Rank
stringlengths
1
3
Bank Name
stringlengths
3
39
Total Assets (2023, US$ billion)
stringlengths
6
8
1
Industrial and Commercial Bank of China
6,303.44
2
Agricultural Bank of China
5,623.12
3
China Construction Bank
5,400.28
4
Bank of China
4,578.28
5
JPMorgan Chase
3,875.39
6
Bank of America
3,180.15
7
HSBC
2,919.84
8
BNP Paribas
2,867.44
9
Mitsubishi UFJ Financial Group
2,816.77
10
Crédit Agricole
2,736.95
11
Postal Savings Bank of China
2,217.86
12
Citigroup
2,200.83
13
SMBC Group
2,027.34
14
Banco Santander
1,986.36
15
Bank of Communications
1,982.89
16
Wells Fargo
1,932.47
17
Mizuho Financial Group
1,923.56
18
Barclays
1,891.72
19
Société Générale
1,717.49
20
UBS
1,717.25
21
Groupe BPCE
1,706.80
22
Goldman Sachs
1,641.59
23
Japan Post Bank
1,625.60
24
Royal Bank of Canada
1,566.41
25
China Merchants Bank
1,555.30
26
Deutsche Bank
1,450.57
27
Industrial Bank (China)
1,432.59
28
Toronto-Dominion Bank
1,428.29
29
China CITIC Bank
1,276.63
30
Crédit Mutuel
1,262.95
31
Shanghai Pudong Development Bank
1,207.18
32
Morgan Stanley
1,193.69
33
Lloyds Banking Group
1,122.76
34
China Minsheng Bank
1,082.37
35
ING Group
1,078.35
36
Intesa Sanpaolo
1,066.74
37
Scotiabank
1,041.11
38
Bank of Montreal
990.19
39
China Everbright Bank
955.14
40
NatWest Group
882.30
41
UniCredit
872.90
42
Commonwealth Bank
868.74
43
Banco Bilbao Vizcaya Argentaria
857.25
44
Standard Chartered
822.84
45
La Banque postale
815.91
46
Ping An Bank
787.93
47
State Bank of India
780.05
48
ANZ Group
769.59
49
Canadian Imperial Bank of Commerce
726.27
50
DZ Bank
712.49
51
Norinchukin Bank
702.03
52
National Australia Bank
683.41
53
Rabobank
678.45
54
CaixaBank
671.13
55
Westpac
664.50
56
U.S. Bancorp
663.49
57
Nordea
662.71
58
KfW
648.55
59
Capital One
629.99
60
Sberbank of Russia
581.88
61
Commerzbank
571.64
62
Huaxia Bank
562.58
63
PNC Financial Services
561.58
64
DBS Group
560.10
65
Itaú Unibanco
555.72
66
KB Financial Group
551.94
67
Danske Bank
542.81
68
Truist Financial Corp
535.35
69
Shinhan Financial Group
533.48
70
Resona Holdings
527.53
71
Sumitomo Mitsui Trust Holdings
520.34
72
Bank of Beijing
503.31
73
China Guangfa Bank
495.55
74
Charles Schwab Corporation
493.18
75
HDFC Bank
464.34
76
Bank of Jiangsu
457.25
77
Hana Financial Group
456.47
78
Banco do Brasil
447.72
79
Nationwide Building Society
446.95
80
China Zheshang Bank
443.37
81
Oversea-Chinese Banking Corporation
441.53
82
Bank of Shanghai
435.14
83
ABN AMRO
417.72
84
BNY
409.88
85
United Overseas Bank
396.62
86
Banco Bradesco
394.76
87
Nonghyup Bank
394.46
88
Nomura Holdings
388.42
89
Woori Financial Group
384.04
90
KBC Group
383.47
91
Caixa Econômica Federal
377.29
92
Erste Group
372.67
93
Landesbank Baden-Württemberg
368.41
94
Bank of Ningbo
365.96
95
SEB Group
358.79
96
Raiffeisen Group
352.87
97
Handelsbanken
351.79
98
Industrial Bank of Korea
345.81
99
DNB
339.21
100
Qatar National Bank
338.14

Dataset Summary

This dataset contains information about the largest banks globally, including their rank, name, and total assets (in US$ billion as of 2023). The data was scraped from Wikipedia's List of Largest Banks. It can be used for financial analysis, market research, and educational purposes.

Dataset Structure

Columns

  • Rank: The rank of the bank based on total assets.
  • Bank Name: The name of the bank.
  • Total Assets (2023, US$ billion): The total assets of the bank in billions of US dollars as of 2023.

Example

Rank Bank Name Total Assets (2023, US$ billion)
1 Industrial & Commercial Bank of China (ICBC) 5,000
2 China Construction Bank 4,500

Source

The data was scraped from Wikipedia's List of Largest Banks using Python and Scrapy.

Usage

This dataset can be used for:

  • Financial market research.
  • Trend analysis in global banking.
  • Educational purposes and data visualization.

Licensing

The data is publicly available under Wikipedia's Terms of Use.

Limitations

  • The data may not reflect real-time changes as it was scraped from a static page.
  • Possible inaccuracies due to updates or inconsistencies on the source page.

Acknowledgements

Thanks to Wikipedia and the contributors of the "List of Largest Banks" page.

Citation

If you use this dataset, please cite it as:

@misc{largestbanks2023,
  author = {Your Name or Organization},
  title = {Largest Banks Dataset},
  year = {2023},
  publisher = {Hugging Face},
  url = {https://huggingface.co/datasets/your-dataset-name}
}

Who are the source Data producers ?

The data is machine-generated (using web scraping) and subjected to human additional treatment.

below, I provide the script I created to scrape the data (as well as my additional treatment):

import scrapy

class LargestBanksSpider(scrapy.Spider):
    name = "largest_banks"
    start_urls = ["https://en.wikipedia.org/wiki/List_of_largest_banks"]

    def parse(self, response):
        # Locate the table containing the data
        table = response.xpath("//table[contains(@class, 'wikitable')]")

        # Extract rows from the table
        rows = table.xpath(".//tr")

        for row in rows[1:]:  # Skip the header row
            rank = row.xpath(".//td[1]//text()").get()
            bank_name = row.xpath(".//td[2]//a/text() | .//td[2]//text()")
            total_assets = row.xpath(".//td[3]//text()").get()

            # Extract all text nodes for bank name and join them
            bank_name = ''.join(bank_name.getall()).strip() if bank_name else None

            if rank and bank_name and total_assets:
                yield {
                    "Rank": rank.strip(),
                    "Bank Name": bank_name,
                    "Total Assets (2023, US$ billion)": total_assets.strip()
                }
Downloads last month
1