text
stringlengths
0
1.25M
meta
stringlengths
47
1.89k
using BenchmarkTools, Test, CUDA a = CUDA.zeros(1024) function kernel(a) i = threadIdx().x a[i] += 1 return end @cuda threads=length(a) kernel(a) ## N = 2^20 x_d = CUDA.fill(1.0f0, N) # a vector stored on the GPU filled with 1.0 (Float32) y_d = CUDA.fill(2.0f0, N) # a vector stored on the GPU filled with 2.0 y_d .+= x_d function add_broadcast!(y, x) CUDA.@sync y .+= x return end ## @btime add_broadcast!($y_d, $x_d) ## function gpu_add1!(y, x) for i = 1:length(y) @inbounds y[i] += x[i] end return nothing end fill!(y_d, 2) @cuda gpu_add1!(y_d, x_d) @test all(Array(y_d) .== 3.0f0) ## function bench_gpu1!(y, x) CUDA.@sync begin @cuda gpu_add1!(y, x) end end @btime bench_gpu1!($y_d, $x_d) ## const nx = 1024 # do 1024 x 1024 2D FFT xc = CuArray{ComplexF64}(CUDA.randn(Float64, nx, nx)) p = plan_fft!( xc ) ## @btime CUDA.@sync(p * x) setup=( x=CuArray{ComplexF64}(CUDA.randn(Float64, nx, nx))); ## for device in CUDA.devices() @show capability(device) end ## using AbstractFFTs using CUDA.CUFFT ## b = CUDA.rand(ComplexF32,64,64,64) # pa = plan_fft( a ) @btime fft(b);
{"hexsha": "e5e44f76994b10cf1b27d82920f3d07fb5571ef8", "size": 1159, "ext": "jl", "lang": "Julia", "max_stars_repo_path": "scripts/cuda_debug.jl", "max_stars_repo_name": "doddgray/OptiMode.jl", "max_stars_repo_head_hexsha": "8d3185000218e0094c01b83f420dcebdf270b2c3", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 3, "max_stars_repo_stars_event_min_datetime": "2021-05-26T00:20:24.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-17T05:24:38.000Z", "max_issues_repo_path": "scripts/cuda_debug.jl", "max_issues_repo_name": "doddgray/OptiMode.jl", "max_issues_repo_head_hexsha": "8d3185000218e0094c01b83f420dcebdf270b2c3", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "scripts/cuda_debug.jl", "max_forks_repo_name": "doddgray/OptiMode.jl", "max_forks_repo_head_hexsha": "8d3185000218e0094c01b83f420dcebdf270b2c3", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 15.8767123288, "max_line_length": 81, "alphanum_fraction": 0.6220880069, "num_tokens": 420}
#!/usr/bin/env python3 import numpy as np import tensorflow as tf import cart_pole_evaluator class Network: def __init__(self, threads, seed=42): # Create an empty graph and a session graph = tf.Graph() graph.seed = seed self.session = tf.Session(graph = graph, config=tf.ConfigProto(inter_op_parallelism_threads=threads, intra_op_parallelism_threads=threads)) def construct(self, args, state_shape, num_actions): with self.session.graph.as_default(): # Input states self.states = tf.placeholder(tf.float32, [None] + state_shape) # Chosen actions (used for training) self.actions = tf.placeholder(tf.int32, [None]) # Observed returns (used for training) self.returns = tf.placeholder(tf.float32, [None]) # Compute the action logits # TODO: Add a fully connected layer processing self.states, with args.hidden_layer neurons # and some non-linear activatin. # TODO: Compute `logits` using another dense layer with # `num_actions` outputs (utilizing no activation function). # TODO: Compute the `self.probabilities` from the `logits`. # Training # TODO: Compute `loss`, as a softmax cross entropy loss of self.actions and `logits`. # Because this is a REINFORCE algorithm, it is crucial to weight the loss of batch # elements using `self.returns` -- this can be accomplished using the `weights` parameter. global_step = tf.train.create_global_step() self.training = tf.train.AdamOptimizer(args.learning_rate).minimize(loss, global_step=global_step, name="training") # Initialize variables self.session.run(tf.global_variables_initializer()) def predict(self, states): return self.session.run(self.probabilities, {self.states: states}) def train(self, states, actions, returns): self.session.run(self.training, {self.states: states, self.actions: actions, self.returns: returns}) if __name__ == "__main__": # Fix random seed np.random.seed(42) # Parse arguments import argparse parser = argparse.ArgumentParser() parser.add_argument("--batch_size", default=5, type=int, help="Number of episodes to train on.") parser.add_argument("--episodes", default=500, type=int, help="Training episodes.") parser.add_argument("--gamma", default=1.0, type=float, help="Discounting factor.") parser.add_argument("--hidden_layer", default=20, type=int, help="Size of hidden layer.") parser.add_argument("--learning_rate", default=0.01, type=float, help="Learning rate.") parser.add_argument("--render_each", default=0, type=int, help="Render some episodes.") parser.add_argument("--threads", default=1, type=int, help="Maximum number of threads to use.") args = parser.parse_args() # Create the environment env = cart_pole_evaluator.environment(discrete=False) # Construct the network network = Network(threads=args.threads) network.construct(args, env.state_shape, env.actions) evaluating = False while True: # TODO: Decide if evaluation should start (one possibility is to train for args.episodes, # so env.episode >= args.episodes could be used). evaluation = ... # Train for a batch of episodes batch_states, batch_actions, batch_returns = [], [], [] for _ in range(args.batch_size): # Perform episode state = env.reset(evaluating) states, actions, rewards, done = [], [], [], False while not done: if args.render_each and env.episode > 0 and env.episode % args.render_each == 0: env.render() # TODO: Compute action distribution using `network.predict` # TODO: Set `action` randomly according to the generated distribution # (you can use np.random.choice or any other method). action = ... next_state, reward, done, _ = env.step(action) # TODO: Accumulate states, actions and rewards. state = next_state # TODO: Compute returns from rewards (by summing them up and # applying discount by `args.gamma`). # TODO: Extend the batch_{states,actions,returns} using the episodic # {states,actions,returns}. # TODO: Perform network training using batch_{states,actions,returns}.
{"hexsha": "61a0ea735248d83dd4994c5d1afb197d463c1a0d", "size": 4646, "ext": "py", "lang": "Python", "max_stars_repo_path": "charles-university/deep-learning/labs/12/reinforce.py", "max_stars_repo_name": "Hyperparticle/lct-master", "max_stars_repo_head_hexsha": "8acb0ca8fe14bb86305f235e3fec0a595acae2de", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 3, "max_stars_repo_stars_event_min_datetime": "2018-11-08T14:23:45.000Z", "max_stars_repo_stars_event_max_datetime": "2021-02-08T17:54:59.000Z", "max_issues_repo_path": "charles-university/deep-learning/labs/12/reinforce.py", "max_issues_repo_name": "Hyperparticle/lct-master", "max_issues_repo_head_hexsha": "8acb0ca8fe14bb86305f235e3fec0a595acae2de", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "charles-university/deep-learning/labs/12/reinforce.py", "max_forks_repo_name": "Hyperparticle/lct-master", "max_forks_repo_head_hexsha": "8acb0ca8fe14bb86305f235e3fec0a595acae2de", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 42.2363636364, "max_line_length": 127, "alphanum_fraction": 0.6349547998, "include": true, "reason": "import numpy", "num_tokens": 970}
import chess import numpy as np import time from numpy.random import default_rng rng = default_rng() class MCTS_graph: def __init__(self,agent): self.root=agent.root self.temperature = agent.temperature def make_graph(self,depth=1000): self.cont=0 self.nodes = {} self.edges = [] self.bfs(self.root,0,depth) print('Total nodes: {}'.format(self.cont)) def bfs(self,node,father,depth): if depth==0: return if len(node.children)>0: log_rollouts = np.log(node.num_rollouts) for n in node.children: self.cont+=1 win_percentage = n.winning_frac() self.nodes[self.cont]=win_percentage self.edges.append([father,self.cont,n.move]) self.bfs(n,self.cont,depth-1) def save_graph(self,path,depth=1000): with open(path,'w') as file: self.make_graph(depth) cad="digraph{\n 0 [label=\"root\"];\n" for n,m in self.nodes.items(): cad+=" {} [label=\"{:.2f}\"];\n".format(n,m) for (x,y,z) in self.edges: cad+=" {} -- {} [label=\"{}\"];\n".format(x,y,z) cad+="}" file.write(cad) print("Grafo guardado en: {}".format(path)) class MCTSNode: def __init__(self, game_state, parent = None, move = None, bot = None, is_root = False): self.game_state = game_state self.parent = parent self.move = move self.win_counts = np.zeros([2,]) self.value=np.zeros([2,]) self.num_rollouts = 0 self.children = [] self.unvisited_moves = [] self.is_root=is_root if self.is_terminal(): tmp = game_state.result() if int(tmp[0]) == 0: self.value = np.array([0,1]) elif int(tmp[2]) == 0: self.value = np.array([1,0]) else: self.value = np.array([1/2,1/2]) else: self.unvisited_moves = list(game_state.legal_moves) value = bot.get_move_values_single(game_state) self.value+=value def add_random_child(self,bot): index = np.random.randint(len(self.unvisited_moves)) new_move = self.unvisited_moves.pop(index) #selecciona un movimiento disponible al azar y lo elimina de los movimientos no visitados new_game_state = self.game_state.copy(stack=False) #crea una copia del estado de juego new_game_state.push(new_move) #realiza el movimiento seleccionado new_node = MCTSNode(game_state=new_game_state, parent=self, move=new_move, bot=bot) #crea un nuevo nodo self.children.append(new_node) #añade el nodo a su lista de hijos return new_node #retorna el nuevo nodo def record_win(self, result): self.win_counts += result self.num_rollouts += 1 def result_simulation(self): return self.value def can_add_child(self): #comprueba si aun hay nodos por visitar return len(self.unvisited_moves) > 0 def is_terminal(self): #verifica si es un nodo terminal, es decir, el final de una partida return self.game_state.is_game_over() def winning_frac(self): #obtiene el valor Q/N para el nodo dado if self.parent.game_state.turn: #turno de las blancas return float(self.win_counts[0]) / float(self.num_rollouts) else: #turno de las negras return float(self.win_counts[1]) / float(self.num_rollouts) class agent_MCTS: def __init__(self, temperature=2,bot=None,game_state=None,max_iter=100,verbose=0): self.temperature = temperature self.bot = bot self.max_iter = max_iter self.root = None self.verbose = verbose if game_state is not None: self.root = MCTSNode(game_state.copy(),bot=self.bot,is_root=True) def select_move(self,board,max_iter=None,push=True, thinking_time = 0): moves,values=self.get_move_values(board,max_iter=max_iter, thinking_time = thinking_time) if moves is None: return None index=np.argmax(values) if push: self.push_move(move=moves[index]) return moves[index] def push_move(self,move=None): for child in self.root.children: if child.move==move: child.is_root=True self.root=child self.root.num_rollouts-=1 self.root.parent=None return True return False def push_board(self,board=None): str_board=str(board) for child in self.root.children: if str(child.game_state) == str_board: child.is_root=True self.root=child self.root.num_rollouts-=1 self.root.parent=None return True return False def set_max_iter(self,max_iter=100): self.max_iter=max_iter def select_child(self, node): best_score = -1 best_child = None log_rollouts = np.log(node.num_rollouts) for child in node.children: win_percentage = child.winning_frac() exploration_factor = np.sqrt(log_rollouts / child.num_rollouts) uct_score = win_percentage + self.temperature * exploration_factor if uct_score > best_score: best_score = uct_score best_child = child return best_child def get_move_values(self,game_state,max_iter=None, thinking_time = 0): if max_iter is None: max_iter=self.max_iter if (self.root is None) or (str(self.root.game_state)!=str(game_state) and not self.push_board(board=game_state)): if self.verbose>0: print('El estado de juego no corresponde con el de la raiz del arbol, se recreó la raiz') self.root = MCTSNode(game_state.copy(stack=False),bot=self.bot,is_root=True) if self.root.is_terminal(): return None,None i=0 tic = time.time() while thinking_time>0 or i<max_iter: toc = time.time()-tic if toc> thinking_time: thinking_time=0 i+=1 node = self.root #fase de seleccion, donde busca un nodo que no sea un nodo derminal while (not node.can_add_child()) and (not node.is_terminal()): node = self.select_child(node) #fase de expansión, donde se agrega un nuevo nodo if node.can_add_child(): node = node.add_random_child(self.bot) #fase de simulación. Con ayuda de la red neuronal, se obtiene el valor del nodo que predice como ganador result = node.result_simulation() #fase de retropropagación, donde se actualiza el valor de Q de los nodos padres hasta llegar al nodo raiz while node is not None: node.record_win(result) node = node.parent if self.verbose>1: toc = time.time()-tic print('MCTS - nodes:{} Elapsed time: {:.2f}s = {:.2f}m nps={:.0f}'.format(self.root.num_rollouts,toc,toc/60,self.root.num_rollouts/toc)) score = [] moves = [] for child in self.root.children: win_percentage=child.winning_frac() score.append(win_percentage) moves.append(child.move) score = np.array(score) return moves,score
{"hexsha": "d4f27f5a3133c797071081b88b7c6d69a9460a27", "size": 7779, "ext": "py", "lang": "Python", "max_stars_repo_path": "chesslab/agent_mcts.py", "max_stars_repo_name": "yniad/chesslab", "max_stars_repo_head_hexsha": "4720bfd093e9657798953702a1fa918f85991f65", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "chesslab/agent_mcts.py", "max_issues_repo_name": "yniad/chesslab", "max_issues_repo_head_hexsha": "4720bfd093e9657798953702a1fa918f85991f65", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "chesslab/agent_mcts.py", "max_forks_repo_name": "yniad/chesslab", "max_forks_repo_head_hexsha": "4720bfd093e9657798953702a1fa918f85991f65", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 1, "max_forks_repo_forks_event_min_datetime": "2022-02-11T04:34:22.000Z", "max_forks_repo_forks_event_max_datetime": "2022-02-11T04:34:22.000Z", "avg_line_length": 38.1323529412, "max_line_length": 149, "alphanum_fraction": 0.5756523975, "include": true, "reason": "import numpy,from numpy", "num_tokens": 1746}
#include <string> #include <iostream> #include <iomanip> #include <fstream> #include <boost/filesystem.hpp> #include "res2h.h" #include "res2hutils.hpp" struct FileData { boost::filesystem::path inPath; boost::filesystem::path outPath; std::string internalName; std::string dataVariableName; std::string sizeVariableName; size_t size; }; bool beVerbose = false; bool useRecursion = false; bool useC = false; bool createBinary = false; bool appendFile = false; bool combineResults = false; boost::filesystem::path commonHeaderFilePath; boost::filesystem::path utilitiesFilePath; boost::filesystem::path inFilePath; boost::filesystem::path outFilePath; std::ofstream badOfStream; //we need this later as a default parameter... //----------------------------------------------------------------------------- //This is based on the example code found here: https://svn.boost.org/trac/boost/ticket/1976 //but changed to not return a trailing ".." when paths only differ in their file name. //The function still seems to be missing in boost as of 1.54.0. boost::filesystem::path naiveUncomplete(boost::filesystem::path const path, boost::filesystem::path const base) { if (path.has_root_path()) { if (path.root_path() != base.root_path()) { return path; } else { return naiveUncomplete(path.relative_path(), base.relative_path()); } } else { if (base.has_root_path()) { return path; } else { auto path_it = path.begin(); auto base_it = base.begin(); while ( path_it != path.end() && base_it != base.end() ) { if (*path_it != *base_it) break; ++path_it; ++base_it; } boost::filesystem::path result; //check if we're at the filename of the base path already if (*base_it != base.filename()) { //add trailing ".." from path to base, but only if we're not already at the filename of the base path for (; base_it != base.end() && *base_it != base.filename(); ++base_it) { result /= ".."; } } for (; path_it != path.end(); ++path_it) { result /= *path_it; } return result; } } return path; } bool makeCanonical(boost::filesystem::path & result, const boost::filesystem::path & path) { //if we use canonical the file must exits, else we get an exception. try { result = boost::filesystem::canonical(path); } catch(...) { //an error occurred. this maybe because the file is not there yet. try without the file name try { result = boost::filesystem::canonical(boost::filesystem::path(path).remove_filename()); //ok. this worked. add file name again result /= path.filename(); } catch (...) { //hmm. didn't work. tell the user. at least the path should be there... std::cout << "The path \"" << boost::filesystem::path(path).remove_filename().string() << "\" couldn't be found. Please create it." << std::endl; return false; } } return true; } //----------------------------------------------------------------------------- void printVersion() { std::cout << "res2h " << RES2H_VERSION_STRING << " - Load plain binary data and dump to a raw C/C++ array." << std::endl << std::endl; } void printUsage() { std::cout << std::endl; std::cout << "Usage: res2h <infile/indir> <outfile/outdir> [options]" << std::endl; std::cout << "Valid options:" << std::endl; std::cout << "-s Recurse into subdirectories below indir." << std::endl; std::cout << "-c Use .c files and arrays for storing the data definitions, else" << std::endl << " uses .cpp files and std::vector/std::map." << std::endl; std::cout << "-h <headerfile> Puts all declarations in a common \"headerfile\" using \"extern\"" << std::endl << " and includes that header file in the source files." << std::endl; std::cout << "-u <sourcefile> Create utility functions and arrays in a .c/.cpp file." << std::endl << " Only makes sense in combination with -h" << std::endl; std::cout << "-1 Combine all converted files into one big .c/.cpp file (use with -u)." << std::endl; std::cout << "-b Compile binary archive outfile containing all infile(s). For reading in your" << std::endl << " software include res2hinterface.h/.c/.cpp (depending on -c) and consult the docs." << std::endl; std::cout << "-a Append infile to outfile. Can be used to append an archive to an executable." << std::endl; std::cout << "-v Be verbose." << std::endl; std::cout << "Examples:" << std::endl; std::cout << "res2h ./lenna.png ./resources/lenna_png.cpp (convert single file)" << std::endl; std::cout << "res2h ./data ./resources -s -h resources.h -u resources.cpp (convert directory)" << std::endl; std::cout << "res2h ./data ./resources/data.bin -b (convert directory to binary file)" << std::endl; std::cout << "res2h ./resources/data.bin ./program.exe -a (append archive to executable)" << std::endl; } bool readArguments(int argc, const char * argv[]) { bool pastFiles = false; for(int i = 1; i < argc; ++i) { //read argument from list std::string argument = argv[i]; //check what it is if (argument == "-a") { if (!commonHeaderFilePath.empty() || !utilitiesFilePath.empty()) { std::cout << "Error: Option -a can not be combined with -h or -u!" << std::endl; return false; } else if (createBinary) { std::cout << "Error: Option -a can not be combined with -b!" << std::endl; return false; } else if (combineResults) { std::cout << "Error: Option -a can not be combined with -1!" << std::endl; return false; } appendFile = true; pastFiles = true; } else if (argument == "-1") { //-u must be used for this to work. check if specified for(int j = 1; j < argc; ++j) { //read argument from list std::string argument = argv[j]; if (argument == "-u") { combineResults = true; pastFiles = true; break; } } if (!combineResults) { //-u not specified. complain to user. std::cout << "Error: Option -1 has to be combined with -u!" << std::endl; return false; } } else if (argument == "-b") { if (!commonHeaderFilePath.empty() || !utilitiesFilePath.empty()) { std::cout << "Error: Option -b can not be combined with -h or -u!" << std::endl; return false; } else if (appendFile) { std::cout << "Error: Option -b can not be combined with -a!" << std::endl; return false; } else if (combineResults) { std::cout << "Warning: Creating binary archive. Option -1 ignored!" << std::endl; return false; } createBinary = true; pastFiles = true; } else if (argument == "-c") { useC = true; pastFiles = true; } else if (argument == "-s") { useRecursion = true; pastFiles = true; } else if (argument == "-v") { beVerbose = true; pastFiles = true; } else if (argument == "-h") { if (createBinary) { std::cout << "Error: Option -h can not be combined with -b!" << std::endl; return false; } else if (appendFile) { std::cout << "Error: Option -h can not be combined with -a!" << std::endl; return false; } //try getting next argument as header file name i++; if (i < argc && argv[i] != nullptr) { if (!makeCanonical(commonHeaderFilePath, boost::filesystem::path(argv[i]))) { return false; } } else { std::cout << "Error: Option -h specified, but no file name found!" << std::endl; return false; } pastFiles = true; } else if (argument == "-u") { if (createBinary) { std::cout << "Error: Option -u can not be combined with -b!" << std::endl; return false; } else if (appendFile) { std::cout << "Error: Option -u can not be combined with -a!" << std::endl; return false; } //try getting next argument as utility file name i++; if (i < argc && argv[i] != nullptr) { if (!makeCanonical(utilitiesFilePath, boost::filesystem::path(argv[i]))) { return false; } } else { std::cout << "Error: Option -u specified, but no file name found!" << std::endl; return false; } if (!utilitiesFilePath.empty() && commonHeaderFilePath.empty()) { std::cout << "Warning: -u does not make much sense without -h..." << std::endl; } pastFiles = true; } //none of the options was matched until here... else if (!pastFiles) { //if no files/directories have been found yet this is probably a file/directory if (inFilePath.empty()) { if (!makeCanonical(inFilePath, boost::filesystem::path(argument))) { return false; } } else if (outFilePath.empty()) { if (!makeCanonical(outFilePath, boost::filesystem::path(argument))) { return false; } pastFiles = true; } } else { std::cout << "Error: Unknown argument \"" << argument << "\"!" << std::endl; return false; } } return true; } //----------------------------------------------------------------------------- std::vector<FileData> getFileDataFrom(const boost::filesystem::path & inPath, const boost::filesystem::path & outPath, const boost::filesystem::path & parentDir, const bool recurse) { //get all files from directory std::vector<FileData> files; //check for infinite symlinks if(boost::filesystem::is_symlink(inPath)) { //check if the symlink points somewhere in the path. this would recurse if(inPath.string().find(boost::filesystem::canonical(inPath).string()) == 0) { std::cout << "Warning: Path " << inPath << " contains recursive symlink! Skipping." << std::endl; return files; } } //iterate through source directory searching for files const boost::filesystem::directory_iterator dirEnd; for (boost::filesystem::directory_iterator fileIt(inPath); fileIt != dirEnd; ++fileIt) { boost::filesystem::path filePath = (*fileIt).path(); if (!boost::filesystem::is_directory(filePath)) { if (beVerbose) { std::cout << "Found input file " << filePath << std::endl; } //add file to list FileData temp; temp.inPath = filePath; //replace dots in file name with '_' and add a .c/.cpp extension std::string newFileName = filePath.filename().generic_string(); std::replace(newFileName.begin(), newFileName.end(), '.', '_'); if (useC) { newFileName.append(".c"); } else { newFileName.append(".cpp"); } //remove parent directory of file from path for internal name. This could surely be done in a safer way boost::filesystem::path subPath(filePath.generic_string().substr(parentDir.generic_string().size() + 1)); //add a ":/" before the name to mark internal resources (Yes. Hello Qt!) temp.internalName = ":/" + subPath.generic_string(); //add subdir below parent path to name to enable multiple files with the same name std::string subDirString(subPath.remove_filename().generic_string()); if (!subDirString.empty()) { //replace dir separators by underscores std::replace(subDirString.begin(), subDirString.end(), '/', '_'); //add in front of file name newFileName = subDirString + "_" + newFileName; } //build new output file name temp.outPath = outPath / newFileName; if (beVerbose) { std::cout << "Internal name will be \"" << temp.internalName << "\"" << std::endl; std::cout << "Output path is " << temp.outPath << std::endl; } //get file size try { temp.size = (size_t)boost::filesystem::file_size(filePath); if (beVerbose) { std::cout << "Size is " << temp.size << " bytes." << std::endl; } } catch(...) { std::cout << "Error: Failed to get size of " << filePath << "!" << std::endl; temp.size = 0; } //add file to list files.push_back(temp); } } //does the user want subdirectories? if (recurse) { //iterate through source directory again searching for directories for (boost::filesystem::directory_iterator dirIt(inPath); dirIt != dirEnd; ++dirIt) { boost::filesystem::path dirPath = (*dirIt).path(); if (boost::filesystem::is_directory(dirPath)) { if (beVerbose) { std::cout << "Found subdirectory " << dirPath << std::endl; } //subdirectory found. recurse. std::vector<FileData> subFiles = getFileDataFrom(dirPath, outPath, parentDir, recurse); //add returned result to file list files.insert(files.end(), subFiles.cbegin(), subFiles.cend()); } } } //return result return files; } bool convertFile(FileData & fileData, const boost::filesystem::path & commonHeaderPath, std::ofstream & outStream = badOfStream, bool addHeader = true) { if (boost::filesystem::exists(fileData.inPath)) { //try to open the input file std::ifstream inStream; inStream.open(fileData.inPath.string(), std::ifstream::in | std::ifstream::binary); if (inStream.is_open() && inStream.good()) { if (beVerbose) { std::cout << "Converting input file " << fileData.inPath; } //try getting size of data inStream.seekg(0, std::ios::end); fileData.size = (size_t)inStream.tellg(); inStream.seekg(0); //check if the caller passed and output stream and use that bool closeOutStream = false; if (!outStream.is_open() || !outStream.good()) { if (!fileData.outPath.empty()) { //try opening the output stream. truncate it when it exists outStream.open(fileData.outPath.string(), std::ofstream::out | std::ofstream::trunc); } else { std::cout << "Error: No output stream passed, but output path for \"" << fileData.inPath.filename().string() << "\" is empty! Skipping." << std::endl; return false; } closeOutStream = true; } //now write to stream if (outStream.is_open() && outStream.good()) { //check if caller want to add a header if (addHeader) { //add message outStream << "//this file was auto-generated from \"" << fileData.inPath.filename().string() << "\" by res2h" << std::endl << std::endl; //add header include if (!commonHeaderPath.empty()) { //common header path must be relative to destination directory boost::filesystem::path relativeHeaderPath = naiveUncomplete(commonHeaderPath, fileData.outPath); outStream << "#include \"" << relativeHeaderPath.generic_string() << "\"" << std::endl << std::endl; } } //create names for variables fileData.dataVariableName = fileData.outPath.filename().stem().string() + "_data"; fileData.sizeVariableName = fileData.outPath.filename().stem().string() + "_size"; //add size and data variable outStream << "const size_t " << fileData.sizeVariableName << " = " << std::dec << fileData.size << ";" << std::endl; outStream << "const unsigned char " << fileData.dataVariableName << "[" << std::dec << fileData.size << "] = {" << std::endl; outStream << " "; //first indent //now add content size_t breakCounter = 0; while (!inStream.eof()) { //read byte from source unsigned char dataByte; inStream.read((char *)&dataByte, 1); //check if we have actually read something if (inStream.gcount() != 1 || inStream.eof()) { //we failed to read. break the read loop and close the file. break; } //write to destination in hex with a width of 2 and '0' as padding //we do not use showbase as it doesn't work with zero values outStream << "0x" << std::setw(2) << std::setfill('0') << std::hex << (unsigned int)dataByte; //was this the last character? if (!inStream.eof() && fileData.size > (size_t)inStream.tellg()) { //no. add comma. outStream << ","; //add break after 10 bytes and add indent again if (++breakCounter % 10 == 0) { outStream << std::endl << " "; } } } //close curly braces outStream << std::endl << "};" << std::endl << std::endl; //close files if (closeOutStream) { outStream.close(); } inStream.close(); if (beVerbose) { std::cout << " - succeeded." << std::endl; } return true; } else { std::cout << "Error: Failed to open file \"" << fileData.outPath.string() << "\" for writing!" << std::endl; return false; } } else { std::cout << "Error: Failed to open file \"" << fileData.inPath.string() << "\" for reading!" << std::endl; return false; } } else { std::cout << "Error: File \"" << fileData.inPath.string() << "\" does not exist!" << std::endl; } return false; } bool createCommonHeader(const std::vector<FileData> & fileList, const boost::filesystem::path & commonHeaderPath, bool addUtilityFunctions = false, bool useCConstructs = false) { //try opening the output file. truncate it when it exists std::ofstream outStream; outStream.open(commonHeaderPath.generic_string(), std::ofstream::out | std::ofstream::trunc); if (outStream.is_open() && outStream.good()) { if (beVerbose) { std::cout << std::endl << "Creating common header " << commonHeaderPath; } //add message outStream << "//this file was auto-generated by res2h" << std::endl << std::endl; //add #pragma to only include once outStream << "#pragma once" << std::endl << std::endl; //add includes for C++ if (!useCConstructs) { outStream << "#include <string>" << std::endl; if (addUtilityFunctions) { outStream << "#include <map>" << std::endl; } outStream << std::endl; } //add all files for (auto fdIt = fileList.cbegin(); fdIt != fileList.cend(); ++fdIt) { //add size and data variable outStream << "extern const size_t " << fdIt->sizeVariableName << ";" << std::endl; outStream << "extern const unsigned char " << fdIt->dataVariableName << "[];" << std::endl << std::endl; } //if we want utilities, add array if (addUtilityFunctions) { //add resource struct outStream << "struct Res2hEntry {" << std::endl; if (useCConstructs) { outStream << " const char * relativeFileName;" << std::endl; } else { outStream << " const std::string relativeFileName;" << std::endl; } outStream << " const size_t size;" << std::endl; outStream << " const unsigned char * data;" << std::endl; outStream << "};" << std::endl << std::endl; //add list holding files outStream << "extern const size_t res2hNrOfFiles;" << std::endl; outStream << "extern const Res2hEntry res2hFiles[];" << std::endl << std::endl; if (!useCConstructs) { //add additional std::map if C++ outStream << "typedef const std::map<const std::string, const Res2hEntry> res2hMapType;" << std::endl; outStream << "extern res2hMapType res2hMap;" << std::endl; } } //close file outStream.close(); if (beVerbose) { std::cout << " - succeeded." << std::endl; } return true; } else { std::cout << "Error: Failed to open file \"" << commonHeaderPath << "\" for writing!" << std::endl; } return true; } bool createUtilities(std::vector<FileData> & fileList, const boost::filesystem::path & utilitiesPath, const boost::filesystem::path & commonHeaderPath, bool useCConstructs = false, bool addFileData = false) { //try opening the output file. truncate it when it exists std::ofstream outStream; outStream.open(utilitiesPath.generic_string(), std::ofstream::out | std::ofstream::trunc); if (outStream.is_open() && outStream.good()) { if (beVerbose) { std::cout << std::endl << "Creating utilities file " << utilitiesPath; } //add message outStream << "//this file was auto-generated by res2h" << std::endl << std::endl; //create path to include file RELATIVE to this file boost::filesystem::path relativePath = naiveUncomplete(commonHeaderPath, utilitiesPath); //include header file outStream << "#include \"" << relativePath.string() << "\"" << std::endl << std::endl; //if the data should go to this file too, add it if (addFileData) { for (auto fdIt = fileList.begin(); fdIt != fileList.cend(); ++fdIt) { if (!convertFile(*fdIt, commonHeaderFilePath, outStream, false)) { std::cout << "Error: Failed to convert all files. Aborting!" << std::endl; outStream.close(); return false; } } } //begin data arrays. switch depending wether C or C++ outStream << "const size_t res2hNrOfFiles = " << fileList.size() << ";" << std::endl; //add files outStream << "const Res2hEntry res2hFiles[res2hNrOfFiles] = {" << std::endl; outStream << " "; //first indent for (auto fdIt = fileList.cbegin(); fdIt != fileList.cend();) { outStream << "{\"" << fdIt->internalName << "\", " << fdIt->sizeVariableName << ", " << fdIt->dataVariableName << "}"; //was this the last entry? ++fdIt; if (fdIt != fileList.cend()) { //no. add comma. outStream << ","; //add break after every entry and add indent again outStream << std::endl << " "; } } outStream << std::endl << "};" << std::endl; if (!useCConstructs) { //add files to map outStream << std::endl << "res2hMapType::value_type mapTemp[] = {" << std::endl; outStream << " "; for (auto fdIt = fileList.cbegin(); fdIt != fileList.cend();) { outStream << "std::make_pair(\"" << fdIt->internalName << "\", res2hFiles[" << (fdIt - fileList.cbegin()) << "])"; //was this the last entry? ++fdIt; if (fdIt != fileList.cend()) { //no. add comma. outStream << ","; //add break after every entry and add indent again outStream << std::endl << " "; } } outStream << std::endl << "};" << std::endl << std::endl; //create map outStream << "res2hMapType res2hMap(mapTemp, mapTemp + sizeof mapTemp / sizeof mapTemp[0]);" << std::endl; } //close file outStream.close(); if (beVerbose) { std::cout << " - succeeded." << std::endl; } return true; } else { std::cout << "Error: Failed to open file \"" << utilitiesPath << "\" for writing!" << std::endl; } return true; } //Blob file format: //Offset | Type | Description //---------------+----------+------------------------------------------- //START | char[8] | magic number string "res2hbin" //08 | uint32_t | file format version number (currently 1) //12 | uint32_t | format flags or other crap for file (currently 0) //16 | uint32_t | size of whole archive including checksum in bytes //20 | uint32_t | number of directory and file entries following //Then follows the directory: //24 + 00 | uint32_t | file entry #0, size of internal name INCLUDING null-terminating character //24 + 04 | char[] | file entry #0, internal name (null-terminated) //24 + 04 + name | uint32_t | file entry #0, format flags for entry (currently 0) //24 + 08 + name | uint32_t | file entry #0, size of data //24 + 12 + name | uint32_t | file entry #0, absolute offset of data in file //24 + 16 + name | uint32_t | file entry #0, Adler-32 (RFC1950) checksum of data //Then follow the other directory entries. //Directly after the directory the data blocks begin. //END - 04 | uint32_t | Adler-32 (RFC1950) checksum of whole file up to this point //Obviously this limits you to ~4GB for the whole binary file and ~4GB per data entry. Go cry about it... //There is some redundant information here, but that's for reading stuff faster. //Also the version and dummy fields might be needed in later versions... bool createBlob(const std::vector<FileData> & fileList, const boost::filesystem::path & filePath) { //try opening the output file. truncate it when it exists std::fstream outStream; outStream.open(filePath.string(), std::ofstream::out | std::ofstream::binary | std::ofstream::trunc); if (outStream.is_open() && outStream.good()) { if (beVerbose) { std::cout << std::endl << "Creating binary archive " << filePath << std::endl; } //add magic number const unsigned char magicBytes[9] = RES2H_MAGIC_BYTES; outStream.write(reinterpret_cast<const char *>(&magicBytes), sizeof(magicBytes) - 1); //add version and format flag const uint32_t fileVersion = RES2H_ARCHIVE_VERSION; const uint32_t fileFlags = 0; outStream.write(reinterpret_cast<const char *>(&fileVersion), sizeof(uint32_t)); outStream.write(reinterpret_cast<const char *>(&fileFlags), sizeof(uint32_t)); //add dummy archive size uint32_t archiveSize = 0; outStream.write(reinterpret_cast<const char *>(&archiveSize), sizeof(uint32_t)); //add number of directory entries const uint32_t nrOfEntries = fileList.size(); outStream.write(reinterpret_cast<const char *>(&nrOfEntries), sizeof(uint32_t)); //skip through files calculating data start offset behind directory size_t dataStart = RES2H_OFFSET_DIR_START; for (auto fdIt = fileList.cbegin(); fdIt != fileList.cend(); ++fdIt) { //calculate size of entry and to entry start adress dataStart += 20 + fdIt->internalName.size() + 1; } //add directory for all files for (auto fdIt = fileList.cbegin(); fdIt != fileList.cend(); ++fdIt) { //add size of name const uint32_t nameSize = fdIt->internalName.size() + 1; outStream.write(reinterpret_cast<const char *>(&nameSize), sizeof(uint32_t)); //add name and null-termination outStream << fdIt->internalName << '\0'; //add flags const uint32_t entryFlags = 0; outStream.write(reinterpret_cast<const char *>(&entryFlags), sizeof(uint32_t)); //add data size outStream.write(reinterpret_cast<const char *>(&fdIt->size), sizeof(uint32_t)); //add offset from file start to start of data outStream.write(reinterpret_cast<const char *>(&dataStart), sizeof(uint32_t)); //add checksum of data const uint32_t checksum = calculateAdler32(fdIt->inPath.string()); outStream.write(reinterpret_cast<const char *>(&checksum), sizeof(uint32_t)); if (beVerbose) { std::cout << "Creating directory entry for \"" << fdIt->internalName << "\"" << std::endl; std::cout << "Size is " << fdIt->size << " bytes." << std::endl; std::cout << "Data starts at " << std::hex << std::showbase << dataStart << std::endl; std::cout << "Adler-32 checksum is " << std::hex << std::showbase << checksum << std::endl; } //now add size of this entrys data to start offset for next data block dataStart += fdIt->size; } //add data for all files for (auto fdIt = fileList.cbegin(); fdIt != fileList.cend(); ++fdIt) { //try to open file std::ifstream inStream; inStream.open(fdIt->inPath.string(), std::ifstream::in | std::ifstream::binary); if (inStream.is_open() && inStream.good()) { if (beVerbose) { std::cout << "Adding data for \"" << fdIt->internalName << "\"" << std::endl; } std::streamsize overallDataSize = 0; //copy data from input to output file while (!inStream.eof() && inStream.good()) { unsigned char buffer[1024]; std::streamsize readSize = sizeof(buffer); try { //try reading data from input file inStream.read(reinterpret_cast<char *>(&buffer), sizeof(buffer)); } catch (std::ios_base::failure) { /*ignore read failure. salvage what we can.*/ } //store how many bytes were actually read readSize = inStream.gcount(); //write to output file outStream.write(reinterpret_cast<const char *>(&buffer), readSize); //increate size of overall data read overallDataSize += readSize; } //close input file inStream.close(); //check if the file was completely read if (overallDataSize != fdIt->size) { std::cout << "Error: Failed to completely copy file \"" << fdIt->inPath.string() << "\" to binary data!" << std::endl; outStream.close(); return false; } } else { std::cout << "Error: Failed to open file \"" << fdIt->inPath.string() << "\" for reading!" << std::endl; outStream.close(); return false; } } //final archive size is current size + checksum. write size to the header now archiveSize = (uint32_t)outStream.tellg() + sizeof(uint32_t); outStream.seekg(RES2H_OFFSET_ARCHIVE_SIZE); outStream.write(reinterpret_cast<const char *>(&archiveSize), sizeof(uint32_t)); //close file outStream.close(); if (beVerbose) { std::cout << "Binary archive creation succeeded." << std::endl; } //calculate checksum of whole file const uint32_t adler32 = calculateAdler32(filePath.string()); //open file again, move to end of file and append checksum outStream.open(filePath.string(), std::ofstream::out | std::ofstream::binary | std::ofstream::app); if (outStream.is_open() && outStream.good()) { outStream.seekg(0, std::ios::end); outStream.write(reinterpret_cast<const char *>(&adler32), sizeof(uint32_t)); //close file outStream.close(); } else { std::cout << "Error: Failed to open file \"" << filePath.string() << "\" for writing!" << std::endl; return false; } if (beVerbose) { std::cout << "Archive checksum is " << std::hex << std::showbase << adler32 << "." << std::endl; } return true; } else { std::cout << "Error: Failed to open file \"" << filePath.string() << "\" for writing!" << std::endl; return false; } return false; } bool appendAtoB(const boost::filesystem::path & destinationPath, const boost::filesystem::path & sourcePath) { //try opening the output file. std::fstream outStream; outStream.open(destinationPath.string(), std::ofstream::out | std::ofstream::binary | std::ofstream::app); if (outStream.is_open() && outStream.good()) { if (beVerbose) { std::cout << std::endl << "Opened output file " << destinationPath << std::endl; } //seek to the end outStream.seekg(0, std::ios::end); //open input file std::ifstream inStream; inStream.open(sourcePath.string(), std::ifstream::in | std::ifstream::binary); if (inStream.is_open() && inStream.good()) { if (beVerbose) { std::cout << "Opened input file \"" << sourcePath << "\". Appending data to output." << std::endl; } //copy data from input to output file while (!inStream.eof() && inStream.good()) { unsigned char buffer[1024]; std::streamsize readSize = sizeof(buffer); try { //try reading data from input file inStream.read(reinterpret_cast<char *>(&buffer), sizeof(buffer)); } catch (std::ios_base::failure) { /*ignore read failure. salvage what we can.*/ } //store how many bytes were actually read readSize = inStream.gcount(); //write to output file outStream.write(reinterpret_cast<const char *>(&buffer), readSize); } //close input file inStream.close(); } else { std::cout << "Error: Failed to open input file \"" << sourcePath.string() << "\" for reading!" << std::endl; outStream.close(); return false; } //close output file outStream.close(); return true; } else { std::cout << "Error: Failed to open output file \"" << destinationPath.string() << "\" for writing!" << std::endl; } return false; } //----------------------------------------------------------------------------- int main(int argc, const char * argv[]) { printVersion(); //check number of arguments and if all arguments can be read if(argc < 3 || !readArguments(argc, argv)) { printUsage(); return -1; } //check if the input path exist if (!boost::filesystem::exists(inFilePath)) { std::cout << "Error: Invalid input file/directory \"" << inFilePath.string() << "\"!" << std::endl; return -2; } if (createBinary) { //check if argument 2 is a file if (boost::filesystem::is_directory(outFilePath)) { std::cout << "Error: Output must be a file if -b is used!" << std::endl; return -2; } } else if (appendFile) { //check if argument 2 is a file if (boost::filesystem::is_directory(outFilePath)) { std::cout << "Error: Output must be a file if -a is used!" << std::endl; return -2; } } else if (boost::filesystem::is_directory(inFilePath) != boost::filesystem::is_directory(outFilePath)) { //check if output directory exists if (boost::filesystem::is_directory(outFilePath) && !boost::filesystem::exists(outFilePath)) { std::cout << "Error: Invalid output directory \"" << outFilePath.string() << "\"!" << std::endl; return -2; } //check if arguments 1 and 2 are both files or both directories std::cout << "Error: Input and output file must be both either a file or a directory!" << std::endl; return -2; } if (appendFile) { //append file a to b if (!appendAtoB(outFilePath, inFilePath)) { std::cout << "Error: Failed to append data to executable!" << std::endl; return -3; } } else { //build list of files to process std::vector<FileData> fileList; if (boost::filesystem::is_directory(inFilePath) && boost::filesystem::is_directory(inFilePath)) { //both files are directories, build file ist fileList = getFileDataFrom(inFilePath, outFilePath, inFilePath, useRecursion); if (fileList.empty()) { std::cout << "Error: No files to convert!" << std::endl; return -3; } } else { //just add single input/output file FileData temp; temp.inPath = inFilePath; temp.outPath = outFilePath; temp.internalName = inFilePath.filename().string(); //remove all, but the file name and extension if (beVerbose) { std::cout << "Found input file " << inFilePath << std::endl; std::cout << "Internal name will be \"" << temp.internalName << "\"" << std::endl; std::cout << "Output path is " << temp.outPath << std::endl; } //get file size try { temp.size = (size_t)boost::filesystem::file_size(inFilePath); if (beVerbose) { std::cout << "Size is " << temp.size << " bytes." << std::endl; } } catch(...) { std::cout << "Error: Failed to get size of " << inFilePath << "!" << std::endl; temp.size = 0; } fileList.push_back(temp); } //does the user want an binary file? if (createBinary) { //yes. build it. if (!createBlob(fileList, outFilePath)) { std::cout << "Error: Failed to convert to binary file!" << std::endl; return -4; } } else { //no. convert files to .c/.cpp. loop through list, converting files for (auto fdIt = fileList.begin(); fdIt != fileList.cend(); ++fdIt) { if (!convertFile(*fdIt, commonHeaderFilePath)) { std::cout << "Error: Failed to convert all files. Aborting!" << std::endl; return -4; } } //do we need to write a header file? if (!commonHeaderFilePath.empty()) { if (!createCommonHeader(fileList, commonHeaderFilePath, !utilitiesFilePath.empty(), useC)) { return -5; } //do we need to create utilities? if (!utilitiesFilePath.empty()) { if (!createUtilities(fileList, utilitiesFilePath, commonHeaderFilePath, useC, combineResults)) { return -6; } } } } } //if (!appendFile) { //profit!!! std::cout << "res2h succeeded." << std::endl; return 0; }
{"hexsha": "69fae17903c065ca3ede622d5ff2a554d803d064", "size": 36469, "ext": "cpp", "lang": "C++", "max_stars_repo_path": "data/res2h-master/src/res2h.cpp", "max_stars_repo_name": "tlanks/esbusyness", "max_stars_repo_head_hexsha": "41ed9e6b552585476c81f2f89b9e3d539c54d4ab", "max_stars_repo_licenses": ["Apache-2.0", "MIT"], "max_stars_count": 10.0, "max_stars_repo_stars_event_min_datetime": "2016-08-08T17:50:18.000Z", "max_stars_repo_stars_event_max_datetime": "2019-03-08T02:54:13.000Z", "max_issues_repo_path": "data/res2h-master/src/res2h.cpp", "max_issues_repo_name": "tlanks/esbusyness", "max_issues_repo_head_hexsha": "41ed9e6b552585476c81f2f89b9e3d539c54d4ab", "max_issues_repo_licenses": ["Apache-2.0", "MIT"], "max_issues_count": 7.0, "max_issues_repo_issues_event_min_datetime": "2016-08-10T03:07:30.000Z", "max_issues_repo_issues_event_max_datetime": "2018-10-10T15:24:40.000Z", "max_forks_repo_path": "data/res2h-master/src/res2h.cpp", "max_forks_repo_name": "tlanks/esbusyness", "max_forks_repo_head_hexsha": "41ed9e6b552585476c81f2f89b9e3d539c54d4ab", "max_forks_repo_licenses": ["Apache-2.0", "MIT"], "max_forks_count": 16.0, "max_forks_repo_forks_event_min_datetime": "2016-08-09T02:11:02.000Z", "max_forks_repo_forks_event_max_datetime": "2019-09-24T10:17:56.000Z", "avg_line_length": 40.2527593819, "max_line_length": 216, "alphanum_fraction": 0.598151855, "num_tokens": 9377}
\section{Discussion}\label{section:discussion} We have introduced relative suffix trees (\RCST), a new kind of compressed suffix tree for repetitive sequence collections. Our \RCST{} compresses the suffix tree of an individual sequence relative to the suffix tree of a reference sequence. It combines an already known relative suffix array with a novel relative-compressed longest common prefix representation (\RLCP). When the sequences are similar enough (e.g., two human genomes), the \RCST{} requires about 3 bits per symbol on each target sequence. This is close to the space used by the most space-efficient compressed suffix trees designed to store repetitive collections in a single tree, but the \RCST{} provides a different functionality as it indexes each sequence individually. The \RCST{} supports query and navigation operations within a few microseconds, which is competitive with the largest and fastest compressed suffix trees. The size of \RCST{} is proportional to the amount of sequence that is present either in the reference or in the target, but not both. This is unusual for relative compression, where any additional material in the reference is generally harmless. Sorting the suffixes in lexicographic tends to distribute the additional suffixes all over the suffix array, creating many mismatches between the suffix-based structures of the reference and the target. For example, the 60~million suffixes from chromosome~Y created 34~million new phrases in the RLZ parse of the \DLCP{} array of a female genome, doubling the size of the \RLCP{} array. Having multiple references (e.g.~male and female) can hence be worthwhile when building relative data structures for many target sequences. While our \RCST{} implementation provides competitive time/space trade-offs, there is still much room for improvement. Most importantly, some of the construction algorithms require significant amounts of time and memory. In many places, we have chosen simple and fast implementation options, even though there could be alternatives that require significantly less space without being too much slower. Our \RCST{} is a relative version of the \CSTnpr. Another alternative for future work is a relative \CSTsada, using \RLZ{} compressed bitvectors for suffix tree topology and \PLCP. %Based on our preliminary experiments, the main obstacle is the compression of phrase pointers. Relative pointers work well when most differences between the reference and the target are single-character substitutions. As suffix sorting multiplies the differences and transforms substitutions into insertions and deletions, we need new compression schemes for the pointers.
{"hexsha": "6ca296c09b4e58f46fa017390b2bc475b10b2d42", "size": 2681, "ext": "tex", "lang": "TeX", "max_stars_repo_path": "rcst/concl.tex", "max_stars_repo_name": "jltsiren/relative-fm", "max_stars_repo_head_hexsha": "68c11f172fd2a546792aad3ad81ee1e185b5ee7f", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 16, "max_stars_repo_stars_event_min_datetime": "2015-04-29T11:18:01.000Z", "max_stars_repo_stars_event_max_datetime": "2020-09-21T20:32:08.000Z", "max_issues_repo_path": "rcst/concl.tex", "max_issues_repo_name": "jltsiren/relative-fm", "max_issues_repo_head_hexsha": "68c11f172fd2a546792aad3ad81ee1e185b5ee7f", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "rcst/concl.tex", "max_forks_repo_name": "jltsiren/relative-fm", "max_forks_repo_head_hexsha": "68c11f172fd2a546792aad3ad81ee1e185b5ee7f", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 2, "max_forks_repo_forks_event_min_datetime": "2015-12-06T20:49:38.000Z", "max_forks_repo_forks_event_max_datetime": "2021-08-14T10:33:01.000Z", "avg_line_length": 206.2307692308, "max_line_length": 897, "alphanum_fraction": 0.8146214099, "num_tokens": 519}
import os import numpy.linalg as la import numpy as np from skimage.draw import line_nd from os.path import join, expanduser from dipy.io import read_bvals_bvecs from dipy.io.image import load_nifti, save_nifti rel_path = '~/.dnn/datasets/synth' name = 'synth' def process_movement(): bvals, bvecs = load_bvals_bvecs() img, affine = load_image_from_nifti() mov = get_movement_estimates(img, bvecs) save_mov_image(mov, affine, name) def load_image_from_numpy(): path = os.path.expanduser(rel_path) url = os.path.join(path, name + '.npz') img_dict = np.load(url, allow_pickle=True) return img_dict['img'] def load_image_from_nifti(): base_path = expanduser(rel_path) digit_hardi_url = join(base_path, name + '.nii.gz') img, affine = load_nifti(digit_hardi_url) return img, affine def load_bvals_bvecs(): path = os.path.expanduser(rel_path) bvals_url = join(path, 'bvals') bvecs_url = join(path, 'bvecs') bvals, bvecs = read_bvals_bvecs(bvals_url, bvecs_url) return bvals, bvecs def save_mov_image(mov, affine, name): path = os.path.expanduser(rel_path) if not os.path.isdir(path): os.makedirs(path) # np.savez(os.path.join(path, name + '_mov'), mov=mov) save_nifti(os.path.join(path, name + '_mov.nii.gz'), mov, affine) def mov_img(img, direction): mov = np.zeros_like(img) dims = img.shape for i in range(dims[0]): for j in range(dims[1]): for k in range(dims[2]): mov_ijk = movement(img, (i, j, k), direction, radius=10, eps=0.01) mov[i, j, k] = mov_ijk return mov def movement(img, center, direction, radius=10, eps=0.01, min_val=1e-9): center_value = img[center[0], center[1], center[2]] mov = 0 if abs(center_value) > min_val: coords = get_points_bidirectional(center, direction, radius, img.shape) z = img[coords[0], coords[1], coords[2]] if len(z) > 1: deltas = np.abs(z[0] - z[1:]) + eps variation = (1 / (len(z) - 1)) * np.sum(deltas) mov = center_value / variation return mov def get_movement_estimates(img, bvecs, max_bvecs=None): bvec_list = bvecs.tolist()[:max_bvecs] movs = [] for k, direction in enumerate(bvec_list): print(f'direction {k +1} of {len(bvec_list)}') mov_for_direction = mov_img(img, direction) movs.append(mov_for_direction) mov = np.transpose(np.array(movs), (1, 2, 3, 0)) return mov if __name__ == '__main__': process_movement()
{"hexsha": "cf71e616c93f24230b80d9ff351ad76474645a18", "size": 2586, "ext": "py", "lang": "Python", "max_stars_repo_path": "dataset/mnist/dwi/movement.py", "max_stars_repo_name": "cassianobecker/dnn", "max_stars_repo_head_hexsha": "bb2ea04f77733de9df10f795bb049ac3b9d30478", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 3, "max_stars_repo_stars_event_min_datetime": "2020-02-21T21:35:07.000Z", "max_stars_repo_stars_event_max_datetime": "2020-09-29T15:20:00.000Z", "max_issues_repo_path": "dataset/mnist/dwi/movement.py", "max_issues_repo_name": "cassianobecker/dnn", "max_issues_repo_head_hexsha": "bb2ea04f77733de9df10f795bb049ac3b9d30478", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 27, "max_issues_repo_issues_event_min_datetime": "2020-02-20T21:00:23.000Z", "max_issues_repo_issues_event_max_datetime": "2020-05-22T15:23:25.000Z", "max_forks_repo_path": "dataset/mnist/dwi/movement.py", "max_forks_repo_name": "cassianobecker/dnn", "max_forks_repo_head_hexsha": "bb2ea04f77733de9df10f795bb049ac3b9d30478", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 23.5090909091, "max_line_length": 82, "alphanum_fraction": 0.6415313225, "include": true, "reason": "import numpy", "num_tokens": 743}
[STATEMENT] lemma vars_of_instances: shows "vars_of (subst t \<sigma>) = \<Union> { V. \<exists>x. (x \<in> (vars_of t)) \<and> (V = vars_of (subst (Var x) \<sigma>)) }" [PROOF STATE] proof (prove) goal (1 subgoal): 1. vars_of (t \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of t \<and> V = vars_of (Var x \<lhd> \<sigma>)} [PROOF STEP] proof (induction t) [PROOF STATE] proof (state) goal (3 subgoals): 1. \<And>x. vars_of (Var x \<lhd> \<sigma>) = \<Union> {V. \<exists>xa. xa \<in> vars_of (Var x) \<and> V = vars_of (Var xa \<lhd> \<sigma>)} 2. \<And>x. vars_of (Const x \<lhd> \<sigma>) = \<Union> {V. \<exists>xa. xa \<in> vars_of (Const x) \<and> V = vars_of (Var xa \<lhd> \<sigma>)} 3. \<And>t1 t2. \<lbrakk>vars_of (t1 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of t1 \<and> V = vars_of (Var x \<lhd> \<sigma>)}; vars_of (t2 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of t2 \<and> V = vars_of (Var x \<lhd> \<sigma>)}\<rbrakk> \<Longrightarrow> vars_of (t1 \<cdot> t2 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of (t1 \<cdot> t2) \<and> V = vars_of (Var x \<lhd> \<sigma>)} [PROOF STEP] case (Const a) [PROOF STATE] proof (state) this: goal (3 subgoals): 1. \<And>x. vars_of (Var x \<lhd> \<sigma>) = \<Union> {V. \<exists>xa. xa \<in> vars_of (Var x) \<and> V = vars_of (Var xa \<lhd> \<sigma>)} 2. \<And>x. vars_of (Const x \<lhd> \<sigma>) = \<Union> {V. \<exists>xa. xa \<in> vars_of (Const x) \<and> V = vars_of (Var xa \<lhd> \<sigma>)} 3. \<And>t1 t2. \<lbrakk>vars_of (t1 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of t1 \<and> V = vars_of (Var x \<lhd> \<sigma>)}; vars_of (t2 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of t2 \<and> V = vars_of (Var x \<lhd> \<sigma>)}\<rbrakk> \<Longrightarrow> vars_of (t1 \<cdot> t2 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of (t1 \<cdot> t2) \<and> V = vars_of (Var x \<lhd> \<sigma>)} [PROOF STEP] have "vars_of (Const a) = {}" [PROOF STATE] proof (prove) goal (1 subgoal): 1. vars_of (Const a) = {} [PROOF STEP] by auto [PROOF STATE] proof (state) this: vars_of (Const a) = {} goal (3 subgoals): 1. \<And>x. vars_of (Var x \<lhd> \<sigma>) = \<Union> {V. \<exists>xa. xa \<in> vars_of (Var x) \<and> V = vars_of (Var xa \<lhd> \<sigma>)} 2. \<And>x. vars_of (Const x \<lhd> \<sigma>) = \<Union> {V. \<exists>xa. xa \<in> vars_of (Const x) \<and> V = vars_of (Var xa \<lhd> \<sigma>)} 3. \<And>t1 t2. \<lbrakk>vars_of (t1 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of t1 \<and> V = vars_of (Var x \<lhd> \<sigma>)}; vars_of (t2 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of t2 \<and> V = vars_of (Var x \<lhd> \<sigma>)}\<rbrakk> \<Longrightarrow> vars_of (t1 \<cdot> t2 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of (t1 \<cdot> t2) \<and> V = vars_of (Var x \<lhd> \<sigma>)} [PROOF STEP] then [PROOF STATE] proof (chain) picking this: vars_of (Const a) = {} [PROOF STEP] have rhs_empty: "\<Union> { V. \<exists>x. (x \<in> (vars_of (Const a))) \<and> (V = vars_of (subst (Var x) \<sigma>)) } = {}" [PROOF STATE] proof (prove) using this: vars_of (Const a) = {} goal (1 subgoal): 1. \<Union> {V. \<exists>x. x \<in> vars_of (Const a) \<and> V = vars_of (Var x \<lhd> \<sigma>)} = {} [PROOF STEP] by auto [PROOF STATE] proof (state) this: \<Union> {V. \<exists>x. x \<in> vars_of (Const a) \<and> V = vars_of (Var x \<lhd> \<sigma>)} = {} goal (3 subgoals): 1. \<And>x. vars_of (Var x \<lhd> \<sigma>) = \<Union> {V. \<exists>xa. xa \<in> vars_of (Var x) \<and> V = vars_of (Var xa \<lhd> \<sigma>)} 2. \<And>x. vars_of (Const x \<lhd> \<sigma>) = \<Union> {V. \<exists>xa. xa \<in> vars_of (Const x) \<and> V = vars_of (Var xa \<lhd> \<sigma>)} 3. \<And>t1 t2. \<lbrakk>vars_of (t1 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of t1 \<and> V = vars_of (Var x \<lhd> \<sigma>)}; vars_of (t2 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of t2 \<and> V = vars_of (Var x \<lhd> \<sigma>)}\<rbrakk> \<Longrightarrow> vars_of (t1 \<cdot> t2 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of (t1 \<cdot> t2) \<and> V = vars_of (Var x \<lhd> \<sigma>)} [PROOF STEP] have lhs_empty: "(subst (Const a) \<sigma>) = (Const a)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. Const a \<lhd> \<sigma> = Const a [PROOF STEP] by auto [PROOF STATE] proof (state) this: Const a \<lhd> \<sigma> = Const a goal (3 subgoals): 1. \<And>x. vars_of (Var x \<lhd> \<sigma>) = \<Union> {V. \<exists>xa. xa \<in> vars_of (Var x) \<and> V = vars_of (Var xa \<lhd> \<sigma>)} 2. \<And>x. vars_of (Const x \<lhd> \<sigma>) = \<Union> {V. \<exists>xa. xa \<in> vars_of (Const x) \<and> V = vars_of (Var xa \<lhd> \<sigma>)} 3. \<And>t1 t2. \<lbrakk>vars_of (t1 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of t1 \<and> V = vars_of (Var x \<lhd> \<sigma>)}; vars_of (t2 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of t2 \<and> V = vars_of (Var x \<lhd> \<sigma>)}\<rbrakk> \<Longrightarrow> vars_of (t1 \<cdot> t2 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of (t1 \<cdot> t2) \<and> V = vars_of (Var x \<lhd> \<sigma>)} [PROOF STEP] from rhs_empty and lhs_empty [PROOF STATE] proof (chain) picking this: \<Union> {V. \<exists>x. x \<in> vars_of (Const a) \<and> V = vars_of (Var x \<lhd> \<sigma>)} = {} Const a \<lhd> \<sigma> = Const a [PROOF STEP] show ?case [PROOF STATE] proof (prove) using this: \<Union> {V. \<exists>x. x \<in> vars_of (Const a) \<and> V = vars_of (Var x \<lhd> \<sigma>)} = {} Const a \<lhd> \<sigma> = Const a goal (1 subgoal): 1. vars_of (Const a \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of (Const a) \<and> V = vars_of (Var x \<lhd> \<sigma>)} [PROOF STEP] by auto [PROOF STATE] proof (state) this: vars_of (Const a \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of (Const a) \<and> V = vars_of (Var x \<lhd> \<sigma>)} goal (2 subgoals): 1. \<And>x. vars_of (Var x \<lhd> \<sigma>) = \<Union> {V. \<exists>xa. xa \<in> vars_of (Var x) \<and> V = vars_of (Var xa \<lhd> \<sigma>)} 2. \<And>t1 t2. \<lbrakk>vars_of (t1 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of t1 \<and> V = vars_of (Var x \<lhd> \<sigma>)}; vars_of (t2 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of t2 \<and> V = vars_of (Var x \<lhd> \<sigma>)}\<rbrakk> \<Longrightarrow> vars_of (t1 \<cdot> t2 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of (t1 \<cdot> t2) \<and> V = vars_of (Var x \<lhd> \<sigma>)} [PROOF STEP] next [PROOF STATE] proof (state) goal (2 subgoals): 1. \<And>x. vars_of (Var x \<lhd> \<sigma>) = \<Union> {V. \<exists>xa. xa \<in> vars_of (Var x) \<and> V = vars_of (Var xa \<lhd> \<sigma>)} 2. \<And>t1 t2. \<lbrakk>vars_of (t1 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of t1 \<and> V = vars_of (Var x \<lhd> \<sigma>)}; vars_of (t2 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of t2 \<and> V = vars_of (Var x \<lhd> \<sigma>)}\<rbrakk> \<Longrightarrow> vars_of (t1 \<cdot> t2 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of (t1 \<cdot> t2) \<and> V = vars_of (Var x \<lhd> \<sigma>)} [PROOF STEP] case (Var a) [PROOF STATE] proof (state) this: goal (2 subgoals): 1. \<And>x. vars_of (Var x \<lhd> \<sigma>) = \<Union> {V. \<exists>xa. xa \<in> vars_of (Var x) \<and> V = vars_of (Var xa \<lhd> \<sigma>)} 2. \<And>t1 t2. \<lbrakk>vars_of (t1 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of t1 \<and> V = vars_of (Var x \<lhd> \<sigma>)}; vars_of (t2 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of t2 \<and> V = vars_of (Var x \<lhd> \<sigma>)}\<rbrakk> \<Longrightarrow> vars_of (t1 \<cdot> t2 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of (t1 \<cdot> t2) \<and> V = vars_of (Var x \<lhd> \<sigma>)} [PROOF STEP] have "vars_of (Var a) = { a }" [PROOF STATE] proof (prove) goal (1 subgoal): 1. vars_of (Var a) = {a} [PROOF STEP] by auto [PROOF STATE] proof (state) this: vars_of (Var a) = {a} goal (2 subgoals): 1. \<And>x. vars_of (Var x \<lhd> \<sigma>) = \<Union> {V. \<exists>xa. xa \<in> vars_of (Var x) \<and> V = vars_of (Var xa \<lhd> \<sigma>)} 2. \<And>t1 t2. \<lbrakk>vars_of (t1 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of t1 \<and> V = vars_of (Var x \<lhd> \<sigma>)}; vars_of (t2 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of t2 \<and> V = vars_of (Var x \<lhd> \<sigma>)}\<rbrakk> \<Longrightarrow> vars_of (t1 \<cdot> t2 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of (t1 \<cdot> t2) \<and> V = vars_of (Var x \<lhd> \<sigma>)} [PROOF STEP] then [PROOF STATE] proof (chain) picking this: vars_of (Var a) = {a} [PROOF STEP] have rhs: "\<Union> { V. \<exists>x. (x \<in> (vars_of (Var a))) \<and> (V = vars_of (subst (Var x) \<sigma>)) } = vars_of (subst (Var a) \<sigma>)" [PROOF STATE] proof (prove) using this: vars_of (Var a) = {a} goal (1 subgoal): 1. \<Union> {V. \<exists>x. x \<in> vars_of (Var a) \<and> V = vars_of (Var x \<lhd> \<sigma>)} = vars_of (Var a \<lhd> \<sigma>) [PROOF STEP] by auto [PROOF STATE] proof (state) this: \<Union> {V. \<exists>x. x \<in> vars_of (Var a) \<and> V = vars_of (Var x \<lhd> \<sigma>)} = vars_of (Var a \<lhd> \<sigma>) goal (2 subgoals): 1. \<And>x. vars_of (Var x \<lhd> \<sigma>) = \<Union> {V. \<exists>xa. xa \<in> vars_of (Var x) \<and> V = vars_of (Var xa \<lhd> \<sigma>)} 2. \<And>t1 t2. \<lbrakk>vars_of (t1 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of t1 \<and> V = vars_of (Var x \<lhd> \<sigma>)}; vars_of (t2 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of t2 \<and> V = vars_of (Var x \<lhd> \<sigma>)}\<rbrakk> \<Longrightarrow> vars_of (t1 \<cdot> t2 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of (t1 \<cdot> t2) \<and> V = vars_of (Var x \<lhd> \<sigma>)} [PROOF STEP] have lhs: "(subst (Var a) \<sigma>) = (subst (Var a) \<sigma>)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. Var a \<lhd> \<sigma> = Var a \<lhd> \<sigma> [PROOF STEP] by auto [PROOF STATE] proof (state) this: Var a \<lhd> \<sigma> = Var a \<lhd> \<sigma> goal (2 subgoals): 1. \<And>x. vars_of (Var x \<lhd> \<sigma>) = \<Union> {V. \<exists>xa. xa \<in> vars_of (Var x) \<and> V = vars_of (Var xa \<lhd> \<sigma>)} 2. \<And>t1 t2. \<lbrakk>vars_of (t1 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of t1 \<and> V = vars_of (Var x \<lhd> \<sigma>)}; vars_of (t2 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of t2 \<and> V = vars_of (Var x \<lhd> \<sigma>)}\<rbrakk> \<Longrightarrow> vars_of (t1 \<cdot> t2 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of (t1 \<cdot> t2) \<and> V = vars_of (Var x \<lhd> \<sigma>)} [PROOF STEP] from rhs and lhs [PROOF STATE] proof (chain) picking this: \<Union> {V. \<exists>x. x \<in> vars_of (Var a) \<and> V = vars_of (Var x \<lhd> \<sigma>)} = vars_of (Var a \<lhd> \<sigma>) Var a \<lhd> \<sigma> = Var a \<lhd> \<sigma> [PROOF STEP] show ?case [PROOF STATE] proof (prove) using this: \<Union> {V. \<exists>x. x \<in> vars_of (Var a) \<and> V = vars_of (Var x \<lhd> \<sigma>)} = vars_of (Var a \<lhd> \<sigma>) Var a \<lhd> \<sigma> = Var a \<lhd> \<sigma> goal (1 subgoal): 1. vars_of (Var a \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of (Var a) \<and> V = vars_of (Var x \<lhd> \<sigma>)} [PROOF STEP] by auto [PROOF STATE] proof (state) this: vars_of (Var a \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of (Var a) \<and> V = vars_of (Var x \<lhd> \<sigma>)} goal (1 subgoal): 1. \<And>t1 t2. \<lbrakk>vars_of (t1 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of t1 \<and> V = vars_of (Var x \<lhd> \<sigma>)}; vars_of (t2 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of t2 \<and> V = vars_of (Var x \<lhd> \<sigma>)}\<rbrakk> \<Longrightarrow> vars_of (t1 \<cdot> t2 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of (t1 \<cdot> t2) \<and> V = vars_of (Var x \<lhd> \<sigma>)} [PROOF STEP] next [PROOF STATE] proof (state) goal (1 subgoal): 1. \<And>t1 t2. \<lbrakk>vars_of (t1 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of t1 \<and> V = vars_of (Var x \<lhd> \<sigma>)}; vars_of (t2 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of t2 \<and> V = vars_of (Var x \<lhd> \<sigma>)}\<rbrakk> \<Longrightarrow> vars_of (t1 \<cdot> t2 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of (t1 \<cdot> t2) \<and> V = vars_of (Var x \<lhd> \<sigma>)} [PROOF STEP] case (Comb t1 t2) [PROOF STATE] proof (state) this: vars_of (t1 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of t1 \<and> V = vars_of (Var x \<lhd> \<sigma>)} vars_of (t2 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of t2 \<and> V = vars_of (Var x \<lhd> \<sigma>)} goal (1 subgoal): 1. \<And>t1 t2. \<lbrakk>vars_of (t1 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of t1 \<and> V = vars_of (Var x \<lhd> \<sigma>)}; vars_of (t2 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of t2 \<and> V = vars_of (Var x \<lhd> \<sigma>)}\<rbrakk> \<Longrightarrow> vars_of (t1 \<cdot> t2 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of (t1 \<cdot> t2) \<and> V = vars_of (Var x \<lhd> \<sigma>)} [PROOF STEP] have "vars_of (Comb t1 t2) = (vars_of t1) \<union> (vars_of t2)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. vars_of (t1 \<cdot> t2) = vars_of t1 \<union> vars_of t2 [PROOF STEP] by auto [PROOF STATE] proof (state) this: vars_of (t1 \<cdot> t2) = vars_of t1 \<union> vars_of t2 goal (1 subgoal): 1. \<And>t1 t2. \<lbrakk>vars_of (t1 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of t1 \<and> V = vars_of (Var x \<lhd> \<sigma>)}; vars_of (t2 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of t2 \<and> V = vars_of (Var x \<lhd> \<sigma>)}\<rbrakk> \<Longrightarrow> vars_of (t1 \<cdot> t2 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of (t1 \<cdot> t2) \<and> V = vars_of (Var x \<lhd> \<sigma>)} [PROOF STEP] then [PROOF STATE] proof (chain) picking this: vars_of (t1 \<cdot> t2) = vars_of t1 \<union> vars_of t2 [PROOF STEP] have "\<Union> { V. \<exists>x. (x \<in> (vars_of (Comb t1 t2))) \<and> (V = vars_of (subst (Var x) \<sigma>)) } = \<Union> { V. \<exists>x. (x \<in> (vars_of t1)) \<and> (V = vars_of (subst(Var x) \<sigma>)) } \<union> \<Union> { V. \<exists>x. (x \<in> (vars_of t2)) \<and> (V = vars_of (subst (Var x) \<sigma>)) }" [PROOF STATE] proof (prove) using this: vars_of (t1 \<cdot> t2) = vars_of t1 \<union> vars_of t2 goal (1 subgoal): 1. \<Union> {V. \<exists>x. x \<in> vars_of (t1 \<cdot> t2) \<and> V = vars_of (Var x \<lhd> \<sigma>)} = \<Union> {V. \<exists>x. x \<in> vars_of t1 \<and> V = vars_of (Var x \<lhd> \<sigma>)} \<union> \<Union> {V. \<exists>x. x \<in> vars_of t2 \<and> V = vars_of (Var x \<lhd> \<sigma>)} [PROOF STEP] by auto [PROOF STATE] proof (state) this: \<Union> {V. \<exists>x. x \<in> vars_of (t1 \<cdot> t2) \<and> V = vars_of (Var x \<lhd> \<sigma>)} = \<Union> {V. \<exists>x. x \<in> vars_of t1 \<and> V = vars_of (Var x \<lhd> \<sigma>)} \<union> \<Union> {V. \<exists>x. x \<in> vars_of t2 \<and> V = vars_of (Var x \<lhd> \<sigma>)} goal (1 subgoal): 1. \<And>t1 t2. \<lbrakk>vars_of (t1 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of t1 \<and> V = vars_of (Var x \<lhd> \<sigma>)}; vars_of (t2 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of t2 \<and> V = vars_of (Var x \<lhd> \<sigma>)}\<rbrakk> \<Longrightarrow> vars_of (t1 \<cdot> t2 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of (t1 \<cdot> t2) \<and> V = vars_of (Var x \<lhd> \<sigma>)} [PROOF STEP] then [PROOF STATE] proof (chain) picking this: \<Union> {V. \<exists>x. x \<in> vars_of (t1 \<cdot> t2) \<and> V = vars_of (Var x \<lhd> \<sigma>)} = \<Union> {V. \<exists>x. x \<in> vars_of t1 \<and> V = vars_of (Var x \<lhd> \<sigma>)} \<union> \<Union> {V. \<exists>x. x \<in> vars_of t2 \<and> V = vars_of (Var x \<lhd> \<sigma>)} [PROOF STEP] have rhs: "\<Union> { V. \<exists>x. (x \<in> (vars_of (Comb t1 t2))) \<and> (V = vars_of (subst (Var x) \<sigma>)) } = (vars_of (subst t1 \<sigma>)) \<union> (vars_of (subst t2 \<sigma>))" [PROOF STATE] proof (prove) using this: \<Union> {V. \<exists>x. x \<in> vars_of (t1 \<cdot> t2) \<and> V = vars_of (Var x \<lhd> \<sigma>)} = \<Union> {V. \<exists>x. x \<in> vars_of t1 \<and> V = vars_of (Var x \<lhd> \<sigma>)} \<union> \<Union> {V. \<exists>x. x \<in> vars_of t2 \<and> V = vars_of (Var x \<lhd> \<sigma>)} goal (1 subgoal): 1. \<Union> {V. \<exists>x. x \<in> vars_of (t1 \<cdot> t2) \<and> V = vars_of (Var x \<lhd> \<sigma>)} = vars_of (t1 \<lhd> \<sigma>) \<union> vars_of (t2 \<lhd> \<sigma>) [PROOF STEP] using \<open>vars_of (subst t1 \<sigma>) = \<Union> { V. \<exists>x. (x \<in> (vars_of t1)) \<and> (V = vars_of (subst (Var x) \<sigma>)) }\<close> and \<open>vars_of (subst t2 \<sigma>) = \<Union> { V. \<exists>x. (x \<in> (vars_of t2)) \<and> (V = vars_of (subst (Var x) \<sigma>)) }\<close> [PROOF STATE] proof (prove) using this: \<Union> {V. \<exists>x. x \<in> vars_of (t1 \<cdot> t2) \<and> V = vars_of (Var x \<lhd> \<sigma>)} = \<Union> {V. \<exists>x. x \<in> vars_of t1 \<and> V = vars_of (Var x \<lhd> \<sigma>)} \<union> \<Union> {V. \<exists>x. x \<in> vars_of t2 \<and> V = vars_of (Var x \<lhd> \<sigma>)} vars_of (t1 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of t1 \<and> V = vars_of (Var x \<lhd> \<sigma>)} vars_of (t2 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of t2 \<and> V = vars_of (Var x \<lhd> \<sigma>)} goal (1 subgoal): 1. \<Union> {V. \<exists>x. x \<in> vars_of (t1 \<cdot> t2) \<and> V = vars_of (Var x \<lhd> \<sigma>)} = vars_of (t1 \<lhd> \<sigma>) \<union> vars_of (t2 \<lhd> \<sigma>) [PROOF STEP] by auto [PROOF STATE] proof (state) this: \<Union> {V. \<exists>x. x \<in> vars_of (t1 \<cdot> t2) \<and> V = vars_of (Var x \<lhd> \<sigma>)} = vars_of (t1 \<lhd> \<sigma>) \<union> vars_of (t2 \<lhd> \<sigma>) goal (1 subgoal): 1. \<And>t1 t2. \<lbrakk>vars_of (t1 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of t1 \<and> V = vars_of (Var x \<lhd> \<sigma>)}; vars_of (t2 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of t2 \<and> V = vars_of (Var x \<lhd> \<sigma>)}\<rbrakk> \<Longrightarrow> vars_of (t1 \<cdot> t2 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of (t1 \<cdot> t2) \<and> V = vars_of (Var x \<lhd> \<sigma>)} [PROOF STEP] have "(subst (Comb t1 t2) \<sigma>) = (Comb (subst t1 \<sigma>) (subst t2 \<sigma>))" [PROOF STATE] proof (prove) goal (1 subgoal): 1. t1 \<cdot> t2 \<lhd> \<sigma> = (t1 \<lhd> \<sigma>) \<cdot> (t2 \<lhd> \<sigma>) [PROOF STEP] by auto [PROOF STATE] proof (state) this: t1 \<cdot> t2 \<lhd> \<sigma> = (t1 \<lhd> \<sigma>) \<cdot> (t2 \<lhd> \<sigma>) goal (1 subgoal): 1. \<And>t1 t2. \<lbrakk>vars_of (t1 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of t1 \<and> V = vars_of (Var x \<lhd> \<sigma>)}; vars_of (t2 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of t2 \<and> V = vars_of (Var x \<lhd> \<sigma>)}\<rbrakk> \<Longrightarrow> vars_of (t1 \<cdot> t2 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of (t1 \<cdot> t2) \<and> V = vars_of (Var x \<lhd> \<sigma>)} [PROOF STEP] then [PROOF STATE] proof (chain) picking this: t1 \<cdot> t2 \<lhd> \<sigma> = (t1 \<lhd> \<sigma>) \<cdot> (t2 \<lhd> \<sigma>) [PROOF STEP] have lhs: "(vars_of (subst (Comb t1 t2) \<sigma>)) = (vars_of (subst t1 \<sigma>)) \<union> (vars_of (subst t2 \<sigma>))" [PROOF STATE] proof (prove) using this: t1 \<cdot> t2 \<lhd> \<sigma> = (t1 \<lhd> \<sigma>) \<cdot> (t2 \<lhd> \<sigma>) goal (1 subgoal): 1. vars_of (t1 \<cdot> t2 \<lhd> \<sigma>) = vars_of (t1 \<lhd> \<sigma>) \<union> vars_of (t2 \<lhd> \<sigma>) [PROOF STEP] by auto [PROOF STATE] proof (state) this: vars_of (t1 \<cdot> t2 \<lhd> \<sigma>) = vars_of (t1 \<lhd> \<sigma>) \<union> vars_of (t2 \<lhd> \<sigma>) goal (1 subgoal): 1. \<And>t1 t2. \<lbrakk>vars_of (t1 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of t1 \<and> V = vars_of (Var x \<lhd> \<sigma>)}; vars_of (t2 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of t2 \<and> V = vars_of (Var x \<lhd> \<sigma>)}\<rbrakk> \<Longrightarrow> vars_of (t1 \<cdot> t2 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of (t1 \<cdot> t2) \<and> V = vars_of (Var x \<lhd> \<sigma>)} [PROOF STEP] from lhs and rhs [PROOF STATE] proof (chain) picking this: vars_of (t1 \<cdot> t2 \<lhd> \<sigma>) = vars_of (t1 \<lhd> \<sigma>) \<union> vars_of (t2 \<lhd> \<sigma>) \<Union> {V. \<exists>x. x \<in> vars_of (t1 \<cdot> t2) \<and> V = vars_of (Var x \<lhd> \<sigma>)} = vars_of (t1 \<lhd> \<sigma>) \<union> vars_of (t2 \<lhd> \<sigma>) [PROOF STEP] show ?case [PROOF STATE] proof (prove) using this: vars_of (t1 \<cdot> t2 \<lhd> \<sigma>) = vars_of (t1 \<lhd> \<sigma>) \<union> vars_of (t2 \<lhd> \<sigma>) \<Union> {V. \<exists>x. x \<in> vars_of (t1 \<cdot> t2) \<and> V = vars_of (Var x \<lhd> \<sigma>)} = vars_of (t1 \<lhd> \<sigma>) \<union> vars_of (t2 \<lhd> \<sigma>) goal (1 subgoal): 1. vars_of (t1 \<cdot> t2 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of (t1 \<cdot> t2) \<and> V = vars_of (Var x \<lhd> \<sigma>)} [PROOF STEP] by auto [PROOF STATE] proof (state) this: vars_of (t1 \<cdot> t2 \<lhd> \<sigma>) = \<Union> {V. \<exists>x. x \<in> vars_of (t1 \<cdot> t2) \<and> V = vars_of (Var x \<lhd> \<sigma>)} goal: No subgoals! [PROOF STEP] qed
{"llama_tokens": 9771, "file": "SuperCalc_terms", "length": 44}
import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.neural_network import MLPRegressor from sklearn.model_selection import LeaveOneGroupOut from plot_with_PE_imputation import plot_with_PE_imputation import matplotlib.colors as colors from mpl_toolkits.axes_grid1 import make_axes_locatable from scipy.signal import medfilt #Load Data data = pd.read_csv('./facies_vectors.csv') # Parameters feature_names = ['GR', 'ILD_log10', 'DeltaPHI', 'PHIND', 'PE', 'NM_M', 'RELPOS'] facies_names = ['SS', 'CSiS', 'FSiS', 'SiSh', 'MS', 'WS', 'D', 'PS', 'BS'] facies_colors = ['#F4D03F', '#F5B041','#DC7633','#6E2C00', '#1B4F72','#2E86C1', '#AED6F1', '#A569BD', '#196F3D'] # Store features and labels # X = data[feature_names].values # y = data['Facies'].values # Store well labels and depths wells = data['Well Name'].values depth = data['Depth'].values # Imputation DataImp_dropNA = data.dropna(axis = 0, inplace = False) F9idx = DataImp_dropNA[DataImp_dropNA['Well Name'] == 'Recruit F9'].index DataImp_dropF9 = DataImp_dropNA.drop(F9idx) wells_noPE = DataImp_dropF9['Well Name'].values DataImp = DataImp_dropF9.drop(['Formation', 'Well Name', 'Depth'], axis=1).copy() Ximp=DataImp.loc[:, DataImp.columns != 'PE'].values Yimp=DataImp.loc[:, 'PE'].values from sklearn.preprocessing import RobustScaler scaler = RobustScaler() scaler.fit(Ximp) Ximp_scaled = scaler.transform(Ximp) logo = LeaveOneGroupOut() from sklearn.metrics import r2_score from sklearn.metrics import mean_squared_error ## 같은 parameter로 여러번 반복 loop = 10 loop_mse_list = [] loop_R2_list = [] df_loop = pd.DataFrame(columns=["R2","MSE"]) for i in range(loop): mselist = [] R2list = [] for train, test in logo.split(Ximp_scaled, Yimp, groups=wells_noPE): well_name = wells_noPE[test[0]] # Imputation using MLP reg = MLPRegressor(hidden_layer_sizes=50, max_iter=1000) reg.fit(Ximp_scaled[train], Yimp[train]) Yimp_predicted = reg.predict(Ximp_scaled[test]) ## medfilt Yimp_predicted = medfilt(Yimp_predicted, kernel_size=5) R2 = r2_score(Yimp[test], Yimp_predicted) mse = mean_squared_error(Yimp[test], Yimp_predicted) print("Well name_test : ", well_name) print("R2 : %.4f" % R2) print("mse : %.4f" % mse) R2list.append(R2) mselist.append(mse) # predict_data = data[data['Well Name'] == well_name].copy() # predict_data["PE_pred"] = Yimp_predicted # # plot_with_PE_imputation(predict_data, facies_colors,R2) average_R2 = np.mean(np.array(R2list)) average_mse = np.mean(np.array(mselist)) print("%i of %i" % (i+1,loop), end=" ") print("average R2 : %.4f " % average_R2, end=" ") print("average MSE : %.4f " % average_mse) loop_mse_list.append(average_mse) loop_R2_list.append(average_R2) df_loop.loc["try %i"%(i+1)] = [average_R2, average_mse] average_R2_loop = np.mean(np.array(loop_R2_list)) average_mse_loop = np.mean(np.array(loop_mse_list)) df_loop.loc["average"] = [average_R2_loop, average_mse_loop] print(df_loop) # df_loop.to_excel("MLP_try10.xlsx")
{"hexsha": "e6bbf3ea06862e0e492948c45271192370b86fdb", "size": 3154, "ext": "py", "lang": "Python", "max_stars_repo_path": "MLP_mean_impute.py", "max_stars_repo_name": "suniipang/PE_Imputation", "max_stars_repo_head_hexsha": "836b9c687883ac87f091785fc17fded6d122be83", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "MLP_mean_impute.py", "max_issues_repo_name": "suniipang/PE_Imputation", "max_issues_repo_head_hexsha": "836b9c687883ac87f091785fc17fded6d122be83", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "MLP_mean_impute.py", "max_forks_repo_name": "suniipang/PE_Imputation", "max_forks_repo_head_hexsha": "836b9c687883ac87f091785fc17fded6d122be83", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 32.5154639175, "max_line_length": 112, "alphanum_fraction": 0.6940393152, "include": true, "reason": "import numpy,from scipy", "num_tokens": 927}
[STATEMENT] lemma ns_mul_ext_bottom: "(A,{#}) \<in> ns_mul_ext ns s" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (A, {#}) \<in> ns_mul_ext ns s [PROOF STEP] by (auto intro!: ns_mul_extI)
{"llama_tokens": 92, "file": "Weighted_Path_Order_Multiset_Extension2", "length": 1}
from policy import LSTMPolicy, MlpPolicyValue import gym import gym_compete import pickle import sys import argparse import tensorflow as tf import numpy as np def load_from_file(param_pkl_path): with open(param_pkl_path, 'rb') as f: params = pickle.load(f) return params def setFromFlat(var_list, flat_params): shapes = list(map(lambda x: x.get_shape().as_list(), var_list)) total_size = np.sum([int(np.prod(shape)) for shape in shapes]) theta = tf.placeholder(tf.float32, [total_size]) start = 0 assigns = [] for (shape, v) in zip(shapes, var_list): size = int(np.prod(shape)) assigns.append(tf.assign(v, tf.reshape(theta[start:start + size], shape))) start += size op = tf.group(*assigns) tf.get_default_session().run(op, {theta: flat_params}) def run(config): if config.env == "kick-and-defend": env = gym.make("kick-and-defend-v0") policy_type = "lstm" elif config.env == "run-to-goal-humans": env = gym.make("run-to-goal-humans-v0") policy_type = "mlp" elif config.env == "run-to-goal-ants": env = gym.make("run-to-goal-ants-v0") policy_type = "mlp" elif config.env == "you-shall-not-pass": env = gym.make("you-shall-not-pass-humans-v0") policy_type = "mlp" elif config.env == "sumo-humans": env = gym.make("sumo-humans-v0") policy_type = "lstm" elif config.env == "sumo-ants": env = gym.make("sumo-ants-v0") policy_type = "lstm" else: print("unsupported environment") print("choose from: run-to-goal-humans, run-to-goal-ants, you-shall-not-pass, sumo-humans, sumo-ants, kick-and-defend") sys.exit() param_paths = config.param_paths tf_config = tf.ConfigProto( inter_op_parallelism_threads=1, intra_op_parallelism_threads=1) sess = tf.Session(config=tf_config) sess.__enter__() policy = [] for i in range(2): scope = "policy" + str(i) if policy_type == "lstm": policy.append(LSTMPolicy(scope=scope, reuse=False, ob_space=env.observation_space.spaces[i], ac_space=env.action_space.spaces[i], hiddens=[128, 128], normalize=True)) else: policy.append(MlpPolicyValue(scope=scope, reuse=False, ob_space=env.observation_space.spaces[i], ac_space=env.action_space.spaces[i], hiddens=[64, 64], normalize=True)) # initialize uninitialized variables sess.run(tf.variables_initializer(tf.global_variables())) params = [load_from_file(param_pkl_path=path) for path in param_paths] for i in range(len(policy)): setFromFlat(policy[i].get_variables(), params[i]) max_episodes = config.max_episodes num_episodes = 0 nstep = 0 total_reward = [0.0 for _ in range(len(policy))] total_scores = [0 for _ in range(len(policy))] # total_scores = np.asarray(total_scores) observation = env.reset() print("-"*5 + " Episode %d " % (num_episodes+1) + "-"*5) while num_episodes < max_episodes: env.render() action = tuple([policy[i].act(stochastic=True, observation=observation[i])[0] for i in range(len(policy))]) observation, reward, done, infos = env.step(action) nstep += 1 for i in range(len(policy)): total_reward[i] += reward[i] if done[0]: num_episodes += 1 draw = True for i in range(len(policy)): if 'winner' in infos[i]: draw = False total_scores[i] += 1 print("Winner: Agent {}, Scores: {}, Total Episodes: {}".format(i, total_scores, num_episodes)) if draw: print("Game Tied: Agent {}, Scores: {}, Total Episodes: {}".format(i, total_scores, num_episodes)) observation = env.reset() nstep = 0 total_reward = [0.0 for _ in range(len(policy))] for i in range(len(policy)): policy[i].reset() if num_episodes < max_episodes: print("-"*5 + "Episode %d" % (num_episodes+1) + "-"*5) if __name__ == "__main__": p = argparse.ArgumentParser(description="Environments for Multi-agent competition") p.add_argument("--env", default="sumo-humans", type=str, help="competitive environment: run-to-goal-humans, run-to-goal-ants, you-shall-not-pass, sumo-humans, sumo-ants, kick-and-defend") p.add_argument("--param-paths", nargs='+', required=True, type=str) p.add_argument("--max-episodes", default=10, help="max number of matches", type=int) config = p.parse_args() run(config)
{"hexsha": "d2997f9fd0befd133e3a7728c04ecbf4d5053abb", "size": 4910, "ext": "py", "lang": "Python", "max_stars_repo_path": "multiagent-competition/main.py", "max_stars_repo_name": "MachengShen/torchbeast", "max_stars_repo_head_hexsha": "3853fdda44db4d91d773ff2a3db3658a02fa1a15", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "multiagent-competition/main.py", "max_issues_repo_name": "MachengShen/torchbeast", "max_issues_repo_head_hexsha": "3853fdda44db4d91d773ff2a3db3658a02fa1a15", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "multiagent-competition/main.py", "max_forks_repo_name": "MachengShen/torchbeast", "max_forks_repo_head_hexsha": "3853fdda44db4d91d773ff2a3db3658a02fa1a15", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 39.918699187, "max_line_length": 191, "alphanum_fraction": 0.5890020367, "include": true, "reason": "import numpy", "num_tokens": 1189}
# -*- coding:utf-8 -*- ############################################################################### # Rutap Bot 2019 Hangul Clock Module # # 해당 모듈은 한글시계에서 파생된 소프트웨어로서, GPLv3 라이선스의 적용을 받습니다. # # 모듈 사용시 원작자분께 허락을 받으시길 바랍니다. # # 모듈에 대한 저작권은 화향이 소유합니다. # ############################################################################### import random, datetime, os import numpy as np from PIL import Image from activity_log import log_actvity def alpha_composite(src, dst): src = np.asarray(src) dst = np.asarray(dst) out = np.empty(src.shape, dtype = 'float') alpha = np.index_exp[:, :, 3:] rgb = np.index_exp[:, :, :3] src_a = src[alpha]/255.0 dst_a = dst[alpha]/255.0 out[alpha] = src_a+dst_a*(1-src_a) old_setting = np.seterr(invalid = 'ignore') out[rgb] = (src[rgb]*src_a + dst[rgb]*dst_a*(1-src_a))/out[alpha] np.seterr(**old_setting) out[alpha] *= 255 np.clip(out,0,255) out = out.astype('uint8') out = Image.fromarray(out, 'RGBA') return out def hangul_clock(): open('clock_rendering.rtl', 'w').close() now = datetime.datetime.now() filename = "%s_%s_%s_%s_%s_%s.png" % (now.year, now.month, now.day, now.hour, now.minute, now.second) BG = Image.open("hangul_clock_base/BG_1000_1500.png") ment = Image.open("hangul_clock_base/ment/ment%s_1000_1500.png" % (random.randint(1, 3))) one = alpha_composite(ment, BG) hour_base = Image.open("hangul_clock_base/hour/hour_base_1000_1500.png") two = alpha_composite(hour_base, one) min_base = Image.open("hangul_clock_base/minute/minute_base_1000_1500.png") three = alpha_composite(min_base, two) hour = now.hour if hour > 12: hour = now.hour - 12 now_hour = Image.open("hangul_clock_base/hour/hour_%s_1000_1500.png" % (hour)) four = alpha_composite(now_hour, three) now_minute = Image.open("hangul_clock_base/minute/minute_%s_1000_1500.png" % (now.minute)) five = alpha_composite(now_minute, four) result = five result.save(filename) log_actvity("I completed rendering Clock Render") os.remove('clock_rendering.rtl') return filename
{"hexsha": "1d4fc7c4808fd7099ec15a4757909fe0a8de1007", "size": 2263, "ext": "py", "lang": "Python", "max_stars_repo_path": "hangul_clock.py", "max_stars_repo_name": "HyunsDev/Rutap-bot_Discord", "max_stars_repo_head_hexsha": "13f664864953e56a4bb887fd9cc29519a58b49db", "max_stars_repo_licenses": ["BSD-3-Clause"], "max_stars_count": 1, "max_stars_repo_stars_event_min_datetime": "2020-07-05T11:27:51.000Z", "max_stars_repo_stars_event_max_datetime": "2020-07-05T11:27:51.000Z", "max_issues_repo_path": "hangul_clock.py", "max_issues_repo_name": "HyunsDev/Rutap-bot_Discord", "max_issues_repo_head_hexsha": "13f664864953e56a4bb887fd9cc29519a58b49db", "max_issues_repo_licenses": ["BSD-3-Clause"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "hangul_clock.py", "max_forks_repo_name": "HyunsDev/Rutap-bot_Discord", "max_forks_repo_head_hexsha": "13f664864953e56a4bb887fd9cc29519a58b49db", "max_forks_repo_licenses": ["BSD-3-Clause"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 33.776119403, "max_line_length": 105, "alphanum_fraction": 0.5894829872, "include": true, "reason": "import numpy", "num_tokens": 682}
from __future__ import division, absolute_import, print_function import glob import argparse import os import shutil import pdb import numpy as np from tqdm import tqdm CONTINUAL_LEARNING_LABELS = ['CC', 'SC', 'EC', 'SQC'] CL_LABEL_KEY = "continual_learning_label" def main(): parser = argparse.ArgumentParser(description='Dataset Manipulator: useful to merge two datasets by concatenating ' + 'episodes. PS: Deleting sources after merging into the destination ' + 'folder.') parser.add_argument('--continual-learning-labels', type=str, nargs=2, metavar=('label_1', 'label_2'), default=argparse.SUPPRESS, help='Labels for the continual learning RL distillation task.') parser.add_argument('-f', '--force', action='store_true', default=False, help='Force the merge, even if it overrides something else,' ' including the destination if it exist') parser.add_argument('--timesteps', type=int, nargs=2, default=[-1,-1], help="To have a certain number of frames for two data sets ") group = parser.add_mutually_exclusive_group() group.add_argument('--merge', type=str, nargs=3, metavar=('source_1', 'source_2', 'destination'), default=argparse.SUPPRESS, help='Merge two datasets by appending the episodes, deleting sources right after.') args = parser.parse_args() if 'merge' in args: # let make sure everything is in order assert os.path.exists(args.merge[0]), "Error: dataset '{}' could not be found".format(args.merge[0]) # If the merge file exists already, delete it for the convenince of updating student's policy if os.path.exists(args.merge[2]) or os.path.exists(args.merge[2] + '/'): assert args.force, "Error: destination directory '{}' already exists".format(args.merge[2]) shutil.rmtree(args.merge[2]) if 'continual_learning_labels' in args: assert args.continual_learning_labels[0] in CONTINUAL_LEARNING_LABELS \ and args.continual_learning_labels[1] in CONTINUAL_LEARNING_LABELS, \ "Please specify a valid Continual learning label to each dataset to be used for RL distillation !" # create the output os.mkdir(args.merge[2]) #os.rename(args.merge[0] + "/dataset_config.json", args.merge[2] + "/dataset_config.json") #os.rename(args.merge[0] + "/env_globals.json", args.merge[2] + "/env_globals.json") shutil.copy2(args.merge[0] + "/dataset_config.json",args.merge[2] + "/dataset_config.json") shutil.copy2(args.merge[0] + "/env_globals.json", args.merge[2] + "/env_globals.json") # copy files from first source num_timesteps_1, num_timesteps_2 = args.timesteps local_path = os.getcwd() all_records = sorted(glob.glob(args.merge[0] + "/record_[0-9]*/*")) previous_records = all_records[0] for ts_counter_1, record in enumerate(all_records): #if the timesteps is larger than needed, we wait until this episode is over if(num_timesteps_1>0 and ts_counter_1 >num_timesteps_1): if(os.path.dirname(previous_records).split('_')[-1] != os.path.dirname(record).split('_')[-1]): break s = args.merge[2] + "/" + record.split("/")[-2] + '/' + record.split("/")[-1] s = os.path.join(local_path,s) record = os.path.join(local_path, record) try: shutil.copy2(record, s) except FileNotFoundError: os.mkdir(os.path.dirname(s)) shutil.copy2(record, s) previous_records = record num_episode_dataset_1 = int(previous_records.split("/")[-2][7:]) if (num_timesteps_1 == -1): num_episode_dataset_1 += 1 ts_counter_1 += 1 # copy files from second source all_records = sorted(glob.glob(args.merge[1] + "/record_[0-9]*/*")) previous_records = all_records[0] for ts_counter_2, record in enumerate(all_records): if (num_timesteps_2 > 0 and ts_counter_2 > num_timesteps_2): if (os.path.dirname(previous_records).split('_')[-1] != os.path.dirname(record).split('_')[-1]): break episode = str(num_episode_dataset_1 + int(record.split("/")[-2][7:])) new_episode = record.split("/")[-2][:-len(episode)] + episode s = args.merge[2] + "/" + new_episode + '/' + record.split("/")[-1] s = os.path.join(local_path, s) record = os.path.join(local_path, record) try: shutil.copy2(record, s) except FileNotFoundError: os.mkdir(os.path.dirname(s)) shutil.copy2(record, s) previous_records = record num_episode_dataset_2 = int(previous_records.split("/")[-2][7:]) if(num_timesteps_2==-1): num_episode_dataset_2 +=1 ts_counter_2 +=1 ts_counter = [ts_counter_1, ts_counter_2] # load and correct ground_truth ground_truth = {} ground_truth_load = np.load(args.merge[0] + "/ground_truth.npz") ground_truth_load_2 = np.load(args.merge[1] + "/ground_truth.npz") ground_truth["images_path"] = [] num_episode_dataset = num_episode_dataset_1 index_slash = args.merge[2].find("/") index_margin_str = len("/record_") directory_str = args.merge[2][index_slash+1:] len_info_1 = [len(ground_truth_load[k]) for k in ground_truth_load.keys()] num_eps_total_1, num_ts_total_1 = min(len_info_1), max(len_info_1) len_info_2 = [len(ground_truth_load_2[k]) for k in ground_truth_load_2.keys()] num_eps_total_2, num_ts_total_2 = min(len_info_2), max(len_info_2) for idx_, gt_load in enumerate([ground_truth_load, ground_truth_load_2], 1): for arr in gt_load.files: if arr == "images_path": # here, we want to rename just the folder containing the records, hence the black magic for i in tqdm(range(ts_counter[idx_-1]),#range(len(gt_load["images_path"])), desc="Update of paths (Folder " + str(1+idx_) + ")"): # find the "record_" position path = gt_load["images_path"][i] end_pos = path.find("/record_") inter_pos = path.find("/frame") # pos in the complete path. if idx_ > 1: episode = str(num_episode_dataset_1 + int(path[end_pos + index_margin_str: inter_pos])) episode = episode.zfill(3) new_record_path = "/record_" + episode + path[inter_pos:] else: new_record_path = path[end_pos:] ground_truth["images_path"].append(directory_str + new_record_path) else: # anything that isnt image_path, we dont need to change gt_arr = gt_load[arr] if idx_ > 1: num_episode_dataset = num_episode_dataset_2 # HERE check before overwritting that the target is random !+ if gt_load[arr].shape[0] < num_episode_dataset: gt_arr = np.repeat(gt_load[arr], num_episode_dataset, axis=0) if idx_ > 1: # This is the first dataset if (len(gt_arr) == num_eps_total_2): # This is a episode non-change variable ground_truth[arr] = np.concatenate((ground_truth[arr], gt_arr[:num_episode_dataset_2]), axis=0) elif (len(gt_arr) == num_ts_total_2): # a timesteps changing variable ground_truth[arr] = np.concatenate((ground_truth[arr], gt_arr[:ts_counter_2]), axis=0) else: assert 0 == 1, "No compatible variable in the stored ground truth for the second dataset {}" \ .format(args.merge[1]) else: # This is the first dataset if(len(gt_arr) == num_eps_total_1): #This is a episode non-change variable ground_truth[arr] = gt_arr[:num_episode_dataset_1] elif(len(gt_arr) == num_ts_total_1): # a timesteps changing variable ground_truth[arr] = gt_arr[:ts_counter_1] else: assert 0 ==1 , "No compatible variable in the stored ground truth for the first dataset {}"\ .format(args.merge[0]) # save the corrected ground_truth np.savez(args.merge[2] + "/ground_truth.npz", **ground_truth) # load and correct the preprocessed data (actions, rewards etc) preprocessed = {} preprocessed_load = np.load(args.merge[0] + "/preprocessed_data.npz") preprocessed_load_2 = np.load(args.merge[1] + "/preprocessed_data.npz") dataset_1_size = preprocessed_load["actions"].shape[0] dataset_2_size = preprocessed_load_2["actions"].shape[0] for idx, prepro_load in enumerate([preprocessed_load, preprocessed_load_2]): for arr in prepro_load.files: pr_arr = prepro_load[arr] to_class = None if arr == "episode_starts": to_class = bool elif arr == "actions_proba" or arr =="rewards": to_class = float else: to_class = int # all data is of timesteps changing (instead of episode changing) if preprocessed.get(arr, None) is None: #for the first dataset preprocessed[arr] = pr_arr.astype(to_class)[:ts_counter_1] else:# for the second dataset preprocessed[arr] = np.concatenate((preprocessed[arr].astype(to_class), pr_arr[:ts_counter_2].astype(to_class)), axis=0) if 'continual_learning_labels' in args: if preprocessed.get(CL_LABEL_KEY, None) is None: preprocessed[CL_LABEL_KEY] = \ np.array([args.continual_learning_labels[idx] for _ in range(ts_counter_1)]) else: preprocessed[CL_LABEL_KEY] = \ np.concatenate((preprocessed[CL_LABEL_KEY], np.array([args.continual_learning_labels[idx] for _ in range(ts_counter_2)])), axis=0) print("The total timesteps: ", ts_counter_1+ts_counter_2) print("The total episodes: ", num_episode_dataset_1+num_episode_dataset_2) for k in preprocessed: print(k) print(preprocessed[k].shape) for k in ground_truth: print(k) print(ground_truth[k].shape) np.savez(args.merge[2] + "/preprocessed_data.npz", ** preprocessed) # remove the old folders # shutil.rmtree(args.merge[0]) # shutil.rmtree(args.merge[1]) if __name__ == '__main__': main()
{"hexsha": "21b874d5a5239f77ef89feee4906bb387aeb0323", "size": 11782, "ext": "py", "lang": "Python", "max_stars_repo_path": "environments/dataset_merger.py", "max_stars_repo_name": "sun-te/robotics-rl-srl", "max_stars_repo_head_hexsha": "d321085b81eef63dcac58028af87eec6de7633b4", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "environments/dataset_merger.py", "max_issues_repo_name": "sun-te/robotics-rl-srl", "max_issues_repo_head_hexsha": "d321085b81eef63dcac58028af87eec6de7633b4", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "environments/dataset_merger.py", "max_forks_repo_name": "sun-te/robotics-rl-srl", "max_forks_repo_head_hexsha": "d321085b81eef63dcac58028af87eec6de7633b4", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 2, "max_forks_repo_forks_event_min_datetime": "2019-11-26T11:41:12.000Z", "max_forks_repo_forks_event_max_datetime": "2021-08-30T16:00:27.000Z", "avg_line_length": 49.9237288136, "max_line_length": 122, "alphanum_fraction": 0.5606009167, "include": true, "reason": "import numpy", "num_tokens": 2521}
from pathlib import Path import numpy as np from tensorflow import keras from tensorflow.keras.preprocessing.image import load_img class MaskSequence(keras.utils.Sequence): def __init__(self, base_path, split, batch_size, img_size): self.batch_size = batch_size self.img_size = img_size self.input_img_paths, self.target_img_paths = self._load_paths(Path(base_path), split + ".txt") def __len__(self): return len(self.target_img_paths) // self.batch_size def __getitem__(self, idx): """Returns tuple (input, target) correspond to batch #idx.""" i = idx * self.batch_size batch_input_img_paths = self.input_img_paths[i: i + self.batch_size] batch_target_img_paths = self.target_img_paths[i: i + self.batch_size] x = np.zeros((self.batch_size,) + self.img_size + (3,), dtype="float32") for j, path in enumerate(batch_input_img_paths): img = load_img(path, target_size=self.img_size) x[j] = img y = np.zeros((self.batch_size,) + self.img_size + (1,), dtype="uint8") for j, path in enumerate(batch_target_img_paths): img = load_img(path, target_size=self.img_size, color_mode="grayscale") y[j] = np.expand_dims(img, 2) # Ground truth labels are 1, 2, 3. Subtract one to make them 0, 1, 2: # y[j] -= 1 return x, y @staticmethod def _load_paths(directory, file): with open(directory / file, ) as f: rows = f.readlines() rows = map(lambda x: x.strip(), rows) rows = map(lambda x: x.split(" "), rows) rows = list(rows) inputs, outputs = zip(*rows) absolute_path = lambda x: str((directory / x).resolve()) inputs, outputs = map(absolute_path, inputs), map(absolute_path, outputs) return list(inputs), list(outputs)
{"hexsha": "7b2e0c5eede2942dbe7d1c75add953385cc3089d", "size": 1916, "ext": "py", "lang": "Python", "max_stars_repo_path": "fashiondatasets/MaskSequence.py", "max_stars_repo_name": "NiklasHoltmeyer/FashionDatasets", "max_stars_repo_head_hexsha": "a9309f90abd6bff739ecffafd69cf52506f2cb97", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "fashiondatasets/MaskSequence.py", "max_issues_repo_name": "NiklasHoltmeyer/FashionDatasets", "max_issues_repo_head_hexsha": "a9309f90abd6bff739ecffafd69cf52506f2cb97", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "fashiondatasets/MaskSequence.py", "max_forks_repo_name": "NiklasHoltmeyer/FashionDatasets", "max_forks_repo_head_hexsha": "a9309f90abd6bff739ecffafd69cf52506f2cb97", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 39.1020408163, "max_line_length": 103, "alphanum_fraction": 0.6252609603, "include": true, "reason": "import numpy", "num_tokens": 457}
%% Copyright (C) 2014, 2016-2017, 2019, 2022 Colin B. Macdonald %% Copyright (C) 2020 Mike Miller %% Copyright (C) 2020 Fernando Alvarruiz %% %% This file is part of OctSymPy. %% %% OctSymPy is free software; you can redistribute it and/or modify %% it under the terms of the GNU General Public License as published %% by the Free Software Foundation; either version 3 of the License, %% or (at your option) any later version. %% %% This software is distributed in the hope that it will be useful, %% but WITHOUT ANY WARRANTY; without even the implied warranty %% of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See %% the GNU General Public License for more details. %% %% You should have received a copy of the GNU General Public %% License along with this software; see the file COPYING. %% If not, see <http://www.gnu.org/licenses/>. %% -*- texinfo -*- %% @defun mat_rclist_asgn (@var{A}, @var{r}, @var{c}, @var{B}) %% Private helper routine for sym array assigment using lists. %% %% @code{(R(i),C(i))} specify entries of the matrix @var{A}. %% We execute @code{A(R(i),C(i)) = B(i)}. %% %% Notes: %% @itemize %% @item @var{B} is accessed with linear indexing. %% @item @var{B} might be a scalar, used many times. %% @item @var{A} might need to get bigger, if so it will be padded %% with zeros. %% @end itemize %% %% @end defun function z = mat_rclist_asgn(A, r, c, B) if (isempty (r) && isempty (c) && (isempty (B) || isscalar (B))) z = A; return end if ~( isvector(r) && isvector(c) && (length(r) == length(c)) ) error('this routine is for a list of rows and cols'); end if ((numel(B) == 1) && (numel(r) > 1)) B = repmat(B, size(r)); end if (length(r) ~= numel(B)) error('not enough/too much in B') end % Easy trick to copy A into larger matrix AA: % AA = sp.Matrix.zeros(n, m) % AA[0, 0] = A % Also usefil: .copyin_matrix cmd = { '(A, r, c, B) = _ins' '# B linear access fix, transpose for sympy row-based' 'if B is None or not B.is_Matrix:' ' B = sp.Matrix([[B]])' 'BT = B.T' '# make a resized copy of A, and copy existing stuff in' 'if isinstance(A, list):' ' assert len(A) == 0, "unexpectedly non-empty list: report bug!"' ' n = max(max(r) + 1, 1)' ' m = max(max(c) + 1, 1)' ' AA = [[0]*m for i in range(n)]' 'elif A is None or not isinstance(A, MatrixBase):' ' # we have non-matrix, put in top-left' ' n = max(max(r) + 1, 1)' ' m = max(max(c) + 1, 1)' ' AA = [[0]*m for i in range(n)]' ' AA[0][0] = A' 'else:' ' # build bigger matrix' ' n = max(max(r) + 1, A.rows)' ' m = max(max(c) + 1, A.cols)' ' AA = [[0]*m for i in range(n)]' ' # copy current matrix in' ' for i in range(A.rows):' ' for j in range(A.cols):' ' AA[i][j] = A[i, j]' '# now insert the new bits from B' 'for i, (r, c) in enumerate(zip(r, c)):' ' AA[r][c] = BT[i]' 'return sp.Matrix(AA),' }; rr = num2cell(int32(r-1)); cc = num2cell(int32(c-1)); z = pycall_sympy__ (cmd, A, rr, cc, B); % a simpler earlier version, but only for scalar r,c %cmd = { '(A, r, c, b) = _ins' % 'if not A.is_Matrix:' % ' A = sp.Matrix([[A]])' % 'AA = sp.Matrix.zeros(max(r+1, A.rows), max(c+1, A.cols))' % 'AA[0, 0] = A' % 'AA[r, c] = b' % 'return AA,' }; end
{"author": "cbm755", "repo": "octsympy", "sha": "c1ecd1e08f027d5101d0f4250dfc496aa98c8bcd", "save_path": "github-repos/MATLAB/cbm755-octsympy", "path": "github-repos/MATLAB/cbm755-octsympy/octsympy-c1ecd1e08f027d5101d0f4250dfc496aa98c8bcd/inst/@sym/private/mat_rclist_asgn.m"}
import numpy as np import os import textwrap import tkinter as tk import tkinter.ttk as tk_ttk import matplotlib matplotlib.use('TkAgg') from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg TREEVIEW_SELECT_EVENT = '<<treeview_select>>' class FullDisplay(tk.Frame): def __init__(self, master): super().__init__(master) self.grid(row=0, column=0, sticky='nsew') self.tree = DirectoryViewer(self) self.canvas = GraphPlotter(self) self.bind(TREEVIEW_SELECT_EVENT, self.treeview_new_selection) self.rowconfigure(0, weight=1) self.columnconfigure(0, weight=3) self.columnconfigure(1, weight=10) def treeview_new_selection(self, event): self.canvas.draw_plot(self.tree.get_selected_file()) class DirectoryViewer(tk.Frame): def __init__(self, master=None, path='.'): super().__init__(master) self.master = master self.grid(row=0, column=0, sticky='nswe') self.setup_tree(path) def tell_master_select(self, event): self.master.event_generate(TREEVIEW_SELECT_EVENT) def get_selected_file(self): return self.build_path(self.tree.focus()) def build_path(self, curr_id): curr_item = self.tree.item(curr_id) parent_id = self.tree.parent(curr_id) curr_item_path = curr_item['text'] while parent_id != '': parent = self.tree.item(parent_id) curr_item_path = os.path.join(parent['text'], curr_item_path) curr_id = parent_id curr_item = self.tree.item(curr_id) parent_id = self.tree.parent(curr_id) return curr_item_path def setup_tree(self, path): self.rowconfigure(0, weight=1) self.columnconfigure(0, weight=1) self.tree = tk_ttk.Treeview(self) self.tree.bind('<<TreeviewSelect>>', self.tell_master_select) self.tree.grid(row=0, column=0, sticky='nswe') ysb = tk_ttk.Scrollbar(self, orient='vertical', command=self.tree.yview) ysb.grid(row=0, column=1, sticky='ns') xsb = tk_ttk.Scrollbar(self, orient='horizontal', command=self.tree.xview) xsb.grid(row=1, column=0, sticky='ew') self.tree.configure(yscroll=ysb.set, xscroll=xsb.set) path = os.path.abspath(path) self.path = path self.tree.heading('#0', text=path, anchor='w') root_node = self.tree.insert('', 'end', text=path, open=True) self.opened = set([root_node]) for p in os.listdir(path): self.insert_node(root_node, p, os.path.join(path, p)) self.tree.bind('<<TreeviewOpen>>', self.open_node) # insert_node() and open_node() are for lazy loading def insert_node(self, parent, text, path): node = self.tree.insert(parent, 'end', text=text, open=False) if os.path.isdir(path): self.tree.insert(node, 'end') # dummy to show the dir icon def open_node(self, event): curr_node = self.tree.focus() abspath = self.build_path(curr_node) if os.path.isdir(abspath) and curr_node not in self.opened: self.tree.delete(self.tree.get_children(curr_node)) for p in os.listdir(abspath): self.insert_node(curr_node, p, os.path.join(abspath, p)) self.opened.add(curr_node) # process_directory() does eager loading def process_directory(self, parent, path): for p in os.listdir(path): abspath = os.path.join(path, p) isdir = os.path.isdir(abspath) oid = self.tree.insert(parent, 'end', text=p, open=False) if isdir: self.process_directory(oid, abspath) class GraphPlotter(tk.Frame): def __init__(self, master): super().__init__(master) self.grid(row=0, column=1, sticky='nsew') self.load_plotters() self.setup_canvas() self.rowconfigure(0, weight=1) self.columnconfigure(0, weight=1) def setup_canvas(self): self.figure = matplotlib.figure.Figure(figsize=(5, 5), dpi=100) self.canvas = FigureCanvasTkAgg(self.figure, self) self.draw_plot(None) self.canvas.get_tk_widget().grid(column=0, row=0, sticky='nsew') def load_plotters(self): import data_browser.plotting_modules self.plotters = {module.FILE_EXTENSION: module.DEFAULT_PLOTTER for module in data_browser.plotting_modules.__all__} def draw_plot(self, file): self.figure.clf() if file is None or os.path.isdir(file): plot_dir(file, self.figure) elif os.path.splitext(file)[1] in self.plotters: try: self.plotters[os.path.splitext(file)[1]](file, self.figure) except Exception as e: plot_error(e, self.figure) else: plot_error(ValueError('cannot plot {}'.format(file)), self.figure) self.canvas.draw_idle() def plot_error(error, fig): msg = 'An error occurred:\n' msg += type(error).__name__ + '\n' msg += '\n'.join(textwrap.wrap(str(error), 60)) ax = fig.add_subplot(111) ax.text(0, 0, msg) ax.set_axis_off() def plot_dir(file, fig): ax = fig.add_subplot(111) ax.set_axis_off() def _main(): root = tk.Tk() root.geometry('800x500') root.title('Data Browser') app = FullDisplay(master=root) root.rowconfigure(0, weight=1) root.columnconfigure(0, weight=1) app.mainloop() if __name__ == '__main__': _main()
{"hexsha": "4474ea2f2b460f2931327cd2b8210c28ed377ca0", "size": 5683, "ext": "py", "lang": "Python", "max_stars_repo_path": "data_browser/data_browser.py", "max_stars_repo_name": "gfetterman/file_browser", "max_stars_repo_head_hexsha": "8f54fb0f3a4a1fcce93b98ae44431accd943ac00", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "data_browser/data_browser.py", "max_issues_repo_name": "gfetterman/file_browser", "max_issues_repo_head_hexsha": "8f54fb0f3a4a1fcce93b98ae44431accd943ac00", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "data_browser/data_browser.py", "max_forks_repo_name": "gfetterman/file_browser", "max_forks_repo_head_hexsha": "8f54fb0f3a4a1fcce93b98ae44431accd943ac00", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 34.8650306748, "max_line_length": 78, "alphanum_fraction": 0.6165757522, "include": true, "reason": "import numpy", "num_tokens": 1339}
[STATEMENT] lemma rt_graph_not_dip [dest]: "\<And>ip ip' \<sigma> dip. (ip, ip') \<in> rt_graph \<sigma> dip \<Longrightarrow> ip \<noteq> dip" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<And>ip ip' \<sigma> dip. (ip, ip') \<in> rt_graph \<sigma> dip \<Longrightarrow> ip \<noteq> dip [PROOF STEP] unfolding rt_graph_def [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<And>ip ip' \<sigma> dip. (ip, ip') \<in> {uu_. \<exists>ip ip' dsn dsk hops. uu_ = (ip, ip') \<and> ip \<noteq> dip \<and> rt (\<sigma> ip) dip = Some (dsn, dsk, val, hops, ip')} \<Longrightarrow> ip \<noteq> dip [PROOF STEP] by auto
{"llama_tokens": 261, "file": "AODV_variants_c_gtobcast_C_Loop_Freedom", "length": 2}
module LibRealSense # Load in `deps.jl`, complaining if it does not exist const depsjl_path = joinpath(@__DIR__, "..", "deps", "deps.jl") if !isfile(depsjl_path) error("LibRealSense was not build properly. Please run Pkg.build(\"LibRealSense\").") end include(depsjl_path) # Module initialization function function __init__() check_deps() end include("CEnum.jl") using .CEnum include("ctypes.jl") export Ctm, Ctime_t, Cclock_t include(joinpath(@__DIR__, "..", "gen", "rs2_common.jl")) include(joinpath(@__DIR__, "..", "gen", "rs2_api.jl")) foreach(names(@__MODULE__, all=true)) do s if startswith(string(s), "rs2_") || startswith(string(s), "RS2_") @eval export $s end end const RS2_API_VERSION = RS2_API_MAJOR_VERSION * 10000 + RS2_API_MINOR_VERSION * 100 + RS2_API_PATCH_VERSION const RS2_API_VERSION_STR = "$(RS2_API_MAJOR_VERSION).$(RS2_API_MINOR_VERSION).$(RS2_API_PATCH_VERSION)" export RS2_API_VERSION, RS2_API_VERSION_STR end # module
{"hexsha": "575c309884d625c1fd6887594b6d814be89b08da", "size": 977, "ext": "jl", "lang": "Julia", "max_stars_repo_path": "src/LibRealSense.jl", "max_stars_repo_name": "UnofficialJuliaMirrorSnapshots/RealSense.jl-1d20419d-a1bd-598e-846b-24709a6a9336", "max_stars_repo_head_hexsha": "3cdc32505064468416fc891dfd877daf265d483a", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "src/LibRealSense.jl", "max_issues_repo_name": "UnofficialJuliaMirrorSnapshots/RealSense.jl-1d20419d-a1bd-598e-846b-24709a6a9336", "max_issues_repo_head_hexsha": "3cdc32505064468416fc891dfd877daf265d483a", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "src/LibRealSense.jl", "max_forks_repo_name": "UnofficialJuliaMirrorSnapshots/RealSense.jl-1d20419d-a1bd-598e-846b-24709a6a9336", "max_forks_repo_head_hexsha": "3cdc32505064468416fc891dfd877daf265d483a", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 26.4054054054, "max_line_length": 107, "alphanum_fraction": 0.7308085977, "num_tokens": 287}
import time from random import * import numpy as np import matplotlib.pyplot as plt def question_1(): # 初始化生成器 seed() # 返回给定范围内的随机数 print(randrange(-10, 8)) # 返回给定范围内的随机数 print(randint(0, 20)) # 返回给定序列的随机元素 print(choice([1, 2, 5, 3, 5, 7])) # 返回序列的给定样本 print(sample([1, 2, 3, 5, -4, 'ss'], 3)) # 返回 0~1 的浮点数 print(random()) # 返回两个给定参数之间的随机浮点数 print(uniform(1, 2)) # 返回两个给定参数之间的随机浮点数,指定 mode print(triangular(0.2, 0.9, mode=0.4)) x = [1, 2, 3, 4] # 打乱序列 shuffle(x) print(x) def question_2(): for s in "PYTHON": if s == "T": continue print(s, end="") print() for s in "PYTHON": if s == "T": break print(s, end="") print() for s in "BIT": for i in range(10): print(s, end="") if s == "I": break def question_3(): # 作用是格式化时间戳为本地的时间 print(time.localtime()) # 作用是格式化时间戳为本地的时间 print(time.asctime()) time.sleep(2 + 3) # 作用是格式化时间戳为本地的时间 print(time.ctime()) # 1970纪元后经过的浮点秒数 print(time.time()) print(time.process_time() / time.process_time_ns()) def question_4(): # 单分支 s = eval(input("请输入一个整数:")) if s % 2 == 0: print("这是个偶数") print("输入的数字是:", s) # 二分支 if True: print("语句1") else: print("语句2") # 紧凑形式:用于表达简单地二分支结构 guess = eval(input()) print("猜{}了".format("对" if guess == 99 else "错")) # 多分支 if True: print("1") elif True: print("2") else: print("3") def question_6(): try: raise IOError except IOError: print("IOError") try: raise SystemExit except SystemExit: print("SystemExit") try: raise OverflowError except OverflowError: print("OverflowError") try: raise EOFError except EOFError: print("EOFError") def f(x0) -> int: return x0 ** 2 def question_7(): """ 蒙特卡罗方法求函数 y=x^2 在[0,1]内的定积分(值) """ # 投点次数 n = 10000 # 矩形区域边界 x_min, x_max = 0.0, 1.0 y_min, y_max = 0.0, 1.0 # 在矩形区域内随机投点 x = np.random.uniform(x_min, x_max, n) # 均匀分布 y = np.random.uniform(y_min, y_max, n) # 统计 落在函数 y=x^2图像下方的点的数目 res = sum(np.where(y < f(x), 1, 0)) # 计算 定积分的近似值(Monte Carlo方法的精髓:用统计值去近似真实值) integral = res / n print('integral: ', integral) # 画个图看看 fig = plt.figure() axes = fig.add_subplot(111) axes.plot(x, y, 'ro', markersize=1) plt.axis('equal') # 防止图像变形 axes.plot(np.linspace(x_min, x_max, 10), f(np.linspace(x_min, x_max, 10)), 'b-') # 函数图像 plt.show()
{"hexsha": "d964f09281ac1a16b182274671829ab480293f5a", "size": 2703, "ext": "py", "lang": "Python", "max_stars_repo_path": "basic_exercises/experiment_3.py", "max_stars_repo_name": "vuhe/LearnPython", "max_stars_repo_head_hexsha": "0a081a85456557ae542925cce950b23313c3c9b9", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "basic_exercises/experiment_3.py", "max_issues_repo_name": "vuhe/LearnPython", "max_issues_repo_head_hexsha": "0a081a85456557ae542925cce950b23313c3c9b9", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "basic_exercises/experiment_3.py", "max_forks_repo_name": "vuhe/LearnPython", "max_forks_repo_head_hexsha": "0a081a85456557ae542925cce950b23313c3c9b9", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 18.2635135135, "max_line_length": 92, "alphanum_fraction": 0.5290418054, "include": true, "reason": "import numpy", "num_tokens": 1094}
/* * VisualServoing is a tutorial program for introducing students to * robotics. * * Copyright 2009, 2010 Kevin Quigley <kevin.quigley@gmail.com> and * Marsette Vona <vona@ccs.neu.edu> * * VisualServoing is free software: you can redistribute it andor modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * VisualServoing is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * as the file COPYING along with VisualServoing. If not, see * <http://www.gnu.org/licenses/>. */ // system headers #include <cstdio> #include <fstream> #include <iostream> #include <signal.h> #include <unistd.h> // CTY arm project #include "ArmControl.hpp" #include "ArmGui.hpp" #include "ArmGuiGTK.hpp" #include "IK.hpp" #include "ImageProcessing.hpp" #include "Params.hpp" // OpenCV #include <cv.h> #include <highgui.h> // Boost #include <boost/numeric/ublas/vector.hpp> #include <boost/numeric/ublas/io.hpp> using namespace boost::numeric; #if RUN_THREADED #include <errno.h> #include <pthread.h> #endif // constants #define FOCAL_LENGTH 481.0 // calc p65 //TBD - add calculation info #define DIAMETER .038 //!< Diameter of ball in meters (measurexd) #define MIN_TRACKING_RADIUS_PIXELS 2.0 //!< Minimum tracking radius required void mark_images(const ublas::vector<double>& target, const CvSeq* circles, const Params& params, Images& images); void calibrate_offsets(std::string& file, ublas::vector<double>& offsets); void update_gui_position (ArmControl& ctl, Params& params); void handler(int sig); ArmControl* sig_ctl = 0; //!< Pointer to ArmControl for stopping arm //! movement upon received signal. /*! * \Brief Starting function containing main control loop. * Start up and configure all objects, spin off the GUI, and continue * in main loop until told to stop. */ int main(int argc, char** argv) { // set signal handling struct sigaction action; action.sa_handler = &handler; if (sigaction(SIGHUP, &action, NULL) < 0) printf("Error setting action for SIGHUP\n"); if (sigaction(SIGINT, &action, NULL) < 0) printf("Error setting action for SIGINT\n"); if (sigaction(SIGQUIT, &action, NULL) < 0) printf("Error setting action for SIGQUIT\n"); if (sigaction(SIGILL, &action, NULL) < 0) printf("Error setting action for SIGILL\n"); if (sigaction(SIGABRT, &action, NULL) < 0) printf("Error setting action for SIGABRT\n"); if (sigaction(SIGFPE, &action, NULL) < 0) printf("Error setting action for SIGFPE\n"); if (sigaction(SIGSEGV, &action, NULL) < 0) printf("Error setting action for SIGSEGV\n"); if (sigaction(SIGTERM, &action, NULL) < 0) printf("Error setting action for SIGTERM\n"); Images images; images.set = false; images.bgr = 0; images.filtered_bgr = 0; images.filtered_hls = 0; Params params; init_params(params); CvSeq* circles = 0; unsigned int cameraID(0); std::string port("/dev/ttyS0"); std::string config_file; std::string flags = "hp:f:"; int opt; bool help = false; while ((opt = getopt(argc, argv, flags.c_str())) > 0) { switch (opt) { case 'h': help = true; break; case 'p': port = optarg; break; case 'f': config_file = optarg; break; default: break; } } if (help) { printf("Visual Servo Arm Options:\n" " -h Print this help menu\n" " -f <file> Use a calibration file to set joint offsets\n" " -p <port> Use an alternate serial port (default: /dev/ttyS0\n"); exit(0); } CvCapture* capture(0); IplImage* frame(0); ImageProcessing ip; ublas::vector<double> features(3); ublas::vector<double> delta_angles(3); ublas::vector<double> target_pos(3); ublas::vector<double> grab_target(3); target_pos(0) = 0.0; //x target_pos(1) = 0.0; //y target_pos(2) = 0.2; //Z grab_target(0) = 0.0; //x grab_target(1) = 0.0; //y grab_target(2) = 0.05; //Z // div by focal_length to normalize target x,y ublas::vector<double> target_pos_norm(target_pos); target_pos_norm(0) /= FOCAL_LENGTH; target_pos_norm(1) /= FOCAL_LENGTH; IK ik; ik.setTarget(target_pos_norm); ik.setLengths(0.0, .152, 0.122, 0.075); ik.setV(.015, -.150, .25); //m, m, rad ArmGuiGTK* gui = ArmGuiGTK::instance(); gui->update(images, params); #if RUN_THREADED pthread_t guiTID; switch (pthread_create(&guiTID, 0, ArmGui::threadRun, gui)) { case EAGAIN: printf("Max threads reached\n"); return -1; case EINVAL: printf("Invalid thread attributes\n"); return -1; case EPERM: printf("Invalid permissions\n"); return -1; default: break; } #endif SSC32Controller ssc(port); ArmControl ctl(ssc); sig_ctl = &ctl; ctl.setRateLimit(500); ublas::vector<double> off(ublas::zero_vector<double>(NUM_JOINTS)); calibrate_offsets(config_file, off); ctl.setOffset(off); ublas::vector<double> angle_limits(ublas::vector<double>(NUM_JOINTS)); // max limits angle_limits(0) = 3.0/8.0 * M_PI; angle_limits(1) = M_PI_2; angle_limits(2) = M_PI - .70; // off arm brace angle_limits(3) = M_PI_2; std::cout << "max limits: " << angle_limits << std::endl; ctl.setMaxAngle(angle_limits); ArmControl::radiansToDegrees(angle_limits); for (int i = 0; i < NUM_JOINTS; i++) params.ctl.max_limits[i] = angle_limits(i); params.limits_changed = true; // min limits angle_limits(0) = -3.0/8.0 * M_PI; angle_limits(1) = -M_PI_2 + 0.35; // off spring pedestal // angle_limits(2) = 0; angle_limits(2) = -50.0*2.0*M_PI/360.0; angle_limits(3) = -M_PI_2; ctl.setMinAngle(angle_limits); std::cout << "min limits: " << angle_limits << std::endl; ArmControl::radiansToDegrees(angle_limits); for (int i = 0; i < NUM_JOINTS; i++) params.ctl.min_limits[i] = angle_limits(i); params.limits_changed = true; ctl.park(); update_gui_position(ctl, params); params.current_mode = PARK; while (params.run) { //mainloop gui->update(images, params); #if !RUN_THREADED gui->run(); #endif if (!params.run) continue; //to next mainloop iteration if (params.gui.estop) { params.gui.estop = false; printf("ESTOP received\n"); ctl.stop(); if (params.current_mode != ESTOP) { params.current_mode = ESTOP; } } // all activities respond to these new modes switch (params.new_mode) { case HOME: params.new_mode = NONE; printf("*** -> HOME\n"); ctl.home(); update_gui_position(ctl, params); params.current_mode = READY; break; case PARK: printf("park request\n"); params.new_mode = NONE; printf("*** -> PARK\n"); ctl.park(); update_gui_position(ctl, params); params.current_mode = PARK; break; default: break; } // all activities respond to these current modes switch (params.current_mode) { case HOME: printf("HOME->READY\n"); params.current_mode = READY; break; case PARK: // getting out of PARK handled above usleep(10000); // 10ms case BUSY: printf("BUSY -> READY\n"); if (!ctl.busy()) params.current_mode = READY; break; default: break; } if (params.activity == KINEMATICS) { usleep(10000); // 10ms ctl.slaveWrist(false); ublas::vector<double> new_position(NUM_JOINTS); if (params.current_mode == READY) { switch (params.new_mode) { case MOVE: params.new_mode = NONE; printf("Moving\n"); for (int i = 0; i < NUM_JOINTS; i++ ) new_position(i) = params.gui.new_theta[i]; ArmControl::degreesToRadians(new_position); ctl.moveToPosition(new_position); update_gui_position(ctl, params); break; case DRAW: params.new_mode = NONE; printf("Drawing\n"); if (params.ctl.holding_marker) { //ctl.drawX(); } else { params.new_mode = ERROR; params.error = "Must hold marker to draw."; } break; // end movement modes case GRAB: params.new_mode = NONE; printf("Grab marker\n"); if (!params.ctl.holding_marker) { ctl.grabMarker(); //sleep(1); params.ctl.holding_marker = true; } else { printf("error set\n"); params.error_set = true; params.error = "Marker already held\n"; } break; case RELEASE: params.new_mode = NONE; printf("Release marker\n"); if (params.ctl.holding_marker) { ctl.openGrip(); params.ctl.holding_marker = false; } else { params.error_set = true; params.error = "Marker not being held\n"; } break; default: break; } } // update param struct continue; //to next mainloop iteration } //end of kinematics // // Setup code for Image Processing and Visual Servoing // if (capture == 0) { capture = cvCreateCameraCapture(cameraID); if (capture == 0) { printf("failed to init capture device\n"); sleep(1); continue; //to next mainloop iteration } printf("initialized capture device\n"); printf("allocating images\n"); images.bgr = cvCreateImage(IMAGE_SIZE, IPL_DEPTH_8U, 3); #if FLOAT_HLS images.bgr32 = cvCreateImage(IMAGE_SIZE, IPL_DEPTH_32F, 3); images.hls = cvCreateImage(IMAGE_SIZE, IPL_DEPTH_32F, 3); #else images.hls = cvCreateImage(IMAGE_SIZE, IPL_DEPTH_8U, 3); #endif images.filtered_bgr = cvCreateImage(IMAGE_SIZE, IPL_DEPTH_8U, 1); images.filtered_hls = cvCreateImage(IMAGE_SIZE, IPL_DEPTH_8U, 1); if (images.bgr == 0 || images.hls == 0 #if FLOAT_HLS || images.bgr32 == 0 #endif || images.filtered_bgr == 0 || images.filtered_hls == 0) { params.current_mode = ERROR; params.error = "Cannot create image holders"; std::cout << params.error << std::endl; params.run = false; continue; //to next mainloop iteration } //some images might be displayed before being initialized cvSet(images.bgr, cvScalar(0,0,0)); #if FLOAT_HLS cvSet(images.bgr32, cvScalar(0,0,0)); #endif cvSet(images.hls, cvScalar(0,0,0)); cvSet(images.filtered_bgr, cvScalar(0)); cvSet(images.filtered_hls, cvScalar(0)); images.set = true; } //capture was 0 // // Image Processing // frame = cvQueryFrame(capture); if (frame == 0) { params.current_mode = ERROR; params.error = "Null frame"; std::cout << params.error << std::endl; params.run = false; continue; //to next mainloop iteration } cvResize(frame, images.bgr); ctl.slaveWrist(true); ip.filterImages(images, params); if (!params.gui.target_set) continue; if (params.activity == VS || params.activity == IP) { //find ball circles = ip.findBall(images, params); mark_images(target_pos, circles, params, images); } //find ball if (params.activity != VS) { usleep(1000); continue; //to next mainloop iteration } // // Visual Servoing code // switch (params.new_mode) { case GRAB: params.new_mode = NONE; ctl.grabBall(); break; case RELEASE: params.new_mode = NONE; ctl.openGrip(); break; default: break; } printf("current_mode = %d\n", params.current_mode); switch (params.current_mode) { case READY: printf("old: READY\t"); switch (params.new_mode) { case MOVE: printf("new: MOVE\n"); params.new_mode = NONE; params.current_mode = MOVE; break; case PAUSE: printf("new: PAUSE\n"); params.new_mode = NONE; params.current_mode = PAUSE; continue; //to next mainloop iteration default: break; } break; case PAUSE: printf("old: PAUSE\t"); if (params.new_mode == MOVE) { printf("new: MOVE\n"); params.new_mode = NONE; params.current_mode = MOVE; break; } break; case MOVE: printf("old: MOVE\t"); if (params.new_mode == PAUSE) { printf("new: PAUSE\n"); params.new_mode = NONE; //ctl.stop(); params.current_mode = PAUSE; continue; //to next mainloop iteration } break; default: break; } if (circles != 0 && circles->total > 0 && params.gui.target_set && (params.current_mode == MOVE || params.current_mode == GRAB)) { ublas::vector<double> features(3); float* p = (float*) cvGetSeqElem(circles, 0); printf("first circle at (%d,%d) radius %d\n", cvRound(p[0]), cvRound(p[1]), cvRound(p[2])); features(0) = p[0]; features(1) = p[1]; features(2) = p[2]; if (features(2) >= MIN_TRACKING_RADIUS_PIXELS) { // rotate/translate to center origin, x left, y up features(0) = (images.hls->width / 2.0) - features(0); // x if (images.hls->origin == 0) // top left origin features(1) = (images.hls->height / 2.0) - features(1); // y // normalize x & y features(0) /= FOCAL_LENGTH; features(1) /= FOCAL_LENGTH; // circular approximation of Z // Z = D*f / radius*2 features(2) = DIAMETER * FOCAL_LENGTH / (features(2) * 2.0); printf("Norm features x,y = (%3f, %3f), Z = %3f\n", features(0), features(1), features(2)); printf("Norm target x,y = (%3f, %3f), Z = %3f\n", target_pos_norm(0), target_pos_norm(1), target_pos_norm(2)); std::cout << "current angles: " << ctl.getCurrentAngles() << std::endl; bool dls = ik.damped_least_squares(features, ctl.getCurrentAngles(), params, delta_angles); if (dls && params.current_mode != PARK) { std::cout << "commanded angle deltas: " << delta_angles << std::endl; ctl.moveDelta(delta_angles); } } else { std::cout << "radius below tracking enable threshold " << MIN_TRACKING_RADIUS_PIXELS; } } //tracking ball } //mainloop #if RUN_THREADED switch (pthread_join(guiTID, 0)) { case 0: break; // all ok case EINVAL: printf("pthread_join: Invalid thread id %d\n", (int) guiTID); break; case ESRCH: printf("pthread_join: Thread ID %d not found\n", (int) guiTID); break; case EDEADLK: printf("pthread_join: Deadlock detected\n"); break; default: break; } #endif if (images.set) { printf("releasing images\n"); cvReleaseImage(&(images.bgr)); cvReleaseImage(&(images.hls)); cvReleaseImage(&(images.filtered_hls)); cvReleaseImage(&(images.filtered_bgr)); #ifdef FLOAT_HLS cvReleaseImage(&(images.bgr32)); #endif } if (gui != 0) { printf("destroying gui\n"); gui->destroy(); gui = 0; } if (capture != 0) { printf("releasing capture device\n"); cvReleaseCapture(&capture); } } //main() /*! * \brief Markup images with circles and lines. * Used for giving feedback to the user on the location of the visual * servo target and where the ball is detected in the image. * * \param[in] target Cartesian coordinates of the target in [pixel, * pixel, meter] units. * \param[in] circles Sequence of detected circles (u,v,r) in pixels * \param[in] params Params struct * \param[in,out] images Images struct */ void mark_images(const ublas::vector<double>& target, const CvSeq* circles, const Params& params, Images& images) { // draw target cross if (params.gui.target_set && params.activity == VS) { // fl * D / Z = apparent diameter, so div by 2 to get apparent radius double radius = (FOCAL_LENGTH * DIAMETER / target(2)) / 2.0; // rescale since target(x,y) was normalized using FOCAL_LENGTH double ih = images.bgr->height/2.0; double iw = images.bgr->width/2.0; CvPoint v1 = cvPoint(cvRound(target(0) + iw ), cvRound(target(1) + ih - radius)); // up CvPoint v2 = cvPoint(cvRound(target(0) + iw ), cvRound(target(1) + ih + radius)); // down CvPoint h1 = cvPoint(cvRound(target(0) + iw - radius), cvRound(target(1) + ih )); // left CvPoint h2 = cvPoint(cvRound(target(0) + iw + radius), cvRound(target(1) + ih )); // right // Draw target cross for sighting. cvLine(images.bgr, h1, h2, CV_RGB(0x00, 0x00, 0xff)); cvLine(images.bgr, v1, v2, CV_RGB(0x00, 0x00, 0xff)); } int num_circles = /*params.activity == VS ? 1 :*/ circles->total; // draw the ball for (int i = 0; i < num_circles; i++ ) { float* p = (float*) cvGetSeqElem(circles, i); CvPoint pt = cvPoint(cvRound(p[0]),cvRound(p[1])); cvCircle(images.bgr, pt, cvRound(p[2]), CV_RGB(0xff, 0x00, 0x00)); cvCircle(images.filtered_hls, pt, cvRound(p[2]), cvScalar(192)); //greyscale //TBD mark filtered_bgr if using that to find the ball } } /*! * \brief Uses calibration file to set offsets. * Reads servo numbers and calibration positions from the provided * file. Offsets are calculated from calibration position differences * to ideal positions. */ void calibrate_offsets(std::string& file, ublas::vector<double>& offsets){ if (file.empty()) { offsets(Arm::ELBOW) = 400; } else { std::fstream input(file.c_str()); int servo, val; ublas::vector<double> calibration_position(NUM_JOINTS); calibration_position(Arm::GRIP) = 1350; calibration_position(Arm::WRIST) = 1500; calibration_position(Arm::ELBOW) = 1500; calibration_position(Arm::SHOULDER) = 1500; calibration_position(Arm::BASE) = 1500; std::cout << "cal: " << calibration_position << std::endl; std::cout << "grip: " << Arm::GRIP << std::endl; while (!input.eof()) { input >> std::skipws >> servo >> val; printf("servo: %d, val: %d, cal: %g\t", servo, val, calibration_position(servo)); offsets[servo] = val - calibration_position(servo); printf("offset: %g\n", offsets(servo)); } std::cout << "off: " << offsets << std::endl; } } /*! * \brief Update params with current angles. * Sets current angles of ctl in struct params to be picked up by GUI. */ void update_gui_position (ArmControl& ctl, Params& params) { ublas::vector<double> current_theta(ctl.getCurrentAngles()); ArmControl::radiansToDegrees(current_theta); for (int i = 0; i < NUM_JOINTS; i++) { params.ctl.current_theta[i] = current_theta(i); } params.position_changed = true; } /*! * \brief Signal handler function for stopping threads. * * \param[in] sig The received signal. */ void handler(int sig) { if (sig_ctl == 0) { printf("No control object for emergency shutdown!\n"); } else { sig_ctl->stop(); } exit(sig); }
{"hexsha": "0dbc5c42afbc92ce92ea827adfc0d1d19f68e9d9", "size": 19550, "ext": "cpp", "lang": "C++", "max_stars_repo_path": "Source/rvctools 1/robot/interfaces/crustcrawler/VisualServoing.cpp", "max_stars_repo_name": "Maria-Paulacf/PlumaBot", "max_stars_repo_head_hexsha": "d4bf2e667b88e955f40e33d55db2a8f22c35b47b", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 227.0, "max_stars_repo_stars_event_min_datetime": "2021-01-20T05:34:32.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-29T12:43:05.000Z", "max_issues_repo_path": "Source/rvctools 1/robot/interfaces/crustcrawler/VisualServoing.cpp", "max_issues_repo_name": "Maria-Paulacf/PlumaBot", "max_issues_repo_head_hexsha": "d4bf2e667b88e955f40e33d55db2a8f22c35b47b", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 1.0, "max_issues_repo_issues_event_min_datetime": "2021-04-22T05:56:00.000Z", "max_issues_repo_issues_event_max_datetime": "2021-05-26T06:00:17.000Z", "max_forks_repo_path": "Source/rvctools 1/robot/interfaces/crustcrawler/VisualServoing.cpp", "max_forks_repo_name": "Maria-Paulacf/PlumaBot", "max_forks_repo_head_hexsha": "d4bf2e667b88e955f40e33d55db2a8f22c35b47b", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 239.0, "max_forks_repo_forks_event_min_datetime": "2021-01-28T02:59:53.000Z", "max_forks_repo_forks_event_max_datetime": "2022-03-29T08:02:17.000Z", "avg_line_length": 28.6656891496, "max_line_length": 80, "alphanum_fraction": 0.6124296675, "num_tokens": 5366}
import re import argparse import emoji import MeCab import numpy as np import matplotlib.pyplot as plt mecab = MeCab.Tagger('-Ochasen') letters_pattern = re.compile(r'[a-zA-Z]+') bracket_pairs = [['[', ']'], ['(', ')'], ['「', '」'], ['『', '』'], ['(', ')'], ['(', ')'], ['(', ')']] # Non-breaking space symbol for html symbols = ['&nbsp;', '&lt;', '&gt;', '&amp;', '&quot;', '&apos;', '&cent;', '&pound;', '&yen;', '&euro'] def has_target_postag(node): tokens = [] has_noun = False has_adj = False while node: tokens.append(node.surface) features = node.feature.split(',') tag = features[0] tag_type = features[1] if tag == '名詞' and tag_type == '一般': has_noun = True #if tag == '形容詞': #has_adj = True node = node.next return tokens[1:-1], has_noun # and has_adj def has_en_word(tokens): has_letter = False for token in tokens: if letters_pattern.findall(token): has_letter = True break return has_letter def remove_bracket_content(text, bracket_pairs): low = 0 high = 0 for left_b, right_b in bracket_pairs: low = text.find(left_b) high = text.find(right_b, low) while low != -1 and high != -1: content = text[low:high + 1] text = text.replace(content, '') low = text.find(left_b) high = text.find(right_b, low) return text def remove_special_symbol(text): for symbol in symbols: text = text.replace(symbol, '') text = text.replace(symbol[:-1], '') return text def remove_emoji(text): return emoji.get_emoji_regexp().sub(r'', text) def main(args): f = open(args.output_file, 'w') freq_dict = dict() token_sum = 0 sample_num = 0 for line in open(args.input_file): items = line.strip().split('\t') if len(items) != 2: continue image = items[0] caption = items[1].replace(' ', '') # Remove content inside the bracket pairs caption = remove_bracket_content(caption, bracket_pairs) # Remove special symbol caption = remove_special_symbol(caption) # Remove emoji caption = remove_emoji(caption) # Tokenize caption node = mecab.parseToNode(caption) tokens, postag_flag = has_target_postag(node) # Filter the caption with specific topics or tags if caption.find('【') != -1 and caption.find('】') != -1: # print(f'{line.strip()}') continue if len(tokens) < 5 or len(tokens) > 20: continue if has_en_word(tokens): # print(f'{line.strip()}') continue if postag_flag: token_sum += len(tokens) sample_num += 1 if len(tokens) not in freq_dict: freq_dict[len(tokens)] = 1 else: freq_dict[len(tokens)] += 1 new_line = image + '\t' + ' '.join(tokens) f.write(new_line + '\n') # print(f'{new_line}') f.close() average_len = token_sum * 1.0 / sample_num print(f'Average token length -> {average_len}') # Plot the frequency curve ordered = sorted(freq_dict.items(), key=lambda tup: tup[0]) x = np.array([t[0] for t in ordered]) y = np.array([t[1] for t in ordered]) plt.switch_backend('agg') plt.figure() plt.plot(x, y) plt.grid(True, linestyle=':') plt.savefig('./freq-figure.jpg') if __name__ == '__main__': parser = argparse.ArgumentParser('Clean Train Data') parser.add_argument('-i', '--input-file', type=str) parser.add_argument('-o', '--output-file', type=str, default='./output.txt') args = parser.parse_args() main(args)
{"hexsha": "dbe54f8d627f9c590bb3316f3fbe3c593d5c92db", "size": 3836, "ext": "py", "lang": "Python", "max_stars_repo_path": "image-comment-generation/data/clean.py", "max_stars_repo_name": "stonyhu/Image-Commenting", "max_stars_repo_head_hexsha": "eb925a3f99075d8b74c6cabd125f7b9a1f9786d2", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "image-comment-generation/data/clean.py", "max_issues_repo_name": "stonyhu/Image-Commenting", "max_issues_repo_head_hexsha": "eb925a3f99075d8b74c6cabd125f7b9a1f9786d2", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "image-comment-generation/data/clean.py", "max_forks_repo_name": "stonyhu/Image-Commenting", "max_forks_repo_head_hexsha": "eb925a3f99075d8b74c6cabd125f7b9a1f9786d2", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 29.0606060606, "max_line_length": 80, "alphanum_fraction": 0.5573514077, "include": true, "reason": "import numpy", "num_tokens": 967}
from scipy import spatial # Find the distance between each embedding def get_pairwise_dist(embeddings): return spatial.distance.squareform(spatial.distance.pdist(embeddings, metric="cosine"))
{"hexsha": "cf15412fe9b44f24408a1a6ad77545e5ccb9c23f", "size": 197, "ext": "py", "lang": "Python", "max_stars_repo_path": "similarity.py", "max_stars_repo_name": "Peter-Devine/text_finder", "max_stars_repo_head_hexsha": "b09ae796511dc1d000b07c12996d25576566e012", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "similarity.py", "max_issues_repo_name": "Peter-Devine/text_finder", "max_issues_repo_head_hexsha": "b09ae796511dc1d000b07c12996d25576566e012", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "similarity.py", "max_forks_repo_name": "Peter-Devine/text_finder", "max_forks_repo_head_hexsha": "b09ae796511dc1d000b07c12996d25576566e012", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 32.8333333333, "max_line_length": 91, "alphanum_fraction": 0.8121827411, "include": true, "reason": "from scipy", "num_tokens": 40}
import numpy as np from core.buffer.replay_buffer import ReplayBuffer def test_replay_buffer(mock_transition): buffer_size = 10 memory = ReplayBuffer(buffer_size=buffer_size) # test after init assert memory.buffer_size == buffer_size assert memory.buffer_index == 0 assert memory.size == 0 # test store store_iteration = 15 for _ in range(store_iteration): memory.store(mock_transition) # test after store assert memory.buffer_index == (store_iteration % buffer_size) assert memory.size == min(buffer_size, store_iteration) # test sample batch_size = 8 sample_transitions = memory.sample(batch_size=batch_size) assert isinstance(sample_transitions, dict) for key, val in sample_transitions.items(): assert key in mock_transition[0].keys() if isinstance(val, list): for i, v in enumerate(val): assert isinstance(v, np.ndarray) assert v.shape == (batch_size, *mock_transition[0][key][i].shape[1:]) else: assert isinstance(val, np.ndarray) assert val.shape == (batch_size, *mock_transition[0][key].shape[1:])
{"hexsha": "026d6ef7181b7626bb6c14f052acf2ba3a45ee56", "size": 1181, "ext": "py", "lang": "Python", "max_stars_repo_path": "jorldy/test/core/buffer/test_replay_buffer.py", "max_stars_repo_name": "zenoengine/JORLDY", "max_stars_repo_head_hexsha": "1eb867e52a03e0282a55fa612cbc5b5de701ffe7", "max_stars_repo_licenses": ["Apache-2.0"], "max_stars_count": 300, "max_stars_repo_stars_event_min_datetime": "2021-11-03T07:06:34.000Z", "max_stars_repo_stars_event_max_datetime": "2022-03-24T02:23:56.000Z", "max_issues_repo_path": "jorldy/test/core/buffer/test_replay_buffer.py", "max_issues_repo_name": "zenoengine/JORLDY", "max_issues_repo_head_hexsha": "1eb867e52a03e0282a55fa612cbc5b5de701ffe7", "max_issues_repo_licenses": ["Apache-2.0"], "max_issues_count": 37, "max_issues_repo_issues_event_min_datetime": "2021-11-04T04:31:07.000Z", "max_issues_repo_issues_event_max_datetime": "2022-03-30T01:40:49.000Z", "max_forks_repo_path": "jorldy/test/core/buffer/test_replay_buffer.py", "max_forks_repo_name": "zenoengine/JORLDY", "max_forks_repo_head_hexsha": "1eb867e52a03e0282a55fa612cbc5b5de701ffe7", "max_forks_repo_licenses": ["Apache-2.0"], "max_forks_count": 45, "max_forks_repo_forks_event_min_datetime": "2021-11-03T08:05:56.000Z", "max_forks_repo_forks_event_max_datetime": "2022-03-24T08:35:05.000Z", "avg_line_length": 31.9189189189, "max_line_length": 85, "alphanum_fraction": 0.6706181202, "include": true, "reason": "import numpy", "num_tokens": 264}
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Jun 3 01:30:26 2021 @author: alan """ import tensorflow as tf import glob import random import tensorflow.keras.layers as layers import numpy as np from skimage.io import imread import os import matplotlib.pyplot as plt import cv2 from datetime import datetime from packaging import version import datetime from tensorboard.plugins.hparams import api as hp import time device_name = tf.test.gpu_device_name() if not device_name: raise SystemError('GPU device not found') print('Found GPU at: {}'.format(device_name)) tf.debugging.set_log_device_placement(True) #Detecting GPU print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU'))) def unet(): inputs = tf.keras.Input((112, 112, 3)) # Entry block x = layers.Conv2D(32, 3, strides=2, padding="same")(inputs) x = layers.BatchNormalization()(x) x = layers.Activation("relu")(x) previous_block_activation = x # Set aside residual # Blocks 1, 2, 3 are identical apart from the feature depth. for filters in [64, 128, 256]: x = layers.Activation("relu")(x) x = layers.SeparableConv2D(filters, 3, padding="same")(x) x = layers.BatchNormalization()(x) x = layers.Activation("relu")(x) x = layers.SeparableConv2D(filters, 3, padding="same")(x) x = layers.BatchNormalization()(x) x = layers.MaxPooling2D(3, strides=2, padding="same")(x) # Project residual residual = layers.Conv2D(filters, 1, strides=2, padding="same")( previous_block_activation ) x = layers.add([x, residual]) # Add back residual previous_block_activation = x # Set aside next residual ### [Second half of the network: upsampling inputs] ### for filters in [256, 128, 64, 32]: x = layers.Activation("relu")(x) x = layers.Conv2DTranspose(filters, 3, padding="same")(x) x = layers.BatchNormalization()(x) x = layers.Activation("relu")(x) x = layers.Conv2DTranspose(filters, 3, padding="same")(x) x = layers.BatchNormalization()(x) x = layers.UpSampling2D(2)(x) # Project residual residual = layers.UpSampling2D(2)(previous_block_activation) residual = layers.Conv2D(filters, 1, padding="same")(residual) x = layers.add([x, residual]) # Add back residual previous_block_activation = x # Set aside next residual # Add a per-pixel classification layer outputs = layers.Conv2D(1, (1, 1), activation='sigmoid') (x) # Define the model model = tf.keras.Model(inputs, outputs) return model class data(tf.keras.utils.Sequence): """Helper to iterate over the data (as Numpy arrays).""" def __init__(self, batch_size, img_size, input_img_paths, target_img_paths): self.batch_size = batch_size self.img_size = img_size self.input_img_paths = input_img_paths self.target_img_paths = target_img_paths def __len__(self): return len(self.target_img_paths) // self.batch_size def __getitem__(self, idx): """Returns tuple (input, target) correspond to batch #idx.""" i = idx * self.batch_size batch_input_img_paths = self.input_img_paths[i : i + self.batch_size] batch_target_img_paths = self.target_img_paths[i : i + self.batch_size] x = np.zeros((self.batch_size,) + self.img_size + (3,), dtype="float32") for j, path in enumerate(batch_input_img_paths): x[j] = plt.imread(path) y = np.zeros((self.batch_size,) + self.img_size , dtype="uint8") for j, path in enumerate(batch_target_img_paths): img = plt.imread(path) y[j] = img return x, y #Impoting data img_files = glob.glob('DATA/frames/*.png') mask_files = [glob.glob('DATA/masks/' + os.path.basename(im))[0] for im in img_files] N = len (img_files) # Spliting data ixRand = list(range(N)) random.shuffle(ixRand) train_data = [img_files[e] for e in ixRand[:round(N*.8)]] train_labels = [mask_files[e] for e in ixRand[:round(N*.8)]] test_data = [img_files[e] for e in ixRand[round(N*.8):]] test_labels = [mask_files[e] for e in ixRand[round(N*.8):]] # torch needs that data comes from an instance with getitem and len methods (Map-style datasets) training_dataset = data(32,(112,112), train_data, train_labels) val_dataset = data(32,(112,112), test_data, test_labels) model = unet() model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) ''' tf.keras.utils.plot_model( model, to_file='model.png', show_shapes=False, show_dtype=False, show_layer_names=True, rankdir='TB', expand_nested=False, dpi=96 ) ''' # Train the model, doing validation at the end of each epoch. epochs = 20 start = time.time() history = model.fit(training_dataset, epochs=epochs, validation_data=val_dataset) end = time.time() elapsed = end-start #%% # "Accuracy" plt.plot(history.history['accuracy']) plt.plot(history.history['val_accuracy']) plt.title('$Model_{Accuracy}$') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(['train', 'validation'], loc='lower right') plt.show() # "Loss" plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('$Model_{Loss}$') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'validation'], loc='upper right') plt.show() #%% Display some results pred = model.predict(val_dataset) savePred = [cv2.imwrite('DATA/pred/' + os.path.basename(test_data[i]), np.squeeze(np.array(pred[i]>.5, dtype='uint8'),-1) *255) for i in range (len(pred))] plt.figure() plt.subplot(121) plt.imshow(np.squeeze(pred[6,:,:,:],-1) + cv2.cvtColor(plt.imread(test_data[6]), cv2.COLOR_BGR2GRAY)) plt.title('Prediction') plt.subplot(122) plt.imshow( cv2.cvtColor(plt.imread(test_data[6]), cv2.COLOR_BGR2GRAY) + plt.imread(test_labels[6])) plt.title('Ground trouth') #%% Get metrics for evaluation of segmentation ''' import seg_metrics.seg_metrics as sg import csv csv_file = 'metrics.csv' pred_path = glob.glob('DATA/pred/*.png') gdth_path = [glob.glob('DATA/masks/' + os.path.basename(im))[0] for im in pred_path] metrics = [sg.write_metrics(labels = [255], gdth_path=gdth_path[i], pred_path=pred_path[i], csv_file=csv_file) for i in range(len(pred))] keys = list(metrics[0].keys()) keys.remove('filename') means = [ sum(d[k][0] for d in metrics) / len(metrics) for k in keys] metrics_mean = dict (zip(keys,means)) with open('metrics_mean.csv', 'w') as f: # You will need 'wb' mode in Python 2.x w = csv.DictWriter(f, metrics_mean.keys()) w.writeheader() w.writerow(metrics_mean) '''
{"hexsha": "0cec8392a4c8f81e84914c431af17f474b4de088", "size": 6639, "ext": "py", "lang": "Python", "max_stars_repo_path": "segmentacionCNN.py", "max_stars_repo_name": "alandgabriel/LV-Segmentation-with-U-Net", "max_stars_repo_head_hexsha": "7cfad5791e91321a1d4afb73559dbeeeeaee9347", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "segmentacionCNN.py", "max_issues_repo_name": "alandgabriel/LV-Segmentation-with-U-Net", "max_issues_repo_head_hexsha": "7cfad5791e91321a1d4afb73559dbeeeeaee9347", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "segmentacionCNN.py", "max_forks_repo_name": "alandgabriel/LV-Segmentation-with-U-Net", "max_forks_repo_head_hexsha": "7cfad5791e91321a1d4afb73559dbeeeeaee9347", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 30.3150684932, "max_line_length": 157, "alphanum_fraction": 0.6826329266, "include": true, "reason": "import numpy", "num_tokens": 1743}
# Copyright (c) 2017- Salas Lin (leVirve) # # This software is released under the MIT License. # https://opensource.org/licenses/MIT import numpy as np from scipy.optimize import linear_sum_assignment np.seterr(divide='ignore', invalid='ignore') def confusion_table(preds, labels, num_class: int): ''' Calculate the confusion matrix *credit: refer from [chainer/chainercv] eval_semantic_segmentation.py Args: preds: tensor, ndarray labels: tensor, ndarray ''' confusion = np.zeros(num_class * num_class, dtype=np.int64) def flatten(x): if isinstance(x, np.ndarray): return x.flatten() return x.view(-1) def numpy(x): if isinstance(x, np.ndarray): return x return x.cpu().numpy() for pred, label in zip(preds, labels): pred, label = flatten(pred), flatten(label) mask = label < 255 hist = num_class * label[mask] + pred[mask] confusion += np.bincount(numpy(hist), minlength=num_class ** 2) return confusion.reshape((num_class, num_class)) def intersection_over_union(confusion: np.ndarray): iou_denominator = (confusion.sum(axis=1) + confusion.sum(axis=0) - np.diag(confusion)) return np.diag(confusion) / (iou_denominator) def max_bipartite_matching_score(predictions: np.ndarray, targets: np.ndarray): def to_numpy(x): import torch if torch.is_tensor(x): return x.cpu().numpy() return x def _one_sample(prediction, target): ''' calculate the maximum bipartite matching between two labels prediction: 2-D numpy array target: 2-D numpy array ''' pred_labels = np.unique(prediction) gt_labels = np.unique(target) cost = np.zeros((len(pred_labels), len(gt_labels))) for i, p in enumerate(pred_labels): p_mask = prediction == p cost[i] = [-np.sum(p_mask & (target == g)) for g in gt_labels] row_ind, col_ind = linear_sum_assignment(cost) score = -cost[row_ind, col_ind].sum() return score / target.size predictions = np.squeeze(to_numpy(predictions)) targets = np.squeeze(to_numpy(targets)) if len(predictions.shape) == len(targets.shape) and len(predictions.shape) == 3: scores = [_one_sample(p, t) for p, t in zip(predictions, targets)] return np.mean(scores) return _one_sample(predictions, targets) class Metric(): def __init__(self, num_class, only_scalar=False, prefix='acc/'): self.num_class = num_class self.only_scalar = only_scalar self.prefix = prefix def __call__(self, output, target): ''' output: Variable target: Variable ''' confusion = confusion_table(output, target, num_class=self.num_class) iou = intersection_over_union(confusion) pixel_accuracy = np.diag(confusion).sum() / confusion.sum() class_accuracy = np.diag(confusion) / np.sum(confusion, axis=1) if self.only_scalar: return {f'{self.prefix}miou': np.nanmean(iou), f'{self.prefix}pixel': pixel_accuracy, f'{self.prefix}mean_class': np.nanmean(class_accuracy)} else: return {'iou': iou, 'miou': np.nanmean(iou), 'pixel_accuracy': pixel_accuracy, 'class_accuracy': class_accuracy, 'mean_class_accuracy': np.nanmean(class_accuracy)}
{"hexsha": "b6434705a9c84e6382a3b4cbf62adb6db847cd45", "size": 3520, "ext": "py", "lang": "Python", "max_stars_repo_path": "onegan/metrics/semantic_segmentation.py", "max_stars_repo_name": "leVirve/OneGAN", "max_stars_repo_head_hexsha": "e0d5f387c957fbf599919078d8c6277740015336", "max_stars_repo_licenses": ["MIT"], "max_stars_count": 6, "max_stars_repo_stars_event_min_datetime": "2018-01-26T08:58:10.000Z", "max_stars_repo_stars_event_max_datetime": "2018-05-03T20:44:06.000Z", "max_issues_repo_path": "onegan/metrics/semantic_segmentation.py", "max_issues_repo_name": "leVirve/OneGAN", "max_issues_repo_head_hexsha": "e0d5f387c957fbf599919078d8c6277740015336", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 3, "max_issues_repo_issues_event_min_datetime": "2018-08-13T03:02:13.000Z", "max_issues_repo_issues_event_max_datetime": "2020-10-20T04:15:13.000Z", "max_forks_repo_path": "onegan/metrics/semantic_segmentation.py", "max_forks_repo_name": "leVirve/OneGAN", "max_forks_repo_head_hexsha": "e0d5f387c957fbf599919078d8c6277740015336", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 3, "max_forks_repo_forks_event_min_datetime": "2019-11-21T07:44:29.000Z", "max_forks_repo_forks_event_max_datetime": "2020-09-08T14:15:06.000Z", "avg_line_length": 32.2935779817, "max_line_length": 90, "alphanum_fraction": 0.6261363636, "include": true, "reason": "import numpy,from scipy", "num_tokens": 795}
# Pre-image for Gaussian kernel # From Kwok and Tsang, "The Pre-Image problem in kernel methods", ICML 2003 # (based on matlab code provided by authors) # Also: # Mika, et al. "Kernel PCA and Denoising in Feature Spaces", NIPS 1998 # and # Teixeira et al. "KPCA Denoising and the pre-image problem revisited", DSP 2008 # # Danny Perry (dperry@cs.utah.edu) # May 2015 using Debug include("Kernels.jl") # Fixed point method to preimage # y - projected data (trying to recover into input space) # U - eigenvectors of K # X - training data # z_init - initial guess at z # sigma - Gaussian kernel parameter # tolerance - convergence criteria # maxiters - max number of iters function GaussianKernelPreImage(y,U, X, z_init, sigma, tolerance, maxiters) gamma = U * y # results in n x 1 vector z = copy(z_init) last_z = copy(z) iter = 0 for iter=1:maxiters last_z = copy(z) diff = X - ones(size(X,1),1)*z diff .^= 2 kz = gamma .* exp( -sum(diff,2) ./ sigma^2) if sum(kz) == 0 println("Preimage fixed point iteration failed: initial guess too far away - reverting to initial guess.") return z_init # can't get any closer, returning initial guess. end z = sum(X .* (kz*ones(1,size(X,2))),1)/sum(kz) if norm(last_z-z)/sqrt(norm(z)*norm(last_z)) < tolerance break end end if false println("iters: ", iter) println("err: ", norm(last_z-z)/sqrt(norm(z)*norm(last_z)) , " < ", tolerance) end if iter == maxiters println("warning, did not converge.") end return z, iter end # Linear algebra approach to preimage function GaussianKernelPreImage(distsq, X, neibsize) sidx = sortperm(distsq) sdistsq = distsq[sidx] XH = X[sidx[1:neibsize],:] Xmean = mean(XH,1) XH = XH - ones(neibsize,1) * Xmean # centered around neighborhood mean UM,SM,VM = svd(XH') rankM = rank(diagm(SM),1e-5) UM = UM[:,1:rankM] SM = SM[1:rankM] VM = VM[:,1:rankM] transf = UM*diagm(1./SM)*(VM'./2) sd0 = zeros(neibsize,1) ZM = diagm(SM)*VM' for i=1:neibsize sd0[i] = (ZM[:,i]'*ZM[:,i])[1] end result = transf * (vec(sd0) - vec(sdistsq[1:neibsize])) + vec(Xmean) end # X - training data (n x d) # K - uncentered training data Gram (n x n) # Ktest - uncentered test data Gram with training (n x nt) function GaussianKernelPreImage(X,K,Ktest, neibsize, sigma) n = size(K,1) nt = size(Ktest,2) d = size(X,2) spectrum_pct = 0 target_dim = n centering = "additive" Kc,P,V,S,Y = KernelPCA(K, spectrum_pct, target_dim, centering) H = eye(n)-ones(n,n)/n # centering matrix HMH = H*P*P'*H cK = mean(K,2) meanK = mean(cK) result = zeros(nt,d) neibs = zeros(Int64, nt, neibsize) for j=1:nt # calculate the distance between the testing point and training points k_x = Ktest[:,j] gammaC = HMH*(k_x-cK); PphiNormC = ((k_x+cK)'*gammaC + meanK)[1] d2 = zeros(n); for i = 1:n PphiProjC = (K[i,:]*gammaC)[1]+cK[i] d2[i] = -log(abs((1-PphiNormC+2*PphiProjC)/2))*(sigma*2) end result[j,:] = GaussianKernelPreImage(d2,X,neibsize); closestind = sortperm(d2) neibs[j,:] = closestind[1:neibsize] end return result,neibs end function GaussianKernelDenoise(X,Xtest, iters, neibsize, sigma) n = size(X,1) nt = size(Xtest,1) d = size(X,2) K = GaussianKernel(X,X,sigma) spectrum_pct = 0 target_dim = n centering = "additive" Kc,P,V,S,Y = KernelPCA(K, spectrum_pct, target_dim, centering) H = eye(n)-ones(n,n)/n # centering matrix HMH = H*P*P'*H cK = mean(K,2) meanK = mean(cK) result = copy(Xtest) neibs = zeros(Int64, nt, neibsize) for iter=1:iters for j=1:nt # calculate the distance between the testing point and training points k_x = GaussianKernel(X,Xtest[j,:],sigma) gammaC = HMH*(k_x-cK); PphiNormC = ((k_x+cK)'*gammaC + meanK)[1] d2 = zeros(n); for i = 1:n PphiProjC = (vec(K[i,:])'*vec(gammaC)+cK[i])[1] d2[i] = -log((1-PphiNormC+2*PphiProjC)/2)*sigma end result[j,:] = GaussianKernelPreImage(d2,X,neibsize); closestind = sortperm(d2) neibs[j,:] = closestind[1:neibsize] end end return result,neibs end
{"hexsha": "91a4b0374c0e56afcd4ed27c084140bb0e33d2cb", "size": 4055, "ext": "jl", "lang": "Julia", "max_stars_repo_path": "src/PreImage.jl", "max_stars_repo_name": "daniel-perry/Kernel.jl", "max_stars_repo_head_hexsha": "da7255ffe7b9e1341d4f2decc82128451dc3d383", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "src/PreImage.jl", "max_issues_repo_name": "daniel-perry/Kernel.jl", "max_issues_repo_head_hexsha": "da7255ffe7b9e1341d4f2decc82128451dc3d383", "max_issues_repo_licenses": ["MIT"], "max_issues_count": 1, "max_issues_repo_issues_event_min_datetime": "2016-07-12T17:40:45.000Z", "max_issues_repo_issues_event_max_datetime": "2016-07-12T17:40:45.000Z", "max_forks_repo_path": "src/PreImage.jl", "max_forks_repo_name": "daniel-perry/Kernel.jl", "max_forks_repo_head_hexsha": "da7255ffe7b9e1341d4f2decc82128451dc3d383", "max_forks_repo_licenses": ["MIT"], "max_forks_count": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_forks_event_max_datetime": null, "avg_line_length": 24.8773006135, "max_line_length": 109, "alphanum_fraction": 0.6577065351, "num_tokens": 1433}
#!/usr/bin/env python import numpy as np def get_input(prompt, default): return input(prompt) or str(default) N = int(get_input('Number of NUWS dimensions [1]: ', 1)) cos_power = int(get_input('Power of window function, n (cos^n) [2]: ',2)) Nmax = int(get_input('Maximum number of repeats [16]: ', 16)) print('Please enter time domain sizes as REAL points') if N==1: td1 = int(get_input('td (nominal) [64]: ', 64)) // 2 td2 = 1 else: td1 = int(get_input('td (outer loop, nominal) [64]: ', 64)) // 2 td2 = int(get_input('td (inner loop, nominal) [16]: ', 16)) // 2 # calculate effective td sizes td1eff=td1 td2eff=td2 for i in range(td1): if int(round(Nmax * np.cos(i/td1*np.pi/2)**cos_power))==0: td1eff = i break if N>1: for i in range(td2): if int(round(Nmax * np.cos(i/td2*np.pi/2)**cos_power))==0: td2eff = i break print() total_cycles = 0 # now calculate vc lists if N==1: # 2D for i in range(td1eff): w1 = np.cos(i/td1*np.pi/2)**cos_power c = int(round(Nmax*w1)) print(c) print(c) # second copy for complex points total_cycles += 2*c else: # 3D for i in range(td1eff): # outer loop w1 = np.cos(i/td1*np.pi/2)**cos_power for i2 in range(2): # complex pts for j in range(td2eff): # inner loop w2 = np.cos(j/td2*np.pi/2)**cos_power c = int(round(Nmax * w1 * w2)) print(c) print(c) # second copy for complex points total_cycles += 2*c print() print('Effective td1 = ' + str(2*td1eff)) if N>1: print('Effective td2 = ' + str(2*td2eff)) print('Total cycles = ' + str(total_cycles))
{"hexsha": "2669a329c656d228dc07c5c54eb98fa9b7e60c61", "size": 1752, "ext": "py", "lang": "Python", "max_stars_repo_path": "util/make-nuws.py", "max_stars_repo_name": "chriswaudby/pp", "max_stars_repo_head_hexsha": "a1da83b5cba5ebb5e42b846478dc4bce8bace875", "max_stars_repo_licenses": ["MIT"], "max_stars_count": null, "max_stars_repo_stars_event_min_datetime": null, "max_stars_repo_stars_event_max_datetime": null, "max_issues_repo_path": "util/make-nuws.py", "max_issues_repo_name": "chriswaudby/pp", "max_issues_repo_head_hexsha": "a1da83b5cba5ebb5e42b846478dc4bce8bace875", "max_issues_repo_licenses": ["MIT"], "max_issues_count": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_issues_event_max_datetime": null, "max_forks_repo_path": "util/make-nuws.py", "max_forks_repo_name": "chriswaudby/pp", "max_forks_repo_head_hexsha": "a1da83b5cba5ebb5e42b846478dc4bce8bace875", "max_forks_repo_licenses": ["MIT"], "max_forks_count": 1, "max_forks_repo_forks_event_min_datetime": "2017-09-28T13:50:14.000Z", "max_forks_repo_forks_event_max_datetime": "2017-09-28T13:50:14.000Z", "avg_line_length": 28.2580645161, "max_line_length": 73, "alphanum_fraction": 0.5667808219, "include": true, "reason": "import numpy", "num_tokens": 548}

proof-pile-2のalgebraic-stackからランダムに所得したデータセット

https://huggingface.co/datasets/EleutherAI/proof-pile-2

License see EleutherAI/proof-pile-2

Downloads last month
36
Edit dataset card