Dataset Viewer
Auto-converted to Parquet
query-id
stringlengths
34
34
corpus-id
stringlengths
36
36
score
float64
1
1
query_a0JRF000003eCVO2A2/p00388812
passage_a0JRF000003eCVO2A2/p00388812
1
query_a0JRF000003dbdt2AA/p00388226
passage_a0JRF000003dbdt2AA/p00388226
1
query_a0JRF000003R9IP2A0/p00377596
passage_a0JRF000003R9IP2A0/p00377596
1
query_a0JRF000003iDxV2AU/p00392033
passage_a0JRF000003iDxV2AU/p00392033
1
query_a0JRF000003eNKL2A2/p00388997
passage_a0JRF000003eNKL2A2/p00388997
1
query_a0JRF000003bUjl2AE/p00386253
passage_a0JRF000003bUjl2AE/p00386253
1
query_a0JRF000003fpT42AI/p00390216
passage_a0JRF000003fpT42AI/p00390216
1
query_a0JRF000003i0U12AI/p00391840
passage_a0JRF000003i0U12AI/p00391840
1
query_a0JRF000003ecCw2AI/p00389200
passage_a0JRF000003ecCw2AI/p00389200
1
query_a0JRF000003hVBh2AM/p00391520
passage_a0JRF000003hVBh2AM/p00391520
1
query_a0JRF000003f07B2AQ/p00389559
passage_a0JRF000003f07B2AQ/p00389559
1
query_a0JRF000003f42j2AA/p00389605
passage_a0JRF000003f42j2AA/p00389605
1
query_a0JRF000003hiLp2AI/p00391710
passage_a0JRF000003hiLp2AI/p00391710
1
query_a0JRF000003iAl72AE/p00391999
passage_a0JRF000003iAl72AE/p00391999
1
query_a0JRF000003hCFV2A2/p00391271
passage_a0JRF000003hCFV2A2/p00391271
1
query_a0JRF000003dedN2AQ/p00388289
passage_a0JRF000003dedN2AQ/p00388289
1
query_a0JRF000003i4EH2AY/p00391926
passage_a0JRF000003i4EH2AY/p00391926
1
query_a0JRF000003c8MD2AY/p00386773
passage_a0JRF000003c8MD2AY/p00386773
1
query_a0JRF000003eaFx2AI/p00389170
passage_a0JRF000003eaFx2AI/p00389170
1
query_a0JRF000003cH7l2AE/p00386899
passage_a0JRF000003cH7l2AE/p00386899
1
query_a0JRF000003Yk3V2AS/p00383659
passage_a0JRF000003Yk3V2AS/p00383659
1
query_a0JRF000003eGIr2AM/p00388866
passage_a0JRF000003eGIr2AM/p00388866
1
query_a0JRF000003cEhl2AE/p00386859
passage_a0JRF000003cEhl2AE/p00386859
1
query_a0JRF000003aeV32AI/p00385393
passage_a0JRF000003aeV32AI/p00385393
1
query_a0JRF000003gJFp2AM/p00390574
passage_a0JRF000003gJFp2AM/p00390574
1
query_a0JRF000003gWo92AE/p00390731
passage_a0JRF000003gWo92AE/p00390731
1
query_a0JRF000003eoHJ2AY/p00389407
passage_a0JRF000003eoHJ2AY/p00389407
1
query_a0JRF000003fGK12AM/p00389783
passage_a0JRF000003fGK12AM/p00389783
1
query_a0JRF000003hMzd2AE/p00391435
passage_a0JRF000003hMzd2AE/p00391435
1
query_a0JRF000003hoPd2AI/p00391749
passage_a0JRF000003hoPd2AI/p00391749
1
query_a0JRF000003eKxZ2AU/p00388960
passage_a0JRF000003eKxZ2AU/p00388960
1
query_a0JRF000003hryb2AA/p00391771
passage_a0JRF000003hryb2AA/p00391771
1
query_a0JRF000003cdEj2AI/p00387240
passage_a0JRF000003cdEj2AI/p00387240
1
query_a0JRF000003iA1x2AE/p00391988
passage_a0JRF000003iA1x2AE/p00391988
1
query_a0JRF000003cxRx2AI/p00387605
passage_a0JRF000003cxRx2AI/p00387605
1
query_a0JRF000003dlzp2AA/p00388397
passage_a0JRF000003dlzp2AA/p00388397
1
query_a0JRF000003i2Ar2AI/p00391881
passage_a0JRF000003i2Ar2AI/p00391881
1
query_a0JRF000003dc6v2AA/p00388239
passage_a0JRF000003dc6v2AA/p00388239
1
query_a0JRF000003cyz72AA/p00387621
passage_a0JRF000003cyz72AA/p00387621
1
query_a0JRF000003dIJW2A2/p00387935
passage_a0JRF000003dIJW2A2/p00387935
1
query_a0JRF000003fb6j2AA/p00390007
passage_a0JRF000003fb6j2AA/p00390007
1
query_a0JRF000003fwaz2AA/p00390289
passage_a0JRF000003fwaz2AA/p00390289
1
query_a0JRF000003Z7GD2A0/p00383960
passage_a0JRF000003Z7GD2A0/p00383960
1
query_a0JRF000003hB052AE/p00391254
passage_a0JRF000003hB052AE/p00391254
1
query_a0JRF000003dp2X2AQ/p00388439
passage_a0JRF000003dp2X2AQ/p00388439
1
query_a0JRF000003bfSH2AY/p00386388
passage_a0JRF000003bfSH2AY/p00386388
1
query_a0JRF000003g5ft2AA/p00390395
passage_a0JRF000003g5ft2AA/p00390395
1
query_a0JRF000003f8nt2AA/p00389672
passage_a0JRF000003f8nt2AA/p00389672
1
query_a0JRF000003dI9p2AE/p00387929
passage_a0JRF000003dI9p2AE/p00387929
1
query_a0JRF000003cmec2AA/p00387432
passage_a0JRF000003cmec2AA/p00387432
1
query_a0JRF000003i3jd2AA/p00391914
passage_a0JRF000003i3jd2AA/p00391914
1
query_a0JRF000003iDW52AM/p00392025
passage_a0JRF000003iDW52AM/p00392025
1
query_a0JRF000003hYhR2AU/p00391555
passage_a0JRF000003hYhR2AU/p00391555
1
query_a0JRF000003e6092AA/p00388707
passage_a0JRF000003e6092AA/p00388707
1
query_a0JRF000003hvZB2AY/p00391792
passage_a0JRF000003hvZB2AY/p00391792
1
query_a0JRF000003hwzt2AA/p00391810
passage_a0JRF000003hwzt2AA/p00391810
1
query_a0JRF000003hdHJ2AY/p00391638
passage_a0JRF000003hdHJ2AY/p00391638
1
query_a0JRF000003hpOv2AI/p00391754
passage_a0JRF000003hpOv2AI/p00391754
1
query_a0JRF000003eekz2AA/p00389234
passage_a0JRF000003eekz2AA/p00389234
1
query_a0JRF000003gM2P2AU/p00390611
passage_a0JRF000003gM2P2AU/p00390611
1
query_a0JRF000003hFbZ2AU/p00391314
passage_a0JRF000003hFbZ2AU/p00391314
1
query_a0JRF000003gMVR2A2/p00390616
passage_a0JRF000003gMVR2A2/p00390616
1
query_a0JRF000003emSP2AY/p00389380
passage_a0JRF000003emSP2AY/p00389380
1
query_a0JRF000003fG3t2AE/p00389778
passage_a0JRF000003fG3t2AE/p00389778
1
query_a0JRF000003h6bV2AQ/p00391195
passage_a0JRF000003h6bV2AQ/p00391195
1
query_a0JRF000003cc492AA/p00387230
passage_a0JRF000003cc492AA/p00387230
1
query_a0JRF000003h09V2AQ/p00391137
passage_a0JRF000003e6092AA/p00388707
1
query_a0JRF000003cevZ2AQ/p00387266
passage_a0JRF000003f8nt2AA/p00389672
1
query_a0JRF000003dVwf2AE/p00388131
passage_a0JRF000003dVwf2AE/p00388131
1
query_a0JRF000003dXVR2A2/p00388155
passage_a0JRF000003dXVR2A2/p00388155
1
query_a0JRF000003i1pu2AA/p00391884
passage_a0JRF000003i1pu2AA/p00391884
1
query_a0JRF000003iAEr2AM/p00391991
passage_a0JRF000003iAEr2AM/p00391991
1
query_a0JRF000003iHg92AE/p00392070
passage_a0JRF000003iHg92AE/p00392070
1
query_a0JRF000003glLm2AI/p00390950
passage_a0JRF000003glLm2AI/p00390950
1
query_a0JRF000003fqwz2AA/p00390236
passage_a0JRF000003fqwz2AA/p00390236
1
query_a0JRF000003dAvR2AU/p00387801
passage_a0JRF000003dAvR2AU/p00387801
1
query_a0JRF000003gaOj2AI/p00390804
passage_a0JRF000003gaOj2AI/p00390804
1
query_a0JRF000003hHa92AE/p00391358
passage_a0JRF000003hHa92AE/p00391358
1
query_a0JRF000003cTQf2AM/p00387102
passage_a0JRF000003cTQf2AM/p00387102
1
query_a0JRF000003ZFbx2AG/p00384107
passage_a0JRF000003ZFbx2AG/p00384107
1
query_a0JRF000003i3gP2AQ/p00391913
passage_a0JRF000003i3gP2AQ/p00391913
1
query_a0JRF000003e0sP2AQ/p00388638
passage_a0JRF000003e0sP2AQ/p00388638
1
query_a0JRF000003eABp2AM/p00388764
passage_a0JRF000003eABp2AM/p00388764
1
query_a0JRF000003fUwT2AU/p00389943
passage_a0JRF000003eaFx2AI/p00389170
1
query_a0JRF000003h9EP2AY/p00391233
passage_a0JRF000003h9EP2AY/p00391233
1
query_a0JRF000003gu452AA/p00391030
passage_a0JRF000003gu452AA/p00391030
1
query_a0JRF000003Uk0U2AS/p00380056
passage_a0JRF000003Uk0U2AS/p00380056
1
query_a0JRF000003hg782AA/p00391701
passage_a0JRF000003hYhR2AU/p00391555
1
query_a0JRF000003i1pt2AA/p00391871
passage_a0JRF000003i1pt2AA/p00391871
1
query_a0JRF000003hVrd2AE/p00391528
passage_a0JRF000003hVrd2AE/p00391528
1
query_a0JRF000003fl4T2AQ/p00390123
passage_a0JRF000003fl4T2AQ/p00390123
1
query_a0JRF000003dbh72AA/p00388227
passage_a0JRF000003hMzd2AE/p00391435
1
query_a0JRF000003Osjt2AC/p00376174
passage_a0JRF000003Osjt2AC/p00376174
1
query_a0JRF000003hCgv2AE/p00391276
passage_a0JRF000003hCgv2AE/p00391276
1
query_a0JRF000003bePl2AI/p00386377
passage_a0JRF000003eekz2AA/p00389234
1
query_a0JRF000003ZGWP2A4/p00384118
passage_a0JRF000003hYhR2AU/p00391555
1
query_a0JRF000003eXoL2AU/p00389127
passage_a0JRF000003eXoL2AU/p00389127
1
query_a0JRF000003fIfB2AU/p00389820
passage_a0JRF000003fIfB2AU/p00389820
1
query_a0JRF000003gzOj2AI/p00391127
passage_a0JRF000003gzOj2AI/p00391127
1
query_a0JRF000003cLsw2AE/p00386977
passage_a0JRF000003cLsw2AE/p00386977
1
End of preview. Expand in Data Studio

Australian Tax Guidance Retrieval 🏦

Australian Tax Guidance Retrieval by Isaacus is a novel, diverse, and challenging legal information retrieval evaluation dataset consisting of 112 real-life Australian tax law questions paired with expert-annotated, relevant Australian Government tax guidance and policies.

Uniquely, this dataset sources its real-life tax questions from the posts of everyday Australian taxpayers on the ATO Community forum, with relevant Australian Government guidance and policy in turn being sourced from the answers of tax professionals and ATO employees.

The fact that questions center around substantive and often complex tax problems, which are broadly representative of the problems faced by everyday Australian taxpayers, makes this dataset extremely valuable for the robust evaluation of the legal retrieval capabilities and tax domain understanding of information retrieval models.

This dataset forms part of the Massive Legal Embeddings Benchmark (MLEB), the largest, most diverse, and most comprehensive benchmark for legal text embedding models.

Structure πŸ—‚οΈ

As per the MTEB information retrieval dataset format, this dataset comprises three splits, default, corpus and queries.

The default split pairs questions (query-id) with relevant materials (corpus-id), each pair having a score of 1.

The corpus split contains Markdown-formatted Australian Government guidance and policies, with the text of such materials being stored in the text key and their IDs being stored in the _id key. There is also a title column which is deliberately set to an empty string in all cases for compatibility with the mteb library.

The queries split contains Markdown-formatted questions, with the text of a question being stored in the text key and its ID being stored in the _id key.

Methodology πŸ§ͺ

This dataset was constructed by:

  1. For each of the 14 sub-topics of the ATO Community forum that did not come under the parent topics 'Online Services' and 'Tax Professionals' (which were found to consist almost exclusively of practical questions around the use of ATO services rather than substantive tax law queries), selecting 8 questions that:
    1. Had at least one answer with at least one hyperlink (with, where there were multiple competing answers, the answer selected by the user as the best answer being used otherwise using the answers of ATO employees over those of tax professionals).
    2. Were about a substantive tax law problem and were not merely practical questions about, for example, the use of ATO services or how to file tax returns.
  2. For each sampled question, visiting the hyperlink in the selected answer that appeared to be the most relevant to the question and then copying as much text from the hyperlink as appeared relevant to the question, ranging from a single paragraph to the entire document.
  3. Using a purpose-built Chrome extension to extract questions and relevant passages directly to Markdown to preserve the semantics of added markup.
  4. Lightly cleaning queries and passages by replacing consecutive sequences of at least two newlines with two consecutive newlines and removing leading and trailing whitespace.

License πŸ“œ

This dataset is licensed under CC BY 4.0 which allows for both non-commercial and commercial use of this dataset as long as appropriate attribution is made to it.

Citation πŸ”–

If you use this dataset, please cite MLEB as well.

@misc{butler-2025-australian-tax-guidance-retrieval,
    author = {Butler, Abdur-Rahman and Butler, Umar},
    year = {2025},
    title = {Australian Tax Guidance Retrieval},
    publisher = {Isaacus},
    version = {0.1.0},
    url = {https://huggingface.co/datasets/isaacus/australian-tax-guidance-retrieval}
}

@misc{mleb-2025,
  title={Massive Legal Embedding Benchmark (MLEB)},
  author={Umar Butler and Abdur-Rahman Butler},
  year={2025},
  url={https://isaacus.com/blog/introducing-mleb},
  publisher={Isaacus}
}
Downloads last month
54