this question is not addressed in [1]_. References ---------- .. [1] P.K. Sen, "Estimates of the regression coefficient based on Kendall's tau", J. Am. Stat. Assoc., Vol. 63, pp. 1379-1389, 1968. .. [2] H. Theil, "A rank-invariant method of linear and polynomial regression analysis I, II and III", Nederl. Akad. Wetensch., Proc. 53:, pp. 386-392, pp. 521-525, pp. 1397-1412, 1950. .. [3] W.L. Conover, "Practical nonparametric statistics", 2nd ed., John Wiley and Sons, New York, pp. 493. Examples -------- >>> from scipy import stats >>> import matplotlib.pyplot as plt >>> x = np.linspace(-5, 5, num=150) >>> y = x + np.random.normal(size=x.size) >>> y[11:15] += 10 # add outliers >>> y[-5:] -= 7 Compute the slope, intercept and 90% confidence interval. For comparison, also compute the least-squares fit with `linregress`: >>> res = stats.theilslopes(y, x, 0.90) >>> lsq_res = stats.linregress(x, y) Plot the results. The Theil-Sen regression line is shown in red, with the dashed red lines illustrating the confidence interval of the slope (note that the dashed red lines are not the confidence interval of the regression as the confidence interval of the intercept is not included). The green line shows the least-squares fit for comparison. >>> fig = plt.figure() >>> ax = fig.add_subplot(111) >>> ax.plot(x, y, 'b.') >>> ax.plot(x, res[1] + res[0] * x, 'r-') >>> ax.plot(x, res[1] + res[2] * x, 'r--') >>> ax.plot(x, res[1] + res[3] * x, 'r--') >>> ax.plot(x, lsq_res[1] + lsq_res[0] * x, 'g-') >>> plt.show() """ # We copy both x and y so we can use _find_repeats. y = np.array(y).flatten() if x is None: x = np.arange(len(y), dtype=float) else: x = np.array(x, dtype=float).flatten() if len(x) != len(y): raise ValueError("Incompatible lengths ! (%s<>%s)" % (len(y), len(x))) # Compute sorted slopes only when deltax > 0 deltax = x[:, np.newaxis] - x deltay = y[:, np.newaxis] - y slopes = deltay[deltax > 0] / deltax[deltax > 0] slopes.sort() medslope = np.median(slopes) medinter = np.median(y) - medslope * np.median(x) # Now compute confidence intervals if alpha > 0.5: alpha = 1. - alpha z = distributions.norm.ppf(alpha / 2.) # This implements (2.6) from Sen (1968) _, nxreps = _find_repeats(x) _, nyreps = _find_repeats(y) nt = len(slopes) # N in Sen (1968) ny = len(y) # n in Sen (1968) # Equation 2.6 in Sen (1968): sigsq = 1/18. * (ny * (ny-1) * (2*ny+5) - np.sum(k * (k-1) * (2*k + 5) for k in nxreps) - np.sum(k * (k-1) * (2*k + 5) for k in nyreps)) # Find the confidence interval indices in `slopes` sigma = np.sqrt(sigsq) Ru = min(int(np.round((nt - z*sigma)/2.)), len(slopes)-1) Rl = max(int(np.round((nt + z*sigma)/2.)) - 1, 0) delta = slopes[[Rl, Ru]] return medslope, medinter, delta[0], delta[1] def _find_repeats(arr): # This function assumes it may clobber its input. if len(arr) == 0: return np.array(0, np.float64), np.array(0, np.intp) # XXX This cast was previously needed for the Fortran implementation, # should we ditch it? arr = np.asarray(arr, np.float64).ravel() arr.sort() # Taken from NumPy 1.9's np.unique. change = np.concatenate(([True], arr[1:] != arr[:-1])) unique = arr[change] change_idx = np.concatenate(np.nonzero(change) + ([arr.size],)) freq = np.diff(change_idx) atleast2 = freq > 1 return unique[atleast2], freq[atleast2]
mit
devs1991/test_edx_docmode
venv/lib/python2.7/site-packages/sklearn/datasets/tests/test_samples_generator.py
3
7262
import numpy as np from numpy.testing import assert_equal, assert_approx_equal, \ assert_array_almost_equal from nose.tools import assert_true from sklearn.utils.testing import assert_less from .. import make_classification from .. import make_multilabel_classification from .. import make_hastie_10_2 from .. import make_regression from .. import make_blobs from .. import make_friedman1 from .. import make_friedman2 from .. import make_friedman3 from .. import make_low_rank_matrix from .. import make_sparse_coded_signal from .. import make_sparse_uncorrelated from .. import make_spd_matrix from .. import make_swiss_roll from .. import make_s_curve def test_make_classification(): X, y = make_classification(n_samples=100, n_features=20, n_informative=5, n_redundant=1, n_repeated=1, n_classes=3, n_clusters_per_class=1, hypercube=False, shift=None, scale=None, weights=[0.1, 0.25], random_state=0) assert_equal(X.shape, (100, 20), "X shape mismatch") assert_equal(y.shape, (100,), "y shape mismatch") assert_equal(np.unique(y).shape, (3,), "Unexpected number of classes") assert_equal(sum(y == 0), 10, "Unexpected number of samples in class #0") assert_equal(sum(y == 1), 25, "Unexpected number of samples in class #1") assert_equal(sum(y == 2), 65, "Unexpected number of samples in class #2") def test_make_multilabel_classification(): for allow_unlabeled, min_length in zip((True, False), (0, 1)): X, Y = make_multilabel_classification(n_samples=100, n_features=20, n_classes=3, random_state=0, allow_unlabeled=allow_unlabeled) assert_equal(X.shape, (100, 20), "X shape mismatch") if not allow_unlabeled: assert_equal(max([max(y) for y in Y]), 2) assert_equal(min([len(y) for y in Y]), min_length) assert_true(max([len(y) for y in Y]) <= 3) def test_make_hastie_10_2(): X, y = make_hastie_10_2(n_samples=100, random_state=0) assert_equal(X.shape, (100, 10), "X shape mismatch") assert_equal(y.shape, (100,), "y shape mismatch") assert_equal(np.unique(y).shape, (2,), "Unexpected number of classes") def test_make_regression(): X, y, c = make_regression(n_samples=100, n_features=10, n_informative=3, effective_rank=5, coef=True, bias=0.0, noise=1.0, random_state=0) assert_equal(X.shape, (100, 10), "X shape mismatch") assert_equal(y.shape, (100,), "y shape mismatch") assert_equal(c.shape, (10,), "coef shape mismatch") assert_equal(sum(c != 0.0), 3, "Unexpected number of informative features") # Test that y ~= np.dot(X, c) + bias + N(0, 1.0) assert_approx_equal(np.std(y - np.dot(X, c)), 1.0, significant=2) def test_make_regression_multitarget(): X, y, c = make_regression(n_samples=100, n_features=10, n_informative=3, n_targets=3, coef=True, noise=1., random_state=0) assert_equal(X.shape, (100, 10), "X shape mismatch") assert_equal(y.shape, (100, 3), "y shape mismatch") assert_equal(c.shape, (10, 3), "coef shape mismatch") assert_equal(sum(c != 0.0), 3, "Unexpected number of informative features") # Test that y ~= np.dot(X, c) + bias + N(0, 1.0) assert_approx_equal(np.std(y - np.dot(X, c)), 1.0, significant=2) def test_make_blobs(): X, y = make_blobs(n_samples=50, n_features=2, centers=[[0.0, 0.0], [1.0, 1.0], [0.0, 1.0]], random_state=0) assert_equal(X.shape, (50, 2), "X shape mismatch") assert_equal(y.shape, (50,), "y shape mismatch") assert_equal(np.unique(y).shape, (3,), "Unexpected number of blobs") def test_make_friedman1(): X, y = make_friedman1(n_samples=5, n_features=10, noise=0.0, random_state=0) assert_equal(X.shape, (5, 10), "X shape mismatch") assert_equal(y.shape, (5,), "y shape mismatch") assert_array_almost_equal(y, 10 * np.sin(np.pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - 0.5) ** 2 \ + 10 * X[:, 3] + 5 * X[:, 4]) def test_make_friedman2(): X, y = make_friedman2(n_samples=5, noise=0.0, random_state=0) assert_equal(X.shape, (5, 4), "X shape mismatch") assert_equal(y.shape, (5,), "y shape mismatch") assert_array_almost_equal(y, (X[:, 0] ** 2 + (X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) ** 2) ** 0.5) def test_make_friedman3(): X, y = make_friedman3(n_samples=5, noise=0.0, random_state=0) assert_equal(X.shape, (5, 4), "X shape mismatch") assert_equal(y.shape, (5,), "y shape mismatch") assert_array_almost_equal(y, np.arctan((X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) / X[:, 0])) def test_make_low_rank_matrix(): X = make_low_rank_matrix(n_samples=50, n_features=25, effective_rank=5, tail_strength=0.01, random_state=0) assert_equal(X.shape, (50, 25), "X shape mismatch") from numpy.linalg import svd u, s, v = svd(X) assert_less(sum(s) - 5, 0.1, "X rank is not approximately 5") def test_make_sparse_coded_signal(): Y, D, X = make_sparse_coded_signal(n_samples=5, n_components=8, n_features=10, n_nonzero_coefs=3, random_state=0) assert_equal(Y.shape, (10, 5), "Y shape mismatch") assert_equal(D.shape, (10, 8), "D shape mismatch") assert_equal(X.shape, (8, 5), "X shape mismatch") for col in X.T: assert_equal(len(np.flatnonzero(col)), 3, 'Non-zero coefs mismatch') assert_equal(np.dot(D, X), Y) assert_array_almost_equal(np.sqrt((D ** 2).sum(axis=0)), np.ones(D.shape[1])) def test_make_sparse_uncorrelated(): X, y = make_sparse_uncorrelated(n_samples=5, n_features=10, random_state=0) assert_equal(X.shape, (5, 10), "X shape mismatch") assert_equal(y.shape, (5,), "y shape mismatch") def test_make_spd_matrix(): X = make_spd_matrix(n_dim=5, random_state=0) assert_equal(X.shape, (5, 5), "X shape mismatch") assert_array_almost_equal(X, X.T) from numpy.linalg import eig eigenvalues, _ = eig(X) assert_equal(eigenvalues > 0, np.array([True] * 5), "X is not positive-definite") def test_make_swiss_roll(): X, t = make_swiss_roll(n_samples=5, noise=0.0, random_state=0) assert_equal(X.shape, (5, 3), "X shape mismatch") assert_equal(t.shape, (5,), "t shape mismatch") assert_equal(X[:, 0], t * np.cos(t)) assert_equal(X[:, 2], t * np.sin(t)) def test_make_s_curve(): X, t = make_s_curve(n_samples=5, noise=0.0, random_state=0) assert_equal(X.shape, (5, 3), "X shape mismatch") assert_equal(t.shape, (5,), "t shape mismatch") assert_equal(X[:, 0], np.sin(t)) assert_equal(X[:, 2], np.sign(t) * (np.cos(t) - 1))
agpl-3.0
pianomania/scikit-learn
sklearn/utils/tests/test_random.py
85
7349
from __future__ import division import numpy as np import scipy.sparse as sp from scipy.misc import comb as combinations from numpy.testing import assert_array_almost_equal from sklearn.utils.random import sample_without_replacement from sklearn.utils.random import random_choice_csc from sklearn.utils.testing import ( assert_raises, assert_equal, assert_true) ############################################################################### # test custom sampling without replacement algorithm ############################################################################### def test_invalid_sample_without_replacement_algorithm(): assert_raises(ValueError, sample_without_replacement, 5, 4, "unknown") def test_sample_without_replacement_algorithms(): methods = ("auto", "tracking_selection", "reservoir_sampling", "pool") for m in methods: def sample_without_replacement_method(n_population, n_samples, random_state=None): return sample_without_replacement(n_population, n_samples, method=m, random_state=random_state) check_edge_case_of_sample_int(sample_without_replacement_method) check_sample_int(sample_without_replacement_method) check_sample_int_distribution(sample_without_replacement_method) def check_edge_case_of_sample_int(sample_without_replacement): # n_population < n_sample assert_raises(ValueError, sample_without_replacement, 0, 1) assert_raises(ValueError, sample_without_replacement, 1, 2) # n_population == n_samples assert_equal(sample_without_replacement(0, 0).shape, (0, )) assert_equal(sample_without_replacement(1, 1).shape, (1, )) # n_population >= n_samples assert_equal(sample_without_replacement(5, 0).shape, (0, )) assert_equal(sample_without_replacement(5, 1).shape, (1, )) # n_population < 0 or n_samples < 0 assert_raises(ValueError, sample_without_replacement, -1, 5) assert_raises(ValueError, sample_without_replacement, 5, -1) def check_sample_int(sample_without_replacement): # This test is heavily inspired from test_random.py of python-core. # # For the entire allowable range of 0 <= k <= N, validate that # the sample is of the correct length and contains only unique items n_population = 100 for n_samples in range(n_population + 1): s = sample_without_replacement(n_population, n_samples) assert_equal(len(s), n_samples) unique = np.unique(s) assert_equal(np.size(unique), n_samples) assert_true(np.all(unique < n_population)) # test edge case n_population == n_samples == 0 assert_equal(np.size(sample_without_replacement(0, 0)), 0) def check_sample_int_distribution(sample_without_replacement): # This test is heavily inspired from test_random.py of python-core. # # For the entire allowable range of 0 <= k <= N, validate that # sample generates all possible permutations n_population = 10 # a large number of trials prevents false negatives without slowing normal # case n_trials = 10000 for n_samples in range(n_population): # Counting the number of combinations is not as good as counting the # the number of permutations. However, it works with sampling algorithm # that does not provide a random permutation of the subset of integer. n_expected = combinations(n_population, n_samples, exact=True) output = {} for i in range(n_trials): output[frozenset(sample_without_replacement(n_population, n_samples))] = None if len(output) == n_expected: break else: raise AssertionError( "number of combinations != number of expected (%s != %s)" % (len(output), n_expected)) def test_random_choice_csc(n_samples=10000, random_state=24): # Explicit class probabilities classes = [np.array([0, 1]), np.array([0, 1, 2])] class_probabilites = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] got = random_choice_csc(n_samples, classes, class_probabilites, random_state) assert_true(sp.issparse(got)) for k in range(len(classes)): p = np.bincount(got.getcol(k).toarray().ravel()) / float(n_samples) assert_array_almost_equal(class_probabilites[k], p, decimal=1) # Implicit class probabilities classes = [[0, 1], [1, 2]] # test for array-like support class_probabilites = [np.array([0.5, 0.5]), np.array([0, 1/2, 1/2])] got = random_choice_csc(n_samples=n_samples, classes=classes, random_state=random_state) assert_true(sp.issparse(got)) for k in range(len(classes)): p = np.bincount(got.getcol(k).toarray().ravel()) / float(n_samples) assert_array_almost_equal(class_probabilites[k], p, decimal=1) # Edge case probabilities 1.0 and 0.0 classes = [np.array([0, 1]), np.array([0, 1, 2])] class_probabilites = [np.array([1.0, 0.0]), np.array([0.0, 1.0, 0.0])] got = random_choice_csc(n_samples, classes, class_probabilites, random_state) assert_true(sp.issparse(got)) for k in range(len(classes)): p = np.bincount(got.getcol(k).toarray().ravel(), minlength=len(class_probabilites[k])) / n_samples assert_array_almost_equal(class_probabilites[k], p, decimal=1) # One class target data classes = [[1], [0]] # test for array-like support class_probabilites = [np.array([0.0, 1.0]), np.array([1.0])] got = random_choice_csc(n_samples=n_samples, classes=classes, random_state=random_state) assert_true(sp.issparse(got)) for k in range(len(classes)): p = np.bincount(got.getcol(k).toarray().ravel()) / n_samples assert_array_almost_equal(class_probabilites[k], p, decimal=1) def test_random_choice_csc_errors(): # the length of an array in classes and class_probabilites is mismatched classes = [np.array([0, 1]), np.array([0, 1, 2, 3])] class_probabilites = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] assert_raises(ValueError, random_choice_csc, 4, classes, class_probabilites, 1) # the class dtype is not supported classes = [np.array(["a", "1"]), np.array(["z", "1", "2"])] class_probabilites = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] assert_raises(ValueError, random_choice_csc, 4, classes, class_probabilites, 1) # the class dtype is not supported classes = [np.array([4.2, 0.1]), np.array([0.1, 0.2, 9.4])] class_probabilites = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] assert_raises(ValueError, random_choice_csc, 4, classes, class_probabilites, 1) # Given probabilities don't sum to 1 classes = [np.array([0, 1]), np.array([0, 1, 2])] class_probabilites = [np.array([0.5, 0.6]), np.array([0.6, 0.1, 0.3])] assert_raises(ValueError, random_choice_csc, 4, classes, class_probabilites, 1)
bsd-3-clause
vshtanko/scikit-learn
examples/cluster/plot_agglomerative_clustering_metrics.py
402
4492
""" Agglomerative clustering with different metrics =============================================== Demonstrates the effect of different metrics on the hierarchical clustering. The example is engineered to show the effect of the choice of different metrics. It is applied to waveforms, which can be seen as high-dimensional vector. Indeed, the difference between metrics is usually more pronounced in high dimension (in particular for euclidean and cityblock). We generate data from three groups of waveforms. Two of the waveforms (waveform 1 and waveform 2) are proportional one to the other. The cosine distance is invariant to a scaling of the data, as a result, it cannot distinguish these two waveforms. Thus even with no noise, clustering using this distance will not separate out waveform 1 and 2. We add observation noise to these waveforms. We generate very sparse noise: only 6% of the time points contain noise. As a result, the l1 norm of this noise (ie "cityblock" distance) is much smaller than it's l2 norm ("euclidean" distance). This can be seen on the inter-class distance matrices: the values on the diagonal, that characterize the spread of the class, are much bigger for the Euclidean distance than for the cityblock distance. When we apply clustering to the data, we find that the clustering reflects what was in the distance matrices. Indeed, for the Euclidean distance, the classes are ill-separated because of the noise, and thus the clustering does not separate the waveforms. For the cityblock distance, the separation is good and the waveform classes are recovered. Finally, the cosine distance does not separate at all waveform 1 and 2, thus the clustering puts them in the same cluster. """ # Author: Gael Varoquaux # License: BSD 3-Clause or CC-0 import matplotlib.pyplot as plt import numpy as np from sklearn.cluster import AgglomerativeClustering from sklearn.metrics import pairwise_distances np.random.seed(0) # Generate waveform data n_features = 2000 t = np.pi * np.linspace(0, 1, n_features) def sqr(x): return np.sign(np.cos(x)) X = list() y = list() for i, (phi, a) in enumerate([(.5, .15), (.5, .6), (.3, .2)]): for _ in range(30): phase_noise = .01 * np.random.normal() amplitude_noise = .04 * np.random.normal() additional_noise = 1 - 2 * np.random.rand(n_features) # Make the noise sparse additional_noise[np.abs(additional_noise) < .997] = 0 X.append(12 * ((a + amplitude_noise) * (sqr(6 * (t + phi + phase_noise))) + additional_noise)) y.append(i) X = np.array(X) y = np.array(y) n_clusters = 3 labels = ('Waveform 1', 'Waveform 2', 'Waveform 3') # Plot the ground-truth labelling plt.figure() plt.axes([0, 0, 1, 1]) for l, c, n in zip(range(n_clusters), 'rgb', labels): lines = plt.plot(X[y == l].T, c=c, alpha=.5) lines[0].set_label(n) plt.legend(loc='best') plt.axis('tight') plt.axis('off') plt.suptitle("Ground truth", size=20) # Plot the distances for index, metric in enumerate(["cosine", "euclidean", "cityblock"]): avg_dist = np.zeros((n_clusters, n_clusters)) plt.figure(figsize=(5, 4.5)) for i in range(n_clusters): for j in range(n_clusters): avg_dist[i, j] = pairwise_distances(X[y == i], X[y == j], metric=metric).mean() avg_dist /= avg_dist.max() for i in range(n_clusters): for j in range(n_clusters): plt.text(i, j, '%5.3f' % avg_dist[i, j], verticalalignment='center', horizontalalignment='center') plt.imshow(avg_dist, interpolation='nearest', cmap=plt.cm.gnuplot2, vmin=0) plt.xticks(range(n_clusters), labels, rotation=45) plt.yticks(range(n_clusters), labels) plt.colorbar() plt.suptitle("Interclass %s distances" % metric, size=18) plt.tight_layout() # Plot clustering results for index, metric in enumerate(["cosine", "euclidean", "cityblock"]): model = AgglomerativeClustering(n_clusters=n_clusters, linkage="average", affinity=metric) model.fit(X) plt.figure() plt.axes([0, 0, 1, 1]) for l, c in zip(np.arange(model.n_clusters), 'rgbk'): plt.plot(X[model.labels_ == l].T, c=c, alpha=.5) plt.axis('tight') plt.axis('off') plt.suptitle("AgglomerativeClustering(affinity=%s)" % metric, size=20) plt.show()
bsd-3-clause
bmazin/ARCONS-pipeline
examples/Pal2014-J0337/hTestLimit.py
1
8356
#Filename: hTestLimit.py #Author: Matt Strader # #This script opens a list of observed photon phases, import numpy as np import tables import numexpr import matplotlib.pyplot as plt import multiprocessing import functools import time from kuiper.kuiper import kuiper,kuiper_FPP from kuiper.htest import h_test,h_fpp,h_test2 from pulsarUtils import nSigma,plotPulseProfile from histMetrics import kuiperFpp,hTestFpp from inverseTransformSampling import inverseTransformSampler def hTestTrial(iTrial,nPhotons,photonPulseFraction,pulseModel,pulseModelQueryPoints): np.random.seed(int((time.time()+iTrial)*1e6)) modelSampler = inverseTransformSampler(pdf=pulseModel,queryPoints=pulseModelQueryPoints) nPulsePhotons = int(np.floor(photonPulseFraction*nPhotons)) nBackgroundPhotons = int(np.ceil((1.-photonPulseFraction) * nPhotons)) simPulsePhotons = modelSampler(nPulsePhotons) #background photons come from a uniform distribution simBackgroundPhotons = np.random.random(nBackgroundPhotons) simPhases = np.append(simPulsePhotons,simBackgroundPhotons) simHDict = h_test2(simPhases) simH,simM,simPval,simFourierCoeffs = simHDict['H'],simHDict['M'],simHDict['fpp'],simHDict['cs'] print '{} - H,M,fpp,sig:'.format(iTrial),simH,simM,simPval return {'H':simH,'M':simM,'fpp':simPval} if __name__=='__main__': path = '/Scratch/dataProcessing/J0337/masterPhotons3.h5' wvlStart = 4000. wvlEnd = 5500. bLoadFromPl = True nPhaseBins = 20 hTestPath = '/Scratch/dataProcessing/J0337/hTestResults_withProfiles_{}-{}.npz'.format(wvlStart,wvlEnd) phaseBinEdges = np.linspace(0.,1.,nPhaseBins+1) if bLoadFromPl: photFile = tables.openFile(path,'r') photTable = photFile.root.photons.photTable phases = photTable.readWhere('(wvlStart < wavelength) & (wavelength < wvlEnd)')['phase'] photFile.close() print 'cut wavelengths to range ({},{})'.format(wvlStart,wvlEnd) nPhotons = len(phases) print nPhotons,'real photons read' observedProfile,_ = np.histogram(phases,bins=phaseBinEdges) observedProfile = 1.0*observedProfile observedProfileErrors = np.sqrt(observedProfile) #Do H-test hDict = h_test2(phases) H,M,pval,fourierCoeffs = hDict['H'],hDict['M'],hDict['fpp'],hDict['cs'] print 'h-test on real data' print 'H,M,fpp:',H,M,pval print nSigma(1-pval),'sigmas' #h_test2 calculates all fourierCoeffs out to 20, but for the fourier model, we only want the ones out to order M, which optimizes the Zm^2 metric truncatedFourierCoeffs = fourierCoeffs[0:M] print 'fourier coeffs:',truncatedFourierCoeffs #for the model, we want the negative modes as well as positve, so add them modelFourierCoeffs = np.concatenate([truncatedFourierCoeffs[::-1],[1.],np.conj(truncatedFourierCoeffs)]) #make array of mode numbers modes = np.arange(-len(truncatedFourierCoeffs),len(truncatedFourierCoeffs)+1) #save so next time we can set bLoadFromPl=False np.savez(hTestPath,H=H,M=M,pval=pval,fourierCoeffs=fourierCoeffs,nPhotons=nPhotons,wvlRange=(wvlStart,wvlEnd),modelFourierCoeffs=modelFourierCoeffs,modes=modes,observedProfile=observedProfile,observedProfileErrors=observedProfileErrors,phaseBinEdges=phaseBinEdges) else: #Load values from previous run, when we had bLoadFromPl=True hTestDict = np.load(hTestPath) H,M,pval,fourierCoeffs,nPhotons,modelFourierCoeffs,modes = hTestDict['H'],hTestDict['M'],hTestDict['pval'],hTestDict['fourierCoeffs'],hTestDict['nPhotons'],hTestDict['modelFourierCoeffs'],hTestDict['modes'] observedProfile,observedProfileErrors,phaseBinEdges = hTestDict['observedProfile'],hTestDict['observedProfileErrors'],hTestDict['phaseBinEdges'] print 'h-test on real data' print 'H,M,fpp:',H,M,pval print nSigma(1-pval),'sigmas' #Plot the observed profile fig,ax = plt.subplots(1,1) plotPulseProfile(phaseBinEdges,observedProfile,profileErrors=observedProfileErrors,color='k',plotDoublePulse=False,label='observed',ax=ax) ax.set_ylabel('counts') ax.set_xlabel('phase') ax.set_title('Observed Folded Light Curve {}-{} nm'.format(wvlStart/10.,wvlEnd/10.)) #make as set of x points for the pulse model we'll make #Do NOT include x=0, or the inverted function will have a jump that causes an excess of samples #at phase=0 nSmoothPlotPoints=1000 pulseModelQueryPoints = np.linspace(1./nSmoothPlotPoints,1,nSmoothPlotPoints) def modelProfile(thetas): return np.sum( modelFourierCoeffs * np.exp(2.j*np.pi*modes*thetas[:,np.newaxis]),axis=1) lightCurveModel = np.abs(modelProfile(pulseModelQueryPoints)) #for this test we only want the model to be the pulsed component. We will add a DC offset later pulseModel = lightCurveModel - np.min(lightCurveModel) #initialPhotonPulseFraction = 1.*np.sum(pulseModel) / np.sum(lightCurveModel) photonPulseFraction=15400./nPhotons #skip to previously determined answer print 'photon fraction',photonPulseFraction #get samples with distribution of the modelProfile #modelSampler = inverseTransformSampler(pdf=lightCurveModel,queryPoints=pulseModelQueryPoints) modelSampler = inverseTransformSampler(pdf=pulseModel,queryPoints=pulseModelQueryPoints) nTrials = 1 #for each trial run the h test on a set of photon phases with our model profile, and with the pulse fraction specified #we want to make a distribution of H values for this pulse fraction, model, and number of photons #make a function that only takes the trial number (as an identifier) mappableHTestTrial = functools.partial(hTestTrial,pulseModel=pulseModel, pulseModelQueryPoints=pulseModelQueryPoints,nPhotons=nPhotons, photonPulseFraction=photonPulseFraction) pool = multiprocessing.Pool(processes=multiprocessing.cpu_count()-3)#leave a few processors for other people outDicts = pool.map(mappableHTestTrial,np.arange(nTrials)) simHs = np.array([out['H'] for out in outDicts]) simPvals = np.array([out['fpp'] for out in outDicts]) #save the resulting list of H vals np.savez('sim3-h-{}.npz'.format(nTrials),simHs=simHs,simPvals=simPvals,pval=pval,H=H,photonPulseFraction=photonPulseFraction,nPhotons=nPhotons) #make a model profile once more for a plot modelSampler = inverseTransformSampler(pdf=pulseModel,queryPoints=pulseModelQueryPoints) nPulsePhotons = int(np.floor(photonPulseFraction*nPhotons)) nBackgroundPhotons = int(np.ceil((1.-photonPulseFraction) * nPhotons)) simPulsePhotons = modelSampler(nPulsePhotons) #background photons come from a uniform distribution simBackgroundPhotons = np.random.random(nBackgroundPhotons) #put them together for the full profile simPhases = np.append(simPulsePhotons,simBackgroundPhotons) #make a binned phase profile to plot simProfile,_ = np.histogram(simPhases,bins=phaseBinEdges) simProfileErrors = np.sqrt(simProfile)#assume Poisson errors meanLevel = np.mean(simProfile) fig,ax = plt.subplots(1,1) ax.plot(pulseModelQueryPoints,meanLevel*lightCurveModel,color='r') plotPulseProfile(phaseBinEdges,simProfile,profileErrors=simProfileErrors,color='b',plotDoublePulse=False,label='sim',ax=ax) ax.set_title('Simulated profile') # #plt.show() print '{} trials'.format(len(simHs)) print 'observed fpp:',pval frac = 1.*np.sum(simPvals<pval)/len(simPvals) print 'fraction of trials with H below observed fpp:',frac #hHist,hBinEdges = np.histogram(simHs,bins=100,density=True) fppHist,fppBinEdges = np.histogram(simPvals,bins=100,density=True) if nTrials > 1: fig,ax = plt.subplots(1,1) ax.plot(fppBinEdges[0:-1],fppHist,drawstyle='steps-post',color='k') ax.axvline(pval,color='r') ax.set_xlabel('fpp') ax.set_ylabel('frequency') ax.set_title('Distribution of H for model profile') magG = 17.93 sineMagDiff = -2.5*np.log10(photonPulseFraction) print 'SDSS magnitude g: {:.2f}'.format(magG) print 'magnitude difference: {:.2f}'.format(sineMagDiff) print 'limiting g mag: {:.2f}'.format(magG+sineMagDiff) plt.show()
gpl-2.0
stefco/geco_data
geco_irig_plot.py
1
5662
#!/usr/bin/env python # (c) Stefan Countryman, 2016-2017 DESC="""Plot an IRIG-B signal read from stdin. Assumes that the timeseries is a sequence of newline-delimited float literals.""" FAST_CHANNEL_BITRATE = 16384 # for IRIG-B, DuoTone, etc. # THE REST OF THE IMPORTS ARE AFTER THIS IF STATEMENT. # Quits immediately on --help or -h flags to skip slow imports when you just # want to read the help documentation. if __name__ == "__main__": import argparse parser = argparse.ArgumentParser(description=DESC) # TODO: make this -i and --ifo instead of detector. parser.add_argument("--detector", help=("the detector; used in the title of the output " "plot")) parser.add_argument("-O", "--outfile", help="the filename of the generated plot") parser.add_argument("-T", "--timeseries", help="copy from stdin to stdout while reading", action="store_true") parser.add_argument("-A", "--actualtime", help=("actual time signal was recorded " "(appears in title)")) args = parser.parse_args() # Force matplotlib to not use any Xwindows backend. NECESSARY ON CLUSTER. import matplotlib matplotlib.use('Agg') import sys import time import numpy as np import matplotlib.pyplot as plt import geco_irig_decode def read_timeseries_stdin(num_lines, cat_to_stdout=False): """Read in newline-delimited numerical data from stdin; don't read more than a second worth of data. If cat_to_stdout is True, print data that has been read in back to stdout (useful for piped commands).""" timeseries = np.zeros(num_lines) line = "" i = 0 while i < num_lines: line = float(sys.stdin.readline()) timeseries[i] = line if cat_to_stdout: print(line) i += 1 return timeseries def irigb_decoded_title(timeseries, IFO=None, actual_time=None): """Get a title for an IRIG-B timeseries plot that includes the decoded time in the timeseries itself.""" # get the detector name if IFO is None: detector_suffix = "" else: detector_suffix = " at " + IFO # get the actual time of recording, if provided if actual_time is None: actual_time_str = "" else: actual_time_str = "\nActual Time: {}".format(actual_time) # add title and so on try: decoded_time = geco_irig_decode.get_date_from_timeseries(timeseries) decoded_time_str = decoded_time.strftime('%a %b %d %X %Y') except ValueError as e: decoded_time_str = "COULD NOT DECODE TIME" fmt = "One Second of IRIG-B Signal{}\nDecoded Time: {}{}" return fmt.format(detector_suffix, decoded_time_str, actual_time_str) def irigb_output_filename(outfile=None): """Get the output filename for an IRIG-B plot.""" if outfile is None: output_filename = "irigb-plot-made-at-" + str(time.time()) + ".png" else: output_filename = outfile # append .png if not already there if output_filename.split(".")[-1] != "png": output_filename += ".png" return output_filename def plot_with_zoomed_views(timeseries, title, num_subdivs=5, dt=1., output_filename=None, overlay=False, linewidth=1): """Plot a timeseries and produce num_subdivs subplots that show equal-sized subdivisions of the full timeseries data to show details (good for high-bitrate timeseries). If you want to keep plotting data to the same figure, set 'overlay=True', and the current figure will be plotted to.""" bitrate = int(len(timeseries) / float(dt)) times = np.linspace(0, 1, num=bitrate, endpoint=False) # find max and min values in timeseries; use these to set plot boundaries yrange = timeseries.max() - timeseries.min() ymax = timeseries.max() + 0.1*yrange ymin = timeseries.min() - 0.1*yrange if not overlay: plt.figure() # print("making plot") plt.gcf().set_figwidth(7) plt.gcf().set_figheight(4+1.2*num_subdivs) # ~1.2in height per zoomed plot # plot the full second on the first row; lines should be black ('k' option). plt.subplot(num_subdivs + 1, 1, 1) plt.ylim(ymin, ymax) plt.plot(times, timeseries, 'k', linewidth=linewidth) plt.tick_params(axis='y', labelsize='small') # make num_subdivs subplots to better show the full second for i in range(num_subdivs): # print("making plot " + str(i)) plt.subplot(num_subdivs+1, 1, i+2) plt.ylim(ymin, ymax) plt.xlim(float(i)/num_subdivs, (float(i)+1)/num_subdivs) start = bitrate*i // num_subdivs end = bitrate*(i+1) // num_subdivs plt.plot(times[start:end], timeseries[start:end], 'k', linewidth=linewidth) plt.tick_params(axis='y', labelsize='small') plt.suptitle(title) plt.xlabel("Time since start of second [$s$]") # print("saving plot") plt.subplots_adjust(left=0.125, right=0.9, bottom=0.1, top=0.9, wspace=0.2, hspace=0.5) if not (output_filename is None): plt.savefig(output_filename) return plt if __name__ == '__main__': timeseries = read_timeseries_stdin(FAST_CHANNEL_BITRATE, cat_to_stdout=args.timeseries) title = irigb_decoded_title(timeseries, args.detector, args.actualtime) output_filename = irigb_output_filename(args.outfile) plot_with_zoomed_views(timeseries, title, num_subdivs=5, dt=1., output_filename=output_filename)
mit
olologin/scikit-learn
examples/svm/plot_iris.py
225
3252
""" ================================================== Plot different SVM classifiers in the iris dataset ================================================== Comparison of different linear SVM classifiers on a 2D projection of the iris dataset. We only consider the first 2 features of this dataset: - Sepal length - Sepal width This example shows how to plot the decision surface for four SVM classifiers with different kernels. The linear models ``LinearSVC()`` and ``SVC(kernel='linear')`` yield slightly different decision boundaries. This can be a consequence of the following differences: - ``LinearSVC`` minimizes the squared hinge loss while ``SVC`` minimizes the regular hinge loss. - ``LinearSVC`` uses the One-vs-All (also known as One-vs-Rest) multiclass reduction while ``SVC`` uses the One-vs-One multiclass reduction. Both linear models have linear decision boundaries (intersecting hyperplanes) while the non-linear kernel models (polynomial or Gaussian RBF) have more flexible non-linear decision boundaries with shapes that depend on the kind of kernel and its parameters. .. NOTE:: while plotting the decision function of classifiers for toy 2D datasets can help get an intuitive understanding of their respective expressive power, be aware that those intuitions don't always generalize to more realistic high-dimensional problems. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset y = iris.target h = .02 # step size in the mesh # we create an instance of SVM and fit out data. We do not scale our # data since we want to plot the support vectors C = 1.0 # SVM regularization parameter svc = svm.SVC(kernel='linear', C=C).fit(X, y) rbf_svc = svm.SVC(kernel='rbf', gamma=0.7, C=C).fit(X, y) poly_svc = svm.SVC(kernel='poly', degree=3, C=C).fit(X, y) lin_svc = svm.LinearSVC(C=C).fit(X, y) # create a mesh to plot in x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # title for the plots titles = ['SVC with linear kernel', 'LinearSVC (linear kernel)', 'SVC with RBF kernel', 'SVC with polynomial (degree 3) kernel'] for i, clf in enumerate((svc, lin_svc, rbf_svc, poly_svc)): # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. plt.subplot(2, 2, i + 1) plt.subplots_adjust(wspace=0.4, hspace=0.4) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.contourf(xx, yy, Z, cmap=plt.cm.Paired, alpha=0.8) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired) plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.xticks(()) plt.yticks(()) plt.title(titles[i]) plt.show()
bsd-3-clause
mnip91/proactive-component-monitoring
dev/scripts/perf/perf_graph.py
12
2516
#!/usr/bin/env python import sys import os import string import numpy as np import matplotlib.pyplot as plt import re def main(): dir = sys.argv[1] if len(sys.argv) == 1: dict = create_dict(dir) draw_graph(dict) else: for i in range(2, len(sys.argv)): dict = create_dict(dir, sys.argv[i]) draw_graph(dict, sys.argv[i]) def create_dict(rootdir, match='.*'): pattern = re.compile(match) dict = {} for branch in os.listdir(rootdir): branch_dict = {} for test in os.listdir(os.path.join(rootdir, branch)): if pattern.match(test): file = open(os.path.join(rootdir, branch, test)) str = file.readline() str = str.strip() start = str.find("=") if start != -1: branch_dict[test] = round(string.atof(str[start+1:]),2) else: branch_dict[test] = -1. dict[branch] = branch_dict return dict def get_all_test_name(dict): for branch in dict: return dict[branch].keys() def get_branches(dict): return dict.keys() def compare_by_branch(dict): def local_print(test, d): print test for t in d: print "\t" + t + "\t" + str(d[t]) print for test in get_all_test_name(dict): local_dict = {} for branch in dict: local_dict[branch] = dict[branch][test] local_print(test, local_dict) ### Unused ### def short_test_name(long_name): return long_name[long_name.rfind('.Test')+5:] def draw_graph(dict, title): def autolabel(rects): for rect in rects: height = rect.get_height() ax.text(rect.get_x()+rect.get_width()/2., 1.05*height, '%d'%int(height), ha='center', va='bottom') def set_legend(bars, branches): bs = () for bar in bars: bs = bs + (bar[0],) ax.legend( bs, branches) colors = ['b', 'g', 'r', 'c', 'm', 'y', 'b'] branches = get_branches(dict) all_tests = get_all_test_name(dict) N = len(all_tests) ind = np.arange(N) width = 0.35 fig = plt.figure() ax = fig.add_subplot(111) data_sets = [] for branch in branches: data =() for test in all_tests: data = data + (dict[branch].get(test, 0),) data_sets.append(data) bars = [] counter = 0 for data in data_sets: bar = ax.bar(ind + (counter*width), data, width, color=colors[counter]) bars.append(bar) counter += 1 # add some ax.set_ylabel('Perf') ax.set_title('Branch perf comparison for ' + title) ax.set_xticks(ind+width) ax.set_xticklabels(map(short_test_name, all_tests)) set_legend(bars, branches) for bar in bars: autolabel(bar) plt.savefig(title + ".png") if __name__ == "__main__": main()
agpl-3.0
rgerkin/pyNeuroML
pyneuroml/tune/NeuroMLSimulation.py
1
5357
''' A class for running a single instance of a NeuroML model by generating a LEMS file and using pyNeuroML to run in a chosen simulator ''' import sys import time from pyneuroml import pynml from pyneuroml.lems import generate_lems_file_for_neuroml try: import pyelectro # Not used here, just for checking installation except: print('>> Note: pyelectro from https://github.com/pgleeson/pyelectro is required!') exit() try: import neurotune # Not used here, just for checking installation except: print('>> Note: neurotune from https://github.com/pgleeson/neurotune is required!') exit() class NeuroMLSimulation(object): def __init__(self, reference, neuroml_file, target, sim_time=1000, dt=0.05, simulator='jNeuroML', generate_dir = './', cleanup = True, nml_doc = None): self.sim_time = sim_time self.dt = dt self.simulator = simulator self.generate_dir = generate_dir if generate_dir.endswith('/') else generate_dir+'/' self.reference = reference self.target = target self.neuroml_file = neuroml_file self.nml_doc = nml_doc self.cleanup = cleanup self.already_run = False def show(self): """ Plot the result of the simulation once it's been intialized """ from matplotlib import pyplot as plt if self.already_run: for ref in self.volts.keys(): plt.plot(self.t, self.volts[ref], label=ref) plt.title("Simulation voltage vs time") plt.legend() plt.xlabel("Time [ms]") plt.ylabel("Voltage [mV]") else: pynml.print_comment("First you have to 'go()' the simulation.", True) plt.show() def go(self): lems_file_name = 'LEMS_%s.xml'%(self.reference) generate_lems_file_for_neuroml(self.reference, self.neuroml_file, self.target, self.sim_time, self.dt, lems_file_name = lems_file_name, target_dir = self.generate_dir, nml_doc = self.nml_doc) pynml.print_comment_v("Running a simulation of %s ms with timestep %s ms: %s"%(self.sim_time, self.dt, lems_file_name)) self.already_run = True start = time.time() if self.simulator == 'jNeuroML': results = pynml.run_lems_with_jneuroml(lems_file_name, nogui=True, load_saved_data=True, plot=False, exec_in_dir = self.generate_dir, verbose=False, cleanup=self.cleanup) elif self.simulator == 'jNeuroML_NEURON': results = pynml.run_lems_with_jneuroml_neuron(lems_file_name, nogui=True, load_saved_data=True, plot=False, exec_in_dir = self.generate_dir, verbose=False, cleanup=self.cleanup) else: pynml.print_comment_v('Unsupported simulator: %s'%self.simulator) exit() secs = time.time()-start pynml.print_comment_v("Ran simulation in %s in %f seconds (%f mins)\n\n"%(self.simulator, secs, secs/60.0)) self.t = [t*1000 for t in results['t']] self.volts = {} for key in results.keys(): if key != 't': self.volts[key] = [v*1000 for v in results[key]] if __name__ == '__main__': sim_time = 700 dt = 0.05 if len(sys.argv) == 2 and sys.argv[1] == '-net': sim = NeuroMLSimulation('TestNet', '../../examples/test_data/simplenet.nml', 'simplenet', sim_time, dt, 'jNeuroML', 'temp/') sim.go() sim.show() else: sim = NeuroMLSimulation('TestHH', '../../examples/test_data/HHCellNetwork.net.nml', 'HHCellNetwork', sim_time, dt, 'jNeuroML', 'temp') sim.go() sim.show()
lgpl-3.0
zaxtax/scikit-learn
sklearn/utils/tests/test_seq_dataset.py
47
2486
# Author: Tom Dupre la Tour <tom.dupre-la-tour@m4x.org> # # License: BSD 3 clause import numpy as np import scipy.sparse as sp from sklearn.utils.seq_dataset import ArrayDataset, CSRDataset from sklearn.datasets import load_iris from numpy.testing import assert_array_equal from nose.tools import assert_equal iris = load_iris() X = iris.data.astype(np.float64) y = iris.target.astype(np.float64) X_csr = sp.csr_matrix(X) sample_weight = np.arange(y.size, dtype=np.float64) def assert_csr_equal(X, Y): X.eliminate_zeros() Y.eliminate_zeros() assert_equal(X.shape[0], Y.shape[0]) assert_equal(X.shape[1], Y.shape[1]) assert_array_equal(X.data, Y.data) assert_array_equal(X.indices, Y.indices) assert_array_equal(X.indptr, Y.indptr) def test_seq_dataset(): dataset1 = ArrayDataset(X, y, sample_weight, seed=42) dataset2 = CSRDataset(X_csr.data, X_csr.indptr, X_csr.indices, y, sample_weight, seed=42) for dataset in (dataset1, dataset2): for i in range(5): # next sample xi_, yi, swi, idx = dataset._next_py() xi = sp.csr_matrix((xi_), shape=(1, X.shape[1])) assert_csr_equal(xi, X_csr[idx]) assert_equal(yi, y[idx]) assert_equal(swi, sample_weight[idx]) # random sample xi_, yi, swi, idx = dataset._random_py() xi = sp.csr_matrix((xi_), shape=(1, X.shape[1])) assert_csr_equal(xi, X_csr[idx]) assert_equal(yi, y[idx]) assert_equal(swi, sample_weight[idx]) def test_seq_dataset_shuffle(): dataset1 = ArrayDataset(X, y, sample_weight, seed=42) dataset2 = CSRDataset(X_csr.data, X_csr.indptr, X_csr.indices, y, sample_weight, seed=42) # not shuffled for i in range(5): _, _, _, idx1 = dataset1._next_py() _, _, _, idx2 = dataset2._next_py() assert_equal(idx1, i) assert_equal(idx2, i) for i in range(5): _, _, _, idx1 = dataset1._random_py() _, _, _, idx2 = dataset2._random_py() assert_equal(idx1, idx2) seed = 77 dataset1._shuffle_py(seed) dataset2._shuffle_py(seed) for i in range(5): _, _, _, idx1 = dataset1._next_py() _, _, _, idx2 = dataset2._next_py() assert_equal(idx1, idx2) _, _, _, idx1 = dataset1._random_py() _, _, _, idx2 = dataset2._random_py() assert_equal(idx1, idx2)
bsd-3-clause
ninotoshi/tensorflow
tensorflow/contrib/learn/python/learn/tests/test_custom_decay.py
7
2270
# Copyright 2015-present The Scikit Flow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf import random from tensorflow.contrib.learn.python import learn from tensorflow.contrib.learn.python.learn import datasets from tensorflow.contrib.learn.python.learn.estimators._sklearn import accuracy_score from tensorflow.contrib.learn.python.learn.estimators._sklearn import train_test_split class CustomDecayTest(tf.test.TestCase): def testIrisExponentialDecay(self): random.seed(42) iris = datasets.load_iris() X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=42) # setup exponential decay function def exp_decay(global_step): return tf.train.exponential_decay(learning_rate=0.1, global_step=global_step, decay_steps=100, decay_rate=0.001) classifier = learn.TensorFlowDNNClassifier(hidden_units=[10, 20, 10], n_classes=3, steps=500, learning_rate=exp_decay) classifier.fit(X_train, y_train) score = accuracy_score(y_test, classifier.predict(X_test)) self.assertGreater(score, 0.65, "Failed with score = {0}".format(score)) if __name__ == "__main__": tf.test.main()
apache-2.0
kc-lab/dms2dfe
dms2dfe/lib/io_data_files.py
2
14758
#!usr/bin/python # Copyright 2016, Rohan Dandage <rraadd_8@hotmail.com,rohan@igib.in> # This program is distributed under General Public License v. 3. """ ================================ ``io_data_files`` ================================ """ import sys import pandas as pd from os.path import exists,basename,abspath,dirname,expanduser import logging from glob import glob import numpy as np from dms2dfe.lib.io_seq_files import get_fsta_feats logging.basicConfig(format='[%(asctime)s] %(levelname)s\tfrom %(filename)s in %(funcName)s(..): %(message)s',level=logging.DEBUG) # filename=cfg_xls_fh+'.log' import pickle ## DEFS def is_cfg_ok(cfg_dh,cfgs) : """ Checks if the required files are present in given directory. :param cfg_dh: path to directory. :param cfgs: list of names of files. """ cfg_dh_cfgs=glob(cfg_dh+"/*") cfg_dh_cfgs=[basename(cfg_dh_cfg) for cfg_dh_cfg in cfg_dh_cfgs] for cfg in cfgs : # check if required sheets are present if not cfg in cfg_dh_cfgs : logging.error("%s does not exist" % cfg) return False break return True def auto_find_missing_paths(prj_dh): """ Finds the missing paths in the configuration given in cfg/ directory :param prj_dh: path to the project directory """ info=pd.read_csv(prj_dh+"/cfg/info") info_path_vars=[varn for varn in info['varname'] if ("_fh" in varn) or ("_dh" in varn)] info=info.set_index("varname") #find pdb_fh and fsta_fh in prj_dh if pd.isnull(info.loc["pdb_fh","input"]): try: info.loc["pdb_fh","input"]=glob("%s/*.pdb" % prj_dh)[0] except: logging.error("can not find .pdb file") if pd.isnull(info.loc["fsta_fh","input"]): try: fsta_fhs=glob("%s/*.fasta" % prj_dh) for fsta_fh in fsta_fhs: if not (('prt' in fsta_fh) or ('_cctmr1.' in fsta_fh)): info.loc["fsta_fh","input"]=fsta_fh break except: logging.error("could not find .fasta file") info_paths=[info.loc[info_path_var,"input"] for info_path_var in info_path_vars] info.reset_index().to_csv(prj_dh+"/cfg/info",index=False) # if any(pd.isnull(info_paths)): info_paths_missing=[v for v in info_path_vars if (pd.isnull(info.loc[v,"input"]) and info.loc[v,"default"])] if len(info_paths_missing)>0: logging.error("Values for following variables are missing in 'project_dir/cfg/info' file.") # print [p for p in info_paths if pd.isnull(p)] print info_paths_missing sys.exit() def get_raw_input(info,var): """ Get intearactive inputs from user :param info: dict, with information about experiment :param var: variable whose value is obtained from interactive shell """ # from dms2dfe.lib.io_dfs import set_index # info=set_index(info,'var') val=raw_input("%s: %s (default: %s) =" % (var,info.loc[var, "description"],info.loc[var, "default"])) return val from dms2dfe.lib.io_seq_files import cctmr_fasta2ref_fasta def info2src(prj_dh): """ This converts `.csv` configuration file to `.py` source file saved in `/tmp/`. :param prj_dh: path to project directory """ import subprocess from dms2dfe.lib.io_seq_files import fasta_nts2prt csv2src("%s/../cfg/info" % abspath(dirname(__file__)),"%s/../tmp/info.py" % (abspath(dirname(__file__)))) auto_find_missing_paths(prj_dh) info=pd.read_csv(prj_dh+"/cfg/info") # info=auto_find_missing_paths(prj_dh) info_path_vars=[varn for varn in info['varname'] if ("_fh" in varn) or ("_dh" in varn)] info=info.set_index("varname") # find still missing paths ones info_paths=[info.loc[info_path_var,"input"] for info_path_var in info_path_vars] for info_path_var,info_path in zip(info_path_vars,info_paths): # if not exists(info_path): if not ('bowtie' in info_path): if not exists(info_path): if info_path_var=='rscript_fh': info_path = subprocess.check_output(["which", "Rscript"]).replace('\n','') # print info_path while not exists(info_path): logging.error('Path to files do not exist. Include correct path in cfg/info. %s : %s' % (info_path_var,info_path)) info_path=get_raw_input(info,info_path_var) info.loc[info_path_var,'input']=info_path if not pd.isnull(info.loc['cctmr','input']): cctmr=info.loc['cctmr','input'] cctmr=[int("%s" % i) for i in cctmr.split(" ")] fsta_fh=cctmr_fasta2ref_fasta(info.loc['fsta_fh','input'],cctmr) else: fsta_fh=info.loc['fsta_fh','input'] info.loc['prj_dh','input']=abspath(prj_dh) info.loc['fsta_id','input'],info.loc['fsta_seq','input'],info.loc['fsta_len','input']=get_fsta_feats(fsta_fh) host=info.loc['host','input'] if pd.isnull(host): host=info.loc['host','default'] info.loc['prt_seq','input']=fasta_nts2prt(fsta_fh,host=host).replace('*','X') info.reset_index().to_csv(prj_dh+"/cfg/info",index=False) csv2src(prj_dh+"/cfg/info","%s/../tmp/info.py" % (abspath(dirname(__file__)))) csv2src(prj_dh+"/cfg/info",prj_dh+"/cfg/info.py") logging.info("configuration compiled: %s/cfg/info" % prj_dh) def csv2src(csv_fh,src_fh): """ This writes `.csv` to `.py` source file. :param csv_fh: path to input `.csv` file. :param src_fh: path to output `.py` source file. """ info=pd.read_csv(csv_fh) info=info.set_index('varname') src_f=open(src_fh,'w') src_f.write("#!usr/bin/python\n") src_f.write("\n") src_f.write("# source file for dms2dfe's configuration \n") src_f.write("\n") for var in info.iterrows() : val=info['input'][var[0]] if pd.isnull(val): val=info['default'][var[0]] src_f.write("%s='%s' #%s\n" % (var[0],val,info["description"][var[0]])) src_f.close() def raw_input2info(prj_dh,inputORdefault): """ This writes configuration `.csv` file from `raw_input` from prompt. :param prj_dh: path to project directory. :param inputORdefault: column name "input" or "default". """ info=pd.read_csv(prj_dh+"/cfg/info") info=info.set_index("varname",drop=True) for var in info.index.values: val=raw_input("%s (default: %s) =" % (info.loc[var, "description"],info.loc[var, "default"])) if not val=='': info.loc[var, inputORdefault]=val info.reset_index().to_csv("%s/cfg/info" % prj_dh, index=False) def is_xls_ok(cfg_xls,cfg_xls_sheetnames_required) : """ Checks if the required sheets are present in the configuration excel file. :param cfg_xls: path to configuration excel file """ cfg_xls_sheetnames=cfg_xls.sheet_names cfg_xls_sheetnames= [str(x) for x in cfg_xls_sheetnames]# unicode to str for qry_sheet_namei in cfg_xls_sheetnames_required : # check if required sheets are present #qry_sheet_namei=str(qry_sheet_namei) if not qry_sheet_namei in cfg_xls_sheetnames : logging.error("pipeline : sheetname '%s' does not exist" % qry_sheet_namei) return False break return True def is_info_ok(xls_fh): """ This checks the sanity of info sheet in the configuration excel file. For example if the files exists or not. :param cfg_xls: path to configuration excel file """ info=pd.read_excel(xls_fh,'info') info_path_vars=[varn for varn in info['varname'] if ("_fh" in varn) or ("_dh" in varn)] info=info.set_index("varname") info_paths=[info.loc[info_path_var,"input"] for info_path_var in info_path_vars] for info_path in info_paths: if not pd.isnull(info_path): if not exists(info_path): return False #(info_path_vars[info_paths.index(info_path)],info_path) break return True def xls2h5(cfg_xls,cfg_h5,cfg_xls_sheetnames_required) : """ Converts configuration excel file to HDF5(h5) file. Here sheets in excel files are converted to groups in HDF5 file. :param cfg_xls: path to configuration excel file """ for qry_sheet_namei in cfg_xls_sheetnames_required: qry_sheet_df=cfg_xls.parse(qry_sheet_namei) qry_sheet_df=qry_sheet_df.astype(str) # suppress unicode error qry_sheet_df.columns=[col.replace(" ","_") for col in qry_sheet_df.columns] cfg_h5.put("cfg/"+qry_sheet_namei,convert2h5form(qry_sheet_df), format='table', data_columns=True) return cfg_h5 def xls2csvs(cfg_xls,cfg_xls_sheetnames_required,output_dh): """ Converts configuration excel file to HDF5(h5) file. Here sheets in excel files are converted to groups in HDF5 file. :param cfg_xls: path to configuration excel file """ for qry_sheet_namei in cfg_xls_sheetnames_required: qry_sheet_df=cfg_xls.parse(qry_sheet_namei) qry_sheet_df=qry_sheet_df.astype(str) # suppress unicode error qry_sheet_df.to_csv("%s/%s" % (output_dh,qry_sheet_namei)) # print "%s/%s" % (output_dh,qry_sheet_namei) def convert2h5form(df): """ Convert dataframe compatible to Hdf5 format :param df: pandas dataframe """ from dms2dfe.lib.io_strs import convertstr2format df.columns=[convertstr2format(col,"^[a-zA-Z0-9_]*$") for col in df.columns.tolist()] return df def csvs2h5(dh,sub_dh_list,fn_list,output_dh,cfg_h5): """ This converts the csv files to tables in HDF5. :param dh: path to the directory with csv files :param fn_list: list of filenames of the csv files """ for fn in fn_list: for sub_dh in sub_dh_list : # get aas or cds fh=output_dh+"/"+dh+"/"+sub_dh+"/"+fn+"" df=pd.read_csv(fh) # get mat to df df=df.loc[:,[col.replace(" ","_") for col in list(df.columns) if not (('index' in col) or ('Unnamed' in col)) ]] exec("cfg_h5.put('%s/%s/%s',df, format='table', data_columns=True)" % (dh,sub_dh,str(fn)),locals(), globals()) # store the otpts in h5 eg. cds/N/lbl # print("cfg_h5.put('%s/%s/%s',df.convert_objects(), format='table', data_columns=True)" % (dh,sub_dh,str(fn))) # store the otpts in h5 eg. cds/N/lbl def csvs2h5(dh,sub_dh_list,fn_list): """ This converts csvs into HDF5 tables. :param dh: path to the directory with csv files :param fn_list: list of filenames of the csv files """ for fn in fn_list: for sub_dh in sub_dh_list : # get aas or cds fh=output_dh+"/"+dh+"/"+sub_dh+"/"+fn+"" key=dh+"/"+sub_dh+"/"+fn if (exists(fh)) and (key in cfg_h5): df=pd.read_csv(fh) # get mat to df key=key+"2" cfg_h5.put(key,df.convert_objects(), format='table', data_columns=True) # store the otpts in h5 eg. cds/N/lbl #mut_lbl_fit_comparison def getusable_lbls_list(prj_dh): """ This detects the samples that can be processed. :param prj_dh: path to project directory. :returns lbls_list: list of names of samples that can be processed. """ lbls=pd.read_csv(prj_dh+'/cfg/lbls') lbls=lbls.set_index('varname') lbls_list=[] #data_lbl cols: NiA mutids NiS NiN NiNcut NiNcutlog NiScut NiScutlog NiAcut NiAcutlog for lbli,lbl in lbls.iterrows() : # print "%s/data_lbl/%s/%s" % (prj_dh,'aas',str(lbli)) if (not exists("%s/data_lbl/%s/%s" % (prj_dh,'aas',str(lbli)))): fh_1=expanduser(str(lbl['fhs_1'])) lbl_mat_mut_cds_fh=[fh for fh in glob(fh_1+"*") if '.mat_mut_cds' in fh] if len(lbl_mat_mut_cds_fh)!=0: lbl_mat_mut_cds_fh=lbl_mat_mut_cds_fh[0] lbls_list.append([lbli,lbl_mat_mut_cds_fh]) else : fh_1="%s/data_mutmat/%s" % (prj_dh,basename(fh_1)) # print fh_1 lbl_mat_mut_cds_fh=[fh for fh in glob(fh_1+"*") if '.mat_mut_cds' in fh] if len(lbl_mat_mut_cds_fh)!=0: lbl_mat_mut_cds_fh=lbl_mat_mut_cds_fh[0] lbls_list.append([lbli,lbl_mat_mut_cds_fh]) else: logging.warning("can not find: %s" % fh_1) # else: # logging.info("already processed: %s" % (str(lbli))) return lbls_list def getusable_fits_list(prj_dh,data_fit_dh='data_fit'): """ This gets the list of samples that can be processed for fitness estimations. :param prj_dh: path to project directory. :returns fits_pairs_list: list of tuples with names of input and selected samples. """ if exists('%s/cfg/fit'% (prj_dh)): fits=pd.read_csv(prj_dh+'/cfg/fit') if "Unnamed: 0" in fits.columns: fits=fits.drop("Unnamed: 0", axis=1) fits_pairs_list=[] sel_cols=[col for col in fits.columns.tolist() if "sel_" in col] for pairi in fits.index.values : unsel_lbl=fits.loc[pairi,"unsel"] sels=list(fits.loc[pairi,sel_cols]) # print sels for sel_lbl in sels : if not pd.isnull(sel_lbl): fit_lbl=sel_lbl+"_WRT_"+unsel_lbl if (not exists("%s/%s/%s/%s" % (prj_dh,data_fit_dh,'aas',fit_lbl))): fits_pairs_list.append([unsel_lbl,sel_lbl]) else : logging.info("already processed: %s" % (fit_lbl)) return fits_pairs_list else: logging.warning("ana3_mutmat2fit : getusable_fits_list : not fits in cfg/fit") return [] def getusable_comparison_list(prj_dh): """ This converts the table of tests and controls in configuration file into tuples of test and control. :param prj_dh: path to project directory. """ comparisons=pd.read_csv(prj_dh+'/cfg/comparison') comparisons=comparisons.set_index('ctrl') comparison_list=[] for ctrl,row in comparisons.iterrows() : row=row[~row.isnull()] for test in row[0:] : comparison_list.append([ctrl,test]) return comparison_list def to_pkl(data,fh): """ Saves a dict in pkl format :param data: dict, containing data :param fh: path to the output pkl file """ if not fh is None: with open(fh, 'wb') as f: pickle.dump(data, f, -1) def read_pkl(fh): """ Reads a file in pkl format :param fh: path to the pkl file :returns data: dict, containing data """ with open(fh,'rb') as f: return pickle.load(f)
gpl-3.0
helifu/kudu
python/kudu/tests/test_scanner.py
2
14089
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from __future__ import division from kudu.compat import unittest from kudu.tests.util import TestScanBase from kudu.tests.common import KuduTestBase, TimeoutError import kudu import datetime import time import pytest class TestScanner(TestScanBase): @classmethod def setUpClass(self): super(TestScanner, self).setUpClass() def setUp(self): pass def test_scan_rows_basic(self): # Let's scan with no predicates scanner = self.table.scanner().open() tuples = scanner.read_all_tuples() self.assertEqual(sorted(tuples), self.tuples) def test_scan_rows_simple_predicate(self): key = self.table['key'] preds = [key > 19, key < 50] def _read_predicates(preds): scanner = self.table.scanner() scanner.add_predicates(preds) scanner.open() return scanner.read_all_tuples() tuples = _read_predicates(preds) self.assertEqual(sorted(tuples), self.tuples[20:50]) # verify predicates reusable tuples = _read_predicates(preds) self.assertEqual(sorted(tuples), self.tuples[20:50]) def test_scan_limit(self): # Set limits both below and above the max number of rows. limits = [self.nrows - 1, self.nrows, self.nrows + 1] for limit in limits: scanner = self.table.scanner() scanner.set_limit(limit) tuples = scanner.read_all_tuples() self.assertEqual(len(tuples), min(limit, self.nrows)) def test_scan_rows_string_predicate_and_projection(self): scanner = self.table.scanner() scanner.set_projected_column_names(['key', 'string_val']) sv = self.table['string_val'] scanner.add_predicates([sv >= 'hello_20', sv <= 'hello_22']) scanner.set_fault_tolerant() scanner.open() tuples = scanner.read_all_tuples() self.assertEqual(sorted(tuples), [(20, 'hello_20'), (22, 'hello_22')]) def test_scan_rows_in_list_predicate(self): """ Test scanner with an InList predicate and a string comparison predicate """ key_list = [2, 98] scanner = self.table.scanner() scanner.set_fault_tolerant()\ .add_predicates([ self.table[0].in_list(key_list), self.table['string_val'] >= 'hello_9' ]) scanner.open() tuples = scanner.read_all_tuples() self.assertEqual(tuples, [self.tuples[98]]) def test_scan_rows_is_not_null_predicate(self): """ Test scanner with an IsNotNull predicate on string_val column """ pred = self.table['string_val'].is_not_null() scanner = self.table.scanner() scanner.add_predicate(pred) scanner.open() tuples = scanner.read_all_tuples() rows = [i for i in range(100) if i % 2 == 0] self.assertEqual(sorted(tuples), [self.tuples[i] for i in rows]) def test_scan_rows_is_null_predicate(self): """ Test scanner with an IsNull predicate on string_val column """ pred = self.table['string_val'].is_null() scanner = self.table.scanner() scanner.add_predicate(pred) scanner.open() tuples = scanner.read_all_tuples() rows = [i for i in range(100) if i % 2 != 0] self.assertEqual(sorted(tuples), [self.tuples[i] for i in rows]) def test_index_projection_with_schema(self): scanner = self.table.scanner() scanner.set_projected_column_indexes([0, 1]) scanner.set_fault_tolerant() scanner.open() tuples = scanner.read_all_tuples() # Build schema to check against builder = kudu.schema_builder() builder.add_column('key', kudu.int32, nullable=False) builder.add_column('int_val', kudu.int32) builder.set_primary_keys(['key']) expected_schema = builder.build() # Build new schema from projection schema builder = kudu.schema_builder() for col in scanner.get_projection_schema(): builder.copy_column(col) builder.set_primary_keys(['key']) new_schema = builder.build() self.assertEqual(tuples, [t[0:2] for t in self.tuples]) self.assertTrue(expected_schema.equals(new_schema)) def test_scan_with_bounds(self): scanner = self.table.scanner() scanner.set_fault_tolerant()\ .add_lower_bound({'key': 50})\ .add_exclusive_upper_bound({'key': 55}) scanner.open() tuples = scanner.read_all_tuples() self.assertEqual(sorted(tuples), self.tuples[50:55]) def test_scan_invalid_predicates(self): scanner = self.table.scanner() sv = self.table['string_val'] with self.assertRaises(TypeError): scanner.add_predicates([sv >= None]) with self.assertRaises(TypeError): scanner.add_predicates([sv >= 1]) with self.assertRaises(TypeError): scanner.add_predicates([sv.in_list(['testing', datetime.datetime.utcnow()])]) with self.assertRaises(TypeError): scanner.add_predicates([sv.in_list([ 'hello_20', 120 ])]) def test_scan_batch_by_batch(self): scanner = self.table.scanner() scanner.set_fault_tolerant() lower_bound = scanner.new_bound() lower_bound['key'] = 10 scanner.add_lower_bound(lower_bound) upper_bound = scanner.new_bound() upper_bound['key'] = 90 scanner.add_exclusive_upper_bound(upper_bound) scanner.open() tuples = [] while scanner.has_more_rows(): batch = scanner.next_batch() tuples.extend(batch.as_tuples()) self.assertEqual(sorted(tuples), self.tuples[10:90]) def test_unixtime_micros(self): """ Test setting and getting unixtime_micros fields """ # Insert new rows self.insert_new_unixtime_micros_rows() # Validate results scanner = self.table.scanner() scanner.set_fault_tolerant().open() self.assertEqual(sorted(self.tuples), scanner.read_all_tuples()) def test_read_mode(self): """ Test scanning in latest, snapshot and read_your_writes read modes. """ # Delete row self.delete_insert_row_for_read_test() # Check scanner results prior to delete scanner = self.table.scanner() scanner.set_read_mode('snapshot')\ .set_snapshot(self.snapshot_timestamp)\ .open() self.assertEqual(sorted(self.tuples[1:]), sorted(scanner.read_all_tuples())) # Check scanner results after delete with latest mode timeout = time.time() + 10 check_tuples = [] while check_tuples != sorted(self.tuples): if time.time() > timeout: raise TimeoutError("Could not validate results in allocated" + "time.") scanner = self.table.scanner() scanner.set_read_mode(kudu.READ_LATEST)\ .open() check_tuples = sorted(scanner.read_all_tuples()) # Avoid tight looping time.sleep(0.05) # Check scanner results after delete with read_your_writes mode scanner = self.table.scanner() scanner.set_read_mode('read_your_writes')\ .open() self.assertEqual(sorted(self.tuples), sorted(scanner.read_all_tuples())) def test_resource_metrics_and_cache_blocks(self): """ Test getting the resource metrics after scanning and setting the scanner to not cache blocks. """ # Build scanner and read through all batches and retrieve metrics. scanner = self.table.scanner() scanner.set_fault_tolerant().set_cache_blocks(False).open() scanner.read_all_tuples() metrics = scanner.get_resource_metrics() # Confirm that the scanner returned cache hit and miss values. self.assertTrue('cfile_cache_hit_bytes' in metrics) self.assertTrue('cfile_cache_miss_bytes' in metrics) def verify_pred_type_scans(self, preds, row_indexes, count_only=False): # Using the incoming list of predicates, verify that the row returned # matches the inserted tuple at the row indexes specified in a # slice object scanner = self.type_table.scanner() scanner.set_fault_tolerant() scanner.add_predicates(preds) scanner.set_projected_column_names(self.projected_names_w_o_float) tuples = scanner.open().read_all_tuples() # verify rows if count_only: self.assertEqual(len(self.type_test_rows[row_indexes]), len(tuples)) else: self.assertEqual(sorted(self.type_test_rows[row_indexes]), tuples) def test_unixtime_micros_pred(self): # Test unixtime_micros value predicate self._test_unixtime_micros_pred() def test_bool_pred(self): # Test a boolean value predicate self._test_bool_pred() def test_double_pred(self): # Test a double precision float predicate self._test_double_pred() def test_float_pred(self): # Test a single precision float predicate # Does a row check count only self._test_float_pred() def test_decimal_pred(self): if kudu.CLIENT_SUPPORTS_DECIMAL: # Test a decimal predicate self._test_decimal_pred() def test_binary_pred(self): # Test a binary predicate self._test_binary_pred() def test_scan_selection(self): """ This test confirms that setting the scan selection policy on the scanner does not cause any errors. There is no way to confirm that the policy was actually set. This functionality is tested in the C++ test: ClientTest.TestReplicatedMultiTabletTableFailover. """ for policy in ['leader', kudu.CLOSEST_REPLICA, 2]: scanner = self.table.scanner() scanner.set_selection(policy) scanner.open() self.assertEqual(sorted(scanner.read_all_tuples()), sorted(self.tuples)) @pytest.mark.skipif(not (kudu.CLIENT_SUPPORTS_PANDAS), reason="Pandas required to run this test.") def test_scanner_to_pandas_types(self): """ This test confirms that data types are converted as expected to Pandas. """ import numpy as np scanner = self.type_table.scanner() df = scanner.to_pandas() types = df.dtypes if kudu.CLIENT_SUPPORTS_DECIMAL: self.assertEqual(types[0], np.int64) self.assertEqual(types[1], 'datetime64[ns, UTC]') self.assertEqual(types[2], np.object) self.assertEqual(types[3], np.object) self.assertEqual(types[4], np.bool) self.assertEqual(types[5], np.float64) self.assertEqual(types[6], np.int8) self.assertEqual(types[7], np.object) self.assertEqual(types[8], np.float32) else: self.assertEqual(types[0], np.int64) self.assertEqual(types[1], 'datetime64[ns, UTC]') self.assertEqual(types[2], np.object) self.assertEqual(types[3], np.bool) self.assertEqual(types[4], np.float64) self.assertEqual(types[5], np.int8) self.assertEqual(types[6], np.object) self.assertEqual(types[7], np.float32) @pytest.mark.skipif(not (kudu.CLIENT_SUPPORTS_PANDAS), reason="Pandas required to run this test.") def test_scanner_to_pandas_row_count(self): """ This test confirms that the record counts match between Pandas and the scanner. """ scanner = self.type_table.scanner() scanner_count = len(scanner.read_all_tuples()) scanner = self.type_table.scanner() df = scanner.to_pandas() self.assertEqual(scanner_count, df.shape[0]) @pytest.mark.skipif(not (kudu.CLIENT_SUPPORTS_PANDAS), reason="Pandas required to run this test.") def test_scanner_to_pandas_index(self): """ This test confirms that an index is correctly applied. """ scanner = self.type_table.scanner() df = scanner.to_pandas(index='key') self.assertEqual(df.index.name, 'key') self.assertEqual(list(df.index), [1, 2]) @pytest.mark.skipif((not(kudu.CLIENT_SUPPORTS_PANDAS) or (not(kudu.CLIENT_SUPPORTS_DECIMAL))), reason="Pandas and Decimal support required to run this test.") def test_scanner_to_pandas_index(self): """ This test confirms that a decimal column is coerced to a double when specified. """ import numpy as np scanner = self.type_table.scanner() df = scanner.to_pandas(coerce_float=True) types = df.dtypes self.assertEqual(types[2], np.float64)
apache-2.0
0x0all/scikit-learn
examples/plot_multioutput_face_completion.py
330
3019
""" ============================================== Face completion with a multi-output estimators ============================================== This example shows the use of multi-output estimator to complete images. The goal is to predict the lower half of a face given its upper half. The first column of images shows true faces. The next columns illustrate how extremely randomized trees, k nearest neighbors, linear regression and ridge regression complete the lower half of those faces. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import fetch_olivetti_faces from sklearn.utils.validation import check_random_state from sklearn.ensemble import ExtraTreesRegressor from sklearn.neighbors import KNeighborsRegressor from sklearn.linear_model import LinearRegression from sklearn.linear_model import RidgeCV # Load the faces datasets data = fetch_olivetti_faces() targets = data.target data = data.images.reshape((len(data.images), -1)) train = data[targets < 30] test = data[targets >= 30] # Test on independent people # Test on a subset of people n_faces = 5 rng = check_random_state(4) face_ids = rng.randint(test.shape[0], size=(n_faces, )) test = test[face_ids, :] n_pixels = data.shape[1] X_train = train[:, :np.ceil(0.5 * n_pixels)] # Upper half of the faces y_train = train[:, np.floor(0.5 * n_pixels):] # Lower half of the faces X_test = test[:, :np.ceil(0.5 * n_pixels)] y_test = test[:, np.floor(0.5 * n_pixels):] # Fit estimators ESTIMATORS = { "Extra trees": ExtraTreesRegressor(n_estimators=10, max_features=32, random_state=0), "K-nn": KNeighborsRegressor(), "Linear regression": LinearRegression(), "Ridge": RidgeCV(), } y_test_predict = dict() for name, estimator in ESTIMATORS.items(): estimator.fit(X_train, y_train) y_test_predict[name] = estimator.predict(X_test) # Plot the completed faces image_shape = (64, 64) n_cols = 1 + len(ESTIMATORS) plt.figure(figsize=(2. * n_cols, 2.26 * n_faces)) plt.suptitle("Face completion with multi-output estimators", size=16) for i in range(n_faces): true_face = np.hstack((X_test[i], y_test[i])) if i: sub = plt.subplot(n_faces, n_cols, i * n_cols + 1) else: sub = plt.subplot(n_faces, n_cols, i * n_cols + 1, title="true faces") sub.axis("off") sub.imshow(true_face.reshape(image_shape), cmap=plt.cm.gray, interpolation="nearest") for j, est in enumerate(sorted(ESTIMATORS)): completed_face = np.hstack((X_test[i], y_test_predict[est][i])) if i: sub = plt.subplot(n_faces, n_cols, i * n_cols + 2 + j) else: sub = plt.subplot(n_faces, n_cols, i * n_cols + 2 + j, title=est) sub.axis("off") sub.imshow(completed_face.reshape(image_shape), cmap=plt.cm.gray, interpolation="nearest") plt.show()
bsd-3-clause
franciscogmm/FinancialAnalysisUsingNLPandMachineLearning
SentimentAnalysis - Polarity - Domain Specific Lexicon.py
1
2667
import csv import pandas as pd import nltk from nltk import FreqDist,ngrams from nltk.corpus import stopwords import string from os import listdir from os.path import isfile, join def ngram_list(file,n): f = open(file,'rU') raw = f.read() raw = raw.replace('\n',' ') #raw = raw.decode('utf8') #raw = raw.decode("utf-8", 'ignore') ngramz = ngrams(raw.split(),n) return ngramz def IsNotNull(value): return value is not None and len(value) > 0 mypath = '/Users/francis/Documents/FORDHAM/2nd Term/Text Analytics/' #path where files are located onlyfiles = [f for f in listdir(mypath) if isfile(join(mypath, f))] dict_p = [] f = open('positive.txt', 'r') for line in f: t = line.strip().lower() if IsNotNull(t): dict_p.append(t) f.close dict_n = [] f = open('negative.txt', 'r') for line in f: t = line.strip().lower() if IsNotNull(t): dict_n.append(t) f.close totallist = [] rowlist = [] qa = 0 qb = 0 counti = 0 for i in onlyfiles: if i.endswith('.txt'): # get code j = i.replace('.txt','') # string filename file = mypath + str(i) print i f = open(file,'rU') raw = f.read() #print type(raw) raw = [w.translate(None, string.punctuation) for w in raw] raw = ''.join(raw) raw = raw.replace('\n','') raw = raw.replace(' ','') #print raw qa = 0 qb = 0 for word in dict_p: if word in raw: qa += 1 for word in dict_n: if word in raw: qb += 1 qc = qa - qb if qc > 0: sentiment = 'POSITIVE' elif qc == 0: sentiment = 'NEUTRAL' else: sentiment = 'NEGATIVE' rowlist.append(i) rowlist.append(qa) rowlist.append(qb) rowlist.append(qc) rowlist.append(sentiment) print counti counti += 1 totallist.append(rowlist) rowlist = [] else: pass labels = ('file', 'P', 'N', 'NET', 'SENTIMENT') df = pd.DataFrame.from_records(totallist, columns = labels) df.to_csv('oursentiment.csv', index = False) #print dict_p # allbigrams.append(ngram_list(file,2)) # print i + ' BIGRAM - OK' # alltrigrams.append(ngram_list(file,3)) # print i + ' TRIGRAM - OK' # allfourgrams.append(ngram_list(file,4)) # print i + ' FOURGRAM - OK' # allfivegrams.append(ngram_list(file,5)) # print i + ' TRIGRAM - OK' # allsixgrams.append(ngram_list(file,6)) # print i + ' SIXGRAM - OK' # allsevengrams.append(ngram_list(file,7)) # print i + ' SEVENGRAM - OK' # alleightgrams.append(ngram_list(file,8)) # print i + ' EIGHTGRAM - OK'
mit
fengzhyuan/scikit-learn
sklearn/tests/test_metaestimators.py
226
4954
"""Common tests for metaestimators""" import functools import numpy as np from sklearn.base import BaseEstimator from sklearn.externals.six import iterkeys from sklearn.datasets import make_classification from sklearn.utils.testing import assert_true, assert_false, assert_raises from sklearn.pipeline import Pipeline from sklearn.grid_search import GridSearchCV, RandomizedSearchCV from sklearn.feature_selection import RFE, RFECV from sklearn.ensemble import BaggingClassifier class DelegatorData(object): def __init__(self, name, construct, skip_methods=(), fit_args=make_classification()): self.name = name self.construct = construct self.fit_args = fit_args self.skip_methods = skip_methods DELEGATING_METAESTIMATORS = [ DelegatorData('Pipeline', lambda est: Pipeline([('est', est)])), DelegatorData('GridSearchCV', lambda est: GridSearchCV( est, param_grid={'param': [5]}, cv=2), skip_methods=['score']), DelegatorData('RandomizedSearchCV', lambda est: RandomizedSearchCV( est, param_distributions={'param': [5]}, cv=2, n_iter=1), skip_methods=['score']), DelegatorData('RFE', RFE, skip_methods=['transform', 'inverse_transform', 'score']), DelegatorData('RFECV', RFECV, skip_methods=['transform', 'inverse_transform', 'score']), DelegatorData('BaggingClassifier', BaggingClassifier, skip_methods=['transform', 'inverse_transform', 'score', 'predict_proba', 'predict_log_proba', 'predict']) ] def test_metaestimator_delegation(): # Ensures specified metaestimators have methods iff subestimator does def hides(method): @property def wrapper(obj): if obj.hidden_method == method.__name__: raise AttributeError('%r is hidden' % obj.hidden_method) return functools.partial(method, obj) return wrapper class SubEstimator(BaseEstimator): def __init__(self, param=1, hidden_method=None): self.param = param self.hidden_method = hidden_method def fit(self, X, y=None, *args, **kwargs): self.coef_ = np.arange(X.shape[1]) return True def _check_fit(self): if not hasattr(self, 'coef_'): raise RuntimeError('Estimator is not fit') @hides def inverse_transform(self, X, *args, **kwargs): self._check_fit() return X @hides def transform(self, X, *args, **kwargs): self._check_fit() return X @hides def predict(self, X, *args, **kwargs): self._check_fit() return np.ones(X.shape[0]) @hides def predict_proba(self, X, *args, **kwargs): self._check_fit() return np.ones(X.shape[0]) @hides def predict_log_proba(self, X, *args, **kwargs): self._check_fit() return np.ones(X.shape[0]) @hides def decision_function(self, X, *args, **kwargs): self._check_fit() return np.ones(X.shape[0]) @hides def score(self, X, *args, **kwargs): self._check_fit() return 1.0 methods = [k for k in iterkeys(SubEstimator.__dict__) if not k.startswith('_') and not k.startswith('fit')] methods.sort() for delegator_data in DELEGATING_METAESTIMATORS: delegate = SubEstimator() delegator = delegator_data.construct(delegate) for method in methods: if method in delegator_data.skip_methods: continue assert_true(hasattr(delegate, method)) assert_true(hasattr(delegator, method), msg="%s does not have method %r when its delegate does" % (delegator_data.name, method)) # delegation before fit raises an exception assert_raises(Exception, getattr(delegator, method), delegator_data.fit_args[0]) delegator.fit(*delegator_data.fit_args) for method in methods: if method in delegator_data.skip_methods: continue # smoke test delegation getattr(delegator, method)(delegator_data.fit_args[0]) for method in methods: if method in delegator_data.skip_methods: continue delegate = SubEstimator(hidden_method=method) delegator = delegator_data.construct(delegate) assert_false(hasattr(delegate, method)) assert_false(hasattr(delegator, method), msg="%s has method %r when its delegate does not" % (delegator_data.name, method))
bsd-3-clause
jkarnows/scikit-learn
sklearn/neighbors/tests/test_dist_metrics.py
230
5234
import itertools import pickle import numpy as np from numpy.testing import assert_array_almost_equal import scipy from scipy.spatial.distance import cdist from sklearn.neighbors.dist_metrics import DistanceMetric from nose import SkipTest def dist_func(x1, x2, p): return np.sum((x1 - x2) ** p) ** (1. / p) def cmp_version(version1, version2): version1 = tuple(map(int, version1.split('.')[:2])) version2 = tuple(map(int, version2.split('.')[:2])) if version1 < version2: return -1 elif version1 > version2: return 1 else: return 0 class TestMetrics: def __init__(self, n1=20, n2=25, d=4, zero_frac=0.5, rseed=0, dtype=np.float64): np.random.seed(rseed) self.X1 = np.random.random((n1, d)).astype(dtype) self.X2 = np.random.random((n2, d)).astype(dtype) # make boolean arrays: ones and zeros self.X1_bool = self.X1.round(0) self.X2_bool = self.X2.round(0) V = np.random.random((d, d)) VI = np.dot(V, V.T) self.metrics = {'euclidean': {}, 'cityblock': {}, 'minkowski': dict(p=(1, 1.5, 2, 3)), 'chebyshev': {}, 'seuclidean': dict(V=(np.random.random(d),)), 'wminkowski': dict(p=(1, 1.5, 3), w=(np.random.random(d),)), 'mahalanobis': dict(VI=(VI,)), 'hamming': {}, 'canberra': {}, 'braycurtis': {}} self.bool_metrics = ['matching', 'jaccard', 'dice', 'kulsinski', 'rogerstanimoto', 'russellrao', 'sokalmichener', 'sokalsneath'] def test_cdist(self): for metric, argdict in self.metrics.items(): keys = argdict.keys() for vals in itertools.product(*argdict.values()): kwargs = dict(zip(keys, vals)) D_true = cdist(self.X1, self.X2, metric, **kwargs) yield self.check_cdist, metric, kwargs, D_true for metric in self.bool_metrics: D_true = cdist(self.X1_bool, self.X2_bool, metric) yield self.check_cdist_bool, metric, D_true def check_cdist(self, metric, kwargs, D_true): if metric == 'canberra' and cmp_version(scipy.__version__, '0.9') <= 0: raise SkipTest("Canberra distance incorrect in scipy < 0.9") dm = DistanceMetric.get_metric(metric, **kwargs) D12 = dm.pairwise(self.X1, self.X2) assert_array_almost_equal(D12, D_true) def check_cdist_bool(self, metric, D_true): dm = DistanceMetric.get_metric(metric) D12 = dm.pairwise(self.X1_bool, self.X2_bool) assert_array_almost_equal(D12, D_true) def test_pdist(self): for metric, argdict in self.metrics.items(): keys = argdict.keys() for vals in itertools.product(*argdict.values()): kwargs = dict(zip(keys, vals)) D_true = cdist(self.X1, self.X1, metric, **kwargs) yield self.check_pdist, metric, kwargs, D_true for metric in self.bool_metrics: D_true = cdist(self.X1_bool, self.X1_bool, metric) yield self.check_pdist_bool, metric, D_true def check_pdist(self, metric, kwargs, D_true): if metric == 'canberra' and cmp_version(scipy.__version__, '0.9') <= 0: raise SkipTest("Canberra distance incorrect in scipy < 0.9") dm = DistanceMetric.get_metric(metric, **kwargs) D12 = dm.pairwise(self.X1) assert_array_almost_equal(D12, D_true) def check_pdist_bool(self, metric, D_true): dm = DistanceMetric.get_metric(metric) D12 = dm.pairwise(self.X1_bool) assert_array_almost_equal(D12, D_true) def test_haversine_metric(): def haversine_slow(x1, x2): return 2 * np.arcsin(np.sqrt(np.sin(0.5 * (x1[0] - x2[0])) ** 2 + np.cos(x1[0]) * np.cos(x2[0]) * np.sin(0.5 * (x1[1] - x2[1])) ** 2)) X = np.random.random((10, 2)) haversine = DistanceMetric.get_metric("haversine") D1 = haversine.pairwise(X) D2 = np.zeros_like(D1) for i, x1 in enumerate(X): for j, x2 in enumerate(X): D2[i, j] = haversine_slow(x1, x2) assert_array_almost_equal(D1, D2) assert_array_almost_equal(haversine.dist_to_rdist(D1), np.sin(0.5 * D2) ** 2) def test_pyfunc_metric(): X = np.random.random((10, 3)) euclidean = DistanceMetric.get_metric("euclidean") pyfunc = DistanceMetric.get_metric("pyfunc", func=dist_func, p=2) # Check if both callable metric and predefined metric initialized # DistanceMetric object is picklable euclidean_pkl = pickle.loads(pickle.dumps(euclidean)) pyfunc_pkl = pickle.loads(pickle.dumps(pyfunc)) D1 = euclidean.pairwise(X) D2 = pyfunc.pairwise(X) D1_pkl = euclidean_pkl.pairwise(X) D2_pkl = pyfunc_pkl.pairwise(X) assert_array_almost_equal(D1, D2) assert_array_almost_equal(D1_pkl, D2_pkl)
bsd-3-clause
kdebrab/pandas
pandas/core/indexes/category.py
1
30548
import operator import numpy as np from pandas._libs import index as libindex from pandas import compat from pandas.compat.numpy import function as nv from pandas.core.dtypes.generic import ABCCategorical, ABCSeries from pandas.core.dtypes.dtypes import CategoricalDtype from pandas.core.dtypes.common import ( is_categorical_dtype, ensure_platform_int, is_list_like, is_interval_dtype, is_scalar) from pandas.core.dtypes.missing import array_equivalent, isna from pandas.core.algorithms import take_1d from pandas.util._decorators import Appender, cache_readonly from pandas.core.config import get_option from pandas.core.indexes.base import Index, _index_shared_docs from pandas.core import accessor import pandas.core.common as com import pandas.core.missing as missing import pandas.core.indexes.base as ibase from pandas.core.arrays.categorical import Categorical, contains _index_doc_kwargs = dict(ibase._index_doc_kwargs) _index_doc_kwargs.update(dict(target_klass='CategoricalIndex')) class CategoricalIndex(Index, accessor.PandasDelegate): """ Immutable Index implementing an ordered, sliceable set. CategoricalIndex represents a sparsely populated Index with an underlying Categorical. Parameters ---------- data : array-like or Categorical, (1-dimensional) categories : optional, array-like categories for the CategoricalIndex ordered : boolean, designating if the categories are ordered copy : bool Make a copy of input ndarray name : object Name to be stored in the index Attributes ---------- codes categories ordered Methods ------- rename_categories reorder_categories add_categories remove_categories remove_unused_categories set_categories as_ordered as_unordered map See Also -------- Categorical, Index """ _typ = 'categoricalindex' _engine_type = libindex.Int64Engine _attributes = ['name'] def __new__(cls, data=None, categories=None, ordered=None, dtype=None, copy=False, name=None, fastpath=False): if fastpath: return cls._simple_new(data, name=name, dtype=dtype) if name is None and hasattr(data, 'name'): name = data.name if isinstance(data, ABCCategorical): data = cls._create_categorical(data, categories, ordered, dtype) elif isinstance(data, CategoricalIndex): data = data._data data = cls._create_categorical(data, categories, ordered, dtype) else: # don't allow scalars # if data is None, then categories must be provided if is_scalar(data): if data is not None or categories is None: cls._scalar_data_error(data) data = [] data = cls._create_categorical(data, categories, ordered, dtype) if copy: data = data.copy() return cls._simple_new(data, name=name) def _create_from_codes(self, codes, categories=None, ordered=None, name=None): """ *this is an internal non-public method* create the correct categorical from codes Parameters ---------- codes : new codes categories : optional categories, defaults to existing ordered : optional ordered attribute, defaults to existing name : optional name attribute, defaults to existing Returns ------- CategoricalIndex """ if categories is None: categories = self.categories if ordered is None: ordered = self.ordered if name is None: name = self.name cat = Categorical.from_codes(codes, categories=categories, ordered=self.ordered) return CategoricalIndex(cat, name=name) @classmethod def _create_categorical(cls, data, categories=None, ordered=None, dtype=None): """ *this is an internal non-public method* create the correct categorical from data and the properties Parameters ---------- data : data for new Categorical categories : optional categories, defaults to existing ordered : optional ordered attribute, defaults to existing dtype : CategoricalDtype, defaults to existing Returns ------- Categorical """ if (isinstance(data, (cls, ABCSeries)) and is_categorical_dtype(data)): data = data.values if not isinstance(data, ABCCategorical): if ordered is None and dtype is None: ordered = False data = Categorical(data, categories=categories, ordered=ordered, dtype=dtype) else: if categories is not None: data = data.set_categories(categories, ordered=ordered) elif ordered is not None and ordered != data.ordered: data = data.set_ordered(ordered) if isinstance(dtype, CategoricalDtype) and dtype != data.dtype: # we want to silently ignore dtype='category' data = data._set_dtype(dtype) return data @classmethod def _simple_new(cls, values, name=None, categories=None, ordered=None, dtype=None, **kwargs): result = object.__new__(cls) values = cls._create_categorical(values, categories, ordered, dtype=dtype) result._data = values result.name = name for k, v in compat.iteritems(kwargs): setattr(result, k, v) result._reset_identity() return result @Appender(_index_shared_docs['_shallow_copy']) def _shallow_copy(self, values=None, categories=None, ordered=None, dtype=None, **kwargs): # categories and ordered can't be part of attributes, # as these are properties # we want to reuse self.dtype if possible, i.e. neither are # overridden. if dtype is not None and (categories is not None or ordered is not None): raise TypeError("Cannot specify both `dtype` and `categories` " "or `ordered`") if categories is None and ordered is None: dtype = self.dtype if dtype is None else dtype return super(CategoricalIndex, self)._shallow_copy( values=values, dtype=dtype, **kwargs) if categories is None: categories = self.categories if ordered is None: ordered = self.ordered return super(CategoricalIndex, self)._shallow_copy( values=values, categories=categories, ordered=ordered, **kwargs) def _is_dtype_compat(self, other): """ *this is an internal non-public method* provide a comparison between the dtype of self and other (coercing if needed) Raises ------ TypeError if the dtypes are not compatible """ if is_categorical_dtype(other): if isinstance(other, CategoricalIndex): other = other._values if not other.is_dtype_equal(self): raise TypeError("categories must match existing categories " "when appending") else: values = other if not is_list_like(values): values = [values] other = CategoricalIndex(self._create_categorical( other, dtype=self.dtype)) if not other.isin(values).all(): raise TypeError("cannot append a non-category item to a " "CategoricalIndex") return other def equals(self, other): """ Determines if two CategorialIndex objects contain the same elements. """ if self.is_(other): return True if not isinstance(other, Index): return False try: other = self._is_dtype_compat(other) return array_equivalent(self._data, other) except (TypeError, ValueError): pass return False @property def _formatter_func(self): return self.categories._formatter_func def _format_attrs(self): """ Return a list of tuples of the (attr,formatted_value) """ max_categories = (10 if get_option("display.max_categories") == 0 else get_option("display.max_categories")) attrs = [ ('categories', ibase.default_pprint(self.categories, max_seq_items=max_categories)), ('ordered', self.ordered)] if self.name is not None: attrs.append(('name', ibase.default_pprint(self.name))) attrs.append(('dtype', "'%s'" % self.dtype.name)) max_seq_items = get_option('display.max_seq_items') or len(self) if len(self) > max_seq_items: attrs.append(('length', len(self))) return attrs @property def inferred_type(self): return 'categorical' @property def values(self): """ return the underlying data, which is a Categorical """ return self._data @property def itemsize(self): # Size of the items in categories, not codes. return self.values.itemsize def get_values(self): """ return the underlying data as an ndarray """ return self._data.get_values() def tolist(self): return self._data.tolist() @property def codes(self): return self._data.codes @property def categories(self): return self._data.categories @property def ordered(self): return self._data.ordered def _reverse_indexer(self): return self._data._reverse_indexer() @Appender(_index_shared_docs['__contains__'] % _index_doc_kwargs) def __contains__(self, key): # if key is a NaN, check if any NaN is in self. if isna(key): return self.hasnans return contains(self, key, container=self._engine) @Appender(_index_shared_docs['contains'] % _index_doc_kwargs) def contains(self, key): return key in self def __array__(self, dtype=None): """ the array interface, return my values """ return np.array(self._data, dtype=dtype) @Appender(_index_shared_docs['astype']) def astype(self, dtype, copy=True): if is_interval_dtype(dtype): from pandas import IntervalIndex return IntervalIndex(np.array(self)) elif is_categorical_dtype(dtype): # GH 18630 dtype = self.dtype.update_dtype(dtype) if dtype == self.dtype: return self.copy() if copy else self return super(CategoricalIndex, self).astype(dtype=dtype, copy=copy) @cache_readonly def _isnan(self): """ return if each value is nan""" return self._data.codes == -1 @Appender(ibase._index_shared_docs['fillna']) def fillna(self, value, downcast=None): self._assert_can_do_op(value) return CategoricalIndex(self._data.fillna(value), name=self.name) def argsort(self, *args, **kwargs): return self.values.argsort(*args, **kwargs) @cache_readonly def _engine(self): # we are going to look things up with the codes themselves return self._engine_type(lambda: self.codes.astype('i8'), len(self)) # introspection @cache_readonly def is_unique(self): return self._engine.is_unique @property def is_monotonic_increasing(self): return self._engine.is_monotonic_increasing @property def is_monotonic_decreasing(self): return self._engine.is_monotonic_decreasing @Appender(_index_shared_docs['index_unique'] % _index_doc_kwargs) def unique(self, level=None): if level is not None: self._validate_index_level(level) result = self.values.unique() # CategoricalIndex._shallow_copy keeps original categories # and ordered if not otherwise specified return self._shallow_copy(result, categories=result.categories, ordered=result.ordered) @Appender(Index.duplicated.__doc__) def duplicated(self, keep='first'): from pandas._libs.hashtable import duplicated_int64 codes = self.codes.astype('i8') return duplicated_int64(codes, keep) def _to_safe_for_reshape(self): """ convert to object if we are a categorical """ return self.astype('object') def get_loc(self, key, method=None): """ Get integer location, slice or boolean mask for requested label. Parameters ---------- key : label method : {None} * default: exact matches only. Returns ------- loc : int if unique index, slice if monotonic index, else mask Examples --------- >>> unique_index = pd.CategoricalIndex(list('abc')) >>> unique_index.get_loc('b') 1 >>> monotonic_index = pd.CategoricalIndex(list('abbc')) >>> monotonic_index.get_loc('b') slice(1, 3, None) >>> non_monotonic_index = pd.CategoricalIndex(list('abcb')) >>> non_monotonic_index.get_loc('b') array([False, True, False, True], dtype=bool) """ codes = self.categories.get_loc(key) if (codes == -1): raise KeyError(key) return self._engine.get_loc(codes) def get_value(self, series, key): """ Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you're doing """ try: k = com._values_from_object(key) k = self._convert_scalar_indexer(k, kind='getitem') indexer = self.get_loc(k) return series.iloc[indexer] except (KeyError, TypeError): pass # we might be a positional inexer return super(CategoricalIndex, self).get_value(series, key) def _can_reindex(self, indexer): """ always allow reindexing """ pass @Appender(_index_shared_docs['where']) def where(self, cond, other=None): if other is None: other = self._na_value values = np.where(cond, self.values, other) cat = Categorical(values, categories=self.categories, ordered=self.ordered) return self._shallow_copy(cat, **self._get_attributes_dict()) def reindex(self, target, method=None, level=None, limit=None, tolerance=None): """ Create index with target's values (move/add/delete values as necessary) Returns ------- new_index : pd.Index Resulting index indexer : np.ndarray or None Indices of output values in original index """ if method is not None: raise NotImplementedError("argument method is not implemented for " "CategoricalIndex.reindex") if level is not None: raise NotImplementedError("argument level is not implemented for " "CategoricalIndex.reindex") if limit is not None: raise NotImplementedError("argument limit is not implemented for " "CategoricalIndex.reindex") target = ibase.ensure_index(target) if not is_categorical_dtype(target) and not target.is_unique: raise ValueError("cannot reindex with a non-unique indexer") indexer, missing = self.get_indexer_non_unique(np.array(target)) if len(self.codes): new_target = self.take(indexer) else: new_target = target # filling in missing if needed if len(missing): cats = self.categories.get_indexer(target) if (cats == -1).any(): # coerce to a regular index here! result = Index(np.array(self), name=self.name) new_target, indexer, _ = result._reindex_non_unique( np.array(target)) else: codes = new_target.codes.copy() codes[indexer == -1] = cats[missing] new_target = self._create_from_codes(codes) # we always want to return an Index type here # to be consistent with .reindex for other index types (e.g. they don't # coerce based on the actual values, only on the dtype) # unless we had an initial Categorical to begin with # in which case we are going to conform to the passed Categorical new_target = np.asarray(new_target) if is_categorical_dtype(target): new_target = target._shallow_copy(new_target, name=self.name) else: new_target = Index(new_target, name=self.name) return new_target, indexer def _reindex_non_unique(self, target): """ reindex from a non-unique; which CategoricalIndex's are almost always """ new_target, indexer = self.reindex(target) new_indexer = None check = indexer == -1 if check.any(): new_indexer = np.arange(len(self.take(indexer))) new_indexer[check] = -1 cats = self.categories.get_indexer(target) if not (cats == -1).any(): # .reindex returns normal Index. Revert to CategoricalIndex if # all targets are included in my categories new_target = self._shallow_copy(new_target) return new_target, indexer, new_indexer @Appender(_index_shared_docs['get_indexer'] % _index_doc_kwargs) def get_indexer(self, target, method=None, limit=None, tolerance=None): from pandas.core.arrays.categorical import _recode_for_categories method = missing.clean_reindex_fill_method(method) target = ibase.ensure_index(target) if self.is_unique and self.equals(target): return np.arange(len(self), dtype='intp') if method == 'pad' or method == 'backfill': raise NotImplementedError("method='pad' and method='backfill' not " "implemented yet for CategoricalIndex") elif method == 'nearest': raise NotImplementedError("method='nearest' not implemented yet " 'for CategoricalIndex') if (isinstance(target, CategoricalIndex) and self.values.is_dtype_equal(target)): if self.values.equals(target.values): # we have the same codes codes = target.codes else: codes = _recode_for_categories(target.codes, target.categories, self.values.categories) else: if isinstance(target, CategoricalIndex): code_indexer = self.categories.get_indexer(target.categories) codes = take_1d(code_indexer, target.codes, fill_value=-1) else: codes = self.categories.get_indexer(target) indexer, _ = self._engine.get_indexer_non_unique(codes) return ensure_platform_int(indexer) @Appender(_index_shared_docs['get_indexer_non_unique'] % _index_doc_kwargs) def get_indexer_non_unique(self, target): target = ibase.ensure_index(target) if isinstance(target, CategoricalIndex): # Indexing on codes is more efficient if categories are the same: if target.categories is self.categories: target = target.codes indexer, missing = self._engine.get_indexer_non_unique(target) return ensure_platform_int(indexer), missing target = target.values codes = self.categories.get_indexer(target) indexer, missing = self._engine.get_indexer_non_unique(codes) return ensure_platform_int(indexer), missing @Appender(_index_shared_docs['_convert_scalar_indexer']) def _convert_scalar_indexer(self, key, kind=None): if self.categories._defer_to_indexing: return self.categories._convert_scalar_indexer(key, kind=kind) return super(CategoricalIndex, self)._convert_scalar_indexer( key, kind=kind) @Appender(_index_shared_docs['_convert_list_indexer']) def _convert_list_indexer(self, keyarr, kind=None): # Return our indexer or raise if all of the values are not included in # the categories if self.categories._defer_to_indexing: indexer = self.categories._convert_list_indexer(keyarr, kind=kind) return Index(self.codes).get_indexer_for(indexer) indexer = self.categories.get_indexer(np.asarray(keyarr)) if (indexer == -1).any(): raise KeyError( "a list-indexer must only " "include values that are " "in the categories") return self.get_indexer(keyarr) @Appender(_index_shared_docs['_convert_arr_indexer']) def _convert_arr_indexer(self, keyarr): keyarr = com._asarray_tuplesafe(keyarr) if self.categories._defer_to_indexing: return keyarr return self._shallow_copy(keyarr) @Appender(_index_shared_docs['_convert_index_indexer']) def _convert_index_indexer(self, keyarr): return self._shallow_copy(keyarr) @Appender(_index_shared_docs['take'] % _index_doc_kwargs) def take(self, indices, axis=0, allow_fill=True, fill_value=None, **kwargs): nv.validate_take(tuple(), kwargs) indices = ensure_platform_int(indices) taken = self._assert_take_fillable(self.codes, indices, allow_fill=allow_fill, fill_value=fill_value, na_value=-1) return self._create_from_codes(taken) def is_dtype_equal(self, other): return self._data.is_dtype_equal(other) take_nd = take def map(self, mapper): """ Map values using input correspondence (a dict, Series, or function). Maps the values (their categories, not the codes) of the index to new categories. If the mapping correspondence is one-to-one the result is a :class:`~pandas.CategoricalIndex` which has the same order property as the original, otherwise an :class:`~pandas.Index` is returned. If a `dict` or :class:`~pandas.Series` is used any unmapped category is mapped to `NaN`. Note that if this happens an :class:`~pandas.Index` will be returned. Parameters ---------- mapper : function, dict, or Series Mapping correspondence. Returns ------- pandas.CategoricalIndex or pandas.Index Mapped index. See Also -------- Index.map : Apply a mapping correspondence on an :class:`~pandas.Index`. Series.map : Apply a mapping correspondence on a :class:`~pandas.Series`. Series.apply : Apply more complex functions on a :class:`~pandas.Series`. Examples -------- >>> idx = pd.CategoricalIndex(['a', 'b', 'c']) >>> idx CategoricalIndex(['a', 'b', 'c'], categories=['a', 'b', 'c'], ordered=False, dtype='category') >>> idx.map(lambda x: x.upper()) CategoricalIndex(['A', 'B', 'C'], categories=['A', 'B', 'C'], ordered=False, dtype='category') >>> idx.map({'a': 'first', 'b': 'second', 'c': 'third'}) CategoricalIndex(['first', 'second', 'third'], categories=['first', 'second', 'third'], ordered=False, dtype='category') If the mapping is one-to-one the ordering of the categories is preserved: >>> idx = pd.CategoricalIndex(['a', 'b', 'c'], ordered=True) >>> idx CategoricalIndex(['a', 'b', 'c'], categories=['a', 'b', 'c'], ordered=True, dtype='category') >>> idx.map({'a': 3, 'b': 2, 'c': 1}) CategoricalIndex([3, 2, 1], categories=[3, 2, 1], ordered=True, dtype='category') If the mapping is not one-to-one an :class:`~pandas.Index` is returned: >>> idx.map({'a': 'first', 'b': 'second', 'c': 'first'}) Index(['first', 'second', 'first'], dtype='object') If a `dict` is used, all unmapped categories are mapped to `NaN` and the result is an :class:`~pandas.Index`: >>> idx.map({'a': 'first', 'b': 'second'}) Index(['first', 'second', nan], dtype='object') """ return self._shallow_copy_with_infer(self.values.map(mapper)) def delete(self, loc): """ Make new Index with passed location(-s) deleted Returns ------- new_index : Index """ return self._create_from_codes(np.delete(self.codes, loc)) def insert(self, loc, item): """ Make new Index inserting new item at location. Follows Python list.append semantics for negative values Parameters ---------- loc : int item : object Returns ------- new_index : Index Raises ------ ValueError if the item is not in the categories """ code = self.categories.get_indexer([item]) if (code == -1) and not (is_scalar(item) and isna(item)): raise TypeError("cannot insert an item into a CategoricalIndex " "that is not already an existing category") codes = self.codes codes = np.concatenate((codes[:loc], code, codes[loc:])) return self._create_from_codes(codes) def _concat(self, to_concat, name): # if calling index is category, don't check dtype of others return CategoricalIndex._concat_same_dtype(self, to_concat, name) def _concat_same_dtype(self, to_concat, name): """ Concatenate to_concat which has the same class ValueError if other is not in the categories """ to_concat = [self._is_dtype_compat(c) for c in to_concat] codes = np.concatenate([c.codes for c in to_concat]) result = self._create_from_codes(codes, name=name) # if name is None, _create_from_codes sets self.name result.name = name return result def _codes_for_groupby(self, sort, observed): """ Return a Categorical adjusted for groupby """ return self.values._codes_for_groupby(sort, observed) @classmethod def _add_comparison_methods(cls): """ add in comparison methods """ def _make_compare(op): opname = '__{op}__'.format(op=op.__name__) def _evaluate_compare(self, other): # if we have a Categorical type, then must have the same # categories if isinstance(other, CategoricalIndex): other = other._values elif isinstance(other, Index): other = self._create_categorical( other._values, dtype=self.dtype) if isinstance(other, (ABCCategorical, np.ndarray, ABCSeries)): if len(self.values) != len(other): raise ValueError("Lengths must match to compare") if isinstance(other, ABCCategorical): if not self.values.is_dtype_equal(other): raise TypeError("categorical index comparisons must " "have the same categories and ordered " "attributes") result = op(self.values, other) if isinstance(result, ABCSeries): # Dispatch to pd.Categorical returned NotImplemented # and we got a Series back; down-cast to ndarray result = result.values return result return compat.set_function_name(_evaluate_compare, opname, cls) cls.__eq__ = _make_compare(operator.eq) cls.__ne__ = _make_compare(operator.ne) cls.__lt__ = _make_compare(operator.lt) cls.__gt__ = _make_compare(operator.gt) cls.__le__ = _make_compare(operator.le) cls.__ge__ = _make_compare(operator.ge) def _delegate_method(self, name, *args, **kwargs): """ method delegation to the ._values """ method = getattr(self._values, name) if 'inplace' in kwargs: raise ValueError("cannot use inplace with CategoricalIndex") res = method(*args, **kwargs) if is_scalar(res): return res return CategoricalIndex(res, name=self.name) @classmethod def _add_accessors(cls): """ add in Categorical accessor methods """ CategoricalIndex._add_delegate_accessors( delegate=Categorical, accessors=["rename_categories", "reorder_categories", "add_categories", "remove_categories", "remove_unused_categories", "set_categories", "as_ordered", "as_unordered", "min", "max"], typ='method', overwrite=True) CategoricalIndex._add_numeric_methods_add_sub_disabled() CategoricalIndex._add_numeric_methods_disabled() CategoricalIndex._add_logical_methods_disabled() CategoricalIndex._add_comparison_methods() CategoricalIndex._add_accessors()
bsd-3-clause